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ABSTRACT

Climate change will have a net negative and inequitable impact on agriculture. Genetics for crop
improvement ranks in the top set of technologies that can contribute to human adaptation to
climate change. However, aframework for how to breed crops for climate change adaptation is
lacking. Here we propose a framework to develop new genotype (G) x management (M)
technologies (G x M) to adapt to climate change, and to transition from current to future G x M
technologiesin away that future food security does not come at the expense of current food
security. The framework integrate genomic, agronomic, and environmental (E) predictorsto
accomplish two critical goals. 1-predict emergent phenotypes that stems from the dynamic
interplay between G, E and M, and thus enable the breeder to consider the behavior of new
genetic and trait combinations in environments that plants have not been exposed or tested
before, and 2-identify G x M technologies that could increase food and nutritional security while

regenerating natural and production resources. We highlight the need to invest in artificial
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intelligence and information technologies for breeders to harness multiple sources of information
to create G x M technol ogies to address the diverse cultural and geographically granular societal

needs.

INTRODUCTION

Thereis consensus that climate change will have a net negative and inequitable impact on
agriculture (Lobell et al. 2011; Challinor et al. 2014; Weber et al., 2018; IPCC 2021). The
increase in temperature, vapor pressure deficit (VPD) and shifting water balances worldwide will
likely change geographical patterns of farming (Ripple et al. 2016; Ficklin & Novick 2017).
Disease pressure will increase in high latitudes challenging further crop production and the
design of stable agricultural systems (Chaloner et al., 2021). Thereis agreement that crop
improvement will be key to cope with climate change effects on food security (Lou et al., 2009;
Carnset a. 2012; Chapman et al. 2012; Atlin et a. 2017; Hernandez-Ochoa et al., 2019; IPCC
2021; Snowdon et al., 2021; Kholova et a. 2021) and approaches have been proposed
(Ceccardlli et al. 2019, Ramirez-Villegas et al. 2015, 2018, 2020, Ceccarelli & Grando 2020).
However, if we articulate the problem within a circular economy framework, we can foresee
agriculture as part of the solution to climate change rather than the cause of the problem
(Bummer et al. 2011; Messina et a., 2022c). Surprisingly, very few efforts were dedicated to
answer the question how to breed crops for climate change while regenerating natural resources
and reducing greenhouse gas emissions (Brummer et al. 2011, Messina et a. 2022c; Cooper &

Messina, 2023).
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Historical records indicate that past rate of change in climate was slow relative to the ability of
current breeding systems to drive genetic gain as shown for maize in the United States since the
onset of arapid increase in minimum temperatures (Cooper et a., 2014; Messina et a., 2022c).
Similar outcomes were achieved for soybeans in the Americas (de Felipe et al. 2016), and wheat
despite genotype x environment interactions imposing limits on the rate of genetic gain (Xiong et
al. 2021). It isaso important to note that until recent decades, rates of genetic gain for maize
evaluated under water deficit were lower than under irrigated conditions in the corn-belt of the
United States (Cooper et al., 2014; Messina et al., 2022c). The importance of this observation is
that only absolute rates of genetic gain are relevant to assess the capacity of the world breeding
system to satisfy the demand for food, feed, and renewal fuels (Fisher et al. 2014; Ray et al.
2013). Maize breeding also shows that implementing dedicated breeding programs to improve
drought tolerance can deliver germplasm with this characteristic while maintaining yields under
water sufficiency in both temperate (Cooper et a., 2014; Gaffney et a., 2015; Messinaet al .,
2022a) and tropical target environments (Nurmberg et al., 2021; Prasanna et al., 2021). The
limited empirical evidence, relative to all crops and all cropping areas in the world, suggests that
dedicated breeding efforts proved effective to create adapted germplasm to the target population
of environments (TPE) when the mixture and frequency of environment types change at the

relatively low pace observed for the past five or more decades.

However, genotype (G) by environment (E) by management (M) interactions (G x E x M) are
ubiquitous in agriculture, these are expressed as changes in rankings among genotypes when

exposed to different environments and agronomic management practices. Therefore, selecting
genotypes for the inadequately defined TPE and/or management inevitable leads to lower than

