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Day-night environmental cycles together with our own adaptive rhythms in
behavior and physiology lead to rhythmicity of various processes on the cellular
level, including cell signaling. Despite many implications of such daily changes in
signaling, the quantification of such rhythms and estimates of peak phases of
pathway activities in various tissues are missing. Governed mainly by
posttranslational modifications, a pathway activity might not be well quantified
via the expression level of pathway components. Instead, a gene expression
signatures approach can be used to score activity of various pathways. Here, we
apply such gene expression signatures on circadian time series transcriptomics
data to infer rhythmicity in cellular signaling. We show that, across multiple
datasets, the gene expression signatures predict the presence of rhythmicity in
EGFR, PI3K and p53 pathways in mouse liver. With the focus on EGFR pathway, we
pinpoint the most influential signature genes for the overall rhythmicity in the
activity scores for this pathway. These findings suggest that time of the day is an
important factor to consider in studies on signaling. Simultaneously, this study
provides a new paradigm to use circadian transcriptomics to get at temporal
dynamics of pathway activation.
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. Introduction

Mammalian biology is orchestrated along the 24 h day by means of an internal time-
keeping system, called the circadian clock. A gene-regulatory network that forms the
circadian clock produces cell-autonomous oscillations in the abundance of its components

with a period close to 24 h (Kramer and Merrow, 2013; Takahashi, 2016). Rhythmic inputs

to an organ (such as feeding) and the coupled cell-intrinsic clocks in the organ tissues can

both drive daily oscillations in tissue transcriptome and proteome (Balsalobre et al., 2000;

Guan et al., 2020; Koronowski et al., 2019). In most studied tissues, 10-40 % of transcripts
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and 6-20% of cellular proteins oscillate, affecting most cellular functions (Robles et al.,

2014; Wang et al., 2017; Zhang et al., 2014). Notably, there is accumulating evidence that

many signaling pathways are rhythmically activated in anticipation of or in response to

daily environmental changes (Aviram et al., 2021; Goldsmith et al., 2018; Horiguchi et al.,

2013; Vollmers et al., 2009).

Systems biology tools, such as set enrichment analysis, applied to the transcriptomic time
series data have shed light on the functional relevance of the rhythmicity in the

transcriptome including signaling pathway activities. One such common approach looks at
enrichment in the signaling pathway components among rhythmic transcripts with similar

peak phases (Zhang et al., 2016). In some studies, the structure of the pathway, i.e.

whether certain pathway components have opposing roles, is also taken into account

(Acevedo et al., 2021; Zhang et al., 2014). However, evaluating the overrepresentation of

pathway components among the rhythmic genes can still be misleading, since the circadian
control of just a few rate-limiting steps might be sufficient to induce rhythms in a pathway

function (Fustin et al., 2012; Kim and Reed, 2021; Panda et al., 2002).

Another important assumption behind the application of gene set enrichment methods on
transcriptomics data is the correlation of pathway gene expression with pathway activity.
However, it has been shown that expression of pathway components is not a reliable proxy
for pathway activity due to the crucial importance of the posttranslational regulation (e.g.

protein phosphorylation and ubiquitylation) (Buccitelli and Selbach, 2020; Nusinow et al.,

2020; Robles et al., 2017; Wang et al., 2018). Thus, in the field of cell signaling research,

alternative approaches are being explored, including the gene expression signature

approach (Watters and Roberts, 2006). In the latter, consistent gene expression

“footprints” of pathway activation/inhibition are derived from pathway perturbation
experiments and then used to score the pathway activity in a transcriptomics dataset or to

compare scores between samples (e.g., normal vs. tumor).

Gene expression signatures are usually used to infer pathway activation from static gene
expression data. Here, we employ this approach to reconstruct dynamic pathway
activation in the context of circadian rhythms. For that purpose, we use PROGENy software

as it is applicable to mouse datasets and was designed in an attempt to capture universal
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(shared among different tissues and conditions) primary responses to perturbations of

multiple cancer-related signaling pathways (Holland et al., 2020; Schubert et al., 2018). We

guantify pathway activities at different time points in time series datasets and then search

for daily rhythmicity in the resulting pathway activity scores.

