
Diversity of Learning to Control Complex Rehabilitation Robots Using
High-Dimensional Interfaces

Jongmin M. Lee1,Ψ, Temesgen Gebrekristos1, Dalia De Santis2, Mahdieh Nejati-Javaremi1,
Deepak Gopinath1, Biraj Parikh1, Ferdinando A. Mussa-Ivaldi3, and Brenna D. Argall3

Abstract— Learning to perform everyday tasks, using a com-
plex robot, presents a nested problem. It is nested, because, on
the surface, there is a problem of robot control—but within it,
there lies a deeper, more challenging problem that demands the
control nuances necessary to perform complicated functional
tasks. For individuals with limited mobility, such as those
with cervical spinal cord injuries, the addition of physical
burden is added to this motor learning burden. An explicit
training regime can be designed to accelerate and aid the
learning process, with the long-term aim to help individuals
(injured or uninjured) acquire the skill of complex robot
control. However, such training regimes are not well-established
nor are the methods of evaluation. In this paper, we gain a
baseline understanding of how humans learn to control a 7
degree-of-freedom assistive robotic arm, using a novel high-
dimensional interface, in the absence of explicit training. We
examine how participants transition between distinct workspace
zones to extract their learning possibilities. We gain additional
granularity in individual learning, based on how participants
spend their time in the workspace, with the robot, and how the
time spent is distributed across trials. These analyses highlight
the high diversity of learning. Lastly, we provide benefits and
opportunities for targeted training regimes that are explicit and
heavily favor individualized support.

I. INTRODUCTION

Many people live with limited mobility. One of the least
mobile populations is individuals with cervical spinal cord
injury (cSCI). Even when mostly immobile, many people
in this cohort can generate residual motions in their bodies.
Residual body motions can be captured by motion sensors to
provide the inputs necessary to interface with simple assistive
devices [1]. This idea has been refined, systematized, and
popularized over the years and is now commonly known
as the body-machine interface (BoMI) [2]. The BoMI has
shown to capitalize on residual body motions, adapt at
the interface-level [3], [4], and opens promising doors for
potentially huge opportunities for physical rehabilitation.
This includes people with cSCI to perform tasks in goal-
directed ways, with the capacity for them to sustain physical
activity, prevent muscle degeneration, and facilitate motor
learning [5]. However, scaling to complex, high-dimensional
assistive robots—such as multi-jointed robotic arms—has
yet to be accessible. Major progress in the development
of BoMI holds promise to overcome the unavailability of
commercially-available interfaces that allow for the contin-
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uous robot control of both position and orientation simulta-
neously.

Despite these technological advancements and their in-
tegration with high-dimensional assistive robots, it remains
an enormous challenge for people, injured or uninjured, to
use them to seamlessly perform everyday tasks (e.g., spoon
feeding). This is because people are faced with a formidable,
nested problem—that is, in order to, for example, spoon feed,
it requires people to simultaneously know how to operate the
robot using their residual body motion (a novel skill) and
the control nuances to spoon feed themselves via the robot
(also a novel skill). Hence, the learning burden to acquire
both skills (in conjunction) is significant. It demands training
regimes that are well-designed, studied, and personalized
such that the learning process is efficient, accelerated, and the
knowledge acquired is retained. However, to our knowledge,
it remains unclear how to design such training regimes, es-
pecially targeted regimes that emphasize individual learning.

In this paper, we present several analyses that begin to
provide us with a baseline understanding of how people learn
to control a 7 degree-of-freedom (DoF) assistive robotic arm,
using a body-machine interface, in the absence of explicit
training. We provide advantages and disadvantages of these
analyses at different granularity, show how they can capture
individual learning, and highlight the diversity of learning
between a small cohort. We first cover the experimental
methods in the METHODS section, provide our results and
discussion points in the RESULTS AND DISCUSSION section,
and share some benefits and opportunities for future training
regimes in the OPPORTUNITIES FOR TARGETED TRAINING
REGIMES.