the attainable rates of genetic gain (Cooper & Hammer, 1996; Kholova et al. 2021). Thereis
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current evidence that genetic gain in wheat has been hampered by climate change (Morgounov et
al. 2013; Xiong et a. 2021). Thisis particularly critical because whenever the future TPE differs
from the current TPE due to climate change, thereis arisk that implementing breeding programs
for future climates may decrease the current rate of genetic gain for current environments, and
thus compromise current food security. There is evidence that wheat breeding may be falling into
thistrap as rankings of cultivars are changing with climate change (Morgounov et al. 2013;
Xiong et a. 2021). Because the traits and trait network interactions underpinning adaptation (at
least to drought) change with levels of evapotranspiration (Messinaet a., 2011; Borrell et al.
2014; Gleason et al., 2022; Cooper & Messina, 2023), the environmental distance between the
current TPE and the future TPE could become significant drivers of G x E x M interactions. In
wheat, increased spring maximum temperatures led to both increased and decreased yields
(Morgounov et al. 2013). In maize, the conductance response to vapor pressure deficit is a trait
underpinning drought adaptation (Shekoofa et a, 2015; Messina et a. 2015). The intensification
of drought would magnify the selection pressure applied to the germplasm for elevated levels of
limited conductance. The normal operation of the breeding program is expected to be sufficient
to increase the frequency of preferred alleles for the required trait levels and thus the breeding
program would smoothly match the expression levels of the trait to the changing TPE. In
contrast, such asin well-watered dryland systems, the intensification of drought will be
conduciveto G x E x M interactions and dedicated breeding and agronomy efforts will be
required to breed new genotypes for the changing TPE (Messina et al., 2011; Messinaet al.,
2015; Cooper €t al., 2022). The opposite could be said about improvements for radiation use

efficiency as evidenced in maize breeding (Messina et a., 2022b). It is anticipated the
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requirements for the creation of adapted germplasm and cultivars will be inevitably different for

different geographies and cropping systems (Kholova et al. 2021). A key question is then

how to harmonize breeding efforts for agricultural systems that regenerate the environment

while providing nutrition security to society and improved adaptation to climate change?

In this chapter we expand on the framework proposed by Cooper & Messina (2023). We use the
Breeder’ s equation framework and theoretical principles of G x E interactions to demonstrate the
critical need to properly time the pace of crop improvement to pace of climate change, and the
opportunity to use advanced prediction methodologies to accomplish this goal. Then we
articulate the need to rethink breeding objectives to enable agriculture to become part of the
solution to climate change (Bummer et al. 2011; Kholova et a. 2021; Messina et al., 2022c). We
use an example to demonstrate how to create prediction systems that harness genomic,
agronomic, and environmental predictors to implement new breeding objectives within breeding
programs and manage and align the breeding program to the changing TPE. We finally discuss
the need to enable breeders with dynamic gene-to-phenotype platforms to implement the needed
changes in plant breeding and agronomy so society can meet current nutritional and ecosystem

regeneration demands, without compromising current and/or future societal needs.

A FRAMEWORK FOR CROP IMPROVEMENT FOR CLIMATE CHANGE

Predictive breeding

The goal of a plant breeding program is to create germplasm that solves problems in agriculture
and thus create value for producers, consumers, and society (Kholova et al. 2021). Hence, plant

breeders define objectives that can seek to improve productivity, quality, and reduce negative
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environmental footprints, among others. Important breeding objectives in crop improvement
programs for row-crop agriculture are yield potential, disease tolerance and yield stability. In
fruits and vegetables, breeding objectives also include post-harvest traits, flavor, and appearance
among others (Tieman et al. 2017; Collantonio et al. 2022). To achieve these objectives breeders
create and evaluate a sample of the germplasm in a sample of the TPE over various stages of
evaluation and selection (Fig. 1A). The number of individuals evaluated in fields decreases asthe
germplasm cohorts advance through the stages of product development and testing, while the
number of environments and agronomic management practices sampled increases at the same
time (Fig. 1A). By sampling the TPE and the target population of genotypes (Fig. 1B), breeders
create prediction models based on statistical and/or dynamic models. The use of managed stress
environments helpsto expose the germplasm to a set of environments that are of key interest to
the breeder (Fig. 1B). These models help them use arelatively small sample of germplasm and
environments to explore the complex dimensions of amuch larger genotype x environment state
space (Fig. 1C; Ramstein et al. 2019). Various genotype-to-phenotype prediction methodol ogies
were developed, some of which are described in thisreview (Lorenz et al. 2011; Jarquin et al.
2014; Messina et al. 2018; Ramirez Villegas et a., 2020). Plant breeders can use the framework
of the “Breeder’ s equation” (Lynch & Walsh, 1998) to evaluate genetic progress and optimize

breeding systems,

AS =i X h? X op (1a)

where AS is response to selection for one cycle of directional selection, i isthe standardized
selection differential applied to atrait, h? is heritability or fraction of the total phenotypic
variation that could be attributed to genetic variation, and o, istheisthe expected standard

deviation for the observed on-farm values of the sdection units for the same trait. Prediction
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methodol ogies such as whole genome prediction (WGP) seek to use genomic information to
maximize the correlation .,y between the observed values or breeding values of traits

measured on the salection units in the multi-environment trial M and the true trait values or

breeding values of the selection unitsin the TPE (Cooper & Messina, 2023),

AS =iy X h?,M X h?,TPE X Tam,TPE) X Op(t,TPE) (1b)

wherei; v is the standardised selection differential applied to thetrait t based on the data and/or
predictions from models constructed using the sample of environments obtained in trials M, the
heritabilities are for the trait estimated for M (h?v) and the TPE (h%1pe). Prediction models can
be based on regression or association within different statistical frameworks (Meuwissen et al.

