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Abstract

Long noncoding RNAs (IncRNAs) can positively and negatively regulate expression of target
genes encoded in cis. However, the extent, characteristics and mechanisms of such cis-
regulatory IncRNAs (cis-IncRNAs) remain obscure. Until now, they have been defined using
inconsistent, ad hoc criteria that can result in false-positive predictions. Here, we introduce
TransCistor, a framework for defining and identifying cis-IncRNAs based on enrichment of targets
amongst proximal genes. Using transcriptome-wide perturbation experiments for 190 human and
133 mouse IncRNAs, we provide the first large-scale view of cis-IncRNAs. Our results ascribe cis-
regulatory activity to only a small fraction (~10%) of IncRNAs, with a prevalence of activators over
repressors. Cis-IncRNAs are detected at similar rates by RNA interference (RNAIi) and antisense
oligonucleotide (ASO) perturbations. We leverage this cis-IncRNA catalogue to evaluate
mechanistic models for cis-IncRNAs involving enhancers and chromatin folding. Thus,
TransCistor places cis-regulatory IncRNAs on a quantitative foundation for the first time.

Main

The first characterised long noncoding RNAs (IncRNAs), H19 and XIST, were both found to have
cis-regulatory activity: their perturbation by loss-of-function (LOF) led to increased expression of
protein-coding genes encoded “in cis” - i.e. within a relatively short linear distance on the same
chromosome'?. Genes whose expression responds to INcRNA LOF are considered “targets” of
that IncRNA, while the direction of this change (up or down) defines the INcCRNA as a “repressor”
or “activator”, respectively. Since then, numerous more cis-regulatory IncRNAs have been
reported 34. Conversely, other IncRNAs have no apparent positional preference for their targets,
and are termed trans-IncRNAs 5. This cis/trans duality provides a fundamental framework for
understanding regulatory IncRNAs®, yet the global prevalence of cis- and trans-regulatory
IncRNAs remains poorly defined.

Within reported cis-IncRNAs there appears to be great diversity, in terms of regulatory activity
(activators and repressors), distance of the target (ranging from one hundred basepairs* to
hundreds of kilobases’) and number of targets (one* to many®). Two overarching molecular
mechanisms have been proposed for cis-IncRNAs: enhancer elements and chromatin folding®.
Some cis-activating IncRNAs, termed “enhancer IncRNAs” (e-IncRNAs), have been found to
overlap DNA-encoded enhancer elements'®'2 similar to IncRNAs more generally’. The
expression and splicing of the e-IncRNA transcripts correlate with enhancer activity, implying that
RNA processing somehow promotes target gene activation. Similarly, it has been proposed that
cis-IncRNAs find their targets via spatial proximity, determined by chromatin looping or within the
confines of local topologically-associating domains (TADs)®. An attractive corollary of these
models is that cis-regulatory IncRNAs may act via non-sequence dependent mechanisms,
perhaps involving phase separation' and local concentration gradients'. It has recently been
posited that IncRNAs proceed through an evolutionary trajectory commencing with fortuitous cis-
regulatory activity before acquiring targeting capabilities and graduating to trans-regulation’®.
Nonetheless, these conclusions are drawn from piecemeal studies of individual IncRNAs, and a
holistic view of cis and trans IncRNAs, the features that distinguish them, and resulting clues to
their molecular mechanisms and biological significance, await a comprehensive catalogue of cis-
IncRNAs.
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64  Despite their importance, we lack a rigorous and agreed definition for cis-IncRNAs. Until now,
65 they have been defined by the existence of 21 proximal targets. Targets are defined as those
66  whose expression changes in response to INcRNA LOF, as measured using single-gene (RT-
67 PCR) or whole-transcriptome (RNA-seq, CAGE, microarray) techniques®>'. “Proximity” is
68 defined on a case-by-case basis, using a wide range of windows spanning 102 to 10° bp’. A single
69  proximal target is usually considered sufficient. The problem with this approach is that, as the total
70  number of targets and/or cis-window size increase, so will the chance of observing 21 cis-target
71 genes by random chance.

72 Inthis study, we consider cis-IncRNAs from a quantitative perspective. We show that conventional
73  definitions are prone to high false positive rates. We introduce statistical methods for definition of
74  cis-IncRNAs at controlled false discovery rates, and use them to classify regulatory INncRNAs
75 across hundreds of perturbation datasets. Our results enable us to estimate, for the first time, the
76 prevalence of cis-acting IncRNAs and evaluate hypotheses regarding their molecular
77  mechanisms of action.

78  Results

79 A quantitative definition of cis-IncRNAs

80 We began by investigating the usefulness of the present “naive” definition of cis-IncRNAs, based
81  on the existence of 21 target gene within a local genomic window. To create a dataset of IncCRNA-
82  target relationships, we collected 382 IncRNA LOF experiments targeting 188 human IncRNAs
83  from a mixture of sources (including the recently published dataset of ASO knockdowns in human
84  dermal fibroblasts from the FANTOM consortium'®) and 137 experiments for 131 IncRNAs in
85 mouse (Figure 1A). To this we added 6 hand-curated LOF experiments targeting previously
86 reported cis-acting InNcRNAs (UMLILO, XIST x2, Chaserr, Paupar and Dali). We employed a
87  functional definition of “targets”, as genes whose steady-state levels significantly change in
88 response to a given IncRNA’s LOF (Figure 1B). We further define targets as activated or
89 repressed, where they decrease / increase in response to INcRNA LOF, respectively. Finally, we
90 define genes to be proximal / distal, if their annotated transcription start site (TSS) lies inside /
91 outside a defined distance window of the INcCRNA’s TSS, respectively. In the dataset, 126 IncRNAs
92  were represented by 21 independent experiments, and the median number of target genes
93 identified per experiment was 65 (Supplementary Figure S1).

