

1

2

## 3 The Injured Sciatic Nerve Atlas (iSNAT), Insights into the Cellular and 4 Molecular Basis of Neural Tissue Degeneration and Regeneration

5

6 Xiao-Feng Zhao<sup>1\*</sup>, Lucas D. Huffman<sup>1,2\*</sup>, Hannah Hafner<sup>1\*</sup>, Mitre Athaiya<sup>1,2</sup>, Matthew Finneran<sup>1,2</sup>, Ashley L.  
7 Kalinski<sup>1</sup>, Rafi Kohen<sup>1,2</sup>, Corey Flynn<sup>1</sup>, Ryan Passino<sup>1</sup>, Craig Johnson<sup>1</sup>, David Kohrman<sup>3</sup>, Riki Kawaguchi<sup>8</sup>,  
8 Lynda Yang<sup>5</sup>, Jeff Twiss<sup>6</sup>, Daniel H. Geschwind<sup>9,10,11</sup>, Gabriel Corfas<sup>2,3,7</sup>, and Roman J. Giger<sup>1,2,7,#</sup>

9

10 <sup>1</sup>Department of Cell and Developmental Biology, <sup>2</sup>Neuroscience Graduate Program, <sup>3</sup>Kresge Hearing Institute,  
11 <sup>5</sup>Department of Neurosurgery, <sup>7</sup>Department of Neurology University of Michigan Medical School, Ann Arbor, MI  
12 48109-2200. <sup>6</sup>Department of Biological Sciences, University of South Carolina, South Carolina,  
13 USA. <sup>8</sup>Departments of Psychiatry and Neurology, University of California, Los Angeles, Los Angeles, CA  
14 90095, <sup>9</sup>Department of Neurology, Movement Disorders Program and Program in Neurogenetics, David Geffen  
15 School of Medicine, University of California, Los Angeles, CA 90095, USA; <sup>10</sup>Department of Human Genetics,  
16 David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA;  
17 <sup>11</sup>Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA.

18

\*

19 These authors contributed equally to the study

20

21 # Corresponding author:

22 Roman J. Giger,  
23 University of Michigan School of Medicine  
24 109 Zina Pitcher  
25 Ann Arbor, MI 48109  
26 E-mail: [rgiger@umich.edu](mailto:rgiger@umich.edu)

27

28

29

30

31

32

33

34

35

36

37

## Abstract

38 Upon trauma, the adult murine PNS displays a remarkable degree of spontaneous anatomical and functional  
39 regeneration. To explore extrinsic mechanisms of neural repair, we carried out single cell analysis of naïve  
40 mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1-day, 3-days, and 7-  
41 days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the  
42 injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac in the injured nerve  
43 show high glycolytic flux compared to Mo/Mac in blood and dominate the early injury response. They  
44 subsequently give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve  
45 crush injury causes partial leakiness of the blood-nerve-barrier, proliferation of endoneurial and perineurial  
46 stromal cells, and accumulation of select serum proteins. Micro-dissection of the nerve injury site and distal  
47 nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by  
48 mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently  
49 confirmed with *Sarm1*<sup>-/-</sup> mice, where Wallerian degeneration is greatly delayed. Experiments with chimeric  
50 mice showed that wildtype immune cells readily enter the injury site in *Sarm1*<sup>-/-</sup> mice, but are sparse in the  
51 distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured  
52 PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new  
53 resource for nerve regeneration, reveals location specific immune microenvironments, and reports on large  
54 intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured  
55 sciatic nerve atlas (iSNAT): [https://cdb-rshiny.med.umich.edu/Giger\\_iSNAT/](https://cdb-rshiny.med.umich.edu/Giger_iSNAT/)

56

## 57 Introduction

58 Axonal injury caused by trauma or metabolic imbalances triggers a biochemical program that results in axon  
59 self-destruction, a process known as Wallerian degeneration (WD). In the peripheral nervous system (PNS),  
60 WD is associated with nerve fiber disintegration, accumulation of myelin ovoids, reprogramming of Schwann  
61 cells (SC) into repair (r)SC, and massive nerve inflammation. Fragmented axons and myelin ovoids are rapidly  
62 cleared by rSC and professional phagocytes, including neutrophils and macrophages (Mac) (Jang et al., 2016;  
63 Klein and Martini, 2016; Perry and Brown, 1992; Rotshenker, 2011). In the mammalian PNS, timely clearance  
64 of fiber debris during WD stands in stark contrast to the central nervous system (CNS), where upon injury,  
65 clearance of degenerated axons and myelin is protracted and accompanied by prolonged inflammation  
66 (Bastien and Lacroix, 2014; Vargas and Barres, 2007).

67 Successful PNS regeneration depends upon the coordinated action and communication among diverse  
68 cell types, including fibroblast-like structural cells, vascular cells, SC, and different types of immune cells  
69 (Cattin et al., 2015; Chen et al., 2021; Girouard et al., 2018; Pan et al., 2020; Stratton et al., 2018). Nerve  
70 trauma not only results in fiber transection, but also causes necrotic cell death and release of intracellular  
71 content at the site of nerve injury. Depending on severity, physical nerve trauma results in vasculature  
72 damage, endoneurial bleeding, breakdown of the blood-nerve-barrier (BNB), and tissue hypoxia (Cattin et al.,  
73 2015; Rotshenker, 2011). Distal to the injury site, where mechanical damage is not directly experienced,  
74 severed axons undergo WD. The vast majority of immune cells in the injured PNS are blood-borne myeloid  
75 cells, including neutrophils, monocytes (Mo), and Mac (Kalinski et al., 2020; Ydens et al., 2020). Entry into the  
76 injured nerve causes rapid activation and acquisition of specific phenotypes. A comparative analysis between  
77 circulating immune cells in peripheral blood, and their descends in the injured nerve, however, has not yet  
78 been carried out.

79 It is well established that the immune system plays a key role in the tissue repair response (Bouchery  
80 and Harris, 2019). Following PNS injury, the complement system (Ramaglia et al., 2007) and Natural killer cells  
81 (NK) promote WD of damaged axons (Davies et al., 2019). Mac and neutrophils phagocytose nerve debris,  
82 including degenerating myelin and axon remnants (Chen et al., 2015; Kuhlmann et al., 2002; Lindborg et al.,  
83 2017; Rosenberg et al., 2012). Mac protect the injured tissue from secondary necrosis by clearing apoptotic  
84 cells through phagocytosis, a process called efferocytosis (Boada-Romero et al., 2020; Greenlee-Wacker,  
85 2016; Lantz et al., 2020). In the injured sciatic nerve, efferocytosis readily takes place and is associated with  
86 inflammation resolution (Kalinski et al., 2020). The highly dynamic nature of intercellular communications,  
87 coupled with spatial differences in the nerve microenvironment, make it difficult to untangle the immune  
88 response to nerve trauma from the immune response to WD. While previous studies have employed single-cell  
89 RNA sequencing (scRNASeq) to describe naïve or injured PNS tissue (Carr et al., 2019; Kalinski et al., 2020;  
90 Wang et al., 2020; Wolbert et al., 2020; Ydens et al., 2020), a longitudinal study to investigate transcriptomic  
91 changes and cell-cell communication networks, has not yet been carried out. Moreover, a comparative  
92 analysis of cell types and transcriptional states at the nerve injury site versus the distal nerve, does not yet  
93 exist.

94 To better understand cellular functions, immune cell trafficking, and intercellular communication, we  
95 carried out a longitudinal study using scRNAseq and validated gene expression data by flow cytometry, ELISA,  
96 *in situ* hybridization, and immunofluorescence labeling of nerve sections. Peripheral blood mononuclear cells  
97 from naïve mice were analyzed by scRNAseq to identify leukocytes that enter the nerve upon injury and to  
98 assess their metabolic profile. To distinguish between the immune response to nerve trauma and WD, we  
99 employed *Sarm1* null (*Sarm1*<sup>-/-</sup>) mice in which WD is greatly delayed (Osterloh et al., 2012). We show that in  
100 injured *Sarm1*<sup>-/-</sup> mice blood-borne Mac rapidly accumulate at the nerve crush site. However, in the absence of  
101 WD, inflammation in the distal nerve is greatly reduced. While monocytes are found in the distal nerve of  
102 *Sarm1*<sup>-/-</sup> mice at 7days following injury, they fail to mature into Mac. In sum, we report temporal changes in the  
103 cellular and metabolic landscape of the injured mammalian PNS, identify spatially distinct, yet overlapping  
104 immune responses to nerve wounding and WD, and provide insights into WD elicited nerve inflammation.  
105

106

## Results

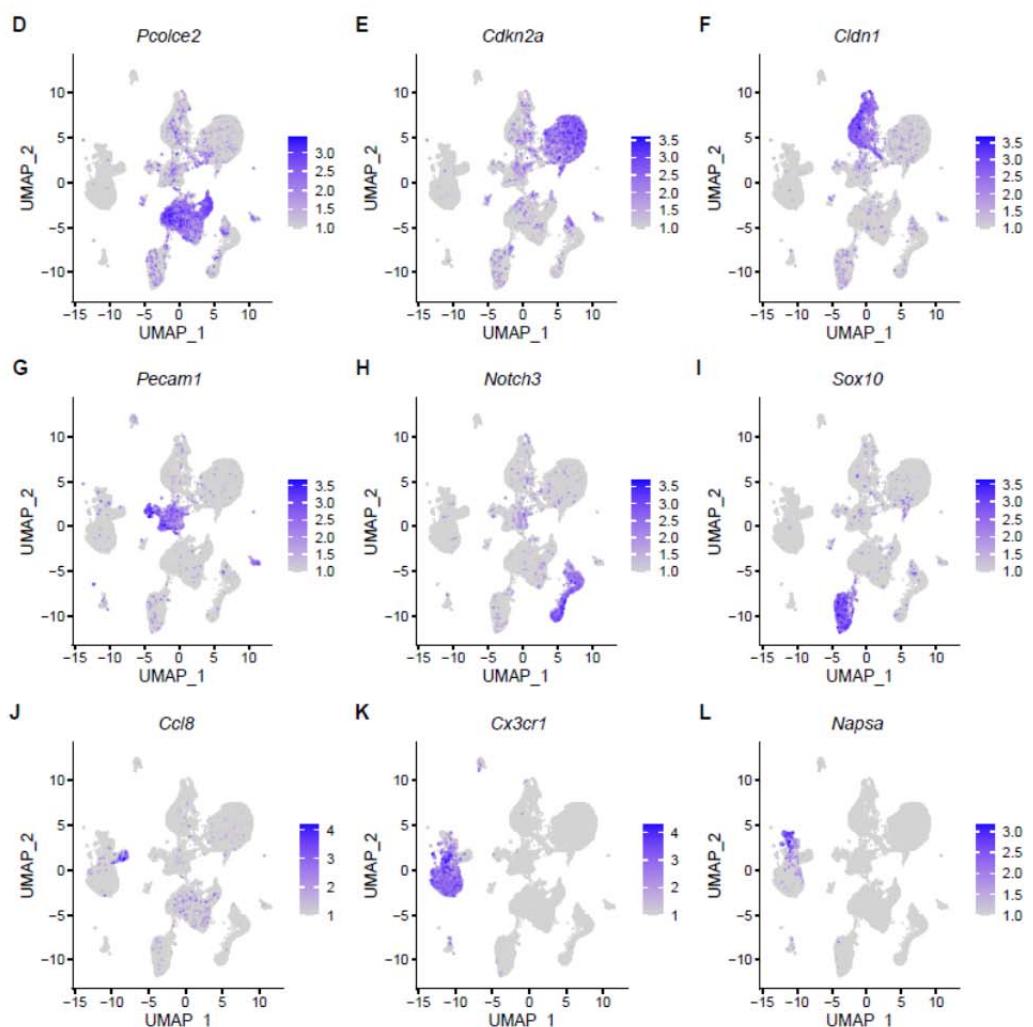
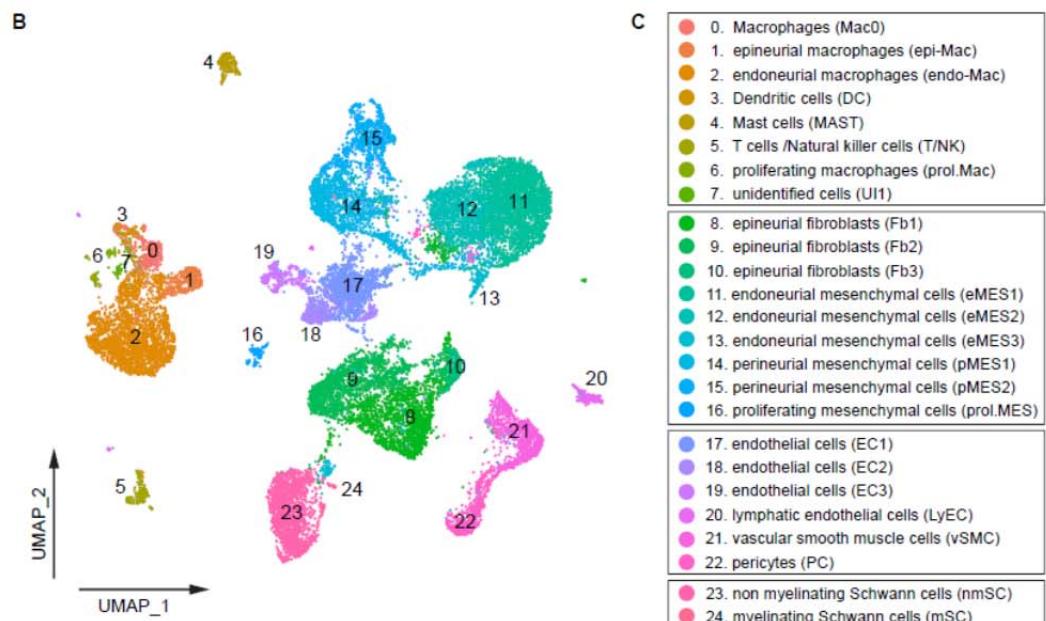
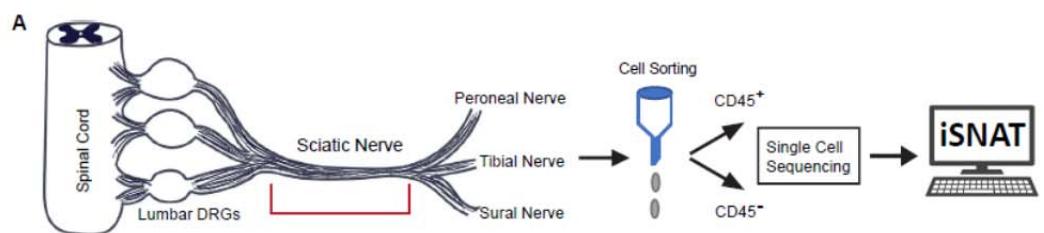
107

### The cellular and molecular landscape of naïve sciatic nerve

108

To gain insights into extrinsic mechanisms associated with neural degeneration and regeneration, we carried out a longitudinal analysis of injured mouse sciatic nerve tissue using single cell transcriptomics. We first captured CD45<sup>+</sup> immune cells from sciatic nerve trunk, and in parallel, CD45<sup>-</sup> non-immune cells for scRNAseq analysis (**Fig. 1A**). The resulting datasets were combined, high-quality cells identified, and subjected to dimensional reduction using the top 30 principal components (**Table. S1**). Uniform manifold approximation and projection (UMAP) was used for visualization of cell clusters and clusters determined using the Louvain algorithm with a resolution of 0.5, revealing 24 clusters (**Fig. 1B**). Marker gene expression analysis was used for cell type identification (**Fig. 1C**). Stromal cells, often referred as structural cells, are abundant in the naïve nerve. They include epineurial fibroblasts (Fb1-Fb3, clusters 7-9), identified by their strong expression of *Pcolce2*/procollagen C-endopeptidase enhance 2 (**Fig. 1D**), endoneurial mesenchymal cells (eMES1-eMES3, clusters 10-12), expressing the tumor suppressor *Cdkn2a*/cyclin-dependent kinase inhibitor 2A (**Fig. 1E**), and perineurial (p)MES in clusters 13 and 14, expressing the tight junction molecule *Cldn1*/claudin 1 (**Fig. 1F**).

120




The nerve vasculature is comprised of three clusters with endothelial cells (EC1-EC3, clusters 16-18), strongly expressing *Pecam1*/CD31 (**Fig. 1G**). EC express high levels of adherent junction (*Cldn5*/claudin 5), tight junction (*Tjp1*), and junctional adhesion molecules (*Jam2*), key components of the BNB (**Fig. 1, Suppl. 1A**) (Maiuolo et al., 2019). Clusters 20 and 21 are connected and harbor *Notch3*<sup>+</sup> cells (**Fig. 1H**) that can be further subdivided into vascular smooth muscle cells (vSMC, *Acta2*<sup>+</sup>) and pericytes (PC, *Pdgfrb*<sup>+</sup>) (**Fig. 1, Suppl. 1A**). A small island (cluster 19) with lymphatic endothelial cells (LyEC, *Prox1*) was detected (**Fig. 1, Suppl. 1A**). Schwann cells (SC, *Sox10*) are mainly comprised of non-myelinating (nm)SC (cluster 22) and few myelinating (m)SC (cluster 23) (**Fig. 1I**) (Gerber et al., 2021). The low number of mSC indicates that many are lost during the cell isolation process from naïve nerve (**Fig. 1, Suppl. 1A**).

129

Mac (clusters 0, 1, and 2) are the most abundant immune cell type in the naïve nerve, representing 75% of all immune cells. Smaller immune cell clusters with dendritic cells (DC, 3%), mast cells (Mast, 6%), T cells (TC) and Natural killer cells (NK) 5% are detected (**Fig. 1B, Suppl. 1B**). Less than 1% of immune cells express markers for granulocytes (GC, *Cxcr2*/C-X-C motif chemokine receptor 2), monocytes (Mo, *Chil3*/chitinase-like protein 3), or B cells (BC, *Cd79a*/B cell antigen receptor-associated protein), indicating these cell types are sparse in the naïve PNS of healthy mice. Tissue resident Mac in the naïve PNS strongly express the scavenger receptor SCARI1, encoded by *Cd163*. A small group of *Fn1*(fibronectin) expressing Mac (cluster 0) was detected and these may represent leukocytes that recently entered the nerve (**Fig. 1, Suppl. 2A, 2B**). Previous scRNA-seq studies employed cell sorting to isolate Mac from naïve PNS, using CD45<sup>+</sup>CD64<sup>+</sup>F4/80<sup>+</sup> (Ydens et al., 2020) or CD45<sup>int</sup>CD64<sup>+</sup> sorting (Wang et al., 2020), and reported transcriptionally distinct epineurial (epi) Mac and endoneurial (endo) Mac. When compared to our dataset, we find that cells in cluster 1 express *Fcna*/Ficolin-A and *Cc18*/monocyte chemotactic protein 2, and thus, represent epiMac (**Fig. 1J** and **Fig. 1, Suppl. 2C**). The expression of *Cc18* by epiMac was validated by *in situ* hybridization using RNAscope. *Cc18* labeling was highest in Mac located in the epineurium (**Fig. 1, Suppl.**

142

143 **2G,G'**). Cells in cluster 2 preferentially express *Cx3cr1*, *Trem2*, *Lilra5*, and the small peptide transporter  
144 *Slc15a2* and represent endoMac (**Fig. 1K** and **Fig. 1 Suppl. 2D-2F**). Longitudinal sciatic nerve sections of  
145 *Cx3cr1-GFP* reporter mice confirmed labeling of endoMac (**Fig. 1, Suppl 2H,H'**). Mac are educated by the  
146 local nerve microenvironment and acquire niche specific phenotypes. In the naïve PNS, epiMac (*Lyve1<sup>hi</sup>*,  
147 *Cx3cr1<sup>lo</sup>*) are located in the heavily vascularized epineurium and resemble perivascular Mac (Chakarov et al.,  
148 2019), while endoMac exhibit neural niche gene signatures reminiscent of Mac in the enteric plexus (De  
149 Schepper et al., 2019) and microglia (Wang et al., 2020). There are few DC in the naïve nerve, they function as  
150 professional antigen presenting cells and can be identified by their strong expression of *Napsa/aspartic*  
151 *peptidase* (**Fig. 1L**). Mast cells in the naïve nerve are readily identified by their preferential expression of  
152 *Fcer1a* (the immunoglobulin epsilon receptor for IgE) and *Cpa3* (carboxypeptidase A) (**Fig. 1, Suppl 1B**).  
153



155

## Figure 1

156

### The cellular and molecular landscape of naïve mouse sciatic nerve

157

**(A)** Workflow for peripheral nervous tissue analysis. Cartoon of a mouse lumbar spinal cord with dorsal root ganglia (DRGs), sciatic nerve trunk and major branches. The sciatic nerve trunk is marked with a red bracket and was harvested for further analysis. Immune cells were captured using anti-CD45 magnetic beads. The flow through containing non-immune (CD45<sup>-</sup>) cells collected. In separate scRNASeq runs, CD45<sup>+</sup> and CD45<sup>-</sup> single-cell transcriptomes were determined. A total of 21,973 high-quality transcriptomes, including 4,539 CD45<sup>+</sup> cells and 17,434 CD45<sup>-</sup> cells were generated and used for downstream analysis. **(B)** UMAP embedding of naïve sciatic nerve cells. Unsupervised Seurat-based clustering identified 24 clusters. **(C)** List of cell types identified in the naïve sciatic nerve, grouped into immune cells (clusters 0-7), structural/stromal cells (clusters 8-16), cells associated with the nerve vasculature (clusters 17-22), and Schwann cells (clusters 23 and 24). **(D-L)** Feature plots of canonical markers used to identify major cell types, including epineurial fibroblasts (*Pcolce2*/procollagen C-endopeptidase enhancer 2), endoneurial MES (*Cdkn2a*/cyclin dependent kinase inhibitor 2A), perineurial MES (*Cldn1*/claudin-1), endothelial cells (*Pecam1*/CD31), vascular smooth muscle cells and pericytes (*Notch3*/notch receptor 3), Schwann cells (*Sox10*/SRY-box transcription factor 10), epineurial Mac (*Ccl8*/C-C motif chemokine ligand 8), endoneurial Mac (*Cx3cr1*/C-X3-C motif chemokine receptor 1), and dendritic cells (*Napsa*/napsin A aspartic peptidase). Expression levels are color coded and calibrated to average gene expression.

172

|                                     | total number of cells sequenced (analyzed) | n of independent runs (n of technical replicates) | median UMI counts per cell | median genes per cell | number of reads | sequencing saturation |
|-------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------|-----------------------|-----------------|-----------------------|
| <b>PBMC (blood)</b>                 | 37,292 (24,842)                            | 1 (1)                                             | 4,724                      | 1,315                 | 1.09B           | 49.60%                |
| <b>naive SN (anti-CD45(+))</b>      | 5,121 (4,539)                              | 1 (1)                                             | 6,217                      | 2,159                 | 0.38B           | 82.70%                |
| <b>naive SN (anti-CD45(-))</b>      | 18,001 (17,434)                            | 1 (1)                                             | 5,585                      | 2,099                 | 1.45B           | 83%                   |
| <b>1d injured SN</b>                | 32,907 (29,070)                            | 2 (5)                                             | 4,677                      | 1,887                 | 2.1B            | 78.31%                |
| <b>3d injured SN</b>                | 28,370 (24,672)                            | 4 (6)                                             | 6,577                      | 2,364                 | 2.7B            | 78.40%                |
| <b>7d injured SN</b>                | 36,508 (32,967)                            | 3 (8)                                             | 7,868                      | 2,568                 | 2.8B            | 78.50%                |
| <b>3d injured SN (injury site)</b>  | 8,349 (6,971)                              | 1 (2)                                             | 7,703                      | 2,549                 | 0.77B           | 78.50%                |
| <b>3d injured SN (distal nerve)</b> | 9,055 (7,370)                              | 1 (2)                                             | 8,784                      | 2,734                 | 1.1B            | 83.50%                |

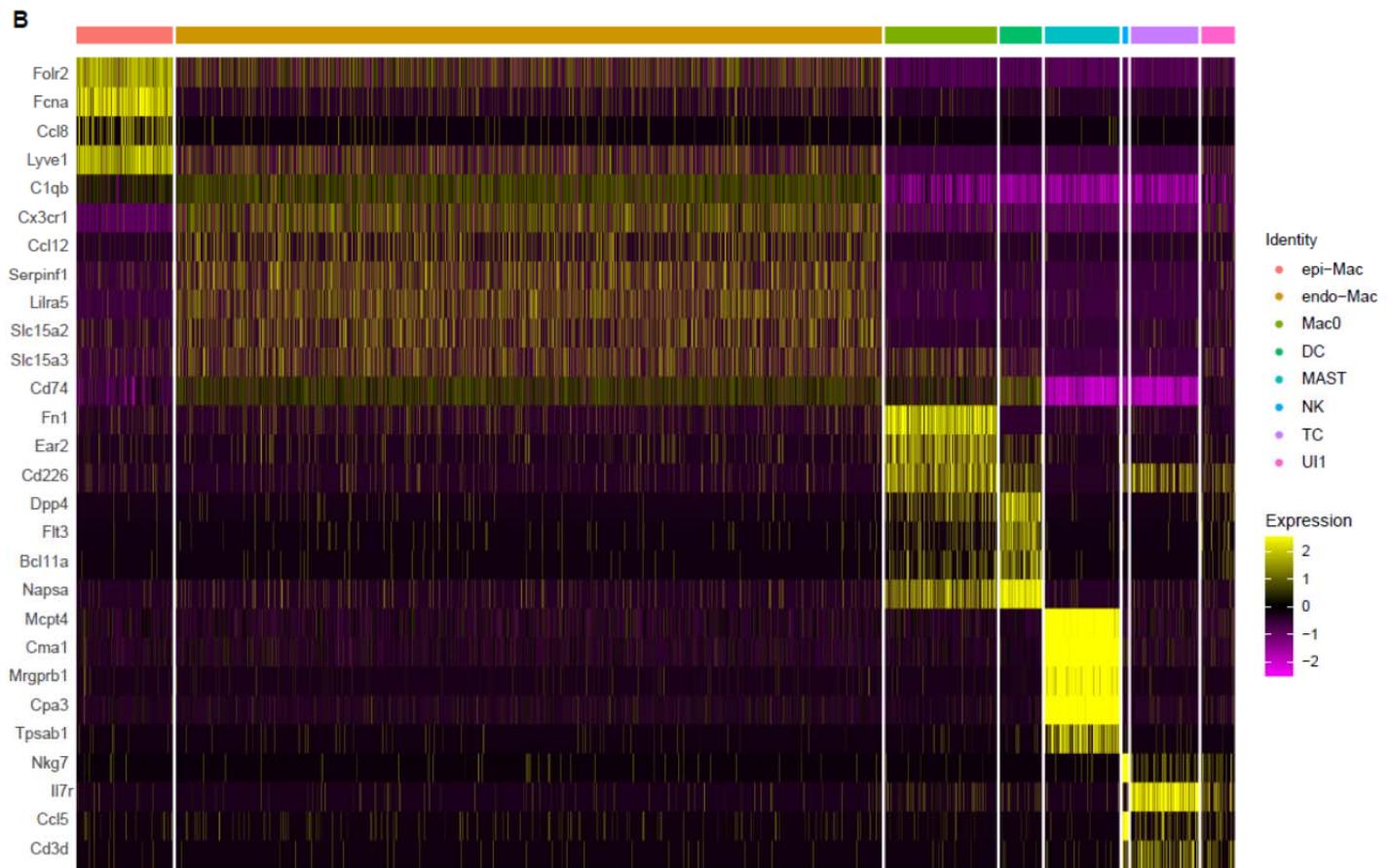
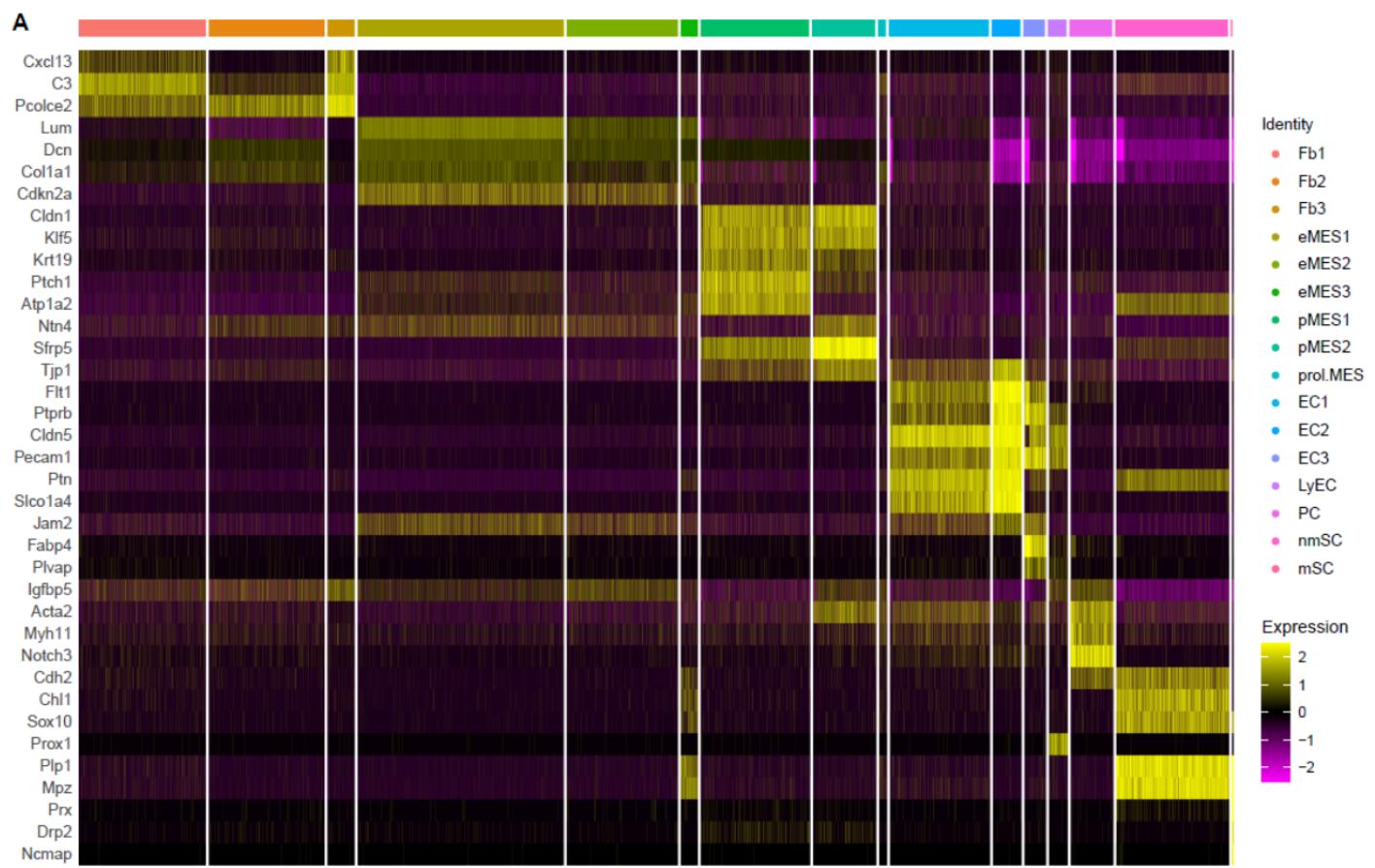
173

174

### Table. S1

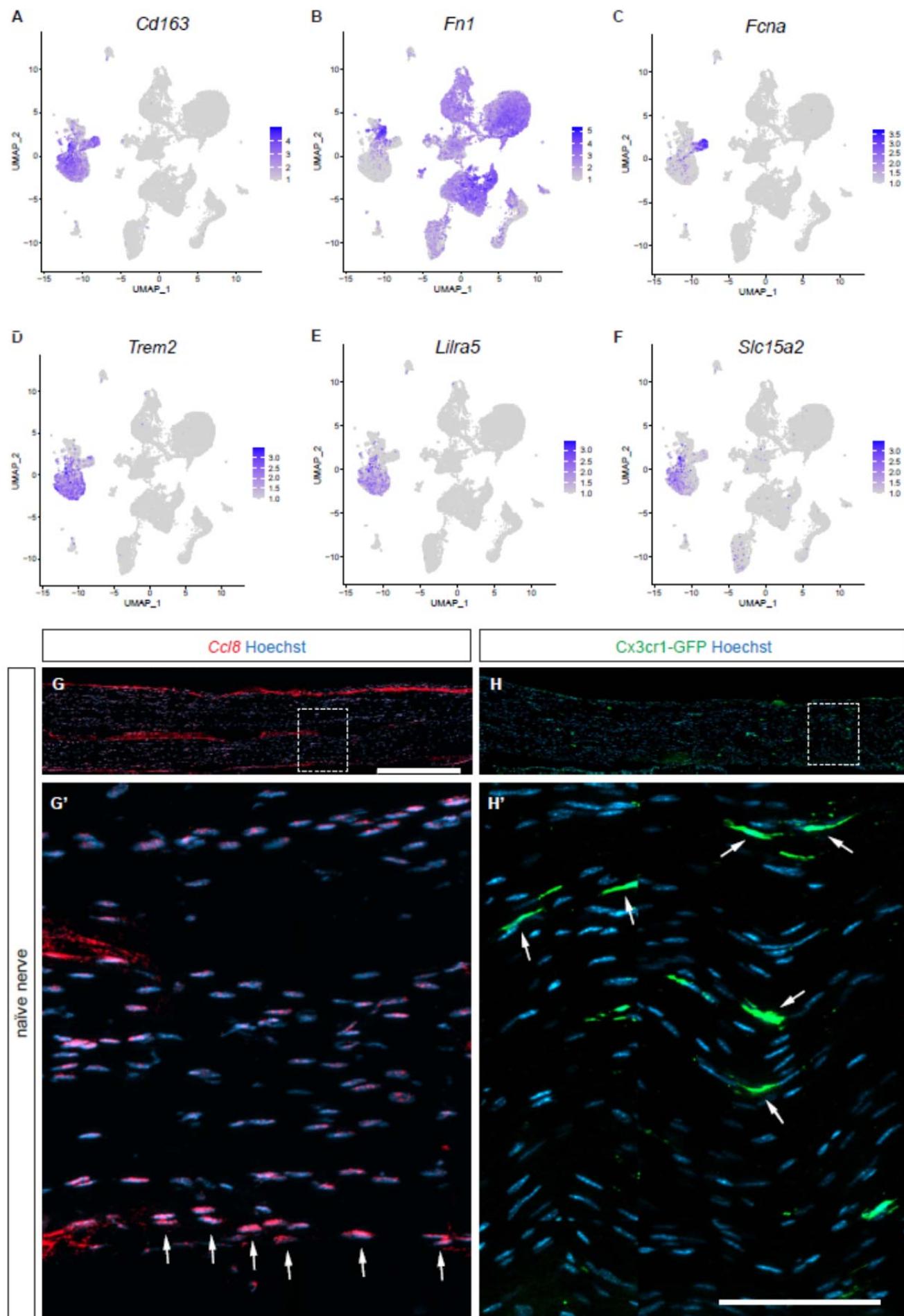
175

Summary of scRNASeq datasets generated and analyzed in this study. A total of 147,865 high-quality single cell transcriptomes were generated from naïve mouse sciatic nerve, injured sciatic nerve, and peripheral blood mononuclear cells (PBMC). Some of the 3-day (3d) injured nerves were divided into injury site and distal nerve and sequenced separately. The number of independent runs, biological replicates, is shown and defined as cells sequenced from different cohorts of mice. The number of technical replicates is shown in parenthesis and indicates how many times cells from the same cohort of mice was sequenced.



