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ABSTRACT 

With the growing complexity of single-cell and spatial genomics data, there is an increasing 

importance of unbiased and efficient exploratory data analysis tools. One common exploratory 

data analysis step is the prediction of genes with different levels of activity in a subset of cells or 

locations inside a tissue. We previously developed singleCellHaystack, a method for predicting 

differentially expressed genes from single cell transcriptome data, without relying on clustering 

of cells. Here we present an update to singleCellHaystack, which is now a universally applicable 

method for predicting differentially active features: 1) singleCellHaystack now accepts 

continuous features that can be RNA or protein expression, chromatin accessibility or module 

scores from single cell, spatial and even bulk genomics data, and 2) it can handle 1D 

trajectories, 2-3D spatial coordinates, as well as higher-dimensional latent spaces as input 

coordinates. Performance has been drastically improved, with up to ten times reduction in 

computational time and scalability to millions of cells, making singleCellHaystack a suitable tool 

for exploratory analysis of atlas level datasets. singleCellHaystack is available as an R package 

and Python module. 
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INTRODUCTION 

Recent advances in single-cell and spatial omics technologies allow researchers to obtain 

abundance measures of transcripts and proteins, or the accessibility of genomic regions at 

single-cell resolution. These technologies present an unprecedented view of the heterogeneity 

in cell populations and their spatial distributions within tissues. However, they are also 

accompanied by new challenges in data analysis.  

A fundamental step in exploring single-cell transcriptomics data is predicting genes that have 

different levels of expression in one subset of cells compared to others. Such genes are often 

referred to as differentially expressed genes (DEGs). Similarly, in spatial transcriptomics data, 

spatial DEGs are genes with altered expression in part of a tissue. In single-cell ATAC 

(scATAC-seq) data, differentially accessible genomic region are regions which have a higher 

accessibility in one group of cells compared to others. In this paper, we will use the term DEG to 

refer to any feature or set of features with differential levels of activity within an input space, be it 

the 2D or 3D space within a tissue or latent spaces – such as principal components, tSNE or 

UMAP – of any dimension. 

The majority of single-cell DEG prediction approaches are based on two steps: 1) clustering of 

cells by similarity, and 2) applying statistical tests between clusters to identify DEGs 1–7. 

However, benchmark studies have reported that DEG prediction approaches for bulk RNA-seq 

do not perform worse than methods designed specifically for single-cell RNA-seq (scRNA-seq), 

and that the agreement between single-cell DEG prediction approaches is low 8,9. Because the 

number of clusters tends to be large, a common approach is to compare the cells in each 

cluster against all other cells, restricting DEGs that can be detected to genes with high (or low) 

expression in a single cluster. For the prediction of spatial DEGs, methods have been 

developed that directly employ the spatial coordinates of cells (or spots or pucks) to detect 
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genes that have non-random distributions of expression in the 2D (or 3D) space of the tissue 10–

17. However, most existing methods do not scale well with large datasets, suffer from 

prohibitively long runtimes, and are limited in the spatial patterns that they can detect in 

practice. The development of more flexible approaches for discovering complex differential 

expression patterns is one of the grand challenges of this field 18. 

We recently developed singleCellHaystack, a method that predicts DEGs based on the 

distribution of cells in which they are active within an input space 19. Our method does not rely 

on comparisons between clusters of cells and is applicable to both scRNA-seq and spatial 

transcriptomics data. An important limitation of the original implementation was that it used a 

hard threshold for defining genes as being either detected or not detected in each cell. Treating 

detection in a binary way ignores the magnitude of gene expression differences, and some 

differential expression patterns might be missed. Furthermore, singleCellHaystack was not able 

to handle sparse matrices, limiting its applicability to the ever-increasing dataset sizes. 

Here, we present a drastic reformulation of our approach which addresses the above limitations. 

First, our method now uses continuous activity levels for predicting DEGs. Second, it uses 

cross-validation for choosing a suitable flexibility of splines during its modeling steps. Third, the 

computational time has been drastically reduced by incorporating several engineering 

improvements to the based code, including the use of sparse matrices. Finally, a python 

implementation has been developed which enables the efficient application of 

singleCellHaystack to atlas level datasets with millions of cells. These improvements, together 

with the fact that it does not make strong assumptions about the statistical distribution of the 

input data, make singleCellHaystack applicable to a wide range of data types. In this manuscript 

we describe applications to single-cell transcriptomics, spatial transcriptomics (Visium, Slide-

seqV2, HDST, and MERFISH), scATAC-seq, CITE-seq, and a large collection of bulk RNA-seq 

samples 20–24. Moreover, our approach can also be used on sets of genes (e.g. genes sharing a 
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common annotation) for predicting differential activities of biological pathways in single-

cell/spatial transcriptomics data or to identify DEG along trajectories. Together, these results 

illustrate the usefulness of singleCellHaystack for exploring complex biological datasets. 

singleCellHaystack is implemented as an R package and is available from CRAN and GitHub, 

and as a Python module from GitHub. 

