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ABSTRACT 
 
Intelligence captures the cognitive ability level of an individual person and 
electroencephalography (EEG) has been used for decades to identify neurocognitive processes 
related to intelligence. The mismatch negativity (MMN) is a component of the event-related 
brain potential (ERP) that is elicited when, within a series of frequent standard stimuli, rare 
deviant stimuli are presented. As stimuli are typically presented outside the focus of attention, 
the MMN is suggested to capture automatic pre-attentive discrimination processes, and mixed 
results have been reported in relation to intelligence. However, the MMN and its relation to 
intelligence has only been studied in the auditory domain, thus preventing any conclusion about 
the involvement of automatic discrimination processes in humans dominant sensory modality, 
i.e., vision. Here we provide a first test of this question. Electroencephalography was recorded 
from 50 healthy participants during a passive visual oddball task that presented simple sequence 
violations as well as deviations within a more complex hidden pattern. Signed area amplitudes 
and fractional area latencies of the visual mismatch negativity (vMMN) were calculated with and 
without Laplacian transformation. Neither vMMN amplitudes nor vMMN latencies were 
significantly related to intelligence (Ravens Advanced Progressive Matrices, RAPM) and Bayes 
Factors suggest moderate evidence for the absence of associations. Our study presents the first 
test of whether neural indices of pre-attentive visual discrimination processes are related to 
intelligence. We discuss critical differences between the auditory and visual MMN and conclude 
with a discussion of limitations and recommendations for further research in this evolving field. 
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HIGHLIGHTS  
 

- Testing whether intelligence is related to automatic visual discrimination  
- Visual mismatch negativity (vMMN) as a neural indicator of                                                                

pre-attentive processing 
- Passive visual oddball task presents simple and complex rule violations 
- No association between intelligence and vMMN amplitudes or latencies  
- Fundamental differences between auditory and visual MMN? 
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Introduction 
 
Intelligence is a psychological construct that includes the ability to understand complex ideas, to 
adapt effectively to the environment, to learn from experience, and to engage in various forms of 
reasoning (Neisser et al., 1996). Various tests have been developed that allow the calculation of 
so called intelligence quotients. Respective scores try to capture the general cognitive ability 
level of a person and have been shown to predict educational and occupational success (Schmidt 
& Hunter, 2004) as well as positive life outcomes such as health and longevity (Deary et al., 
2004). Understanding the cognitive processes contributing to different levels of intelligence is 
therefore an important aim of ongoing research across multiple scientific disciplines. 
 
The study of individual variation in neural parameters assessed during specific tasks (involving 
specific cognitive processes) provides a means to gain insight into the question of how certain 
processes may contribute to individual differences in intelligence. Neuroimaging research has 
identified neural correlates of intelligence in brain structure (e.g., Haier et al., 2004; Hilger et al., 
2020a), brain function (e.g., Gray et al., 2003; Lipp et al., 2012), and in intrinsic brain 
connectivity (e.g., Hilger et al., 2020b; for general reviews on neuroimaging correlates of 
intelligence see Basten et al. 2015; Hilger & Sporns, 2021; Jung and Haier 2007). However, such 
research often provides only limited insights into intelligence-critical processes, as the identified 
neural parameters that covary with differences in intelligence (e.g., intrinsic connectivity in 
region of the dorsal attention network, DAN) were typically not assessed during an intelligence-
critical cognitive processes. Rather they were assessed during the resting state (brain morphology, 
intrinsic connectivity) or during tasks not necessarily related to intelligence (e.g., movie 
watching; Haier et al., 2003). Although findings from previous investigations allow for vague 
interpretations about the meaning of these identified intelligence-related parameters (e.g., other 
studies that showed that regions of the DAN were associated with attentional processes), any 
such inferences are rather speculative, especially because most neural parameters have been 
associated not only with one but with many different processes (reverse inference problem, 
Nathan & Del Pinal, 2017; Poldrack, 2008, 2011, 2015).  
 
The study of event-related brain potentials (ERP) with electroencephalographic recordings 
during a specific task allows to more directly study the relation between variability in 
intelligence and its association with process parameters. Beyond the P3 (i.e., the third positive 
deflection to a specific consciously detected stimulus; Luck, 2014), the auditory mismatch-
negativity (MMN) has evolved as promising marker of individual differences of intelligence (e.g., 
De Pascalis et al., 2014; De Pascalis & Varriale, 2012; Houlihan & Stelmack, 2012; Sculthorpe 
et al., 2009; Troche et al., 2009, 2010). In general, the MMN is elicited when, within a series of 
frequent standard stimuli, rare deviant stimuli are presented (e.g., tones of higher pitch). As 
stimuli are typically presented outside the focus of attention, the MMN is suggested to capture 
automatic pre-attentive discrimination processes (Näätänen et al., 2007). Associations between 
higher intelligence and larger (i.e., more negative) MMN amplitudes have been observed in 
multiple studies (De Pascalis et al., 2014; De Pascalis & Varriale, 2012; Houlihan & Stelmack, 
2012; Sculthorpe et al., 2009; Troche et al., 2009, 2010) as well as a relation between higher 
intelligence and shorter MMN latencies (De Pascalis et al., 2014; De Pascalis & Varriale, 2012; 
Sculthorpe et al., 2009). However, associations were mostly of moderate effect size (~ r = -.15 to 
r = -.42) and different studies also failed to find respective relations (e.g., Bauchamp & 
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Stelmack, 2006; De Pascalis & Varriale, 2012;  Troche et al., 2010), suggesting a more 
heterogeneous picture. 
 
Although vision constitutes humans’ dominant sensory modality (e.g., Hutmacher, 2019), 
automatic discrimination processes via the MMN have typically been investigated in the auditory 
domain only. The development of experimental paradigms that allow to assess the MMN also in 
the visual domain have started recently. Respective studies suggest that violations in simple and 
also more complex visual patterns that are presented outside the focus of attention elicit an 
electrophysiological component similar to the auditory MMN, i.e., the visual MMN (vMMN; 
e.g., Stefanics et al., 2011, 2014; for review see Pazo-Alvarez et al., 2003). One pioneering study 
tested also for an association between vMMN and intelligence (Liu et al., 2015). However, this 
study investigated an emotional vMMN elicited by rather complex perceptual stimuli (facial 
expressions), which may be hard to set in relation to findings from auditory MMN research 
where the MMN is typically elicited by rather unemotional and overall simple perceptual 
discrimination processes. Whether variations in the vMMN indexing simple visual 
discrimination processes relate to individual differences in intelligence therefore still constitutes 
an open question.  
 
