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INTELLIGENCE AND VISUAL MISMATCH NEGATIVITY

ABSTRACT

Intelligence captures the cognitive ability level of an individual person and
electroencephalography (EEG) has been used for decades to identify neurocognitive processes
related to intelligence. The mismatch negativity (MMN) is a component of the event-related
brain potential (ERP) that is elicited when, within a series of frequent standard stimuli, rare
deviant stimuli are presented. As stimuli are typically presented outside the focus of attention,
the MMN is suggested to capture automatic pre-attentive discrimination processes, and mixed
results have been reported in relation to intelligence. However, the MMN and its relation to
intelligence has only been studied in the auditory domain, thus preventing any conclusion about
the involvement of automatic discrimination processes in humans dominant sensory modality,
i.e.,, vision. Here we provide a first test of this question. Electroencephalography was recorded
from 50 healthy participants during a passive visual oddball task that presented simple sequence
violations as well as deviations within a more complex hidden pattern. Signed area amplitudes
and fractional area latencies of the visual mismatch negativity (vMMN) were calculated with and
without Laplacian transformation. Neither VMMN amplitudes nor VMMN latencies were
significantly related to intelligence (Ravens Advanced Progressive Matrices, RAPM) and Bayes
Factors suggest moderate evidence for the absence of associations. Our study presents the first
test of whether neural indices of pre-attentive visual discrimination processes are related to
intelligence. We discuss critical differences between the auditory and visual MMN and conclude
with adiscussion of limitations and recommendations for further research in this evolving field.
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Testing whether intelligence is related to automatic visual discrimination

Visual mismatch negativity (vMMN) as aneural indicator of

pre-attentive processing

Passive visual oddball task presents simple and complex rule violations
- No association between intelligence and vMMN amplitudes or latencies

Fundamental differences between auditory and visual MMN?
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I ntroduction

Intelligence is a psychological construct that includes the ability to understand complex idess, to
adapt effectively to the environment, to learn from experience, and to engage in various forms of
reasoning (Neisser et al., 1996). Various tests have been developed that allow the calculation of
so called intelligence quotients. Respective scores try to capture the general cognitive ability
level of a person and have been shown to predict educational and occupational success (Schmidt
& Hunter, 2004) as well as positive life outcomes such as health and longevity (Deary et al.,
2004). Understanding the cognitive processes contributing to different levels of intelligence is
therefore an important aim of ongoing research across multiple scientific disciplines.

The study of individual variation in neural parameters assessed during specific tasks (involving
specific cognitive processes) provides a means to gain insight into the question of how certain
processes may contribute to individual differences in intelligence. Neuroimaging research has
identified neural correlates of intelligence in brain structure (e.g., Haier et al., 2004; Hilger et a.,
2020a), brain function (e.g., Gray et al., 2003; Lipp et a., 2012), and in intrinsic brain
connectivity (e.g., Hilger et al., 2020b; for genera reviews on neuroimaging correlates of
intelligence see Basten et a. 2015; Hilger & Sporns, 2021; Jung and Haier 2007). However, such
research often provides only limited insights into intelligence-critical processes, as the identified
neural parameters that covary with differences in intelligence (e.g., intrinsic connectivity in
region of the dorsal attention network, DAN) were typically not assessed during an intelligence-
critical cognitive processes. Rather they were assessed during the resting state (brain morphology,
intrinsic connectivity) or during tasks not necessarily related to intelligence (e.g., movie
watching; Haier et al., 2003). Although findings from previous investigations allow for vague
interpretations about the meaning of these identified intelligence-related parameters (e.g., other
studies that showed that regions of the DAN were associated with attentional processes), any
such inferences are rather speculative, especially because most neural parameters have been
associated not only with one but with many different processes (reverse inference problem,
Nathan & Del Pinal, 2017; Poldrack, 2008, 2011, 2015).

The study of event-related brain potentials (ERP) with electroencephaographic recordings
during a specific task allows to more directly study the relation between variability in
intelligence and its association with process parameters. Beyond the P3 (i.e., the third positive
deflection to a specific consciously detected stimulus; Luck, 2014), the auditory mismatch-
negativity (MMN) has evolved as promising marker of individual differences of intelligence (e.g.,
De Pascalis et a., 2014; De Pascalis & Varriale, 2012; Houlihan & Stelmack, 2012; Sculthorpe
et a., 2009; Troche et al., 2009, 2010). In general, the MMN is dicited when, within a series of
frequent standard stimuli, rare deviant stimuli are presented (e.g., tones of higher pitch). As
stimuli are typically presented outside the focus of attention, the MMN is suggested to capture
automatic pre-attentive discrimination processes (Naétanen et al., 2007). Associations between
higher intelligence and larger (i.e., more negative) MMN amplitudes have been observed in
multiple studies (De Pascalis et a., 2014; De Pascalis & Varriale, 2012; Houlihan & Stelmack,
2012; Sculthorpe et al., 2009; Troche et al., 2009, 2010) as well as a relation between higher
intelligence and shorter MMN latencies (De Pascalis et al., 2014; De Pascais & Varriae, 2012;
Sculthorpe et al., 2009). However, associations were mostly of moderate effect sze (~r =-.15t0
r = -42) and different studies also failed to find respective relations (e.g., Bauchamp &
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Stelmack, 2006; De Pascalis & Varriale, 2012; Troche et al., 2010), suggesting a more
heterogeneous picture.

Although vision constitutes humans dominant sensory modality (e.g., Hutmacher, 2019),
automatic discrimination processes viathe MMN have typically been investigated in the auditory
domain only. The development of experimental paradigms that allow to assess the MMN also in
the visual domain have started recently. Respective studies suggest that violations in smple and
also more complex visual patterns that are presented outside the focus of attention eicit an
electrophysiological component similar to the auditory MMN, i.e., the visual MMN (VMMN;
e.g., Stefanics et a., 2011, 2014; for review see Pazo-Alvarez et al., 2003). One pioneering study
tested also for an association between VMMN and intelligence (Liu et al., 2015). However, this
study investigated an emotional VMMN €licited by rather complex perceptual stimuli (facial
expressions), which may be hard to set in relation to findings from auditory MMN research
where the MMN is typically dicited by rather unemotional and overall ssmple perceptual
discrimination processes. Whether variations in the vVMMN indexing simple visua
discrimination processes relate to individual differences in intelligence therefore still constitutes
an open guestion.

