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ABSTRACT 

Climate change will have a net negative and inequitable impact on agriculture. Genetics for crop 

improvement ranks in the top set of technologies that can contribute to human adaptation to 

climate change. However, a framework for how to breed crops for climate change adaptation is 

lacking. Here we propose a framework to develop new genotype (G) x management (M) 

technologies (G x M) to adapt to climate change, and to transition from current to future G x M 

technologies in a way that future food security does not come at the expense of current food 

security. The framework integrate genomic, agronomic, and environmental (E) predictors to 

accomplish two critical goals: 1-predict emergent phenotypes that stems from the dynamic 

interplay between G, E and M, and thus enable the breeder to consider the behavior of new 

genetic and trait combinations in environments that plants have not been exposed or tested 

before, and 2-identify G x M technologies that could increase food and nutritional security while 

regenerating natural and production resources. We highlight the need to invest in artificial 
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intelligence and information technologies for breeders to harness multiple sources of information 

to create G x M technologies to address the diverse cultural and geographically granular societal 

needs. 

 

INTRODUCTION 

There is consensus that climate change will have a net negative and inequitable impact on 

agriculture (Lobell et al. 2011; Challinor et al. 2014; Weber et al., 2018; IPCC 2021). The 

increase in temperature, vapor pressure deficit (VPD) and shifting water balances worldwide will 

likely change geographical patterns of farming (Ripple et al. 2016; Ficklin & Novick 2017). 

Disease pressure will increase in high latitudes challenging further crop production and the 

design of stable agricultural systems (Chaloner et al., 2021). There is agreement that crop 

improvement will be key to cope with climate change effects on food security (Lou et al., 2009; 

Cairns et al. 2012; Chapman et al. 2012; Atlin et al. 2017; Hernandez-Ochoa et al., 2019; IPCC 

2021; Snowdon et al., 2021; Kholová et al. 2021) and approaches have been proposed 

(Ceccarelli et al. 2019, Ramirez-Villegas et al. 2015, 2018, 2020, Ceccarelli & Grando 2020). 

However, if we articulate the problem within a circular economy framework, we can foresee 

agriculture as part of the solution to climate change rather than the cause of the problem 

(Bummer et al. 2011; Messina et al., 2022c). Surprisingly, very few efforts were dedicated to 

answer the question how to breed crops for climate change while regenerating natural resources 

and reducing greenhouse gas emissions (Brummer et al. 2011, Messina et al. 2022c; Cooper & 

Messina, 2023). 
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Historical records indicate that past rate of change in climate was slow relative to the ability of 

current breeding systems to drive genetic gain as shown for maize in the United States since the 

onset of a rapid increase in minimum temperatures (Cooper et al., 2014; Messina et al., 2022c). 

Similar outcomes were achieved for soybeans in the Americas (de Felipe et al. 2016), and wheat 

despite genotype x environment interactions imposing limits on the rate of genetic gain (Xiong et 

al. 2021). It is also important to note that until recent decades, rates of genetic gain for maize 

evaluated under water deficit were lower than under irrigated conditions in the corn-belt of the 

United States (Cooper et al., 2014; Messina et al., 2022c). The importance of this observation is 

that only absolute rates of genetic gain are relevant to assess the capacity of the world breeding 

system to satisfy the demand for food, feed, and renewal fuels (Fisher et al. 2014; Ray et al. 

2013). Maize breeding also shows that implementing dedicated breeding programs to improve 

drought tolerance can deliver germplasm with this characteristic while maintaining yields under 

water sufficiency in both temperate (Cooper et al., 2014; Gaffney et al., 2015; Messina et al., 

2022a) and tropical target environments (Nurmberg et al., 2021; Prasanna et al., 2021). The 

limited empirical evidence, relative to all crops and all cropping areas in the world, suggests that 

dedicated breeding efforts proved effective to create adapted germplasm to the target population 

of environments (TPE) when the mixture and frequency of environment types change at the 

relatively low pace observed for the past five or more decades. 

However, genotype (G) by environment (E) by management (M) interactions (G x E x M) are 

ubiquitous in agriculture, these are expressed as changes in rankings among genotypes when 

exposed to different environments and agronomic management practices. Therefore, selecting 

genotypes for the inadequately defined TPE and/or management inevitable leads to lower than 

the attainable rates of genetic gain (Cooper & Hammer, 1996; Kholová et al. 2021). There is 
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current evidence that genetic gain in wheat has been hampered by climate change (Morgounov et 

al. 2013; Xiong et al. 2021). This is particularly critical because whenever the future TPE differs 

from the current TPE due to climate change, there is a risk that implementing breeding programs 

for future climates may decrease the current rate of genetic gain for current environments, and 

thus compromise current food security. There is evidence that wheat breeding may be falling into 

this trap as rankings of cultivars are changing with climate change (Morgounov et al. 2013; 

Xiong et al. 2021). Because the traits and trait network interactions underpinning adaptation (at 

least to drought) change with levels of evapotranspiration (Messina et al., 2011; Borrell et al. 