94  Using a range of cis-window sizes from 50 kb to 1 Mb centred on the IncRNAs’ TSSs, we

95 evaluated the fraction of IncRNAs that would be defined as cis-IncRNAs under the naive definition.

96  This approach defines ~2 to 12% of IncRNAs as cis-regulators (Figure 1C, line). To test whether

97 this rate is greater than random chance, we shuffled the target / non-target labels of all protein-

98 coding genes and repeated this analysis. The rate of cis-IncRNA predictions in this random data

99  overlapped the true rates in all windows (Figure 1C, boxplots), suggesting that the conventional
100 definition of cis-IncRNAs yields high rates of false-positive predictions.

101  To overcome this issue, we adopted the following definition for cis-IncRNAs: cis-IncRNAs are
102  those whose targets are significantly enriched amongst proximal genes. This definition has the
103  advantage of being quantitative and statistically testable. Below we incorporate this definition into
104  two alternative methods for identifying cis-IncRNAs.
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105 TransCistor: digital and analogue identification of cis-IncRNAs

106  The first method employs a simple definition of proximal genes, being those whose TSS falls
107  within a defined window centred on the IncRNA TSS. We developed a pipeline, TransCistor-
108 digital, which takes as input a processed whole-transcriptome list of target genes (“regulation
109 file”), and tests for statistical enrichment in proximal genes using the hypergeometric distribution
110  (Figure 1D). Although in principle any sized window may be used, we reasoned that the most
111 biologically-meaningful would be the local TAD, in line with previous studies'®. Chromatin folding
112  varies to an extent between cell types?. Therefore, TransCistor-digital calculates enrichment
113  across a set of experimentally-defined cell-type-specific TADs (40 human, 3 mouse)?' and
114  aggregates the resulting p-values by their harmonic mean.

115  The above fixed-window approach is intuitive yet has drawbacks. Several reported cis-IncRNAs
116  have individual targets that are not immediately adjacent’, and might be overlooked by the fixed-
117  window approach. Furthermore, many IncRNAs may have no neighbouring genes in their local
118 TAD, or no identified local TAD. Therefore, we developed an alternative method that dispenses
119  with fixed windows, while still examining proximity biases in targets. This method, TransCistor-
120  analogue, defines a distance statistic as the mean TSS-to-TSS distance of all same-chromosome
121 targets of a given IncRNA (Figure 1E). To estimate statistical significance, a null distribution is
122  calculated by randomisation of target labels (Figure 1E). Now, cis-IncRNAs are defined as those
123  having a distance statistic that is lower than a majority of simulations.

124  We sought to test the performance of TransCistor-digital and evaluate the global landscape of
125  cis-IncRNAs. After filtering out unusable datasets (having no cis-targets or no overlapping TAD),
126 168 datasets remained. The majority of p-values produced by this analysis follow the null
127  distribution, underlining the conservative statistical behaviour of TransCistor (Figure 2A,B). We
128 discovered 19 cis-acting IncRNAs (12 activators, 7 repressors), with a relatively relaxed false
129 discovery rate (FDR) threshold of 0.5, while no cis-IncRNAs are simultaneously classified as
130 activator and repressor (Figure 2C). Amongst the top-ranked cis-IncRNAs is UMLILO, previously
131  described to activate multiple genes in its local genomic neighbourhood®. UMLILO exhibits a
132  significant enrichment of activated targets amongst proximal genes, which is not observed for
133  repressed targets (Figure 2D,E). Analysis of the entire perturbation dataset by TransCistor-
134  analogue identified 20 cis-IncRNAs (15 activators, 5 repressors, FDR<0.5). Statistical behaviour
135 is good (Figure 2F,G), while cis-IncRNAs once again are cleanly split between activators and
136  repressors (Figure 2H).

137 The usefulness of these methods is supported by their internal and external consistency.
138  Together, the TransCistor approaches correctly identify previously-described cis-activators H19%,
139  JPX?, Evx10s® and DA125942%5 amongst the top ranked cis-activators, while X/ST is amongst
140 the top repressors?® (Figure 2J). Both human and mouse orthologues of CHASERR
141 (ENSGO00000272888) are identified as cis-repressors*. Of the hits, two are concordantly classified
142 by 21 independent perturbation experiments (XIST & DNAAF3-AS1 classified as cis-repressors
143  based on two separate experiments each) (Figure 2I,J). We observed agreement between the
144  two TransCistor methods, with 6 cis-IncRNAs in common (DA125942, linc1427, RAD51-AS1,
145  H19, Xist, DNAAF3-AS1) (p-value < 0.05, hypergeometric test) (Figure 3A).

146  TransCistor predicted cis-regulatory activity for a number of known IncRNAs that have never been
147  described as such in prior literature. These include BANCR (cis-activator), and SBF2-AST,
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148 LASTR, NORAD, DANCR (cis-repressors). However, the latter two are only identified in one out
149  of multiple independent perturbation experiments (6/5 for NORAD/DANCR respectively). In the
150 case of DANCR, the cis definition arises from the repression of two same-strand small RNAs
151  (has-mir-4449, SNORAZ26). It is not yet clear if these results reflect false-positive or false-negative
152  predictions. To investigate this, we merged all hits across experiments and repeated the analysis,
153  but here we found no cis signal, suggesting that they are false-positive predictions. On the other
154  hand, analysis of an independent dataset for SBF2-AS71 from different cells (A549 lung
155 adenocarcinoma) and perturbation (siRNA) yielded concordant cis-repressor prediction from
156  TransCistor-analogue (Supplementary Figure S2). This is strong evidence that SBF2-AS1 is a
157  novel cis-repressive INCRNA.