Here, we address this gap and transfer an established experimental vYMMN paradigm (Stefanics
et al., 2011) to research in the field of intelligence. We present different ways to compute the
VMMN as dicited by simple and more complex rule violations and use state-of-the-art
operationalizations of its amplitude and latency. To preview our results, we observed a clear
VMMN, replicating previous work. However, neither its amplitude nor its latency was related to
variation in intelligence, and Bayes Factors were consistent with the absence of an association.
We conclude with a discussion of limitations and recommendations for further research in this
evolving field.

M ethod

Participants and Assessment of I ntelligence

60 right-handed students from Goethe University Frankfurt completed the experiment for
monetary compensation or student credits. The size of this sample was determined by an a priori
power calculation in combination with monetary feasibility. Specifically, based on previous
work on the auditory MMN and intelligence (e.g., Sculthorpe et al., 2009), we expected an effect
size ~.35, which resulted, when ensuring 80% statistical power, in arequired sasmple sizeof N >
49 participants (G*Power, Faul et a., 2007; two-tailed, o = .05). As we expected that some
participants need to be excluded, we collected data of 60 persons. Students with a Mgor or
Minor study subject in Psychology were excluded. All participants had self-reported normal or
corrected-to-normal visual acuity and no history of psychiatric or neurological diseases. The
procedures were approved by the local ethics committee (# 2015-201) and informed written
consent according to the Declaration of Helsinki was obtained from al participants. Seven
participants completed an earlier version of the protocol and were excluded due to insufficient
numbers of trials. One additional participant was excluded due to EEG acquisition failure, and
two participants were excluded due to an insufficient number of useable trials after artifact
correction (i.e., fewer than n = 40 artifact-free trials in any single condition), leaving a final
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sample of N = 50 subjects (13 men, 37 women). Demographic information for the final study
sampleislisted in Table 1. Intelligence was assessed in group settings (10-12 participants) with
Raven’s Advanced Progressive Matrices (RAPM, Raven et al., 1998). The RAPM sum scores
were used in all analyses as the primary variable of interest and varied in the final sample
between 12 and 34 (M = 24.56, SD = 4.74; Table 1) corresponding to an 1Q score between 65
and 123 (M =92.32, SD =.14.97).

Tablel
Descriptive statistics for individual difference variables

M (SD) Minimum Maximum
Age 26.64 (3.62) 18 33
RAPM 24.56 (4.74) 12 34
Reaction Time 0.53 (0.04) 0.23 0.66
Accuracy 0.97 (0.07) 0.53 1.0

Note: N = 50 (13 men, 37 women). Reaction Time (in seconds) and Accuracy reflect overall values averaged across
all task blocks. RAPM = Ravens Advanced Progressive Matrices sum score.

Stimuli and Procedure

The paradigm used in the present study was adapted from Stefanics et al. (2011). The task was
presented on a Windows computer and the distance between participant and screen (21.5 inch
diagonal) was 120 cm. Experimental stimuli consisted of 24 red or green circles (diameter 2.5
cm; vertical distance between centers of stimuli: 4.5 cm; horizontal distance between centers of
stimuli: 4 cm; total area covered by colored discs. 20 x 25 cm) and were shown for 100 ms on a
computer screen with black background (see Fig. 1). All stimuli were presented pairwise, defined
by shorter (within-pair; 300 ms) and longer (between-pair; 800 ms) inter stimulusintervals (1Sls;
full trial duration 1,300 ms).

To study discrimination processes outside the focus of attention (passive oddball task), the
participants were instructed to focus exclusively on a white fixation cross in the center of the
screen and to index any perceived change of the cross (target) by a speeded button press. At
irregularly-spaced time points either both horizontal arms of the cross or both vertical arms
became a little bit longer (50% of changes in the fixation cross refer to vertical arms, 50% to
horizontal arms; vertical arms changed from 1 to 1.25 cm; horizontal arms changed from 1.25 to
1.5 cm). On average, targets (cross change) were presented 10 times per minute. Furthermore,
targets were matched and consequently equally distributed across deviant and standard trials as
well as across red and green stimuli. The correct detection of a target as indexed by a button
press within 800 ms after target onset was defined as hit, no reaction within 800 ms was
registered as miss, and al other responses counted as false alarms.

The experiment consisted of three different conditions (see Fig. 1). In the first oddball condition
(smplefred) red stimuli served as standards and green stimuli served as deviants and were
presented with a ratio of 80% to 20%, respectively. A reverse oddball condition had identical
parameters, with the exception that green stimuli served as standards and red stimuli served as
deviants (simple/green). This alowed us to compare physically identical stimuli as standards vs.
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deviants, thereby controlling for neural adaptation processes resulting from different physica
stimulus features. The order of red and green stimuli within each block was pseudo-randomized
to ensure that each block began with at least four standard stimuli. Further, two deviants were not
allowed to be presented directly after each other, but could occur at the first or the second
position within a stimulus pair. In Figure 1, this is shown for smple/green, but not for
simple/red. In respect to the attention control task, we ensured that a cross change could happen
only once per stimulus pair (either at the first or second stimulus).