2014; Gleason et al., 2022; Cooper & Messina, 2023), the environmental distance between the 

current TPE and the future TPE could become significant drivers of G x E x M interactions. In 

wheat, increased spring maximum temperatures led to both increased and decreased yields 

(Morgounov et al. 2013). In maize, the conductance response to vapor pressure deficit is a trait 

underpinning drought adaptation (Shekoofa et al, 2015; Messina et al. 2015). The intensification 

of drought would magnify the selection pressure applied to the germplasm for elevated levels of 

limited conductance. The normal operation of the breeding program is expected to be sufficient 

to increase the frequency of preferred alleles for the required trait levels and thus the breeding 

program would smoothly match the expression levels of the trait to the changing TPE. In 

contrast, such as in well-watered dryland systems, the intensification of drought will be 

conducive to G x E x M interactions and dedicated breeding and agronomy efforts will be 

required to breed new genotypes for the changing TPE (Messina et al., 2011; Messina et al., 

2015; Cooper et al., 2022). The opposite could be said about improvements for radiation use 

efficiency as evidenced in maize breeding (Messina et al., 2022b). It is anticipated the 
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requirements for the creation of adapted germplasm and cultivars will be inevitably different for 

different geographies and cropping systems (Kholová et al. 2021). A key question is then 

how to harmonize breeding efforts for agricultural systems that regenerate the environment 

while providing nutrition security to society and improved adaptation to climate change? 

In this chapter we expand on the framework proposed by Cooper & Messina (2023). We use the 

Breeder’s equation framework and theoretical principles of G x E interactions to demonstrate the 

critical need to properly time the pace of crop improvement to pace of climate change, and the 

opportunity to use advanced prediction methodologies to accomplish this goal. Then we 

articulate the need to rethink breeding objectives to enable agriculture to become part of the 

solution to climate change (Bummer et al. 2011; Kholová et al. 2021; Messina et al., 2022c). We 

use an example to demonstrate how to create prediction systems that harness genomic, 

agronomic, and environmental predictors to implement new breeding objectives within breeding 

programs and manage and align the breeding program to the changing TPE. We finally discuss 

the need to enable breeders with dynamic gene-to-phenotype platforms to implement the needed 

changes in plant breeding and agronomy so society can meet current nutritional and ecosystem 

regeneration demands, without compromising current and/or future societal needs. 

A FRAMEWORK FOR CROP IMPROVEMENT FOR CLIMATE CHANGE 

Predictive breeding 

The goal of a plant breeding program is to create germplasm that solves problems in agriculture 

and thus create value for producers, consumers, and society (Kholová et al. 2021). Hence, plant 

breeders define objectives that can seek to improve productivity, quality, and reduce negative 
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environmental footprints, among others. Important breeding objectives in crop improvement 

programs for row-crop agriculture are yield potential, disease tolerance and yield stability. In 

fruits and vegetables, breeding objectives also include post-harvest traits, flavor, and appearance 

among others (Tieman et al. 2017; Collantonio et al. 2022). To achieve these objectives breeders 

create and evaluate a sample of the germplasm in a sample of the TPE over various stages of 

evaluation and selection (Fig. 1A). The number of individuals evaluated in fields decreases as the 

germplasm cohorts advance through the stages of product development and testing, while the 

number of environments and agronomic management practices sampled increases at the same 

time (Fig. 1A). By sampling the TPE and the target population of genotypes (Fig. 1B), breeders 

create prediction models based on statistical and/or dynamic models. The use of managed stress 

environments helps to expose the germplasm to a set of environments that are of key interest to 

the breeder (Fig. 1B). These models help them use a relatively small sample of germplasm and 

environments to explore the complex dimensions of a much larger genotype x environment state 

space (Fig. 1C; Ramstein et al. 2019). Various genotype-to-phenotype prediction methodologies 

were developed, some of which are described in this review (Lorenz et al. 2011; Jarquín et al. 

2014; Messina et al. 2018; Ramirez Villegas et al., 2020). Plant breeders can use the framework 

of the “Breeder’s equation” (Lynch & Walsh, 1998) to evaluate genetic progress and optimize 

breeding systems, 

�� � � � �� � ��          (1a) 

where �� is response to selection for one cycle of directional selection, i is the standardized 

selection differential applied to a trait, �� is heritability or fraction of the total phenotypic 

variation that could be attributed to genetic variation, and ��  is the is the expected standard 

deviation for the observed on-farm values of the selection units for the same trait. Prediction 
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methodologies such as whole genome prediction (WGP) seek to use genomic information to 

maximize the correlation ����,�� between the observed values or breeding values of traits 

measured on the selection units in the multi-environment trial M and the true trait values or 

breeding values of the selection units in the TPE (Cooper & Messina, 2023), 

�� � �	,� � �	,�� � �	,��
� � ����,��
� � ���	,��
�     (1b) 

where it,M is the standardised selection differential applied to the trait t based on the data and/or 

predictions from models constructed using the sample of environments obtained in trials M, the 

heritabilities are for the trait estimated for M (h2
t,M) and the TPE (h2

t,TPE).  Prediction models can 

be based on regression or association within different statistical frameworks (Meuwissen et al. 