2001; Yu et al. 2006; Heffner et al. 2009; Zhang et al. 2010; Lorenz et al. 2011),
Vi = U+ 2vijK; (2
J

where the trait phenotypey for individual i is predicted based on the population mean u and the
sum over the genotype markersj (v;;) times the marker effects k; . Other models extended this
model to include environmental covariates (Boer et al. 2007; Heslot et al. 2014; Jarquin et al.
2014; Millet et al. 2019), consider non-linear associations (Collantonio et al., 2022) or are
integrated with dynamical models (Technow et al. 2015; Messina et a. 2018; Diepenbrock et al.
2021). The goal of these prediction methodsis to enable breeders to expand their breeding
program by adding a virtual component or to maintain the size of the breeding program while
using less resources. The efficacy of the application of prediction within large commercial
breeding programs for maize has been demonstrated (Cooper et al., 2014; Cooper €t al., 2016).

Experimental design seeks to reduce experimental error and thus increase h?, and increase o, by
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exposing the germplasm to environments and management conditions conducive to express
variation in adaptive traitsin both selection and evaluation environments (Cooper & Hammer,

1996).
Genotype x environment interactions hamper s genetic gain

Decomposing the heritability into variance components (genetic (G) agz ; genotype x environment
(GXE) az.; error gZ; n denotes number of environments e and replicatesr) illuminates the

potential for G x E interactions to hamper genetic gain (Comstock and Moll 1963, Cooper &

Hammer, 1996),
2
W =—2t— ©)
0’2+£+L

9" ne neny

However, the various forms of G x E can have differential impacts on genetic gain (Cooper &
Hammer, 1996) depending on the importance of G x E due to heterogeneity of variances

(V(Ge(enw)) OF lack of correlation. The latter could be decomposed further into 7, the pooled
genetic correlation among environments, and a,;,04¢;1, the arithmetic average over all pairwise

geometric means among all the genotypic variance for environment j’s. Figure 2 shows how lack
of correlation can cause changes in the ranking of genotypes while heterogeneity of variances
does not. Therefore, to maximize genetic gain it is important to know which environments
generate cross over interactions, and what are the frequencies of these environment types within
the TPE. In the context of breeding for climate change, it is of critical importance to determine
whether future climates will contribute to cross over interactions or not. The encapsulation of

crop, soil and environmental science within crop models enables the assessment of traits to
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understand traits undermining adaptation to current and future climates (Hammer et al., 2014,

2020; Ramirez Villegas et al., 2020; Cooper & Messina, 2023)

Environment frequencies and weighted selection

Because of the ubiquity of G x E interactions, and the possibility of biases in the sampling of
environments by the implemented testing system within the breeding program, selection
strategies that accommodate G x E interactions were developed (Cooper et a. 1995), and
weighted selection strategies have been proposed (Podlich et al. 1999). In this case, weights are
estimated from the relative frequency of sampled environments over the expected frequencies of
the environment types that comprise the mixture of environments of the TPE. Frequency of
environments could be defined based on climatology or more sophisticated methods (Chapman
et al. 2000; Loffler et al. 2005; Kholova et al. 2013; Ramirez Villegas et al., 2020; Cooper &
Messina, 2021; Carcedo et al. 2022), such as crop growth models (CGM, Jones et a. 2003;

Holsworth et al., 2014). CGMs are functions that approximate the phenotypic function,

F()r =Q(p +H()y (4)

where the function F represents perfect knowledge of the observable phenotype as determined by
nature, the function Q represents the phenotypes that are predictable based on our current
scientific knowledge and phenotyping systems, and H is the function that represents what we
don’t know, it is not knowable/predictable (Day 1976), or we do not want to include in the
mode. If we define function Q asa CGM, the CGM becomes a cognitive construct that we use
to represent processes, states, and the topology of relations among biological processes (Cooper
et a., 2009). CGMs can span severa levels of organization, however, there is consensus that

empiricisms are needed whenever we seek to link or use information for more than two levels of


https://doi.org/10.1101/2022.10.07.511293
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.07.511293; this version posted October 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10

organization away from the target level of the system to be modelled (e.g., cell to crop). CGMs
have a set of parameters that are known (k), unknown and estimable (u) and a set of inputs (1),
CGM (xy, x,, ). Using soil, weather and management databases as inputs, Harrison et al. (2014)
estimated frequencies of environment types for current and future climates. This knowledge
could enable breeders to implement breeding strategies that create a smooth transition from
current to future genotypes adapted to climate change, that accompanies the changesin the
mixture of environmentsin the TPE. Using genomic predictionsin the form of eq (2), and
weighted selection will be most useful whenever lack of correlation G x E is an important

determinant of future yields.