176

177

178

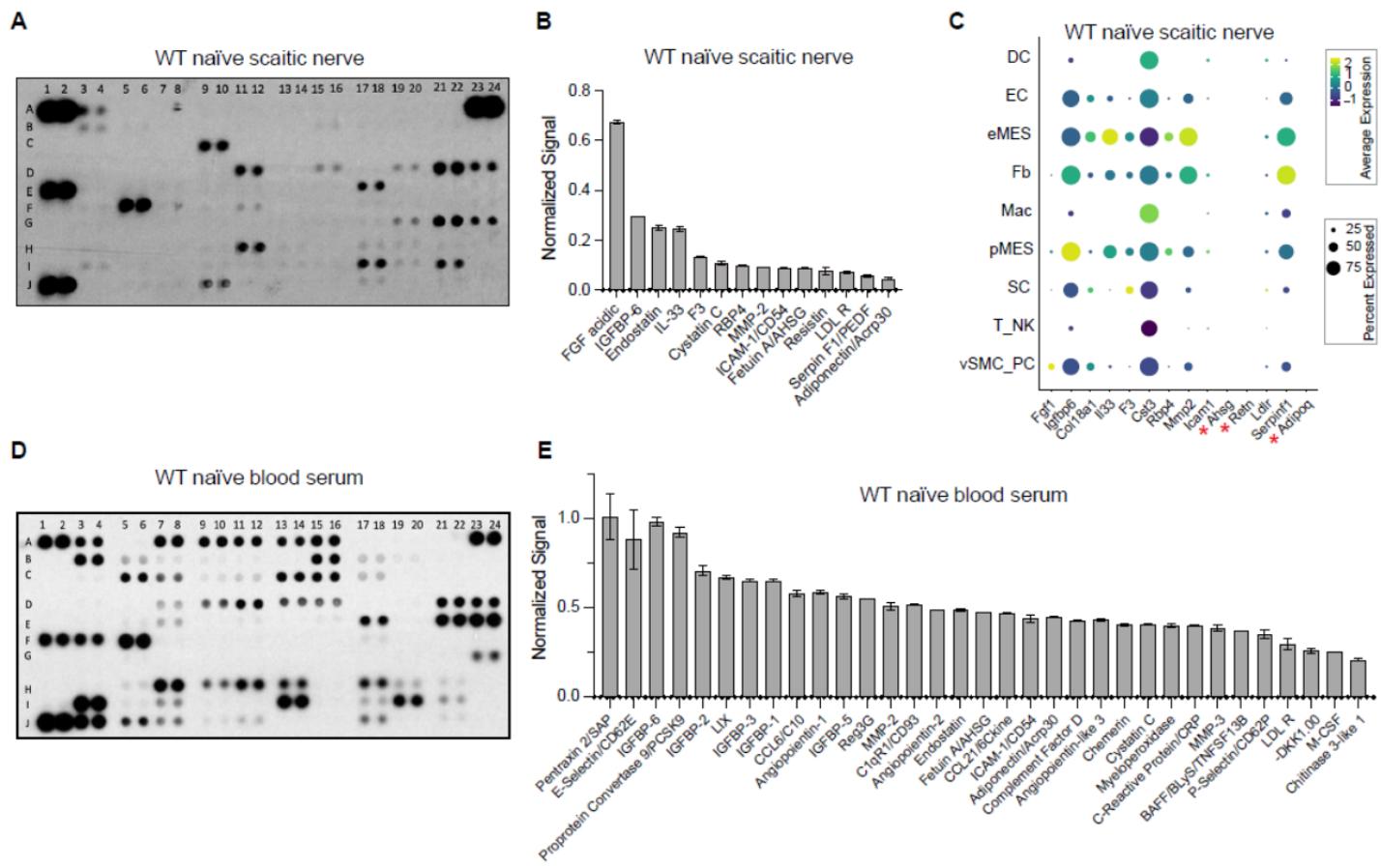

179

180



183 **Figure 1, Suppl. 1**

184 Heatmaps of top cluster enriched gene products in the naïve mouse sciatic nerve trunk for **(A)** non-immune  
185 cells, and **(B)** immune cells. Expression levels are calibrated to median gene expression. Abbreviations: Fb,  
186 fibroblasts; eMES, endoneurial mesenchymal cells; pMES, perineurial mesenchymal cells; prol.MES,  
187 proliferating mesenchymal cells; EC, endothelial cells; LyEC, lymphatic endothelial cells; PC, pericytes; nmSC,  
188 non-myelinating Schwann cells; mSC, myelinating Schwann cells; epiMac, epineurial macrophages; endoMac,  
189 endoneurial macrophages; DC, dendritic cells; MAST, mast cells; NK, natural killer cells; TC, T cells; UI,  
190 unidentified cells.




192 **Figure 1, Suppl. 2**

193 **(A-F)** Feature plots of naïve sciatic nerve. **(A)** *Cd163* is expressed by epi-Mac and endo-Mac. **(B)** A small  
194 subpopulation of Mac, expressing very high levels of *Fn1* (fibronectin), is observed in the naïve nerve. In  
195 addition, *Fn1* is expressed by most non-immune cells. **(C)** *Fcna* (Ficolin A) is strongly and selectively  
196 expressed by epi-Mac. **(D-F)** Show expression of the endo-Mac markers *Trem2* (triggering receptor expressed  
197 on myeloid cells 2), *Lilra5* (leukocyte immunoglobulin like receptor A5), and *S/c15a1* (solute carrier family 15  
198 member 1). Expression levels are projected onto the UMAP with a minimum expression cutoff of 1. **(G,G')**  
199 Longitudinal sections of naïve mouse sciatic nerve. *In situ* hybridization of *Ccl8* with RNAscope revealed  
200 preferential staining of epi-Mac, labeled with arrows. **(H,H')** Longitudinal sciatic nerve section of *Cx3cr1-GFP*  
201 reporter mice revealed preferential labeling of endo-Mac. Scale bar **(G,H)**, 500  $\mu$ m; **(G',H')**, 100  $\mu$ m.

202

203 To independently validate naïve nerve scRNAseq datasets, we examined the presence of some of the  
204 corresponding proteins in naïve sciatic nerve lysates by ELISA. We used an ELISA kit that allows simultaneous  
205 profiling of 111 extracellular proteins, including cytokines, chemokines, growth factors, proteases, and protease  
206 inhibitors (**Fig. 1, Suppl. 3A**). Proteins abundantly detected include, FGF1 (*Fgf1*), IGF binding protein 6  
207 (*Igfbp6*), the anti-angiogenic factor endostatin (*Col18a1*), interleukin 33 (*Il33*), coagulation factor III (*F3*),  
208 cystatin C (*Cst3*), retinoic acid binding protein 4 (*Rbp4*), matrix metallopeptidase 2 (*Mmp2*), intercellular  
209 adhesion molecule 1 (*Icam1*), fetuin A/alpha 2-HS glycoprotein (*Ahsg*), resistin/adipose tissue-specific  
210 secretory factor (*Retn*), low-density lipoprotein receptor (*Ldlr*), serpin F1/neurotrophic protein (*Serpinf1*), and  
211 adiponectin (*Adipoq*), a regulator of fat metabolism (**Fig. 1, Suppl. 3B**). For many of these proteins, the  
212 corresponding transcripts are present in our scRNAseq data (**Fig. 1, Suppl. 3C**). Gene products abundantly  
213 detected by ELISA, but not by scRNAseq, include fetuin A, resistin, and adiponectin (**Fig. 1, Suppl. 3C**).  
214 Resistin and adiponectin are both secreted by adipocytes, and fetuin A is secreted by hepatocytes. All three  
215 proteins are known serum components, and thus, may have entered the nerve via the circulatory system.  
216 Indeed, ELISA for serum proteins from naïve mice, revealed high levels of fetuin A, resistin, and adiponectin  
217 (**Fig. 1, Suppl. 3D**). Importantly, some of the most abundant serum proteins, including E-selectin (*Sele*),  
218 IGFBPs (*Igfbp1, 2, 3 and 5*), proprotein convertase 9 (*Pcsk1*), soluble C1qR1 (*Cd93*), angiopoietin-2 (*Angpt2*),  
219 C-C motif chemokine ligand 21 (*Ccl21*), and CRP/C-reactive protein (*Crp*) are not present in nerve lysates,  
220 providing confidence that mice were perfused properly, and nerve samples not contaminated with serum (**Fig.**  
221 **1, Suppl. 3E**). These experiments also identify serum proteins that can or cannot cross the intact BNB.  
222 Collectively, our analysis establishes a baseline of the cellular landscape and molecular milieu of naïve PNS.  
223 These data will be used as reference to determine how a crush injury alters the nerve microenvironment.



224

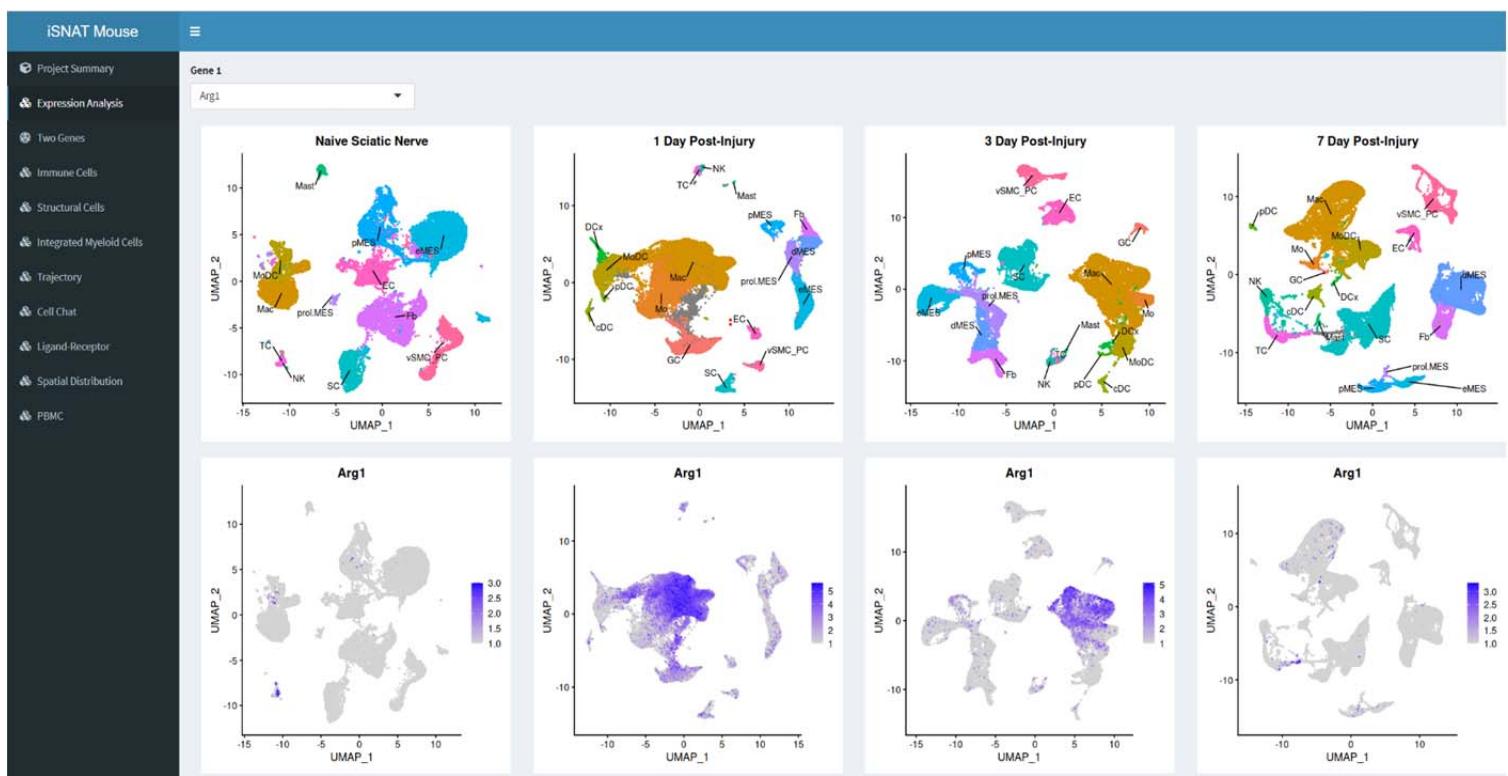
225 **Figure 1, Suppl. 3**

226 **(A)** ELISA membrane probed with naïve sciatic nerve lysate. **(B)** List of top proteins detected. For  
 227 quantification, ELISA signals were normalized to reference spots shown at coordinates (A1,A2), (A23,A24),  
 228 and (J1,J2). **(C)** Dotplot analysis of the corresponding gene products of naïve sciatic nerve cells, as identified  
 229 by scRNASeq. Relative expression levels, normalized to average gene expression (color coded) are shown.  
 230 For each cell cluster, the percentile of cells expressing a specific gene product is indicated by the dot size. **(D)**  
 231 ELISA membrane probed with serum from naïve mice. **(E)** List of top serum proteins detected. For  
 232 quantification, ELISA signals were normalized to reference spots shown at coordinates (A1,A2), (A23,A24),  
 233 and (J1,J2). Number of biological replicates, n = 1. Coordinates of proteins that can be detected by the ELISA,  
 234 (A1, A2) Reference spots, (A3, A4) Adiponectin [Adipoq], (A5, A6) Amphiregulin [Areg], (A7, A8) Angiopoietin-  
 235 1 [Angpt1], (A9, A10) Angiopoietin-2 [Angpt2], (A11, A12) Angiopoietin-like 3 [Angptl3], (A13, A14) BAFF  
 236 [Tnfrsf13b], (A15, A16) C1qR1 [Cd93], (A17, A18) CCL2 [Ccl2], (A19, A20) CCL3 [Ccl3], (A21, A22) CCL5  
 237 [Ccl5], (A23, A24) Reference spots, (B3, B4) CCL6 [Ccl6], (B5, B6) CCL11 [Ccl11], (B7, B8) CCL12 [Ccl12],  
 238 (B9, B10) CCL17 [Ccl17], (B11, B12) CCL19 [Ccl19], (B13, B14) CCL20 [Ccl20], (B15, B16) CCL21 [Ccl21],  
 239 (B17, B18) CCL22 [Ccl22], (B19, B20) CD14 [Cd14], (B21, B22) CD40 [Cd40], (C3, C4) CD160 [Cd160], (C5,  
 240 C6) Chemerin [Rarres2], (C7, C8) Chitinase 3-like 1 [Chil3], (C9, C10) Coagulation Factor III [F3], (C11, C12)  
 241 Complement Component C5 [C5], (C13, C14) Complement Factor D [Cfd], (C15, C16) C-Reactive Protein  
 242 [Crp], (C17, C18) CX3CL1 [Cx3cl1], (C19, C20) CXCL1 [Cxcl1], (C21, C22) CXCL2 [Cxcl2], (D1, D2) CXCL9  
 243 [Cxcl9], (D3, D4) CXCL10 [Cxcl10], (D5, D6) CXCL11 [Cxcl11], (D7, D8) CXCL13 [Cxcl13], (D9, D10) CXCL16

244 [Cxcl16], (D11, D12) Cystatin C [Cst3], (D13, D14) DKK-1 [Dkk1], (D15, D16) DPPIV [Dpp4], (D17, D18) EGF  
245 [Egf], (D19, D20) Endoglin [Eng], (D21, D22) Endostatin [Col18a1], (D23, D24) Fetuin A [Ahsg], (E1, E2) FGF  
246 acidic [Fgf1], (E3, E4) FGF-21 [Fgf21], (E5, E6) Flt-3 Ligand [Flt3], (E7, E8) Gas 6 [Gas6], (E9, E10) G-CSF  
247 [Csf3], (E11, E12) GDF-15 [Gdf15], (E13, E14) GM-CSF [Csf2], (E15, E16) HGF [Hgf], (E17, E18) ICAM-1  
248 [Icam1], (E19, E20) IFN-gamma [Ifng], (E21, E22) IGFBP-1 [Igfbp1], (E23, E24) IGFBP-2 [Igfbp2], (F1, F2)  
249 IGFBP-3 [Igfbp3], (F3, F4) IGFBP-5 [Igfbp5], (F5, F6) IGFBP-6 [Igfbp6], (F7, F8) IL-1alpha [Il1a], (F9, F10) IL-  
250 1Beta [Il1b], (F11, F12) IL-1ra [Il1rn], (F13, F14) IL-2 [Il2], (F15, F16) IL-3 [Il3], (F17, F18) IL-4 [Il4], (F19, F20)  
251 IL-5 [Il5], (F21, F22) IL-6 [Il6], (F23, F24) IL-7 [Il7], (G1, G2) IL-10 [Il10], (G3, G4) IL-11 [Il11], (G5, G6) IL-12  
252 p40 [Il12], (G7, G8) IL-13 [Il13], (G9, G10) IL-15 [Il15], (G11, G12) IL-17A [Il17a], (G13, G14) IL-22 [Il22], (G15,  
253 G16) IL-23 [Il23], (G17, G18) IL-27 p28 [Il27], (G19, G20) IL-28 [Ifnl3], (G21, G22) IL-33 [Il33], (G23, G24) LDL  
254 R [Ldlr], (H1, H2) Leptin [Lep], (H3, H4) LIF [Lif], (H5, H6) Lipocalin-2 [Lcn2], (H7, H8) LIX [Cxcl5], (H9, H10)  
255 M-CSF [Csf1], (H11, H12) MMP-2 [Mmp2], (H13, H14) MMP-3 [Mmp3], (H15, H16) MMP-9 [Mmp9], (H17,  
256 H18) Myeloperoxidase [Mpo], (H19, H20) Osteopontin [Spp1], (H21, H22) Osteoprotegerin [Tnfrsf11b], (H23,  
257 H24) PD-ECGF [Tymp], (I1, I2) PDGF-BB [Pdgfb], (I3, I4) Pentraxin 2 [Nptx2], (I5, I6) Pentraxin 3 [Ptx3], (I7,  
258 I8) Periostin [Postn], (I9, I10) Pref-1 [Dlk1], (I11, I12) Proliferin [Prl2c2], (I13, I14) Proprotein Convertase 9  
259 [Pcsk9], (I15, I16) RAGE [Ager], (I17, I18) RBP4 [Rbp4], (I19, I20) Reg3G [Reg3g], (I21, I22) Resistin [Retn],  
260 (J1, J2) Reference spots, (J3, J4) E-Selectin [Sele], (J5, J6) P-Selectin [Selp], (J7, J8) Serpin E1 [Serpine1],  
261 (J9, J10) Serpin F1 [Serpinf1], (J11, J12) Thrombopoietin [Thpo], (J13, J14) TIM-1 [Havcr1], (J15, J16) TNF-  
262 alpha [Tnf], (J17, J18) VCAM-1 [Vcam1], (J19, J20) VEGF [Vegf], (J21, J22) WISP-1 [Ccn4], (J23, J24)  
263 negative control.

## 264 265 The injured sciatic nerve atlas (iSNAT)

266 To describe the dynamic nature of the cellular and molecular landscape of injured PNS tissue, we subjected  
267 adult mice to sciatic nerve crush injury (SNC) and carried out scRNASeq at 1-day post-SNC (1dpc), 3dpc, and  
268 7dpc (**Fig. 2A**). **Table S1** shows the number of cells analyzed at each time point. The longitudinal study  
269 revealed marker genes that allow reliable identification of major cell types in the naïve and injured PNS (**Fig. 2**,  
270 **Suppl. 1A-D**). SNC triggers massive infiltration of blood-borne immune cells (Kalinski et al., 2020; Ydens et  
271 al., 2020). In the 1dpc UMAP plot we identified granulocytes (GC, Cxcr2) in cluster 11 (**Fig. 2D**), Mo (Ly6c2/  
272 lymphocyte antigen 6C2 and Chil3/Ym1) in cluster 0 (**Fig. 2F**, **Fig. 2**, **Suppl. 1B**), and five Mac subpopulations  
273 (Mac-I to Mac-V) in clusters 1-5, expressing Adgre1(F4/80) (**Fig. 2G**). GC are primarily composed of  
274 neutrophils (Retnlg/resistin-like gamma, Grina/NMDA receptor associated protein 1), intermingled with a  
275 smaller population of eosinophils (Siglecf) (**Fig. 2E**). Mo that recently entered the nerve can be identified by  
276 high levels of Cd177 (data not shown) a known surface molecule that interacts with the EC adhesion molecule  
277 Pecam1/CD31 and promotes transmigration. Mo strongly express Ly6c2, suggesting they represent Ly6C<sup>hi</sup>  
278 proinflammatory cells. In the UMAP plot of 1dpc nerves, cluster 0 (Mo) has a volcano-like shape connected at  
279 the top to cluster 1, harboring Mac-I (Ccr2<sup>hi</sup>, Ly6c2<sup>low</sup>, Cx3cr1<sup>-</sup>), indicating these are maturing monocyte-derived  
280 Mac (**Fig. 2B**). Four smaller Mac clusters include, Mac-II (C1qa, complement factor C1q), Mac-III


281 (Ltc4s/leukotriene C4 synthase, *Mmp19*/matrix metallopeptidase 19), Mac-IV expressing MHCII genes (*H2-Aa*,  
282 *H2-Eb1*, *H2-Ab1*, *Cd74*), and Mac-V (*Il1rn*/IL1 receptor antagonist, *Cd36*/ECM receptor, coagulation factors *F7*  
283 and *F10*), suggesting roles in opsonization, matrix remodeling, antigen presentation, and stopping of bleeding  
284 (**Fig. 2B**, and data not shown). Cluster 6 harbors monocyte-derived dendritic cells (MoDC: *Cd209a*/DC-SIGN,  
285 *H2-Aa*/MHC class II antigen A, alpha), professional antigen presenting cells (**Fig. 2H, 2I**). A small island  
286 (cluster 13) harbors a mixture of TC and NK (**Fig. 2B**). The 1dpc dataset contains five clusters with structural  
287 cells (Fb, differentiating (d)MES, eMES, and pMES), including a small number of proliferating (*Mki67*<sup>+</sup>/Ki67)  
288 cells, vasculature cells, EC (cluster 20), vSMC and PC (cluster 21) (**Fig. 2B and Fig. 2, Suppl. 2B**).

289 In the UMAP plot of 3dpc nerve (**Fig. 2J**), far fewer GC (*Cxcr2*) (**Fig. 2L**) and Mo (*Ly6c2*) (**Fig. 2M**) are  
290 present when compared to 1dpc nerve. *Adgre1*<sup>+</sup> Mac are the most dominant immune cell type at 3dpc,  
291 comprised of five subpopulations, (clusters 1-5) designated Mac1-Mac4, and prol. Mac (**Fig. 2O**). *Ccr2* labels  
292 most Mac and DC, except for Mac4 and a subset of Mac1 cells (**Fig. 2N**). As discussed below, there is no one-  
293 to-one match of Mac subclusters identified in the 1dpc and 3dpc nerve, likely owing to their high degree of  
294 transcriptional plasticity. To emphasize this observation, we labeled Mac in the 1dpc nerve as MacI-MacV and  
295 Mac in the 3dpc nerve as Mac1-Mac4 and prol. Mac (**Fig. 2C and 2K**). MoDC (*Cd209a*) are readily detected in  
296 the 3dpc nerve (**Fig. 2P**). Compared to the 1dpc nerve, the fraction of MHCII<sup>+</sup> (*H2-Aa*) cells is increased,  
297 including four subpopulations of dendritic cells (MoDC, cDC, DCx, and pDC, see below for details), as well as  
298 subpopulations of Mac (**Fig. 2Q**). Structural cells begin to proliferate heavily at 3dpc, suggesting that a nerve  
299 crush injury causes substantial damage to the epineurium, perineurium, and endoneurium (**Fig. 2, Suppl. 2C**).  
300 SNC is known to inflict vascular damage and breach in the BNB. This is underscored by the strong  
301 proliferative response of vascular cells, including EC, vSMC, and PC (**Fig. 2, Suppl. 2C**).

302 In the 7dpc UMAP plot (**Fig. 2R**), GC and Mo have further declined (**Fig. 2T, 2U**), and *Adgre1*<sup>+</sup> Mac  
303 remain highly prevalent (**Fig. 2W**). Mac form a connected continuum of clusters, harboring subpopulations  
304 Mac-a to Mac-d (**Fig. 2S**). *Ccr2* remains high in most Mac subpopulations, except for Mac-c and is also  
305 observed in Mo and DC (**Fig. 2V**). Similar to earlier timepoints, there is no clear one-to-one match of Mac  
306 clusters at 7dpc to Mac at 3dpc and are thus labeled Mac-a to Mac-e (**Fig. 2R**). At 7dpc, the number of  
307 *Cd209a*<sup>+</sup> DC has increased compared to earlier time points (**Fig. 2X**). MHCII (*H2-Aa*) expressing Mac and DC  
308 are readily detected (**Fig. 2Y**). Lymphoid cells, identified by *Il2rb*/IL2 receptor subunit  $\beta$  expression, include NK  
309 (cluster 15) and TC (cluster 16) (**Fig. 2R**). At 7dpc, the proliferation of structural and vascular cells is reduced  
310 compared to 3dpc (**Fig. 2, Suppl. 2C, 2D**), suggesting that cells required for the repair process and wound  
311 healing are in place.

312 The sequelae of successful tissue repair requires extensive communication between nerve resident  
313 cells and hematogenous immune cells. For a detailed description of the cellular and molecular changes that  
314 occur during the first week following PNS injury, we generated and analyzed more than 180,000 high-quality  
315 single-cell transcriptomes (**Table S1**). These datasets provide a new resource for understanding cell function  
316 and molecules in the degenerating and regenerating mammalian PNS. For widespread distribution of  
317 scRNASeq data, we created the injured sciatic nerve atlas (iSNAT), a user-friendly and freely available web-  
318 based resource. The “*Expression Analysis*” function in iSNAT provides a readily accessible platform for

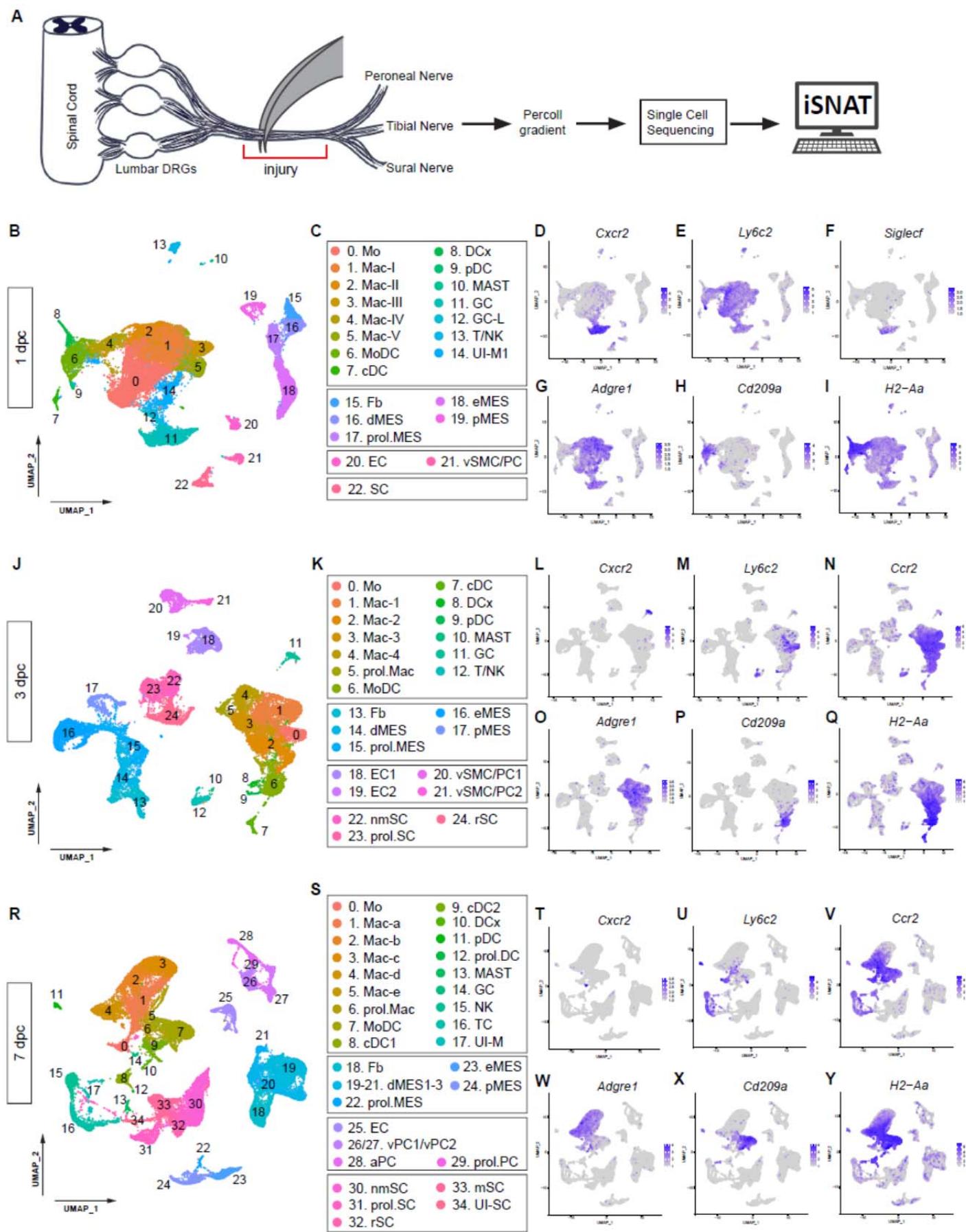
319 comparative analysis of gene expression in naïve and injured nerve at single-cell resolution, <https://cdb->



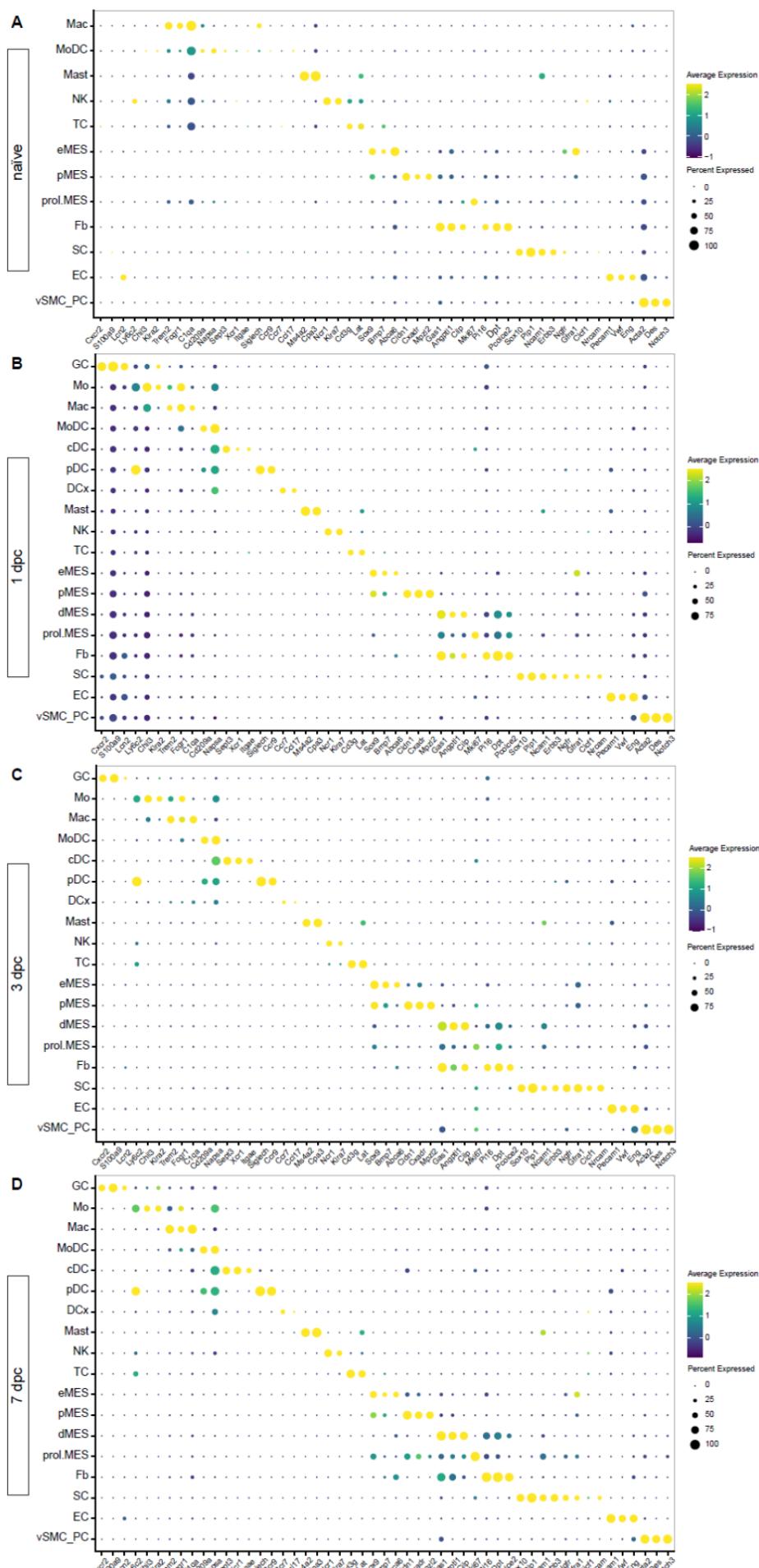
320 [rshiny.med.umich.edu/Giger\\_iSNAT/](http://shiny.med.umich.edu/Giger_iSNAT/).

321

322


**Screenshot of iSNAT webpage showing the menu with the different tabs/functions.** As an example, the longitudinal expression changes of arginase-1 (Arg1) are shown. Time points include naïve sciatic nerve, 1-day post injury, 3-days post injury, and 7-days post injury. Top row shows UMAP plots with major cell types labeled. The bottom row shows expression of Arg1 during the first week post nerve injury. Note, Arg1 shows highest expression in macrophage (Mac) subpopulations in the 1-day and 3-day injured nerves.