2001; Yu et al. 2006; Heffner et al. 2009; Zhang et al. 2010; Lorenz et al. 2011), 

	�̂ � 
 � ∑




�
�
          (2) 

where the trait phenotype y for individual i is predicted based on the population mean 
 and the 

sum over the genotype markers j (
�
) times the marker effects �
  . Other models extended this 

model to include environmental covariates (Boer et al. 2007; Heslot et al. 2014; Jarquin et al. 

2014; Millet et al. 2019), consider non-linear associations (Collantonio et al., 2022) or are 

integrated with dynamical models (Technow et al. 2015; Messina et al. 2018; Diepenbrock et al. 

2021). The goal of these prediction methods is to enable breeders to expand their breeding 

program by adding a virtual component or to maintain the size of the breeding program while 

using less resources. The efficacy of the application of prediction within large commercial 

breeding programs for maize has been demonstrated (Cooper et al., 2014; Cooper et al., 2016). 

Experimental design seeks to reduce experimental error and thus increase ��, and increase ��  by 
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exposing the germplasm to environments and management conditions conducive to express 

variation in adaptive traits in both selection and evaluation environments (Cooper & Hammer, 

1996). 

Genotype x environment interactions hampers genetic gain 

Decomposing the heritability into variance components (genetic (G) ���; genotype x environment 

(G x E) ���� ; error ���; n denotes number of environments e and replicates r) illuminates the 

potential for G x E interactions to hamper genetic gain (Comstock and Moll 1963, Cooper & 

Hammer, 1996),   

�� � ��
�

��
��

���
�

��
�

��
�

����

        (3) 

However, the various forms of G x E can have differential impacts on genetic gain (Cooper & 

Hammer, 1996) depending on the importance of G x E due to heterogeneity of variances 

(���������� or lack of correlation. The latter could be decomposed further into ��, the pooled 

genetic correlation among environments, and ���
����
��, the arithmetic average over all pairwise 

geometric means among all the genotypic variance for environment j’s. Figure 2 shows how lack 

of correlation can cause changes in the ranking of genotypes while heterogeneity of variances 

does not. Therefore, to maximize genetic gain it is important to know which environments 

generate cross over interactions, and what are the frequencies of these environment types within 

the TPE. In the context of breeding for climate change, it is of critical importance to determine 

whether future climates will contribute to cross over interactions or not. The encapsulation of 

crop, soil and environmental science within crop models enables the assessment of traits to 
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understand traits undermining adaptation to current and future climates (Hammer et al., 2014, 

2020; Ramirez Villegas et al., 2020; Cooper & Messina, 2023) 

Environment frequencies and weighted selection 

Because of the ubiquity of G x E interactions, and the possibility of biases in the sampling of 

environments by the implemented testing system within the breeding program, selection 

strategies that accommodate G x E interactions were developed (Cooper et al. 1995), and 

weighted selection strategies have been proposed (Podlich et al. 1999). In this case, weights are 

estimated from the relative frequency of sampled environments over the expected frequencies of 

the environment types that comprise the mixture of environments of the TPE. Frequency of 

environments could be defined based on climatology or more sophisticated methods (Chapman 

et al. 2000; Löffler et al. 2005; Kholová et al. 2013; Ramirez Villegas et al., 2020; Cooper & 

Messina, 2021; Carcedo et al. 2022), such as crop growth models (CGM, Jones et al. 2003; 

Holsworth et al., 2014). CGMs are functions that approximate the phenotypic function,  

����� � ����� ������       (4) 

where the function F represents perfect knowledge of the observable phenotype as determined by 

nature, the function Q represents the phenotypes that are predictable based on our current 

scientific knowledge and phenotyping systems, and H is the function that represents what we 

don’t know, it is not knowable/predictable (Day 1976), or we do not want to include in the 

model. If we define function Q as a CGM, the CGM becomes a cognitive construct that we use 

to represent processes, states, and the topology of relations among biological processes (Cooper 

et al., 2009). CGMs can span several levels of organization, however, there is consensus that 

empiricisms are needed whenever we seek to link or use information for more than two levels of 
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organization away from the target level of the system to be modelled (e.g., cell to crop). CGMs 

have a set of parameters that are known (k), unknown and estimable (u) and a set of inputs (I), 

������, ��, ��. Using soil, weather and management databases as inputs, Harrison et al. (2014) 

estimated frequencies of environment types for current and future climates. This knowledge 

could enable breeders to implement breeding strategies that create a smooth transition from 

current to future genotypes adapted to climate change, that accompanies the changes in the 

mixture of environments in the TPE. Using genomic predictions in the form of eq (2), and 

weighted selection will be most useful whenever lack of correlation G x E is an important 

determinant of future yields. 