II. METHODS

A. Materials

The sensor net consists of four inertial measurement unit
(IMU) sensors (Yost Labs, Ohio, USA), placed bilaterally
on the scapulae and upper arms and anchored to a custom
shirt designed to minimize movement artifacts. This is the
essence of what is known as the body-machine interface [2].
The relative quaternion orientation of the four IMUs in the
net (16-dimensional) is mapped to a 6-dimensional subspace
using PCA. The PCA map is precomputed using data from an
experienced user, performing a predefined set of movements,
and this same map is used for all participants. The lower-
dimensional subspace consists of 6D velocity commands—
3D position (x, y, z) and 3D rotation (roll , pitch, yaw )—
which are used online to control a 7-DoF JACO robotic arm
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Fig. 1: An overview of the interface-robot pipeline and the study tasks.

(Kinova Robotics, Quebec, Canada). A GUI is displayed on
a tablet to provide a visualization, for the participant, of the
robot velocity control commands as well as a score for each
trial.

B. Protocol

There are three phases to the study protocol: (a) familiar-
ization, (b) training, and (c) evaluation (Figure 1). During
familiarization, participants are encouraged to explore and
become familiar with the system on their own, with minimal
constraints enforced. Both of the next phases make use of a
set of ten fixed targets G. During training, two categories of
reaching tasks are employed: reaches from a fixed center
position out to a target gi ∈ G, and sequential reaches
between multiple targets gj ∈ G. The ordering of targets is
random and balanced across days to avoid ordering effects,
and it is identical across participants. The evaluation phase
is split into a reaching and a functional task. In the reaching
task, participants reach to five targets that comprise a 3D-
star gk ∈ G in fixed succession. The functional tasks are
designed to emulate four ADL tasks: (a) take a cup (upside-
down) from a dish rack and place it (upright) on the table,
(b) pour cereal into a bowl, (c) scoop cereal from a bowl,
and (d) throw away a mask in the trash bin.

A trial ends upon successful completion or timeout. For
reaching any target g ∈ G, success is defined within a
strict positional (1.00 cm) and rotational (0.02 rad, or 1.14°)
threshold, and the timeout is 90 seconds. For the functional
tasks, experimenters follow codified guidelines to determine
when the tasks complete and the timeout is 3 minutes.
Participants are informed of the timeouts and asked to
perform tasks to the best of their ability. If there is any
risk of harm to the participant or the robot, study personnel
intervene and teleoperate the robot to a safe position before
proceeding.

C. Participants

Each participant completes five sessions, executed on
consecutive days for approximately two hours each. All
sessions are conducted with the approval of the Northwestern
University IRB, and all participants provide their informed
consent. Ten uninjured participants from this study are re-
ported in this paper.

III. RESULTS AND DISCUSSION

We first establish a straightforward approach to summarize
a participant’s learning possibilities in III-A. We then reveal

the diversity of learning with a more fine-grained analysis
in III-B. Lastly, we provide additional support that grouping
individuals together, in learning environments, can lead to
challenges, in settings with diversity in learning in III-C.

A. Transitions Between Zones in the Workspace Hints at
Learning Possibilities

Our primary measure of performance is a computation
of the distance between the robot’s end-effector and targets,
over time. For the purpose of this analysis, we breakdown the
study workspace into three distinct zones with respect to a
given target: (1) proximal (green), (2), peripheral (grey), and
(3) remote (red), where zones are demarcated at 0.1 and 1.0
on normalized axes for position and orientation (Figure 2).
That is, the proximal zone is the region near the target, where
near is defined to be within 10% of the total distance needed
to travel; the peripheral zone is the region in-between the
proximal zone and starting distance to the target (denoted as
100% or 1.0), and the remote zone is the region beyond the
starting distance.

One simple way to view learning across multiple days is to
compare performances on first and last days. In Table I, we
examine whether participants enter each of the three zones
on Day 1 and Day 5 and build a matrix that summarizes
participant transitions between these two zone states.