RESULTS 

Description of main changes compared to the original version of 

singleCellHaystack 

Figure 1A shows a schematic summary of singleCellHaystack approach (see Methods for a 

more detailed description). In brief, singleCellHaystack requires two types of input data: 1) the 

coordinates of the samples (e.g., cells, spots, pucks, etc) inside a space, which could be a 1D 

trajectory (e.g., pseudotime), 2D or 3D spatial coordinates, or a latent space such as principal 

components and 2) a matrix of continuous observations reflecting the activities of features in 

each sample. These typically would be estimates of the concentrations or RNAs or proteins, but 

could also be module scores of sets of genes that share a common functional annotation. In a 

first step, singleCellHaystack estimates 𝑄, the distribution of samples inside the input space. It 

does so by measuring the local density of samples around a set of grid points. Next, for each 

feature 𝑓 it estimates 𝑃௙, the distribution of the activity of 𝑓 inside the space employing the same 

grid points. Importantly, whereas the original implementation treated activity in a binary way 

using a hard threshold (e.g., using the median expression of each gene as a threshold to 

determine "on" and "off"), the new version uses continuous values, thus reflecting the 

magnitude of activity of each feature around each grid point. The difference between each 𝑃௙ 

and the reference distribution 𝑄 is measured by using the Kullback-Leibler divergence 𝐷௄௅, as 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.13.516355doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.13.516355
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

before 19. Features with a significantly high 𝐷௄௅ value are DEGs. The statistical significance of 

each 𝐷௄௅ value is estimated using randomization of the input data, and by modeling the 

expected distribution of 𝐷௄௅ values using splines. A suitable flexibility of the splines is 

determined using cross-validation. Finally, a p-value is estimated for each feature, and features 

with low p-values are regarded as DEGs. Note that singleCellHaystack does not make 

comparisons between clusters of samples, allowing it to detect more complex patterns of 

differential activity. 

To investigate differences in DEGs returned by the original binary version and the new 

continuous version of singleCellHaystack, we applied both versions on 119 scRNA-seq datasets 

of Tabula Muris and Mouse Cell Atlas 25,26. Overall, both methods returned consistent results: 

the average Spearman correlation between log p values of the binary and the continuous 

version was 0.92 (Fig. 1B). For example, both versions returned highly consistent results on the 

Tabula Muris lung tissue dataset (Spearman correlation 0.95; Fig. 1C). However, for a number 

of genes we observed larger discrepancies caused by the usage of the hard threshold in the 

binary version. Two examples in the lung dataset are Itm2b and Lyz2 (Fig. 1C-D). Itm2b has 

stable expression levels across the cell clusters in the dataset. In contrast, Lyz2 has high 

expression in a few subsets of cells, with lower expression in most others. In the binary version, 

the relatively small differences in expression of Itm2b become exaggerated because of the use 

of a hard threshold. On the other hand, for Lyz2 the binary version dilutes the differential 

expression pattern because some cells with low expression also exceed the hard threshold. 

This leads to Itm2b being regarded as a top-scoring DEG by the binary version but not by the 

continuous version (ranked 42nd by the binary version; 2872nd by the continuous version), and 

the opposite result for Lyz2 (ranked 1014th by the binary version; 42nd by the continuous 

version). Other examples are shown in Supplementary Fig. S1.  
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Figure 1: Concept of the updated version of singleCellHaystack and comparison with the 

previous binary version. (A) A schematic overview of the updated singleCellHaystack method. 

(B) Histogram of the Spearman correlation values between p-values estimated by the binary 

and the continuous versions of singleCellHaystack on 119 scRNA-seq datasets. (C) Scatter plot 

of p values (log10) estimated using the binary (X axis) and continuous (Y axis) versions of 

singleCellHaystack on the Tabula Muris Lung dataset. Two genes with large discrepancies in p-

values are indicated. (D) tSNE plots showing the genes indicated in (C), expression values as 

used by the continuous version (top) and detection levels as used by the binary version of 

singleCellHaystack (bottom). 
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In addition to the changes to the 𝐷௄௅ computation, we made improvements to other parts of the 

implementation, including efficient use of sparse matrices that resulted in shorter runtimes 

(Supplementary Fig. S2). The continuous version was faster than the binary version on all 119 

scRNA-seq Tabula Muris and Mouse Cell Atlas datasets. In addition to these improvements we 

implemented singleCellHaystack in Python (https://github.com/ddiez/singleCellHaystack-py) 

enabling broader usability and the application to very large datasets. To show this we applied 

the Python version to a scRNA-seq dataset with 4 million cells from human fetal tissues 27 

(Supplementary Figure 3). This analysis took around 165 minutes to finish on a workstation with 

28 cores and 768 GB of physical memory indicating that singleCellHaystack scales to atlas-level 

datasets with millions of cells. 

 

Application to spatial transcriptomics data and comparison with existing 

methods 

We applied several spatial DEG prediction methods on spatial transcriptomics data of several 

platforms (MERFISH, 10x Visium, Slide-seqV2, and HDST; see Table 1). The methods 

compared were singleCellHaystack, SPARK, SPARK-X, Seurat’s FindSpatiallyVariableFeatures 

using the Moran’s I and mark variogram approaches, MERINGUE, and Giotto’s binSpect using 

the kmeans and the rank approaches 12,15–17,19,28,29. We first ran all methods on the top 1,000 

highly variable genes (HVGs) in each dataset and recorded their runtimes. Unfortunately, most 

methods do not scale well with increasing dataset size (Fig. 2A), or failed to run on the larger 

datasets. SPARK-X was in general the fastest method, followed by singleCellHaystack. 