simple conditions

simple/green

Standard/Deviant = 80:20
N BN BN EN gm an

“Press button, if
the fixation

cross changes” rule condition

Standard/Deviant = 80:20
HEE BN BN R BE EE

Standard

within-pair 1SI = 300 ms
between-pair ISI = 800 ms

Standard

Fig. 1. Schematic illustration of the passive oddball task. Top: Simple conditions (simple/red and simple/green).
Bottom: Rule condition (rule). Stimuli were presented pairwise each for 100 ms with an ISI of 300 ms between two
stimuli of the same pair and an 1S of 800 ms between two stimuli of different pairs (totd trial duration: 1300 ms).
Participants were instructed to focus on the fixation cross and to indicate via button press when they detect slight
changes in the arm lengths of the fixation cross (occurring without any regularity on average 10 times per minute).
Each block comprised 100 trials (100 pairs, 200 stimuli). The whole experiment consisted of 12 blocks, i.e., four
blocks of each condition.
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Finally, a more abstract, rule-based oddball task (rule) was implemented, where a standard was
defined as a pair of two same-colored stimuli (red-red or green-green). The deviant in this
condition was a stimulus pair with two different colors, which was presented in 20% of trials. As
the decision about whether a stimulus pair represents a deviant or not, always requires
knowledge about the color of the second stimulus within a pair, deviance is in this condition
always defined (and the corresponding neural mismatch response is initiated) by the occurrence
of the second stimulus (see also Fig. 1). The probability of red and green stimuli was equal
within the whole block and the order of stimuli was pseudo-randomized such that at least four
standard stimulus pairs were presented at the beginning of each block. Two deviant-pairs were
not allowed to be presented after each other and cross changes could happen only once within a
pair and not in two consecutively presented stimulus pairs. In the following, the first two oddball
conditions (smple/red and simple/green) are labeled as ‘ssimple’ conditions, whereas the last
condition islabeled as ‘rule’.

A total of 12 blocks was presented, with 4 blocks for each condition. For each subject, the order
in which the 12 different pseudo-randomized stimulus blocks (see above) were presented within
the whole experiment, was generated purely by chance (completely randomized). Each block
comprised 100 trials (i.e., 100 pairs, 200 stimuli) and took two minutes and 16 seconds. At the
end of each block, the participants could decide to make a short break and were instructed to start
the new block on their own when they felt ready.

EEG Recording and Preprocessing

EEG data were recorded with 64 active Ag/AgCI electrodes (arranged in an extended

10-20 layout), using actiChamp amplifier (Brain Products GmbH, Gilching, Germany), FCz was
the online reference electrode, and AFz served as the ground. The sampling rate was 1,000 Hz,
impedance levels were kept below 10 kOm, and a low pass filter of 280 Hz was applied during
acquisition (notch filter off). Two electrodes were placed below the left (SO1) and the right
(SO2) eye to record ocular artifacts, and mastoid electrodes were placed behind both ears (M1,
M?2). Preprocessing and further analyses of EEG data were conducted in EEGLAB (Delorme &
Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 2014), and followed established
standards for ERP processing and analysis (https://erpinfo.org/order-of-steps; Luck, 2014).

First, the continuous data were loaded into EEGLAB and a high-pass filter at 0.1 Hz was applied
to correct any low-frequency drift. Data segments corresponding to task breaks were removed
(time segments of > 2000 ms or longer where no event code/trigger occurred, with 500 ms buffer
around the immediately preceding and following event code). The data were re-referenced to the
average of al scalp electrodes, and two virtual bipolar EOG el ectrodes were created (consisting
of Fpl and SO1, Fp2 and SO2) to facilitate the identification of blink-related artifacts. The data
were then epoched from -100 to 400 ms relative to stimulus onset, for each stimulus within a
pair, and each epoch was linearly-detrended. This produced twelve sets of data epochs
corresponding to the following sub-conditions: standard red and deviant green stimuli in first vs.
second position from the ssmple/red condition (4 epoch types), standard green and deviant red
stimuli in first vs. second stimulus position from the ssimple/green condition (4 epoch types), and
standard or deviant red and green stimuli from the rule condition (4 epoch types; all time-locked
to the second stimulus in a pair as deviance vs. standard is in the rule condition always defined
by the occurrence of the second stimulus of a pair, see above and Fig. 1). To avoid any possible
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confounding of the ERP effects due to motor preparation, all stimuli presented during an interval
of 800 ms after a fixation cross change were excluded from ERP analyses. For the same reason,
we excluded all trials in which a button was pressed although not required (false alarm).

The epoched data were then used to identify ‘bad’ electrodes, i.e., electrodes for which more
than 4 % of trials would have been rgected due to non-blink-related artifacts, such as drift, or
high-frequency noise by the automatic EEGLAB artifact-rejection procedure (voltage changes >
60 uV on either side of a 100 ms window across 50 ms steps or voltage differences exceeding
100 pV within a 100 ms window, moving in 50 ms steps). The continuous (non-epoched) data of
these electrodes were then manually reviewed and replaced via spherical-spline interpolation. Of
note, our strict interpolation strategy resulted in, on average, 8.76 interpolated electrodes per
subject (SD = 6.71; range: 0-26). However, we selected this very conservative artifact rejection
approach to gain a very clean grand-average picture unaffected by idiosyncratic bad electrodes
across participants. Importantly, of the nine electrodes used for statistical analyses (see below),
only few have actually been interpolated (M = 0.54 per subject; SD = .97; range: 0-3) suggesting
minimal influences of our strict interpolation strategy on the vYMMN estimation.

Thereafter, the same automated threshold-based routines were applied to now identify artifactual
epochs containing either step-like artifacts in the ocular channels (those with voltage changes >
60 UV on ether side of a 100 ms window across 50 ms steps), or with voltage differences
exceeding 100 pV within a 100 ms window, moving in 50 ms steps, across any scalp channels.
All final data files were then manually reviewed again to ensure appropriate inclusion and
exclusion of valid and artifactual trials by these algorithms. After rgecting trials contaminated
due to artifacts, 77% of the total possible trials were retained for calculating ERP calculation
(average, across all participants and conditions). No participant had fewer than 43% of the total
possible trials retained (minimum absolute number = 14/32 trials for the deviant rule conditions),
with up to 100% of trials being retained in many participants and conditions. The average
percentage of trials retained across participants in each of the twelve sub-conditions ranged from
73%-82%.