We show that mouse liver transcriptomics data exhibit daily oscillations in the pathway
activity scores for many pathways. Notably, many genes that are known to be rhythmic in
vivo, or even in vitro (core clock genes), are present in the signature gene sets. With the
focus on the epidermal growth factor receptor (EGFR) pathway, a crucial pathway involved
in cell proliferation and survival, we show which genes drive the rhythmicity of the
PROGENYy scores and compare these for different time series datasets. Finally, we
summarize the possible sources of daily rhythms in the signaling network downstream of

EGFR and related receptors.

Il. Results

Pipeline design

We apply the gene expression signature approach to the transcriptomics time series data
to search for the “rhythmic footprints” of signaling pathway activations in mouse liver. We
use the PROGENYy software to score the activity of 14 cancer-related pathways in each
sample, so that a time series collection of samples produces a time series of pathway
activity scores (Fig. 1). We then analyze if there is statistically significant rhythmicity in the

scores (24 h period, RAIN software with g-value cutoff 0.05).

The PROGENY score for a pathway and a given sample is a sum of weighted expression
levels for all signature genes. Thus, highly expressed genes dominate the signal, especially
when they have a high absolute weight coefficient. However, our goal was to discern the
rhythmic signal in the data, even if it is present in the lowly expressed genes. In other
words, a highly rhythmic gene that has a low mean level is still of interest since it can
represent a “footprint” of rhythmic pathway activation. Thus, we added an additional

normalization step to the transcriptomics data processing, where gene expression values
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were divided by the mean expression value for every gene (see Fig.S1A for results without

this normalization step).
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Fig.1. Gene expression signature approach applied to time series circadian data.

(A) Different approaches to infer rhythmicity of a process/pathway via omics data
analysis: set enrichment analysis for pathway components vs. gene expression signature
approach that focuses on target genes. (B) The main pipeline of this study consists of
PROGENYy score calculation for time series data plus rhythmicity analysis of the score with

RAIN.

Mouse liver gene expression suggests rhythmic activation of multiple pathways

We applied the approach described above to the circadian transcriptomics dataset from

Atger et al. (Atger et al., 2015). Out of 14 pathways, 9 were considered significantly

rhythmic according to our criteria (Fig.2A and S2). For comparison, we repeatedly shuffled

the time points for each gene, destroying the temporal pattern in gene expression in the

data. We observed that in shuffled datasets there were on average no rhythmic pathways.

Treating RAIN g-values as a “rhythmicity measure” in the data, we can compare the

distribution of the g-values after shuffling with the original g-values from the Atger dataset

(Fig.2B). Alternatively, amplitudes of the absolute scores’ oscillations can be compared
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(Fig.S1B). Fig.S1C shows that the selection of an appropriate background model is

essential.
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Fig.2. Most pathways exhibit daily rhythms in PROGENy scores (Atger et al. dataset).

(A) Peak phases of PROGENYy scores for all 14 pathways; height of the bars corresponds to
significance of rhythmicity (1 — g-value) and the dashed red line designates the significance
cutoff. (B) Distributions of the g-values acquired from shuffled data (times shuffled for each
gene) in comparison with original g-values. (C) PROGENy scores time series for the four most
significantly rhythmic pathways, as well as p53 and MAPK pathways; colors correspond to
individual replicates, labeled as in the original dataset.
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The lowest g-values were calculated for androgen and estrogen pathways, both peaking at
around CT13, i.e., at the beginning of subjective night (Fig.2C). The same peak phase of
these endocrine pathways might stem from the fact that estrogens in male mice are
generated solely from androgens, and thus might follow the same pattern of rhythmicity.
The next two pathways with most significant rhythms were EGFR and PI3K, with highest
scores during the night (CT14-20). EGFR and PI3K pathways are activated downstream of
various receptor tyrosine kinases and exhibit extensive crosstalk. Another pathway related
to EGFR, namely the MAPK pathway, was not significantly rhythmic. Nevertheless, MAPK

score also follows a pattern similar to EGFR and PI3K pathways.