Runtimes of singleCellHaystack are not solely a function of the number of spots (or cells, pucks) 

in the data, but also of the sparsity of the data. Because of this, runs on HDST datasets (which 

have a lot more zeroes) took less time than runs on Slide-seqV2 datasets of similar sizes.  
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For a genome-wide comparison on all genes of each datasets, we restricted ourselves to the 

two fasted methods (singleCellHaystack and SPARK-X). We applied both methods on each 

dataset and plotted the returned p-values (log10 values) (Fig. 2B-D, Supplementary Fig. S4-S7). 

In several datasets, we observed that singleCellHaystack was able to pick up clear DEGs which 

were missed by SPARK-X. For example, in the mouse posterior brain 10x Visium dataset, top-

scoring DEGs by singleCellHaystack included Mbp, Calb2, Plp1, and Ttr (Fig. 2B), all of which 

show clear spatially differential expression patters, yet were not among top-scoring DEGs 

predicted by SPARK-X. A striking example is the highly concentrated expression of Ttr 

(transthyretin) in 2 locations in the posterior brain. singleCellHaystack regards Ttr as a top-

scoring DEG (p value 1.1 x 10-105; ranked 58th out of 16,596 genes), but SPARK-X does not (p-

value 0.0087; ranked 11,881st). In contrast, genes that are top-scoring according to SPARK-X 

but not singleCellHaystack are rare. Two such genes are Arpp19 (ranked 18th by SPARK-X; 

983rd by singleCellHaystack) and Ccdc36 (ranked 73rd by SPARK-X; 1,585th by 

singleCellHaystack) in the same posterior brain dataset. Although both genes exhibit some 

spatial expression pattern, it is relatively weak compared to Ttr and other genes which are 

missed by SPARK-X. Similar results were seen in other datasets from posterior brain, anterior 

brain and kidney (Supplementary Figure S4). 

In Slide-seqV2 datasets, too, top-scoring DEGs picked up by singleCellHaystack but missed by 

SPARK-X were relatively common. For example, in the mouse hippocampus sample, several 

genes were top-ranking DEGs according to singleCellHaystack but not SPARK-X, including 

Plp1 (ranked 20th by singleCellHaystack vs 1,139th by SPARK-X) and Mal (ranked 55th by 

singleCellHaystack vs 1,543rd by SPARK-X), all showing strong spatial expression patterns (Fig. 

2C, Supplementary Figures S5). In contrast, there were no genes that were top-scoring 

according to SPARK-X but missed by singleCellHaystack. Two examples of genes that were 

relatively higher-scoring for SPARK-X than for singleCellHaystack are Zfhx3 (378th by 
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singleCellHaystack vs 64th by SPARK-X) and Cox4i1 (1123rd by singleCellHaystack vs 183rd by 

SPARK-X). Although both Zfhx3 and Cox4i1 show some degree of spatially differential 

expression, the tendency is weaker than those of Plp1 and Mal. 

In HDST datasets, singleCellHaystack and SPARK-X returned highly consistent results (Fig. 2D 

and Supplementary Fig. S6). For example, gene Gm42418 was the top-scoring DEG according 

to both methods in one mouse brain sample (Fig. 2D). Only 1 gene was found to have a 

discrepant result: Gm10925 was ranked 13th by singleCellHaystack (p value 2.7 x 10-39) but only 

105th by SPARK-X (p value 0.013). 

Finally, we compared both methods using three MERFISH datasets (Supplementary Figures 

S7) 22. Although the differential patterns of expression are visually less clear, singleCellHaystack 

was able to pick up genes for which cells with high/low expression are located proximally in 

space. 

In summary, top-scoring DEGs predicted by singleCellHaystack include clear spatial DEGs, 

including cases that are missed by SPARK-X (Fig. 2B-D). The authors of SPARK-X noted that 

the assumptions made by SPARK-X are likely to be not optimal in detecting certain expression 

patterns 16. In our results, SPARK-X appears to work well on gradually changing patterns of 

expression, but suffers on patterns with abrupt differences between neighboring locations, 

exemplified by Ttr in Fig. 2B or PLP1 in Fig. 2C. 
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Figure 2: Applications to spatial transcriptomics data. (A) Comparison of runtime of several 

spatial DEG prediction methods applied on 1,000 HVGs of datasets of different platforms. For 

fair comparison, SPARK and SPARK-X were run on 1 core. Applications which failed to return 

results are not shown. (B-D) Example comparisons of the results of singleCellHaystack and 

SPARK-X. For each comparison, a scatterplot of p values (log10) is shown on the left, and 

examples of DEGs are shown on the right. Shown examples are for mouse posterior brain (10x 

Visium, dataset “posterior1”) (B), mouse hippocampus (Slide-seqV2) (C), and mouse olfactory 

bulb (HDST) (D). 