Figure 2b shows a theoretical representation of the plausible consequences of inadequate 

decisions regarding selection for climate change in the presence of both types of G x E 

interaction (Fig. 2A). Taking E1 as current climates, the percent frequency of E1 in the TPE 

indicates the transition from current to future climates. When the frequency of environment type 

E1 matches the frequency in the TPE, say evaluation in the current climates for selection in the 

current climates, the covariance W(S,T) between selection (S) and target (T) is highest. The 

difference at the extremes is due to the heterogeneity in the variance in E1 and E2 (Fig. 2A). 

Because of the lack of correlation between environment types, selecting for E1 when the target is 

E2, that is selecting in current environments for performance in future environments, can lead to 

negative covariances. Most of the arguments to start breeding for climate change are based on 

this concept (Cairns et al., 2012; Atlin et al., 2017). Lack of action can lead to global food 

insecurities and geographical famines with consequent starvation of future human populations; 

there is a merit in this argument because of the ubiquitous G x E in major cropping systems 

subject to drought stress (Cooper, 1999; Messina et al., 2015; Xiong et al., 2021). However, the 
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opposite is also possible, and premature selection for future climates (E2) can hamper genetic 

progress for current climates contributing to food insecurity for current populations. This 

analysis leads to the following propositions:  

• it is critical to time correctly breeding strategies with expected changes in climate,  

• computational methods in with genomic prediction could be used in combination with 

weighted selection and crop models to create cultivars and germplasm for a dynamic TPE 

• predictive breeding connected with climate predictions can time the required adjustments 

within breeding programs correctly to produce cultivars ready for use by famers in 

alignment with changes in the TPE (Challinor et al. 2016).  

Because breeding is a dynamic process, careful decisions need to be made and the evolution of 

the germplasm monitored. Simulation studies have demonstrated that breeding programs are 

sensitive to the founding germplasm used to start the breeding program (initial conditions) and 

can manifest temporal patterns that could diverge with increasing cycles of selection (Messina et 

al., 2011), in similar ways as the weather and climate systems do (IPCC, 2021). The prediction 

of the plausible trajectories of breeding programs seeking to create the germplasm required for 

adapting agricultural systems to climate change adds another layer of complexity and 

uncertainty. This requires careful consideration of breeding objectives for climate change. 

Rethinking breeding objectives  

In face of climate change and the need to regenerate natural resources, we advocate for a new 

framework in which breeding objectives are defined by answering the question: how to use 

genetic and agronomic levers together to maximize the societal benefit of a unit of resource use 
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(Cooper et al., 2020; Hunt et al. 2019, 2021; Zhao et al. 2022), and how to minimize 

environmental degradation (Brummer et al. 2011; Rodell et al. 2019; Messina et al., 2022a,c)? 

Reimagining breeding to enable cropping systems that can improve the efficiency of water use 

(Blum, 2009; Cooper et al. 2022) is paramount in the context of the temporal changes in patterns 

of seasonal water availability for food production worldwide (Rosegrant et al. 2009; Richey et al. 

2015; Rodell et al, 2018; Caparas et al. 2021).  Similarly, given the importance of nitrogen in 

food production, nitrogen oxides emissions from agricultural fields on global warming, and 

nitrates on water pollution (Roberston & Vitousek, 2009; Boules et al., 2018; Chang et al. 2021), 

it is imperative to articulate breeding objectives to create germplasm and cultivars that enable the 

creation of systems with high efficiency of nitrogen use, and low nitrogen oxides emissions. 

Dynamic CGMs are non-linear functions of environment and management inputs, and genetic 

parameters that simulate with time steps from hourly to daily, the soil carbon, nitrogen and water 

balance, and the plant carbon and nitrogen balance (Jones et al. 2003; Holsworth et al. 2014). 

Thus, they would enable breeders to incorporate effective water use, nitrogen losses and 

emissions, soil carbon and other metrics as components of the breeding objectives. Unlike the 

past, breeders would have the information needed to create cultivars to minimize externalities, 

maximize effective water and nitrogen use, soil carbon accumulation, or a combination that 

contributes to produce food while combating climate change (Messina et al. 2022c; Cooper & 

Messina, 2023). While improving confidence in the models to simulate the metrics of interest is 

an important and likely costly undertaking, these investments pale relative to the massive 

socioeconomic consequences of no action. Traits that contribute to the improvement of both 

productivity and reduced externalities need not be directly related to the biological efficiency of 

resource use, as shown for nitrogen (Muller et al., 2019) and water in maize (Cooper et al. 2014; 
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Messina et al. 2022a), but at the cropping system level. It has been proposed there is a need to 

increase the circularity of nutrient cycling in maize by improving maize tolerance to low 

temperatures and remobilization to roots (Buckler, pers. comm., Fig. 3). Figure 3 illustrates a 

concept where tolerance to cold stress in maize could increase yields, synchronize soil nitrogen 

supply with crop demand, increase light interception, and thus reduce externalities while 

increasing productivity. Such system level thinking enabled by CGMs could be conducive to a 

shift in mindsets on how to define breeding objectives that move us away from a plant/crop 

centric idiotypes with the focus on productivity (Perego et al. 2014; Rötter et al. 2015; Paleri et 

al. 2017; Hammer et al. 2020; Ramirez Villegas et al., 2020) towards a system centric thinking 

with a focus on the balance between providing nutrient security while minimizing environmental 

externalities and their negative contributions that hasten climate change; these are two important 

dimensions contributing to current and future human health and well-being. 