To explore whether multiple signature genes are responsible for the rhythmicity in the
scores, we employed a jackknife-like approach. Signature genes were removed from the
dataset one at a time, and the resulting dataset was sent through the original data analysis
pipeline. For all significantly rhythmic pathways, removal of any one gene did not abolish
rhythmicity, highlighting that multiple signature genes are responsible for the observed

rhythmic signals (Fig.S3).

EGFR pathway: rhythmic contributions of individual genes to the scores tend to be in

phase with each other

Motivated by other studies (see Discussion) and our own results on daily rhythmicity in the
EGFR pathway activation, we focused on EGFR pathway for further analysis. EGFR is a
receptor tyrosine kinase that is activated by various growth factors and contributes to the
regulation of cell survival and proliferation. To better understand the PROGENy EGFR score
rhythm, we looked at the individual contributions of different genes to the score, with a
focus on genes with a 24 h period rhythmicity. Such rhythmic genes in the dataset were
determined with RAIN software (FDR of 5%) and filtered for a peak-to-mean fold-change of
at least 1.2. How strongly a signature gene contributes to the final score depends only on
the relative amplitude and the PROGENy weight for this signature gene. In Fig.3A, relative
amplitude multiplied by the weight coefficient is plotted against the peak phase of a gene.
Strikingly, genes with negative PROGENy weight (i.e., driving the score down) all peak
during the day, when EGFR score is lowest. In contrast, almost all genes with positive

weight (i.e., driving the score up) peak during the night, when the EGFR score reaches its
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peak. Several genes stand out as most influential: Nr1d2 (a circadian clock component),

Gabarapll, Odcl, Lipg, and Phida2.
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Fig.3. Contributions of rhythmic genes to the EGFR score tend to be in phase with one another.

(A) Peak phases of rhythmic signature genes plotted against the strength of their contribution
to the score (for Atger et al. dataset). Color of the dots corresponds to the sign of the weight
coefficient. Genes with most influence on the score are the highest (positive weight) and lowest
(negative weight) dots on the graph, their names are indicated. (B) Contributions to the score
from all the signature genes present in the Atger dataset plotted as time series. Rhythmic genes
are depicted with colors (blue for positive weight genes, red for negative), and the most
influential genes are highlighted with stronger colors. Dusp6, not significantly rhythmic in the
dataset, is highlighted due to its high PROGENy weight. In (A) and (B) replicates are averaged,
grey areas on the graphs correspond to subjective night hours. (C) Contributions to the score
from all the signature genes in a different dataset (Hughes et al.), plotted analogously to (B).

To check if some genes that were not recognized as rhythmic still had considerable
influence on the shape of the score time-series, we plotted contributions to the score of all

signature genes at all time points (Fig.3B). Indeed, Dusp6, although not significantly
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rhythmic in mouse liver according to our analysis and previous reports (Tsuchiya et al.,

2013), appeared to be influential due to a large PROGENy weight and a temporally non-
homogeneous expression: a primary peak at CT12-14 and a secondary peak at CT20 with a
highly variably expression between replicates. Since expression values are multiplied by
the weight coefficient, this pattern is further magnified and is reflected in the overall EGFR

score.

Overall, this analysis allowed us to “deconstruct” the EGFR score and pinpoint the genes
most influential for the score rhythmicity and the overall shape. We then removed all the
rhythmic genes from the dataset and observed how the rhythmicity g-values and score
amplitudes change. Notably, without all rhythmic signature genes the score remains
borderline rhythmic, probably due to the cumulative effect of the remaining low-amplitude
contributions from other signature genes (Fig.S4). For comparison, Fig.3C shows a similar
decomposition of the EGFR score for a dataset from Hughes et al., which is further

discussed in the next section.
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Fig.4. Multiple mouse liver datasets share similar score rhythms for EGFR, PI3K and p53.