We first notice that no participant begins, on the first
day, by entering the proximal zone (first row). This hints
that, in general, the chosen evaluation task is not a trivial
task for participants; they cannot rely on native abilities
alone, and learning is necessary to perform well. Secondly,
it validates that the task is, in fact, learnable, indicated by
the participants’ ability to enter the proximal zone on Day 5
(either via the first column or fourth column).

In addition, we notice 6 out of 10 participants manage
to visit the proximal zone on the last day, without visiting
the remote zone. The remaining 4 participants also visit the
proximal zone, however also the remote zone. This means
that, despite not visiting the proximal zone at all previously
on Day 1, 100% of the participants entered the proximal
zone on Day 5. If we also reevaluate the starting points of
all participants (along the rows) based on how they finish,
especially those who enter only the proximal zone (and
not remote) on Day 5, we see the diversity of individual
progress. Similarly, out of the four participants, who start in
the Remote category, three finish in the Proximal category;
conversely, out of the four who start in the Mixed category,
three participants also finish in the Mixed category (and not
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Fig. 2: Example of normalized position distributions; 3d-star; proximal zone (green) demarcated at < 0.1, remote zone (red)
at > 1.0; bin size = 0.05

TABLE I: First-Day-to-Last-Day Transition Matrix

Last Day
Proximal Peripheral Remote Mixed P/R

First Day

Proximal
Peripheral 2
Remote 3 1
Mixed P/R 1 3

From top-left across: {J1, J5}; {E1, E2, E5}, {J2}; {J3}, {E3, E4, J4}

exclusively proximal). We will look more closely at these
two groups in the following subsections.

B. Time Spent Highlights Diversity of Learning

We present a more fine-grained analysis of how learning
proceeded, by examining the time spent in the proximal,
peripheral, and remote zones in two groups, identified by
Table I.

The first group consists of the three participants (E1, E2,
E5), who start in the Remote category, but finish in the
Proximal category (R→P). The R→P group is significant,
because not only are their opportunities to learn the greatest
(because they start on Day 1 by visiting the remote zone),
but, seemingly, they are also able to seize that opportunity
and achieve high learning gains, because on Day 5, they are
able to enter the proximal zone. In fact, examining time spent
over days and between first and last days (Figure 3c) shows
that the learning gains differ between many participants, and
they demonstrate unique learning profiles over the evolution
of days.

The second group consists of individuals who start in the
Mixed category. They comprise of three people (E3, E4,
J4), who start and end in the Mixed category (M→M), and
another (J3), who starts in Mixed, but finishes in Proxi-
mal (M→P). This Mixed group also share some attributes
amongst each other, but they drastically differ in others. For
instance, even though J3, J4, and E4 share a similar increase
in time spent in the proximal zone between first and last days,
examining time spent over days show that their journeys
differ. J3 spends 100% of time in the peripheral zone on
Days 2-3, while J4 spends a significant amount of time in
the proximal zone from Days 2-4. However, J3 then improves
between Days 4-5, while J4 regresses on the last day. This
regression is indicated by the increase in time spent in the
remote zone on Day 5 (magnitude is also the highest over
five days) and a decrease in proximal zone relative to Days

2-4. E4 shows a dramatic improvement in Days 2-3, but flat
lines in the time spent in the proximal zone, even though
time in the remote zone decreases across all days.

In addition to these within-group differences, there are also
between-group commonalities that together highlight how
the coarse view in Table I needs the support of other more
complex analyses to match the diversity in learning. For
example, J4 (M→M) shares many similar attributes as E2
and E5 (R→P). Their time spent in proximal all peak during
the middle of the week, relative to Days 1 and 5; moreover,
they all seem to have major last day effects, where, in terms
of time spent, they all suffer greatly on the last day (last two
days for E5). The evidence for these observations are shown
in Figure 3. E3 arguably also has similar last day effects, but
in the opposite zone—this person spends a significant time
in the remote zone middle of the week, but we notice that
there was a dramatic drop on Days 4 and 5.