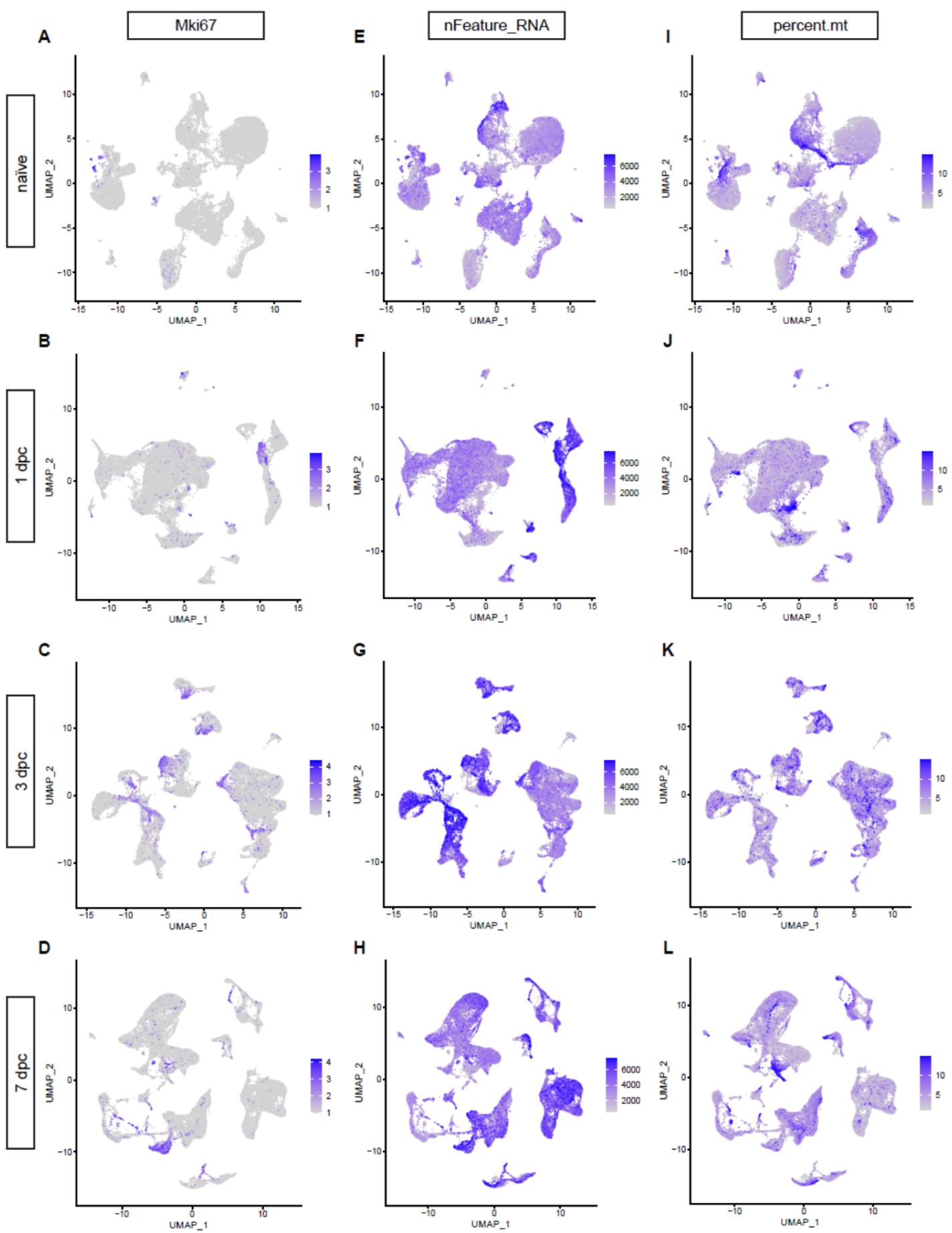
323


324

325

326




330 **(A)** Workflow for single cell analysis of injured mouse sciatic nerve trunk. Cartoon of lumbar spinal cord with  
331 DRGs and sciatic nerve. The injury site is shown and the segment marked with the red bracket was harvested  
332 at different post-injury time points and analyzed by scRNASeq. **(B)** UMAP plot embedding of sciatic nerve cells  
333 at 1dpc. A total of 29,070 high-quality cells (n= 2 biological replicates, 5 technical replates) were subjected to  
334 unsupervised Seurat-based clustering resulting in 22 cell clusters. **(C)** List of cell types identified, grouped into  
335 immune cells (clusters 0-14), structural cells (clusters 15-19), cells associated with the nerve vasculature  
336 (clusters 20 and 21), and Schwann cells (cluster 22). **(D-I)** Feature plots of canonical immune cell markers to  
337 identify clusters with GC (*Cxcr2*), including a subset of eosinophils (*Siglecf/sialic acid binding Ig-like lectin F*),  
338 Mo (*Ly6c2/Ly6C*), Mac (*Adgre1/F4/80*), MoDC (*Cd209a/DC-SIGN*), and antigen presenting cells (*H2-*  
339 *Aa/histocompatibility 2, class II antigen A, alpha*). **(J)** UMAP plot embedding of sciatic nerve cells at 3dpc. A  
340 total of 24,672 high-quality cells (n= 4 biological replicates, 6 technical replates) were subjected to  
341 unsupervised Seurat-based clustering resulting in 24 cell clusters. **(K)** List of cell types in the 3-day injured  
342 nerve, grouped into immune cells (clusters 0-12), structural cells (clusters 13-17), cells associated with the  
343 nerve vasculature (clusters 18-21), and Schwann cells (clusters 22-24). **(L-Q)** Feature plots of canonical  
344 markers for immune cells to identify clusters with GC (*Cxcr2*), Mo (*Ly6c2*), Mo/Mac (*Ccr2*), Mac (*Adgre1*),  
345 MoDC (*Cd209a*), and antigen presenting cells (*H2-Aa*). **(R)** UMAP plot embedding of sciatic nerve cells at  
346 7dpc. A total of 32,976 high-quality cells (n= 3 biological replicates, 8 technical replates) were subjected to  
347 unsupervised Seurat-based clustering resulting in 34 cell clusters. **(S)** List of cell types in the nerve at 7dpc,  
348 grouped into immune cells (clusters 0-17), structural cells (clusters 18-24), cells associated with the nerve  
349 vasculature (clusters 25-29), and Schwann cells (clusters 30-34). **(T-Y)** Feature plots of canonical markers for  
350 immune cells to identify clusters with GC (*Cxcr2*), Mo (*Ly6c2*), Mo/Mac (*Ccr2*), Mac (*Adgre1*), MoDC (*Cd209a*),  
351 and antigen presenting cells (*H2-Aa*). Expression levels are projected onto the UMAP with a minimum  
352 expression cutoff of 1. Abbreviations for immune cells: Mo, monocytes; Mac, macrophages; prol.Mac,  
353 proliferating macrophages; MoDC, monocyte-derived dendritic cells; cDC, conventional dendritic cells; DCx  
354 mature/migrating dendritic cells; pDC, plasmacytoid dendritic cells; MAST, mast cells; GC, granulocytes  
355 (including neutrophils and eosinophils), GC-L, granule cell-like; TC, T cells; NK, natural killer cells.  
356 Abbreviations for structural cells: Fb, fibroblast; dMES, differentiating mesenchymal cells; prol.MES,  
357 proliferating mesenchymal cells; eMES, endoneurial mesenchymal cells; pMES, perineurial mesenchymal  
358 cells. Abbreviations for vascular cells: EC, endothelial cells, vSMC, vascular smooth muscle cells; PC,  
359 pericytes; vPC, venous pericytes; aPC, arterial pericytes; prol.PC, proliferating pericytes. Abbreviations  
360 Schwann cells, nmSC, non-myelinating Schwann cells; mSC myelinating Schwann cells; rSC, repair Schwann  
361 cells; prol.SC, proliferating Schwann cells. UI, unidentified cells.



363 **Figure 2, Suppl Figure 1**

364 **Identification of marker genes for cell type identification in the naïve and injured PNS**

365 Dotplot analysis of scRNAseq datasets of **(A)** naïve nerve, **(B)** 1dpc nerve, **(C)** 3dpc nerve, and **(D)** 7dpc  
366 nerve. Expression levels are normalized to average gene expression (color coded). For each cell cluster, the  
367 percentile of cells expressing a specific gene product is indicated by the dot size.

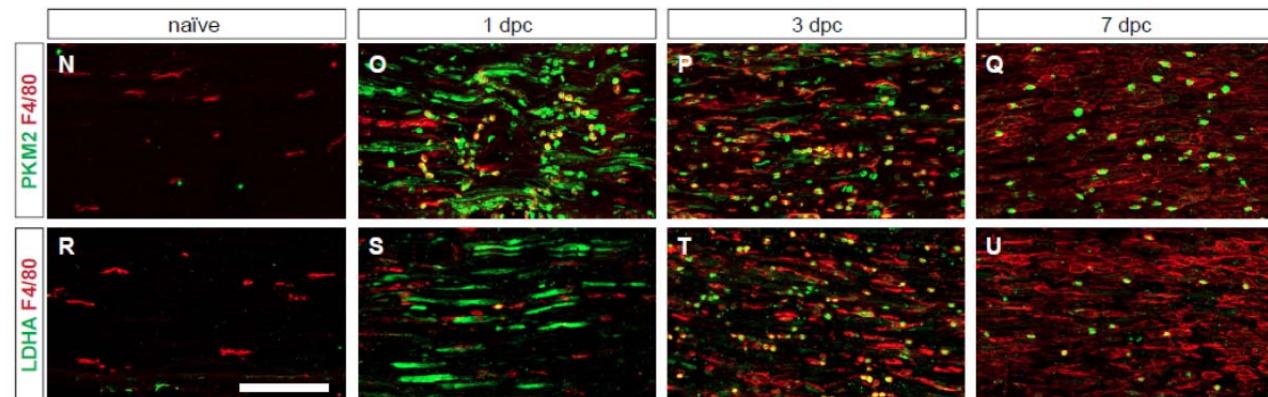
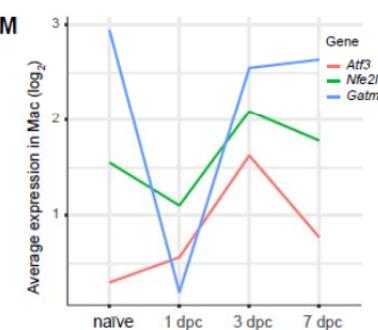
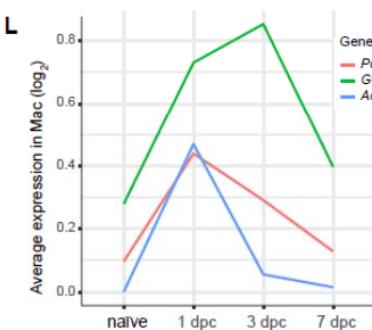
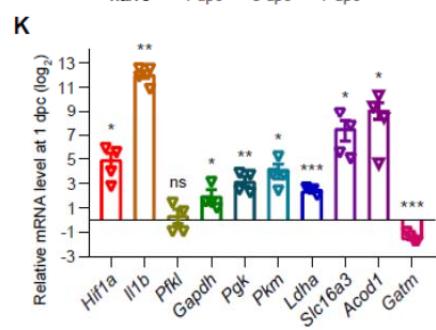
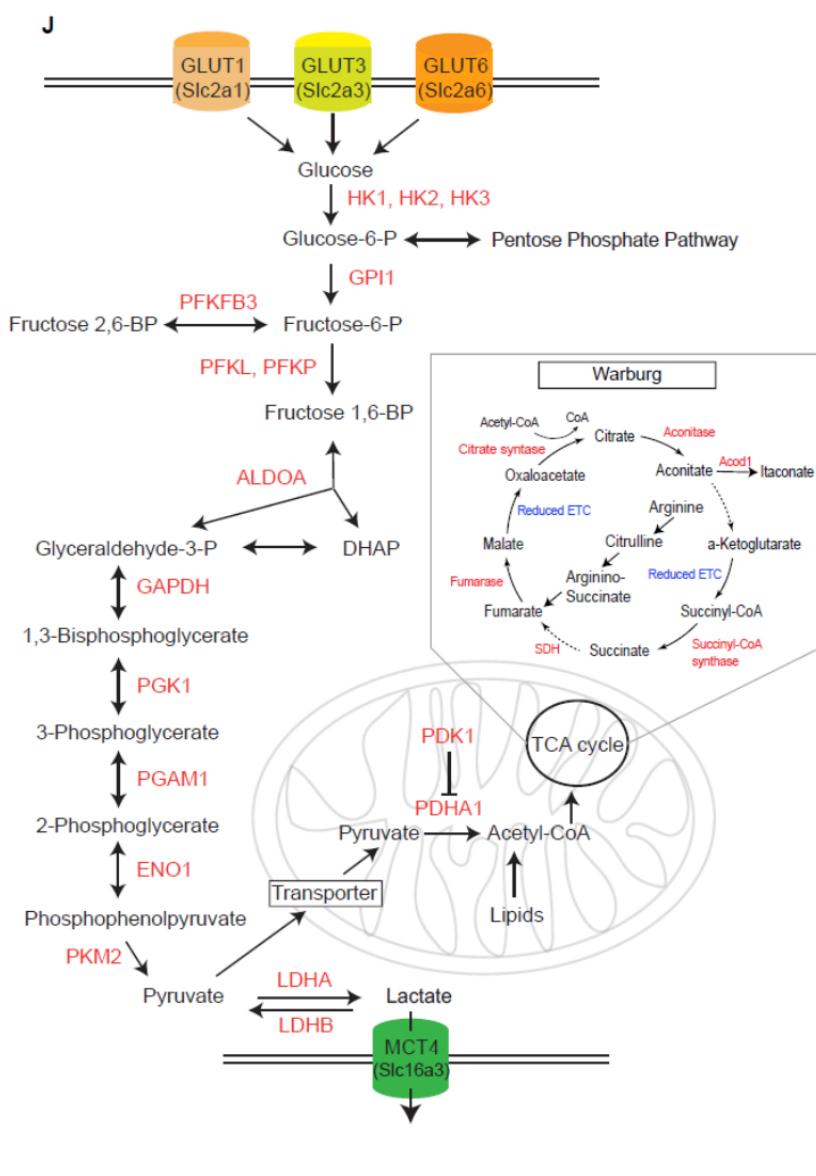
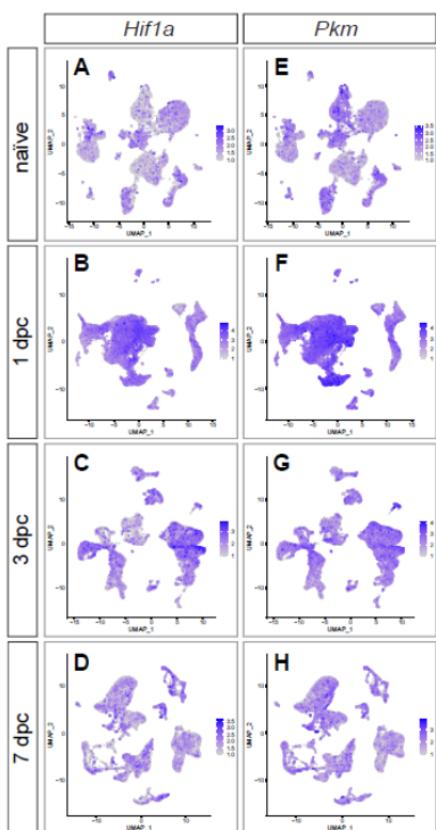


370 **Figure 2, Suppl Figure 2**

371 Feature plots for *Mki67* reveals proliferating cells in **(A)** naïve nerve, **(B)** 1dpc, **(C)** 3dpc, and **(D)** 7dpc. The  
372 expression levels are projected onto the UMAP with a minimum expression cutoff of 1. **(E-H)** Feature plot  
373 showing the number of unique transcripts detected in naïve and injured sciatic nerve cells. Color coded  
374 calibration is shown. Note, cells with less than 500 unique features or more than 7500 were excluded from the  
375 study. **(I-L)** Feature plots showing the mitochondrial content of cells in the naïve and injured nerves. Color  
376 coded calibration is shown. Note, cells with more than 15% mitochondrial content were excluded from the  
377 analysis.

378

379 **Myeloid cells in the injured nerve undergo rapid metabolic reprogramming**







380 To demonstrate the application of iSNAT toward understanding how cellular function may change during the  
381 repair process, we focused on energy metabolism. Tissue repair is an energetically demanding process,  
382 suggesting cells must efficiently compete for limited resources, at the same time, the repair process requires  
383 highly coordinated action among diverse cell types. Nerve injury results in strong upregulation of the  
384 transcription factor *Hif1a*/hypoxia-induced factor 1α (*Hif1a*) in immune cells, including Mo, maturing Mac, and  
385 GC (**Fig. 3A-3D, 3I**). After a sharp increase at 1dpc, *Hif1a* levels remain elevated in Mo/Mac at 3dpc, before  
386 declining to pre-injury levels at 7dpc (**Fig. 3I**). *Hif1a* is a master regulator of cellular metabolism and the  
387 molecular machinery for glycolytic energy production (Nagao et al., 2019; Pearce and Pearce, 2013; Schuster  
388 et al., 2021). A metabolic shift, away from oxidative phosphorylation (OXPHOS) and toward aerobic glycolysis  
389 for the conversion of glucose into lactate, is known as Warburg effect (**Fig. 3J**). In immune cells the Warburg  
390 effect is of interest because it not only regulates metabolic pathways for energy production, but also gene  
391 expression to drive Mac toward a proinflammatory, glycolytic state (McGettrick and O'Neill, 2020; Palsson-  
392 McDermott et al., 2015).

393 Analysis of gene products implicated in glucose metabolism, revealed that during the early injury  
394 response, GC and Mo/Mac express transporters for glucose (*Slc2a1/GLUT1*, *Slc2a3/GLUT3*) and hexose  
395 (*Slc2a6/GLUT6*) to import carbohydrates as a means of energy production. Moreover, there is rapid, injury-  
396 induced upregulation of most glycolytic enzymes, including hexokinases (*Hk1*, *Hk2*, *Hk3*), phospho-  
397 fructokinases (*Pfkp*, *Pfk1*), glyceraldehyde-3-phosphate dehydrogenase (*Gapdh*), and pyruvate kinase (*Pkm*)  
398 (**Fig. 3E-3H, 3I**). Injury regulated expression of *Hif1a* and key glycolytic enzymes was validated by qRT-PCR  
399 (**Fig. 3K**). The *Pkm* gene products, PKM1 and PKM2, convert phosphoenol pyruvate into pyruvate, the rate-  
400 limiting enzymes of glycolysis (**Fig. 3J**). PKM2 is of interest because of its nuclear role and interaction with  
401 *Hif1a* to promote expression of glycolytic enzymes and proinflammatory cytokines, including *Il1b* (Palsson-  
402 McDermott et al., 2015). Analysis of 1dpc nerve by qRT-PCR revealed a strong upregulation of *Il1b* when  
403 compared to naïve nerve (**Fig. 3K**). Mac in the injured nerve express elevated levels of *Ldha*, the enzyme that  
404 converts pyruvate to lactate (**Fig. 3I**). Evidence for intracellular lactate build-up, is the sharp increase in  
405 *Slc16a3*, encoding the monocarboxylate transporter 4 (MCT4) shuttling lactate out of cells (**Fig. 3I, 3K**). To  
406 validate the increase in glycolytic enzymes in injured nerve tissue, longitudinal sections of naïve, 1, 3, and  
407 7dpc mice were stained with anti-PKM2 and anti-LDHA (**Fig. 3N-3U**). In naïve nerve, very few cells stain for

408 PKM2 and LDHA. At 1dpc, PKM2 and LDHA are elevated in Mo/Mac at the nerve injury site. At 3dpc, PKM2  
409 and LDHA are most abundant and preferentially detected in F4/80<sup>+</sup> Mac. At 7dpc, staining is reduced and  
410 largely confined to a subset of F4/80<sup>+</sup> Mac.

411 Lactate is far more than a metabolic waste product, since extracellular lactate has been shown to exert  
412 immunosuppressive functions, promote angiogenesis, axonal growth, and neuronal health (Chen et al., 2018;  
413 Funfschilling et al., 2012; Hayes et al., 2021; Kes et al., 2020). Lactate released by SC has axon protective  
414 effects and elevated lactate may be particularly important during the early injury response (Babetto et al.,  
415 2020). Evidence for inhibition of OXPHOS in the nerve during the early injury response is the upregulation of  
416 *Acod1* (**Fig. 3K, 3L**), an enzyme that converts aconitate into itaconate, thereby disrupting the TCA (**Fig. 3J**).  
417 Moreover, itaconate functions as an inhibitor of succinate dehydrogenase (SDH) leading to further inhibition of  
418 the TCA (Lampropoulou et al., 2016). Similarly, *Pdk1* (pyruvate dehydrogenase kinase 1) and *Got1* (glutamic-  
419 oxaloacetic transaminase), inhibitors of OXPHOS, are high at 1 and 3dpc, but low at 7dpc (**Fig. 3L**).  
420 Fragmentation of the TCA is a key feature of pro-inflammatory Mac and a hallmark of the Warburg effect (**Fig.**  
421 **3J**) (Eming et al., 2021). During the inflammation resolution phase, Mac undergo metabolic reprogramming  
422 away from glycolysis toward OXPHOS, a switch that coincides with upregulation of the anti-inflammatory  
423 transcription factors *Atf3*/activating transcription factor 3 and *Nfe2l2/Nrf2* (Mills et al., 2018). In the injured  
424 nerve, *Atf3* and *Nfe2l2* are low at 1dpc and upregulated at 3dpc (**Fig. 3M**). The mitochondrial enzyme *Gatm*  
425 (glycine amidinotransferase) is important for the biosynthesis of creatine, a molecule that facilitates ATP  
426 production from ADP. *Gatm* is transiently downregulated in Mo/Mac at 1dpc and increases in Mac at 3dpc and  
427 7dpc (**Fig. 3M**).

428 Taken together, application of iSNAT provides multiple lines of evidence that during the early injury  
429 response Mo/Mac undergo rapid metabolic reprogramming to increase glycolytic flux and acquire a  
430 proinflammatory state. The proinflammatory state is short-lived as Mac rewire their metabolism toward  
431 OXPHOS and this is paralleled by a transition toward a pro-resolving phenotype.  
432



434

### Figure 3

435

#### Application of iSNAT reveals metabolic reprogramming of immune cells

436

**(A-D)** Feature plots of *Hif1a* expression in naïve and injured sciatic nerve during the first week. **(E-H)** Feature plots of *Pkm* expression in naïve and injured sciatic nerve during the first week. Expression levels are projected onto the UMAP with a minimum expression cutoff of 1. **(I)** Injury regulated gene products associated with glycolysis, as inferred by scRNAseq data. Log2 average expression of genes for cells classified as Mac. **(J)** Metabolic pathways: glycolysis, the catabolism of glucose into pyruvate, and synthesis of nucleotides through the pentose phosphate pathway occur in the cytosol. The tricarboxylic acid cycle (TCA) takes place in mitochondria. The Warburg Effect allows for rapid ATP production through aerobic glycolysis and lactate production. Mitochondrial function is limited because of TCA fragmentation at steps marked with dotted arrows **(K)** Quantification of gene expression by qRT-PCR in the 1dpc nerve relative to naïve nerve. Log2-fold changes relative to naïve nerve are shown. Per gene product, n= 4 replicates. P-values, \* <0.05, \*\* <0.001, \*\*\* < 0.0001, Student's *t* test. ns, not significant. **(L, M)** Injury regulated gene products associated with inhibition of mitochondrial energy synthesis (**L**) and inflammation resolution (**M**), as inferred by scRNAseq data. Log2 average expression of genes for cells classified as Mac. **(N-U)** Longitudinal sections of naïve and injured sciatic nerves stained for macrophages (anti-F4/80, in red). Nerve sections were co-stained with **(N-Q)** anti-PKM2 (green) and **(R-U)** anti-LDHA (green). Proximal is to the left. Scale bar **(N-U)**, 100  $\mu$ m.

451

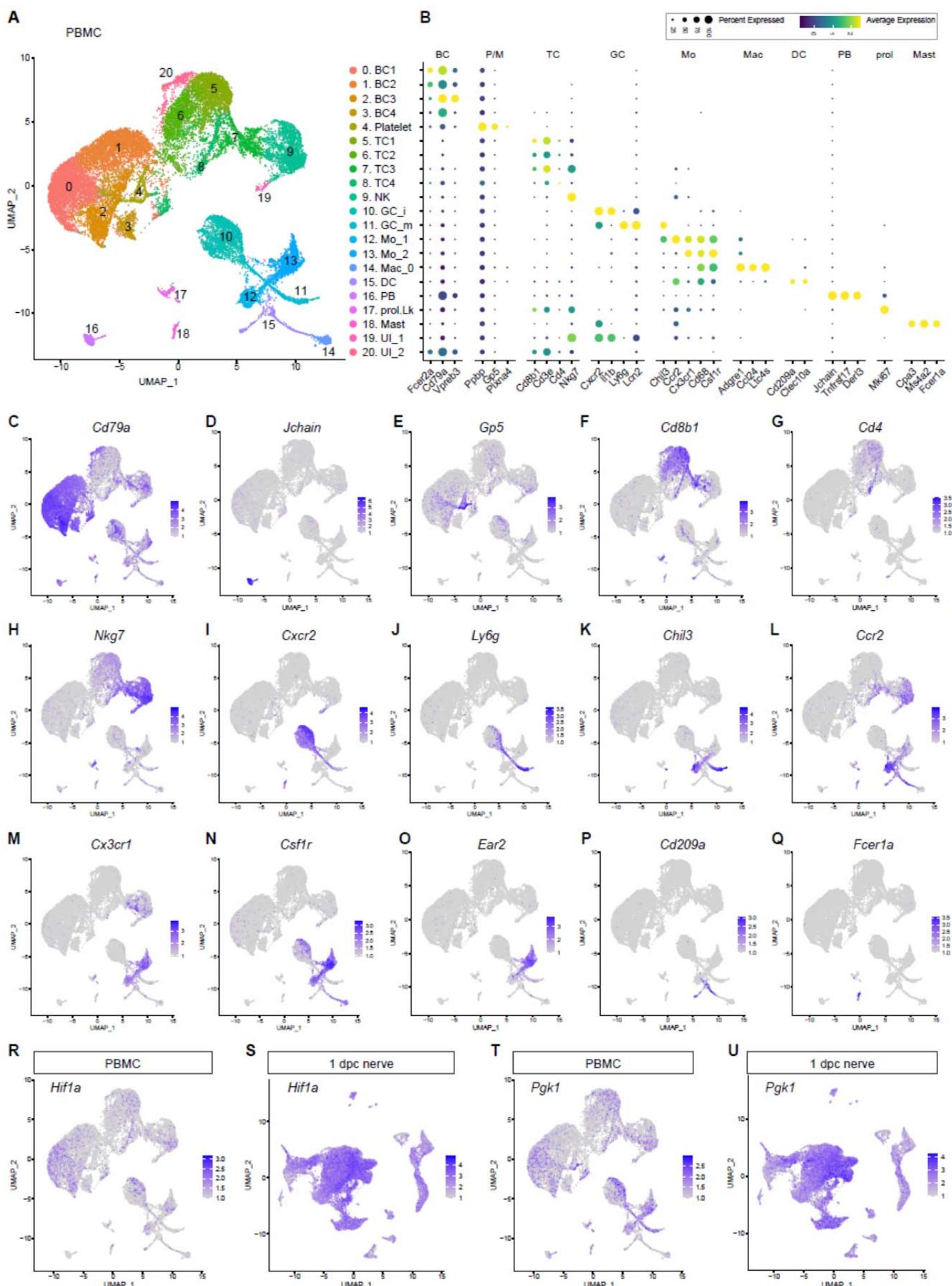
452

#### Myeloid cells in peripheral blood are not programed for glycolytic energy production

453

Because large numbers of blood-borne immune cells enter the injured PNS (Kalinski et al., 2020; Ydens et al., 2020), this prompted a deeper analysis of peripheral blood mononuclear cells (PBMC) before they enter the injured nerve. One important goal was to determine which PBMC enter the nerve upon injury and to assess how this impacts gene expression and metabolic profiles. The UMAP plot of 24,842 high-quality PBMC revealed 20 clusters (**Fig. 4A,4B**). Four clusters with B cells (BC1-BC4) expressing *Cd79a* (38% of all PBMC); plasmablasts (PB, 1.1%) expressing *Jchain*/joining chain of multimeric IgA and IgM, *Tnfrsf17*/TNF receptor superfamily member 17, and *Derl3*/derlin-3; platelets/megakaryocytes (P/M, 2%) expressing, *Pf4*/platelet factor 4, *Gp5*/glycoprotein V platelet, and *Plxna4*/PlexinA4; four clusters with T cells (TC1-TC4, 24.2%), expressing *Cd3e* with subsets of *Cd8b1* and *Cd4* cells, and NK cells (8.6%), expressing *Nkg7*/natural killer cell granule protein 7 (**Fig. 4C-4H**). Two clusters with granulocytes, including mature (GCm) (*Ly6g<sup>hi</sup>*, *Lcn2<sup>hi</sup>*, *Il1b<sup>-</sup>*) and immature (GCI) (*Cxcr2<sup>hi</sup>*, *Ly6g<sup>low</sup>*, *Il1b<sup>hi</sup>*) make up 10.6% of PBMC (**Fig. 4I,4J**). In addition, there are two Mo subpopulations, Mo1 (2.8%) expressing *Chil3<sup>hi</sup>*, *Ccr2<sup>hi</sup>*, *Cx3cr1<sup>int</sup>* *Ly6c2<sup>hi</sup>*, *Csf1r<sup>low</sup>*, and *Ear2<sup>-</sup>*; Mo2 (5.3%) expressing *Cx3cr1<sup>hi</sup>*, *Csf1r<sup>hi</sup>*, *Ear2<sup>hi</sup>*, *Ccr2<sup>-</sup>*, *Ly6c2<sup>-</sup>*, and *Chil3<sup>-</sup>*, and a cluster with Mac (1.2%) expressing *Adgre1*, *Ccl24*, *Ltc4s*, and *Fn1* (**Fig. 4B, 4K-4O**). Mast cells (*Fcer1a*, *Cpa3*) make up 0.7% and DC (*Cd209a*, *Clec10a*) make up 1.8% of PBMC (**Fig. 4B, 4P,4Q**).

468


469

470

471

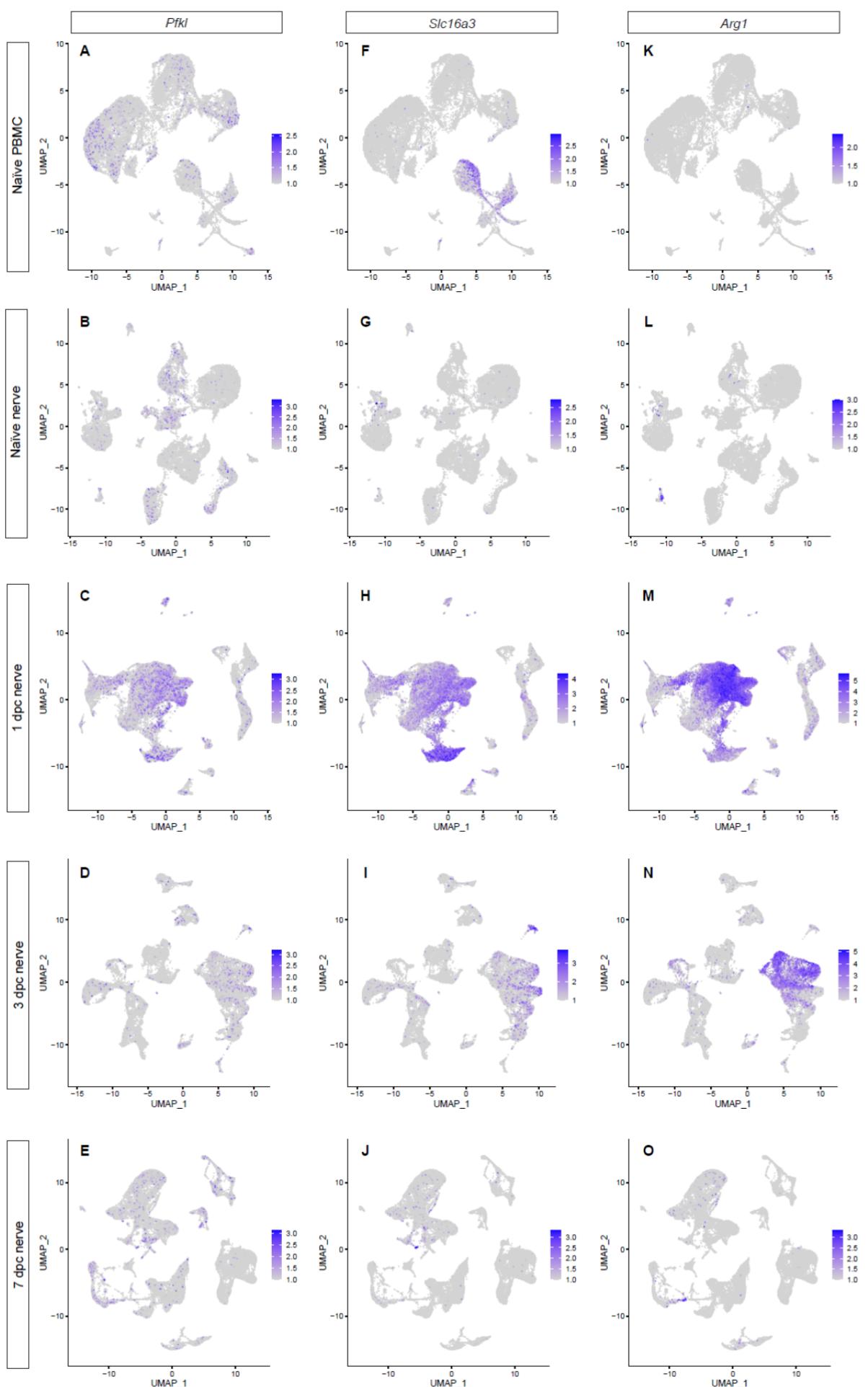
Next, we used computational methods to extract blood myeloid cells (GCI, GCm, Mo1, Mo2, Mac, and DC) from the PBMC dataset for comparison with myeloid cells in the injured sciatic nerve at 1dpc, 3dpc, and 7dpc. Interestingly, Mo1 (*Ccr2<sup>+</sup>*, *Chil3<sup>+</sup>*) are transcriptionally more similar to 1dpc Mo in the nerve than Mo2 (*Ccr2<sup>-</sup>*, *Chil3<sup>-</sup>*), suggesting Mo1 are the primary source of Mo entering the injured nerve. The small population

472 of Mac in blood, is most similar to Mac-III at 1dpc (**Fig. 2B**), suggesting they may enter the injured nerve. GC  
473 in the 1dpc nerve are more similar to GCi than GCm in blood, suggesting preferential entry of GCi. Because  
474 Mo/Mac in the 1dpc nerve are metabolic programmed for glycolytic energy production (**Fig. 3**), we ask whether  
475 their precursors in blood exhibit a similar metabolic profile. Strikingly, when compared to Mo/Mac in the injured  
476 nerve, blood Mo1, Mo2, and Mac show either low levels or lack expression of *Hif1a* (**Fig. 4R, 4S**), the glycolytic  
477 enzymes *Pgk1*/phosphoglycerate kinase-1 (**Fig. 4T, 4U**), *Pfk1*/phosphofructokinase liver type (**Fig. 4, Suppl.**  
478 **1A-1E**), and the lactate exporter *Slc16a3* (**Fig. 4, Suppl. 1F-1J**). This suggests that upon nerve entry,  
479 circulating Mo/Mac become activated and undergo metabolic reprogramming toward glycolytic energy  
480 production. *Arg1*, an important regulator of innate and adaptive immune responses, is not detected in  
481 peripheral blood Mo/Mac, however upon nerve entry, Mo/Mac rapidly upregulate *Arg1*. Regulation of *Arg1*  
482 expression is very dynamic, levels are highest at 1dpc and 3dpc, then rapidly decline, reaching baseline at  
483 7dpc (**Fig. 4, Suppl. 1K-1O**). Thus, our studies show that upon nerve entry, circulating Mo/Mac undergo  
484 extensive transcriptional remodeling of glucose metabolism.