158  Surprisingly, TransCistor failed to find evidence supporting two previously reported cis-IncRNAs,
159  Paupar’” and Dali?®. Inspection of the originating microarray data revealed that, for neither case,
160  do the claimed cis-target genes pass cutoffs of differential expression (Supplementary Figure S3).

161 Overall, if we consider INcRNAs where at least one method in one dataset is called as cis-acting,
162  then our data implicates 10% (33/323) of IncRNAs as cis-regulators (Figure 3B). When broken
163  down by direction of regulation, we find that 7% (23) of these are activators and 3% (10) are
164  repressors, of which none overlap. We henceforth define the remaining 290 tested IncRNAs as
165 trans-IncRNAs. Together, these findings indicate that TransCistor is capable of identifying known
166  and novel cis-IncRNAs, and a relatively small minority of IncRNAs display significant cis-activity.

167  TransCistor identifies cis-IncRNA independently of perturbation technology

168 The perturbation experiments contained a mixture of RNA interference (RNAIi) and antisense
169  oligonucleotide (ASO) LOF perturbations. While early experiments were performed using the two
170  RNAi approaches of siRNA and shRNA, it is widely thought that these principally degrade targets
171 inthe cytoplasm?®3° or ribosome?'. In contrast, ASOs are becoming the method of choice to knock
172  down IncRNAs, since they are thought to act on nascent RNA in chromatin®2. If correct, then one
173  would expect ASO perturbations to have greater power to discover cis-IncRNAs. To test this, we
174  compared predictions from each perturbation technology (Figure 3C). Surprisingly, we observed
175  broadly similar rates of cis-IncRNA identification between perturbation methods. However, ASO
176  experiments discover similar rates of activators and repressors, while RNAi perturbations yield an
177  apparent excess of activators over repressors.

178  We conclude that TransCistor is capable of discovering cis-IncRNAs across perturbation types
179  While the small numbers preclude statistical confidence, these findings broadly support the use
180 of RNAI in targeting nuclear IncRNAs and identifying cis-IncRNAs, although the possibility for
181 perturbation-specific biases should be further investigated.

182 Association of cis-IncRNAs with enhancer elements

183 It has been widely speculated that cis-IncRNAs, particularly activators (ie e-IncRNAs), act in
184  concert with DNA enhancer elements to upregulate target gene expression®®'2, Our catalogue of
185 cis-IncRNAs represents an opportunity to independently test this. We calculated the rate of
186 overlap of IncRNAs with enhancers using epigenomics data across human tissues (Figure 4A,
187  Supplementary Figure S4). Analyses were performed at a variety of epigenome thresholds (the
188  minimum number of samples required to define a given epigenomic state) and window sizes (the
189  distance from the INcRNA TSS to the nearest epigenome element).
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190 This analysis revealed several intriguing relationships between cis-IncRNAs and enhancer
191 elements. First, we noted an enrichment of super-enhancers at the TSS of cis-activator IncRNAs
192  (boxed, Figure 4B). Inspection of overlaps at other thresholds and window sizes revealed a similar
193  effect (Supplementary Figure S4). Second, we observed an enrichment of Enhancer(1) elements
194  around the TSS of cis-repressor IncRNAs (boxed, Figure 4B), which similarly was corroborated
195 by analyses with a variety of thresholds (Supplementary Figure S4). More broadly, we observed
196  a generalised enrichment of various enhancer element annotations with cis-IncRNAs (Figure 4B,
197  left column). However, we do not observe a preference for such enrichment in cis-activator over
198  cis-repressor IncRNAs (Figure 4B, right column). Overall, within the limits of statistical power
199 given our relatively small sample size, these findings are consistent with a relationship between
200 cis-IncRNAs and enhancer elements.

201 Some cis-IncRNAs are brought into spatial proximity to their targets by chromatin looping

202 A second key mechanistic model posits that regulatory interactions between cis-IncRNAs and
203 target genes are effected by close spatial proximity, brought about by chromatin looping (Figure
204  5A). To measure proximity, we utilised published Hi-C interactions from a range of human cell
205 lines®. We evaluated the importance of proximity for regulatory targeting, by combining an
206  asymptotic regression model to predict an “expected interaction” at a given linear genomic
207 distance, with a logistic regression model to evaluate whether strong deviations from this
208 expectation were indicative of targeting (Figure 4C). This approach revealed a significant (p-value
209 = 0.1) contribution of spatial proximity to targeting for two cis-activator IncRNAs: UMLILO (8 cell
210 lines) and DA125942 (1 cell line) (Figure 4D). In both cases, previous studies have implicated
211 chromatin looping in target identification 825. An excellent example is represented by HUVEC
212  cells, where UMLILO target genes tend to be located in higher proximity (Interaction, y-axis),
213 compared to other non-targets at similar distances in linear DNA (x-axis) (Figure 4E). An
214  alternative inverse square model yielded the same two IncRNAs (Supplementary Figure S5).
215  Together, this indicates that for a subset of cis-IncRNAs, spatial proximity may determine identity
216  of target genes.

217  Discussion

218  We have described TransCistor, a modular quantitative method for identification of cis-regulatory
219  IncRNAs. We applied it to a corpus of perturbation datasets to create the first large-scale survey
220  of cis-regulatory RNAs. We evaluated the performance of TransCistor in light of the present state-
221  of-the-art and used the resulting catalogue of cis-IncRNAs to address fundamental questions
222  regarding their prevalence and molecular mechanisms.