(A) Comparison of rhythmicity g-values across datasets; the dashed red line designates the
significance cutoff. Peak phases for EGFR, PI3K and p53 pathways are indicated on the respective
bars. (B) Negative (red) and positive-weighted (blue) genes that are influential for the EGFR score
rhythmicity due to the large relative amplitude and absolute weight. Asterisks (*) mark the genes
that have score contribution out of phase with the final score (between CT1 and CT10). Ad lib. —
ad libitum feeding; RF — restricted feeding.

EGFR rhythms are consistently observed across multiple mouse liver datasets.

As a consistency check, we applied our pipeline to several other mouse liver datasets, with
results summarized in Fig.4A. The Atger dataset includes data obtained from mice,
subjected to restricted feeding, which produced results comparable to the ad libitum fed
mice. Analogously, in two commonly studied microarray datasets from Hughes et al.
(Fig.3C and S5) and Zhang et al., mouse liver samples produced consistent results for the

EGFR pathway (Hughes et al., 2009; Zhang et al., 2014). Notably, across these datasets

there is a high overlap of genes that are most influential to the score rhythmicity (Fig.4B).
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Apart from EGFR, we have noticed that PI3K and p53 also remain consistently rhythmic in
all the depicted datasets. A deeper look into those pathways can be found in the
supplement (Fig.S6). Overall, daily rhythms in the PROGENy EGFR, as well as PI3K and p53,
scores can be observed in mouse liver data across multiple datasets and experimental

platforms with peak scores occurring during the active phase.

I1l. Discussion

In has been found that multiple signaling pathway in mammals are activated rhythmically,
according to the daily changes in behavior, nutrient availability, as well as self-sustained

circadian clock-driven processes in the individual cells and tissues (Aviram et al., 2021;

Goldsmith et al., 2018; Horiguchi et al., 2013; Tsuchiya et al., 2013). However,

phosphoproteomics time series data, best suited for pathway activity analyses, is quite
limited and thus the transcriptomics datasets remain a major resource for pathway activity
guantification. In this study, we have employed gene expression signatures to search for
rhythmic “footprints” of pathways activation in published mouse liver transcriptomics

datasets.

As the liver transcriptome of wild-type animals is highly rhythmic, with roughly 20% of the
genes oscillating with a 24 h period, one might expect that many of the signature genes will
be among the rhythmic genes. Indeed, we found that multiple signature genes for various
pathways included in PROGENYy, are known to be rhythmic in certain tissues, or evenin in
vitro systems, such as Nr1d2 (Rev-Erbf) in the EGFR signature, or Bhlhe40 (Dec1l) in the
Hypoxia signature. For mouse liver datasets analyzed here, the final scores for pathway
activities also tended to be rhythmic for multiple pathways. Consistent results across
datasets were found for 3 pathways: EGFR, PI3K, and p53. It remains to be established, if
such rhythmicity in the score correlates well with the rhythmicity in signal transduction
through the respective pathways, and what are the delays between the peak activities of
the pathways and the peak scores. For the EGFR pathway, we showed which signature
genes contribute most to the EGFR score rhythmicity. This analysis revealed a handful of
influential genes, whose contributions to the final score were in phase with one another,

driving the rhythm in the score.
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Previous research of the EGFR pathway provides convincing evidence of the EGFR pathway
rhythmicity along the 24 h day, as well as multiple estimates of the peak activity time.
Several studies employed immunostaining techniques to evaluate activation of the effector
kinases downstream of EGFR, called Erkl and 2, and produced somewhat conflicting

evidence with regard to the peak phases: around CT6 (Chao et al., 2017; Tsuchiya et al.,

2013), or CT16 (Lauriola et al., 2014). The lowest levels appeared more consistently at

around CT12-14, which has been attributed to the downregulation via glucocorticoids

(Lauriola et al., 2014) or circadian clock-controlled phosphatase Mkp1 (Chao et al., 2017).