Here, we address this gap and transfer an established experimental vMMN paradigm (Stefanics 
et al., 2011) to research in the field of intelligence. We present different ways to compute the 
vMMN as elicited by simple and more complex rule violations and use state-of-the-art 
operationalizations of its amplitude and latency. To preview our results, we observed a clear 
vMMN, replicating previous work. However, neither its amplitude nor its latency was related to 
variation in intelligence, and Bayes Factors were consistent with the absence of an association. 
We conclude with a discussion of limitations and recommendations for further research in this 
evolving field.  
 
 
Method 
 
Participants and Assessment of Intelligence 
60 right-handed students from Goethe University Frankfurt completed the experiment for 
monetary compensation or student credits. The size of this sample was determined by an a priori 
power calculation in combination with monetary feasibility. Specifically, based on previous 
work on the auditory MMN and intelligence (e.g., Sculthorpe et al., 2009), we expected an effect 
size ~.35, which resulted, when ensuring 80% statistical power, in a required sample size of N  > 
49 participants (G*Power, Faul et al., 2007; two-tailed, α = .05). As we expected that some 
participants need to be excluded, we collected data of 60 persons. Students with a Major or 
Minor study subject in Psychology were excluded. All participants had self-reported normal or 
corrected-to-normal visual acuity and no history of psychiatric or neurological diseases. The 
procedures were approved by the local ethics committee (# 2015-201) and informed written 
consent according to the Declaration of Helsinki was obtained from all participants. Seven 
participants completed an earlier version of the protocol and were excluded due to insufficient 
numbers of trials. One additional participant was excluded due to EEG acquisition failure, and 
two participants were excluded due to an insufficient number of useable trials after artifact 
correction (i.e., fewer than n = 40 artifact-free trials in any single condition), leaving a final 
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sample of N = 50 subjects (13 men, 37 women). Demographic information for the final study 
sample is listed in Table 1. Intelligence was assessed in group settings (10-12 participants) with 
Raven’s Advanced Progressive Matrices (RAPM, Raven et al., 1998). The RAPM sum scores 
were used in all analyses as the primary variable of interest and varied in the final sample 
between 12 and 34 (M = 24.56, SD = 4.74; Table 1) corresponding to an IQ score between 65 
and 123 (M = 92.32, SD = .14.97).  
 
Table 1  
Descriptive statistics for individual difference variables 
 M (SD) Minimum Maximum 

Age 26.64 (3.62) 18 33 

RAPM 24.56 (4.74) 12 34 

Reaction Time 0.53 (0.04) 0.23 0.66 

Accuracy 0.97 (0.07) 0.53 1.0 

 
Note: N = 50 (13 men, 37 women). Reaction Time (in seconds) and Accuracy reflect overall values averaged across 
all task blocks. RAPM = Ravens Advanced Progressive Matrices sum score. 
 
Stimuli and Procedure 
The paradigm used in the present study was adapted from Stefanics et al. (2011). The task was 
presented on a Windows computer and the distance between participant and screen (21.5 inch 
diagonal) was 120 cm. Experimental stimuli consisted of 24 red or green circles (diameter 2.5 
cm; vertical distance between centers of stimuli: 4.5 cm; horizontal distance between centers of 
stimuli: 4 cm; total area covered by colored discs: 20 x 25 cm) and were shown for 100 ms on a 
computer screen with black background (see Fig. 1). All stimuli were presented pairwise, defined 
by shorter (within-pair; 300 ms) and longer (between-pair; 800 ms) inter stimulus intervals (ISIs; 
full trial duration 1,300 ms).  
 
To study discrimination processes outside the focus of attention (passive oddball task), the 
participants were instructed to focus exclusively on a white fixation cross in the center of the 
screen and to index any perceived change of the cross (target) by a speeded button press. At 
irregularly-spaced time points either both horizontal arms of the cross or both vertical arms 
became a little bit longer (50% of changes in the fixation cross refer to vertical arms, 50% to 
horizontal arms; vertical arms changed from 1 to 1.25 cm; horizontal arms changed from 1.25 to 
1.5 cm). On average, targets (cross change) were presented 10 times per minute. Furthermore, 
targets were matched and consequently equally distributed across deviant and standard trials as 
well as across red and green stimuli. The correct detection of a target as indexed by a button 
press within 800 ms after target onset was defined as hit, no reaction within 800 ms was 
registered as miss, and all other responses counted as false alarms.  
 
The experiment consisted of three different conditions (see Fig. 1). In the first oddball condition 
(simple/red) red stimuli served as standards and green stimuli served as deviants and were 
presented with a ratio of 80% to 20%, respectively. A reverse oddball condition had identical 
parameters, with the exception that green stimuli served as standards and red stimuli served as 
deviants (simple/green). This allowed us to compare physically identical stimuli as standards vs. 
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deviants, thereby controlling for neural adaptation processes resulting from different physical
stimulus features. The order of red and green stimuli within each block was pseudo-randomized
to ensure that each block began with at least four standard stimuli. Further, two deviants were not
allowed to be presented directly after each other, but could occur at the first or the second
position within a stimulus pair. In Figure 1, this is shown for simple/green, but not for
simple/red. In respect to the attention control task, we ensured that a cross change could happen
only once per stimulus pair (either at the first or second stimulus).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Schematic illustration of the passive oddball task. Top: Simple conditions (simple/red and simple/green)
Bottom: Rule condition (rule). Stimuli were presented pairwise each for 100 ms with an ISI of 300 ms between two
stimuli of the same pair and an ISI of 800 ms between two stimuli of different pairs (total trial duration: 1300 ms).
Participants were instructed to focus on the fixation cross and to indicate via button press when they detect slight
changes in the arm lengths of the fixation cross (occurring without any regularity on average 10 times per minute).
Each block comprised 100 trials (100 pairs, 200 stimuli). The whole experiment consisted of 12 blocks, i.e., four
blocks of each condition. 
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Finally, a more abstract, rule-based oddball task (rule) was implemented, where a standard was 
defined as a pair of two same-colored stimuli (red-red or green-green). The deviant in this 
condition was a stimulus pair with two different colors, which was presented in 20% of trials. As 
the decision about whether a stimulus pair represents a deviant or not, always requires 
knowledge about the color of the second stimulus within a pair, deviance is in this condition 
always defined (and the corresponding neural mismatch response is initiated) by the occurrence 
of the second stimulus (see also Fig. 1). The probability of red and green stimuli was equal 
within the whole block and the order of stimuli was pseudo-randomized such that at least four 
standard stimulus pairs were presented at the beginning of each block. Two deviant-pairs were 
not allowed to be presented after each other and cross changes could happen only once within a 
pair and not in two consecutively presented stimulus pairs. In the following, the first two oddball 
conditions (simple/red and simple/green) are labeled as ‘simple’ conditions, whereas the last 
condition is labeled as ‘rule’.  
 