223  TransCistor-digital and -analogue represent practical tools for cis-IncRNA discovery. Previous
224  studies used a “naive” criterion of 21 cis-target gene within an arbitrarily-sized window; however,
225  we show that this method is prone to predominantly false-positive predictions at =250 kb windows.
226  TransCistor improves on this situation by making predictions at a defined false discovery rate
227 (FDR). The two distinct statistical methods are designed to capture a range of cis-activity, from
228 IncRNAs regulating the most proximal neighbour gene’s expression within the local TAD, such as
229 Chaserr*, to those regulating a more distal target amongst other non-target genes, such as
230 CCAT1-L’. The value of resulting predictions is supported by good statistical behaviour as judged
231 by quantile-quantile (QQ) analysis, consistency between methods and datasets, and recall of

6


https://doi.org/10.1101/2022.09.18.508380
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.18.508380; this version posted September 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

232  numerous known cis-IncRNAs, including founding members H79 and XIST. TransCistor is made
233 available both as a webserver and standalone software. It is compatible with a wide range of input
234  data, since “regulation” files can be readily generated from any experimental dataset comprising
235 IncRNA perturbation and global readout of gene expression changes, including two decades of
236  experiments from microarrays to RNA-sequencing and future parallelised CRISPR LOF methods
237  such as Perturb-Seq®.

238 This work builds on important previous attempts to comprehensively discover cis-regulatory
239 IncRNAs. Basu and Larsson utilised gene expression correlation as a means for inferring
240 candidate cis-regulatory relationships®. Very recently, de Hoon and colleagues employed
241  genome-wide RNA-chromatin and chromatin folding to train a predictive model for cis-regulatory
242  IncRNAs®*. While these methods are valuable, they infer target genes based on indirect correlates
243  of cis-regulation, which may not reflect causation®. Furthermore, we failed to find evidence that
244  chromatin folding links cis-IncRNAs to their target genes in all cases. What distinguishes
245  TransCistor from these approaches, is its use of LOF perturbations to directly identify gene
246  targets. We argue that, due to its direct and functional nature, this approach should be considered
247  the gold standard evidence for defining cis-regulatory relationships.

248  Our results afford important insights into the regulatory IncRNA landscape. Notwithstanding the
249 caveats discussed above, we provide the first global estimate of cis-IncRNA prevalence,
250 suggesting they represent a modest fraction (10%) of the total, with a slight prevalence of
251  activators over repressors. These values are certainly impacted by a variety of errors discussed
252  above, which we hope will be corrected by future, larger-scale studies. The preponderance of cis-
253 activators may be an artefact of RNAI perturbations, which appear to yield an excess of activators
254  over repressors, with no apparent explanation yet. Our results shed light on cis-IncRNAS’
255  molecular mechanisms, finding evidence supporting their relationship with enhancer elements
256 and, in some cases, a preference to loop into spatial proximity to targets. Surprisingly, we
257  observed evidence that enhancers are associated with both activator and repressor IncRNAs.

258  Finally, it is worth revisiting the assumptions we make when interpreting INcCRNA perturbation
259  experiments. These involve a small oligonucleotide with perfect sequence complementarity to a
260 IncRNA target in RNA and DNA, and assess the outcome in terms of steady state RNA levels.
261 Two key assumptions are made. Firstly, any change in downstream gene expression is assumed
262  to occur through changes in the targeted IncRNA transcript. It is well known that small oligos are
263 not only capable of hybridising to genomic DNA3% but also to affect local chromatin
264  maodifications®, raising the possibility of chromatin/DNA-mediated cis-regulatory mechanisms.
265 The second assumption is more fundamental: that, when local gene changes are observed to
266  occur, such changes reflect the biological function of the INcRNA**4', The alternative explanation
267 s that perturbations of a INcRNA lead to changes to local gene expression, but that this is a by-
268  product of altering INncRNA expression (e.g. by disrupting local transcription factories), and that
269 the evolutionarily-selected function of the IncCRNA is something quite different. In other words, is
270 observed cis-activity a reflection of genuine, adaptive biological regulatory pathway, or is it merely
271  atechnical artefact without biological relevance? Testing these alternative explanations will be an
272  interesting challenge for the future, facilitated by the tools provided here.
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273 Methods

274  TransCistor

275  TransCistor was developed under the R statistical software (v4.0). Gene locations were extracted
276  from GENCODE annotation file in GTF format (v38 for human, v25 for mouse)*? and were
277  converted into a matrix. The TransCistor input consists of a “regulation file”, containing all genes
278 and a flag indicating their regulation status: 1 (upregulated after perturbation; repressed by the
279 IncRNA), -1 (downregulated after perturbation; activated by the IncRNA) or 0 (not target).
280 Regulation status can be defined by the user, and here is based on differential expression after
281 IncRNA perturbation. The perturbed IncRNA itself is removed from the regulation file to avoid false
282  positive predictions. Results are visualized with ggplot2 (v3.3.5), ggpubr (v0.4), pheatmap
283  (v1.0.12) packages and custom in-house generated scripts.