Erk activation is known to lead to its nuclear translocation. However, in the nuclear
proteomics study from Wang et al. the nuclear Erk did not show clear rhythms, albeit

having the lowest values at CT12 (Wang et al., 2017). A few phosphoproteomics studies

qguantified Erk activity via the abundance of its phosphorylated targets, and all have
estimated the peak activity to happen in the subjective day (around CT6) (Robles et al.,

2017; Wang et al., 2017; Wang et al., 2018). These estimates point to a delay of 6-8 hours

from a pathway activation to the PROGENYy score peak. This can explain the discrepancy in
the peak phase estimates acquired from phosphoproteomic data vs. gene expression

signature-based scoring.

Regarding PI3K, it has been shown that the peak activation coincides with the peak food
intake, which happens for mice in the beginning of subjective night (CT12) (Aviram et al.,

2021; Vollmers et al., 2009). Interestingly, a recent dataset from Aviram et al., containing

both Western blots and RNA-Seq, allowed us to compare the timing of Akt phosphorylation
downstream of PI3K and the PROGENYy pipeline-derived peak phase for PI3K (Aviram et al.,
2021). For both wildtype mice with a regular 24 h rhythm and mutant mice witha 16 h
rhythm in Akt phosphorylation, we also observe a rhythm in PI3K score with a period of 24
and 16 h, respectively. In both cases the delay from the Akt phosphorylation till the score

peak is approximately 4 h (Fig.S7).
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Fig.5. Evidence of rhythmicity in signaling network downstream of EGFR and other
receptor tyrosine kinases (RTKs).

Reported cell autonomous or non-cell autonomous rhythmicity in the components of EGFR
signaling network or their interactors. Rhythmic transcripts are indicated in italics,
rhythmic proteins in block letters. Two proteomics (Robles et al., 2014; Wang et al., 2017)
and one transcriptomics (Atger et al., 2015) datasets were analyzed for rhythmicity; data
for rhythmic posttranslational modifications, membrane lipids, and rhythmic crosstalks
stems from literature search (see Suppl. Table 1).

Previous reports of the rhythmicity in EGFR and PI3K pathways activation, combined with
our gene signature analysis, raises an interesting question of the possible sources of such
rhythmicity in the signaling network downstream of EGFR and other receptor tyrosine
kinases (RTKs). For example, cell autonomous rhythmicity can originate from a crosstalk
that has been reported for circadian clock, cell cycle, and the EGFR signaling network (El-

Athman et al., 2017; Walker et al., 2007; Wang et al., 2019). Alternatively, there could be a

rhythmicity in some inputs to the EGFR network, either local or systemic, that drive the
rhythms in the network activation. To gain an overview of various possible sources of daily
rhythms in the EGFR pathway, we summarize in Fig.5 some examples of genes and
proteins, involved in the signaling downstream of RTKs, that have evidence of rhythmicity,
based on Atger transcriptomics data, two liver proteomics datasets, as well as literature

(see Table S1 for references). For example, various ligands of EGFR and related receptors
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have daily rhythms on the transcript level in mouse liver cells. Furthermore, daily rhythms
of an EGFR ligand HB-EGF in bloodstream were previously reported. Rhythmicity in the
system can also stem from rhythmic levels of adaptor proteins (such as Grb7), from
rhythmicity in the regulators of Ras activity, etc. Moreover, other pathways, which exhibit
daily rhythms, are involved in crosstalk with RTK signaling. For example, p38 activity has
been reported to be rhythmic in the cell culture and is known to regulate EGFR

endocytosis.