Event-Related Potentials

For the primary analyses, the cleaned epochs were then baseline-corrected relative to the 100 ms
preceding the stimulus, and event-related potentials (ERPs) were created by averaging all epochs
within each of the 12 epoch types. The resulting averaged ERPs were |ow-pass filtered at 10 Hz,
to minimize high-frequency noise that can contaminate ERP latency measurements (Luck, 2014).
Note that the analyses of within-subject condition effects focus on these epoch type-averaged
ERPs (i.e., trial-averaged ERPs for each of the 12 epochs, where our aim is to establish the
presence of a VMMN and its sengtivity to condition effects). In contrast, the individual
differences analyses focus on ERP difference waves, which were derived by subtracting the ERP
elicited by standard stimuli from the ERP €licited by deviant stimuli. For the simple task
conditions, these difference ERPs were calculated based on standard and deviant stimuli with the
same color and from the same position in the stimulus pair (1% vs. 2™ stimulus), resulting in a
‘red/1% difference ERPs (i.e., red deviants minus red standards from the first position in the
stimulus pairs), as well as ‘red/2™, ‘green/1%", and ‘green/2"® difference ERPs. In the rule
condition, we calculated one difference ERP for red deviants relative to red standards and one
difference ERP for green deviants relative to green standards (all of which calculated from the
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respective second stimuli in a pair). This process resulted in atotal of six ERP difference waves
that served as basisto identify the vMMNSs.

ERP Measurement Srategy

For each subject-specific trial-averaged ERP and the ERP difference wave (vMMN), we used
ERPLAB algorithms to calculate the signed integral area amplitudes and the 50% fractional area
latencies (Luck, 2014) in the period from 100-400 ms post-stimulus, at the nine posterior
electrodes (P3, Pz, P4, PO3, POz, PO4, O1, Oz, O2) where vYMMN effects were previously
observed by Stefanics and colleagues (2011) in a sSimilar paradigm. Because the VMMN is
defined as a relative negativity, the amplitude results reported below reflect the area of the
negative deflections subtracted from any positive values, and similarly, fractional area latencies
were calculated for negative deflections only.

To further clarify the optimal measurement parameters of these effects, and particularly in
regards to their sensitivity towards individual differences, we additionally conducted a paralléel
analysis approach. Here, we first applied the surface Laplacian transform via the CSD toolbox
(Kayser & Tenke, 2006; http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox/) to
the data and calculated amplitude and latency measurements afterwards. The Laplacian
transform provides a reference-free estimate of the activity at the dura at each electrode, which is
suggested to improve the spatial specificity of the obtained ERP effects (Kayser & Tenke, 2015).
In the following (and in all Figures/Tables) we will refer to the former approach (described
above) as ‘ Scalp-Average Referenced’ and to the latter as ‘ Laplacian-Transformed'.

Amplitudes and latency values were then averaged over all participants and conditions to obtain
a sample-specific grand-average difference wave, as a basis to reliably identify the time-window
in which vMMN occurs in our sample. As depicted in Fig. 2 (lower panels), there is a clear
negative maximum at electrodes POz and Oz between 125 and 275 ms post-stimulus, which was
therefore defined as the time-window of interest for the calculation of signed area amplitudes and
50% fractional area latencies in the parallel analysis approach based on the Laplacian-
transformed data.

Last, given prior research indicating a relationship between intelligence and neural variability
(Euler et al., 2015; Hilger et a., 2020a), we also sought to explore potential effects of tria-to-
trial amplitude variation, as a post-hoc analysis, on the average-referenced data only. To this end,
we calculated the standard error of the mean (SEM) across the cleaned, unfiltered trials for each
of the twelve epoch types. These analyses focused on the twelve epoch types (sub-conditions) by
necessity, because calculating the SEM requires single trial data and thus cannot be obtained
from the epoch type-specific average ERPs or their resulting difference waves. As above, we
focused on the integral of the SEM, from 100-400 ms post-stimulus, relative to the 100 ms
prestimulus baseline, in the nine electrodes of a priori interest.

Data Analyses

Primary data analyses were conducted in SPSS version 25. We performed two sets of analyses
with the goal of (1) verifying whether the experimental manipulation was successful in diciting a
VMMN in all conditions (i.e., smple and rule), and (2) assessing whether vYMMN amplitudes or
latencies correlate with individual differencesin intelligence.
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Effects of Simulus Condition

For the first set of analyses we sought to replicate Stefanics et al. (2011) as closely as possible.
Hence, following their approach, we collapsed over red and green stimuli and conducted two
repeated-measures ANOVAs, with four factors (Stimulus Deviance: standard vs. deviant;
Stimulus Position: first vs. second; Anteriority: parietal, parieto-occipital, occipital; and
Hemisphere: left, midline, right; factorial design: 2 x 2 x 3 x 3) to examine the effects of

experimental manipulations on ERP amplitudes and latencies. For the rule condition, all ERPs
had been calculated on 2™-

Scalp-Average Referenced
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Fig. 2. Group-averaged ERP difference waves (MMNSs) for scalp-averaged-referenced and Laplacian-transformed
data. Top: Group-averaged, scalp average-referenced differences waves and peak activity, over all participants and
conditions. Bottom: analogous plots for the Laplacian-transformed data. A, Different channels are illustrated in
different (randomly selected) colors. Dashed black lines indicate measurement windows for each measurement
approach, blue dotted lines indicate peak ERP difference waves (vVMMN) latencies depicted in the scalp maps at
right. B, Scalp maps. Stars highlight the electrodes where the YMMN effects became most visible in our sample and
did thus serve as bases for al individual-difference analysis (see Methods section for further details). Note that units
and measurement scales differ: scalp- referenced data are in uV and Laplacian-transformed data are in pV/cm?,

position stimuli (see above), resulting in 2 x 3 x 3 ANOVASs (Deviance x Hemisphere x
Anteriority) for both amplitudes and latencies. The Greenhouse-Geisser correction was applied
for al tests containing three or more factors (Luck, 2014), and the Bonferroni correction was
applied to control for multiple comparisons when resolving main effects. Of note, we observed
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that in small number of instances the trial-averaged ERP (within-subject analyses) or difference
wave (individual difference analyses) was exclusively within the positive range in the respective
time-window of interest. In these cases, the integral area amplitude takes a positive value, but the
fractional area latency measure was not defined at al. Thus, the analyses of within-subjects
effects (ANOVAS) included all N = 50 participants in respect to vVMMN amplitudes, while
within-subjects analyses conducted on latency measures relied on only N = 48 participantsin the
basic condition and on N = 47 participants in the rule condition after excluding those with
positive difference waves.