 

So far, we have described applications to the multidimensional PC space of scRNA-seq data 

and 2D spatial coordinates of various spatial transcriptomics technologies. However, 

singleCellHaystack makes few assumptions about the underlying data distributions (distribution 
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of read counts or UMIs, etc.). Because of the versatility of the density distribution and relative 

entropy approach on which singleCellHaystack is based, it is applicable to many other data 

types and input spaces. In the next sections we illustrate this general applicability using 

examples on scRNA-seq trajectory (1D) data, CITE-seq data, scATAC-seq data, a large 

collection of bulk RNA-seq data, and on gene set activity data. 

 

Predicting DEGs along trajectories 

We applied singleCellHaystack to 1D projections from trajectory pseudotime inference. To this 

end we used the thymus dataset from the Tabula Muris 25, which contains data from developing 

thymocytes, progressing from a double negative (Cd4-Cd8-) through a double positive 

(Cd4+Cd8a+) stage into mature naive T cells characterized as single positive (i.e., either Cd4+ or 

Cd8a+). We processed the 10x Genomics Chromium data using the standard pipeline with 

Seurat 30 and then used monocle3 31 to order cells from the double negative cluster to the single 

positive clusters (Fig. 3A). We used this pseudotime ordering (a 1D space) as input with 

singleCellHaystack to identify DEGs with biased expression along this trajectory. To 

characterize the patterns and dynamics associated with the changes in expression we clustered 

the DEGs into 6 modules. Figure 3B shows the mean expression of the top-scoring genes in 

each module along the trajectory, whereas Figure 3C shows the top 10 genes per module. 

These results indicate that singleCellHaystack is able to identify patterns of gene expression 

changes along trajectories. 
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Figure 3: Application of singleCellHaystack to the prediction of DEGs along a trajectory. 

(A) UMAP plot of a Tabula Muris thymus dataset indicating the monocle3 trajectories and 

pseudotime. (B) Top scoring DEGs predicted by singleCellHaystack were clustered into 

modules. For each module the average expression of all genes at each pseudotime value is 

shown, indicating different patterns of expression changes along the trajectory. (C) For each 

module in panel (B), the expression of the top 10 genes along the trajectory is shown in the 

heatmap. 

 

Applications to CITE-seq, scATAC-seq, and bulk RNA-seq data 

Our method is not restricted to single cell transcriptome data, but can be used with any numerical 

data. Here we demonstrate this by applying singleCellHaystack to CITE-seq, scATAC-seq and 

bulk RNA-seq data. 
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To show singleCellHaystack applications to single-cell protein measurements we used a human 

plasma cell mononuclear cell (PBMC) dataset containing the whole transcriptome, and the 

expression of more than 200 proteins 30. We calculated PCA and UMAP coordinates, and cell 

clusters based on the expression of proteins and ran singleCellHaystack using 50 PCs and the 

protein counts. Figure 4A shows the UMAP plot with the clusters, together with the top 8 proteins 

identified by singleCellHaystack. 

We also applied singleCellHaystack to a single-cell multiome (i.e., RNA and ATAC) dataset from 

human PBMCs downloaded from the 10x Genomics website (see Methods). We use the Signac 

package to process the RNA and ATAC counts. For ATAC we calculated a Latent Semantic Index 

(LSI) embedding and used it, with the peak counts, to identify differential accessibility regions. 

Figure 4B shows the UMAP plot derived from the LSI, together with the top 8 regions identified 

by singleCellHaystack. 

Another possible application is on large numbers of bulk RNA-seq samples. Here, as an example, 

we applied singleCellHasytack on a collection of 1,958 RNA-seq samples obtained from various 

parts of the mouse brain. singleCellHaystack successfully predicted DEGs with differential 

expression in subsets of the samples (Supplementary Fig. S8) 23. 
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Figure 4: Example application to CITE-seq and scATAC-seq data. (A) A UMAP plot of the 

CITE-seq data with cell type annotations is shown (top left) together with the top 8 high-scoring 

genes predicted by singleCellHaystack. (B) A UMAP plot of the scATAC-seq data with cell types 

annotations is shown (top left) together with the top 8 high-scoring differentially accessible 

genomic regions predicted by singleCellHaystack. 

Predicting differentially active gene sets  

Because singleCellHaystack makes few assumptions about the input data, it is not limited to 

applications to UMI or read count data, but can be used with any quantitative data associated with 

the samples. As an illustration, we applied singleCellHaystack to so-called module scores as 

computed by Seurat, which reflect the general activity of a set of genes. Here, as sets of genes, 

we used genes associated with 292 pathways as defined in BioCarta by msigdbr 32. For a number 

of spatial transcriptomics datasets, we calculated the module scores of each gene set in each 

Visium spot, and used singleCellHaystack to predict gene sets with highly non-random spatial 

distributions. Examples of high-scoring gene sets in mouse anterior and posterior brain and 

kidney tissue are show in Figure 5. For each dataset a variety of patterns was found, reflecting 

how different pathways are active in different parts of the tissues.  
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Figure 5: Application of singleCellHaystack to sets of genes. We applied 

singleCellHaystack on the module scores of sets of genes associated with 292 BioCarta 

pathways. Examples of high-scoring BioCarta pathways are shown in three spatial 

transcriptomics datasets. Numbers in parentheses represent the rank of the p-value of the 

pathway (e.g. 1 indicates the most significant pathway). (A) in mouse anterior brain, (B) in 

mouse posterior brain, and (C) in mouse kidney. 
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DISCUSSION 