Figure 2b shows a theoretical representation of the plausible consequences of inadequate
decisions regarding selection for climate change in the presence of both typesof G x E
interaction (Fig. 2A). Taking E1 as current climates, the percent frequency of E1 in the TPE
indicates the transition from current to future climates. When the frequency of environment type
E1 matches the frequency in the TPE, say evaluation in the current climates for selection in the
current climates, the covariance W(S,T) between selection (S) and target (T) ishighest. The
difference at the extremes is due to the heterogeneity in the variance in E1 and E2 (Fig. 2A).
Because of the lack of correlation between environment types, selecting for E1 when the target is
E2, that is selecting in current environments for performance in future environments, can lead to
negative covariances. Most of the argumentsto start breeding for climate change are based on
this concept (Cairns et al., 2012; Atlin et al., 2017). Lack of action can lead to global food
insecurities and geographical famines with consequent starvation of future human populations;
thereisamerit in this argument because of the ubiquitous G x E in mgor cropping systems

subject to drought stress (Cooper, 1999; Messina et al., 2015; Xiong et al., 2021). However, the
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oppositeisalso possible, and premature selection for future climates (E2) can hamper genetic
progress for current climates contributing to food insecurity for current populations. This

analysis leads to the following propositions:

e tiscritical totime correctly breeding strategies with expected changes in climate,

e computational methods in with genomic prediction could be used in combination with

weighted selection and crop models to create cultivars and germplasm for a dynamic TPE

e predictive breeding connected with climate predictions can time the required adjustments
within breeding programs correctly to produce cultivars ready for use by famersin

alignment with changes in the TPE (Challinor et al. 2016).

Because breeding is a dynamic process, careful decisions need to be made and the evolution of
the germplasm monitored. Simulation studies have demonstrated that breeding programs are
sensitive to the founding germplasm used to start the breeding program (initial conditions) and
can manifest temporal patterns that could diverge with increasing cycles of selection (Messina et
a., 2011), in similar ways as the weather and climate systems do (IPCC, 2021). The prediction
of the plausible trgjectories of breeding programs seeking to create the germplasm required for
adapting agricultural systems to climate change adds another layer of complexity and

uncertainty. This requires careful consideration of breeding objectives for climate change.

Rethinking breeding objectives

In face of climate change and the need to regenerate natural resources, we advocate for anew
framework in which breeding objectives are defined by answering the question: how to use

genetic and agronomic levers together to maximize the societal benefit of a unit of resource use
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(Cooper et al., 2020; Hunt et al. 2019, 2021; Zhao et a. 2022), and how to minimize
environmental degradation (Brummer et al. 2011; Rodell et al. 2019; Messinaet al., 2022a,¢)?
Reimagining breeding to enable cropping systems that can improve the efficiency of water use
(Blum, 2009; Cooper et al. 2022) is paramount in the context of the temporal changesin patterns
of seasonal water availability for food production worldwide (Rosegrant et al. 2009; Richey et al.
2015; Rodell et al, 2018; Caparas et al. 2021). Similarly, given the importance of nitrogen in
food production, nitrogen oxides emissions from agricultural fields on globa warming, and
nitrates on water pollution (Roberston & Vitousek, 2009; Boules et al., 2018; Chang et al. 2021),
it isimperative to articulate breeding objectives to create germplasm and cultivars that enable the

creation of systems with high efficiency of nitrogen use, and low nitrogen oxides emissions.

Dynamic CGMs are non-linear functions of environment and management inputs, and genetic
parameters that ssmulate with time steps from hourly to daily, the soil carbon, nitrogen and water
balance, and the plant carbon and nitrogen balance (Jones et al. 2003; Holsworth et al. 2014).
Thus, they would enable breeders to incorporate effective water use, nitrogen losses and
emissions, soil carbon and other metrics as components of the breeding objectives. Unlike the
past, breeders would have the information needed to create cultivars to minimize externalities,
maximize effective water and nitrogen use, soil carbon accumulation, or a combination that
contributes to produce food while combating climate change (Messina et a. 2022c; Cooper &
Messina, 2023). While improving confidence in the models to simulate the metrics of interest is
an important and likely costly undertaking, these investments pale relative to the massive
socioeconomic consequences of no action. Traits that contribute to the improvement of both
productivity and reduced externalities need not be directly related to the biological efficiency of

resource use, as shown for nitrogen (Muller et al., 2019) and water in maize (Cooper et al. 2014;
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Messina et al. 2022a), but at the cropping system level. It has been proposed thereisaneed to
increase the circularity of nutrient cycling in maize by improving maize tolerance to low
temperatures and remobilization to roots (Buckler, pers. comm., Fig. 3). Figure 3illustrates a
concept where tolerance to cold stressin maize could increase yields, synchronize soil nitrogen
supply with crop demand, increase light interception, and thus reduce externalities while
increasing productivity. Such system level thinking enabled by CGMss could be conducive to a
shift in mindsets on how to define breeding objectives that move us away from a plant/crop
centric idiotypes with the focus on productivity (Perego et al. 2014; Rétter et al. 2015; Paleri et
al. 2017; Hammer et al. 2020; Ramirez Villegas et al., 2020) towards a system centric thinking
with afocus on the balance between providing nutrient security while minimizing environmental
externalities and their negative contributions that hasten climate change; these are two important

dimensions contributing to current and future human health and well-being.