Individual Difference Analysis

For individual difference analyses, we maintained the distinction between red and green stimuli
and examined partial correlations (corrected for age and sex) between RAPM scores and
amplitudes/latency measures of each of the six ERP difference waves (vMMNS). To reduce the
number of statistical comparisons, we decided a priori to average over activity at the same nine
electrodes as included in the within-subject analyses. As noted above, we implemented also a
second analysis strategy to gain an additional, reference-free estimate of neural activity with
higher spatial specificity, i.e., based on the Laplacian transformed data. Also here, we calculated
partial correlations with RAPM scores based on these current source density estimates (averaged
across electrodes POz and Oz) controlling for effects of age and sex. Thus, for each of the two
analysis approaches (and the corresponding time-electrode-window schemes), we obtained one
amplitude and one latency measures from each of the six ERP difference waves for the
individual difference (correlation) analyses (red and green in 1% and 2™ position for the simple
conditions, and red and green for rule). When applying Bonferroni correction also in respect to
the six experimental conditions, the corrected p-value would be .008. Tables 3 and 4 ligt
uncorrected p-values.

A final methodological consideration concerns the individual difference analyses of the ERP
latencies. As the calculation of the 50%-fractional area latency measure resulted in missing
values in some cases (see above), the respective latency measures could not simply be averaged
across electrodes (as it has been done for the amplitude measure; see Schafer & Graham, 2002).
Thus, we conducted ‘multiple imputation’, which is well-established principled method for
dealing with missing data (Graham, 2009). In brief, the process involves replacing each missing
value with a smulated value, which is obtained via a random draw from a predicted distribution
of the respective variable (for details see Schafer & Graham, 2002). This process is performed
multiple times, resulting in a set of complete datasets each containing smulated copies of the
missing values. Of note, these datasets were generated in a ways that the distributional properties
of the variable were preserved. Each imputed dataset is then analyzed with conventional statistics
(here partial correlations between RAPM score and latency value controlling for age and sex),
and the resulting parameter estimates (partial correlations, r) are pooled arithmetically over all
imputed datasets (Sinharay et a, 2001). Following the guidelines reported in Sinharay et al.
(2001), we generated five imputed datasets. As the pooled (averaged across all imputed data sets)
partial correlation coefficients were aggregated through Fisher-Z-transform, we could not report
conventional p-values in these cases.
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To quantify the evidence also in favor of the null hypothesis (i.e., absence of an association
between intelligence and ERP difference waves measures) Bayes Factors (BFy, Jeffreys, 1998;
Wagenmakers, 2007; Wetzels & Wagenmakers, 2012) and 95% credibility intervals (Cls) were
calculated for all associations of primary interest (associations between intelligence and ERP
difference waves measures). We used the Bayesian test for correlated pairs (Jeffreys, 1961) and
the default prior (stretched beta distribution of width 1, also termed Jeffrey prior) as
implemented in JASP version 0.11.1 (Love et al., 2015). To approximate pooled partial
correlations (controlled for age and sex), we based this analyses on residual intelligence scores,
i.e., any variance due to age and sex was regressed from RAPM sum scores prior to computation
of Bayesian correlations.

Data and Code Availability

All analysis code used in the current study has been deposited on GitHub
at https://github.com/KirstenHilger/IQ_Coding. The raw study data can be accessed from the
authors upon request.

Results

Descriptive statistics for reaction times, accuracies, and RAPM performance are listed in Table 1.
Participants were highly accurate in performing the target detection task (M = 97% correct; SD =
0.07), and the sample mean was near the 50" percentile for RAPM performance relative to
German norms for ages 25-29 (Raven & Court, 1998). Descriptive statistics for ERP amplitudes
and latencies are presented in Table 2. In terms of numerical effects (i.e., prior to conducting
inferential statistics), examination of the relevant means in the smple conditions suggest that
amplitudes were larger (more negative-going) and latencies were faster in response to second-
position stimuli relative to first-position stimuli, and in response to deviant stimuli relative to
standard stimuli. No clear differences were evident for amplitudes or latencies in the rule
condition.

Table2
Descriptive statistics for group-averaged ERP amplitudes and latencies
Amplitudes
M (SD) Minimum Maximum
simple
Standard, 1* position -0.07 (.39) -1.21 0.67
Standard, 2™ position -0.49 (.47) -1.97 0.22
Deviant, 1* position -0.16 (.44) -1.47 0.58
Deviant, 2™ position -0.61 (.50) -2.14 0.17
rule
Standard, 2" position -0.52 (.49) -2.08 0.27
Deviant, 2™ position -0.53 (.51) -2.13 0.27
Latencies
M (SD) Minimum Maximum
simplet
Standard, 1* position 272.00 (94.68) 154.5 380.0
Standard, 2™ position 216.17 (78.89) 142.0 378.0
Deviant, 1* position 257.03 (93.75) 152.0 378.0 13
Deviant, 2™ position 204.21 (65.81) 144.5 371.0

rulei
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Note: Amplitude and latency values are reported for electrode POz. Amplitudes reflect the integral of the waveform
from 100-400 ms, in pV*ms, where negative voltages have been subtracted from positive voltages. Latencies are in
milliseconds. Simple = values averaged across red/green stimuli in both simple conditions. Rule = rule condition. N
= 50 subjects were used for the calculation of amplitude measures, T N = 48 for latency measures in the simple
condition, and £ N = 47 for latency measuresin the rule condition. See Methods section for further details.

Third, the interactions of Deviance and Hemisphere and Deviance and Anteriority (see
Supplementary Table S1) indicate that, consistent with the key assumption of MMN research,
deviant stimuli elicited larger ERP amplitudes than standards at all levels of Hemisphere (all p-
values > .001) and at all levels of Anteriority (al p-values > .001). When the effects of stimulus
Deviance were considered with respect to their spatial dimensions, they also suggest a maximum
near POz (Supplementary Fig. S2). Specificaly, amplitudes were consistently larger at the
midline than in the left or right hemisphere for both deviant and standard stimuli (all p-values
< .001), while amplitudes over left and right hemispheres did not differ from each other (all p-
values > .639); and likewise, deviant stimuli elicited greater amplitudes at parieto-occipital than
either parietal (p = .041) or occipital sites (p = .016), which did not themselves differ from each
other (p > .999). This difference was not observed for standard stimuli, however, where
amplitudes were larger at POz than Oz (p = .010), but not Pz (p = .327), and similarly, Pz and Oz
did not differ from one another (p = .999). For the sake of interest, Supplementary Table S1
contains a full statistical analysis of all possible interactions.