C. Temporal Features and Dispersed Zone Visits Provide
More Cushion Between Subtleties in Learning

To track learning more closely at an individual-level, we
focus on end-effector distance to targets for a given trial,
as well as visualize its evolution across days. This can be
expanded to all five targets of the 3D-star task. Two examples
of this analysis are shown in Figure 4: E2’s evolution on
Target 3 (Figure 4a) and J3’s evolution on Target 5.

Our first observation is that while time spent is critical
to learning, how the time is distributed across trials also
provides great value. For example, in Figure 3f, we see
a significant spike in the remote zone on the first day,
amounting to 30% of time spent across all five targets. It
turns out the first trial on Day 1 contributes to more than
half of this spike (Figure 4a), indicating how concentrated
this measure can be on a particular subset of trial(s).

Our second observation is that looking at how time spent
in each zone is distributed between Days 1 and 5 (Figure 5)
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(a) (J1) (b) (J5) (c) (E1) (d) (J2) (e) (E4)

(f) (E2) (g) (J4) (h) (E5) (i) (J3) (j) (E3)

Fig. 3: Time spent in zones (normalized position), in order of Groups; 3d-star task

(a) An example that demonstrates why we need to consider how time spent in different zones are distributed across trials.

(b) Evidence that a single proximal zone surrounding the targets can be too strict to capture learning nuances.

Fig. 4: Examples of a five-day evolution of normalized position (dark) and orientation (light) from robot end-effector to
target over time on two targets (one per row) of the 3d-star task.

provides insight that in some cases corroborates with (e.g.,
E1) and other cases contradicts (e.g., E2) time spent mea-
sures alone. For instance, while E4 shows a plateauing effect
in time spent in the proximal zone, this is paired with a
dramatic improvement in proximal visits, including visiting
all five targets’ proximal zones.

A similar disagreement between time spent in a zone and
number of visits to a zone can occur in the remote zone.
This occurs for E4, where even though the time spent in the
remote zone was only 4.3%, the participant visits 2 out of
the 5 targets on the last day. E2 also spends a vast majority
of time in the remote zone on Target 1, on Day 1. Hence,
by distinguishing the spread of the time spent allows us to

identify when the zone visits are sparse and concentrated on a
small amount of trials (outliers) or when they are distributed
across many trials, which would indicate higher evidence of
learning.

IV. OPPORTUNITIES FOR TARGETED TRAINING REGIMES

We deliberate on our results from Section III and share
three ways how we could directly use these results to design
targeted training regimes that provide explicit instruction.

A. Estimating Native Ability with Day One Analyses

By considering the initial zone state (Table I), how time
is allotted in different zones (Figure 3), and how dispersed
the zone visits occur on only the first day (Figure 5), in
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Fig. 5: Percentage of visits to the proximal zone (closer to the targets; left) and remote zone (beyond starting position;
right) between first day and last day. The spread of trends between these days shows how diverse the learning is between
participants.

combination, could provide enough information to make
accurate estimations about an individual’s native ability.
Firstly, the initial zone(s) entered on the first day could signal
how much learning opportunity could be gained (or lost) by
that individual. Time spent can strengthen or weaken the con-
fidence in this early signal. For instance, when an individual
starts in the Remote category and spends a significant amount
of time in the remote zone, this will strengthen our signal
that this person really does have a large opportunity to learn.
Conversely, when they disagree, we may need additional
information, such as the dispersion of zone visits, to help
provide the context for how much learning opportunity there
is for a given participant.

B. Autonomous Nudging that Support Human Interventions

One additional opportunity is when there is a need to
intervene and teleoperate the robot to a safe position during
study trials, at times, when there is risk of harm to the
participant or the robot. In general, this is at the discretion of
study personnel, can be subjective, and therefore not always
consistent throughout the study. It may also add the need for
additional personnel, responsibilities, and cognitive burden
when conducting experiments. One way to offload this task
is provide autonomy to the robot when certain conditions
were in place. Conditions can be made, offline, by modeling
the study environment such that the robot is aware of the
immediate collision areas. With this knowledge, in addition
to the robot’s movements and a region where the participant
sits, we can characterize the situations when collision is
likely, allow the robot to automatically intervene, and plan
to preassigned, safe configurations.
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