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1. Significant advances in computational ethol-
ogy have allowed the quantification of behav-
ior in unprecedented detail. Tracking animals
in social groups, however, remains challenging
as most existing methods can either capture
pose or robustly retain individual identity over
time but not both.

2. To capture finely resolved behaviors while
maintaining individual identity, we built NAPS
(NAPS is ArUco Plus SLEAP), a hybrid tracking
framework that combines state-of-the-art, deep
learning-based methods for pose estimation
(SLEAP) with unique markers for identity per-
sistence (ArUco). We show that this framework
allows the exploration of the social dynamics of
the common eastern bumblebee (Bombus im-
patiens).

3. We provide a stand-alone Python package for
implementing this framework along with de-
tailed documentation to allow for easy utiliza-
tion and expansion. We show that NAPS can
scale to long timescale experiments at a high
frame rate and that it enables the investigation
of detailed behavioral variation within individu-
als in a group.

4. Expanding the toolkit for capturing the con-
stituent behaviors of social groups is essential
for understanding the structure and dynamics
of social networks. NAPS provides a key tool
for capturing these behaviors and can provide
critical data for understanding how individual
variation influences collective dynamics.
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Introduction
Massive advances in computing and imaging technolo-
gies enable new methods to study and quantify animal
behavior. Recently, many pose estimation tools, such
as SLEAP and DeepLabCut (Pereira et al., 2022; Lauer
et al., 2022) have been developed to track the location of
individual body parts of multiple animals as nodes on a

skeleton (see Figure 1). With advancements in compu-
tational ethology, we are able to detect fine-grained be-
haviors, including grooming, touching, and gait changes
(Berman et al., 2014, 2016; Gernat et al., 2018; Jones
et al., 2020; Wiltschko et al., 2020; Geuther et al., 2021;
Klibaite et al., 2022; Wang et al., 2022). Despite these
advances, maintaining the identity of individuals in multi-
animal data (identity persistence) remains a challenge.
This problem is especially pronounced when closely in-
teracting animals may occlude each other’s body parts
or when animals are partially or fully obscured by a com-
plex environment. This problem is not always trivially
solved with visual classifiers, as they struggle to clas-
sify morphologically similar individuals.

SLEAP, for example, provides two primary mecha-
nisms for maintaining identity: temporal tracking, where
identity is assigned based on the location of instances
in the previous frame, and direct ID classification, which
uses a neural network trained on known instances of
a given individual to distinguish animals through differ-
ences in appearance. Temporal tracking is confounded
by physical occlusion, and direct ID classification re-
quires a significant time commitment for model training
and struggles to distinguish visually similar individuals
(Pereira et al., 2022; Lauer et al., 2022; Romero-Ferrero
et al., 2019).

In parallel with deep-learning methods for pose
estimation, several unique identifier-based approaches
(Mersch et al., 2013; Crall et al., 2015; Gernat et al.,
2018; Boenisch et al., 2018; Alarcón-Nieto et al., 2018;
Eagan et al., 2022) have been developed to maintain
the identity of individuals. In these methods, a unique
identifier affixed to an individual allows for tracking each
individual’s position and orientation over time. While
effectively addressing the identity persistence problem,
many complex behaviors are not captured by these
methods in isolation, as tag position only provides the
position of a single point on the animal’s body.

Here, we introduce NAPS (NAPS is ArUco Plus
SLEAP), a framework that combines the identity infor-
mation from ArUco tags with temporal tracking and pos-
tural information from SLEAP (Figure 1). Combining
deep learning-based pose estimation with unique mark-
ers for each individual enables long-term pose track-
ing of individuals with robust identity assignment. Here,
we document this framework, provide an example use
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Figure 1. NAPS produces postural data with high-fidelity identity assignments from raw videos of tagged individuals. Top: Software pipeline. SLEAP is used to identify
the location of each body part in the skeleton (orange dots) and the position of the ArUco tag (blue dot). NAPS crops the image around the tag and uses this as the
input for ArUco tracking. Bottom: Tags are uniquely assigned to individual bees, and all instances from a single animal are combined to generate a unique identity.
The orange line shows the tag’s location as the animal locomotes, increasing in width with time.

case, and discuss potential future applications.