486

## Figure 4


487

### Cellular composition and peripheral blood mononuclear cells

488

(A) UMAP plot embedding of naïve mouse PBMC collected by cardiac puncture. Cell clusters identified harbor B cells (BC1-BC4), Platelets/megakaryocytes (P/M), T cells (TC1-TC4), Natural killer cells (NK), immature and mature granulocytes (mGC and iGC), two subpopulations of monocytes (Mo1 and Mo2), peripheral blood macrophages (MacPB), dendritic cells (DC), plasmablasts (PB), proliferating leukocytes (prol.Lk), mast cells (MAST), and two clusters with unidentified cells (UI1 and UI2). (B) A dotplot with marker genes for identification of PBMC. Color coded expression levels are shown. The dot size reflects the percentage of cells that express the gene. (C-Q) Feature plots of marker gene expression in PBMC. (R-U) Feature plots of *Hif1a* and *Pgk1* (phosphoglycerate kinase 1) expression in PBMC and the injured nerve at 1dpc. Expression levels are projected onto the UMAP with a minimum expression cutoff of 1. Abbreviations: *Cd79a*, CD79A antigen (immunoglobulin-associated alpha); *Gp5*, glycoprotein 5 (platelet); *Cd8b1*, CD8 antigen beta chain 1; *Cd4*, CD4 antigen; *Nkg7*, natural killer cell group 7 sequence; *Cxcr2*, chemokine (C-X-C motif) receptor 2; *Ly6g*, lymphocyte antigen 6 complex locus G; *Chi3*, chitinase-like 3 (Ym1); *Ccr2*, chemokine (C-C motif) receptor 2; *Cx3cr1*, chemokine (C-X3-C motif) receptor 1; *Csf1r*, colony stimulating factor 1 receptor; *Ear2*, eosinophil-associated, ribonuclease A family member 2; *Cd209a*, DC-SIGN (C-type lectin); *Jchain*, joining chain of multimeric IgA and IgM; *Fcer1a*, Fc receptor IgE high-affinity 1 alpha polypeptide.

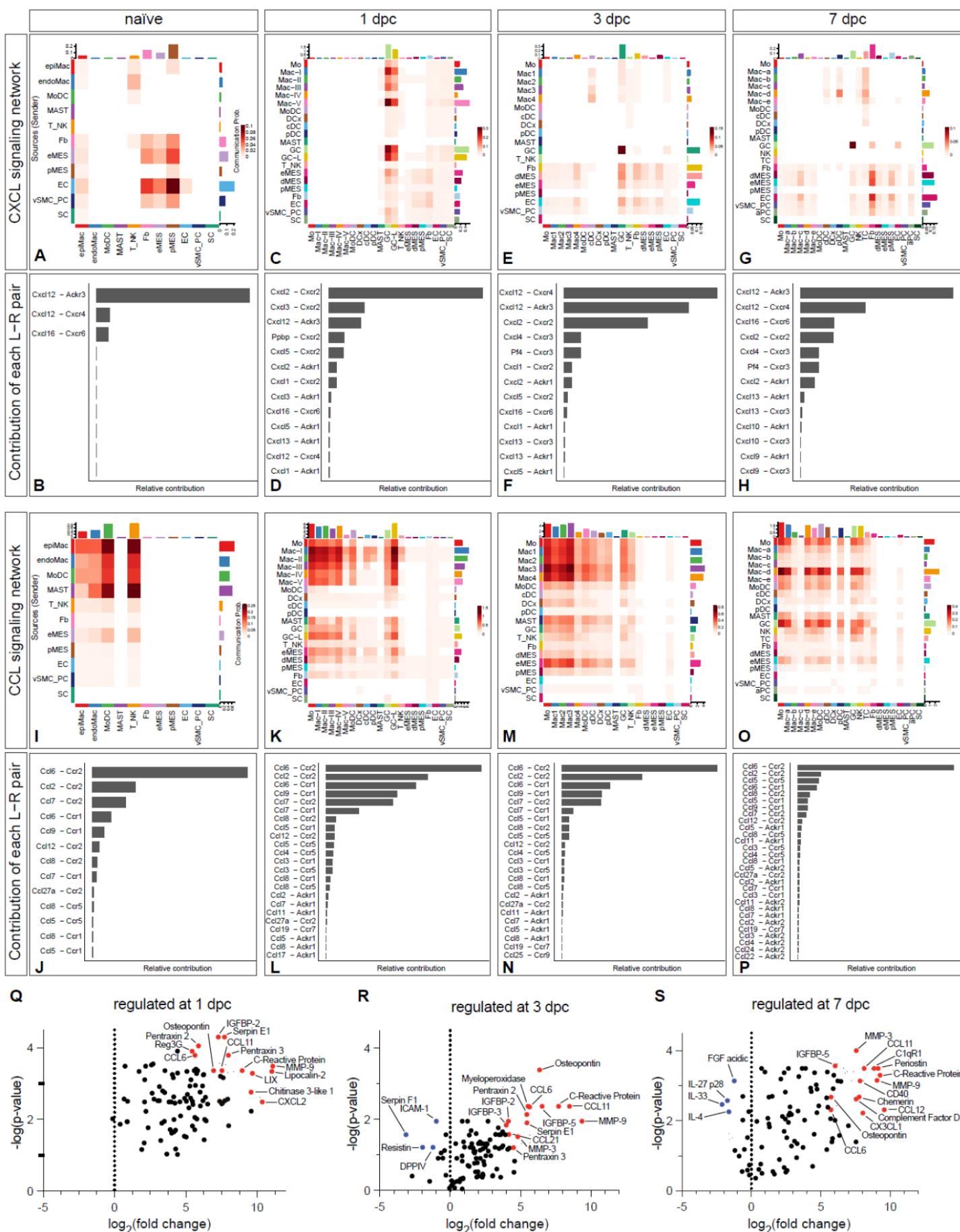
503



505 **Figure 4, Suppl. 1**

506 **Activation of circulating immune cells upon nerve entry**

507 Feature plots for the glycolytic enzyme *Pfk1* (A-E), the monocarboxylate transporter *Slc16a3* (F-J), and the  
508 arginine degrading enzyme *Arg1* (K-O), in peripheral blood monocytes (PBMC), naïve nerve, 1dpc, 3dpc, and  
509 7dpc nerve. Expression levels are projected onto the UMAP with a minimum expression cutoff of 1.


510

511 **CellChat identifies large cell-cell communication networks activated during nerve repair**

512 To understand cell-cell communication networks during the repair process, we interrogated cell surface protein  
513 interactions using CellChat (Jin et al., 2021). To facilitate identification and mining of predicted protein-protein  
514 interactions, we added CellChat as a feature to iSNAT. The output of CellChat is the probability for cell-cell  
515 communication to occur via specific ligand-receptor systems. In naïve and injured nerve, CellChat identified  
516 hundreds of ligand-receptor pairs among different cell groups, which were further categorized into 64 major  
517 signaling networks. Prominent examples of injury regulated networks include CXCL- (Fig. 5A-5H), CCL- (Fig.  
518 5I-5P), CX3C-type chemokine, serum amyloid A (SAA), progranulin (GRN), and osteopontin/secreted  
519 phosphoprotein 1 (SPP1). Many of the ligand-receptor pairs in these networks function in leukocyte  
520 chemotaxis (SenGupta et al., 2019), and thus, can be mined to determine cellular sources and receptor  
521 mechanisms that promote GC and Mo infiltration into the injured nerve. For example, at 1dpc, Mac-II and Mac-  
522 III express *Cxcl2*, *Cxcl3*, *Cxcl5*, and *Ppbp*/pro-platelet basic protein/CXCL7, encoding activators and  
523 chemoattractants for GC that signal through the receptor *Cxcr2*. Mac-I show highest levels of *Cc2*, Mac-II  
524 express *Pf4/CXCL4*, *Grn*/progranulin, and Mac-V express *Ccl24*, *Spp1*, and *Il1rn*. Analysis of chemotactic  
525 receptors further revealed that GC express *Cxcr2*, the formyl peptide receptors *Fpr1* and *Fpr2*, *Tnfrsf1a/TNF*  
526 receptor 1, *Ltb4r1*/leukotriene B4 receptor 1, and *Ccr1*. Mo strongly express the chemotactic receptors *Ccr2*,  
527 *Ccr5*, and *Ltb4r1*, indicating that GC and Mo use overlapping, yet distinct mechanisms for entering the injured  
528 nerve. Many of the chemotactic molecules including *Cc2*, *Cc7*, *Cc9*, and *Cc12* show highest expression at  
529 1dpc. At 3dpc, chemokines are reduced compared to peak levels, and by 7dpc have declined further,  
530 approaching steady state levels comparable to naïve nerves (Fig. 5A-5P).

531 In addition to immune cells, CellChat identifies structural cells as a major hub for chemotactic factors,  
532 providing evidence for prominent immune-stroma crosstalk. In particular, eMES rapidly increase the  
533 production of *Cc2*, *Cc7*, *Il6*, *Il11*, *Cxcl1*, *Cxcl5*, *Cxcl12*, *Cx3cl1*, *Spp1*, and *Lif*. In addition, injured eMES show  
534 elevated expression of serum amyloid A apolipoproteins (*Saa1*, *Saa2*, *Saa3*), chemotactic molecules for GC  
535 and Mo/Mac. *Ptx3*/pentraxin 3, a factor implicated in wound healing (Erreni et al., 2017), is regulated by injury  
536 and rapidly increases in eMES and dMES at 1dpc and 3dpc. Distinct immune molecules are expressed by  
537 pMES, including *Serping1* (complement C1 inhibiting factor), *Cfh* (complement factor H), *Lbp*  
538 (lipopolysaccharide binding protein). Upon injury, dMES upregulate *Cc2*, *Cc7*, *Cxcl1*, *Cxcl5*, *Cxcl12*,  
539 underscoring the importance of diverse stromal cells in orchestrating the immune response (Fig. 5, Suppl 1).  
540 Because SNC inflicts vascular damage, we searched CellChat for injury induced angiogenic signaling  
541 pathways, top hits include VEGF, ANGPT (angiopoietin), ANGPTL (angiopoietin-like proteins), SEMA3

542 (semaphorin 3), EPHA, and EPHB (ephrin receptors). While the importance of angiogenesis and angiogenic  
543 factors in PNS repair has been appreciated, CellChat informs on specific ligand-receptor systems and shows  
544 which cell types produce these factors.  
545



548

## Figure 5

549

### CellChat reveals chemotactic cell-cell communication networks in the injured PNS

550

Hierarchical plots of CellChat analysis showing the inferred intercellular communication network for (A-H)

551

CXCL-chemokines and (I-P) CCL-cytokines in naïve nerve and during the first week following injury. The

552

sender cells (ligand sources) are shown on the y-axis and receiving cells on the x-axis. The communication

553

probabilities for cells that communicate with each other are indicated. (B,D,F,H) The bar graphs show the

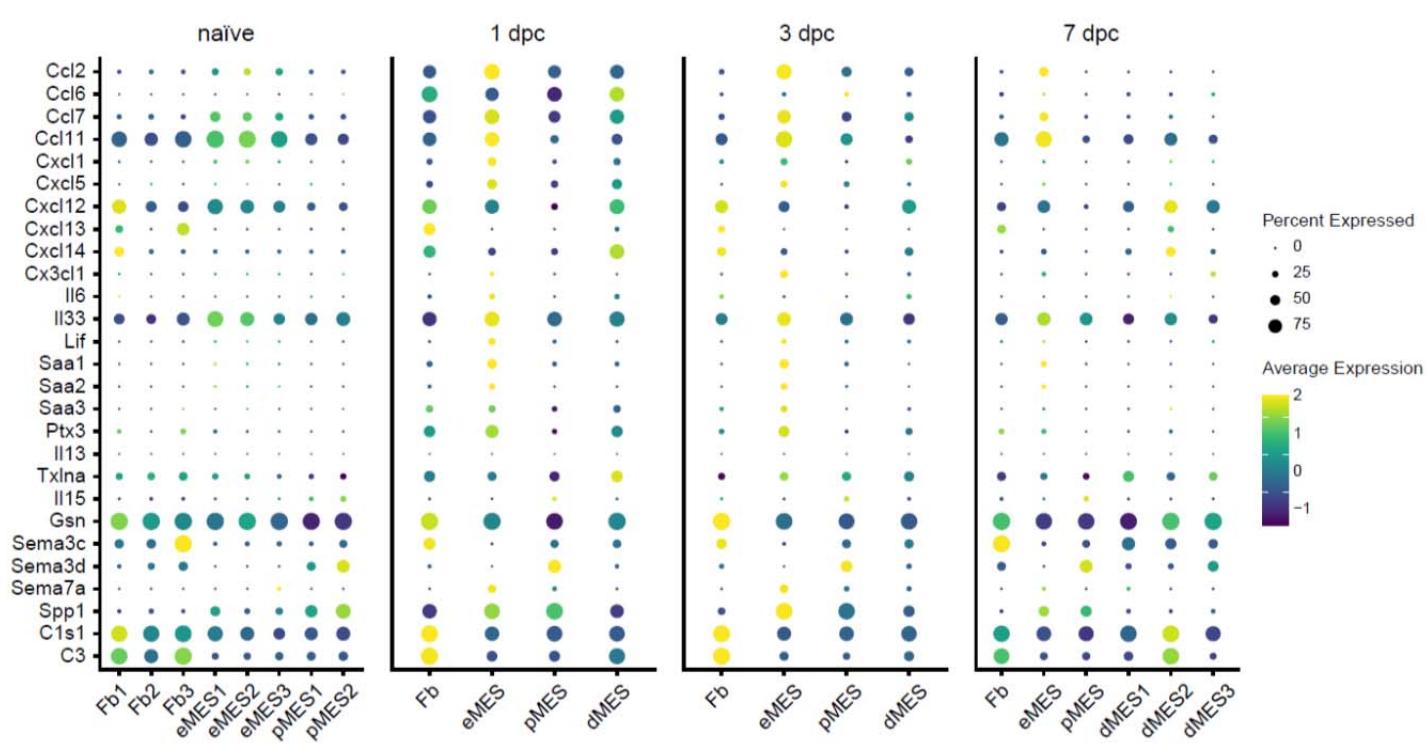
554

contributions of CXCL ligand receptor pairs for each time point. (J,L,N,P) The bar graphs show the

555

contributions of CCL ligand receptor pairs for each time point. (Q-S) Volcano plot of extracellular proteins

556


detected by ELISA compared to naïve nerve. The most abundant and strongly upregulated proteins in the 1dpc

557

nerve (Q), the 3dpc nerve (R), and the 7dpc nerve (S) are shown. The normalized signal on the x-axis shows

558

the log2 fold-change and the y-axis shows the -log(p-value), normalized to naïve nerve.



559

560

## Figure 5, Suppl. 1

561

### Structural cells in the injured nerve directly shape the immune microenvironment

562

Dotplots of structural cells, including Fb (fibroblasts), eMES (endoneurial mesenchymal cells), pMES

563

(perineurial mesenchymal cells), and dMES (differentiating mesenchymal cells). Expression of extracellular

564

immune molecules, as detected by scRNAseq, during the first week following nerve injury are shown. Color

565

coded gene expression levels, normalized to average gene expression is shown. The dot size reflects the

566

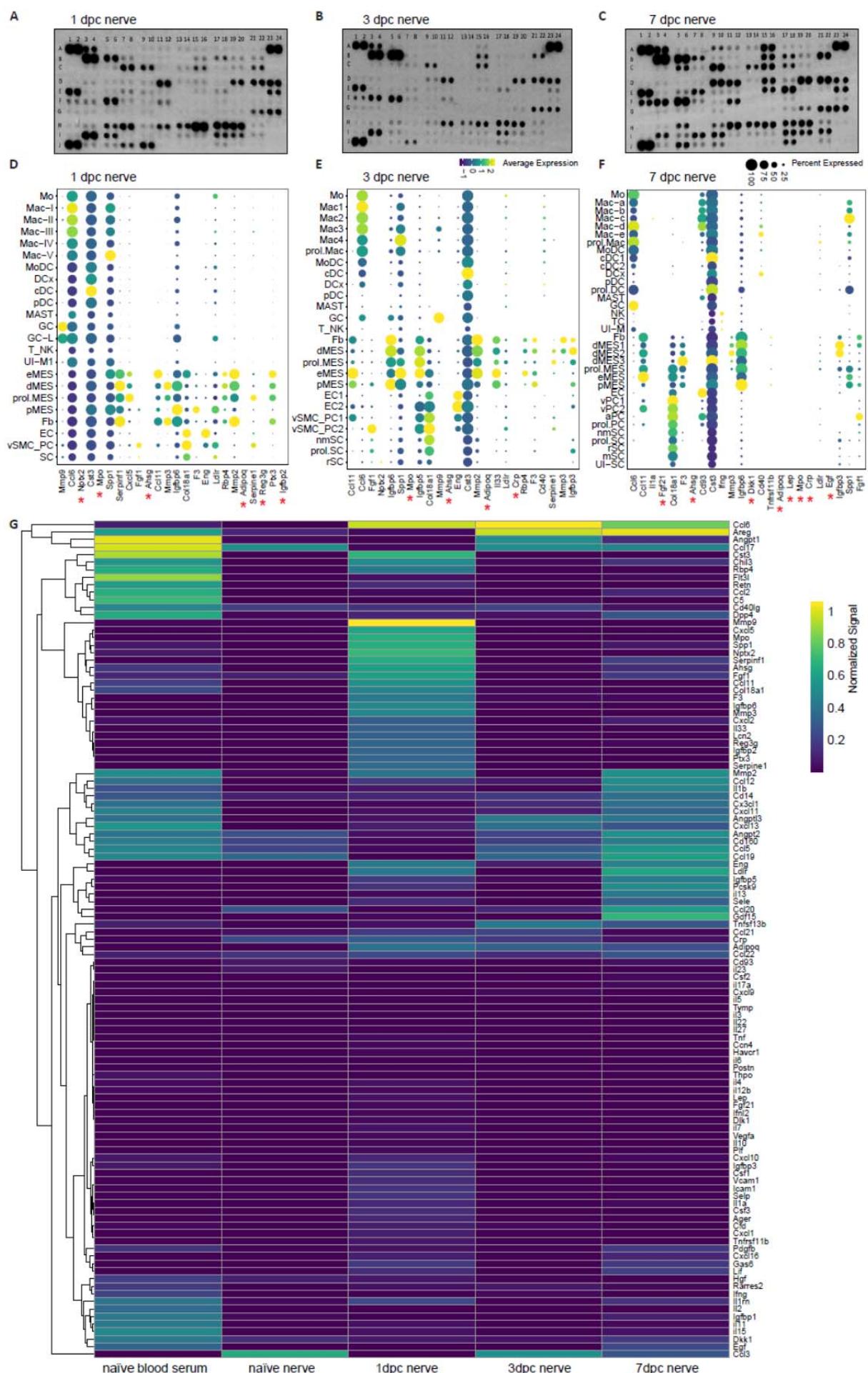
percentage of cells that express the gene.

567

568

### Identification of sciatic nerve injury regulated extracellular proteins

569


While CellChat predicts a large number of ligand-receptor interactions to occur in the injured nerve, we used

570

ELISA to probe nerve lysates to ask whether some of the corresponding extracellular proteins are present at 1,

572 3, and 7dpc (**Fig. 5, Suppl. 2**). ELISA data obtained from naïve nerve and serum were used for comparison  
573 (**Fig. 1, Suppl. 3**). Proteins strongly upregulated by SNC include chemokines (CCL6, CCL11, CCL12, CXCL2,  
574 LIX, and osteopontin), serpin family members (Serpin E1/PAI-1, Serpin F1/PEDF), pentraxins (NPTX2, PTX3,  
575 CRP), ECM degrading matrix metallopeptidases (MMP9, MMP3, MMP2), and IGF binding proteins (IGFBP2,  
576 IGFBP3, IGFBP5, IGFBP6) (**Fig. 5 Suppl. 2**). In the 1dpc nerve, prominently detected proteins include MMP9,  
577 CCL6, NPTX2, PTX3, CST3, MPO, Osteopontin, SerpinF1, CXCL5, FGF1, AHSG, CCL11, MMP3, IGFBP2,  
578 (**Fig. 5Q, Fig 5, Suppl. 2D**). Top proteins detected in the nerve at 3dpc include CCL11, CCL6, FGF1, NPTX2,  
579 PTX3, IGFBP6, Osteopontin, MPO, IGFBP5, MMP9, CST3, MMP3, Endostatin (**Fig. 5R, Fig 5, Suppl. 2E**).  
580 Top proteins detected in the nerve at 7dpc include CCL6, CCL11, IL1 $\alpha$ , FGF21, Endostatin, F3, AHSG, ENG,  
581 CST3, MMP2, Adipoq, INF $\gamma$ , IL33, and LDLR (**Fig. 5S, Fig 5, Suppl. 2F**).

582 To examine whether the corresponding transcripts are expressed in the injured nerve, and to identify  
583 the cellular sources, we generated dotplots from scRNAseq datasets (**Fig. 5, Suppl. 2D-2F**). For the top 25  
584 proteins detected by ELISA, there is a close correlation at the transcriptional level with many gene products  
585 strongly expressed by structural cells. Some of the top gene products detected by ELISA but not by  
586 scRNAseq, are serum proteins (**Fig. 1, Suppl. 3D**). Specifically, they include fetuin A (AHSG), CRP (C reactive  
587 protein), IGFBP-2, Reg3g (regenerating family member 3 $\gamma$ ), and CFD (complement factor D). Because mice  
588 were transcardially perfused before nerves were harvested, this shows that numerous systemic factors  
589 accumulate in the injured nerve. CRP is of interest, because it binds to the surface of dead cells and activates  
590 complement C1q (Alnaas et al., 2017). Collaboration between CRP and C1q is supported by the strong  
591 expression of C1q components (*C1qa*, *C1qb*, and *C1qc*) in most Mac subpopulations. CFD is a serine  
592 protease required for the formation of C3 convertase. Soluble C1qR1/CD93 functions as a bridging molecule  
593 that aids apoptotic cell binding to professional phagocytes for removal by efferocytosis (Blackburn et al., 2019).  
594 Taken together, we provide validation for many injury-regulated gene products identified by scRNA-seq and  
595 show that serum proteins that function in opsonization feature prominently in the PNS following nerve crush  
596 injury. Interestingly, several abundantly detected serum proteins (Angpt1, Angpt2, Angptl3, IGFBP-1) seem  
597 not to enter the injured nerve parenchyma (**Fig. 5, Suppl. 1**). This suggests that these proteins are either  
598 rapidly degraded or that SNC causes a partial breakdown of the BNB, allowing only some serum proteins to  
599 enter the injured nerve.

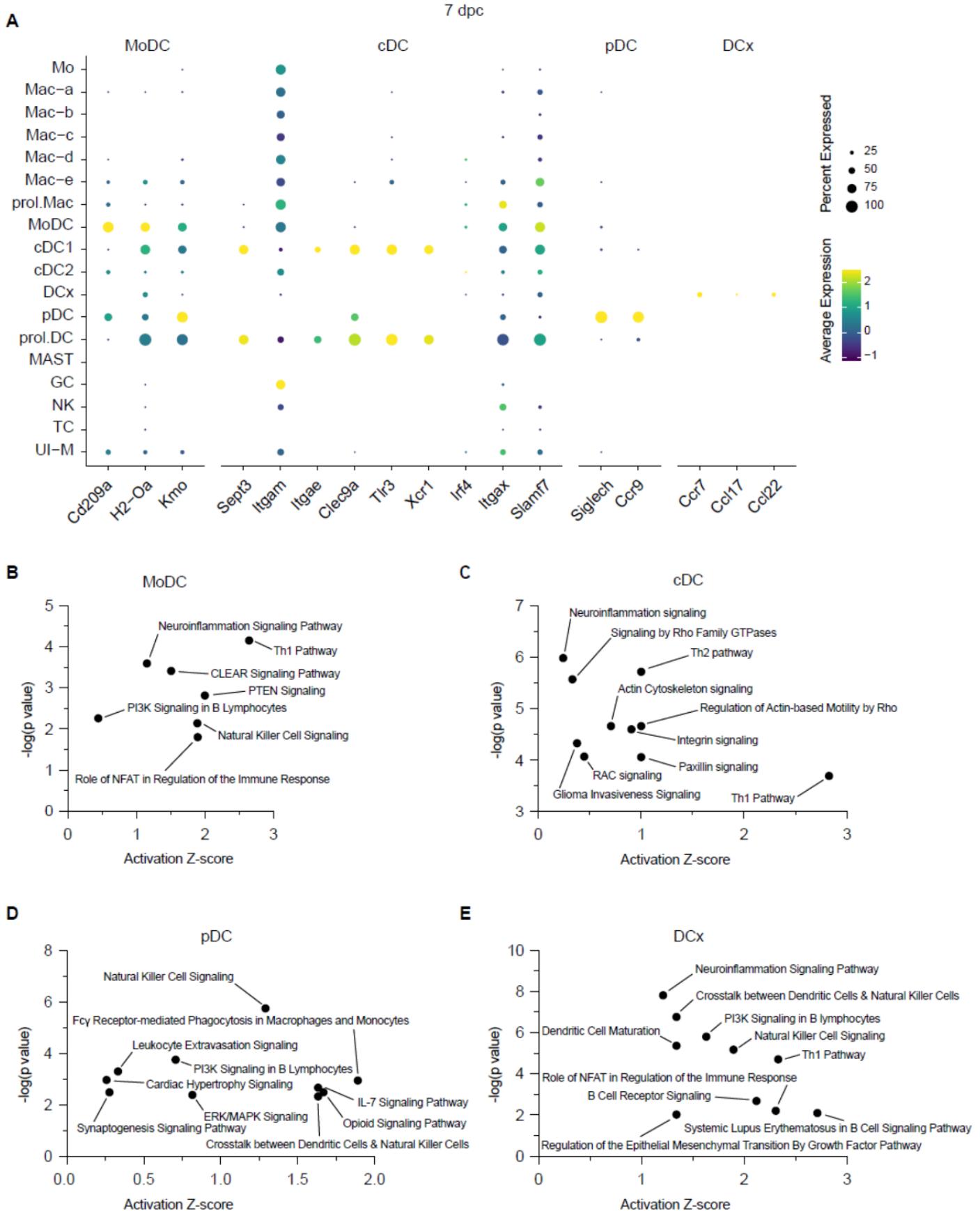


601 **Figure 5, Suppl. 2**

602 **Identification of extracellular proteins in the injured sciatic nerve by ELISA**

603 (A-C) ELISA membranes probed with injured nerve lysates prepared at (A) 1dpc, (B) 3dpc, and (C) 7dpc. (D-F)  
604 Dotplots of scRNASeq data from 1dpc, 3dpc, and 7dpc, for the top 25 gene products detected by ELISA.  
605 Relative RNA expression levels, normalized to average gene expression (color coded) are shown. For each  
606 cell cluster, the percentile of cells expressing a specific gene product is indicated by the dot size. Gene  
607 products marked with a red star are detected by ELISA but not by scRNASeq. (G) Heatmap shows proteins  
608 detected by ELISA in serum of naïve mice, naïve sciatic nerve trunk, and injured sciatic nerve trunk at 1dpc,  
609 3dpc, and 7dpc. Number of biological replicates for ELISA, n = 1. Relative protein levels were normalized to  
610 internal controls on ELISA membranes shown at coordinates (A1,A2), (A23,A24), (J1,J2). Coordinates of  
611 proteins that can be detected by the ELISA: (A3, A4) Adiponectin [*Adipoq*], (A5, A6) Amphiregulin [*Areg*], (A7,  
612 A8) Angiopoientin-1 [*Angpt1*], (A9, A10) Angiopoientin-2 [*Angpt2*], (A11, A12) Angiopoientin-like 3 [*Angptl3*],  
613 (A13, A14) BAFF [*Tnfrsf13b*], (A15, A16) C1qR1 [*Cd93*], (A17, A18) CCL2 [*Ccl2*], (A19, A20) CCL3 [*Ccl3*],  
614 (A21, A22) CCL5 [*Ccl5*], (A23, A24) Reference spots, (B3, B4) CCL6 [*Ccl6*], (B5, B6) CCL11 [*Ccl11*], (B7, B8)  
615 CCL12 [*Ccl12*], (B9, B10) CCL17 [*Ccl17*], (B11, B12) CCL19 [*Ccl19*], (B13, B14) CCL20 [*Ccl20*], (B15, B16)  
616 CCL21 [*Ccl21*], (B17, B18) CCL22 [*Ccl22*], (B19, B20) CD14 [*Cd14*], (B21, B22) CD40 [*Cd40*], (C3, C4)  
617 CD160 [*Cd160*], (C5, C6) Chemerin [*Rarres2*], (C7, C8) Chitinase 3-like 1 [*Chil3*], (C9, C10) Coagulation  
618 Factor III [*F3*], (C11, C12) Complement Component C5 [*C5*], (C13, C14) Complement Factor D [*Cfd*], (C15,  
619 C16) C-Reactive Protein [*Crp*], (C17, C18) CX3CL1 [*Cx3cl1*], (C19, C20) CXCL1 [*Cxcl1*], (C21, C22) CXCL2  
620 [*Cxcl2*], (D1, D2) CXCL9 [*Cxcl9*], (D3, D4) CXCL10 [*Cxcl10*], (D5, D6) CXCL11 [*Cxcl11*], (D7, D8) CXCL13  
621 [*Cxcl13*], (D9, D10) CXCL16 [*Cxcl16*], (D11, D12) Cystatin C [*Cst3*], (D13, D14) DKK-1 [*Dkk1*], (D15, D16)  
622 DPPIV [*Dpp4*], (D17, D18) EGF [*Egf*], (D19, D20) Endoglin [*Eng*], (D21, D22) Endostatin [*Col18a1*], (D23, D24)  
623 Fetuin A [*Ahsg*], (E1, E2) FGF acidic [*Fgf1*], (E3, E4) FGF-21 [*Fgf21*], (E5, E6) Flt-3 Ligand [*Flt3l*], (E7, E8)  
624 Gas 6 [*Gas6*], (E9, E10) G-CSF [*Csf3*], (E11, E12) GDF-15 [*Gdf15*], (E13, E14) GM-CSF [*Csf2*], (E15, E16)  
625 HGF [*Hgf*], (E17, E18) ICAM-1 [*ICAM1*], (E19, E20) IFN-gamma [*Ifng*], (E21, E22) IGFBP-1 [*Igfbp1*], (E23, E24)  
626 IGFBP-2 [*Igfbp2*], (F1, F2) IGFBP-3 [*Igfbp3*], (F3, F4) IGFBP-5 [*Igfbp5*], (F5, F6) IGFBP-6 [*Igfbp6*], (F7, F8) IL-  
627 1alpha [*Il1a*], (F9, F10) IL-1Beta [*Il1b*], (F11, F12) IL-1ra [*Il1rn*], (F13, F14) IL-2 [*Il2*], (F15, F16) IL-3 [*Il3*], (F17,  
628 F18) IL-4 [*Il4*], (F19, F20) IL-5 [*Il5*], (F21, F22) IL-6 [*Il6*], (F23, F24) IL-7 [*Il7*], (G1, G2) IL-10 [*Il10*], (G3, G4) IL-  
629 11 [*Il11*], (G5, G6) IL-12 p40 [*Il12*], (G7, G8) IL-13 [*Il13*], (G9, G10) IL-15 [*Il15*], (G11, G12) IL-17A [*Il17a*],  
630 (G13, G14) IL-22 [*Il22*], (G15, G16) IL-23 [*Il23*], (G17, G18) IL-27 p28 [*Il27*], (G19, G20) IL-28 [*Il28*], (G21,  
631 G22) IL-33 [*Il33*], (G23, G24) LDL R [*Ldlr*], (H1, H2) Leptin [*Lep*], (H3, H4) LIF [*Lif*], (H5, H6) Lipocalin-2 [*Lcn2*],  
632 (H7, H8) LIX [*Cxcl5*], (H9, H10) M-CSF [*Csf1*], (H11, H12) MMP-2 [*Mmp2*], (H13, H14) MMP-3 [*Mmp3*], (H15,  
633 H16) MMP-9 [*Mmp9*], (H17, H18) Myeloperoxidase [*Mpo*], (H19, H20) Osteopontin [*Spp1*], (H21, H22)  
634 Osteoprotegerin [*Tnfrsf11b*], (H23, H24) PD-ECGF [*Tymp*], (I1, I2) PDGF-BB [*Pdgfb*], (I3, I4) Pentraxin 2  
635 [*Nptx2*], (I5, I6) Pentraxin 3 [*Ptx3*], (I7, I8) Periostin [*Postn*], (I9, I10) Pref-1 [*Dlk1*], (I11, I12) Proliferin [*Prl2c2*],  
636 (I13, I14) Proprotein Convertase 9 [*Pcsk9*], (I15, I16) RAGE [*Ager*], (I17, I18) RBP4 [*Rbp4*], (I19, I20) Reg3G  
637 [*Reg3g*], (I21, I22) Resistin [*Retn*], (J1, J2) Reference spots, (J3, J4) E-Selectin [*Sele*], (J5, J6) P-Selectin  
638 [*Selp*], (J7, J8) Serpin E1 [*Serpine1*], (J9, J10) Serpin F1 [*Serpinf1*], (J11, J12) Thrombopoietin [*Thpo*], (J13,

639 J14) TIM-1 [*Havcr1*], (J15, J16) TNF-alpha [*Tnf*], (J17, J18) VCAM-1 [*Vcam1*], (J19, J20) VEGF [*Vegf*], (J21,  
640 J22) WISP-1 [*Ccn4*], (J23, J24) negative control.