Modelsthat predict emer gent phenotypes

For a CGM to deliver on the promise to add information to re-think breeding objectives and
predict with higher skill beyond the current sample of environments, they must be able to predict
what we define as emergent phenotypes. These are observable phenotypes that are different from
what we can predict by understanding the parts in isolation or as independent components
(Anderson, 1976; Roeder et al., 2021; Powdll et al., 2022). It has been shown that smple
equations can have complex behavior, for example the logistic equations that model populations
of plants can manifest complex emergent behaviors such as bifurcations and chaos (May, 1976;
Roeder et al., 2021) that conform well with the observation of bimodal distributions of maize
barren plants (Edmeades & Daynard, 1979). Routines recently implemented in the crop model

APSIM can smulate emergent patterns such as the relationship between anthesis-sinking interval
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and yield in maize or the relationship between plant growth and kernel numbers (Messina et al.
2019). While the routines in the current APSIM model do not yet have the capacity to simulate
the observed bifurcation behavior of barren and non-barren plantsin acrop, the capacity to
predict emergent phenotypes suggests that dynamical models are tools that are evolving and are
capable of predicting phenotypes different from what is expected from the analyses of the parts
in isolation. For example, understanding a system to reduce photorespiration in leavesin
isolation leads to an overestimate of the plausible impacts on productivity at the crop scale and
for the mixture of environment types that comprise the TPE (Hammer et al., 2019). This
prediction using APSIM conforms well with the limited success of large numbers of single gene
transformation technologies for yield improvement (Smmons et al., 2021). The ability of current
CGMs to simulate some emergent behaviors, can enable breeders to use this kind of tool to
inform selections to improve germplasm to meet the needs of the adjacent environment space of
the future TPE while considering the expected change in frequencies of environmentsin the
selection and on-farm production situations (Snowdon et a. 2021; Messina et al. 2022a,c).
Because the CGM integrates scientific knowledge, for many situations these tools can be better
equipped than purely empirical models to predict genotype performance in environments that
were never included in the training sets, and more importantly, environments that the crops have

never experience before (Battiest & Naylor, 2009).

CGMs are also useful tools to explore the relevance of traits and trait networks (Messina et al.
2020; Ramirez Villegas et al., 2020; Gleason et a. 2022), and genetic networks (Messina et al.
2011; Powell et al. 2022) on yield performance. Figure 4A shows the contribution of individual
traits or trait networks (TxT) to the fraction of phenotypic variance. At the environment extremes

of high and low evapotranspiration (ET), trait interactions are less relevant with either growth
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traits or reproductive resiliency traits explaining most of the variation in this maize example. At
intermediate levels of ET, the interaction of traits as trait networks underpins most of the
phenotypic variation. In the presence of these trait interactions and interactions with the
environment, we have observed that a CGM can perform better than empirical models (Technow
et al. 2015, Messina et al. 2018, Diepenbrock et al. 2022, Messina et al. 2022c). Cooper et al.
(2009) using simulation approaches argued that the benefit of a molecular breeding strategy over
phenotypic selection increases with increasing complexity of the genotype and environment
system. Diepenbrock et at (2022) showed that improvements in predictive skill by incorporating
biological knowledge to the prediction algorithm increase with decreasing ET (Fig. 4B) in
agreement with theoretical predictions (Cooper et al., 2005; Cooper et al., 2009; Messinaet al.,
2011). The emergence of G x E interactions also depends on the distance between environments
(E1to E6, Fig. 4). In figure 4A weillustrate, based on the tradeoffs determined by biophysics
embedded in the CGM, various types of G x E interactions. If climate change determines arapid
shift in ET form E2 to E1 (CC2-1), we should not expect mgjor changesin G x E and thus the
normal operation of a breeding program will suffice to adapt the germplasm to the changing
TPE; physiological basis of adaptation moves from complex (high fraction of the variance
explained by trait x trait interactions) to simple (few interactions underpin adaptation). At
contrast, if climate change determines a shift from E5 to E3 (CC5—-3), adrastic increasein G x E
interactions can emerge underpinned by new trait x trait interactions, and deliberate breeding
augmented by CGM, and genomic prediction can be expected to enhance the potential to
harmonize improved germplasm adaptation with the rate of environmental change. Yieldsin E5
are largely determined by growth (e.g., RUE, Messina et al. 2022b) that requires large quantities

of water. Genotypes with high RUE that will rank high in E5, will rapidly consume soil water
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and yield poorly in E3 under severe water deficits. Similar examples could be drawn for soybean
(Sinclair, 2011), chickpea (Sivasakthi et a. 2017) and other crops. Traits such as root angle can
also affect the dynamics of water use, and thus the expression of emergent phenotypes and trait
interactions, genomic regions associated with root angle were implicated in the maintenance of
green canopies and thus biomass assimilation through photosynthesis post-flowering (Manschadi
et al. 2008; Mace et al. 2012). In E1 environments, reproductive resilience and not water capture

or pattern of water use isthe main determinant of yield under stress (Messina et al. 2021).
Example: I ntegrating environmental and genomic predictionsusing crop models