NAPS (NAPS is ArUco Plus SLEAP)
NAPS uses a hybrid tracking algorithm to provide high-
dimensional behavioral data compatible with recently
developed computational ethology techniques. Similar
hybrid tracking techniques have been introduced in the
literature (Smith et al., 2022; Gal et al., 2020). The
NAPS framework utilizes quantitative information about
body part position and unique identifying markers to
provide postural data with identity over long timescales
and robust to complex interactions. We used SLEAP,
a deep learning-based framework for multi-animal pose
estimation (Pereira et al., 2022), to localize the posi-
tions of body parts and the ArUco tags from video data.
These body parts form the nodes of a user-defined
skeleton (Figure 1). The output of the SLEAP workflow
is a set of predicted body-part locations combined into
skeletons and their corresponding identities. However,
SLEAP will split tracks from a single animal into multiple
tracks if it does not correctly assign identity and can also
propagate track-switch errors. We used the identity in-
formation from ArUco tags to link these broken SLEAP
tracks together and remedy track switches (Figure 1).

The first step in our framework uses SLEAP, which
can localize body parts with or without an identifiable
tag. The SLEAP skeleton must include the tag as a
node but otherwise can have as many other nodes as
desired (Figure 1). To enable identification with ArUco,
the area around the tag node is cropped out for each
individual, and each crop is processed with OpenCV’s
ArUco detection module (Bradski, 2000; Garrido-Jurado
et al., 2014). We assign an identity to each instance
using the ArUco tags through the Kuhn-Munkres algo-

rithm (Kuhn, 1955, 1956; Munkres, 1957). The ArUco
tag ID is read for each instance, generating a binary ma-
trix of tag ID and SLEAP instance coincidences, Ii,j(t)
for frame t. To mitigate issues with misassigned and
misread tags, we generate a cost matrix by subtracting
these vectors in overlapping windows,

Ci,j(t) = −
t+w∑

k=t−w

Ii,j(k). (1)

For the results shown here, we use a sliding window
size of 41 frames (w = 20). We assign IDs to each in-
stance by finding the minimum of the cost function using
the Kuhn-Munkres algorithm as implemented in SciPy
(Virtanen et al., 2020),

Âarg min =
∑

i∈Tracks

∑
j∈Tags

Ci,jAi,j (2)

where A is a permutation matrix. Note that we only use
the SLEAP-based tracking, i.e., forward propagation, for
instances where the ArUco tag was read for the track
previously and the ArUco-based ID was not reassigned
to another track. This matching framework allows us to
fix track switches and other errors produced by SLEAP
when animals overlap in the image (Figure 2). The re-
sult is an easy-to-use system for combining the high-
dimensional postural data from SLEAP with high-fidelity
identity assignment from ArUco tags. This framework is
embarrassingly parallelizable and thus scales easily to
large datasets consisting of millions of images or more.

Example usage and assessment
As validation of our framework, we ran NAPS on an ex-
ample dataset consisting of three one-hour video seg-
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Figure 2. Left: Raw images of three interacting bees. Overlaid in color are the SLEAP-identified tracks that show a track-switch error. Middle: ArUco-based cost
matrix, C, for this frame. Right: NAPS-corrected tracks overlaid without a track-switch error. The rounded boxes represent the area cropped out and subsequently
read with OpenCV’s ArUco detection module for each instance.

ments of 50 bumblebees (Bombus impatiens), including
a single queen in a 235mm × 235mm arena (Figure S1
and Figure S2). Each hour segment was pulled from a
24-hour recording, with videos starting at 04:00, 12:00,
and 20:00. The 50-bee colony was constructed from
randomly sampled individuals, except the queen, from a
colony obtained from Koppert Biological Systems (How-
ell, MI USA – August 2022) containing approximately
200 workers and a single queen. We printed 4.25mm 5
× 5 ArUco tags generated from the 5X5_50 set on Ter-
raSlate 5 Mil paper (TerraSlate, Englewood, CO USA)
and cut these to 4.25 × 4.25 mm using a Silhouette
Cameo cutting machine (Silhouette, Lindon, UT USA).
Before tagging, bees were sedated via cooling on wet
ice, and an ArUco tag was affixed to the dorsal side of
the thorax using cyanoacrylate glue (Loctite, Hartford,
CT USA) (Figure 1). As each tag was placed, we en-
sured that it could be read using a real-time ArUco tag
reader and noted the tag number.

Following tagging, individuals were placed in are-
nas made from laser-cut acrylic and 3D-printed poly-
lactic acid (PLA). Cotton wicks soaking in sugar water
were placed in one corner of the arena to allow ad libi-
tum feeding, and pollen mixed with honey was added for
nutrition. The addition of these elements increases the
complexity of the tracking environment and allows us to
test NAPS’ performance under experimental conditions
where its utility is most relevant.