641

#### 642 The injured sciatic nerve harbors distinct dendritic cell populations

643 Only few DC are present in the naïve nerve, and they can be distinguished from resident Mac by their  
644 prominent expression of *Flt3* (FMS-like tyrosine kinase 3) and *Napsa* (**Fig. 1L**). During the first week following  
645 nerve injury, MoDC, identified by *Cd209a* expression, gradually increase (**Fig. 2H, 2P, 2X**). Gene expression  
646 analysis in iSNAT identifies additional DC subpopulations, including conventional dendritic cells (cDC,  
647 *Sept3*/septin 3 GTPase, *Clec9a*/C-type lectin domain containing 9A), plasmacytoid dendritic cells (pDC, *Ccr9*  
648 and *Siglech*), and DCx (*Ccr7*/chemokine receptor 7, *Ccl17*, *Ccl22*, *Fscn1*/fascin an actin-binding protein) (**Fig.**  
649 **5, Suppl. 3A**). DCx are reminiscent of Langerhans cells and express *Ccr7*, suggesting they are mature cells  
650 destined for homing, the migration from injured nerve to draining lymph nodes (Bros et al., 2011; Liu et al.,  
651 2021). At 7dpc, two subpopulations of conventional DC (cDC1 and cDC2) are detected. Previous work has  
652 established that cDC1 are specialized in cross presentation and activation of cytotoxic TC, and cDC2 are  
653 specialized in driving helper TC responses (Steinman, 2012). The two populations can be distinguished based  
654 on preferential expression of marker genes, cDC1 (*Itgam*<sup>-</sup>/CD11b, *Itgae*<sup>+</sup>/integrin αE, *Clec9a*<sup>+</sup>, *Tlr3*<sup>+</sup>/toll-like  
655 receptor 3, *Xcr1*<sup>+</sup>/X-C motif chemokine receptor 1<sup>+</sup>) and cDC2 (*Itgam*<sup>+</sup>, *Clec9a*<sup>-</sup>, *Xcr1*<sup>-</sup>, *Irf4*<sup>+</sup>/interferon regulatory  
656 factor 4, *Slamf7*/CD2-like receptor activating cytotoxic cells).

657 CellChat identifies an FLT3 signaling network in the injured nerve and predicts communication between  
658 TC, NK, and all four DC populations (data not shown). Nerve injury triggers strong expression of interferon-  
659 inducible genes in MoDC (*Ifi30*, *Ifitm1*, *Ifitm6*), cDC1 (*Ifi30*, *Ifi205*, *Irf8*), and cDC2 (*Ifi30*). MoDC express  
660 high levels of macrophage galactose-type lectin, encoded by the C-type lectin receptor *Clec10a*, typically found  
661 on tolerogenic antigen-presenting cells (van Kooyk et al., 2015). The *Clec9a* gene product is expressed by  
662 cDC and binds to filamentous actin exposed by damaged or ruptured cells (Zhang et al., 2012). The strong  
663 expression of *Clec9a* by cDC1 at 7dpc suggests a role in antigen uptake and presentation. While DC are  
664 superior to Mac in presenting antigen and express high levels of *MHC class II* components (*H2-Aa*, *H2-Ab1*,  
665 *H2-DMa*, *H2-Eb1*, *Cd74*), most Mac in the naïve nerve, and some Mac in the injured nerve, express *MHC*  
666 *class II* and *Cd74*, suggesting they are endowed with antigen presenting capabilities. Mac in the injured nerve  
667 can be distinguished from DC by their preferential expression of complement C1q (*C1qa*, *C1qb*, *C1qc*),  
668 *C3ar1*/complement C3a receptor 1, *Fcgr1*/CD64, *Trem2*, *Slc11a1*, *Adgre1*, and *Apoe*/apolipoprotein E.

669 To infer potential functions for DC in the injured nerve, we carried out ingenuity pathway analysis (IPA)  
670 (**Fig. 5, Suppl. 3B-3E**). At 7dpc, the top positively regulated pathways include, *Th1 pathway* for MoDC and  
671 *Th2 pathway* for cDC1, suggestive of proinflammatory and inflammation resolving functions, respectively. The  
672 top pathways for pDC are *NK cell signaling* and *Fcy receptor-mediated phagocytosis* and for DCx  
673 *neuroinflammation signaling* and *crosstalk between DC and NK cells*. Taken together, we identify different DC  
674 populations in the injured PNS and pathway analysis predicts extensive crosstalk between DC-NK and DC-TC.



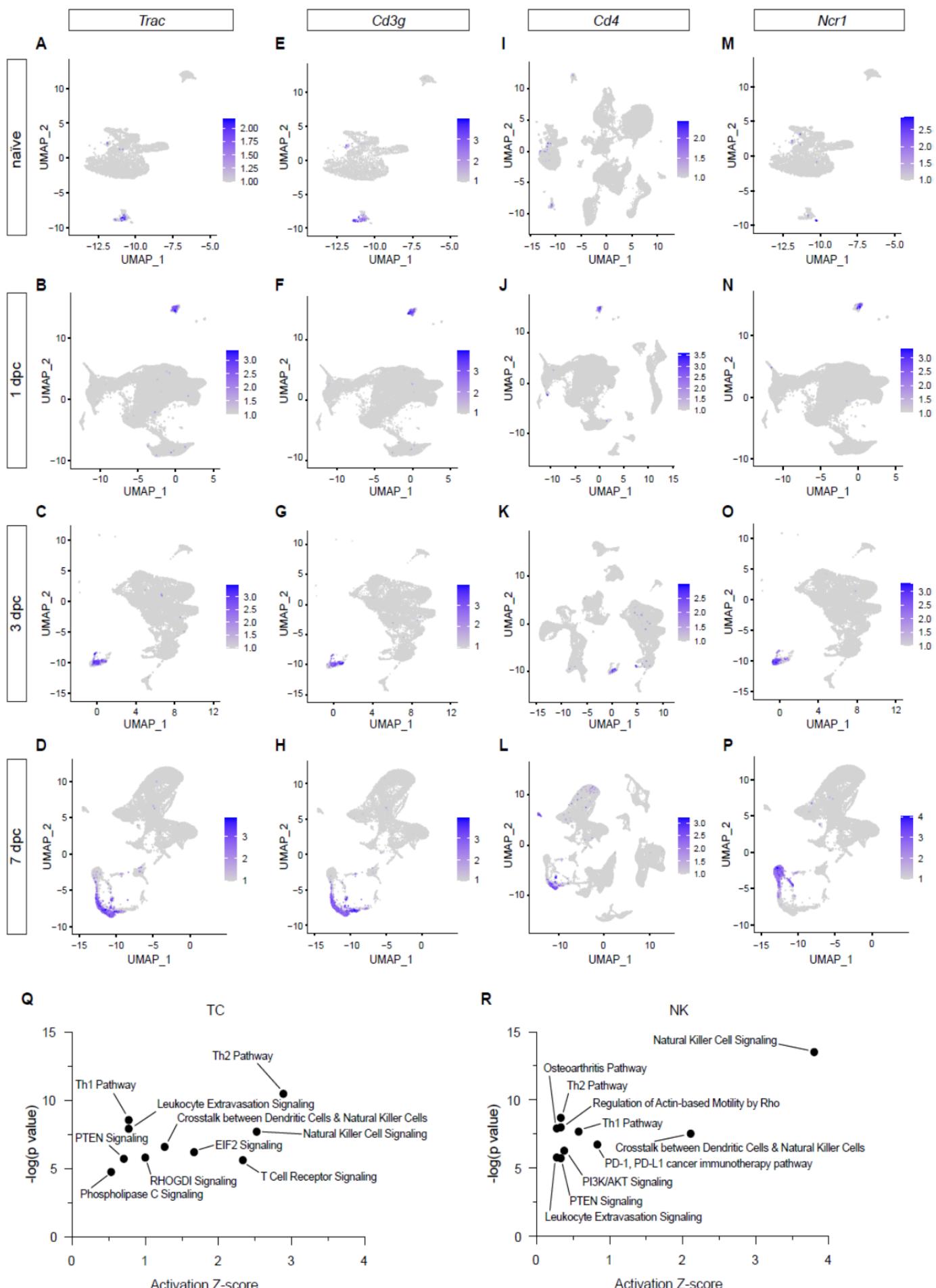
679 **Figure 5, Suppl. 3**

680 **Identification of distinct dendritic cell populations in the injured PNS**

681 (A) Dotplot for DC marker genes at 7dpc identifies MoDC (monocyte-derived dendritic cells), cDC  
682 (conventional dendritic cells), pDC (plasmacytoid dendritic cells), and DCx (mature dendritic cells destined for  
683 homing to draining lymph nodes). Relative RNA expression levels, normalized to average gene expression  
684 (color coded) are shown. For each cell cluster, the percentile of cells expressing a specific gene product is  
685 indicated by the dot size. Ingenuity pathway analysis at 7dpc for (B) MoDC, (C) cDC, (D) pDC, and (E) DCx.  
686 Top-scoring enriched canonical pathways in each cell type are represented by activation z-scores and p-  
687 values.

688

689 **PNS injury triggers a gradual T cell response**


690 For TC classification, we used the “*Expression Analysis*” function in iSNAT. Most TC express the T cell  
691 receptor (TCR) α-chain constant (*Trac*) and β-chains (*Trbc1* and *Trbc2*), suggesting they are αβ TC (Fig. 5,  
692 Suppl. 4A-4D). Only few TC are present in the naïve sciatic; however, TC gradually increase upon injury, and  
693 by 7dpc make up ~10% of immune cells. Few *Mki67*/Ki67<sup>+</sup> TC are observed in the injured nerve and the  
694 majority expresses *Ms4a4b*, a negative regulator of cell proliferation (Fig. 2, Suppl. 2F-2H). This suggests  
695 that TC expansion is primarily due to nerve infiltration, rather than local proliferation. In support of this, TC  
696 strongly express *Cxcr6*, a chemotactic receptor for *Cxcl16* expressed by Mac and DCx in the injured nerve.  
697 Nearly all TC express CD3 (*Cd3g*, *Cd3d*, *Cd3e*, and *Cd3z/Cd247*), a key component of the TCR-CD3 complex  
698 (Fig. 5, Suppl. 4E-4H). At 7dpc, the TC population is comprised of CD4<sup>+</sup> T helper cells (Th), expressing *Cd4*,  
699 (Fig. 5, Suppl. 4I-4L) and CD8 cells expressing *Cd8a* and *Cd8b1*, suggesting they are CD8αβ<sup>+</sup> cells (data not  
700 shown). Differentiation of CD4<sup>+</sup> Th into pro-inflammatory Th1 or anti-inflammatory Th2 effector cells is  
701 controlled by the transcription regulators T-bet (*Tbx21*) and GATA3 (*Gata3*), respectively (Jenner et al., 2009).  
702 *Gata3*<sup>+</sup> Th2 cells are observed in naïve and injured nerves, while *Tbx21*<sup>+</sup> Th1 are largely absent from naïve  
703 nerve but increase following injury and express the killer cell lectin like receptors *Klrd1* and *Klrc1*, markers of  
704 an activated pro-inflammatory state. Pathway analysis of TC at 7dpc, identified *Th2 pathway* and *Th1 pathway*  
705 as top hits (Fig. 5, Suppl. 4Q). It is well established that the Th1 response plays a key role in neuropathic pain  
706 development and persistence (Davies et al., 2020; Moalem and Tracey, 2006). At 7dpc, there is a small  
707 population of γδ TC (*Trdc*), and some T regulatory cells (Tregs), a specialized subpopulation of TC that acts to  
708 suppress the immune response. In the PNS, Tregs (*Cd4*, *Il2ra/CD25*, *Foxp3*) are of interest, because they  
709 may function in self-tolerance and pain mitigation (Davoli-Ferreira et al., 2020).

710

711 **Natural Killer cells increase following nerve injury**

712 In contrast to TC, NK do not express *Cd3g*, *Cd3d*, *Cd3e*, but strongly express natural cytotoxicity receptor  
713 (*Ncr1*), killer cell lectin-like receptor subfamily B member 1C (*Klrb1c/NK1.1*), the pore-forming glycoprotein  
714 perforin (*Prf1*), and the granzyme family serine proteases (*Gzma*, *Gzmb*) (Fig. 5, Suppl. 4M-4P). Granzymes  
715 are delivered into target cells through the immunological synapse to cause cell death. While the full spectrum  
716 of cells targeted by NK has yet to be determined, NK cytotoxic factors have been shown to accelerate

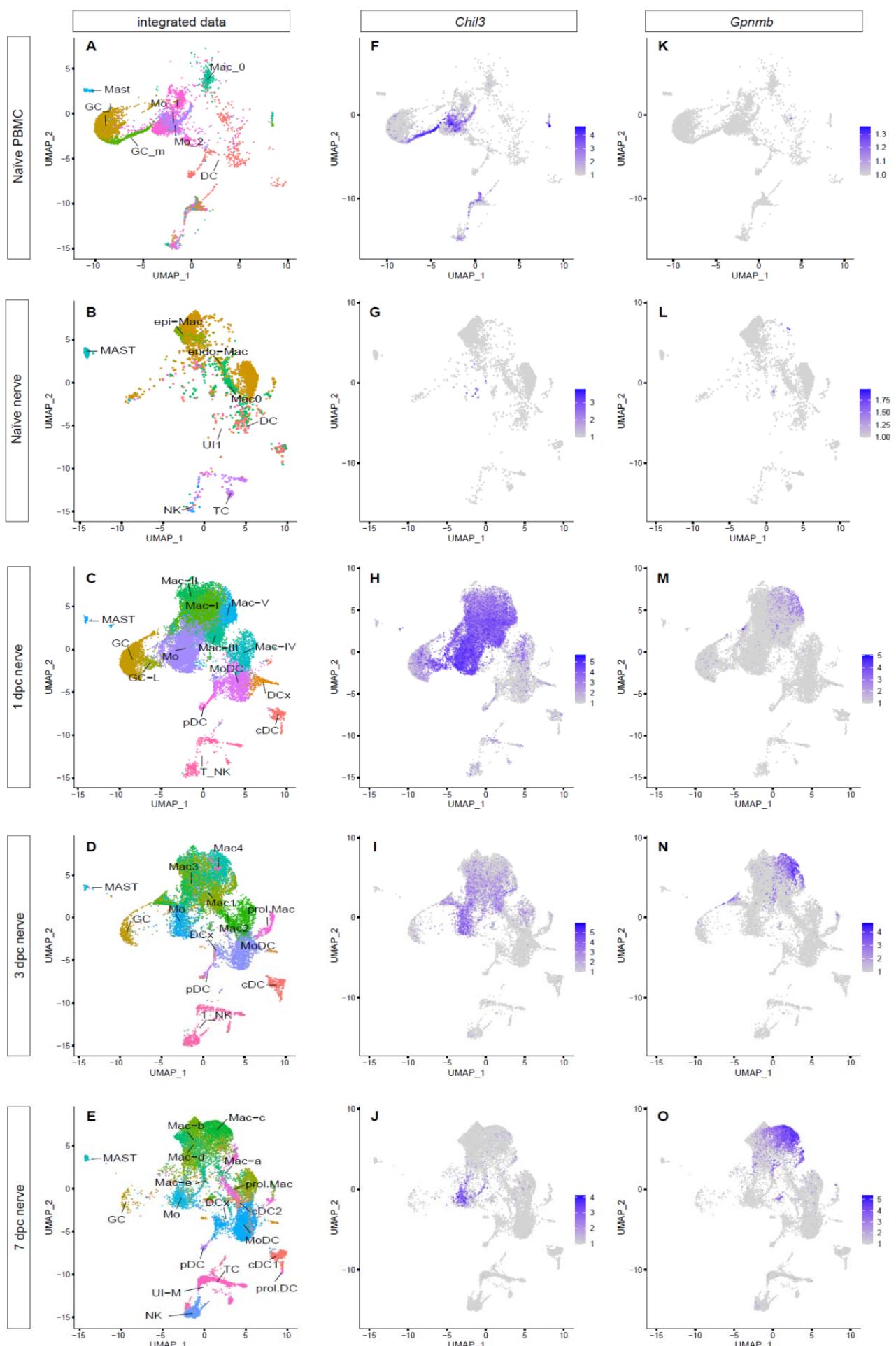
717 degeneration of damaged axons (Davies et al., 2019). Compared to NK, CD8<sup>+</sup> TC express low levels of  
718 granulysin (*Gnly*), perforin (*Prf1*), and granzymes (*Gzma*, *Gzma*) suggesting limited cytotoxic activity. However,  
719 similar to NK, many TC express *Nkg7*, a natural killer cell granule protein, and the killer cell lectin like receptor  
720 K1 (*Klrk1*/NKG2D), indicative of some cytotoxic abilities. NK (and some TC) strongly express *Klrc1*/NKG2A  
721 (CD94), an immune inhibitory checkpoint gene. The ligand for NKG2A is the non-classical MHC1 molecule  
722 Qa-2 (encoded by *H2-q7*), expressed by NK and TC. CellChat predicts a high probability for an MHC-I  
723 signaling network between CD8<sup>+</sup> TC, NK, and pDC, and an MHC-II signaling network between CD4<sup>+</sup> TC and  
724 with DC and Mac in the injured nerve. IPA for NK at 7dpc, identifies *NK signaling*, *Th2 pathway*, and *crosstalk*  
725 *between DC and NK* as top hits (**Fig. 5, Suppl. 4R**). The majority of NK and TC in the injured nerve produce  
726 interferon  $\gamma$  (*Ifng*), some TC produce TNF $\alpha$  (*Tnf*), and few produce GM-CSF (*Csf2*). In addition, NK and TC  
727 produce chemoattractants and survival signals for DC, including *Flt3l*, *Ccl5*, *Xcl1*/lymphotactin, suggesting they  
728 directly regulate DC migration and function.



730 **Figure 5, Suppl. 4**

731 **Description of TC and NK populations in the injured PNS**

732 Feature plots for **(A-D)** *Trac*/T cell receptor alpha constant, **(E-H)** *Cd3g*/CD3 gamma subunit of T cell receptor  
733 complex, **(I-L)** *Cd4*/T cell surface glycoprotein CD4, and **(M-P)** *Ncr1*/Natural cytotoxicity triggering receptor-1 of  
734 naïve, 1, 3, and 7dpc nerve identify TC subpopulations and NK cells. Expression levels are projected onto the  
735 UMAP with a minimum expression cutoff of 1. **(Q, R)** Ingenuity pathway analysis for TC and NK at 7dpc. Top-  
736 scoring enriched canonical pathways are represented by activation z-scores and p-values.


737

738 **Tracking myeloid cell transcriptional states and maturation in the injured nerve**

739 Mo/Mac are often described as highly “plastic” cells, educated by the local tissue environment. While Mac  
740 subpopulations in the injured PNS have been cataloged (Kalinski et al., 2020; Ydens et al., 2020), tracking  
741 them over time, as they mature, has not yet been attempted. To better understand Mo/Mac maturation in the  
742 injured nerve, we took advantage of our longitudinal scRNASeq datasets. Computational methods were used to  
743 extract myeloid cells from PBMC, naïve nerve, and the three post-injury time points to carry out an integrated  
744 data analysis (**Fig. 6A-E**). When comparing the UMAP plots of naïve sciatic nerve and PBMC, there is little  
745 overlap, indicative of largely distinct immune compartments (**Fig. 6A,6B**). When comparing myeloid cells in  
746 blood with 1dpc nerve, the rapid entry of GC into the nerve is readily detected and GC are largely absent from  
747 the 7dpc nerve (**Fig. 6, Suppl. 1F-1J**). Interestingly, 1dpc GC are more similar to *Il1b<sup>+</sup>* GCi than *Il1b<sup>-</sup>* GCM in  
748 blood (**Fig. 6, Suppl. 1K-1O**). In a similar vein, Mo in the 1dpc nerve are transcriptionally more similar to *Chil3<sup>+</sup>*  
749 Mo1 than to *Ear2<sup>+</sup>* Mo2 in blood. This suggests that following SNC, select GC and Mo subpopulations  
750 preferentially extravasate and enter the injured nerve. Moreover, the integrated analysis clearly shows the  
751 rapid increase of *Chil3<sup>+</sup>* Mo in the 1dpc nerve, followed by a decline over the next six days (**Fig. 6F-6J**).  
752 Conversely, few *Gpnmb<sup>+</sup>* Mac are detected in blood or naïve nerve, however *Gpnmb<sup>+</sup>* gradually increase  
753 following SNC. Only a small number of *Gpnmb<sup>+</sup>* Mac is detected at 1dpc, they have increased at 3dpc, and  
754 further increased at 7dpc, suggesting these are more mature Mac (**Fig. 6K-6O**).

755 To predict trajectories of Mo maturation into their descendants, Mac and MoDC, we carried out  
756 slingshot, pseudotime analysis of integrated myeloid cells. Using Mo as starting cells, revealed a bifurcated  
757 differentiation trajectory and indicates that Mo give rise to Mac and MoDC in the injured nerve (**Fig. 7; Fig. 7,**  
758 **Suppl. 1-3**). The high degree of Mo/Mac plasticity is evident when cell cluster identified at 1dpc (Mac-I to Mac-  
759 V) (**Fig. 2A**), 3dpc (Mac1-Mac4) (**Fig. 2J**), and 7dpc (Mac-a to Mac-d) (**Fig. 2R**) are visualized in the integrated  
760 dataset (**Fig. 7, Suppl. 1**). To facilitate access to integrated immune cell datasets, we added these data to  
761 iSNAT.

762



764

## Figure 6

765

### Integrated analysis of single cell transcriptomes generated from PBMC, naïve nerve, and injured nerve.

766

(A-E) UMAP plots of integrated myeloid cells split into (A) PBMC (of naïve mice), (B) naïve sciatic nerve trunk,

767

(C), 1dpc nerve, (D) 3dpc nerve, and (E) 7dpc nerve. (F-J) Integrated analysis of *Chil3*<sup>+</sup> Mo in (F) PBMC, (G)

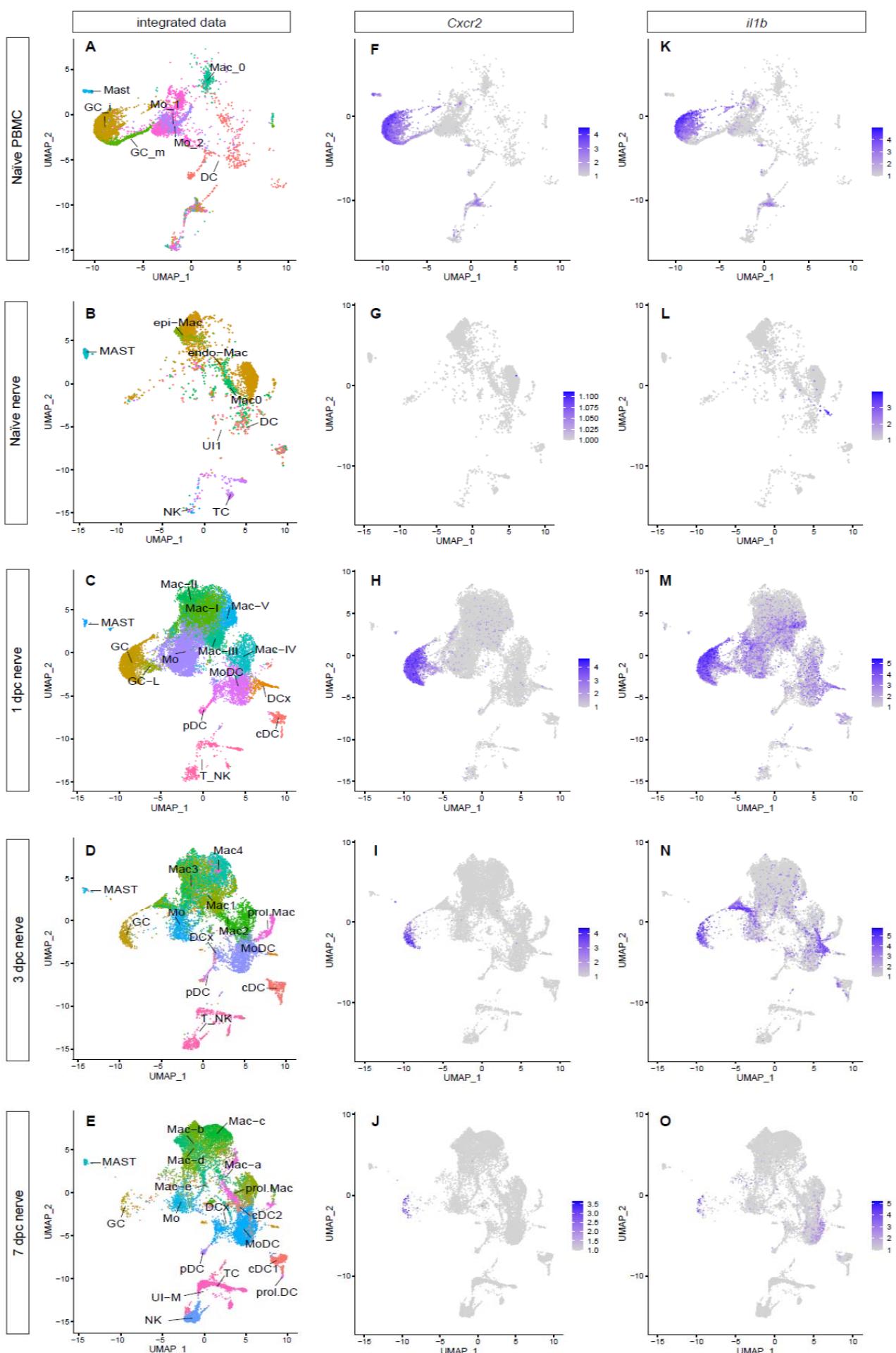
768

naïve nerve, (H) 1dpc nerve, (I) 3dpc nerve, (J) 7dpc nerve. (K-D) Integrated analysis of *Gpnmb*<sup>+</sup> Mac in (K)

769

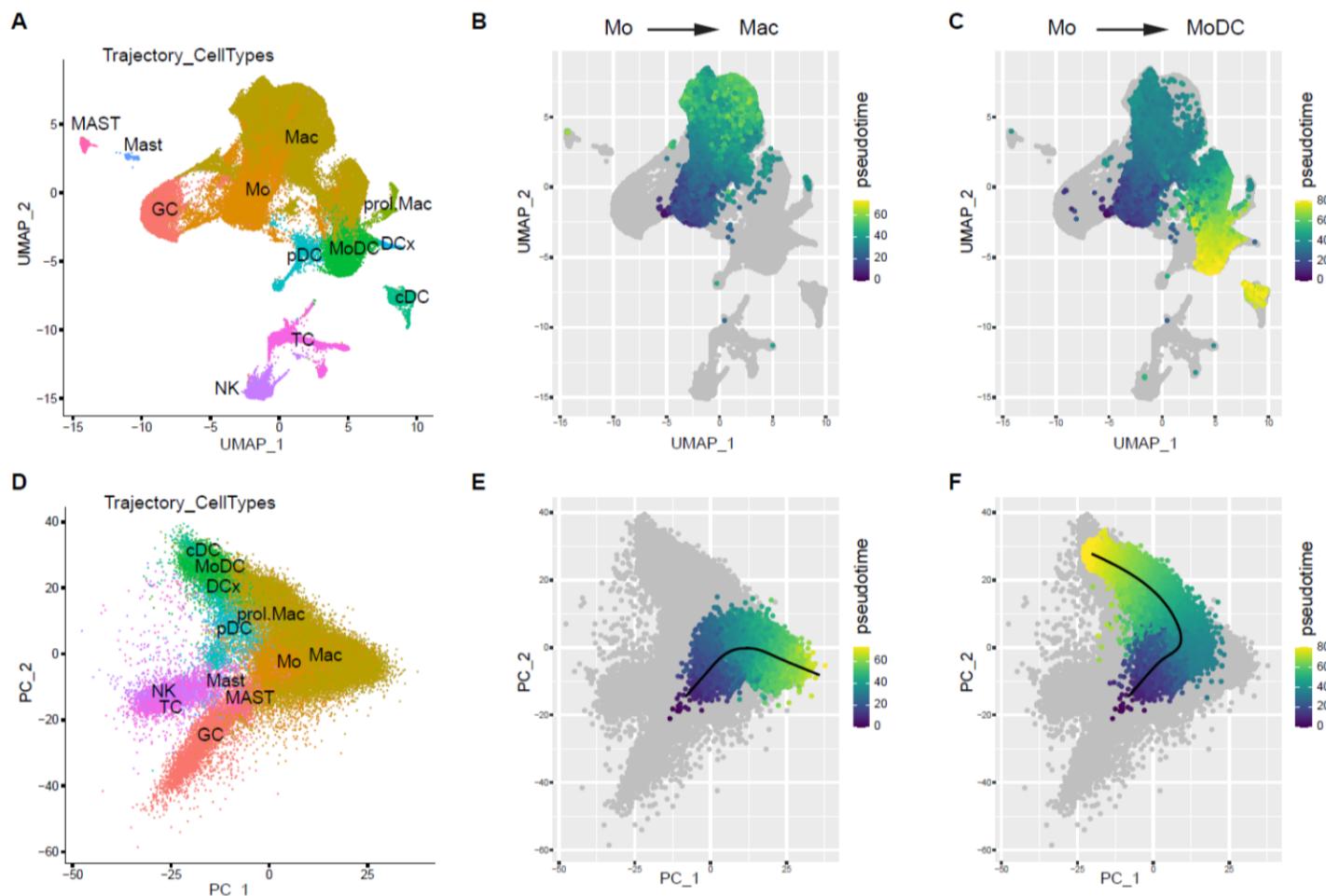
PBMC, (L) naïve nerve, (M) 1dpc nerve, (N) 3dpc nerve, (O) 7dpc nerve. For feature plots (F-O), expression

770


values are projected onto the integrated UMAP with a minimum expression cutoff of 1. Abbreviations: GC,

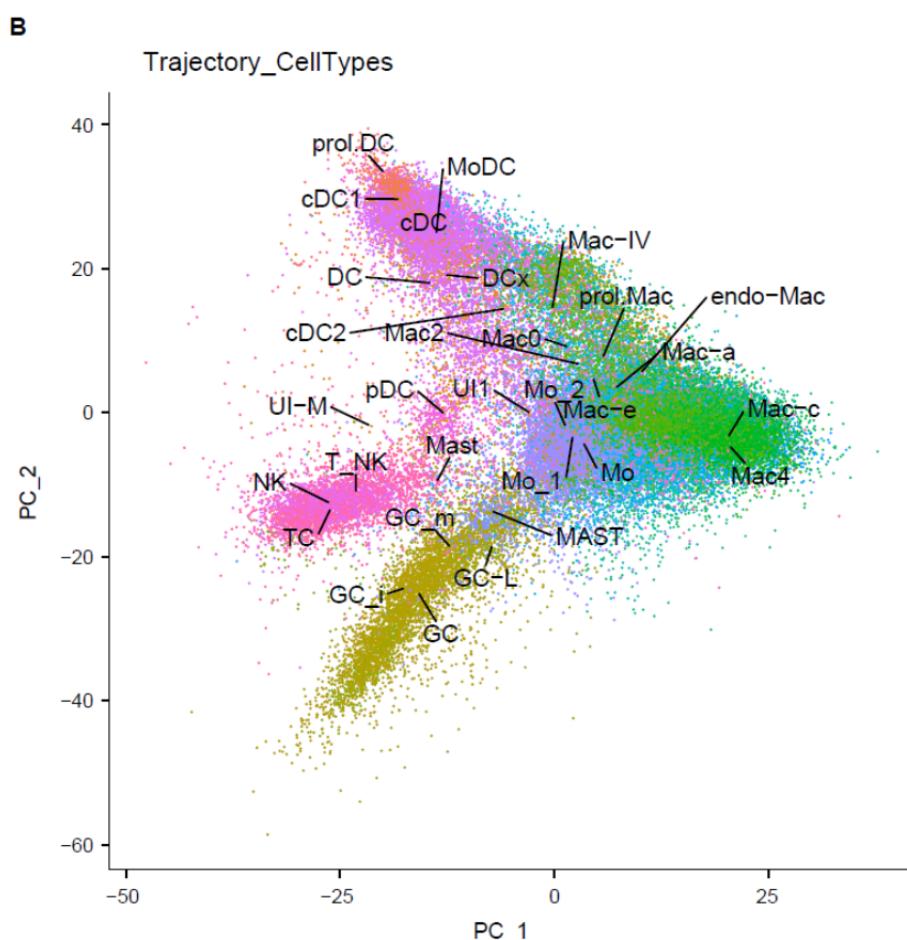
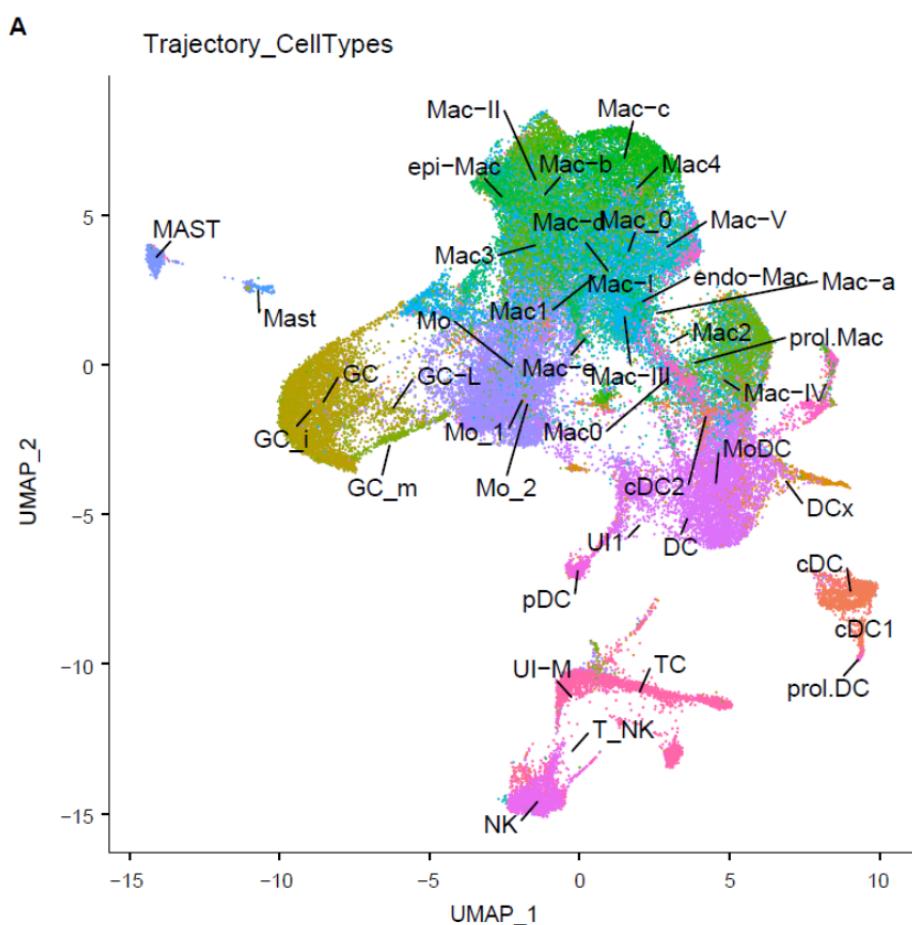
771

granulocytes; Mo, monocytes; Mac, macrophages; DC, dendritic cells; MAST, mast cells; T\_NK, T cells and


772

natural killer cells; UI, unidentified cells.