A total of 12 blocks was presented, with 4 blocks for each condition. For each subject, the order 
in which the 12 different pseudo-randomized stimulus blocks (see above) were presented within 
the whole experiment, was generated purely by chance (completely randomized). Each block 
comprised 100 trials (i.e., 100 pairs, 200 stimuli) and took two minutes and 16 seconds. At the 
end of each block, the participants could decide to make a short break and were instructed to start 
the new block on their own when they felt ready.  
 
EEG Recording and Preprocessing 
EEG data were recorded with 64 active Ag/AgCl electrodes (arranged in an extended 
10–20 layout), using actiChamp amplifier (Brain Products GmbH, Gilching, Germany), FCz was 
the online reference electrode, and AFz served as the ground. The sampling rate was 1,000 Hz, 
impedance levels were kept below 10 kOm, and a low pass filter of 280 Hz was applied during 
acquisition (notch filter off). Two electrodes were placed below the left (SO1) and the right 
(SO2) eye to record ocular artifacts, and mastoid electrodes were placed behind both ears (M1, 
M2). Preprocessing and further analyses of EEG data were conducted in EEGLAB (Delorme & 
Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 2014), and followed established 
standards for ERP processing and analysis (https://erpinfo.org/order-of-steps; Luck, 2014).  
 
First, the continuous data were loaded into EEGLAB and a high-pass filter at 0.1 Hz was applied 
to correct any low-frequency drift. Data segments corresponding to task breaks were removed 
(time segments of ≥ 2000 ms or longer where no event code/trigger occurred, with 500 ms buffer 
around the immediately preceding and following event code). The data were re-referenced to the 
average of all scalp electrodes, and two virtual bipolar EOG electrodes were created (consisting 
of Fp1 and SO1, Fp2 and SO2) to facilitate the identification of blink-related artifacts. The data 
were then epoched from -100 to 400 ms relative to stimulus onset, for each stimulus within a 
pair, and each epoch was linearly-detrended. This produced twelve sets of data epochs 
corresponding to the following sub-conditions: standard red and deviant green stimuli in first vs. 
second position from the simple/red condition (4 epoch types), standard green and deviant red 
stimuli in first vs. second stimulus position from the simple/green condition (4 epoch types), and 
standard or deviant red and green stimuli from the rule condition (4 epoch types; all time-locked 
to the second stimulus in a pair as deviance vs. standard is in the rule condition always defined 
by the occurrence of the second stimulus of a pair, see above and Fig. 1). To avoid any possible 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.03.01.482097doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482097
http://creativecommons.org/licenses/by-nd/4.0/


INTELLIGENCE AND VISUAL MISMATCH NEGATIVITY 
 

 

 

 

9

confounding of the ERP effects due to motor preparation, all stimuli presented during an interval 
of 800 ms after a fixation cross change were excluded from ERP analyses. For the same reason, 
we excluded all trials in which a button was pressed although not required (false alarm).  
 
The epoched data were then used to identify ‘bad’ electrodes, i.e., electrodes for which more 
than 4 % of trials would have been rejected due to non-blink-related artifacts, such as drift, or 
high-frequency noise by the automatic EEGLAB artifact-rejection procedure (voltage changes ≥ 
60 µV on either side of a 100 ms window across 50 ms steps or voltage differences exceeding 
100 µV within a 100 ms window, moving in 50 ms steps). The continuous (non-epoched) data of 
these electrodes were then manually reviewed and replaced via spherical-spline interpolation. Of 
note, our strict interpolation strategy resulted in, on average, 8.76 interpolated electrodes per 
subject (SD = 6.71; range: 0-26). However, we selected this very conservative artifact rejection 
approach to gain a very clean grand-average picture unaffected by idiosyncratic bad electrodes 
across participants. Importantly, of the nine electrodes used for statistical analyses (see below), 
only few have actually been interpolated (M = 0.54 per subject; SD = .97; range: 0-3) suggesting 
minimal influences of our strict interpolation strategy on the vMMN estimation.   
 
Thereafter, the same automated threshold-based routines were applied to now identify artifactual 
epochs containing either step-like artifacts in the ocular channels (those with voltage changes ≥ 
60 µV on either side of a 100 ms window across 50 ms steps), or with voltage differences 
exceeding 100 µV within a 100 ms window, moving in 50 ms steps, across any scalp channels. 
All final data files were then manually reviewed again to ensure appropriate inclusion and 
exclusion of valid and artifactual trials by these algorithms. After rejecting trials contaminated 
due to artifacts, 77% of the total possible trials were retained for calculating ERP calculation 
(average, across all participants and conditions). No participant had fewer than 43% of the total 
possible trials retained (minimum absolute number = 14/32 trials for the deviant rule conditions), 
with up to 100% of trials being retained in many participants and conditions. The average 
percentage of trials retained across participants in each of the twelve sub-conditions ranged from 
73%-82%. 
 