Arenas were covered with clear acrylic and lit us-
ing two high-intensity 850nm LED light bars (Smart Vi-
sion Lights L300 Linear Light Bar, Norton Shores, MI
USA) to allow continuous imaging of the bees while
preserving a hive-like visual environment, as bees are
unable to see infrared light (Figure S1). We imaged
the arenas from above using a Basler acA5472-17um
(Basler AG, Ahrensburg, Germany) camera record-
ing 3664px × 3664px frames at 20 frames per sec-
ond. Recordings were taken using campy to compress
videos in real-time and drastically reduce file sizes (Sev-

erson, 2021). The videos have a spatial resolution of
15.5 pixels/mm, allowing us to capture fine-grained be-
haviors.

After video acquisition, we processed each video
with SLEAP. We used a 17-node skeleton marking the
head, thorax, two abdominal points, left and right anten-
nal joints, left and right antennae, left and right wings,
the pretarsus of each leg, and the ArUco tag. We
trained on 31 frames sampled across the three videos.
The 31 frames in our training set provided 1,550 labeled
individuals, and the resulting model is highly accurate
(see Figure S3). We performed inference using Nvidia
A100 GPUs to generate initial tracks with temporal as-
sociation. For this step, we use matching based on In-
tersection over Union (IoU) similarity with a 5-frame win-
dow. We also used SLEAP’s pre- and post-culling ar-
guments, target instance count, and single track break
connecting flag. The complete SLEAP command is pro-
vided in the Git repository (see Code and documenta-
tion). Following this, we ran NAPS on the dataset (for
the entire command, see Code and documentation).

Finally, to compare the results from SLEAP,
NAPS, and ArUco on our example dataset, we calcu-
lated both the percent of expected identifications (in-
stances) per frame (Figure 3a) and the percent of re-
alized identities (i.e., unique identities found) per video
relative to the number of expected identities (Figure 3b).
The number of expected instances identified in each
frame varies by method, with SLEAP expected to iden-
tify all instances even when individuals are inverted or
not active. ArUco can only capture instances in a given
frame when the tag is identifiable, and the number of
expected instances for this method is the number of
bees which appeared active. NAPS will have the same
number of expected instances per frame as ArUco but
is able to capture instances detected by SLEAP but
missed by ArUco in a given frame. We find that SLEAP
is able to detect nearly all expected instances in each
frame, NAPS captures almost as many instances as
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Figure 3. a A comparison of the percent of expected identifications per frame by tracking method (SLEAP, NAPS, and ArUco) in our example dataset. For SLEAP,
we expect every individual in the frame to be identified. For our dataset, we expect all 50 bees to be identified by SLEAP. For NAPS and ArUco, we expect that all
active individuals, where the ArUco tag should be detected at some point throughout the video, to be detected. This number varies from 44 to 48 depending on the
video. Here, we see that NAPS captures a similar percentage of expected individuals per frame compared to SLEAP and significantly more than ArUco alone. b A
comparison of the percent of the expected number of unique identities relative to the expected number of unique identities per video. We expect 50 unique identities for
SLEAP and from 44 to 48 for NAPS and ArUco based on the number of active individuals in each video. SLEAP produces significantly more identities than expected
while NAPS and ArUco generate almost exactly as many identities as expected.

expected, and ArUco captures ∼63% of the expected
number of instances per frame (Figure 3a). The rela-
tive percent of expected identities assigned throughout
a video also varies across methods, with SLEAP ex-
pected to detect all visible bees in a video, and NAPS
and ArUco are only expected to detect bees that were
active. SLEAP, using temporal tracking, assigns far
more identities than expected, between ∼156% and
∼286% of the expected number (Figure 3b). NAPS and
ArUco, with identities regulated by the detection of each
ArUco tag, capture almost exactly the expected number
of identities. These two metrics show that, while SLEAP
is sufficient for identifying instances at the frame level
and ArUco is sufficient for identifying the correct number
of instances, NAPS enables the identification of the cor-
rect number of instances at the frame level while main-
taining the correct number of identities across the video.
Further, even within stretches of frames where equal
numbers of identities exist, temporal identity tracking
may cause identity swaps. In this case, NAPS will cor-
rect track switches to avoid the propagation of errors as
shown in Figure 2.

The behavioral data from NAPS allows us to carry
out detailed behavior analyses across dense groups
(see Figure 4). For example, since bumblebees use
their antennae for social interaction and communica-
tion, we labeled them as nodes in our SLEAP skeleton.
This allows us to track antennal interactions across all
pairs of bees in our example dataset (Figure 5a). Fol-
lowing the previous analysis from Wang et al. (2022),
we quantified the amount of time each individual spent
in different types of social interactions using a direct,
convex-hull-based touch detector (Figure 5b). Bumble-
bees can gain access to different chemical cues by an-
tennating on different locations, and we can observe the

time series of different modes of antennation (to the an-
tennae, body, or abdomen) for a focal bee interacting
with other bees in the arena (Figure 5c). By normalizing
these interactions by their likelihood (Wang et al., 2022),
we find that the antennae-antennae mode of touching
is preferred in this large group of ∼50 interacting bees
(Figure 5d). This granular measure of an important be-
havior demonstrates how NAPS can extend the capac-
ity of behavioral tracking platforms by quantifying pre-
viously difficult-to-measure behaviors of individuals in
dense groups far larger than previously accessible.