In this manuscript we have presented an updated version of singleCellHaystack in which we 

addressed some of the weak points, making our method more generally applicable. The original 

implementation required binary detection data as input (i.e. genes were treated as either 

detected or not in each cell), thus ignoring more subtle differences in expression between 

subsets of cells. In this new version this issue has been addressed, and singleCellHaystack now 

uses continuous activity levels of features to detect DEGs. This enables singleCellHaystack to 

be used with any kind of continuous measurements, whether RNA or protein levels, chromatin 

accessibility or gene ontology scores. Furthermore, we showed that we can use 

singleCellHaystack with any kind of cell coordinates, whether they are physical spatial locations, 

PCA embeddings or pseudotime ranking. 

Single cell genomic datasets are rapidly increasing in numbers and in size, making it more 

challenging to perform exploratory analyses, including the identification of DEGs. Our new 

implementation of singleCellHaystack is significantly more efficient and faster than the original 

version, making it possible to analyzed large datasets in a few minutes. For example, the Mouse 

Organogenesis Cell Atlas dataset with over 100 thousand cells took ~45 minutes to finish with 

the original version, whereas it takes around 5 minutes to finish with the new one (not shown). 

Furthermore, our new Python implementation enables efficient identification of DEGs for atlas 

level datasets with millions of cells. 

For spatial transcriptomics the fastest method available is SPARK-X. The short runtimes are 

accomplished by, among others, making several assumptions about the input data 16. Possibly 

because of these assumptions, SPARK-X failed to identify several clear DEGs in spatial 

transcriptomics datasets, when compared to singleCellHaystack (see for example Fig. 2B). In 

contrast, we found no clear DEGs that were predicted by SPARK-X but not by 
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singleCellHaystack. The better sensitivity of singleCellHaystack makes it the best alternative, 

despite relatively longer runtimes. 

Different methods for the identification of DEGs are being used depending on the technology. 

For example, Wilcoxon rank sum tests and t-tests are used to identify DEG between groups of 

cells. Moran’s I and other methods are used to identify DEGs in spatial transcriptomics and 

trajectory analyses. In this paper we show that singleCellHaystack is not restricted by the 

technology or by the particularities of features that were measured, nor by the type of 

coordinates that were used as input. This makes singleCellHaystack a universal tool for the 

identification of DEGs. 

Despite its advantages, singleCellHaystack has a few weak points. One is that comparisons 

between multiple conditions (e.g., wild-type and knockout) cannot easily be conducted. We 

hope to expand singleCellHaystack to include methods for such comparisons in the future. 

Secondly, for better or worse, current scRNA-seq data analyses are often cluster-oriented. The 

clustering of cells is a convenient tool for summarizing complex datasets and for performing 

additional downstream tests. Compared to cluster-based DEG prediction approaches, it is not 

as straightforward to incorporate the results of singleCellHaystack into a cluster-oriented 

scRNA-seq analysis. However, other fields of genomics, such as spatial transcriptomics, are 

less focused on clustering, and not all scRNA-seq datasets can be easily summarized by 

clustering. We believe that a method like singleCellHaystack, which can detect complex 

patterns without being restricted by clusters, will play a valuable role in future exploratory 

analysis. 
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MATERIALS AND METHODS 

Updated singleCellHaystack methodology 

For a detailed description of the original singleCellHaystack implementation (version 0.3.2) we 

refer to Vandenbon and Diez 19. In brief, singleCellHaystack uses the distribution of cells inside 

an input space to predict DEGs. First, it infers a reference distribution 𝑄 of all cells in the space 

by estimating the local density of cells surrounding a set of grid points in the space. In a next 

step, the original singleCellHaystack estimated the distribution of the cells in which a gene 𝐺 is 

detected (distribution 𝑃(𝐺 = 𝑇)) and not detected (distribution 𝑃(𝐺 = 𝐹)). The Kullback-Leibler 

divergence (𝐷௄௅) was used to compare 𝑃(𝐺 = 𝑇) and 𝑃(𝐺 = 𝐹) to the reference distribution 𝑄. 

The statistical significance of each gene’s DKL was evaluated using random sampling. 

The updated version of singleCellHaystack (version 1.0.0) includes several improvements. The 

main improvement is that singleCellHaystack no longer treats expression in a binary way (i.e. 

detected or not detected), but uses continuous values (see Steps 3-4 below). Secondly, we 

updated the modeling of 𝐷௄௅ values using splines. In the new implementation, we use cross-

validation to select a suitable flexibility of the splines (see Step 5). The new implementation also 

accepts input data as sparse matrices, and a Python implementation has been made available. 

Below follows a more detailed description of the singleCellHaystack version 1.0.0 methodology. 