Event-Related Potentials  
For the primary analyses, the cleaned epochs were then baseline-corrected relative to the 100 ms 
preceding the stimulus, and event-related potentials (ERPs) were created by averaging all epochs 
within each of the 12 epoch types. The resulting averaged ERPs were low-pass filtered at 10 Hz, 
to minimize high-frequency noise that can contaminate ERP latency measurements (Luck, 2014). 
Note that the analyses of within-subject condition effects focus on these epoch type-averaged 
ERPs (i.e., trial-averaged ERPs for each of the 12 epochs; where our aim is to establish the 
presence of a vMMN and its sensitivity to condition effects). In contrast, the individual 
differences analyses focus on ERP difference waves, which were derived by subtracting the ERP 
elicited by standard stimuli from the ERP elicited by deviant stimuli. For the simple task 
conditions, these difference ERPs were calculated based on standard and deviant stimuli with the 
same color and from the same position in the stimulus pair (1st vs. 2nd stimulus), resulting in a 
‘red/1st’ difference ERPs (i.e., red deviants minus red standards from the first position in the 
stimulus pairs), as well as ‘red/2nd’, ‘green/1st’, and ‘green/2nd’ difference ERPs. In the rule 
condition, we calculated one difference ERP for red deviants relative to red standards and one 
difference ERP for green deviants relative to green standards (all of which calculated from the 
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respective second stimuli in a pair). This process resulted in a total of six ERP difference waves 
that served as basis to identify the vMMNs.  
 
ERP Measurement Strategy 
For each subject-specific trial-averaged ERP and the ERP difference wave (vMMN), we used 
ERPLAB algorithms to calculate the signed integral area amplitudes and the 50% fractional area 
latencies (Luck, 2014) in the period from 100-400 ms post-stimulus, at the nine posterior 
electrodes (P3, Pz, P4, PO3, POz, PO4, O1, Oz, O2) where vMMN effects were previously 
observed by Stefanics and colleagues (2011) in a similar paradigm. Because the vMMN is 
defined as a relative negativity, the amplitude results reported below reflect the area of the 
negative deflections subtracted from any positive values, and similarly, fractional area latencies 
were calculated for negative deflections only. 
 
To further clarify the optimal measurement parameters of these effects, and particularly in 
regards to their sensitivity towards individual differences, we additionally conducted a parallel 
analysis approach. Here, we first applied the surface Laplacian transform via the CSD toolbox 
(Kayser & Tenke, 2006; http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox/) to 
the data and calculated amplitude and latency measurements afterwards. The Laplacian 
transform provides a reference-free estimate of the activity at the dura at each electrode, which is 
suggested to improve the spatial specificity of the obtained ERP effects (Kayser & Tenke, 2015). 
In the following (and in all Figures/Tables) we will refer to the former approach (described 
above) as ‘Scalp-Average Referenced’ and to the latter as ‘Laplacian-Transformed’.  
 
Amplitudes and latency values were then averaged over all participants and conditions to obtain 
a sample-specific grand-average difference wave, as a basis to reliably identify the time-window 
in which vMMN occurs in our sample. As depicted in Fig. 2 (lower panels), there is a clear 
negative maximum at electrodes POz and Oz between 125 and 275 ms post-stimulus, which was 
therefore defined as the time-window of interest for the calculation of signed area amplitudes and 
50% fractional area latencies in the parallel analysis approach based on the Laplacian-
transformed data.  
 
Last, given prior research indicating a relationship between intelligence and neural variability 
(Euler et al., 2015; Hilger et al., 2020a), we also sought to explore potential effects of trial-to-
trial amplitude variation, as a post-hoc analysis, on the average-referenced data only. To this end, 
we calculated the standard error of the mean (SEM) across the cleaned, unfiltered trials for each 
of the twelve epoch types. These analyses focused on the twelve epoch types (sub-conditions) by 
necessity, because calculating the SEM requires single trial data and thus cannot be obtained 
from the epoch type-specific average ERPs or their resulting difference waves. As above, we 
focused on the integral of the SEM, from 100-400 ms post-stimulus, relative to the 100 ms 
prestimulus baseline, in the nine electrodes of a priori interest.  
 
Data Analyses 
Primary data analyses were conducted in SPSS version 25. We performed two sets of analyses 
with the goal of (1) verifying whether the experimental manipulation was successful in eliciting a 
vMMN in all conditions (i.e., simple and rule), and (2) assessing whether vMMN amplitudes or 
latencies correlate with individual differences in intelligence.  
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Effects of Stimulus Condition 
For the first set of analyses we sought to replicate Stefanics et al. (2011) as closely as possible.
Hence, following their approach, we collapsed over red and green stimuli and conducted two
repeated-measures ANOVAs, with four factors (Stimulus Deviance: standard vs. deviant;
Stimulus Position: first vs. second; Anteriority: parietal, parieto-occipital, occipital; and
Hemisphere: left, midline, right; factorial design: 2 x 2 x 3 x 3) to examine the effects of
experimental manipulations on ERP amplitudes and latencies. For the rule condition, all ERPs
had been calculated on 2nd- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Group-averaged ERP difference waves (MMNs) for scalp-averaged-referenced and Laplacian-transformed
data. Top: Group-averaged, scalp average-referenced differences waves and peak activity, over all participants and
conditions. Bottom: analogous plots for the Laplacian-transformed data. A, Different channels are illustrated in
different (randomly selected) colors. Dashed black lines indicate measurement windows for each measurement
approach, blue dotted lines indicate peak ERP difference waves (vMMN) latencies depicted in the scalp maps at
right. B, Scalp maps. Stars highlight the electrodes where the vMMN effects became most visible in our sample and
did thus serve as bases for all individual-difference analysis (see Methods section for further details). Note that units
and measurement scales differ: scalp- referenced data are in µV and Laplacian-transformed data are in µV/cm2.   
 
 
position stimuli (see above), resulting in 2 x 3 x 3 ANOVAs (Deviance x Hemisphere x
Anteriority) for both amplitudes and latencies. The Greenhouse-Geisser correction was applied
for all tests containing three or more factors (Luck, 2014), and the Bonferroni correction was
applied to control for multiple comparisons when resolving main effects. Of note, we observed
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that in small number of instances the trial-averaged ERP (within-subject analyses) or difference 
wave (individual difference analyses) was exclusively within the positive range in the respective 
time-window of interest. In these cases, the integral area amplitude takes a positive value, but the 
fractional area latency measure was not defined at all. Thus, the analyses of within-subjects 
effects (ANOVAs) included all N = 50 participants in respect to vMMN amplitudes, while 
within-subjects analyses conducted on latency measures relied on only N = 48 participants in the 
basic condition and on N = 47 participants in the rule condition after excluding those with 
positive difference waves.  
 