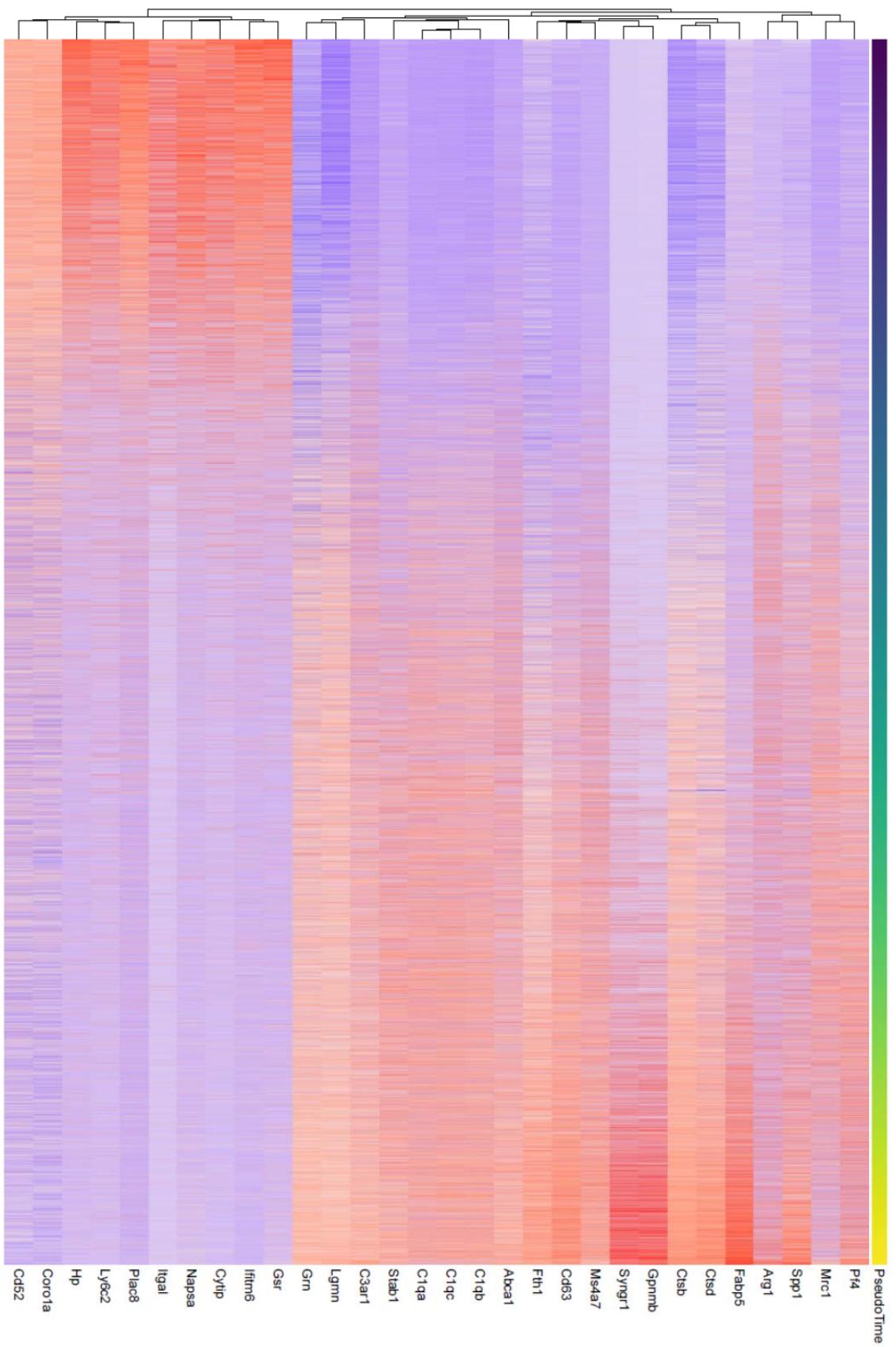


774 **Figure 6, Suppl. 1**  
775 **(A-E)** UMAP plots of integrated myeloid cells split into **(A)** PBMC (of naïve mice), **(B)** naïve sciatic nerve trunk,  
776 **(C)** 1dpc nerve, **(D)** 3dpc nerve, and **(E)** 7dpc nerve. Integrated analysis to track *Cxcr2*<sup>+</sup> GC **(F-J)** and  
777 expression of *Il1b* **(K-O)** in myeloid cells of PBMC, naïve nerve, 1dpc, 3dpc, and 7dpc nerve. For feature plots  
778 **(F-O)**, expression values are projected onto the integrated UMAP with a minimum expression cutoff of 1  
779 Abbreviations: GC, granulocytes; Mo, monocytes; Mac, macrophages; DC, dendritic cells; MAST, mast cells;  
780 T\_NK, T cells and natural killer cells; UI, unidentified cells.

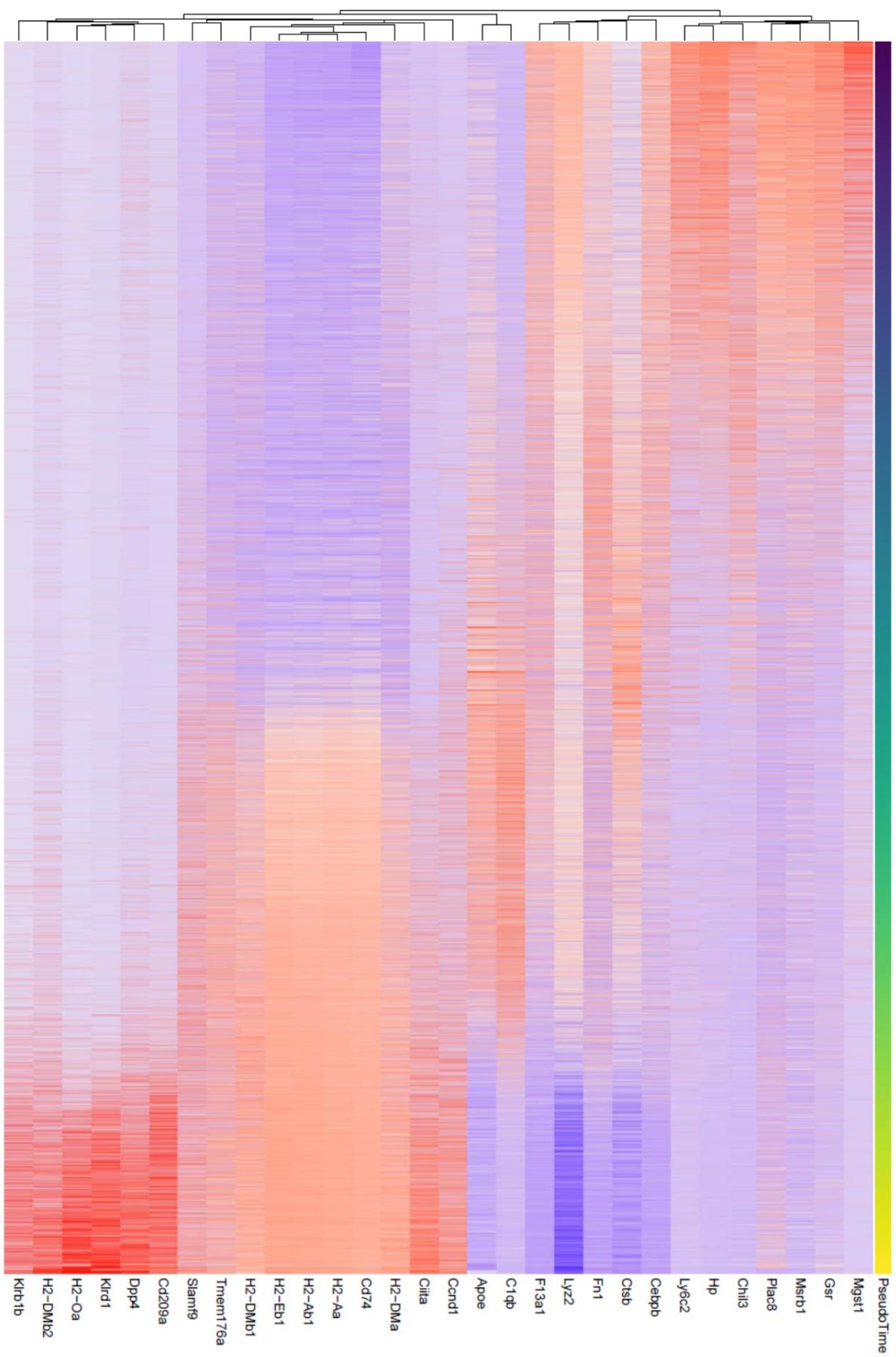
781



782

783 **Figure 7**  
784 **Tracking of myeloid cells before and after entering the injured nerve**  
785 **(A)** UMAP of integrated immune cells with simplified cluster labels **(D)** PCA of integrated immune cells using  
786 the same cluster labels as A. The first four principal components were used as input to slingshot pseudotime  
787 analysis **(B)** Slingshot pseudotime, for Mo to Mac trajectory, projected onto the UMAP. **(E)** Pseudotime  
788 projected onto the PCA showing the predicted trajectory, starting from Mo and differentiating toward Mac **(C)** A  
789 separate trajectory, starting from Mo shows differentiation toward MoDC; psuedotime projected on UMAP. **(F)**  
790 Mo to MoDC pseudotime projected on PCA.





792 **Figure 7, Suppl 1.**

793 **(A)** Integrated immune cells UMAP with all cluster labels from each time points individual analysis.

794 **(B)** Integrated immune cells PCA with all cluster labels from each time points individual analysis.

795 Abbreviations: GC, granulocytes [GC-i and GC-m (blood), GC-L (1dpc nerve), GC (1dpc, 3dpc and 7dpc  
796 nerve)], Mo, monocytes (Mo\_1 and Mo\_2 (blood), Mo (1dpc, 3dpc, and 7dpc nerve)], Mac, macrophages  
797 [endo-Mac and epi-Mac (naïve nerve), (Mac-I, Mac-II, Mac-III, Mac-IV, Mac-V (1dpc nerve), Mac0, Mac1,  
798 Mac2, Mac3, Mac4 (3dpc nerve), Mac-a, Mac-b, Mac-c, Mac-d, Mac-e (7dpc nerve)], MoDC (monocyte-derived  
799 dendritic cells), cDC (conventional dendritic cells), pDC, plasmacytoid dendritic cells, DCx (mature dendritic  
800 cells), Mast (mast cells), TC (T cells), NK (natural killer cells), UI (unidentified).





806 **Figure 7, Suppl 3.**

807 Heatmap showing the top 30 genes by importance in predicting pseudotime (Figure 7F) as determined by  
808 random forest analysis. Colors represent the Z-score calculated across genes.

809

810 **Nerve trauma generates spatial differences in immune cell composition**

811 A crush injury divides a nerve into three distinct compartments: the proximal nerve, the injury site, and the  
812 distal nerve (**Fig. 8A**). While specialized immune cells have been identified at the site of nerve injury (Cattin et  
813 al., 2015; Kalinski et al., 2020; Shin et al., 2018), a comparative analysis of cells at the injury site and the distal  
814 nerve has not yet been carried out. Here we harvested sciatic nerves at 3dpc and microdissected ~ 3mm  
815 segments that either harbor the injury site or distal nerve. Innate immune cells were then captured with anti-  
816 CD11b and further analyzed by scRNASeq (**Fig. 8A**). The resulting UMAP plots revealed location specific  
817 enrichment of select immune cell populations (**Fig. 8B**). For example, GC (cluster 10) are more abundant at  
818 the nerve injury site, than in the distal nerve and Mo (cluster 0) are more abundant in the distal nerve (**Fig. 8C**).  
819 Most notably, is the location specific enrichment of select Mac subpopulations (**Fig. 8C**). For example, *Arg1*  
820 expressing Mac4 (cluster 2) and Mac1 (cluster 3) are enriched at the nerve injury site (**Fig. 8D, 8E**), while  
821 *Cd38<sup>+</sup>* Mac3 (cluster 1) are more abundant in the distal nerve (**Fig. 8F, 8G**). The number of proliferating Mac is  
822 comparable between the injury site and distal nerve (**Fig. 8C**). Similarly, the distribution of MoDC, DCx, cDC,  
823 and T/NK is comparable between the injury site and the distal nerve (**Fig. 8C**). However, NK are more  
824 abundant in the distal nerve (**Fig. 8C**).

825 For an unbiased cell cluster identification at the injury site and in the distal nerve, we compared the  
826 scRNASeq datasets generated from the 3dpc injury site and distal nerve to the “whole nerve” 3dpc reference  
827 scRNASeq data (**Fig. 2J**). We projected the whole nerve principal component analysis (PCA) structure onto  
828 “query” scRNA-seq data generated from the injury site of distal nerve, implement through Seurat v3 (Stuart et  
829 al., 2019). Our ‘TransferData’ pipeline finds anchor cells between the 3dpc whole nerve reference data and the  
830 query dataset, then uses a weighted vote classifier based on the known reference cell labels to yield a  
831 quantitative score for each cell’s predicted label in the query dataset. A prediction score of 1 means maximal  
832 confidence, all votes, for the predicted label, and a score of 0 means no votes for that label (**Fig. 8H, 8I**). Most  
833 notable is the strong enrichment of Mac4 at the 3dpc injury site (**Fig. 8H**), when compared to distal nerve (**Fig.**  
834 **8I**). Similarly, distribution of the Mac1 population is skewed toward the injury site, however to a lesser extent  
835 than Mac4. Conversely, Mac3 cells are enriched in the distal nerve (**Fig. 8H, 8I**). To confirm the location  
836 specific distribution of different Mac subpopulations at 3dpc, we analyzed the injury site and distal nerve for  
837 Mac subpopulation enriched transcripts using qRT-PCR. Because *Gpnmb*/glycoprotein non-metastatic  
838 melanoma protein B, and *Syng1*/synaptogyrin 1, *Fabp5*/fatty binding protein 5, and *Spp1* are highly enriched  
839 in Mac4, we assessed their expression by qRT-PCR and found significantly higher expression at the injury site  
840 (**Fig. 8J**). Conversely, scRNASeq reveled preferential expression of *Cd38*/ADP-ribosyl cyclase 1 in Mac3 in  
841 the distal nerve and this was independently confirmed by qRT-PCR (**Fig. 8K**). Expression of the Mo marker  
842 *Chil3* is not significantly different between the injury site and distal nerve. Compared to naïve nerve, *Gatm*  
843 (creatine biosynthesis) is reduced in the nerve at 3dpc, both at the injury site and the distal nerve (**Fig. 8K**).

844 To assess the spatial distribution of Mac4 in the 3dpc nerve, we used *in situ* hybridization with an

845 RNAscope probe specific for *Gpnmb*. Very few *Gpnmb*<sup>+</sup> cells are detected in naïve sciatic nerve (**Fig. 8L**),

846 however at 3dpc, *Gpnmb*<sup>+</sup> cells are enriched in the endoneurium at the site of nerve injury site and far fewer

847 labeled cells are detected in the distal nerve (**Fig. 8M-M'**). Together, these studies reveal spatial differences in

848 Mac subpopulation distribution within the injured nerve.

849



851

## Figure 8

852

### Spatial differences in the immune landscape of the injured sciatic nerve

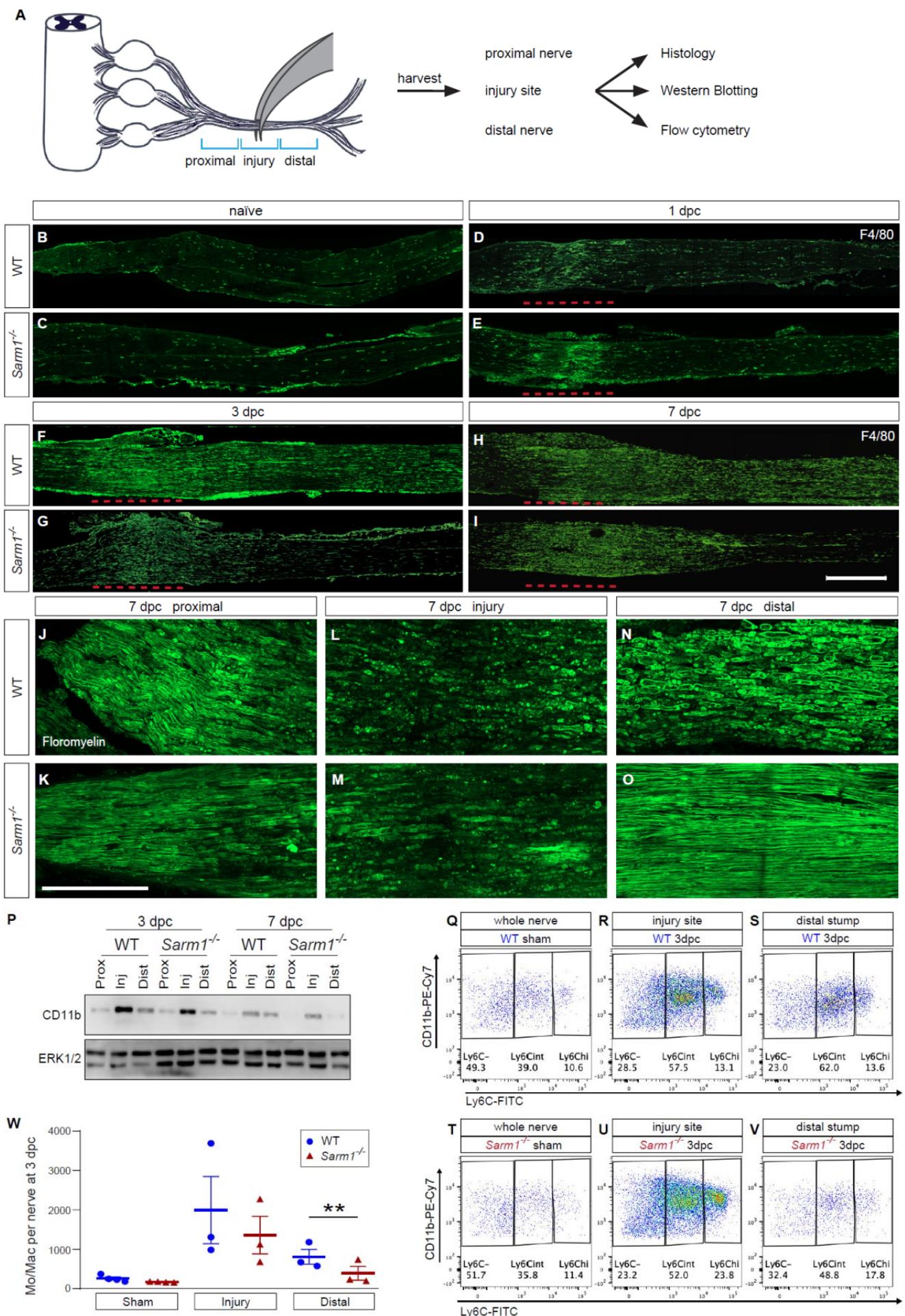
853

**(A)** Cartoon of a mouse lumbar spinal cord, dorsal root ganglia (DRGs) and major branches of the sciatic nerve. Nerve segments ~ 3 mm in length, with the injury site and distal nerve are marked with blue brackets. Immune cells from the injury site and distal nerve were captured with anti-CD11b magnetic beads and analyzed in separate scRNAseq runs. **(B)** UMAP plot of sciatic nerve myeloid cells captured at the injury site (left) and the distal nerve (right) at 3dpc. A total of 17,404 high quality cells were subjected to unsupervised Seurat-based clustering resulting in 13 cell clusters. **(C)** Bar graph of population size at the injury site versus distal nerve for 3d injured nerve immune cells. **(D, E)** Feature plots for *Arg1* expressing immune cells at the 3d injury site and distal nerve **(F, G)**. Feature plots for *Cd38* expressing immune cells at the injury site and distal nerve. Expression levels are color coded and calibrated to average gene expression. **(H, I)** Projection of the 3d “whole nerve” reference data onto cells at the 3d injury site **(H)** and 3d distal nerve **(I)** onto 3d “whole nerve” reference data. The y-axis shows the prediction score for each cell’s top predicted cell population. The number of cells identified to each population is shown on top. **(J, K)** Quantification of gene expression by qRT-PCR in the 3d injured nerve injury site versus distal nerve (n= 3). P-values, \* <0.05, \*\* <0.001, \*\*\* < 0.0001, Student’s t test. ns, not significant. **(L)** Longitudinal sections of naïve sciatic nerve stained for *Gpnmb* expression by RNAscope. **(M)** Longitudinal sections of 3d injured nerve stained for *Gpnmb* expression by RNAscope, proximal is to the left. Sections were counterstained with Hoechst. High power images of injury site **(M')** and distal nerve **(M'')** are shown. Scale bar: 200  $\mu$ m **(L, M'')**.

870

871

### Nerve trauma causes a strong inflammatory response independently of Wallerian degeneration


872

To separate the immune response to mechanical nerve wounding from the immune response to WD, we employed *Sarm1*–/– mice, in which WD is greatly delayed (Osterloh et al., 2012). WT and *Sarm1*–/– mice were subjected to SNC and nerves harvested at 1, 3, and 7dpc. Longitudinal nerve sections were stained with anti-F4/80 to assess abundance and distribution of Mac proximal to the injury site, at the injury site, and distal to the injury site **(Fig. 9A)**. In naive WT and *Sarm1*–/– mice, few F4/80+ Mac are detected **(Fig. 9B,9C)**. Following nerve crush injury, WT and *Sarm1*–/– mice show a rapid increase in F4/80+ Mac at the nerve injury site at 1dpc **(Fig. 9D,9E)**, 3dpc **(Fig. 9F,9G)** and, 7dpc **(Fig. 9H,9I)**. In the distal nerve, however *Sarm1*–/– mice show far fewer F4/80+ cells at 3dpc and 7dpc **(Fig. 9F-9I)**. At 7dpc, fluoromyelin staining of the proximal WT and *Sarm1*–/– nerves shows intact myelin **(Fig. 9J, 9K)**. Myelin ovoids emanating from disintegrated myelinated axons are observed in a ~3mm segment around the site of nerve injury, both in WT and *Sarm1*–/– mice **(Fig. 9L,9M)**. In the distal nerve of the same mice, myelin ovoids are observed only in WT **(Fig. 9N)**, but not *Sarm1*–/– mutants showing that at 7dpc fiber fragmentation has not yet occurred **(Fig. 9O)**. For an independent assessment of WD elicited nerve inflammation, nerve trunks were isolated from naïve and injured WT and *Sarm1*–/– mice, divided into proximal nerve, the injury site, or distal nerve, and analyzed by Western blotting **(Fig. 9P)**. Independently of *Sarm1* genotype, the injury sites show elevated levels of CD11b compared to proximal nerve. In the distal nerve, CD11b was more abundant in WT than in *Sarm1*–/– mice.

886

887

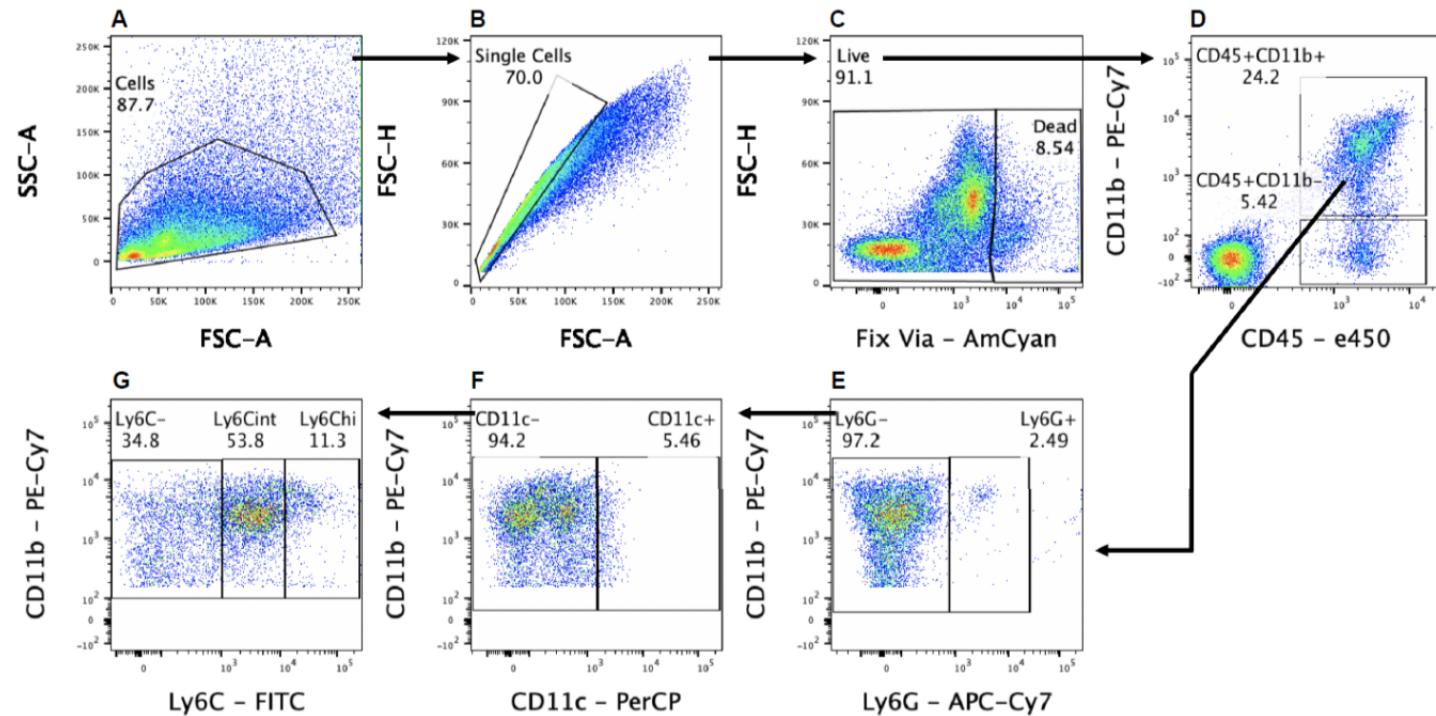
888 To quantify immune cell profiles in WT and *Sarm1*−/− mice, we used flow cytometry (**Fig. 9Q-9W**), the  
889 gating strategy is illustrated in **Fig. 9, Suppl. 1**. In sham operated mice, no significant differences in Ly6C-high  
890 (Ly6C<sup>hi</sup>), Ly6C-intermediate (Ly6C<sup>int</sup>), or Ly6C-negative (Ly6C<sup>−</sup>) Mo/Mac were observed (**Fig. 9Q,9T**). For  
891 quantification of immune cell profiles that respond to traumatic nerve wounding versus WD, we separately  
892 harvested the site of nerve injury and distal nerve for analysis by flow cytometry. At the 3dpc injury site, the  
893 total number of Mo/Mac is comparable between WT and *Sarm1*−/− mice (**Fig. 9R,9U,9W**). However, within the  
894 distal nerve, significantly more Mo/Mac cells are present in WT mice than in *Sarm1*−/− mice (**Fig. 9S,9V,9W**).  
895 Taken together, these studies show that nerve trauma causes a highly inflamed wound microenvironment,  
896 independently of WD, and a distinct inflammatory response in the distal nerve, that is WD dependent.



898

## Figure 9

899


### Nerve trauma causes WD independent nerve inflammation

900

**(A)** Cartoon of a mouse lumbar spinal cord, dorsal root ganglia (DRGs) and major branches of the sciatic nerve. A nerve injury divides the nerve trunk into a proximal segment, the injury site, and distal segment, each marked with blue brackets. Nerve segments were harvested and subjected to analysis. **(B-I)** Longitudinal sciatic nerve sections from WT and *Sarm1*<sup>-/-</sup> mice, stained with anti-F4/80 for identification of Mac. Representative examples of **(B, C)** naïve nerve, **(D, E)**, 1dpc **(F, G)**, 3dpc, and at **(H, I)** 7dpc. Injury site is marked with a dashed red line, proximal is to the left. Scale bar, 500  $\mu$ m. **(J-O)** Longitudinal sciatic nerve sections from WT and *Sarm1*<sup>-/-</sup> mice at 7dpc, stained with fluoromyelin. Representative images of proximal nerve, the injury site and distal nerve are shown. Scale bar, 200  $\mu$ m. **(P)** Western blots of sciatic nerve segments collected at 3dpc and 7dpc from WT and *Sarm1*<sup>-/-</sup> mice. Nerves were divided into proximal, injury site, and distal segments and blots probed with anti-CD11b, and anti-ERK1/2. **(Q-V)** Flow cytometry dotplots for Mo/Mac of sham operated WT and *Sarm1*<sup>-/-</sup> sciatic nerve trunks, the 3dpc nerve injury site and distal nerve. **(W)** Quantification of Mo/Mac (Ly6C<sup>hi</sup> + Ly6C<sup>int</sup> + Ly6C<sup>-</sup>) in sham operated mice, the 3dpc injury site and 3dpc distal nerve of WT and *Sarm1*<sup>-/-</sup> mice. N= 3, with 3-5 mice per genotype per replica. Flow data are represented as mean  $\pm$  SEM. Statistical analysis was performed in GraphPad Prism (v9) using two-way, paired t-test. \*\* p<0.01.

914

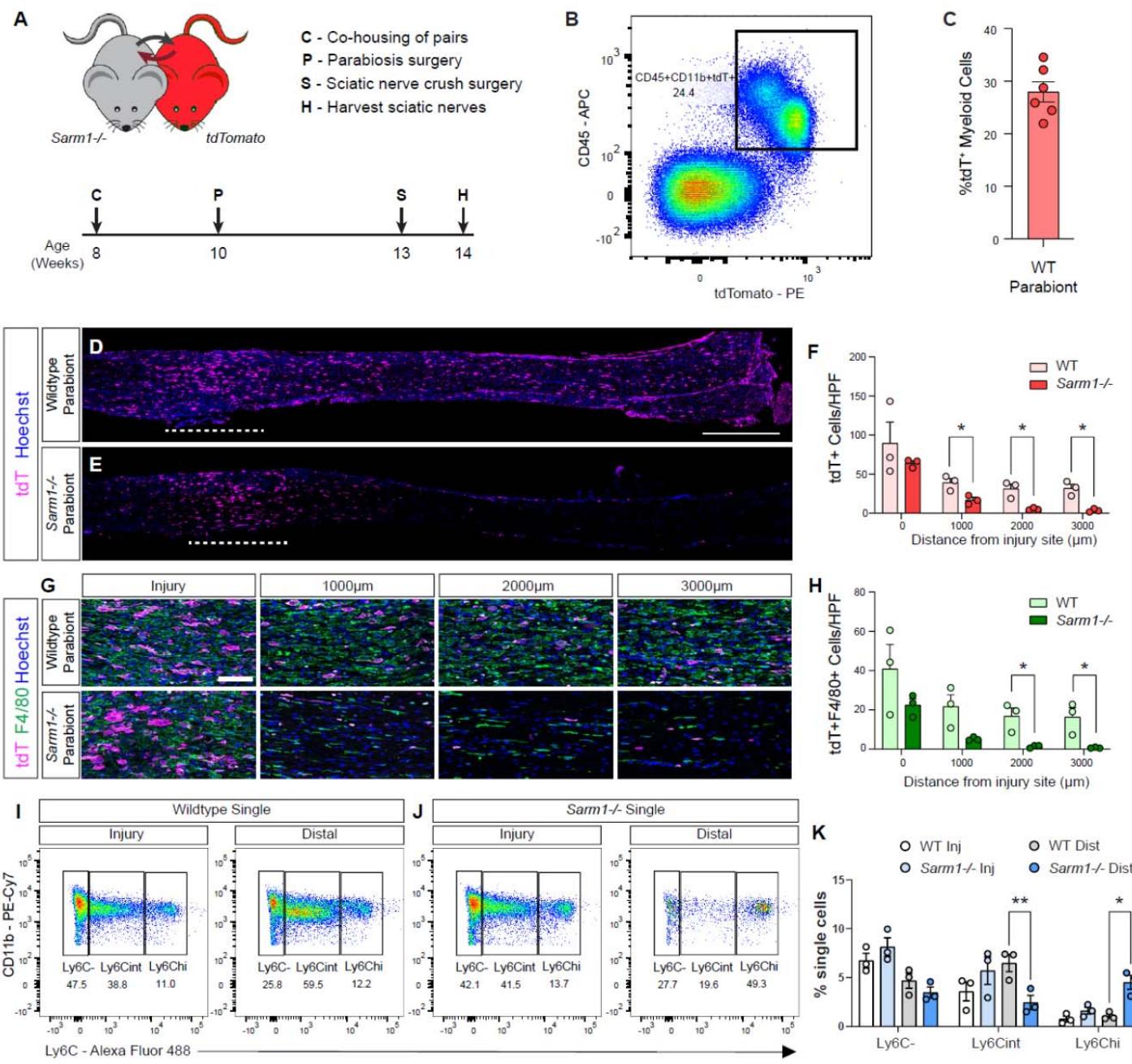
915



916

### Figure 9, Suppl. 1

917


Gating strategy for flow cytometry. **(A)** Cells were first gated with forward scatter (FSC-A) and side scatter (SSC-A) to exclude debris. **(B)** Cells were then gated with forward scatter height (FSC-H) and FSC-A to find single cells and to exclude doublets. **(C)** Live cells were isolated by negative staining for fixed viability dye (Fix Via). **(D-G)** Leukocytes (D) were analyzed as follows: lymphocytes were isolated as CD45<sup>+</sup>, CD11b<sup>-</sup>. Myeloid

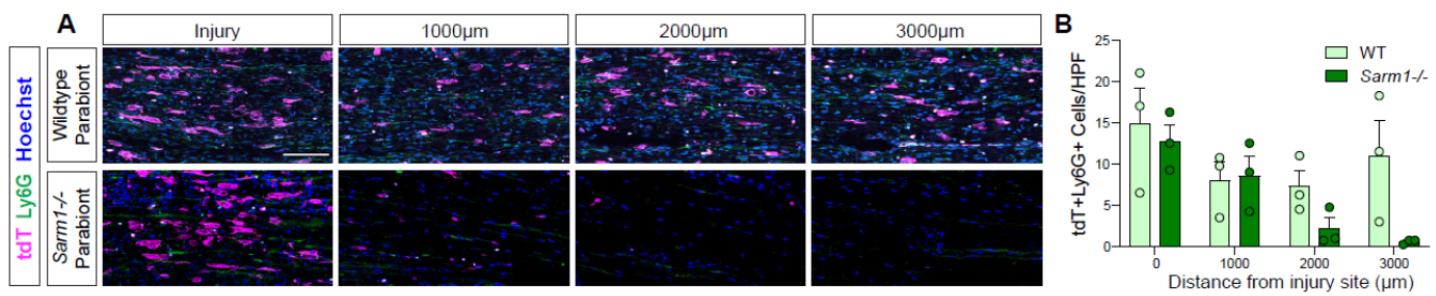
922 cells (CD45<sup>+</sup>, CD11b<sup>+</sup>) were further separated into Ly6G<sup>+</sup> granulocytes (E). The remaining cells (CD45<sup>+</sup>,  
923 CD11b<sup>+</sup>, Ly6G<sup>-</sup>) were characterized as DC (F) (CD45<sup>+</sup>, CD11b<sup>+</sup>, CD11c<sup>+</sup>, Ly6G<sup>-</sup>), and Mo/Mac (G) (CD45<sup>+</sup>,  
924 CD11b<sup>+</sup>, CD11c<sup>-</sup>, Ly6G<sup>-</sup>).  
925

## 926 **In *Sarm1*−/− mice, monocytes enter the distal nerve stump but fail to mature into macrophages**

927 Because we used *Sarm1* global knock-out mice for our studies and *Sarm1* has been shown to function in Mac  
928 (Gurtler et al., 2014), a potential confounding effect is *Sarm1* deficiency in Mac. To assess nerve entry of  
929 circulating WT immune cells, in a *Sarm1*−/− background, we employed parabiosis (Fig. 10A). *Sarm1*−/− host  
930 mice were surgically fused to tdTomato (tdT) donor mice and allowed to recover for three weeks. For  
931 comparison, WT/tdT parabiosis complexes were generated and processed in parallel. Flow cytometry was  
932 used to analyze blood samples of host parabionts for tdT<sup>+</sup> leukocytes and revealed ~30% chimerism (Fig. 10B,  
933 10C). In each complex, both parabionts were subjected to bilateral nerve crush. At 7dpc, analysis of  
934 longitudinal nerve sections of the *Sarm1*−/− parabiont revealed that many tdT<sup>+</sup> leukocytes entered the site of  
935 nerve injury, comparable to injured WT parabionts (Fig. 10D, 10E, 10F). In the distal nerve of the *Sarm1*−/−  
936 parabiont, at 1mm, 2mm, and 3mm distal to the injury site, some tdT<sup>+</sup> leukocytes are present, however at  
937 significantly reduced numbers when compared to WT parabionts (Fig. 10F). Interestingly, only few tdT<sup>+</sup> cells in  
938 the *Sarm1*−/− distal nerve stained for F4/80, a marker for Mac (Fig. 10G, 10H) or Ly6G, a marker for neutrophils  
939 (Fig. 10, Suppl. 1). To further investigate the blood-borne immune cells that enter the 7dpc distal nerve of  
940 *Sarm1*−/− mice, we separately harvested and analyzed the 7dpc injury site and distal nerve segments from WT  
941 and *Sarm1*−/− single mice using flow cytometry. The abundance of Mo and Mac, identified as Ly6C<sup>hi</sup>, Ly6C<sup>int</sup>,  
942 and Ly6C<sup>-</sup> cells, at the nerve injury site is comparable between WT and *Sarm1*−/− mice (Fig. 10I, 10J). In the  
943 distal nerve however, Ly6C<sup>hi</sup> cells in *Sarm1*−/− nerves are significantly elevated compared to Ly6C<sup>int</sup> and Ly6C<sup>-</sup>  
944 populations (Fig. 10I, 10J). This stands in contrast to WT distal nerves, where Ly6C<sup>-</sup> and Ly6C<sup>int</sup> cells  
945 outnumber the Ly6C<sup>hi</sup> population (Fig. 10K). Because WT and *Sarm1*−/− mice show similar baselines of Mac in  
946 the naïve nerve (Fig. 9Q, 9T), this shows that in the absence of WD, SNC is sufficient to trigger a strong  
947 immune response to nerve wounding, but fails to elicit WD associated nerve inflammation, except for the  
948 appearance of Mo.  
949

950 Taken together, these data show that in *Sarm1*−/− mice Ly6C<sup>hi</sup> Mo enter the distal nerve prior to WD but  
951 fail to differentiate into Mac. This suggests that chemoattractive signals for Mo are released from severed  
952 axons prior to WD and that fiber degeneration in the distal nerve is required for Mo maturation. Moreover, WD  
953 is required for rapid, full-blown inflammation of the distal nerve.