ERP Amplitudes — Rule Condition

In the rule condition, we examined the effects of stimulus Deviance, Hemisphere, and
Anteriority, and their respective interactions. Only the main effects of Anteriority (F(1.285,
62.985) = 7.608, p = .004 , partial #*~.134), Hemisphere (F(1.576, 77.217) = 38.754, p <.001,
partial #°~.442), and their interaction reached statistical significance (F(2.997, 146.872) = 6.861,
p <.001, partial ?~.123). Thus, the experimental manipulation in the rule condition did not
gicit a clear vVMMN, i.e., there was no significant difference in group-averaged amplitudes
between deviant and standard stimuli (F(1,49) = .232, p = .632, partia #*~.005). Also here
(smilarly as with the pooled simple stimuli, see above), the significant interaction reflected the
gpatial specificity of the ERPs, such that amplitudes were largest near POz (moving both right to
left and anterior to posterior), with particularly pronounced differences between POz (midline)
and PO3/PO4 (left/right) and relative to analogous contrasts at parietal or occipital Stes.
Supplementary Table S2 liststhe full range of statistics.

In summary, ERP amplitude results for the ssimple conditions were consistent with previous
research indicating larger ERPs in response to deviant versus standard stimuli, and following the
second versusthe first stimuli of a pair. Although stimulus Position and Deviance did not interact,
they showed similar spatial effects, with each being most pronounced near the midline parieto-
occipital electrode POz. In contrast to a previous study using the same paradigm (Stefanics et al.,
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2011), in our sample the rule condition deviant stimuli did not €icited larger amplitudes than
standard stimuli.

ERP Latencies— Smple Conditions

In the four-way ANOV A examining the effects of Stimulus Position, Deviance, Anteriority, and
Hemisphere on ERP latencies, the main effects of Position (F(1, 47) = 67.577, p < .001, partial
n? = .590), Deviance (F(1, 47) = 16.443, p < .001, partial #* = .259), and Hemisphere (F(1.668,
78.375) = 12.693, p < .001 , partial 5 = .213) reached statistical significance, as well as the two-
way interactions of Position and Deviance (F(1,47) = 6.515, p = .014, partia 5 = .122), Position
and Hemisphere (F(1.903, 89.432) = 5.429, p = .007, partid #* = .104), and Anteriority by
Hemisphere (F(2.749, 129.195) =3.853 , p = .013, partia ;72 = .076). All three- and four-way
interactions were not significant (see also Supplementary Table S3).

More detailed ssimple main effect tests on the latencies indicated first that ERP latencies were
consistently earlier for second- vs. first-position stimuli (all p < .001). This pattern was found
across all two-way interactions such that the various interactions moderated this effect. Second,
as indicated by the interaction of Position by Hemisphere, latencies were consistently earlier at
midline relative to left or right hemisphere electrodes (al p < .05), which did not differ from
each other (all p > .999); though this effect was greater for first relative to second-position
stimuli. Last, in respect to the interaction between Hemisphere and Anteriority, we observed that
latencies were shorter at midline relative to right and left hemisphere sites (all p <. 013), that
right and left sites did not differ from each other (all p > . 999), and that this difference was
especially pronounced between midline and right parietal and parieto-occipital sites (see
Supplementary Fig. S3). A full list of statisticsis presented in Supplementary Table S3.

ERP Latencies— Rule Condition

Finally, in the ANOVA examining the effects of Deviance, Anteriority, and Hemisphere on
latencies in the rule condition, only the main effect of Hemisphere (F(1.667, 76.693) = 6.664, p
= .004, partial #* = .127), and the three-way interaction were significant (F(3.507, 161.332) =
2.997, p = .025, partial = .061). The full list of statistics is presented in Supplementary Table
SA.

In summary, analyses of ERP latencies from the simple conditions indicated that, cons stent with
previous research, latencies tended to be faster to deviant than to standard stimuli, to second-
relative to first position stimuli, and to midline relative to peripheral electrodes. The latter
became most visible at parieto-occipital sitesi.e., especially at POz (see Supplementary Fig. $4).
In contrast to previous research using the same paradigm (Stefanics et all., 2011), in our sample
the rule condition latencies were not faster to deviant than to standard stimuli.

Individual Differences Analyses

Visual Mismatch Negativity and Individual Differencesin Intelligence

In respect to our main question of interest, i.e., whether intelligence is associated with neural
indicators of simple visual discrimination processes (i.e.,, the VMMN), we observed no
significant associations between vVMMN amplitudes and the RAPM scores, neither in the scalp-
referenced data, nor in the Laplacian-transformed data (Table 3). As nearly al Bayes Factors
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(BFo1) were > 3 (only BFo; for rule red MMN was 2.55), our results provide substantial evidence
for the null hypothesis, i.e., absence of association between intelligence and MMN amplitudes
(interpretation of BF in accordance with Jeffreys, 1961). As an example, the BFy,; of 5.57 for the
association between intelligence and the vMMN amplitude for red first-position stimuli (Table 3)
indicates that the null hypothesisis ~ 6 times more likely than the alternative hypothesis (i.e.,
presence of a correlation). Also, all 95% credibility intervals included zero, which further
supports the absence of any association. For the sake of completeness, partial correlations
between vMMN amplitudes of different conditions are provided in Supplementary Table S5.