Equation 2 corresponds to a simple linear model for a genomic predictor, this could be yield

across environments or more than one environment type. While we often think about .;’i asyield
for genotype i, breeders often predict other traits such as flowering time, time to maturity or
grain moisture at maturity. Objective and/or subjective indices are used to integrate these
predictions for multiple adapted traits. Millet et al. (2019) used various approaches to predict
yield and yield components and were able to build a static crop model and use environmental
covariates to predict some important GXE interactions for yield. These static crop models are
often linear, and unable to generate unexpected or emergent behavior that may surface when
predicting new genotypes in new environments, that isinto a G x E space that was not included
in the training set or is beyond the environments that the germplasm was generally grown
(Battiest & Naylor, 2009; Hammer et a., 2019). Recall, that the relation between growth and
kernel number in maize is non-linear (Andrade et al., 1999), so linear approximations are limited
from their conception. However, the same linear static model applied to the prediction of the

rates of change in physiological processesin response to environmental variation can lead to
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emergent patterns of G x E upon numerical integration over the growing season (Messina et al.
2019; Hammer et al., 2019) and over cycles of selection (Chapman et al. 2003; Messina et al.
2011). This approach was demonstrated in various crops including soybean (Messina et al.
2006), dry bean (Hoogenboom et al. 2004), Maize (Messina et a. 2011), sorghum (Chapman et
al. 2003), and Barley (Yin et al. 2003) among others. The experimental demands often limit the

applicability of these models when many loci underpin the control the traits of interest.

Bayesian approaches were proposed to overcome this limitation, estimate genetic and

physiological models simultaneously, and deal explicitly with the levels of uncertainty,

P(gID, x;) < P(D|x, g) X P(g) (5)

where P(g|D, x;,) isthe posterior distribution, conditional to the vector of traits that were kept
constant (x), P(D|xy, g) isthelikelihood function with data (D) generated by the crop models

with xx known or estimable parameters (marker effects, :q), and P(,;J) isthe prior distribution of
the traits and the marker effects for the traits. Figure 5 shows a diagram for the estimation of a
single trait, RUE, which it is adapted from Technow et al. (2015) and implemented as an
Approximate Bayesian Computation approach. The procedure consists in sampling the posterior
distribution of RUE to assign values to the various genotypes in the training set. A genomic
predictor for RUE based on markers (eg. 2) is estimated; Genomic Best Linear Predictors
(GBLUPS) are generated for each genotype. Phenotypes for which the breeder collected data
(yield, flowering time, kernel numbers, etc) are predicted using the CGM with environmental
inputs for the trial and model parameter/s estimated using genomic predictors such as GBLUP

for the physiological trait, here RUE. The distance between the observed and the predicted
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phenotypesis calculated. Using a metric such as root mean square error, others are also valid for
individual traits or trait combinations, a decision is made based on a regjection algorithm to keep

the sample and build the posterior distribution.

In the example presented in figure 5, the mean (;1) and vector of marker effects for RUE were

modeled as,
p _(mn 1,X )‘1 (1;y) ]
o)\ xx+n) \xy )

where X.xm isamatrix of n genotypes by m molecular markers, y is avector of RUE values, and
A isaparameter to describe the signal to noiseratio in the data. The RUE for each genotypeis

estimated from the molecular markers as,

y=1,u+Xg+e @)

The posterior distribution was built from marker vectors for which the root mean square error for
the yield prediction was less or equal to 20% of the mean. Pseudo-code for this algorithmis

presented in Technow et al. (2015).

Figure 6 shows the simulation experiment whereby a sample of genotypes for various levels of
RUE was generated. The map between RUE and simulated yields for two environments
contrasting for water availability is shown (Fig. 6A). The bifurcation is generated by how the
model simulated the pattern of water use, and thus how much water was all ocated to vegetative
growth vs. reproductive growth. In the water sufficient environment E1 (Fig. 6A), yield