953

## Figure 10

### Evidence for WD dependent and WD independent nerve inflammation

(A) Timeline for parabiosis experiments. After a two-week co-housing period, 10-week-old WT or *Sarm1*<sup>-/-</sup> and - *tdTomato* mice were surgically paired. (B) To assess chimerism, blood was harvested and analyzed by flow cytometry. Dotplot of tdT<sup>+</sup> myeloid cells (CD45<sup>+</sup>CD11b<sup>+</sup>) is shown. (C) Quantification of tdT<sup>+</sup> myeloid cells in host parabionts (n= 6), revealed chimerism of 28± 2%. (D, E) Bilateral SNC was performed 3 weeks after pairing and tissue harvested at 7dpc. Longitudinal sciatic nerve sections from (D) WT and (E) *Sarm1*<sup>-/-</sup> parabionts showing infiltrating tdT<sup>+</sup> leukocytes (magenta). Nuclei (blue) were labeled with Hoechst dye. The nerve crush site is marked by the white dashed line, proximal is to the left. Scale bar, 500 μm. (F) Quantification of tdT<sup>+</sup> cells per high power field (HPF, 500 μm x 250 μm) at the injury site (0 μm) and at 1000, 2000, and 3000 μm distal to the injury site. The average cell number ± SEM is shown, n = 3 mice per

965 genotype, average of 4 HPF per 2 nerves. Student's *t* test, p < 0.05 (\*). (G) HPF of sciatic nerves from WT and  
966 Sarm1<sup>-/-</sup> parabionts 7dpc taken from the injury site, 1000, 2000, and 3000  $\mu$ m distal to the injury site showing  
967 infiltrating tdT<sup>+</sup> leukocytes (magenta), F4/80<sup>+</sup> macrophages (green), and nuclei (blue). Scale bar, 100  $\mu$ m. (H)  
968 Quantification of tdT<sup>+</sup>F4/80<sup>+</sup> cells per HPF  $\pm$  SEM at indicated distances distal to the injury site, n = 3 mice,  
969 average of 4 HPF per 2 nerves. Student's *t* test, p < 0.05 (\*). (I, J) Flow cytometric analysis of sciatic nerves  
970 from single (not part of parabiosis complex) WT and Sarm1<sup>-/-</sup> mice 7dpc. Sciatic nerve trunks were  
971 microdissected and separated in 3 mm injury site and distal nerve segments. Dotplots showing Mo/Mac  
972 maturation assessed by Ly6C surface staining, Mo (Ly6C<sup>hi</sup>), Mo/Mac (Ly6C<sup>int</sup>), Mac (Ly6C<sup>lo</sup>), previously gated  
973 as CD45<sup>+</sup>CD11b<sup>+</sup>Ly6G<sup>-</sup>CD11c<sup>-</sup> cells. (K) Quantification of Mo/Mac shown in panels I and J, as a percentage of  
974 single cells  $\pm$  SEM, n = 3, injury and distal sites were pooled from 5 mice per genotype per biological replicate.  
975 Two-way ANOVA with Tukey's post-hoc test for multiple comparisons, p < 0.05 (\*), p < 0.01 (\*\*).



### Figure 10, Suppl. 1

Quantification of tdT,Ly6G double-positive neutrophils in the 7dpc nerve of host parabionts (n= 6). (A) High power filed (HFP) of longitudinal sections of a WT and Sarm1<sup>-/-</sup> parabionts at 7dpc. Representative images taken from the injury site, 1000, 2000, and 3000  $\mu$ m distal to the injury site. Infiltrating tdT<sup>+</sup> leukocytes (magenta), Ly6G<sup>+</sup> neutrophils (green), and nuclei (Hoechst) are labeled. Scale bar, 100  $\mu$ m. (B). Quantification of tdT<sup>+</sup>Ly6G<sup>+</sup> cells per (HPF)  $\pm$  SEM at indicated distances distal to the injury site, n = 3 mice, an average of 4 HPF per 2 nerves. Student's *t* test.

985

## Discussion

986

The injured adult murine PNS exhibits a remarkable degree of spontaneous axonal regeneration and functional recovery. To better understand the cellular and molecular events associated with PNS repair, we carried out a longitudinal scRNASeq study. Analysis of the immune response to nerve crush injury, during the first week, revealed a highly dynamic microenvironment. The early immune response is pro-inflammatory and dominated by GC and Mo/Mac, metabolically programmed for glycolytic energy production. The elevated expression of nearly all glycolytic enzymes, lactate dehydrogenase, and the lactate export channel MCT4 indicates that a Warburg-like effect is at play, coupling glycolytic energy production with a proinflammatory Mo/Mac phenotype. This stands in marked contrast to the low glycolytic activity of circulating Mo/Mac in blood of naïve mice and indicates a rapid metabolic shift upon nerve entry. The glycolytic burst is short-lived, however, at 3dpc expression of glycolytic enzymes begins to decline, and at 7dpc has reached levels similar to naïve nerve. As glycolytic activity declines, there is evidence for a metabolic shift toward OXPHOS, and this coincides with the appearance of Mac with a resolving phenotype. Separation of the nerve injury site from distal nerve revealed that mechanical nerve injury creates two separate immune microenvironments. A wound repair response at the crush site, and an inflammatory response to WD in the distal nerve. This was further corroborated in injured *Sarm1*-/- mice. At the injury site of *Sarm1*-/- and WT mice, nerve crush results in a strong immune response, dominated by hematogenous leukocytes. In the distal nerve of *Sarm1*-/- mice, full-blown nerve inflammation is delayed, and thus, WD dependent. Hematogenous immune cells are largely missing from the *Sarm1*-/- distal nerve, except for Mo, suggesting that chemotactic signals are released from severed fibers prior to physical disintegration. Taken together, we describe a framework of cell types and single-cell transcriptomes for a neural tissue with a high degree of spontaneous morphological and functional regeneration. The datasets reported provide an essential step toward understanding the dynamic nature of complex biological processes such as neural tissue degeneration and regeneration.

008

009

## iSNAT

010

To facilitate mining of scRNASeq datasets of naïve nerve and at different post-SNC time points, we generated the injured sciatic nerve atlas (iSNAT). The “*Expression Analysis*” function is a search tool to assess which cells in the nerve express a gene of interest. The output is four feature pots (naïve, 1, 3, and 7dpc nerve) shown side-by-side to assess which cells express a gene of interest and whether the gene is regulated by SNC. In addition, any cell type or time point during the first week can be selected to identify the top 50 enriched gene products. The *two Genes* function quantifies co-expression of two genes in the same cell. Higher resolution UMAP plots of select cell types, such as immune cells and structural cells (stromal cells), can be accessed and mined separately for analysis of subcluster specific gene expression. We added single cell transcriptomes of PBMC and used dataset integration to show how immune cell clusters change during the first week following nerve injury. Embedded in iSNAT is the CellChat function, designed for identification of intercellular signaling networks. Families of surface or secreted molecules, e.g. CXCL family members, can be searched for cells in the naïve and injured nerve that express the corresponding receptor(s) and the probability

020

021

022 for this interaction to occur is calculated. This provides a powerful tool for understanding interactions among  
023 different cell types in the nerve. The *Spatial Distribution* function shows gene expression at the injury site  
024 versus distal nerve at 3dpc. We have validated many gene products identified by scRNAseq, using a  
025 combination of qRT-PCR, RNAscope, immunofluorescence staining, reporter gene expression, and ELISA.  
026 While iSNAT is expected to facilitate data analysis and functional studies in the injured PNS, there are some  
027 notable limitations. The reading depth at the single cell level is still limited. We have sequenced and analyzed  
028 ~150,000 high-quality cells. On average we detect ~2000 unique features per cell, well below the estimated  
029 total of 5000-10000. Thus, if a gene of interest is not found in iSNAT, it may either not be expressed, or be  
030 expressed below the detection sensitivity of scRNAseq. We acknowledge that enzymatic tissue digestion  
031 combined with mechanical tissue dissociation may lead to cell loss or variable capturing efficiency for different  
032 cell types. Most notably, mSC are sparse in our naïve nerve dataset. Additional cell types that may be lost  
033 include B cells and adipocytes, both of which have previously been detected in the rodent PNS (Chen et al.,  
034 2021). Our gene expression atlas is work in progress and we anticipate that future studies will overcome these  
035 limitations, allowing us to generate improved, next generations of iSNAT.

036

### 037 **Structural cells in the injured nerve shape the immune microenvironment**

038 A nerve crush injury triggers proliferation of stromal cells, including epineurial Fb, identified as *Mki67<sup>+</sup>Pdgfra<sup>+</sup>*  
039 cells that mature into Fb. dMES are abundantly found in the injured nerve. In addition, pMES and eMES begin  
040 to proliferate following SNC. In the UMAP plot of 3dpc nerve, clusters with proliferating structural cells are  
041 connected and give rise to pMES, eMES, and dMES (Fig. 2). This suggests that in addition to damaging the  
042 epineurium, SNC damages protective cell layers within the nerve, including the perineurium, a thin cell layer of  
043 epithelioid myofibroblasts that surrounds nerve fascicles, and the endoneurium, a delicate layer of connective  
044 tissue that covers individual myelinated nerve fibers and contains the endoneurial fluid. Proliferation of eMES  
045 and pMES likely reflects damage to the BNB and is supported by the accumulation of some serum proteins in  
046 the crushed nerve. In addition to IgG (Vargas et al., 2010), we detected other serum proteins that function in  
047 opsonization. These include complement components, soluble C1qR1/CD93, adiponectin (Adipoq), and  
048 pentraxins (Nptx2, Crp), molecules that aid in the clearance of cellular debris and apoptotic cells and push Mac  
049 toward an anti-inflammatory resolving phenotype (Blackburn et al., 2019; Casals et al., 2019; Guo et al., 2012).

050 Of interest, structural cells in the injured nerve consistently show the highest number of unique  
051 transcripts, indicative of a strong injury response. MES are a major source of immune modulatory factors,  
052 shaping the injured nerve microenvironment in a paracrine manner through release of soluble factors.  
053 CellChat, identified important roles in chemotaxis, angiogenesis, ECM deposition and remodeling, suggestive  
054 of extensive stroma-immune cell communication. In particular, eMES are a major signaling hub and show  
055 strong interactions with Mo, Mac, SC, pMES, and EC. The presence of several chemokines, growth factors,  
056 and immune proteins identified at the transcriptional level was independently validated by ELISA, providing  
057 confidence in the quality of scRNAseq datasets.

060 **Cellular metabolism and macrophage functional polarization in the injured PNS**

061 Evidence from injured non-neuronal tissues shows that immune cell metabolism is directly linked to cell plasticity  
062 and function, thereby affecting tissue repair and scarring (Eming et al., 2021; Eming et al., 2017). Little is  
063 known about the metabolic adaptions associated with successful neural tissue repair. Here we compared  
064 immune cell metabolism of bone-marrow derived circulating myeloid cells before and after nerve entry. Once in  
065 the injured nerve, neutrophils, Mo, and Mac undergo rapid metabolic reprogramming, greatly increasing gene  
066 products that drive glycolysis. This is similar to the metabolic shift observed in non-neuronal tissues with high  
067 regenerative capacities, such as skeletal muscle (Eming et al., 2021). Interestingly, rapid upregulation of  
068 glycolytic activity in myeloid cells in the injured nerve is reminiscent of the injury-regulated glycolytic shift in SC,  
069 involving the mTORC/Hif1 $\alpha$ /c-Myc axis (Babetto et al., 2020). This suggests that enhanced glycolytic flux and  
070 lactate extrusion from both, SC and innate immune cells, is axoprotective.

071 Many cells use aerobic glycolysis during rapid proliferation, since glycolysis provides key metabolites  
072 for the biosynthesis of nucleotides and lipids (Lunt and Vander Heiden, 2011). In the 1dpc nerve, myeloid cells  
073 show highest levels of glycolytic enzymes, however only few *Mki67* (encoding Ki67 $^{+}$ ) proliferating cells are  
074 detected. In immune cells, alterations in metabolic pathways couple to immune cell effector function, most  
075 notably the production of different cytokines (O'Neill et al., 2016). Glucose is a main source for cellular energy  
076 (ATP) production through two linked biochemical pathways, glycolysis and the mitochondrial TCA (O'Neill et  
077 al., 2016; Voss et al., 2021). Glycolysis converts glucose into pyruvate and pyruvate is converted into acetyl-  
078 CoA to enter the TCA and fuel OXPHOS in mitochondria as an efficient means of ATP production.  
079 Alternatively, pyruvate can be converted into lactate and NAD $^{+}$ , creating a favorable redox environment for  
080 subsequent rounds of glycolysis. The upregulation of *Ldha* and *Slc16a3/MCT4* in myeloid cells of the injured  
081 nerve is striking and resembles the Warburg effect described for cancer cells (Schuster et al., 2021; Zhu et al.,  
082 2015). The transient increase in extracellular lactate may not only be axon protective (Babetto et al., 2020;  
083 Funfschilling et al., 2012), but additionally regulate immune cell reprogramming (Morioka et al., 2018) and  
084 trigger pain (Rahman et al., 2016). The injury induced increase of *Hif1 $\alpha$*  suggests that hypoxia is a main driver  
085 of metabolic reprogramming, however, the Hif1 $\alpha$  pathway can also be activated by pattern recognition  
086 receptors recognizing DAMPs released by injured cells following trauma (Corcoran and O'Neill, 2016).

087 The molecular basis for Mac reprogramming into an anti-inflammatory state remains incompletely  
088 understood. A resolving Mac phenotype may be initiated by Mac mediated engulfment and digestion of  
089 apoptotic cell corpses (Boada-Romero et al., 2020; Greenlee-Wacker, 2016). Mac in the injured sciatic nerve  
090 are fully equipped with the molecular machinery for efferocytosis, including phagocytic receptors, enzymes,  
091 and transporters to cope with elevated cholesterol load and other metabolic challenges (Kalinski et al., 2020).  
092 Parabiosis experiments, combined with SNC revealed that clearing of apoptotic leukocytes, through  
093 efferocytosis, takes place in the injured PNS (Kalinski et al., 2020). Professional phagocytes that undergo  
094 multiple rounds of efferocytosis experience metabolic stress such as accumulation of intracellular lipids (Schif-  
095 Zuck et al., 2011). Growing evidence suggests that Mac leverage efferocytotic metabolites for anti-  
096 inflammatory reprogramming to promote tissue repair (Zhang et al., 2019). During the resolution phase Mac  
097 are equipped with the machinery for fatty acid oxidation and OXPHOS as a means of energy production. The

098 rapid reprogramming of Mac is likely key for wound healing, axon regeneration, and restoration of neural  
099 function. Timely resolution of inflammation protects from excessive tissue damage and fibrosis. Interestingly,  
100 perineurial cells may function as lactate sink in the injured nerve, since pMES express high levels of  
101 *Slc16a1/MCT1* for cellular import, as well as *Ldhb* for conversion of lactate into pyruvate. This suggests that  
102 different cell types in the injured nerve employ different strategies to cover their bioenergetic needs. It will be  
103 interesting to examine whether Mo/Mac metabolic reprogramming, efferocytosis, and inflammation resolution  
104 are altered under conditions where nerve health and axon regeneration are compromised (Sango et al., 2017).  
105 Because nerve inflammation has been linked to the development of neuropathic pain (Davies et al., 2020),  
106 prolonged and poorly resolving nerve inflammation, due to impaired metabolic reprogramming, may directly  
107 contribute to pain syndromes.

108

#### 109 **Identification of distinct immune compartments in the injured PNS**

110 Mo/Mac are highly plastic cells that are educated by the microenvironment. Considering the complexity of  
111 injured PNS tissue, it is perhaps not surprising that Mac subpopulations were identified that are not uniformly  
112 distributed within the injured nerve. At the site of injury, nerve trauma is caused by compression or transection,  
113 resulting in cell destruction, release of damage associated molecular patterns (DAMPs), vascular damage,  
114 nerve bleeding, and disruption of tissue homeostasis. In the distal nerve, where physical trauma is not directly  
115 experienced, severed fibers rapidly undergo WD. Thus, mechanical nerve injury results in temporally and  
116 spatially distinct microenvironments. This was demonstrated by single cell RNAseq of immune cells captured  
117 at the nerve injury site or the distal nerve. We identified distinct, yet overlapping immune compartments,  
118 suggesting functions associated with wound healing and WD. Experiments with *Sarm1*<sup>-/-</sup> mice demonstrate  
119 that SNC triggers a spatially confined inflammatory response and accumulation of blood-borne immune cells  
120 independently of WD. Thus, physical nerve wounding and the resulting disruption of tissue homeostasis are  
121 sufficient to trigger robust local nerve inflammation. Our findings are reminiscent of a study in zebrafish larvae  
122 where laser transection of motor nerves resulted in Mac accumulation at the lesion site prior to axon  
123 fragmentation. Moreover, delayed fragmentation of severed zebrafish motor axons expressing the *Wld(s)*  
124 transgene did not alter Mac recruitment (Rosenberg et al., 2012). In injured *Sarm1*<sup>-/-</sup> mice, distal nerves are  
125 much less inflamed when compared to parallel processed WT mice. Our observation is consistent with studies  
126 in *Wld(s)* mice, where reduced nerve inflammation has been reported (Chen et al., 2015; Coleman and Hoke,  
127 2020; Lindborg et al., 2017; Perry and Brown, 1992). Parabiosis experiments show that hematogenous WT  
128 immune cells readily enter the *Sarm1*<sup>-/-</sup> injury site, and to a much lesser extent, the distal nerve. Interestingly,  
129 Mo enter the *Sarm1*<sup>-/-</sup> distal nerve prior to fiber disintegration, however, fail to mature into Mac. This suggests  
130 that severed, but physically intact PNS fibers in the *Sarm1*<sup>-/-</sup> distal nerve release chemotactic signals for Mo.  
131 Our studies show that SNC is sufficient to trigger Mo recruitment to the distal nerve, but WD is required for Mo  
132 differentiation and full-blown nerve inflammation.

133

#### 134 **What drives WD associated nerve inflammation?**

135 Studies with injured *Sarm1*–/– mice show that full-blown inflammation of the distal nerve requires WD, the  
136 underlying molecular signals, however, remain incompletely understood. Because WD results in axon  
137 disintegration and simultaneous breakdown of myelin sheaths into ovoids, it is not clear whether myelin debris,  
138 SC activation, or axon fragmentation is the main trigger for WD associated nerve inflammation. Of interest,  
139 transgenic expression of Raf-kinase in mSC in adult mice is sufficient to drive SC dedifferentiation into p75-  
140 positive progenitor-like state without compromising axon integrity. SC dedifferentiation resulted in cytokine  
141 expression and nerve inflammation, however analysis of immune cell composition and comparison to SNC  
142 triggered nerve inflammation, has not yet been carried out (Napoli et al., 2012). In the healthy PNS, the  
143 endoneurial milieu is protected by the BNB, a selectively permeable barrier formed by the specialized EC along  
144 with the perineurial barrier. The BNB creates an immunologically and biochemically privileged space harboring  
145 nerve fibers and endoneurial fluid (Lim et al., 2014). ELISA of injured nerve tissue revealed that the BNB is at  
146 least partially compromised following SNC, resulting in local disturbances of vascular permeability, allowing  
147 access of serum proteins that function in opsonization and phagocytosis to the endoneurium. This suggests  
148 that in addition to degenerating axons and myelin debris, disruption of the BNB may be a driver of trauma  
149 inflicted nerve inflammation. Additional studies are needed to fully define the mechanisms that underly WD-  
150 associated nerve inflammation.

151 Taken together, we carried out a longitudinal analysis of injured mouse PNS, naïve nerve, and PBMC  
152 transcriptomes at single cell resolution. The study provides unprecedented insights into the dynamic cellular  
153 landscape, cell-cell interaction networks, and immune cell metabolic reprogramming during the first week  
154 following nerve crush injury. To facilitate dataset mining, we developed the injured sciatic nerve atlas (iSNAT),  
155 a novel tool to navigate the cellular and molecular landscape of a neural tissue endowed with a high  
156 regenerative capacity.

157

## 158 Material and Methods

### 159 Mice and genotyping

160 All procedures involving mice were approved by the Institutional Animal Care and Use Committees (IACUC) of  
161 the university of Michigan (PRO 00009851) and performed in accordance with guidelines developed by the  
162 National Institutes of Health. Young adult male and female mice (8-16 weeks) on a C57BL/6 background were  
163 used throughout the study. Transgenic mice included, *Sarm1/Myd88-5/-* (Jackson labs Stock No: 018069)  
164 and *ROSA26-mTdt/mGFP* (Jackson labs Stock No: 007576). Mice were housed under a 12 h light/dark cycle  
165 with regular chow and water ad libitum. For genotyping, ear biopsies were collected, and genomic DNA  
166 extracted by boiling in 100  $\mu$ l alkaline lysis buffer (25 mM NaOH and 0.2 mM EDTA in ddH<sub>2</sub>O) for 30 min. The  
167 pH was neutralized with 100  $\mu$ l of 40 mM Tris-HCl (pH 5.5). For PCR, 1–5  $\mu$ l of gDNA was mixed with 0.5  $\mu$ l of  
168 10 mM dNTP mix (Promega, C1141, Madison, WI), 10  $\mu$ l of 25 mM MgCl<sub>2</sub>, 5  $\mu$ l of 5X Green GoTaq Buffer  
169 (Promega, M791A), 0.2  $\mu$ l of GoTaq DNA polymerase (Promega, M3005), 1  $\mu$ l of each PCR primer stock (100  
170  $\mu$ M each), and ddH<sub>2</sub>O was added to a total volume of 25  $\mu$ l. The following PCR primers, purchased from  
171 *Integrated DNA Technologies*, were used: *Sarm1* WT Fwd: 5'GGG AGA GCC TTC CTC ATA CC 3'; *Sarm1*  
172 WT Rev: 5'TAA GAA TGA GCA GGG CCA AG 3'; *Sarm1* KO Fwd: 5'CTT GGG TGG AGA GGC TAT TC 3';  
173 *Sarm1* KO Rev: 5'AGG TGA GAT GAC AGG AGA TC 3'; *Rosa26* WT Fwd: 5'-CGT GAT CTG CAA CTC CAG  
174 TC-3'; *Rosa26* WT Rev: 5'-GGA GCG GGA GAA ATG GAT ATG-3'. PCR conditions were as follows: Hot start  
175 94°C 3 minutes; DNA denaturing at 94°C 30 seconds; annealing 60°C 1 minute; extension 72°C 1-minute, total  
176 cycles 34. Final extension for 6 min at 72°C.

### 177 Surgical procedures

178 Mice were deeply anesthetized with a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg) or with  
179 isoflurane (5% induction, 2-3% maintenance, SomnoSuite Kent Scientific). Buprenorphine (0.1 mg/kg) was  
180 given as an analgesic. For SNC, thighs were shaved and disinfected with 70% isopropyl alcohol and iodine  
181 (PDI Healthcare). A small incision was made on the skin, underlying muscles separated, and the sciatic nerve  
182 trunk exposed. For sham operated mice, the nerve was exposed but not touched. For SNC, the nerve was  
183 crushed for 15 seconds, using a fine forceps (Dumont #55). The wound was closed using two 7mm reflex clips  
184 (Cell Point Scientific). Parabiosis surgery was performed as described (Kalinski et al., 2020). Briefly, before  
185 parabiosis surgery, similar aged, same sex mice were housed in the same cage for 1-2 weeks. Mice were  
186 anesthetized and their left side (host) or right side (donor) shaved and cleaned with iodine pads. A unilateral  
187 skin-deep incision was made from below the elbow to below the knee on the host and donor mouse. Mice were  
188 joined at the knee and elbow joints with non-absorbable nylon sutures. Absorbable sutures were used to join  
189 the skin around the shoulders and hindlimbs. Reflex wound clips (7 mm) were used to join the remainder of the  
190 skin between the two mice. Mice were allowed to recover for 3-4 weeks before use for SNC surgery.

### 192 Histological procedures

193 Mice were euthanized with an overdose of Xylazine/Ketamine and transracially perfused for 5 min with ice-cold  
194 PBS followed by 5 min with freshly prepared ice-cold 4% paraformaldehyde in PBS. Sciatic nerve trunks were

195 harvested and postfixed for 2 hours in ice-cold perfusion solution, followed by incubation in 30% sucrose in  
196 PBS solution at 4°C overnight. Nerves were covered with tissue Tek (Electron Microscopy Sciences, 62550–  
197 01) and stored at -80°C. Nerves were cryo-sectioned at 14  $\mu$ m thickness and mounted on Superfrost<sup>+</sup>  
198 microscope slides, air dried overnight, and stored in a sealed slide box at -80°C. For antibody staining, slides  
199 were brought to RT and rinsed in 1x PBS three times, 5 min each. Slides were incubated in 0.3% PBST (1X  
200 PBS plus 0.3% Tween 20) for 10 min, followed by incubation for 1h in 5% donkey serum solution in 0.1%  
201 PBST (blocking buffer). Primary antibodies at appropriate dilutions were prepared in blocking solution, added  
202 to microscope slides, and incubated at 4°C overnight. The next day, sections were rinsed three times in PBS,  
203 5 min each. Appropriate secondary antibodies in blocking buffer were added for 1h at a dilution of 1:1000 at  
204 room temperature. Slides were rinsed three times in PBS, 5 min each, once in 0.1% PBST for 5 min, and  
205 briefly with milliQ water. Sections were mounted in DAPI containing mounting medium (Southern biotec (Cat.  
206 No.0100-20)), and air dried. Images were acquired with a Zeiss Apotome2 microscope equipped with an  
207 Axiocam 503 mono camera and ZEN software. Image processing and analysis were conducted using the ZEN  
208 software.

209  
210 For *in situ* mRNA detection, the RNAscope Multiplex Fluorescent Reagent Kit v2 (ACD, 323100) was used.  
211 Microscope slides with serially cut nerves were rinsed in 1x PBS for 5 min and air dried by incubation at 60°C  
212 for 45 min in an oven (VWR Scientific, Model 1525 incubator). Next, tissue sections were fixed in 4%  
213 Paraformaldehyde (PFA)/PBS for 45 mins at RT and dehydrated by incubation in a graded series of 50%,  
214 70%, and 100% ethanol for 5 min each. Sections were air dried for 5 min at RT and one drop of hydrogen  
215 peroxide solution (ACD catalog number: PN 322381) was added to each nerve section on each slide and  
216 incubated at RT for 10 min. Sections were then submerged in 99°C RNase free water for 1 min, followed by  
217 incubation in 99°C 1x antigen retrieval solution (ACD catalog number: 322000) for 20 min. Next, slides were air  
218 dried by incubation for 45 min in an oven at 60°C. Protease III solution (ACD catalog number: PN 322381) was  
219 applied to tissue sections followed by incubation at 40°C in an ACD hybridization oven (ACD catalog number:  
220 321710) for 45 min. RNA probes were mixed at appropriate ratios and volumes (typically 50:1 for C1:C2) for  
221 complex hybridization. For single RNA probe hybridization, RNA probes were diluted with probe dilutant at  
222 1:50-1:100 (ACD catalog number: 300041). Appropriate probes or the probe mixtures were applied to tissue  
223 sections and incubated for 2h in the hybridization oven at 40°C. 1X wash buffer was prepared from a 50X stock  
224 solution (ACD catalog number: PN 310091) and sections rinsed for 2 min. The slides were then stored in 5X  
225 SSC buffer overnight. The next morning, sections were rinsed in 1X wash buffer and amplification probes,  
226 corresponding to the primary RNA probes, were applied starting with the C1 probe (ACD catalog number:  
227 323100). Slides were incubated in the hybridization oven for 30 min 40°C and then rinsed twice with 1X wash  
228 buffer. Next, the A2 and A3 probes were applied. For development, the TSA system (AKOYA, Cy3:  
229 NEL744001KT; Cy5: NEL745001KT; Fluorescein: MEL741001KT) was used. Once the color for probe C1 was  
230 selected, HRPC1 solution (ACD catalog number: 323120), it was applied to the appropriate sections and  
231 incubated for 15 mins in the hybridization oven at 40°C. The sections were then rinsed in 1x washing buffer.  
232 Designated TSA color for probe C1, diluted in the TSA dilutant (ACD catalog number: 322809) between

233 1:1000-1:2000 was applied to the respective sections and incubated for 30 mins in the ACD hybridization oven  
234 at 40°C. Sections were rinsed in 1X wash buffer and then HRP blocker (ACD catalog number: 323120) was  
235 applied and incubated for 15 min in the ACD hybridization oven at 40°C. This procedure was repeated for  
236 probes C2 and C3 as needed using HRPC2 and HRPC3 respectively. Sections were mounted in DAPI  
237 southern biotech mounting media (Cat. No.0100-20), air dried, and imaged or stored at 4°C in the dark. For  
238 quantification of labeled cells in nerve tissue sections, a field of view (FoV) was defined, 200 $\mu$ m X 500 $\mu$ m at  
239 the injury site and the distal nerve. The FoV in the distal nerve was 2000  $\mu$ m away from the injury site. The  
240 number of labeled cells per FoV was counted. Only labeled cells with a clearly identifiable nucleus were  
241 included in the analysis. The number of cells counted per FoV was from n= 2 mice and n= 2 technical  
242 replicates per mouse.