Models that predict emergent phenotypes 

For a CGM to deliver on the promise to add information to re-think breeding objectives and 

predict with higher skill beyond the current sample of environments, they must be able to predict 

what we define as emergent phenotypes. These are observable phenotypes that are different from 

what we can predict by understanding the parts in isolation or as independent components 

(Anderson, 1976; Roeder et al., 2021; Powell et al., 2022). It has been shown that simple 

equations can have complex behavior, for example the logistic equations that model populations 

of plants can manifest complex emergent behaviors such as bifurcations and chaos (May, 1976; 

Roeder et al., 2021) that conform well with the observation of bimodal distributions of maize 

barren plants (Edmeades & Daynard, 1979). Routines recently implemented in the crop model 

APSIM can simulate emergent patterns such as the relationship between anthesis-sinking interval 
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and yield in maize or the relationship between plant growth and kernel numbers (Messina et al. 

2019). While the routines in the current APSIM model do not yet have the capacity to simulate 

the observed bifurcation behavior of barren and non-barren plants in a crop, the capacity to 

predict emergent phenotypes suggests that dynamical models are tools that are evolving and are 

capable of predicting phenotypes different from what is expected from the analyses of the parts 

in isolation. For example, understanding a system to reduce photorespiration in leaves in 

isolation leads to an overestimate of the plausible impacts on productivity at the crop scale and 

for the mixture of environment types that comprise the TPE (Hammer et al., 2019). This 

prediction using APSIM conforms well with the limited success of large numbers of single gene 

transformation technologies for yield improvement (Simmons et al., 2021). The ability of current 

CGMs to simulate some emergent behaviors, can enable breeders to use this kind of tool to 

inform selections to improve germplasm to meet the needs of the adjacent environment space of 

the future TPE while considering the expected change in frequencies of environments in the 

selection and on-farm production situations (Snowdon et al. 2021; Messina et al. 2022a,c). 

Because the CGM integrates scientific knowledge, for many situations these tools can be better 

equipped than purely empirical models to predict genotype performance in environments that 

were never included in the training sets, and more importantly, environments that the crops have 

never experience before (Battiest & Naylor, 2009). 

CGMs are also useful tools to explore the relevance of traits and trait networks (Messina et al. 

2020; Ramirez Villegas et al., 2020; Gleason et al. 2022), and genetic networks (Messina et al. 

2011; Powell et al. 2022) on yield performance. Figure 4A shows the contribution of individual 

traits or trait networks (TxT) to the fraction of phenotypic variance. At the environment extremes 

of high and low evapotranspiration (ET), trait interactions are less relevant with either growth 
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traits or reproductive resiliency traits explaining most of the variation in this maize example. At 

intermediate levels of ET, the interaction of traits as trait networks underpins most of the 

phenotypic variation. In the presence of these trait interactions and interactions with the 

environment, we have observed that a CGM can perform better than empirical models (Technow 

et al. 2015, Messina et al. 2018, Diepenbrock et al. 2022, Messina et al. 2022c). Cooper et al. 

(2009) using simulation approaches argued that the benefit of a molecular breeding strategy over 

phenotypic selection increases with increasing complexity of the genotype and environment 

system. Diepenbrock et at (2022) showed that improvements in predictive skill by incorporating 

biological knowledge to the prediction algorithm increase with decreasing ET (Fig. 4B) in 

agreement with theoretical predictions (Cooper et al., 2005; Cooper et al., 2009; Messina et al., 

2011). The emergence of G x E interactions also depends on the distance between environments 

(E1 to E6, Fig. 4). In figure 4A we illustrate, based on the tradeoffs determined by biophysics 

embedded in the CGM, various types of G x E interactions. If climate change determines a rapid 

shift in ET form E2 to E1 (CC2�1), we should not expect major changes in G x E and thus the 

normal operation of a breeding program will suffice to adapt the germplasm to the changing 

TPE; physiological basis of adaptation moves from complex (high fraction of the variance 

explained by trait x trait interactions) to simple (few interactions underpin adaptation). At 

contrast, if climate change determines a shift from E5 to E3 (CC5�3), a drastic increase in G x E 

interactions can emerge underpinned by new trait x trait interactions, and deliberate breeding 

augmented by CGM, and genomic prediction can be expected to enhance the potential to 

harmonize improved germplasm adaptation with the rate of environmental change. Yields in E5 

are largely determined by growth (e.g., RUE, Messina et al. 2022b) that requires large quantities 

of water. Genotypes with high RUE that will rank high in E5, will rapidly consume soil water 
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and yield poorly in E3 under severe water deficits. Similar examples could be drawn for soybean 

(Sinclair, 2011), chickpea (Sivasakthi et al. 2017) and other crops. Traits such as root angle can 

also affect the dynamics of water use, and thus the expression of emergent phenotypes and trait 

interactions; genomic regions associated with root angle were implicated in the maintenance of 

green canopies and thus biomass assimilation through photosynthesis post-flowering (Manschadi 

et al. 2008; Mace et al. 2012). In E1 environments, reproductive resilience and not water capture 

or pattern of water use is the main determinant of yield under stress (Messina et al. 2021).  