 
Individual Difference Analysis  
For individual difference analyses, we maintained the distinction between red and green stimuli 
and examined partial correlations (corrected for age and sex) between RAPM scores and 
amplitudes/latency measures of each of the six ERP difference waves (vMMNs). To reduce the 
number of statistical comparisons, we decided a priori to average over activity at the same nine 
electrodes as included in the within-subject analyses. As noted above, we implemented also a 
second analysis strategy to gain an additional, reference-free estimate of neural activity with 
higher spatial specificity, i.e., based on the Laplacian transformed data. Also here, we calculated 
partial correlations with RAPM scores based on these current source density estimates (averaged 
across electrodes POz and Oz) controlling for effects of age and sex. Thus, for each of the two 
analysis approaches (and the corresponding time-electrode-window schemes), we obtained one 
amplitude and one latency measures from each of the six ERP difference waves for the 
individual difference (correlation) analyses (red and green in 1st and 2nd position for the simple 
conditions, and red and green for rule). When applying Bonferroni correction also in respect to 
the six experimental conditions, the corrected p-value would be .008. Tables 3 and 4 list 
uncorrected p-values.  
 
A final methodological consideration concerns the individual difference analyses of the ERP 
latencies. As the calculation of the 50%-fractional area latency measure resulted in missing 
values in some cases (see above), the respective latency measures could not simply be averaged 
across electrodes (as it has been done for the amplitude measure; see Schafer & Graham, 2002). 
Thus, we conducted ‘multiple imputation’, which is well-established principled method for 
dealing with missing data (Graham, 2009). In brief, the process involves replacing each missing 
value with a simulated value, which is obtained via a random draw from a predicted distribution 
of the respective variable (for details see Schafer & Graham, 2002). This process is performed 
multiple times, resulting in a set of complete datasets each containing simulated copies of the 
missing values. Of note, these datasets were generated in a ways that the distributional properties 
of the variable were preserved. Each imputed dataset is then analyzed with conventional statistics 
(here partial correlations between RAPM score and latency value controlling for age and sex), 
and the resulting parameter estimates (partial correlations, r) are pooled arithmetically over all 
imputed datasets (Sinharay et al, 2001). Following the guidelines reported in Sinharay et al.  
(2001), we generated five imputed datasets. As the pooled (averaged across all imputed data sets) 
partial correlation coefficients were aggregated through Fisher-Z-transform, we could not report 
conventional p-values in these cases.  
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To quantify the evidence also in favor of the null hypothesis (i.e., absence of an association
between intelligence and ERP difference waves measures) Bayes Factors (BF01, Jeffreys, 1998;
Wagenmakers, 2007; Wetzels & Wagenmakers, 2012) and 95% credibility intervals (CIs) were
calculated for all associations of primary interest (associations between intelligence and ERP
difference waves measures). We used the Bayesian test for correlated pairs (Jeffreys, 1961) and
the default prior (stretched beta distribution of width 1, also termed Jeffrey prior) as
implemented in JASP version 0.11.1 (Love et al., 2015). To approximate pooled partial
correlations (controlled for age and sex), we based this analyses on residual intelligence scores,
i.e., any variance due to age and sex was regressed from RAPM sum scores prior to computation
of Bayesian correlations. 
 
Data and Code Availability 

All analysis code used in the current study has been deposited on GitHub
at https://github.com/KirstenHilger/IQ_Coding. The raw study data can be accessed from the
authors upon request. 
 
 
Results 
 
Descriptive statistics for reaction times, accuracies, and RAPM performance are listed in Table 1
Participants were highly accurate in performing the target detection task (M = 97% correct; SD =
0.07), and the sample mean was near the 50th percentile for RAPM performance relative to
German norms for ages 25-29 (Raven & Court, 1998). Descriptive statistics for ERP amplitudes
and latencies are presented in Table 2. In terms of numerical effects (i.e., prior to conducting
inferential statistics), examination of the relevant means in the simple conditions suggest that
amplitudes were larger (more negative-going) and latencies were faster in response to second-
position stimuli relative to first-position stimuli, and in response to deviant stimuli relative to
standard stimuli. No clear differences were evident for amplitudes or latencies in the rule
condition.  
 
Table 2 
Descriptive statistics for group-averaged ERP amplitudes and latencies 
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Note: Amplitude and latency values are reported for electrode POz. Amplitudes reflect the integral of the waveform 
from 100-400 ms, in µV*ms, where negative voltages have been subtracted from positive voltages. Latencies are in 
milliseconds. Simple = values averaged across red/green stimuli in both simple conditions. Rule = rule condition. N 
= 50 subjects were used for the calculation of amplitude measures, † N = 48 for latency measures in the simple 
condition, and ‡ N = 47 for latency measures in the rule condition. See Methods section for further details.  
 
Third, the interactions of Deviance and Hemisphere and Deviance and Anteriority (see 
Supplementary Table S1) indicate that, consistent with the key assumption of MMN research, 
deviant stimuli elicited larger ERP amplitudes than standards at all levels of Hemisphere (all p-
values > .001) and at all levels of Anteriority (all p-values > .001). When the effects of stimulus 
Deviance were considered with respect to their spatial dimensions, they also suggest a maximum 
near POz (Supplementary Fig. S2). Specifically, amplitudes were consistently larger at the 
midline than in the left or right hemisphere for both deviant and standard stimuli (all p-values 
< .001), while amplitudes over left and right hemispheres did not differ from each other (all p-
values ≥ .639); and likewise, deviant stimuli elicited greater amplitudes at parieto-occipital than 
either parietal (p = .041) or occipital sites (p = .016), which did not themselves differ from each 
other (p > .999). This difference was not observed for standard stimuli, however, where 
amplitudes were larger at POz than Oz (p = .010), but not Pz (p = .327), and similarly, Pz and Oz 
did not differ from one another (p = .999). For the sake of interest, Supplementary Table S1 
contains a full statistical analysis of all possible interactions. 
 