Step 1: Setting parameters 

The main inputs to singleCellHaystack are the coordinates of samples inside an input space, 

and the observations in each sample. Here, samples include single cells, spots, pucks or even 

bulk samples, depending on the platform used. The input space could be the 2D or 3D space in 

a tissue or a latent space after typical dimensionality reduction (e.g. first principal components of 

a scRNA-seq dataset), or the 1D coordinates of samples along a trajectory (pseudotime). 
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Coordinates of samples in 𝑑-dimensional space will be denoted as 𝑠 ∈ 𝑅ௗ. By default, the 

coordinates in each dimension are rescaled to mean 0 and standard deviation 1. Observations 

might be gene expression, chromatin accessibility, gene set module scores, etc. and will be 

denoted as 𝑦. 

Steps 2-4 involve estimating the distribution of samples inside the 𝑑-dimensional input space by 

estimating the local density of samples around a set of grid points using a Gaussian kernel. By 

default, the coordinates of grid points are decided by running k-means clustering on the sample 

coordinates 𝑠 and then using the resulting centroids as grid points. Note that the goal of this 

step is not to obtain clusters of cells, but merely to obtain suitable grid points. This approach 

tends to result in grid points being roughly uniformly spread over the subspace of the input 

space where samples are located. By default, singleCellHaystack uses 𝑔=100 grid points 

(option grid.points). This number can be reduced (e.g. when the number of samples is low) or 

increased (for highly heterogeneous datasets or when the number of samples is high) as 

needed. We have shown before that results are stable w.r.t. the number of grid points 19. 

Alternatively, the user can specify the coordinates of the grid points to use (option grid.coord), or 

use seeding, as used in k-means++ clustering, as described before (grid.method="seeding") 19. 

The bandwidth ℎ of the Gaussian kernel is set as before 19. For each sample, the Euclidean 

distance to the closest grid point is calculated, and ℎ is defined as the median of those 

distances. Normalized distances between samples and grid points are subsequently defined as 

the Euclidean distances divided by the bandwidth ℎ. The density contribution 𝑑௜,௝ of each 

sample 𝑖 to each grid point 𝑗 is calculated as: 

𝑑௜,௝ = 𝑒
ቆି 

ௗ௜௦௧೔,ೕ
మ

ଶ
ቇ
 

where 𝑑𝑖𝑠𝑡௜,௝ is the normalized distance between sample 𝑖 and grid point 𝑗. 
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Step 2: Estimating reference distribution Q 

The reference distribution 𝑄 = (𝑄ଵ, … , 𝑄௚) of all 𝑛 samples in a dataset is estimated as 

described before 19. In brief, the density of cells around grid point 𝑗 is calculated as the sum of 

all 𝑑௜,௝ values: 

𝑄௝ = ෍ 𝑑௜,௝

௡

௜ୀଵ

 

After this, 𝑄 is normalized to sum to unity. 

Step 3: Estimating 𝑃௙ distributions 

Whereas the original version of singleCellHaystack treated observations in a binary way (a gene 

is either detected or not detected in each cell), this updated version of singleCellHaystack 

addresses this weak point and treats observations in a continuous manner. To do so, the 

distribution 𝑃௙ = (𝑃௙,ଵ, … , 𝑃௙,௚)  of feature 𝑓 in the input space is calculated as follows: 

𝑃௙,௝ = ෍ 𝑑௜,௝𝑦௙,௜

௡

௜ୀଵ

 

where 𝑑௜,௝ is the density contribution of sample 𝑖 to grid point 𝑗, and 𝑦௙,௜ is the activity of feature 

𝑓 in sample 𝑖. 𝑃௙,௝ is therefore the sum of density contributions of samples to grid point 𝑗 

weighted by the activity of 𝑓. Subsequently, 𝑃௙ is normalized to sum to unity. 

Step 4: Estimating the Kullback-Leibler divergence of feature 𝑓,  𝐷௄௅(𝑓) 

The divergence of feature 𝑓,  𝐷௄௅(𝑓), is calculated as follows: 

𝐷௄௅(𝑓) = ෍ 𝑃௙,௝log ൬
௉೑,ೕ

ொೕ
൰

௚

௝ୀଵ

 

This approach is simpler than the original version, because no distinction needs to be made 

between samples in which a feature was detected or not detected 19. If the activity of feature 𝑓 

does not show a biased distribution, and approximately follows the reference distribution 𝑄, then 
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𝐷௄௅(𝑓) is close to 0. As the discrepancy with the reference distribution 𝑄 increases, the value of 

𝐷௄௅(𝑓) also increases. 

Step 5: Estimating the significance of 𝐷௄௅(𝑓) 

In a final step, singleCellHaystack evaluates the statistical significance of 𝐷௄௅(𝑓) values by 

comparing them to randomized data. In principle, it would be possible to generate many 

randomly shuffled sets of activity values of each feature 𝑓, and use these to estimate a null 

distribution of randomized 𝐷௄௅,௥௔௡ௗ௢௠(𝑓) values. However, doing this for each feature would be 

prohibitively time-consuming. Instead, singleCellHaystack uses the following approach. 

First, singleCellHaystack calculates the coefficient of variation (CV = standard deviation / mean) 

of each feature 𝑓. Features are ordered by CV, and a subset of features (100 by default) that 

are spread evenly over the range of CV values is selected. These features are used for making 

randomly permutated datasets (100 by default for each selected feature) based on which 

𝐷௄௅,௥௔௡ௗ௢௠(𝑓) values are calculated. 