increased with increasing RUE. The opposite occursin E2 where high RUE leads to high water
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use pre-flowering and induces drought during grain-fill (Fig. 6A). This result agrees with
experimental observations (Cooper et a. 2014), large scale simulation for the limited
transpiration trait in maizein the U.S. (Messina et a. 2015) and yield data (Adee et al. 2016).
When RUE is predicted using markers the predicted range of RUE islower than the observation,
as expected from the use of the GBLUP method that shrinks predictions towards the mean in
proportion to the signal to noise ratio. However, the CGM linked to a whole genome prediction
method such as GBLUP (CGM-WGP) can regenerate the emergent relation between RUE and
yield (Fig. 6B). Messina et al. (2018, 2022¢) and Diepenbrock et al. (2022) used a Metropolis-
Hasting within Gibbs algorithm and showed that @) the advantage in prediction accuracy of
CGM-WGP over WGP (Bayes A) for yield increases with increasing complexity of the target
environment quantified by decreasing ET, b) the use of multiple traits can further increase
predictive skill of CGM-WGP, and c) the CGM-WGP can borrow information by using the trait
relations embedded in the CGM to make predictions on phenotypes that were not measured or
used in the training of the model. The ability of CGM-WGP to predict time to silking and kernel
numbers in the absence of silking and kernel number data (Messina et al. 2022c), when the
model was trained on yield alone, isapromising result to encourage further development of
approaches to predict other state variables that are more difficult to measure such as effective

water use, soil nitrogen losses, soil water recharge, and soil carbon accumulation.

Enabling breeder swith dynamic gene-to-phenotype platfor ms

The research conducted over two decadesin maize in the U.S. (Messina et a. 2020; Cooper &
Messina, 2023) isinformative to consider what the scientific community and breeders working in
other crops and geographies can expect. Our research studying how predictive skill differentials

between pure statistical approaches compared with those augmented by dynamical models
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(Diepenbrock et al. 2022), and how trait networks and trait interactions underpins the variance
explained by these components (Messina et al. 2020, Gleason et al. 2022; Cooper & Messina
2023) indicates that CGM-WGP approaches can be expected to have an increasingly important
rolein breeding for the impacts of climate change. The exacerbation of climate extremes within
the TPE, because of a changing climate (IPCC, 2021), will be conducive to increasing the
distance between environment types encountered within the TPE. In figure 6 we show how
different traits underpin adaptation to these extreme environment-types and how these traits can
lead to the emergence of lack of correlation G x E interactions (Fig. 2), and thus an increasing
challenge to maintain or increase rates of genetic gain within the TPE. Moreover, the results
presented in Figures 2 and 4 suggest that the strategies for improving crop adaptation will be
regional in nature and the climate change induced distances among environment types and their

frequency of occurrence are expected to vary across geographies.

The development and deployment of platforms capable of predicting genotype x environment x
management interactions (APSIM, Holzworth et al. 2014; DSSAT, Jones et al., 2003) by
harnessing environmental and genomic predictors within a physiological framework (e.g., Peng
et al. 2020; Diepenbrock et al., 2022) for many different crops and geographiesis aresearch
imperative in the years to come. Evaluating and improving CGM-WGP will require engaging
breeders, agronomists, and physiologists'model ers, who can expand the CGM-WGP capability
beyond maize and to make it accessible to the broader community. Albeit limited, the evidence
available to date suggests that yield-trait performance landscapes for agricultural systems are
complex (Chapman et al. 2003; Messina et al. 2011; Hammer et al. 2006, 2014, 2020) and there
will be a need for resources and information technologies to enable simulation at very large scale

to enable the world community of breeders to explore and leverage the knowledge hidden within
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a massive gene-to-phenotype spaces (Cooper et al., 2009; Ramstein et al. 2019; Cooper €t al.,

2020; Cooper et a. 2022).

CGM-WGP technology on its own will be limited in the type of solutionsit can bring to address
the climate change challenge. Gap analyses, the study of actual crop yieldsin farmer’sfieldsin
the context of resource use and attainable yields for that level of resource use (Lobell et al. 2009;
van Ittersum et al 2013; Cooper et al., 2020) provide aframework within which the breeder and
the agronomist can search the G x E x M state-space and develop G x M technologies for the
patterns of change they expect in the TPE as a consequence and in line with the rate of change
dueto climate change; G x M technologies that can close the yield gap taking into consideration
the expected frequencies of E environment-typesin the current and future climate-affected TPE.
This plant breeding-agronomy gap analyses framework could be afoundational method to
trandate CGM-WGP technology into practical G x M technology applications by answering the
guestions posed by breeders (what are the best genotypes for the TPE), the agronomists (which
genotype subset fits best the cropping systems in my geography, which sets of genotypes would
enable me to innovate at the cropping system level?), and the farmer question, which genotypes
perform in my operation with the resources available to me for production? (Fig. 7). Answering
these questions will require harnessing Al, involve transdisciplinary thinking, and embrace

circularity in agricultural production.