Example: Integrating environmental and genomic predictions using crop models 

Equation 2 corresponds to a simple linear model for a genomic predictor, this could be yield 

across environments or more than one environment type. While we often think about 	̂ �  as yield 

for genotype i, breeders often predict other traits such as flowering time, time to maturity or 

grain moisture at maturity. Objective and/or subjective indices are used to integrate these 

predictions for multiple adapted traits. Millet et al. (2019) used various approaches to predict 

yield and yield components and were able to build a static crop model and use environmental 

covariates to predict some important GxE interactions for yield. These static crop models are 

often linear, and unable to generate unexpected or emergent behavior that may surface when 

predicting new genotypes in new environments, that is into a G x E space that was not included 

in the training set or is beyond the environments that the germplasm was generally grown 

(Battiest & Naylor, 2009; Hammer et al., 2019). Recall, that the relation between growth and 

kernel number in maize is non-linear (Andrade et al., 1999), so linear approximations are limited 

from their conception. However, the same linear static model applied to the prediction of the 

rates of change in physiological processes in response to environmental variation can lead to 
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emergent patterns of G x E upon numerical integration over the growing season (Messina et al. 

2019; Hammer et al., 2019) and over cycles of selection (Chapman et al. 2003; Messina et al. 

2011). This approach was demonstrated in various crops including soybean (Messina et al. 

2006), dry bean (Hoogenboom et al. 2004), Maize (Messina et al. 2011), sorghum (Chapman et 

al. 2003), and Barley (Yin et al. 2003) among others.  The experimental demands often limit the 

applicability of these models when many loci underpin the control the traits of interest. 

Bayesian approaches were proposed to overcome this limitation, estimate genetic and 

physiological models simultaneously, and deal explicitly with the levels of uncertainty, 

���̂ | , !�� " �� |!�, �̂ � � ���̂ �      (5) 

where ���̂ | , !�� is the posterior distribution, conditional to the vector of traits that were kept 

constant (xk), �� |!� , �̂ � is the likelihood function with data (D) generated by the crop models 

with xk known or estimable parameters (marker effects, �̂ ), and ���̂ � is the prior distribution of 

the traits and the marker effects for the traits. Figure 5 shows a diagram for the estimation of a 

single trait, RUE, which it is adapted from Technow et al. (2015) and implemented as an 

Approximate Bayesian Computation approach. The procedure consists in sampling the posterior 

distribution of RUE to assign values to the various genotypes in the training set. A genomic 

predictor for RUE based on markers (eq. 2) is estimated; Genomic Best Linear Predictors 

(GBLUPs) are generated for each genotype. Phenotypes for which the breeder collected data 

(yield, flowering time, kernel numbers, etc) are predicted using the CGM with environmental 

inputs for the trial and model parameter/s estimated using genomic predictors such as GBLUP 

for the physiological trait, here RUE. The distance between the observed and the predicted 
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phenotypes is calculated. Using a metric such as root mean square error, others are also valid for 

individual traits or trait combinations, a decision is made based on a rejection algorithm to keep 

the sample and build the posterior distribution. 

In the example presented in figure 5, the mean (
̂ ) and vector of marker effects for RUE were 

modeled as, 

#
̂�̂ $ � %
&�� &� &�''�&� '�' � ()*

�� %&�� +'�+*      (6) 

where Xnxm is a matrix of n genotypes by m molecular markers, y is a vector of RUE values, and  

) is a parameter to describe the signal to noise ratio in the data. The RUE for each genotype is 

estimated from the molecular markers as, 

+̂ � &�
̂ � '�̂ � ,        (7) 

The posterior distribution was built from marker vectors for which the root mean square error for 

the yield prediction was less or equal to 20% of the mean. Pseudo-code for this algorithm is 

presented in Technow et al. (2015). 

Figure 6 shows the simulation experiment whereby a sample of genotypes for various levels of 

RUE was generated. The map between RUE and simulated yields for two environments 

contrasting for water availability is shown (Fig. 6A). The bifurcation is generated by how the 

model simulated the pattern of water use, and thus how much water was allocated to vegetative 

growth vs. reproductive growth. In the water sufficient environment E1 (Fig. 6A), yield 

increased with increasing RUE. The opposite occurs in E2 where high RUE leads to high water 
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use pre-flowering and induces drought during grain-fill (Fig. 6A). This result agrees with 

experimental observations (Cooper et al. 2014), large scale simulation for the limited 

transpiration trait in maize in the U.S. (Messina et al. 2015) and yield data (Adee et al. 2016). 