284  TransCistor includes two modules; Digital and Analogue. TransCistor-digital defines cis-IncRNAs
285 based on statistical overrepresentation of proximal targets, defined as targets in the same
286  topologically associated domain (TAD) as the INcRNA. Membership of a TAD is defined based on
287 a gene’s TSS. Digital TransCistor utilizes a collection of TADs for human and mouse cell types
288  accessed via the 3D-Genome Browser?'. For each cell type, TransCistor identifies the INCRNA
289  TAD, estimates the number of proximal (within TAD) and distal (outside TAD) targets / non-targets
290 (separately for activated and repressed). Then, it tests for overrepresentation of proximal targets
291  over distal targets by the hypergeometric test. The p-values for all the cell types are then
292 integrated by their harmonic mean. P-values are corrected for multiple hypothesis testing using
293 the False Discovery Rate (FDR) method and taking into account the experiments which show at
294  least one proximal target. TransCistor-analogue evaluates whether the mean distance of targets
295 from the same chromosome are closer than random chance. Distance is defined by TSS to TSS.
296  Analysis is performed separately for activated and repressed targets. Then, the random
297  distribution is calculated, by randomly shuffling the regulation flags on genes within the same
298 chromosome, and recalculating the test statistic each time. By default, 1000 simulations are
299 performed. Finally, the empirical p-value is calculated from the proportion of simulations with a
300 statistic less than the true value.

301  Both modules of TransCistor are available as a standalone R package and along with all
302 regulation files (https://github.com/pchouvardas/TransCistor) and Rshiny webserver
303 (https://transcistor.unibe.ch/). The input comprises metadata about the IncRNA, and a regulation
304 file containing target gene information that can be readily derived from any transcriptome-wide
305 dataincluding RNA-sequencing, CAGE and microarray experiments.

306 Collecting and processing perturbation datasets

307 The FANTOM perturbation datasets were downloaded from the Core FANTOMSG repository'®. The
308 differential expression results were transformed into regulation files by applying an adjusted p-
309 value threshold of 0.05 and using custom bash scripts. The respective metadata were also
310  downloaded from FANTOM6 and were integrated to the GENCODE annotation matrix. 31
311 perturbation experiments were removed because they target protein coding genes, and an
312  additional 19 were removed because target INncRNAs had no ENSEMBL identifier. The
313 LncRNA2Target datasets were downloaded from the webserver (Version 2.0)*® and targets were
314  defined by using an adjusted p-value cutoff of 0.05. The IncRNA locations were manually obtained
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315  from the website or original publications, when necessary. The rest of the datasets were accessed
316  through the original publications and post-processed to generate the regulation files. All regulation
317  files are available from the project Github repository, linked above.

318  Analysis of chromatin states

319  Chromatin states annotations were retrieved from three sources: EpiMap**, genoSTAN*, and
320 dbSUPER?. EpiMap consists of 18 chromatin states across 833 samples, genoSTAN identifies
321 promoter and enhancer regions genome-wide across 127 samples, and dbSUPER aggregates
322 82234 human superenhancers from 102 cell types/tissues. The annotations were relabelled as
323  follows: Superenhancer — dbSUPER’s superenhancers; Enhancer(1) — genoSTAN’s enhancers;
324  Enhancer(2.1) — EpiMap’s Genic enhancer 1; Enhancer(2.2) — EpiMap’s Active enhancer 1;
325 Enhancer(2.3) — EpiMap’s Weak enhancer; Promoter(1) — genoSTAN’s promoters; and
326  Promoter(2) — EpiMap’s Active TSS.

327 The human TSS annotations were intersected with chromatin states at several genomic windows
328 (1 bp, 100 bp, 1000 bp, 10000 bp) and a given state-TSS intersection was counted only if it was
329 presentin more samples than a given threshold (0, 1, 5, or 10 samples). For each pair of genomic
330 window and filter, a contingency matrix was computed for each pair of predicted labels (cis-
331 activator vs. cis-repressor, cis-activator vs. frans, and cis-repressor vs. trans) or the grouped label
332 (cis vs. trans), counting the number of TSSs falling into each category. Fisher's exact test was
333  used to compute the p-value of each contingency matrix.

334  Chromatin folding analysis

335 HiC interaction data was obtained using the python package “hic-straw” (v1.2.1)
336  (https://github.com/aidenlab/straw), using human HiC datasets from Aiden laboratory®®. The gene
337  coordinates reported by TransCistor were converted to hg19 to match the HiC data. The binning
338 resolution was set to 25 kb, and interaction scores were normalized by Knight-Ruiz matrix
339  balancing method. Due to gaps in the HiC matrices, ~7% of IncRNA: (non-/)target interactions
340  were approximated by using a “next best” pair of bins, for which an interaction score was available,
341 instead of the correct binning. In 6.8% of cases this only required replacing either one of the ideal
342  bins by a direct neighbour and for the remaining 0.2% either shifting both genes by one bin or one
343  of the genes by two bins. An estimate for the expected interaction at a given distance was then
344  calculated by fitting a regression model to the HiC data with the interaction score as the response
345 and the TSS distance between the two genes as the explanatory variable. An asymptotic
346  regression model was chosen for this step (‘SSasymp’ and ‘nls’ of the R base package ‘stats’
347  v4.0.3). Due to model limitations only cis-IncRNAs identified by TransCistor digital were included
348 in this analysis. For 2/12 IncRNAs from this subgroup (RAD57-AS1, NARF-AS2), model
349  generation failed for one or more of the cell types. Modelling the interaction as a function of the
350 inverse square distance was also considered (‘glm’ also from ‘stats’). This model had the
351  advantage of not failing for either combination of cis-IncRNA and cell type, but fit the data less
352 wellandit had a clear bias to underestimate the interaction in close 2D proximity and overestimate
353 interaction further away (Supplementary Figure S5). The significance of interaction on the
354  targeting status was then assessed by fitting a logistic regression model to predict whether a gene
355 is atarget of a given IncRNA based on the difference between observed and expected interaction
356 (again using the ‘gim’ function).
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359 Figure 1: TransCistor is a quantitative framework for classifying cis- and frans-requlatory
360 IncRNAS.