For each randomized feature 𝑓, the 𝑙𝑜𝑔(𝐷௄௅,௥௔௡ௗ௢௠(𝑓)) values follow an approximately normal 

distribution. This allows us to use their mean and standard deviation to estimate p-values of 

actually observed 𝐷௄௅(𝑓) values. Moreover, we can use CV values as predictor of the mean and 

standard deviations of 𝑙𝑜𝑔(𝐷௄௅,௥௔௡ௗ௢௠(𝑓)) values. In singleCellHaystack, by default we model 

the mean and standard deviation of the 𝑙𝑜𝑔(𝐷௄௅,௥௔௡ௗ௢௠(𝑓)) values in function of 𝑙𝑜𝑔(CV) values 

using natural cubic splines. Splines are trained using function ns in the splines R package. A 

suitable degree of freedom (between 1 and 10) is decided using 10-fold cross-validation.  

Alternatively, B-splines can be used, using function bs. In this case, a suitable degree (between 

1 and 5) and degree of freedom (between 1 and 10) is decided in the same way. 

Using the splines, the expected mean and standard deviation of 𝑙𝑜𝑔(𝐷௄௅,௥௔௡ௗ௢௠(𝑓)) are 

predicted for every feature, in function of its CV, and based on that the corresponding p-value of  

𝐷௄௅(𝑓) using the pnorm function in R. 
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Application to Tabula Muris and Mouse Cell Atlas scRNA-seq datasets 

We obtained the Tabula Muris data from 

https://figshare.com/articles/dataset/Robject_files_for_tissues_processed_by_Seurat/5821263 

(version 3) 25. For the Mouse Cell Atlas data, we downloaded file MCA_BatchRemove_dge.zip 

from https://figshare.com/articles/MCA_DGE_Data/5435866 26. This data has been treated to 

reduce batch effects. Data from both Tabula Muris (32 datasets) and Mouse Cell Atlas (87 

datasets) were processed using the Seurat R package (version 4.0.0) 30. We used the same 

pipeline for the processing and normalization of all datasets: genes detected in less than 3 cells 

and cells with fewer than 100 detected genes were removed. After this initial filtering, cells with 

extreme UMI counts (bottom 1 percentile and top 1 percentile), or extreme numbers of detected 

genes (bottom 1 percentile and top 1 percentile), or with a high fraction of mitochondrial reads 

(>10%) were removed. The data for the remaining cells of each dataset was normalized 

(NormalizeData, default settings), scaled (ScaleData, regressing out the UMI count and 

mitochondrial fraction), and highly variable genes (HVGs) were detected (FindVariableFeatures, 

default settings). The HVGs were used for principal component analysis (PCA), and the 20 first 

principal components (PCs) were used for further dimensionality reduction (t-SNE and UMAP) 

and for clustering of cells (FindNeighbors and FindClusters, using 20 PCs and otherwise default 

settings). Both the binary (version 0.3.2) and updated (version 1.0.0) singleCellHaystack were 

applied on the first 20 PCs of each dataset. For the binary version, in each dataset, for each 

gene, the median expression level of each gene was used as a threshold to define detection. 

The detection data was used as input. For the updated version, the continuous expression 

levels were used as input. 
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Application to large scRNA-seq dataset 

We downloaded scRNA-seq expression data for 4,062,980 cells and 35,686 transcripts from 

fetal tissues 27. For the analysis we used our Python implementation of singleCellHaystack 

(https://github.com/ddiez/singleCellHaystack-py) using PCA coordinates with 50 components.  

Application to trajectory analysis 

We applied singleCellHaystack to pseudotime projection on the Tabula Muris thymus data 25. In 

this dataset the development of T cells can be followed from double negative (CD4-CD8-), 

through double positive (CD4+CD8+) and into mature, single positive (CD4+CD8- and CD4-CD8+) 

T cells. To identified the differentiation trajectory we used monocle3 31. Briefly, the data was first 

processed using the standard Seurat pipeline (see above), except that 30 PCs were used to 

calculate UMAP coordinates. We converted the Seurat object into a cell_data_set object with 

the SeuratWrappers package (https://github.com/satijalab/seurat-wrappers). Then monocle3 

was used to calculate clusters and partitions using the UMAP coordinates with the function 

cluster_cells. Next, the principal graph is learned using the learn_graph function, and cell were 

ordered selecting as root the node in the graph starting in the cluster of double negative cells. 

We used singleCellHaystack using the pseudotime coordinates. We selected the top 1,000 

predicted DEGs and clustered them into modules using kmeans, using k=6. 

Application to CITE-seq 

Single-cell data from human peripheral blood mononuclear cells (PBMC) data was downloaded 

from https://atlas.fredhutch.org/nygc/multimodal-pbmc/. This dataset contains information about 

the expression of 228 immune marker proteins on over 200k cells. As input to 
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singleCellHaystack we used the protein based PCA coordinates (50 PCs), and the normalized 

expression levels included in the downloaded data, which was processed as described here 30. 