When RUE is predicted using markers the predicted range of RUE is lower than the observation, 

as expected from the use of the GBLUP method that shrinks predictions towards the mean in 

proportion to the signal to noise ratio. However, the CGM linked to a whole genome prediction 

method such as GBLUP (CGM-WGP) can regenerate the emergent relation between RUE and 

yield (Fig. 6B). Messina et al. (2018, 2022c) and Diepenbrock et al. (2022) used a Metropolis-

Hasting within Gibbs algorithm and showed that a) the advantage in prediction accuracy of 

CGM-WGP over WGP (Bayes A) for yield increases with increasing complexity of the target 

environment quantified by decreasing ET, b) the use of multiple traits can further increase 

predictive skill of CGM-WGP, and c) the CGM-WGP can borrow information by using the trait 

relations embedded in the CGM to make predictions on phenotypes that were not measured or 

used in the training of the model. The ability of CGM-WGP to predict time to silking and kernel 

numbers in the absence of silking and kernel number data (Messina et al. 2022c), when the 

model was trained on yield alone, is a promising result to encourage further development of 

approaches to predict other state variables that are more difficult to measure such as effective 

water use, soil nitrogen losses, soil water recharge, and soil carbon accumulation. 

Enabling breeders with dynamic gene-to-phenotype platforms 

The research conducted over two decades in maize in the U.S. (Messina et al. 2020; Cooper & 

Messina, 2023) is informative to consider what the scientific community and breeders working in 

other crops and geographies can expect. Our research studying how predictive skill differentials 

between pure statistical approaches compared with those augmented by dynamical models 
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(Diepenbrock et al. 2022), and how trait networks and trait interactions underpins the variance 

explained by these components (Messina et al. 2020, Gleason et al. 2022; Cooper & Messina 

2023) indicates that CGM-WGP approaches can be expected to have an increasingly important 

role in breeding for the impacts of climate change. The exacerbation of climate extremes within 

the TPE, because of a changing climate (IPCC, 2021), will be conducive to increasing the 

distance between environment types encountered within the TPE. In figure 6 we show how 

different traits underpin adaptation to these extreme environment-types and how these traits can 

lead to the emergence of lack of correlation G x E interactions (Fig. 2), and thus an increasing 

challenge to maintain or increase rates of genetic gain within the TPE. Moreover, the results 

presented in Figures 2 and 4 suggest that the strategies for improving crop adaptation will be 

regional in nature and the climate change induced distances among environment types and their 

frequency of occurrence are expected to vary across geographies.  

The development and deployment of platforms capable of predicting genotype x environment x 

management interactions (APSIM, Holzworth et al. 2014; DSSAT, Jones et al., 2003) by 

harnessing environmental and genomic predictors within a physiological framework (e.g., Peng 

et al. 2020; Diepenbrock et al., 2022) for many different crops and geographies is a research 

imperative in the years to come. Evaluating and improving CGM-WGP will require engaging 

breeders, agronomists, and physiologists/modelers, who can expand the CGM-WGP capability 

beyond maize and to make it accessible to the broader community. Albeit limited, the evidence 

available to date suggests that yield-trait performance landscapes for agricultural systems are 

complex (Chapman et al. 2003; Messina et al. 2011; Hammer et al. 2006, 2014, 2020) and there 

will be a need for resources and information technologies to enable simulation at very large scale 

to enable the world community of breeders to explore and leverage the knowledge hidden within 
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a massive gene-to-phenotype spaces (Cooper et al., 2009; Ramstein et al. 2019; Cooper et al., 

2020; Cooper et al. 2022). 

CGM-WGP technology on its own will be limited in the type of solutions it can bring to address 

the climate change challenge. Gap analyses, the study of actual crop yields in farmer’s fields in 

the context of resource use and attainable yields for that level of resource use (Lobell et al. 2009; 

van Ittersum et al 2013; Cooper et al., 2020) provide a framework within which the breeder and 

the agronomist can search the G x E x M state-space and develop G x M technologies for the 

patterns of change they expect in the TPE as a consequence and in line with the rate of change 

due to climate change; G x M technologies that can close the yield gap taking into consideration 

the expected frequencies of E environment-types in the current and future climate-affected TPE. 

This plant breeding-agronomy gap analyses framework could be a foundational method to 

translate CGM-WGP technology into practical G x M technology applications by answering the 

questions posed by breeders (what are the best genotypes for the TPE), the agronomists (which 

genotype subset fits best the cropping systems in my geography, which sets of genotypes would 

enable me to innovate at the cropping system level?), and the farmer question, which genotypes 

perform in my operation with the resources available to me for production? (Fig. 7). Answering 

these questions will require harnessing AI, involve transdisciplinary thinking, and embrace 

circularity in agricultural production. 