Table3
Partial correlations, Bayes Factors, and 95% credibility intervals for associations between intelligence and vVMMN
amplitudes

Scalp-Referenced

Statistic red/1% green/1¥  red/2™ green/2™  rulered rule green
Partial r 0.03 -0.15 0.11 0.00 0.19 -0.16
BFo1 557 3.48 441 5.67 2.55 3.21

cl [-25,30] [-40,.14] [-.18 .36] [-27,27] [-10,.43] [-41,.13]
L aplacian-Transfor med

Partial r -0.12 0.10 0.08 -0.01 0.11 -0.16
BFo1 4.18 447 4,94 5.67 4.36 3.22

Cl [-37,.17] [-18,.36] [-20,.34] [-28,.26] [-17,.36] [-41,.13]

Note: Partial r = pooled partial correlation coefficients controlling for variance due to age and sex. Red/1¥ = ERP
difference wave calculated from red deviants minus red standards from the first position in the stimulus pairs,
red/2™, green/1%, and green/2™ respectively. Correlations that reach significance in the imputed datasets are marked
with an asterisk (* = p <.05; uncorrected for six experimental conditions). Bayes Factors (BFy,) in favor of the null
hypothesis (i.e., absence of correlation) and 95% credibility Intervals (Cl) are depicted for associations with RAPM
scores.

With respect to the latencies, there emerged one single significant correlation, i.e., between
intelligence and the vMMN élicited by green stimuli in the rule condition (r(46) = -.29, p < .046,
across five imputed datasets. However, significance only holds when not correcting for multiple
tests, i.e., for more than one experimental condition, see Table 4). No other significant
association was observed. Also here, most Bayes Factors were > 3, and all credibility intervals
included zero. Even in the above-mentioned case, in which the p-value indicated statistical
significance (rule green MMN), the BFy; of 1.98 demonstrates that the null hypothesis (absence
of an association) is about two times more likely than the aternative hypothesis (presence of an
association) and the 95% credibility interval included zero. Partial correlations between vVMMN
latencies of different conditions are provided in Supplementary Table S6.

To gain more comprehensive insights into the processes dliciting the vMMN, we also tested for
potential associations between VMMN amplitudes/latencies and reaction times. We found no
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significant associations for the amplitudes neither for the scalp-average-referenced nor the
Laplacian-transformed data. For the latencies, only one single significant relation emerged, i.e.,
between RTs and red stimuli in the first position of the smple conditions in the scal p-referenced
data (r(46) = .32, p = .025, in each of the five imputed sets, uncorrected for multiple
experimental conditions). However, as no other associations between VMMN latencies and RT
were observed, most of the data does not support an association between RTs and vVMMNSs.
Respective statistics are listed in Supplementary Table S7 and S8.

Table4
Pooled partia correlations, Bayes Factors, and 95% credibility intervals for associations between intelligence and
VMMN latencies

Scalp-Referenced

Statistic red/1% green/1®  red/2™ green/2™ rule red rule green
Partial r 0.07 -0.15 0.07 -0.09 0.14 -0.29*
BFo1 517 3.32 5.15 4.55 3.45 1.98

Cl [-21,33] [-36,.19] [-20,31] [-36,.19 [-15 41 [-47,.08]
L aplacian-Transfor med

Partial r 0.18 0.19 0.15 0.01 0.00 -0.03
BFo1 2.59 2.19 3.33 553 5.67 5.50

Cl [-.10, .43] [-.08,.45] [-.14, .41] [-.25,.29] [-.28, .28] [-.29, .28]

Note: Partial r = pooled partial correlation coefficients controlling for variance due to age and sex. Red/1% = ERP
difference wave calculated from red deviants minus red standards from the first position in the stimulus pairs,
red/2™, green/1%, and green/2™ respectively. Correlations that reach significance in the imputed datasets are marked
with an asterisk (* = p < .05; uncorrected for six experimental conditions). Bayes Factors (BFy;) in favor of the null
hypothesis (i.e., absence of correlation) and 95% credibility Intervals (Cl) are depicted for associations with RAPM
SCcores.

Post-Hoc Analysis: Neural Variability

Finally, as an exploratory post-hoc analysis, we tested whether individual differences in
intelligence are associated with the trial-to-trial variability of ERP amplitudes. Pearson partial
correlations (controlled for variance due to age and sex) were computed for all twelve sub-
conditions (epoch types) using the scalp-referenced data. As noted in the Methods section, these
analyses focused on the standard error of the mean (SEM) obtained prior to calculating the
primary ERPs. As shown in Supplementary Table 9, this analysis revealed no significant
relationships between SEM amplitude variability in the ERPs and intelligence (all p-values
> .326).

Discussion
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To the best of our knowledge, this is the first study to systematically test for a relation between
intelligence and the MMN as an index of basic, pre-attentive automatic discrimination processes
in the visual domain. Using a paradigm that has previously been shown to eicit a vMMN
(Stefanics et al., 2011), we first amed to replicate within-subject effects elicited by the
experimental manipulation. Then, we tested for associations between individual differences in
intelligence and vMMN amplitude and latencies. However, no significant effects were observed.
Our results, therefore, question the association between general cognitive ability and neural
indicators of automatic sensory discrimination processes in the visual modality.

The within-subject effects of stimulus position, perceptual deviance, and scalp location, in
addition to violations of more abstract, rule-based expectations were examined first. For the
more basic perceptual manipulation (simple condition), our results replicate previous findings for
ERP amplitudes. Specifically, we observed a clear VMMN that was maximal near parietal-
occipital, midline electrodes (Fig. 2), and larger (more negative) amplitudes in response to
deviant and 2™-position stimuli, relative to standard stimuli or those presented 1% in a pair.
Although the rule condition also dlicited an ERP with the expected parieto-occipital topography,
there were no amplitude effects related to stimulus deviance. Analyses of VMMN latencies
revealed that, in the simple condition, neural activity peaked more rapidly in response to 2™
versus 1%-position stimuli, and was aso faster for deviants relative to standards. Also here, the
gpatial effects were centered near POz. For the rule condition, we observed a three-way
interaction of Deviance, Anteriority, and Hemisphere where activity again peaked fastest near
POz, with the precise spatial pattern varying between the deviant and standard conditions.