361  A) Oirigin of the perturbation data: The y-axis displays the number of perturbation experiments
362  (left panel) or individual INcRNA genes (right panel) per model organism (x-axis). Note that the
363  difference between number of perturbation experiments & INcRNAs arises from the fact that many
364 IncRNA genes are represented by > 1 experiment. The bars are split/color-coded according to
365 the origin dataset. The 6 hand curated perturbation experiments are the ones targeting UMLILO,
366  XIST (2), Chaserr, Paupar and Dali. B) Definition of target genes: A target gene is defined as
367 one whose expression significantly changes after loss-of-function perturbation of a given IncRNA
368 (pink). The direction of that change (down/up) defines the target as activated/repressed (green,
369 orange), respectively. C) Evaluating accuracy of naive cis-IncRNA definition: The plot displays
370 the number of IncRNAs classified as “cis-regulatory” using a definition of 21 proximal target genes
371 (y-axis), while varying the size of the genomic window (centred on the IncRNA TSS) within which
372  a target is defined as “proximal” (x-axis). Line: real data from Panel A; Boxplot: Simulations
373 created by 50 random shuffles of the target labels across all annotated genes. D) TransCistor-
374  digital method: TransCistor-digital evaluates the enrichment of targets (green) in proximal regions,
375 defined as those residing within the same topologically associating domain (TAD) as the IncRNA
376  TSS (pink) (left panel), compared to the background target rate in the rest of the genome (“Distal”)
377  (centre panel). Cis{IncRNAs are defined as those having a significantly higher proximal target
378 rate, defined using hypergeometric test (right panel). E) TransCistor-analogue method: A
379 distance statistic is defined as the mean genomic distance (bp) of all targets (green) on the same
380 chromosome as the IncRNA (pink) (left panel). 1000 simulations are performed where target
381 labels are shuffled across genes within the same chromosome (centre panel). Cis-IncRNAs are
382 defined as those whose real statistic (dashed line) falls below the maijority of simulations (right
383  panel).
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Figure 2: Large scale classification of cis-iIncRNAs in human and mouse.

A) Quantile-quantile plot displays the random expected (x-axis) and observed (y-axis) p-values
for IncRNAs (points) tested for activated targets by TransCistor-digital. The grey diagonal y=x line
indicates the expectation if no hits were present. B) As for (A), for TransCistor-digital and
repressed targets. C) Comparison of activator and repressor activity detected by TransCistor-
digital. For each IncRNA (points), their false-discovery rate (FDR)-adjusted significance is plotted
on the x-axis (activator) and y-axis (repressor). Note the absence of IncRNAs that are both
activators and repressors. D) UMLILO, an example cis-activator: The plot shows the number of
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393 genes, divided by targets / non-targets (colour / grey), location (distal/proximal) and regulation
394  direction (activated/repressed). UMLILO is classified as a cis-activator, due to the significant
395 excess (8) of proximal activated targets. Statistical significance (uncorrected) is displayed above.
396 E) UMLILO genomic locus: Vertical bars denote gene TSS. Grey: non-targets; green: activated
397 targets; pink: UMLILO. F) As for (A), for TransCistor-analogue and activated targets. G) As for
398 (B), for TransCistor-analogue and repressed targets. H) As for (C), for TransCistor-analogue. |)
399 DNAAF3-AS1, an example cis-repressor identified by TransCistor-analogue. Shown is the target
400 distance statistic (x-axis) for real data (vertical bar) and simulations (boxes). The number of
401  simulations in each distance bin is displayed on the y-axis. J) As for (1), for a second perturbation
402  experiment.
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404 Figure 3: Rate of cis-IncRNA across perturbations, datasets and species.

405 A) Summary of TransCistor results: The values represent numbers of experiments classified in
406 the bins indicated on the two axes, at a cutoff of FDR < 0.5. The names of IncRNA genes are
407  displayed. Previously-described cis-IncRNAs are red. B) The rate of IncRNA genes defined to be
408 cis-regulatory based on our analysis. Note that one single experiment is sufficient to label a
409 IncRNA gene as cis-regulatory. C) The rate of experiments defined as cis-regulatory, broken down
410 by perturbation method.
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412 Figure 4: Intersection of cis-IncRNAs with enhancer elements and generation of a chromatin
413 conformation based model.

414  A) Method of calculating overlap by enhancer annotations (horizontal purple bars) of IncRNA TSS
415  (pink bar). Overlaps are considered while varying two important thresholds: numbers of individual
416  enhancer annotations are considered the minimum necessary (epigenome threshold) and various
417  sized windows around the TSS of overlap calculation between extended TSS region (span). Only
418 the TSS spans with overlaps in more samples than a given epigenome threshold are considered.
419  B) Enrichment results epigenome threshold=1 and span=100 bp. Rows show enrichment for
420 super-enhancer, enhancer, and promoter states while comparing the TSS according to their
421  mechanism of action (see Methods). P-values were computed using Fisher's Exact Test. C) A
422  model for proximity-driven target selection: (Left panel) Chromatin folding brings INcRNA (pink)
423 into spatial proximity with proximal genes, which are subsequently targeted (green). (Right panel)
424  Chromatin proximity maps, such as provided by HiC methodology, enable one to evaluate the
425  spatial proximity (y-axis) of targets, while normalising for confounder of linear 2D DNA distance
426 (x-axis). These parameters were modelled using an Asymptotic regression model (right panel,
427 inset). D) Evaluating the contribution of proximity to target selection in human cells: The model
428  significance of cis-IncRNAs (identified by TransCistor-digital) (x-axis) was evaluated across HiC
429 interaction data from a panel of human cell lines (y-axis). Colour scale shows uncorrected p-
430 values. Green cells indicate cases where target genes tend to be significantly more proximal than
431 non-targets. No cases of the inverse were observed. E) Example data for UMLILO in HUVEC
432  cells. Note that target genes (green) tend to be more spatially proximal (y-axis) than non-target
433  genes (grey) at a similar TSS-to-TSS genomic distance (x-axis).