ERP Amplitudes – Rule Condition 
In the rule condition, we examined the effects of stimulus Deviance, Hemisphere, and 
Anteriority, and their respective interactions. Only the main effects of Anteriority (F(1.285, 
62.985) = 7.608, p  = .004 , partial η2 = .134), Hemisphere (F(1.576, 77.217) = 38.754, p  < .001 , 
partial η2 = .442), and their interaction reached statistical significance (F(2.997, 146.872) = 6.861, 
p  < .001 , partial η2 = .123). Thus, the experimental manipulation in the rule condition did not 
elicit a clear vMMN, i.e., there was no significant difference in group-averaged amplitudes 
between deviant and standard stimuli (F(1,49) = .232, p  = .632, partial η2 = .005). Also here 
(similarly as with the pooled simple stimuli, see above), the significant interaction reflected the 
spatial specificity of the ERPs, such that amplitudes were largest near POz (moving both right to 
left and anterior to posterior), with particularly pronounced differences between POz (midline) 
and PO3/PO4 (left/right) and relative to analogous contrasts at parietal or occipital sites. 
Supplementary Table S2 lists the full range of statistics. 
 
In summary, ERP amplitude results for the simple conditions were consistent with previous 
research indicating larger ERPs in response to deviant versus standard stimuli, and following the 
second versus the first stimuli of a pair. Although stimulus Position and Deviance did not interact, 
they showed similar spatial effects, with each being most pronounced near the midline parieto-
occipital electrode POz. In contrast to a previous study using the same paradigm (Stefanics et al., 
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2011), in our sample the rule condition deviant stimuli did not elicited larger amplitudes than 
standard stimuli. 

 
ERP Latencies – Simple Conditions  
In the four-way ANOVA examining the effects of Stimulus Position, Deviance, Anteriority, and 
Hemisphere on ERP latencies, the main effects of Position (F(1, 47) = 67.577, p < .001, partial 
η

2 = .590), Deviance (F(1, 47) = 16.443, p < .001, partial η2 = .259), and Hemisphere (F(1.668, 
78.375) = 12.693, p < .001 , partial η2 = .213) reached statistical significance, as well as the two-
way interactions of Position and Deviance (F(1,47) = 6.515, p = .014, partial η2 = .122), Position 
and Hemisphere (F(1.903, 89.432) = 5.429, p = .007, partial η2 = .104), and Anteriority by 
Hemisphere (F(2.749, 129.195) =3.853 , p = .013, partial η2 = .076). All three- and four-way 
interactions were not significant (see also Supplementary Table S3).  
 
More detailed simple main effect tests on the latencies indicated first that ERP latencies were 
consistently earlier for second- vs. first-position stimuli (all p < .001). This pattern was found 
across all two-way interactions such that the various interactions moderated this effect. Second, 
as indicated by the interaction of Position by Hemisphere, latencies were consistently earlier at 
midline relative to left or right hemisphere electrodes (all p ≤ .05), which did not differ from 
each other (all p > .999); though this effect was greater for first relative to second-position 
stimuli. Last, in respect to the interaction between Hemisphere and Anteriority, we observed that 
latencies were shorter at midline relative to right and left hemisphere sites (all p ≤ . 013), that 
right and left sites did not differ from each other (all p > . 999), and that this difference was 
especially pronounced between midline and right parietal and parieto-occipital sites (see 
Supplementary Fig. S3). A full list of statistics is presented in Supplementary Table S3.  
 
ERP Latencies – Rule Condition  
Finally, in the ANOVA examining the effects of Deviance, Anteriority, and Hemisphere on 
latencies in the rule condition, only the main effect of Hemisphere (F(1.667, 76.693) = 6.664, p 
= .004, partial η2 = .127), and the three-way interaction were significant (F(3.507, 161.332) = 
2.997, p = .025, partial η2 = .061). The full list of statistics is presented in Supplementary Table 
S4. 
 
In summary, analyses of ERP latencies from the simple conditions indicated that, consistent with 
previous research, latencies tended to be faster to deviant than to standard stimuli, to second- 
relative to first position stimuli, and to midline relative to peripheral electrodes. The latter 
became most visible at parieto-occipital sites i.e., especially at POz (see Supplementary Fig. S4). 
In contrast to previous research using the same paradigm (Stefanics et all., 2011), in our sample 
the rule condition latencies were not faster to deviant than to standard stimuli.   
 
Individual Differences Analyses 
 
Visual Mismatch Negativity and Individual Differences in Intelligence 
In respect to our main question of interest, i.e., whether intelligence is associated with neural 
indicators of simple visual discrimination processes (i.e., the vMMN), we observed no 
significant associations between vMMN amplitudes and the RAPM scores, neither in the scalp-
referenced data, nor in the Laplacian-transformed data (Table 3). As nearly all Bayes Factors 
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(BF01) were > 3 (only BF01 for rule red MMN was 2.55), our results provide substantial evidence 
for the null hypothesis, i.e., absence of association between intelligence and MMN amplitudes 
(interpretation of BF in accordance with Jeffreys, 1961). As an example, the BF01 of 5.57 for the 
association between intelligence and the vMMN amplitude for red first-position stimuli (Table 3) 
indicates that the null hypothesis is ~ 6 times more likely than the alternative hypothesis (i.e., 
presence of a correlation). Also, all 95% credibility intervals included zero, which further 
supports the absence of any association. For the sake of completeness, partial correlations 
between vMMN amplitudes of different conditions are provided in Supplementary Table S5. 
 