243

#### 244 **Preparation of single-cell suspensions for flow cytometry and scRNAseq**

245 Mice were euthanized and transcardially perfused with ice-cold PBS to reduce sample contamination with  
246 circulating leukocytes. Sciatic nerve trunks from naïve and injured mice were harvested. For injured mice, a  
247 segment was collected that includes the injury site and distal nerve just before to the trifurcation of the tibial,  
248 sural, and peroneal nerves. Nerves were placed in ice-cold PBS containing actinomycin D [45  $\mu$ M, Sigma  
249 Aldrich, A1410]. Some nerves were further dissected into 3 mm segments, either encompassing the site of  
250 nerve injury, ~1.5 mm proximal to ~1.5 mm distal of the crush site, or distal nerve, located between +1.5 to  
251 +4.5 mm away from the crush site. Nerves from 3 mice (6 mm segments) or 5-6 mice (3 mm segments) were  
252 pooled for each biological replicate. Nerves were minced with fine scissors and incubated in 1 ml PBS  
253 supplemented with collagenase (4 mg/ml Worthington Biochemical, LS004176) and dispase (2 mg/ml, Sigma-  
254 Aldrich, D4693) and incubated for 30–45 min at 37°C in a 15-mL conical tube. For scRNAseq, the digestion  
255 buffer also contained actinomycin D (45  $\mu$ M). Nerves were triturated 20x with a 1000  $\mu$ l pipette every 10 min  
256 and gently agitated every 5 min. Next, nerves were rinsed in DMEM with 10% FBS, spun down at 650 g for 5  
257 min, the resulting pellet resuspended, and fractionated in a 30% Percoll gradient. For flow cytometry, the cell  
258 fraction was collected and filtered through a pre-washed 40  $\mu$ m Falcon filter (Corning, 352340) and cells were  
259 pelleted at 650 g for 5 min at 4°C. Immune cell populations were identified with established antibody panels as  
260 described (Kalinski et al., 2020). For scRNAseq, the cell suspension was cleared of myelin debris with myelin  
261 removal beads (Miltenyi, 130-096-733), and cells resuspended in Hanks balanced salt solution (Gibo,  
262 14025092) supplemented with 0.04% BSA (Fisher Scientific, BP1600). To enrich for immune cells in nerve  
263 specimens or from peripheral blood, some samples were run over an anti-CD45 or anti-CD11b column  
264 (Miltenyi, 130-052-301). Cells were counted and live/dead ratio determined using propidium iodine staining and  
265 a hemocytometer (Kalinski et al., 2020). Blood was collected from adult naïve mice by cardiac puncture and  
266 collected into K2 EDTA coated tubes (BD 365974) to prevent coagulation. Approximately 500  $\mu$ l of blood was  
267 passed through a 70  $\mu$ m cell strainer in 5 ml ACK (Ammonium-Chloride-Potassium) lysis buffer. Blood was  
268 incubated at room temperature for 5 min and erythrocyte lysis stopped by addition of 15 mL FACS buffer,  
269 followed by leukocyte spin down in a clinical centrifuge. This process was repeated 3 times for complete  
270 erythrocyte lysis.

271

## 272 **Barcode and library preparation**

273 The Chromium Next GEM Single Cell 3' Reagent kit v3.1 (Dual Index) was used. Barcoding and library  
274 preparation was performed following the manufacturer's protocols. Briefly, to generate single-cell gel-bead-in-  
275 emulsion (GEMs) solution, approximately 15,000 cells, in a final volume of 43  $\mu$ l, were loaded on a Next GEM  
276 Chip G (10x Genomics) and processed with the 10x Genomics Chromium Controller. Reverse transcription  
277 was performed as follows: 53°C for 45 minutes and 85°C for 5 minutes in a Veriti ThermCycler (Applied  
278 Biosystems). Next, first strand cDNA was cleaned with DynaBeads MyOne SILANE (10x Genomics,  
279 2000048). The amplified cDNA, intermediate products, and final libraries were prepared and cleaned with  
280 SPRIselect Regent kit (Beckman Coulter, B23318). A small aliquot of each library was used for quality control  
281 to determine fragment size distribution and DNA concentration, using a bioanalyzer. Libraries were pooled for  
282 sequencing with a NovaSeq 6000 (Illumina) at an estimated depth of 50,000 reads per cell, yielding 11.3 billion  
283 reads. Novaseq control software version 1.6 and Real Time Analysis (RTA) software 3.4.4. were used to  
284 generate binary base call (BCL) formatted files.

285

## 286 **Data availability**

287 All scRNA-seq datasets are available online in the Gene Expression Omnibus (GEO) database (GSE198582).

288

## 289 **scRNAseq data analysis**

290 Raw scRNAseq data were processed using the 10x Genomics CellRanger software version 3.1.0. The  
291 CellRanger "mkfastq" function was used for de-multiplexing and generating FASTQ files from raw BCL. The  
292 CellRanger "count" function with default settings was used with the mm10 reference supplied by 10x  
293 Genomics, to align reads and generate single cell feature counts. CellRanger filtered cells and counts were  
294 used for downstream analysis in Seurat version 4.0.5 implemented in R version 4.1.2. Cells were excluded if  
295 they had fewer than 500 features, more than 7500, or the mitochondrial content was more than 15%. For each  
296 post-injury time point, reads from multiple samples were integrated and normalized flowing a standard Seurat  
297 SCTransform+CCA integration pipeline (Hafemeister and Satija, 2019). The mitochondrial mapping percentage  
298 was regressed out during the SCTransform normalization step. Principal component analysis was performed  
299 on the top 3000 variable genes and the top 30 principal components were used for downstream analysis. A K-  
300 nearest neighbor graph was produced using Euclidean distances. The Louvain algorithm was used with  
301 resolution set to 0.5 to group cells together. Non-linear dimensional reduction was done using UMAP. The top  
302 100 genes for each cluster, determined by Seurat's FindAllMarkers function and the Wilcoxon Rank Sum test,  
303 were submitted to Qiagen's Ingenuity Pathway Analysis (IPA) software – version 70750971 (Qiagen Inc.,  
304 <https://digitalinsights.qiagen.com/IPA>) using core analysis of up- and down-regulated expressed genes. Top-  
305 scoring enriched pathways, functions, upstream regulators, and networks for these genes were identified  
306 utilizing the algorithms developed for Qiagen IPA software (Kramer et al., 2014), based on Qiagen's IPA  
307 database of differentially expressed genes.

308

309 **Comparative analysis of cell identities at different post-injury time points**

310 Comparison of cell identities between time points was done using the Seurat technique for classifying Cell  
311 Types from an integrated reference. This technique projects the PCA structure of the reference time point onto  
312 the query time point. This is similar to Seurat's implementation of Canonical Correlation Analysis (CCA) in that  
313 it creates anchors between the two data sets, but it stops short of modifying the expression values of the  
314 query. The output of this technique is a matrix with predicted IDs and a prediction score between 0 and 1. For  
315 each reference cell type we used the geometric mean of prediction scores for cells predicted with that type in  
316 the query set. This single prediction score was used as a surrogate for confidence in the same cell state  
317 existing in the query cells. Alternatively, using the overlapping, top 3,000, highly variable genes from each  
318 dataset, we computed the Pearson correlation between the genes' average expression (log2 of uncorrelated  
319 "RNA" assay counts) from each reference cell type and its predicted query cells. As reported in Results, we  
320 projected 1dpc cell types onto 3dpc as well as 3dpc onto 7dpc.

321 **Cell Chat**

322 CellChat version 1.1.3, with its native database, was used to analyze cell-cell communication (Jin et al., 2021)  
323 (Suoqin Jin et al., <https://doi.org/10.1038/s41467-021-21246-9>)

324 A truncated mean of 25% was used for calculating average mean expression, meaning a gene was considered  
325 to have no expression in a cell type if fewer than 25% of cells in that cell type expressed the gene.

326 **SlingShot**

327 Slingshot version 2.2.1 was used to model trajectories in the integrated myeloid dataset. The PCA embeddings  
328 from the first 4 principal components were used as input and the beginning of the trajectory anchored at the  
329 Monocytes. The Mo to Mac and Mo to MoDC trajectories were selected as interesting. To predict the genes  
330 that contribute most to pseudotime we used the tidymodels R package (Hadley Wickham and Max Kuhn  
331 [www.tidymodels.org](http://www.tidymodels.org)); specifically, regression models in random forests with 200 predictors (genes) randomly  
332 samples at each split and 1,400 trees. The Impurity method was used to calculate a genes importance in  
333 predicting the pseudotime. Heatmaps of the top 30 genes by importance were used to visually examine how  
334 the gene changes in cells ordered by their pseudotime.

335 **Code Availability**

336 iSNAT, an interactive web application was generated with the RStudio's shiny package  
337 (<http://github.com/rstudio/shiny>). The Dashboard format was generously supplied by the RStudio group  
338 <https://rstudio.github.io/shinydashboard/> The code for all analysis and Rshiny server is available from  
339 GitHub(<https://github.com/GigerLab/iSNAT>) --Not yet populated).

340 **Protein analysis**

341 For protein analysis, mice (naïve, and at 1, 3 and 7dpc) were euthanized and transcardially perfused with ice-  
342 cold PBS for 5 minutes. Naïve and injured sciatic nerves were dissected, with nerves from 3 mice pooled per

347 time point in ice-cold PBS with 1% protease inhibitor cocktail (Sigma-Aldrich, P8340). Samples were minced,  
348 homogenized in 1% Triton X-100 (Sigma-Aldrich, T8787). Samples were frozen at -80°C, thawed, centrifuged  
349 at 10,000 x g for 5 min to pellet cellular debris. The protein concentrations of the nerve supernatants and  
350 serum were determined using a BCA protein concentration assay. Western blot analysis of sciatic nerve tissue  
351 was carried out as described previously (Kalinski et al., 2020). For some WT and *Sarm1*-/- mice, injured nerves  
352 were divided into proximal, injury site, and distal segments. For the proteome Profiler Mouse XL Cytokine  
353 array, 200 µg of protein was applied to each ELISA membrane and developed according to the manufacturer's  
354 instructions (Proteome Profiler Mouse XL Cytokine Kit, ARY028, R&D Systems, Minneapolis, MN, USA).  
355 Cytokine array signals were detected by X-ray film, scanned, and quantified using LI-COR Image Studio  
356 software – version 5.2.5. Cytokine signals (pixel-density value) from duplicate spots were averaged then  
357 normalized to the reference spots in the upper right and left corners and the lower left corner on the  
358 membrane. Representative images of array membranes are shown (n = 1-2 biological replicates per condition).  
359

### 360 qRT-PCR

361 Quantitative PCR (qPCR) was carried out in triplicate with SYBR Green Fluorescein Master Mix (Thermo  
362 Scientific Cat. No. 4364344) on a QuantStudio 3 real-time PCR system (Applied Biosystems Cat. No A28567).  
363 The  $\Delta\Delta Ct$  method was used to determine the relative expression of mRNAs, which was normalized to *Rip13a*  
364 mRNA levels. Mice were transcardially perfused with ice-cold PBS, sciatic nerve trunks harvested, and  
365 collected in an RNase free 1.5 mL Eppendorf tube in 1 ml TRIzol solution (Thermofisher Cat. No. 15596026).  
366 Nerves were minced into small pieces with RNase free spring scissors, homogenized using a pestle motor  
367 mixer (RPI, 299200) and frozen at -80°C overnight. The next day, specimens were thawed, placed on ice, and  
368 0.2 ml of chloroform was added to the TRIzol mix and shaken thoroughly for 5 min. Samples were centrifuged  
369 at 12000 x g, 4°C for 15 min in a tabletop centrifuge. The aqueous phase was removed and placed in a new  
370 Eppendorf tube. Glycogen (2 µl) and isopropanol (0.5 ml) were added to the aqueous solution and mildly  
371 shaken with a shaker at 4°C for 10 mins. Samples were centrifuged at 12000 x g at 4°C for 10 min to  
372 precipitate total RNA. The supernatant was discarded, and the pellet resuspended in 1 ml 75% ethanol,  
373 vortexed briefly and then centrifuged 4°C for 5 mins at 7500 x g. The supernatant was discarded, the pellet  
374 air dried for 1-2 h, and resuspended in 20 µl of RNase free water. RNA yield was quantified with a nanodrop  
375 (Thermo Scientific, Nanodrop One), RNA aliquoted, and stored at -80°C.

376 RNA was reverse transcribed into first stand cDNA using the Invitrogen SuperScript™ III First-Strand  
377 Synthesis System kit (Cat. No. 18080051). Briefly, to 250 ng of total RNA, 1 µl of 50 µM oligo(dT)20 primer, 1  
378 µl of 10 mM dNTP mix were added and the final volume adjusted to 10 µl using RNase free water. The RNA  
379 mix was incubated at 65°C for 5 min and quickly placed on ice for at least 5 mins. In a separate tube, a master  
380 mix was prepared containing 2 µl of 10x RT buffer, 4 µl of 25 mM MgCl<sub>2</sub> and 2 µl of 0.1M DTT. 8 µl of the  
381 master mix was added to 10 µl of RNA mix with 1 µl of SuperScript III reverse transcriptase and 1 µl of  
382 RNaseOut enzyme. The reverse transcription reaction (final volume 20 µl) was carried out at 50°C for 50 min,  
383 followed by a 5 min incubation at 85°C for 5 mins. RNase H (1 µl) was added to the first stand cDNA and  
384 incubated at 37°C for 20 mins. First strand cDNA was quantified using a Nanodrop One and stored in aliquots

385 at -20°C. The cDNA was diluted to 50 ng/ul and used for qPCR in a 96 well plate format. SYBR Green  
386 Fluorescein Master Mix 10 µl (Thermo Scientific Cat. No. 4364344), 0.4 µl of forward primer, 0.4 µl of reverse  
387 primer, first strand cDNA (50 ng) was mixed, and the final volume adjured to 20 µl per well with milliQ water.  
388 The plate was sealed, centrifuged at 2500 x g for 1 min, and then placed in QuantStudio 3 real-time PCR  
389 system (Applied Biosystems Cat. No A28567) to run the qPCR. The protocol for running was as follows. Data  
390 was exported in Excel format and analyzed in Excel using the  $\Delta\Delta Ct$  method where the gene control was  
391 *Rlp13a* while the reference control was the sciatic nerve in naïve condition.

392

393 **Statistical Methods**

394 Data are presented as mean  $\pm$ SEM. Statistical analysis was performed in GraphPad Prism (v7) using paired or  
395 unpaired 2-tailed Student's t test, or 1-way or 2-way ANOVA with correction for multiple comparisons with  
396 Tukey's post-hoc test, as indicated in the figure legends. A p-value < 0.05 (\*) was considered significant.  
397 p<0.01 (\*\*), p<0.001 (\*\*\*), and p<0.0001 (\*\*\*\*). Data acquisition and analysis was carried out by individuals  
398 blinded to experimental groups.

399 **Acknowledgments**

400 We thank members of the Giger lab for critical reading of the manuscript and Qing Wang for excellent technical  
401 support. This work was supported by NIH T32 NS07222, Training in Clinical and Basic Neuroscience (AK), NIH  
402 T32 GM113900, Training Program in Translational Research (LH). The National Institutes of Health,  
403 MH119346 (RG), R01DC018500 (GC), the University of Michigan MICHRS seed funds (RG and GC), and the  
404 Dr. Miriam and Sheldon G Adelson Medical Research Foundation (RK, JT, DG, RG).

405

406 **Competing interests**

407 Except for Gabriel Corfas, the authors declare no competing financial or non-financial interests. Gabriel Corfas  
408 is a scientific founder of Decibel Therapeutics; he has an equity interest in and has received compensation for  
409 consulting. The company was not involved in this study.

410

## References

411 Alnaas, A.A., Moon, C.L., Alton, M., Reed, S.M., and Knowles, M.K. (2017). Conformational Changes in C-Reactive Protein  
412 Affect Binding to Curved Membranes in a Lipid Bilayer Model of the Apoptotic Cell Surface. *J Phys Chem B* 121, 2631-  
413 2639.

414 Babetto, E., Wong, K.M., and Beirowski, B. (2020). A glycolytic shift in Schwann cells supports injured axons. *Nat  
415 Neurosci* 23, 1215-1228.

416 Bastien, D., and Lacroix, S. (2014). Cytokine pathways regulating glial and leukocyte function after spinal cord and  
417 peripheral nerve injury. *Exp Neurol* 258, 62-77.

418 Blackburn, J.W.D., Lau, D.H.C., Liu, E.Y., Ellins, J., Vrieze, A.M., Pawlak, E.N., Dikeakos, J.D., and Heit, B. (2019). Soluble  
419 CD93 is an apoptotic cell opsonin recognized by alphax beta2. *Eur J Immunol* 49, 600-610.

420 Boada-Romero, E., Martinez, J., Heckmann, B.L., and Green, D.R. (2020). The clearance of dead cells by efferocytosis. *Nat  
421 Rev Mol Cell Biol* 21, 398-414.

422 Bouchery, T., and Harris, N. (2019). Neutrophil-macrophage cooperation and its impact on tissue repair. *Immunol Cell  
423 Biol* 97, 289-298.

424 Bros, M., Dexheimer, N., Ross, R., Trojandt, S., Hohn, Y., Tampe, J., Sutter, A., Jahrling, F., Grabbe, S., and Reske-Kunz,  
425 A.B. (2011). Differential gene expression analysis identifies murine Cacnb3 as strongly upregulated in distinct dendritic  
426 cell populations upon stimulation. *Gene* 472, 18-27.

427 Carr, M.J., Toma, J.S., Johnston, A.P.W., Steadman, P.E., Yuzwa, S.A., Mahmud, N., Frankland, P.W., Kaplan, D.R., and  
428 Miller, F.D. (2019). Mesenchymal Precursor Cells in Adult Nerves Contribute to Mammalian Tissue Repair and  
429 Regeneration. *Cell Stem Cell* 24, 240-256 e249.

430 Casals, C., Garcia-Fojeda, B., and Minutti, C.M. (2019). Soluble defense collagens: Sweeping up immune threats. *Mol  
431 Immunol* 112, 291-304.

432 Cattin, A.L., Burden, J.J., Van Emmenis, L., Mackenzie, F.E., Hoving, J.J., Garcia Calavia, N., Guo, Y., McLaughlin, M.,  
433 Rosenberg, L.H., Quereda, V., et al. (2015). Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated  
434 Regeneration of Peripheral Nerves. *Cell* 162, 1127-1139.

435 Chakarov, S., Lim, H.Y., Tan, L., Lim, S.Y., See, P., Lum, J., Zhang, X.M., Foo, S., Nakamizo, S., Duan, K., et al. (2019). Two  
436 distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. *Science* 363.

437 Chen, B., Banton, M.C., Singh, L., Parkinson, D.B., and Dun, X.P. (2021). Single Cell Transcriptome Data Analysis Defines  
438 the Heterogeneity of Peripheral Nerve Cells in Homeostasis and Regeneration. *Front Cell Neurosci* 15, 624826.

439 Chen, K., Cheng, P., Wang, H., Gao, S., Li, X., Deng, Z., Liu, J., and Sun, X. (2018). Lactate transport facilitates neurite  
440 outgrowth. *Biosci Rep* 38.

441 Chen, P., Piao, X., and Bonaldo, P. (2015). Role of macrophages in Wallerian degeneration and axonal regeneration after  
442 peripheral nerve injury. *Acta Neuropathol* 130, 605-618.

443 Coleman, M.P., and Hoke, A. (2020). Programmed axon degeneration: from mouse to mechanism to medicine. *Nat Rev  
444 Neurosci* 21, 183-196.

445 Corcoran, S.E., and O'Neill, L.A. (2016). HIF1alpha and metabolic reprogramming in inflammation. *J Clin Invest* 126, 3699-  
446 3707.

447 Davies, A.J., Kim, H.W., Gonzalez-Cano, R., Choi, J., Back, S.K., Roh, S.E., Johnson, E., Gabriac, M., Kim, M.S., Lee, J., et al.  
448 (2019). Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. *Cell* 176, 716-728 e718.

449 Davies, A.J., Rinaldi, S., Costigan, M., and Oh, S.B. (2020). Cytotoxic Immunity in Peripheral Nerve Injury and Pain. *Front  
450 Neurosci* 14, 142.

451 Davoli-Ferreira, M., de Lima, K.A., Fonseca, M.M., Guimaraes, R.M., Gomes, F.I., Cavallini, M.C., Quadros, A.U., Kusuda,  
452 R., Cunha, F.Q., Alves-Filho, J.C., et al. (2020). Regulatory T cells counteract neuropathic pain through inhibition of the  
453 Th1 response at the site of peripheral nerve injury. *Pain* 161, 1730-1743.

454 De Schepper, S., Verheijden, S., Aguilera-Lizarraga, J., Viola, M.F., Boesmans, W., Stakenborg, N., Voytyuk, I., Schmidt, I.,  
455 Boeckx, B., Dierckx de Casterle, I., et al. (2019). Self-Maintaining Gut Macrophages Are Essential for Intestinal  
456 Homeostasis. *Cell* 176, 676.

457 Doeing, D.C., Borowicz, J.L., and Crockett, E.T. (2003). Gender dimorphism in differential peripheral blood leukocyte  
458 counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. *BMC Clin Pathol* 3, 3.

459 Eming, S.A., Murray, P.J., and Pearce, E.J. (2021). Metabolic orchestration of the wound healing response. *Cell Metab* 33,  
460 1726-1743.

461 Eming, S.A., Wynn, T.A., and Martin, P. (2017). Inflammation and metabolism in tissue repair and regeneration. *Science*  
462 356, 1026-1030.

463 Erreni, M., Manfredi, A.A., Garlanda, C., Mantovani, A., and Rovere-Querini, P. (2017). The long pentraxin PTX3: A  
464 prototypical sensor of tissue injury and a regulator of homeostasis. *Immunol Rev* 280, 112-125.

465 Funfschilling, U., Supplie, L.M., Mahad, D., Boretius, S., Saab, A.S., Edgar, J., Brinkmann, B.G., Kassmann, C.M.,  
466 Tzvetanova, I.D., Mobius, W., *et al.* (2012). Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity.  
467 *Nature* 485, 517-521.

468 Gerber, D., Pereira, J.A., Gerber, J., Tan, G., Dimitrieva, S., Yanguze, E., and Suter, U. (2021). Transcriptional profiling of  
469 mouse peripheral nerves to the single-cell level to build a sciatic nerve ATlas (SNAT). *Elife* 10.

470 Girouard, M.P., Bueno, M., Julian, V., Drake, S., Byrne, A.B., and Fournier, A.E. (2018). The Molecular Interplay between  
471 Axon Degeneration and Regeneration. *Dev Neurobiol* 78, 978-990.

472 Greenlee-Wacker, M.C. (2016). Clearance of apoptotic neutrophils and resolution of inflammation. *Immunol Rev* 273,  
473 357-370.

474 Guo, T., Ke, L., Qi, B., Wan, J., Ge, J., Bai, L., and Cheng, B. (2012). PTX3 is located at the membrane of late apoptotic  
475 macrophages and mediates the phagocytosis of macrophages. *J Clin Immunol* 32, 330-339.

476 Gurtler, C., Carty, M., Kearney, J., Schattgen, S.A., Ding, A., Fitzgerald, K.A., and Bowie, A.G. (2014). SARM regulates CCL5  
477 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5  
478 promoter. *J Immunol* 192, 4821-4832.

479 Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of single-cell RNA-seq data using  
480 regularized negative binomial regression. *Genome Biol* 20, 296.

481 Hayes, C., Donohoe, C.L., Davern, M., and Donlon, N.E. (2021). The oncogenic and clinical implications of lactate induced  
482 immunosuppression in the tumour microenvironment. *Cancer Lett* 500, 75-86.

483 Jang, S.Y., Shin, Y.K., Park, S.Y., Park, J.Y., Lee, H.J., Yoo, Y.H., Kim, J.K., and Park, H.T. (2016). Autophagic myelin  
484 destruction by Schwann cells during Wallerian degeneration and segmental demyelination. *Glia* 64, 730-742.

485 Jenner, R.G., Townsend, M.J., Jackson, I., Sun, K., Bouwman, R.D., Young, R.A., Glimcher, L.H., and Lord, G.M. (2009). The  
486 transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of  
487 target genes. *Proc Natl Acad Sci U S A* 106, 17876-17881.

488 Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.H., Myung, P., Plikus, M.V., and Nie, Q. (2021).  
489 Inference and analysis of cell-cell communication using CellChat. *Nat Commun* 12, 1088.

490 Kalinski, A.L., Yoon, C., Huffman, L.D., Duncker, P.C., Kohen, R., Passino, R., Hafner, H., Johnson, C., Kawaguchi, R.,  
491 Carbalal, K.S., *et al.* (2020). Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key  
492 mechanism of nerve debridement. *Elife* 9.

493 Kes, M.M.G., Van den Bossche, J., Griffioen, A.W., and Huijbers, E.J.M. (2020). Oncometabolites lactate and succinate  
494 drive pro-angiogenic macrophage response in tumors. *Biochim Biophys Acta Rev Cancer* 1874, 188427.

495 Klein, D., and Martini, R. (2016). Myelin and macrophages in the PNS: An intimate relationship in trauma and disease.  
496 *Brain Res* 1641, 130-138.

497 Kramer, A., Green, J., Pollard, J., Jr., and Tugendreich, S. (2014). Causal analysis approaches in Ingenuity Pathway  
498 Analysis. *Bioinformatics* 30, 523-530.

499 Kuhlmann, T., Wendling, U., Nolte, C., Zipp, F., Maruschak, B., Stadelmann, C., Siebert, H., and Bruck, W. (2002).  
500 Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and  
501 activation by intravenous immunoglobulins. *J Neurosci Res* 67, 185-190.

502 Lampropoulou, V., Sergushichev, A., Bambouskova, M., Nair, S., Vincent, E.E., Loginicheva, E., Cervantes-Barragan, L.,  
503 Ma, X., Huang, S.C., Griss, T., *et al.* (2016). Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage  
504 Metabolic Remodeling and Regulation of Inflammation. *Cell Metab* 24, 158-166.

505 Lantz, C., Radmanesh, B., Liu, E., Thorp, E.B., and Lin, J. (2020). Single-cell RNA sequencing uncovers heterogenous  
506 transcriptional signatures in macrophages during efferocytosis. *Sci Rep* 10, 14333.

507 Lindborg, J.A., Mack, M., and Zigmond, R.E. (2017). Neutrophils Are Critical for Myelin Removal in a Peripheral Nerve  
508 Injury Model of Wallerian Degeneration. *J Neurosci* 37, 10258-10277.

509 Liu, J., Zhang, X., Cheng, Y., and Cao, X. (2021). Dendritic cell migration in inflammation and immunity. *Cell Mol Immunol.*  
510 Lunt, S.Y., and Vander Heiden, M.G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.  
511 *Annu Rev Cell Dev Biol* 27, 441-464.

512 Maiuolo, J., Gliozzi, M., Musolino, V., Carresi, C., Nucera, S., Macri, R., Scicchitano, M., Bosco, F., Scarano, F., Ruga, S., et  
513 al. (2019). The Role of Endothelial Dysfunction in Peripheral Blood Nerve Barrier: Molecular Mechanisms and  
514 Pathophysiological Implications. *Int J Mol Sci* 20.

515 McGettrick, A.F., and O'Neill, L.A.J. (2020). The Role of HIF in Immunity and Inflammation. *Cell Metab* 32, 524-536.

516 Mills, E.L., Ryan, D.G., Prag, H.A., Dikovskaya, D., Menon, D., Zaslona, Z., Jedrychowski, M.P., Costa, A.S.H., Higgins, M.,  
517 Hams, E., et al. (2018). Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. *Nature*  
518 556, 113-117.

519 Moalem, G., and Tracey, D.J. (2006). Immune and inflammatory mechanisms in neuropathic pain. *Brain Res Rev* 51, 240-  
520 264.

521 Morioka, S., Perry, J.S.A., Raymond, M.H., Medina, C.B., Zhu, Y., Zhao, L., Serbulea, V., Onengut-Gumuscu, S., Leitinger,  
522 N., Kucenas, S., et al. (2018). Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release.  
523 *Nature* 563, 714-718.

524 Nagao, A., Kobayashi, M., Koyasu, S., Chow, C.C.T., and Harada, H. (2019). HIF-1-Dependent Reprogramming of Glucose  
525 Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. *Int J Mol Sci* 20.

526 Napoli, I., Noon, L.A., Ribeiro, S., Kerai, A.P., Parrinello, S., Rosenberg, L.H., Collins, M.J., Harris, M.C., White, I.J.,  
527 Woodhoo, A., et al. (2012). A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and  
528 peripheral nerve regeneration in vivo. *Neuron* 73, 729-742.

529 O'Neill, L.A., Kishton, R.J., and Rathmell, J. (2016). A guide to immunometabolism for immunologists. *Nat Rev Immunol*  
530 16, 553-565.

531 Osterloh, J.M., Yang, J., Rooney, T.M., Fox, A.N., Adalbert, R., Powell, E.H., Sheehan, A.E., Avery, M.A., Hackett, R., Logan,  
532 M.A., et al. (2012). dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. *Science* 337, 481-  
533 484.

534 Palsson-McDermott, E.M., Curtis, A.M., Goel, G., Lauterbach, M.A., Sheedy, F.J., Gleeson, L.E., van den Bosch, M.W.,  
535 Quinn, S.R., Domingo-Fernandez, R., Johnston, D.G., et al. (2015). Pyruvate kinase M2 regulates Hif-1alpha activity and  
536 IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. *Cell Metab* 21, 65-  
537 80.

538 Pan, D., Acevedo-Cintron, J.A., Sayanagi, J., Snyder-Warwick, A.K., Mackinnon, S.E., and Wood, M.D. (2020). The  
539 CCL2/CCR2 axis is critical to recruiting macrophages into acellular nerve allograft bridging a nerve gap to promote  
540 angiogenesis and regeneration. *Exp Neurol* 331, 113363.

541 Pearce, E.L., and Pearce, E.J. (2013). Metabolic pathways in immune cell activation and quiescence. *Immunity* 38, 633-  
542 643.

543 Perry, V.H., and Brown, M.C. (1992). Role of macrophages in peripheral nerve degeneration and repair. *Bioessays* 14,  
544 401-406.

545 Rahman, M.H., Jha, M.K., Kim, J.H., Nam, Y., Lee, M.G., Go, Y., Harris, R.A., Park, D.H., Kook, H., Lee, I.K., et al. (2016).  
546 Pyruvate Dehydrogenase Kinase-mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic  
547 Neuropathy. *J Biol Chem* 291, 6011-6025.

548 Ramaglia, V., King, R.H., Nourallah, M., Wolterman, R., de Jonge, R., Ramkema, M., Vigar, M.A., van der Wetering, S.,  
549 Morgan, B.P., Troost, D., et al. (2007). The membrane attack complex of the complement system is essential for rapid  
550 Wallerian degeneration. *J Neurosci* 27, 7663-7672.

551 Rosenberg, A.F., Wolman, M.A., Franzini-Armstrong, C., and Granato, M. (2012). In vivo nerve-macrophage interactions  
552 following peripheral nerve injury. *J Neurosci* 32, 3898-3909.

553 Rotshenker, S. (2011). Wallerian degeneration: the innate-immune response to traumatic nerve injury. *J  
554 Neuroinflammation* 8, 109.

555 Sango, K., Mizukami, H., Horie, H., and Yagihashi, S. (2017). Impaired Axonal Regeneration in Diabetes. Perspective on  
556 the Underlying Mechanism from In Vivo and In Vitro Experimental Studies. *Front Endocrinol (Lausanne)* 8, 12.

557 Schif-Zuck, S., Gross, N., Assi, S., Rostoker, R., Serhan, C.N., and Ariel, A. (2011). Saturated-efferocytosis generates pro-  
558 resolving CD11b low macrophages: modulation by resolvens and glucocorticoids. *Eur J Immunol* 41, 366-379.

559 Schuster, S., Ewald, J., and Kaleta, C. (2021). Modeling the energy metabolism in immune cells. *Curr Opin Biotechnol* 68,  
560 282-291.

561 SenGupta, S., Subramanian, B.C., and Parent, C.A. (2019). Getting TANned: How the tumor microenvironment drives  
562 neutrophil recruitment. *J Leukoc Biol* 105, 449-462.

563 Shin, J.E., Ha, H., Cho, E.H., Kim, Y.K., and Cho, Y. (2018). Comparative analysis of the transcriptome of injured nerve  
564 segments reveals spatiotemporal responses to neural damage in mice. *J Comp Neurol* 526, 1195-1208.

565 Steinman, R.M. (2012). Decisions about dendritic cells: past, present, and future. *Annu Rev Immunol* 30, 1-22.  
566 Stratton, J.A., Holmes, A., Rosin, N.L., Sinha, S., Vohra, M., Burma, N.E., Trang, T., Midha, R., and Biernaskie, J. (2018).  
567 Macrophages Regulate Schwann Cell Maturation after Nerve Injury. *Cell Rep* 24, 2561-2572 e2566.  
568 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalex, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and  
569 Satija, R. (2019). Comprehensive Integration of Single-Cell Data. *Cell* 177, 1888-1902 e1821.  
570 van Kooyk, Y., Ilarregui, J.M., and van Vliet, S.J. (2015). Novel insights into the immunomodulatory role of the dendritic  
571 cell and macrophage-expressed C-type lectin MGL. *Immunobiology* 220, 185-192.  
572 Vargas, M.E., and Barres, B.A. (2007). Why is Wallerian degeneration in the CNS so slow? *Annu Rev Neurosci* 30, 153-  
573 179.  
574 Vargas, M.E., Watanabe, J., Singh, S.J., Robinson, W.H., and Barres, B.A. (2010). Endogenous antibodies promote rapid  
575 myelin clearance and effective axon regeneration after nerve injury. *Proc Natl Acad Sci U S A* 107, 11993-11998.  
576 Voss, K., Hong, H.S., Bader, J.E., Sugiura, A., Lyssiotis, C.A., and Rathmell, J.C. (2021). A guide to interrogating  
577 immunometabolism. *Nat Rev Immunol* 21, 637-652.  
578 Wang, P.L., Yim, A.K.Y., Kim, K.W., Avey, D., Czepielewski, R.S., Colonna, M., Milbrandt, J., and Randolph, G.J. (2020).  
579 Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. *Nat  
580 Commun* 11, 2552.  
581 Wolbert, J., Li, X., Heming, M., Mausberg, A.K., Akkermann, D., Frydrychowicz, C., Fledrich, R., Groeneweg, L., Schulz, C.,  
582 Stettner, M., et al. (2020). Redefining the heterogeneity of peripheral nerve cells in health and autoimmunity. *Proc Natl  
583 Acad Sci U S A* 117, 9466-9476.  
584 Ydens, E., Amann, L., Asselbergh, B., Scott, C.L., Martens, L., Sichien, D., Mossad, O., Blank, T., De Prijck, S., Low, D., et al.  
585 (2020). Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome  
586 and response to injury. *Nat Neurosci*.  
587 Zhang, J.G., Czabotar, P.E., Policheni, A.N., Caminschi, I., Wan, S.S., Kitsoulis, S., Tullett, K.M., Robin, A.Y., Brammananth,  
588 R., van Delft, M.F., et al. (2012). The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments.  
589 *Immunity* 36, 646-657.  
590 Zhang, S., Weinberg, S., DeBerge, M., Gainullina, A., Schipma, M., Kinchen, J.M., Ben-Sahra, I., Gius, D.R., Yvan-Charvet,  
591 L., Chandel, N.S., et al. (2019). Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain  
592 to Polarize Macrophages for Tissue Repair. *Cell Metab* 29, 443-456 e445.  
593 Zhu, L., Zhao, Q., Yang, T., Ding, W., and Zhao, Y. (2015). Cellular metabolism and macrophage functional polarization. *Int  
594 Rev Immunol* 34, 82-100.  
595