6. PERSPECTIVES 

Genetics for crop improvement ranks in the top set of technologies that can contribute to human 

adaptation to climate change. Plant breeding has contributed to yield improvement since the 

domestication of crop species, and it was most evident in the last century. In this chapter, we 
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have shown the need to develop new G x M technologies to adapt to climate change, but also, the 

need to transition from current to future G x M technologies in a way that future food security 

does not come at the expense of current food security. To spur scientific and technological 

development for climate change adaptation, we have demonstrated an approach to integrate 

genomic, agronomic, and environmental predictors to accomplish three critical goals 

• predict emergent phenotypes that stems from the dynamic interplay between G, E and M, 

and thus enable the breeder to consider the behavior of genetic and trait combinations in 

environments that plants have not been exposed to or tested within before, and/or in more 

variable and extreme environments, 

• identify G x M technologies that could increase food and nutritional security while 

regenerating natural and production resources; outputs from crop model-based 

approaches could be used to create multi-dimensional selection indices, 

• enable breeders and agronomists with tools to harness multiple sources of information to 

create G x M technologies to address the diverse cultural and geographically granular 

societal needs. 

Breeding can enable incremental adaptation by improving upon existing crops, but also 

transformational adaptation by enabling new farming systems and new crops. The same toolset, 

approaches and needs introduced in this chapter for single crops, could be used by a teams 

focused on crop improvement for new agricultural systems. Soybean-maize production systems 

like Safrinha in Brazil took forty years of research in breeding and agronomy. Society can no 

longer afford long time-lags to develop sustainable technologies to adapt cropping systems to 

climate change. The implementation of dynamic gene-to-phenotype platforms, such as CGM-
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WGP within farming systems simulators such as DSSAT and APSIM seems a natural next 

development to shorten the development time for discovery, refinement, and optimization of 

novel agricultural systems. To effectively search the extremely large search spaces, now G is 

expanded to G within crop within a crop sequence, investment will be required in both artificial 

intelligence and information technologies, to effectively search these spaces, manage very large 

data sets and run the simulations at unprecedented large scale. 

As society continues to make environmentally and health-conscious decisions and increase the 

demand and consumption of plant-based foods in diets, breeding objectives will continue to 

evolve to deliver more nutritional value over quantities and reduce environmental footprints. 

Expansion will be needed to hasten breeding in fruits, vegetables, and pulses, which can benefit 

from applying breeding technologies previously primarily developed for row crops. The 

framework introduced in this chapter, based on CGM-WGP or more generally AI could have the 

largest impacts in breeding programs with small footprints by maximizing information extraction 

from data and enabling prediction for future environments. 
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Figure legends 

 

Fig 1. Representation of a breeding program from an operational perspective (A), quantitative 

genetics view of the sampling of environments within the target population of environments, and 

sampling genotypes from the target population of genotypes (B), and prediction opportunities 

that harness the data generated in (B) to augment the size of the breeding program (C) by 

predicting the possible performance of untested genotypes (A) in untested current and/or future 

environments (B). 

Fig 2. Types of genotype x environment interactions as determined by heterogeneity of variance 

or lack of correlation (A), and their implication given adequate (inadequate) sampling of 

environments (%E1) in the target population of environments (TPE) and the multienvironment 

trail (MET) on the covariance of performance of the selected genotypes (W(S,T), Sample, 

Target). Opportunities for the use of crop growth modeling to estimate current and future 

frequencies of environment types (e.g., E1), and the use of genomic prediction for genotypes G1 

and G2, is shown. 

Fig. 3. Dry mass growth (total and grain) and light interception for modern maize planted at 

normal and early planting, and for a conceptual novel maize genotype tolerance to cold. Cold 

tolerant maize could enable higher yields with lower nitrogen (N) inputs due to improved 

fertilizer recovery efficiency, timing between N supply and demand, and circularization of N 

within the system.  

Fig 4. Percent of variance in maize yield explained by the sum of traits or trait interactions (A) 

and accuracy difference (correlation coefficient, r) between a symbolic-sub symbolic fusion 
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approach (crop model + genomic selection) minus sub-symbolic approach (genomic selection) 

along an evapotranspiration gradient (B). Purple areas in A and B highlight the increase in 

prediction accuracy difference between methods correlates with the importance of trait x trait 

interactions on the determination of yields. Environment E1-6 shown to illustrate plausible 

examples of changing in climate (CC5�3; CC2�1). 

Fig. 5. Pseudo algorithm to describe the workflow of a crop growth model – genomic selection 

approach for a single crop and a single trait (radiation use efficiency, RUE) that uses genomic 

best linear predictors at the trait level y from makers (X), marker effects g, environment inputs 

E, and set of fixed crop model parameters xk. 

Fig. 6 Simulated (A) and predicted using crop model-genomic selection (B) yield response to 

radiation use efficiency for ten genotypes (circles) in two environments (E1, E2) 

Fig 7. Transdisciplinary teams will be required to keep a dialogue going to answer questions 

from breeder to household, which answers will enable society to create systems adapted to 

climate change. Given the complexity of the methodologies that will be required to identify and 

design genotype, management, and agricultural systems, we foresee the need to develop a 

biologically grounded symbolic and sub-symbolic integration of artificial intelligence methods 

(bioAI). Principles of circular economies would enable the design of agricultural systems that 

could be part of the solution to climate change. 
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