Table 3  
Partial correlations, Bayes Factors, and 95% credibility intervals for associations between intelligence and vMMN 
amplitudes 

Scalp-Referenced 

Statistic  red/1st green/1st red/2nd green/2nd rule red rule green 

Partial r  0.03 -0.15 0.11 0.00 0.19 -0.16 
BF01  5.57 3.48 4.41 5.67 2.55 3.21 
CI  [-.25, .30] [-.40, .14] [-.18, .36] [-.27, .27] [-.10, .43] [-.41, .13] 

Laplacian-Transformed 

Partial r  -0.12  0.10  0.08    -0.01    0.11     -0.16    
BF01  4.18 4.47 4.94 5.67 4.36 3.22 
CI   [-.37, .17]  [-.18, .36]  [-.20, .34]  [-.28, .26]  [-.17, .36]  [-.41, .13] 
 
Note: Partial r = pooled partial correlation coefficients controlling for variance due to age and sex. Red/1st = ERP 
difference wave calculated from red deviants minus red standards from the first position in the stimulus pairs, 
red/2nd, green/1st, and green/2nd respectively. Correlations that reach significance in the imputed datasets are marked 
with an asterisk (* = p < .05; uncorrected for six experimental conditions). Bayes Factors (BF01) in favor of the null 
hypothesis (i.e., absence of correlation) and 95% credibility Intervals (CI) are depicted for associations with RAPM 
scores.  
 
 
With respect to the latencies, there emerged one single significant correlation, i.e., between 
intelligence and the vMMN elicited by green stimuli in the rule condition (r(46) = -.29, p ≤ .046, 
across five imputed datasets. However, significance only holds when not correcting for multiple 
tests, i.e., for more than one experimental condition, see Table 4). No other significant 
association was observed. Also here, most Bayes Factors were > 3, and all credibility intervals 
included zero. Even in the above-mentioned case, in which the p-value indicated statistical 
significance (rule green MMN), the BF01 of 1.98 demonstrates that the null hypothesis (absence 
of an association) is about two times more likely than the alternative hypothesis (presence of an 
association) and the 95% credibility interval included zero. Partial correlations between vMMN 
latencies of different conditions are provided in Supplementary Table S6.  
 
To gain more comprehensive insights into the processes eliciting the vMMN, we also tested for 
potential associations between vMMN amplitudes/latencies and reaction times. We found no 
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significant associations for the amplitudes neither for the scalp-average-referenced nor the 
Laplacian-transformed data. For the latencies, only one single significant relation emerged, i.e., 
between RTs and red stimuli in the first position of the simple conditions in the scalp-referenced 
data (r(46) = .32, p = .025, in each of the five imputed sets, uncorrected for multiple 
experimental conditions). However, as no other associations between vMMN latencies and RT 
were observed, most of the data does not support an association between RTs and vMMNs. 
Respective statistics are listed in Supplementary Table S7 and S8.  
 
 
 
Table 4  
Pooled partial correlations, Bayes Factors, and 95% credibility intervals for associations between intelligence and 
vMMN latencies 

Scalp-Referenced 

Statistic  red/1st green/1st red/2nd green/2nd rule red rule green 

Partial r  0.07 -0.15 0.07 -0.09 0.14 -0.29* 

BF01  5.17 3.32 5.15 4.55 3.45 1.98 
CI  [-.21, .33] [-.36, .19] [-.20, .31] [-.36, .19] [-.15, .41] [-.47, .08] 

Laplacian-Transformed 
Partial r  0.18 0.19 0.15 0.01 0.00 -0.03 

BF01  2.59 2.19 3.33 5.53 5.67 5.50 
CI  [-.10, .43] [-.08, .45] [-.14, .41] [-.25, .29] [-.28, .28] [-.29, .28] 
 
Note: Partial r = pooled partial correlation coefficients controlling for variance due to age and sex. Red/1st = ERP 
difference wave calculated from red deviants minus red standards from the first position in the stimulus pairs, 
red/2nd, green/1st, and green/2nd respectively. Correlations that reach significance in the imputed datasets are marked 
with an asterisk (* = p < .05; uncorrected for six experimental conditions). Bayes Factors (BF01) in favor of the null 
hypothesis (i.e., absence of correlation) and 95% credibility Intervals (CI) are depicted for associations with RAPM 
scores.  
 
 
Post-Hoc Analysis: Neural Variability 
Finally, as an exploratory post-hoc analysis, we tested whether individual differences in 
intelligence are associated with the trial-to-trial variability of ERP amplitudes. Pearson partial 
correlations (controlled for variance due to age and sex) were computed for all twelve sub-
conditions (epoch types) using the scalp-referenced data. As noted in the Methods section, these 
analyses focused on the standard error of the mean (SEM) obtained prior to calculating the 
primary ERPs. As shown in Supplementary Table 9, this analysis revealed no significant 
relationships between SEM amplitude variability in the ERPs and intelligence (all p-values 
> .326).  
 
 
Discussion 
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To the best of our knowledge, this is the first study to systematically test for a relation between 
intelligence and the MMN as an index of basic, pre-attentive automatic discrimination processes 
in the visual domain. Using a paradigm that has previously been shown to elicit a vMMN 
(Stefanics et al., 2011), we first aimed to replicate within-subject effects elicited by the 
experimental manipulation. Then, we tested for associations between individual differences in 
intelligence and vMMN amplitude and latencies. However, no significant effects were observed. 
Our results, therefore, question the association between general cognitive ability and neural 
indicators of automatic sensory discrimination processes in the visual modality.  
 
The within-subject effects of stimulus position, perceptual deviance, and scalp location, in 
addition to violations of more abstract, rule-based expectations were examined first. For the 
more basic perceptual manipulation (simple condition), our results replicate previous findings for 
ERP amplitudes. Specifically, we observed a clear vMMN that was maximal near parietal-
occipital, midline electrodes (Fig. 2), and larger (more negative) amplitudes in response to 
deviant and 2nd-position stimuli, relative to standard stimuli or those presented 1st in a pair. 
Although the rule condition also elicited an ERP with the expected parieto-occipital topography, 
there were no amplitude effects related to stimulus deviance. Analyses of vMMN latencies 
revealed that, in the simple condition, neural activity peaked more rapidly in response to 2nd 
versus 1st-position stimuli, and was also faster for deviants relative to standards. Also here, the 
spatial effects were centered near POz. For the rule condition, we observed a three-way 
interaction of Deviance, Anteriority, and Hemisphere where activity again peaked fastest near 
POz, with the precise spatial pattern varying between the deviant and standard conditions.  
 