434
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435 Supplementary Figures

Supplementary Figure 1
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437 Supplementary Figure S1: Summary statistics of perturbation datasets.

438 A) Histogram displaying the numbers of separate perturbation experiments (x-axis) available for
439 each IncRNA gene (y-axis). B) Histograms displaying the number of significantly changing genes
440  (targets) (x-axis) for each perturbation experiment (y-axis). Regulated genes represent the union
441  of activated and repressed genes.
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Supplementary Figure S2: Analysis of cis-requlation by SBF2-AS1 in independent datasets.

(A) TransCistor-analogue results for FANTOM ASO knockdown targeting SBF2-AS7 in human
dermal fibroblasts. B) As for (A), but for independent data from A549 cells treated with siRNA. C)
Numbers indicate the genes in each category, classified by their regulation in the two distinct
datasets in (A) and (B).
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449 Supplementary Figure S3: Analysis of Dali and Paupar target genes using public microarray data.

450 A) Global transcriptome changes upon Dali knockdown were obtained from Gene Expression
451  Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62031). B) Neighbour gene
452  and putative target Pou3f3 mRNA expression in control and Dali knockdown samples. C) Global
453  transcriptome changes upon Paupar knockdown were obtained from Gene Expression Omnibus
454  (https://www.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE52569). D) Neighbour gene and
455  putative target Pax6 mRNA expression in control and Paupar knockdown samples.
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457  Supplementary Figure S4: Enrichment of enhancers, super-enhancers and promoters in cis-
458 IncRNAs. Each row represents a different enhancer annotation (see Methods). Columns
459 represent comparisons between indicated pairs of IncRNA classes. Heatmaps display the
460 enrichment of overlap at different genomic windows around the IncRNA TSSs (span, x-axis) and
461  the minimum number of observed samples required to define an enhancer (epigenome threshold,
462  y-axis). Statistical significance is indicated where p-value < 0.05 by Fisher’'s exact test (1-sided),
463  and not corrected for multiple hypothesis testing.
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465 Supplementary Figure S5: Alternative inverse square model for target gene interaction.

466  A)and B) are equivalent to main Figure 4 panels D and E respectively but using an inverse square
467 model instead of an asymptotic regression. C) Comparison of asymptotic (solid line) and inverse
468  square (dashed line) regression models.
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469 Supplementary Data Files

470 Data File 1: Information for all IncRNAs studied in this work.
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	Abstract

	Long noncoding RNAs (lncRNAs) can positively and negatively regulate expression of target genes encoded in cis. However, the extent, characteristics and mechanisms of such cis-regulatory lncRNAs (cis-lncRNAs) remain obscure. Until now, they have been ...
	Main

	The first characterised long noncoding RNAs (lncRNAs), H19 and XIST, were both found to have cis-regulatory activity: their perturbation by loss-of-function (LOF) led to increased expression of protein-coding genes encoded “in cis” - i.e. within a rel...
	Within reported cis-lncRNAs there appears to be great diversity, in terms of regulatory activity (activators and repressors), distance of the target (ranging from one hundred basepairs4 to hundreds of kilobases7) and number of targets (one4 to many8)....
	Despite their importance, we lack a rigorous and agreed definition for cis-lncRNAs. Until now, they have been defined by the existence of ≥1 proximal targets. Targets are defined as those whose expression changes in response to lncRNA LOF, as measured...
	In this study, we consider cis-lncRNAs from a quantitative perspective. We show that conventional definitions are prone to high false positive rates. We introduce statistical methods for definition of cis-lncRNAs at controlled false discovery rates, a...
	Results
	A quantitative definition of cis-lncRNAs


	We began by investigating the usefulness of the present “naïve” definition of cis-lncRNAs, based on the existence of ≥1 target gene within a local genomic window. To create a dataset of lncRNA-target relationships, we collected 382 lncRNA LOF experime...
	Using a range of cis-window sizes from 50 kb to 1 Mb centred on the lncRNAs’ TSSs, we evaluated the fraction of lncRNAs that would be defined as cis-lncRNAs under the naïve definition. This approach defines ~2 to 12% of lncRNAs as cis-regulators (Figu...
	To overcome this issue, we adopted the following definition for cis-lncRNAs: cis-lncRNAs are those whose targets are significantly enriched amongst proximal genes. This definition has the advantage of being quantitative and statistically testable. Bel...
	TransCistor: digital and analogue identification of cis-lncRNAs

	The first method employs a simple definition of proximal genes, being those whose TSS falls within a defined window centred on the lncRNA TSS. We developed a pipeline, TransCistor-digital, which takes as input a processed whole-transcriptome list of t...
	The above fixed-window approach is intuitive yet has drawbacks. Several reported cis-lncRNAs have individual targets that are not immediately adjacent7, and might be overlooked by the fixed-window approach. Furthermore, many lncRNAs may have no neighb...
	We sought to test the performance of TransCistor-digital and evaluate the global landscape of cis-lncRNAs. After filtering out unusable datasets (having no cis-targets or no overlapping TAD), 168 datasets remained. The majority of p-values produced by...
	The usefulness of these methods is supported by their internal and external consistency. Together, the TransCistor approaches correctly identify previously-described cis-activators H1922, JPX23, Evx1os24 and DA12594225 amongst the top ranked cis-activ...
	TransCistor predicted cis-regulatory activity for a number of known lncRNAs that have never been described as such in prior literature. These include BANCR (cis-activator), and SBF2-AS1, LASTR, NORAD, DANCR (cis-repressors). However, the latter two ar...
	Surprisingly, TransCistor failed to find evidence supporting two previously reported cis-lncRNAs, Paupar27 and Dali28. Inspection of the originating microarray data revealed that, for neither case, do the claimed cis-target genes pass cutoffs of diffe...
	Overall, if we consider lncRNAs where at least one method in one dataset is called as cis-acting, then our data implicates 10% (33/323) of lncRNAs as cis-regulators (Figure 3B). When broken down by direction of regulation, we find that 7% (23) of thes...
	TransCistor identifies cis-lncRNA independently of perturbation technology

