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Abstract

In many analyses of high-throughput data in systems biology, calculating the activity of a set of genes
rather than focusing on the differential expression of individual genes has proven to be efficient and
informative. Here, we present the rROMA software package for fast and accurate computation of the
activity of gene sets with coordinated expression. We applied rROMA to cystic fibrosis, highlighting
biological mechanisms potentially involved in the establishment and progression of the disease and the
associated genes. Source code and documentation are available at https://github.com/sysbio-
curie/rROMA.

Contact: loredana.martignetti@curie.fr

1 Introduction

A signaling pathway can be defined as a set of genes or proteins that interact to pass on information
from the exterior to the interior of a cell. In many diseases, some pathways are altered and the
deregulations may come from one or several genes in this pathway, which may differ from one patient
to another. Quantification of pathway activity via numerical scores using high throughput measurement
of gene and protein expression is widely applied to transform the gene-level data into interpretable gene
sets that can reveal biological heterogeneity across samples.

Here we present rROMA, a user-friendly and interactive R implementation of the ROMA algorithm that
quantifies the activity of a gene set (or module) by its first weighted principal component (PC)
(Martignetti et al, 2016). Here, gene sets or modules referred to canonical pathways annotated by
domain experts or derived by external databases. In ROMA, the co-variance across samples of the
genes composing the module is interpreted as the result of the action of a hidden factor on the
expression of the genes. This setting corresponds to the simplest uni-factor linear model of gene
expression regulation (Schreiber and Baumann, 2007).

The rROMA package provides novel functionalities for the analysis, visualization and reporting of
active/inactive modules. It allows to highlight two possible configurations of the expression of the genes
of a module under the effect of a regulatory factor: we called shifted module the case where the genes
of the module are collectively displaced to one side with respect to the center of the distribution (Fig.
1A), while overdispersed module is the case where the amount of variance explained by the first PC
of a given gene set is significantly higher than expected in the global gene expression distribution and
the genes are found dispersed on both sides of the center of the global gene expression distribution
(Fig. 1B).

Moreover, the algorithm implements different ways to identify outlier genes that can significantly
influence the results. Finally, several functions for differential analysis and graphical visualization of the
results are provided.
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Fig. 1. Representation of genes in the case of two samples. Each dot represents one gene, its
horizontal (resp. vertical) value corresponding to its expression in sample 1 (resp. sample 2). Genes
associated with Factor A are plotted in light blue and the corresponding PC1 direction is plotted in red
(A). This represents a shifted pathway, as assessed by a median of gene projections onto PC1 direction
far from the origin of the distribution. Genes associated with Factor B are plotted in dark blue (B) and
the corresponding PC1 direction is plotted in red. This represents an overdispersed pathway, as the
PC1 is well aligned with the dots’ distribution. Larger dots correspond to the genes with the highest
score, highlighting their importance for the pathway. Genes in yellow are neither overdispersed nor
shifted, as PC1 explains a relatively small fraction of variance (not represented on the figure) and the
median of projections onto PC1 is close to the origin for this group of genes.

2 Implementation

rROMA is distributed as an open-source R software package and is available on GitHb:
www.github.com/sysbio-curie/rROMA. A detailed vignette to reproduce all the analyses presented in
this paper is also available.

3 Results

We applied rROMA to investigate the activity of pathways in airway epithelial cells from cystic fibrosis
(CF) patients and from healthy donors. More precisely, we compared the transcriptomes of primary
cultures of airway epithelial cells from patients (N=6) with those of healthy controls (N=6), based on
RNAseq data publicly available in the NCBI's GEO database, under the accession ID GSE 176121
(Rehman et al, 2021).

Here, the Molecular Signature Database MsigDB hallmark gene set collection (Liberzon et al, 2015)
was selected to ease interpretation. However, to provide a more complete view of the biological
processes involved in a study, rRoma can be applied using multiple pathway databases. rRoma was
run by specifying the pathway database to use and the expression matrix to analyze, as shown in the
accompanying vignette.

Once rRoma has finished running the analysis, activated pathways can be determined by looking at the
ModuleMatrix output. Pathways with a ppv Median Exp lower than a certain threshold were deemed as
shifted, while those with a ppv L1 lower than this threshold were overdispersed. Pathway activity across
samples can be plotted with the Plot. Genesets.Samples function, and the top contributing genes in
each pathway are determined by visualizing gene weights with the function PlotGeneWeight. Boxplot
of the activity scores based on predefined groups can also be plotted for differential analysis. In this
vignette, all highlighted pathways behaved significantly differently in CF patients versus healthy donors.

In our example, out of the 50 hallmark pathways tested, 3 were significantly active: Fatty acid
metabolism, apical surface, and coagulation. The Fatty acid_metabolism pathway has significantly
different activity scores between CF patients and healthy donors. In the context of CF, this pathway has
been extensively studied, and its deregulation is a well known CF phenotype (for a review, see
Strandvik, 2010). This illustrates the ability of rROMA to retrieve dysregulations from the transcriptomic
data.
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The apical_surface pathway is more difficult to interpret. This might actually highlight differences
arising during cell differentiation, and it could thus be related to cell culture rather than to the disease.
Finally, the coagulation pathway, the only overdispersed pathway, seems to be linked to one specific
gene with a very high associated weight: gelsolin (GSN). We observe that GSN is by far the top
contributing gene to the activity score of the COAGULATION pathway. Gelsolin has been reported as
playing a role for CFTR activation (Cantiello 2001, Vasconcellos et al 1994). Overall, in this case
study, rRoma highlighted a relevant mechanism in the context of CF, a potential bias due to cell
culture, and an interesting gene which could be further investigated.

Many hyperparameters can be specified and changed to modify rRoma speed, precision, or behavior
regarding outliers. Details about all available hyperparameters are described in the vignette. The
computational time required to run the algorithm typically depends on the number of studied pathways
and their relative size. It also depends on whether parallelization is enabled. Regarding the example
discussed here, the algorithm ran in approximately 3 minutes and 15 seconds on a MacBook Pro
equipped with a 2,6 GHz Intel Core i7 6 cores processor. A single 60 genes pathway took roughly 5
seconds to be analyzed. Note that parallelization was not used but would have increased the speed of
the analysis if used.

In summary, this work indicates that rROMA is capable of identifying genetic pathways contributing to
disease-associated transcriptomics enabling a clearer interpretation of results from a biological point
of view, which allows interpreting cellular changes in a more holistic and functional way.
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