In the individual differences analyses probing for relations between intelligence and vMMN 
amplitudes or latencies, we compared two different referencing schemes—the scalp-average 
reference and current source density via the Laplacian transform. For the scalp-referenced data, 
we relied on an a priori measurement window and set of electrodes, whereas, for the Laplacian-
transformed data, measurement parameters were optimized to the current sample in a data-driven 
approach. As expected, the Laplacian transform revealed a more focal pattern of neural activity, 
which also peaked earlier than in the scalp-referenced data (based on the grand-average). 
Notwithstanding, both analyses approaches revealed no significant relationships between vMMN 
amplitudes and performance on the RAPM. Correlation analyses of vMMN latencies were 
likewise non-significant, with the sole exception of an inverse relation between vMMN latency 
in the rule condition (green stimuli, scalp-referenced data). Nevertheless, for both latencies and 
amplitudes, all credibility intervals contained zero, and Bayes Factors ranged from ~2 to 6. As 
such, and taking into account the overall number of comparisons being investigated, we conclude 
that there is moderate to substantial evidence against a relationship between intelligence and 
vMMN amplitude or latencies in the present dataset.  
 
The current findings contrast with studies reporting correlations between intelligence and the 
MMN in the auditory domain. Although results for individual studies are mixed, the overarching 
picture suggests larger MMN amplitudes (Sculthorpe et al., 2009; Troche et al., 2009, 2010), 
faster MMN latencies (e.g., Bazana & Stelmack, 2002; Beauchamp & Stelmack, 2006), or both 
(De Pascalis & Varriale, 2012; De Pascalis et al., 2014; Houlihan & Stelmack, 2012), in higher 
ability participants. One single study examined also the relation between intelligence and a 
version of the vMMN. That study, however, focused on socio-emotional rather than on automatic 
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perceptual processes. Specifically, the authors examined the vMMN in response to perceptually 
complex stimuli of neutral versus happy or sad facial expressions and observed larger MMN 
amplitudes in higher ability participants (Liu et al., 2015).  
 
Plausible explanations for the discrepancy between the current results and previous studies 
include differences in measurement approaches (e.g., peak amplitudes and latencies vs. signed 
area amplitudes fractional area latencies), differences in specific task features, as well as broader 
considerations pertaining to different demands between the visual and auditory modalities. For 
example, although the current paradigm attempts to control participants’ attention via the 
manipulation of fixation cross length, the effectiveness of this manipulation is somewhat unclear. 
In visual MMN paradigms both the attended and unattended stimuli are presented in the same 
modality. In contrast, in auditory MMN paradigms, participants’ attention is most often kept by 
tasks in a different domain such as vision (e.g., by reading or watching a silent video). As vision 
is humans’ dominant modality, efforts to control attentional might be more effective in this latter 
case. A related consideration concerns potential differences in the degree to which the two 
modalities may admit of individual differences in early perceptual processing. For example, it 
has been argued that auditory signals present an especially complex information processing 
challenge, due to their inherent transience, and the frequent need to distinguish multiple objects 
from within a single, multi-layered input (Fitzgerald & Todd, 2020). Insofar as the two sensory 
modalities evolved to cope with different features of the environment, it is interesting to consider 
whether anatomical or physiological differences between early auditory and early visual 
pathways may affect the degree to which each admits of individual differences in their response 
properties. If so, this may in turn affect their potential for relations with intelligence. Similar 
considerations may also help to explain the discrepancy between our study that manipulated the 
colors and presented order of arrays of circles, versus that of Liu et al. (2015), which elicited the 
vMMN in response to emotional faces, i.e., to rather complex and highly socially-salient stimuli.  
 
The present study also has several limitations which need to be considered. First, our sample size 
was comparatively small for analyses of individual differences in general (Yarkoni & Braver, 
2010; Gignac, & Szodorai, 2016). Although our sample size was sufficient to detect medium to 
large effects (i.e., correlations > .35, see Methods) with 80% statistical power, we of course 
cannot exclude the possibility that we were simply unable to detect it. However, the present 
data—which tested associations for both amplitudes and latencies, across six ERP difference 
waves and two referencing schemes—suggests that any relationship, if it exists, is apt to be 
rather small, i.e., smaller as one would expect based on the previous literature on intelligence and 
auditory MMN. Replication studies using larger sample sizes are therefore essentially required. 
If those could confirm a null or very small association between basic pre-attentive visual 
processes and intelligence, this would be consistent with the hypothesis that correlations between 
intelligence and ERP features are expected to be smaller for less complex tasks and “lower-level” 
processes than for more complex “higher-level” cognitive functions (Euler & Schubert, 2021; 
Euler, 2018). Thus, future studies that examine relations between intelligence and the vMMN 
would likely benefit from implementing a broader range of different task complexities. 
Respective studies could test for potential interactions between task complexity and stimulus 
modality and thus shed new light onto the conditions under which associations between vMMN 
and intelligence emerge.  
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A second limitation concerns the choice to examine correlations of intelligence with ERP 
difference waves, rather than their constituent ERPs. Several recent papers have re-focused 
attention on psychometric problems associated with using difference scores in individual 
differences research (e.g., Hedge et al., 2018), including in ERP studies per se (Meyer et al.,  
2020). Although this appears not to have hindered most auditory MMN studies, given the 
variable and often low correlations between the difference waves themselves in the current data 
(Supplementary Tables S5-S6), this is a worthwhile possibility to investigate in future research. 
Finally, it has also been recently argued that EEG and ERP studies may be more apt to observe 
relations with intelligence when all variables are modelled as latent factors, and at comparable 
levels of psychological and physiological aggregation (Euler & Schubert, 2021; Schubert et al., 
2017, 2021). While limitations of the present data preclude a more complex modelling approach 
along these lines, this represents another promising direction for future work.  

 
In summary, this is, to the best of our knowledge, the first study testing for a relationship 
between intelligence and a basic perceptual manipulation of the MMN in the visual modality. 
Using a previously-validated paradigm, our results replicated prior experimental effects 
concerning the sensitivity of neural responses to deviant and second-position stimuli, albeit not 
to the violation of a more abstract, rule-based stimulus pattern. Most importantly, no associations 
between intelligence and vMMN amplitudes or latencies were observed, and Bayesian analyses 
indicated moderate to substantial evidence against any relationship. Future studies in this area 
will benefit from larger sample sizes, and by systematically exploring effects of task complexity 
and modality on relations between the MMN and intelligence.  
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