In this project we employed the gene expression signatures to score the activity of various
cancer-related pathways in transcriptomics time series data, with a subsequent rhythmicity
analysis of the resulting scores. We have found that the highly rhythmic mouse liver data
tends to have multiple rhythmic scores of pathway activities, with several pathways
displaying consistent patterns across multiple datasets. As healthy cells in vivo integrate
multiple signaling pathways throughout the day, it remains a challenge to disentangle the
individual pathways activation. However, as tumor cells are more reliant on a single
dominant pathway for growth and proliferation, a similar gene signature approach applied
to tumor samples might assist in evaluating the daily dynamics in the activity of such
dominant oncogenic pathways. This in turn can guide chronotherapeutic approaches for
different tumor types, i.e. maximizing effectiveness of therapy by means of timed drug

administration.
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Methods

Data processing for PROGENy application

We have selected multiple publicly available mouse liver transcriptomics datasets. In each,
mice were entrained by the light-dark cycles and then released into darkness before the
beginning of the data collection. RNA-Seq datasets were used in the normalized form, as
provided by the authors of respective studies, but without log-transformation to avoid
negative values in the data that would cause negative score contribution in PROGENYy for
positively weighted genes. The microarray data from Zhang et al., acquired with Affymetrix
MoGene 1.0 ST arrays, was analyzed with R package oligo using RMA normalization. Based
on the distribution of intensities, the threshold was set to 4, and only the probes with
intensity higher than the threshold in at least 8 out of 24 samples were considered. Probes
were cross-referenced to gene symbols with biomaRt package. The microarray data from
Hughes et al., acquired with Affymetrix Mouse Genome 430 2.0 arrays, was analyzed with
R package affy using MAS5 normalization and built-in absent/present calling. Only the
probes marked as present in 16 out of 48 samples were considered. Values for multiple
probes corresponding to one gene were averaged. Both microarray and RNA-Seq data was
further normalized via division by the mean expression values, so that every gene has a

mean expression value of 1 and amplitudes are relative to the mean.

Analysis of daily rhythmicity in PROGENYy score

The mouse version of PROGENy was applied to the processed time series data to yield time
series of pathways activity scores for 14 pathways. The PROGENy parameter scale was set
to true (scores are normalized to have the average of 0 and the standard deviation of 1).
For each pathway, 100 most significant PROGENYy signature genes were included in score
calculations, the majority of which were present in the dataset, ranging in Atger et al.
dataset from 50 signature genes for Trail to 91 for Hypoxia pathway. The resulting score
time series (with replicates, when available) were analyzed for presence of rhythmicity
with 24 h period with RAIN (default parameter values). The resulting p-values produced by

RAIN were adjusted for multiple testing (14 tests) with the Benjamini-Hochberg algorithm,
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and a threshold of 0.05 was used for resulting g-values to determine the significance of the

rhythmicity.

Jackknife analysis of the individual gene contributions to PROGENYy scores

For the “jackknife analysis”, individual signature genes were omitted one at a time, and the
score was recalculated. The scale parameter was set to false, and instead the scaling was
performed in such a way so that a gene removal does not influence the scaling factors:
subtracting the mean score of original data (when no gene are removed) and dividing by

the standard deviation of the original data.

Identifying the set of rhythmic transcripts and proteins

RNA-Seq and microarray data were processed as discussed above. The set of rhythmic
transcripts was determined with RAIN (FDR < 0.05) and was further filtered to only include
the transcripts with mean-to-peak fold-change bigger than 1.2, using the fitted harmonic
regression models for the fold-change calculation. For the proteomics data analysis,
normalized and log-transformed data was used as is provided by the authors of the

respective studies (Robles et al., 2014; Wang et al., 2017). The missing values in the

replicates were imputed as averages between all available values among the replicates (for
a particular protein at a particular time point). If all replicates at a certain timepoint had
missing values, those were not imputed. The set of rhythmic proteins was determined with

RAIN (FDR < 0.05) and filtered to have mean-to-peak fold-change bigger than 1.1.

Selecting set of “influential genes” for EGFR score rhythm

An influential gene was defined as a gene for which relative amplitude multiplied with
absolute weight yields a value bigger than a threshold of 1.5 for RNA-Seq datasets, 1.0 for

the Hughes et al. microarray dataset (Hughes et al., 2009), or 0.2 for the Zhang et al.

dataset (Zhang et al., 2014).
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