	The perturbation experiments contained a mixture of RNA interference (RNAi) and antisense oligonucleotide (ASO) LOF perturbations. While early experiments were performed using the two RNAi approaches of siRNA and shRNA, it is widely thought that these...
	We conclude that TransCistor is capable of discovering cis-lncRNAs across perturbation types While the small numbers preclude statistical confidence, these findings broadly support the use of RNAi in targeting nuclear lncRNAs and identifying cis-lncRN...
	Association of cis-lncRNAs with enhancer elements

	It has been widely speculated that cis-lncRNAs, particularly activators (ie e-lncRNAs), act in concert with DNA enhancer elements to upregulate target gene expression3,9,12. Our catalogue of cis-lncRNAs represents an opportunity to independently test ...
	This analysis revealed several intriguing relationships between cis-lncRNAs and enhancer elements. First, we noted an enrichment of super-enhancers at the TSS of cis-activator lncRNAs (boxed, Figure 4B). Inspection of overlaps at other thresholds and ...
	Some cis-lncRNAs are brought into spatial proximity to their targets by chromatin looping

	A second key mechanistic model posits that regulatory interactions between cis-lncRNAs and target genes are effected by close spatial proximity, brought about by chromatin looping (Figure 5A). To measure proximity, we utilised published Hi-C interacti...
	Discussion

	We have described TransCistor, a modular quantitative method for identification of cis-regulatory lncRNAs. We applied it to a corpus of perturbation datasets to create the first large-scale survey of cis-regulatory RNAs. We evaluated the performance o...
	TransCistor-digital and -analogue represent practical tools for cis-lncRNA discovery. Previous studies used a “naïve” criterion of ≥1 cis-target gene within an arbitrarily-sized window; however, we show that this method is prone to predominantly false...
	This work builds on important previous attempts to comprehensively discover cis-regulatory lncRNAs. Basu and Larsson utilised gene expression correlation as a means for inferring candidate cis-regulatory relationships35. Very recently, de Hoon and col...
	Our results afford important insights into the regulatory lncRNA landscape. Notwithstanding the caveats discussed above, we provide the first global estimate of cis-lncRNA prevalence, suggesting they represent a modest fraction (10%) of the total, wit...
	Finally, it is worth revisiting the assumptions we make when interpreting lncRNA perturbation experiments. These involve a small oligonucleotide with perfect sequence complementarity to a lncRNA target in RNA and DNA, and assess the outcome in terms o...
	Methods
	TransCistor


	TransCistor was developed under the R statistical software (v4.0). Gene locations were extracted from GENCODE annotation file in GTF format (v38 for human, v25 for mouse)42 and were converted into a matrix. The TransCistor input consists of a “regulat...
	TransCistor includes two modules; Digital and Analogue. TransCistor-digital defines cis-lncRNAs based on statistical overrepresentation of proximal targets, defined as targets in the same topologically associated domain (TAD) as the lncRNA. Membership...
	Both modules of TransCistor are available as a standalone R package and along with all regulation files (https://github.com/pchouvardas/TransCistor) and Rshiny webserver (https://transcistor.unibe.ch/). The input comprises metadata about the lncRNA, a...
	Collecting and processing perturbation datasets

	The FANTOM perturbation datasets were downloaded from the Core FANTOM6 repository18. The differential expression results were transformed into regulation files by applying an adjusted p-value threshold of 0.05 and using custom bash scripts. The respec...
	Analysis of chromatin states

	Chromatin states annotations were retrieved from three sources: EpiMap44, genoSTAN45, and dbSUPER46. EpiMap consists of 18 chromatin states across 833 samples, genoSTAN identifies promoter and enhancer regions genome-wide across 127 samples, and dbSUP...
	The human TSS annotations were intersected with chromatin states at several genomic windows (1 bp, 100 bp, 1000 bp, 10000 bp) and a given state-TSS intersection was counted only if it was present in more samples than a given threshold (0, 1, 5, or 10 ...
	Chromatin folding analysis

	HiC interaction data was obtained using the python package “hic-straw” (v1.2.1) (https://github.com/aidenlab/straw), using human HiC datasets from Aiden laboratory33. The gene coordinates reported by TransCistor were converted to hg19 to match the HiC...
	Figures
	Figure 1: TransCistor is a quantitative framework for classifying cis- and trans-regulatory lncRNAs.


	A)    Origin of the perturbation data: The y-axis displays the number of perturbation experiments (left panel) or individual lncRNA genes (right panel) per model organism (x-axis). Note that the difference between number of perturbation experiments & ...
	Figure 2: Large scale classification of cis-lncRNAs in human and mouse.

	A) Quantile-quantile plot displays the random expected (x-axis) and observed (y-axis) p-values for lncRNAs (points) tested for activated targets by TransCistor-digital. The grey diagonal y=x line indicates the expectation if no hits were present. B) A...
	Figure 3: Rate of cis-lncRNA across perturbations, datasets and species.
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