In the individual differences analyses probing for relations between intelligence and vVMMN
amplitudes or latencies, we compared two different referencing schemes—the scalp-average
reference and current source density via the Laplacian transform. For the scalp-referenced data,
we relied on an a priori measurement window and set of electrodes, whereas, for the Laplacian-
transformed data, measurement parameters were optimized to the current sample in a data-driven
approach. As expected, the Laplacian transform revealed a more focal pattern of neural activity,
which also peaked earlier than in the scalp-referenced data (based on the grand-average).
Notwithstanding, both analyses approaches reveal ed no significant relationships between vMMN
amplitudes and performance on the RAPM. Correlation analyses of VMMN latencies were
likewise non-significant, with the sole exception of an inverse relation between vVMMN latency
in the rule condition (green stimuli, scalp-referenced data). Nevertheless, for both latencies and
amplitudes, all credibility intervals contained zero, and Bayes Factors ranged from ~2 to 6. As
such, and taking into account the overall number of comparisons being investigated, we conclude
that there is moderate to substantial evidence againgt a relationship between intelligence and
VMMN amplitude or latenciesin the present dataset.

The current findings contrast with studies reporting correlations between intelligence and the
MMN in the auditory domain. Although results for individual studies are mixed, the overarching
picture suggests larger MMN amplitudes (Sculthorpe et a., 2009; Troche et al., 2009, 2010),
faster MMN latencies (e.g., Bazana & Stelmack, 2002; Beauchamp & Stelmack, 2006), or both
(De Pascalis & Varriale, 2012; De Pascalis et al., 2014; Houlihan & Stelmack, 2012), in higher
ability participants. One single study examined also the relation between intelligence and a
version of the vVMMN. That study, however, focused on socio-emotional rather than on automatic
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perceptual processes. Specificaly, the authors examined the vMMN in response to perceptually
complex stimuli of neutral versus happy or sad facial expressions and observed larger MMN
amplitudes in higher ability participants (Liu et al., 2015).

Plausible explanations for the discrepancy between the current results and previous studies
include differences in measurement approaches (e.g., peak amplitudes and latencies vs. signed
area amplitudes fractional area latencies), differences in specific task features, as well as broader
considerations pertaining to different demands between the visual and auditory modalities. For
example, athough the current paradigm attempts to control participants attention via the
manipulation of fixation cross length, the effectiveness of this manipulation is somewhat unclear.
In visual MMN paradigms both the attended and unattended stimuli are presented in the same
modality. In contrast, in auditory MMN paradigms, participants’ attention is most often kept by
tasksin a different domain such as vision (e.g., by reading or watching a silent video). As vision
is humans dominant modality, efforts to control attentional might be more effective in this latter
case. A related consideration concerns potential differences in the degree to which the two
modalities may admit of individual differences in early perceptual processing. For example, it
has been argued that auditory signals present an especially complex information processing
challenge, due to their inherent transience, and the frequent need to distinguish multiple objects
from within a single, multi-layered input (Fitzgerald & Todd, 2020). Insofar as the two sensory
modalities evolved to cope with different features of the environment, it is interesting to consider
whether anatomical or physiological differences between early auditory and early visual
pathways may affect the degree to which each admits of individual differences in their response
properties. If so, this may in turn affect their potential for relations with intelligence. Similar
considerations may also help to explain the discrepancy between our study that manipulated the
colors and presented order of arrays of circles, versus that of Liu et al. (2015), which dicited the
VMMN in response to emotional faces, i.e., to rather complex and highly socially-salient stimuli.

The present study also has several limitations which need to be considered. First, our sample size
was comparatively small for analyses of individual differences in general (Yarkoni & Braver,
2010; Gignac, & Szodorai, 2016). Although our sample size was sufficient to detect medium to
large effects (i.e., correlations > .35, see Methods) with 80% statistical power, we of course
cannot exclude the possibility that we were simply unable to detect it. However, the present
data—which tested associations for both amplitudes and latencies, across six ERP difference
waves and two referencing schemes—suggests that any relationship, if it exists, is apt to be
rather small, i.e., smaller as one would expect based on the previous literature on intelligence and
auditory MMN. Replication studies using larger sample sizes are therefore essentially required.
If those could confirm a null or very small association between basic pre-attentive visual
processes and intelligence, this would be consistent with the hypothesis that correlations between
intelligence and ERP features are expected to be smaller for less complex tasks and “lower-level”
processes than for more complex “higher-level” cognitive functions (Euler & Schubert, 2021;
Euler, 2018). Thus, future studies that examine relations between intelligence and the vMMN
would likely benefit from implementing a broader range of different task complexities.
Respective studies could test for potential interactions between task complexity and stimulus
modality and thus shed new light onto the conditions under which associations between vVMMN
and intelligence emerge.
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A second limitation concerns the choice to examine correlations of intelligence with ERP
difference waves, rather than their constituent ERPs. Several recent papers have re-focused
attention on psychometric problems associated with using difference scores in individual
differences research (e.g., Hedge et al., 2018), including in ERP studies per se (Meyer €t a.,
2020). Although this appears not to have hindered most auditory MMN studies, given the
variable and often low correlations between the difference waves themselves in the current data
(Supplementary Tables S5-S6), this is a worthwhile possibility to investigate in future research.
Finally, it has also been recently argued that EEG and ERP studies may be more apt to observe
relations with intelligence when al variables are modelled as latent factors, and at comparable
levels of psychological and physiological aggregation (Euler & Schubert, 2021; Schubert et al.,
2017, 2021). While limitations of the present data preclude a more complex modelling approach
along these lines, this represents another promising direction for future work.

In summary, this is, to the best of our knowledge, the first study testing for a relationship
between intelligence and a basic perceptual manipulation of the MMN in the visual modality.
Using a previously-validated paradigm, our results replicated prior experimental effects
concerning the sensitivity of neural responses to deviant and second-position stimuli, abeit not
to the violation of a more abstract, rule-based stimulus pattern. M ost importantly, no associations
between intelligence and vMMN amplitudes or latencies were observed, and Bayesian analyses
indicated moderate to substantial evidence againgt any relationship. Future studies in this area
will benefit from larger sample sizes, and by systematically exploring effects of task complexity
and modality on relations between the MMN and intelligence.
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