6. PERSPECTIVES

Genetics for crop improvement ranksin the top set of technologies that can contribute to human
adaptation to climate change. Plant breeding has contributed to yield improvement since the

domestication of crop species, and it was most evident in the last century. In this chapter, we
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have shown the need to develop new G x M technologies to adapt to climate change, but also, the
need to transition from current to future G x M technologies in away that future food security
does not come at the expense of current food security. To spur scientific and technological
development for climate change adaptation, we have demonstrated an approach to integrate

genomic, agronomic, and environmental predictors to accomplish three critical goals

e predict emergent phenotypes that stems from the dynamic interplay between G, E and M,
and thus enable the breeder to consider the behavior of genetic and trait combinations in
environments that plants have not been exposed to or tested within before, and/or in more

variable and extreme environments,

e identify G x M technologies that could increase food and nutritional security while
regenerating natural and production resources; outputs from crop model-based

approaches could be used to create multi-dimensional selection indices,

e enable breeders and agronomists with tools to harness multiple sources of information to
create G x M technologies to address the diverse cultural and geographically granular

societal needs.

Breeding can enable incremental adaptation by improving upon existing crops, but also
transformational adaptation by enabling new farming systems and new crops. The same tool set,
approaches and needs introduced in this chapter for single crops, could be used by ateams
focused on crop improvement for new agricultural systems. Soybean-maize production systems
like Safrinhain Brazil took forty years of research in breeding and agronomy. Society can no
longer afford long time-lags to devel op sustainable technologies to adapt cropping systems to

climate change. The implementation of dynamic gene-to-phenotype platforms, such as CGM-
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WGP within farming systems simulators such as DSSAT and APSIM seems a natural next
devel opment to shorten the development time for discovery, refinement, and optimization of
novel agricultural systems. To effectively search the extremely large search spaces, now G is
expanded to G within crop within a crop sequence, investment will be required in both artificial
intelligence and information technologies, to effectively search these spaces, manage very large

data sets and run the simulations at unprecedented large scale.

As society continues to make environmentally and health-conscious decisions and increase the
demand and consumption of plant-based foods in diets, breeding objectives will continue to
evolveto deliver more nutritional value over quantities and reduce environmental footprints.
Expansion will be needed to hasten breeding in fruits, vegetables, and pulses, which can benefit
from applying breeding technologies previously primarily developed for row crops. The
framework introduced in this chapter, based on CGM-WGP or more generally Al could have the
largest impacts in breeding programs with small footprints by maximizing information extraction

from data and enabling prediction for future environments.
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Figure legends

Fig 1. Representation of a breeding program from an operational perspective (A), quantitative
genetics view of the sampling of environments within the target population of environments, and
sampling genotypes from the target population of genotypes (B), and prediction opportunities
that harness the data generated in (B) to augment the size of the breeding program (C) by
predicting the possible performance of untested genotypes (A) in untested current and/or future

environments (B).

Fig 2. Types of genotype x environment interactions as determined by heterogeneity of variance
or lack of correlation (A), and their implication given adequate (inadequate) sampling of
environments (%EL1) in the target population of environments (TPE) and the multienvironment
trail (MET) on the covariance of performance of the selected genotypes (W(S,T), Sample,
Target). Opportunities for the use of crop growth modeling to estimate current and future
frequencies of environment types (e.g., E1), and the use of genomic prediction for genotypes G1

and G2, is shown.

Fig. 3. Dry mass growth (total and grain) and light interception for modern maize planted at
normal and early planting, and for a conceptual novel maize genotype tolerance to cold. Cold
tolerant maize could enable higher yields with lower nitrogen (N) inputs due to improved
fertilizer recovery efficiency, timing between N supply and demand, and circularization of N

within the system.

Fig 4. Percent of variance in maize yield explained by the sum of traits or trait interactions (A)

and accuracy difference (correlation coefficient, r) between a symbolic-sub symbolic fusion
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approach (crop model + genomic selection) minus sub-symbolic approach (genomic selection)
along an evapotranspiration gradient (B). Purple areasin A and B highlight the increasein
prediction accuracy difference between methods correlates with the importance of trait x trait
interactions on the determination of yields. Environment E1-6 shown to illustrate plausible

examples of changing in climate (CC5->3; CC2->1).

Fig. 5. Pseudo algorithm to describe the workflow of a crop growth model — genomic selection
approach for asingle crop and a single trait (radiation use efficiency, RUE) that uses genomic
best linear predictors at the trait level y from makers (X), marker effects g, environment inputs

E, and set of fixed crop model parameters X

Fig. 6 Simulated (A) and predicted using crop model-genomic selection (B) yield response to

radiation use efficiency for ten genotypes (circles) in two environments (E1, E2)

Fig 7. Transdisciplinary teams will be required to keep a dialogue going to answer questions
from breeder to household, which answers will enable society to create systems adapted to
climate change. Given the complexity of the methodologies that will be required to identify and
design genotype, management, and agricultural systems, we foresee the need to develop a
biologically grounded symbolic and sub-symbolic integration of artificial intelligence methods
(bioAl). Principles of circular economies would enable the design of agricultural systems that

could be part of the solution to climate change.
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