Discussion
Past studies of social behaviors utilized fine-grained be-
havioral data or persistent identity tracking with coarse
behavioral tracking. NAPS combines these two types
of data by integrating the pose estimation capabilities
of SLEAP with the high-fidelity identity persistence of
ArUco, enabling the concurrent analysis of behavior at
both the individual and collective levels. This provides
new opportunities to examine how individual behaviors
vary in social contexts and the role of individual varia-
tion in shaping group and collective dynamics. Within a
group, even genetically identical individuals may differ in
their behaviors (Landeau and Terborgh, 1986; Herbert-
Read et al., 2013; Bierbach et al., 2017; Werkhoven
et al., 2021). With NAPS, users can probe how individ-
ual variation affects the dynamics of collective decision-
making (Cook et al., 2020), the establishment of lead-
ership and dominance (Pettit et al., 2015; Zanette and
Field, 2009), how individuals adjust their behaviors in re-
sponse to their local environment (Conradt and Roper,
2005), and the structure of individual and collective dy-
namics and their evolution (Hernández et al., 2021).
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Figure 4. Example of a single frame from the output of NAPS. Traces for each individual, by color, show the animal’s location in the previous 250 frames (12.5
seconds). NAPS produces robust identity persistence and highly accurate localization of nodes for individuals. Note that all tracks are included in this image, including
those not assigned to an ArUco tag.

Code and documentation

NAPS is an open-source framework. The source code
is available on GitHub (github.com/kocherlab/naps),
and the dataset used in this manuscript is available on
Princeton’s DataSpace (doi: 10.34770/6t6b-9545).

To facilitate the broader usage of NAPS, we pro-
vide documentation, hosted at naps.rtfd.io, along with
tutorials and example Jupyter notebooks (Brandl, 2022).
We have released NAPS on Anaconda and PyPI, tested
NAPS to nearly complete coverage (>95%), and new
features are under continuous development. Further,
we illustrate the usage of NAPS through Google Co-
laboratory notebooks showing that the resources for a

complete workflow, including SLEAP, are easily acces-
sible using only free cloud computing resources.

While the NAPS framework relies on ArUco tags
for individual identification, it can be directly extended
to use any other type of visually distinguishable marker,
such as color tags. This enables many different appli-
cations, including experiments where direct tagging may
not be plausible. In parallel, NAPS users can take ad-
vantage of the flexibility of SLEAP, including the ability
of end users to specify the nodes to track and capture
previously elusive behaviors.
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Figure 5. a Antennal tip traces of two bees during a brief interaction. The SLEAP coordinates of the antennal tips of two bees are plotted for 250 frames (12.5
seconds), providing spatiotemporal information about a single social interaction. b Schematic of antennal touch identifier (Wang et al., 2022). Instances of overlap
between the antennal zone of the focal bee and the antennal (ant), body, or abdominal (abd) edges of the convex hull target bee are counted as touches. A bee can
touch more than one of these zones at any moment. c Raster plot of antennal touches of the focal bee to three target bees over 400 frames (20 seconds). Touches to
each target bee appear as color bars on the three raster traces associated with each target bee (color coded to match individuals in b), which each raster trace/color
indicating a specific touch category. d Normalized touch scores across all bees with unique identities in all three sample videos (n=43 workers, one queen). For each
touch category, the proportion of all touches for a given target bee, averaged across each video, is normalized to account for the different sizes of each body region
and plotted by touch category (Wang et al., 2022).
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Supplementary Information

Figures

Figure S1. Diagram of the imaging setup used for capturing the example bumblebee data used. A camera facing directly down on
the custom arena is flanked with two 850nm infrared LED light bars to allow continuous imaging of the bees without perturbation,
as bees are unable to see infrared light The resulting imaging setup allows high-quality imaging of large groups of individuals in
a hive-like environment.
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Figure S2. Example image pulled from the data set. Note the density of individuals and the complex environment introduced by
pollen dough (lower left) and sugar-water wicks for feeding (lower right).
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Figure S3. Node-wise localization accuracy. a shows the 75th percentile (solid) and 90th percentile (dashed) error for held-out
validation set. b shows the distribution of localization errors on the same validation set. This distribution is clipped to (0, 0.75) for
visibility.
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