Application to scATAC-seq 

Single-cell multiome (RNA + ATAC) data from human PBMC was downloaded from 10x web 

site (https://support.10xgenomics.com/single-cell-multiome-atac-

gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k). The raw data (fragments and peak 

information from cellranger) were processed with Signac 33, following the workflow described 

here: https://satijalab.org/seurat/articles/weighted_nearest_neighbor_analysis.html#wnn-

analysis-of-10x-multiome-rna-atac-1. Briefly, the expression and chromatin accessibility peak 

information data were loaded into a Seurat object. For the peaks, the information about genomic 

ranges was obtained using the function GetGRangesFromEnsDb with the Bioconductor 

package EnsDb.Hsapiens.v86 (http://bioconductor.org/packages/EnsDb.Hsapiens.v86/). Cells 

were filtered to have less than 20% of mitochondrial counts, RNA counts between 1,000 and 

25,000 and ATAC counts between 5x103 and 7x107. For the RNA data the SCTransform 

pipeline was used, and UMAP coordinates calculated using 50 PCs. For the ATAC counts, first 

term-frequency inverse-document-frequency was calculated with RunTFIDF. Top features were 

selected with FindTopFeatures and min.cutoff="q0". Then, a Latent Semantic Index (LSI) 

embedding was calculated with RunSVD. ATAC based UMAP was constructed from dimensions 

2 to 50 from LSI. singleCellHaystack was run using LSI embedding and ATAC peak counts. 

Applications to spatial transcriptomics datasets 

We obtained and processed data for the following four platforms (Table 1). 

Visium platform data. Data for mouse kidney and brain were obtained through the SeuratData 

R package 34. We filtered out mitochondrial genes and genes with non-zero counts in less than 
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10 spots. Data was normalized using the Seurat R package (function NormalizeData, with 

default parameters). 

Slide-seqV2 data. We obtained the data from the Broad Institute Single Cell Portal (accession 

number SCP815) 20. We filtered out mitochondrial genes and genes with non-zero counts in less 

than 10 spots, as well as pucks with less than 100 reads in total. Data was normalized using the 

Seurat R package (function NormalizeData, with default parameters). 

HDST data. We obtained the data from the Broad Institute Single Cell Portal (accession number 

SCP420) 21. We filtered out mitochondrial genes and genes with non-zero counts in less than 10 

spots. Data was normalized using the Seurat R package (function NormalizeData, with default 

parameters). 

MERFISH data. RNA counts and cell position information was obtained from Xia et al. 

(Datasets S12 and S15) 22. We filtered out genes with non-zero counts in less than 10 spots, as 

well as cells with less than 6,000 detected genes. Data was normalized using the Seurat R 

package (function NormalizeData, with default parameters). 

 

We applied the following methods on each of the spatial datasets: the updated version of 

singleCellHaystack, SPARK, SPARK-X, Seurat’s FindSpatiallyVariableFeatures function using 

Moran’s I and mark variogram approaches, MERINGUE, and Giotto’s binSpect using the 

kmeans and the rank approaches 12,15–17,19,28,29. Because several methods have long runtimes or 

returned errors on large datasets (Fig. 2A), we limited the analysis to the top 1,000 highly 

variable genes (detected using function FindVariableFeatures). In addition, we applied 

singleCellHaystack and SPARK-X on all genes in the datasets. To each method, we gave as 

input the same 2D spatial coordinates of the samples, along with the expression data (counts or 

processed data as needed). Each method was run with default parameter settings on the 1,000 
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HVGs (without other pre-filtering steps), and the number of cores used was set to 1, to make the 

comparison of runtimes fair. Method-specific normalization steps were not included in the 

runtimes. SPARK was applied using CreateSPARKObject (option percentage and 

min_total_reads set to 0), spark.vc (with covariates set to NULL and library sizes set to the total 

number of counts per sample) and spark.test. SPARK-X was run with function sparkx (option 

set to “mixture”). MERINGUE was run using functions normalizeCounts, getSpatialNeighbors, 

and getSpatialPatterns. Seurat’s FindSpatiallyVariableFeatures was run with assay set to 

“Spatial”. Giotto was applied using functions createGiottoObject, normalizeGiotto, 

createSpatialNetwork, and binSpect (with bin_method set to “kmeans” or “rank” and 

got_av_expr and get_high_expr set to FALSE). 

 

Table 1: Overview of spatial transcriptomics datasets 

ID Name Platform Species Tissue / origin Reference 
1 Anterior1 Visium mouse brain 10x Genomics 
2 Anterior2 Visium mouse brain 10x Genomics 
3 Posterior1 Visium mouse brain 10x Genomics 
4 Posterior2 Visium mouse brain 10x Genomics 
5 Kidney Visium mouse kidney 10x Genomics 
6 Stickels_hippo1 Slide-seqV2 mouse hippocampus  20 
7 Stickels_hippo2 Slide-seqV2 mouse hippocampus  20 
8 Stickels_embryo Slide-seqV2 mouse embryo 20 
9 Stickels_olfactory Slide-seqV2 mouse olfactory bulb 20 
10 Stickels_cortex Slide-seqV2 mouse cortex 20 
11 Vickovic_CN13_D2 HDST mouse olfactory bulb 21 
15 Vickovic_CN24_D1 HDST mouse olfactory bulb 21 
16 Vickovic_CN24_E1 HDST mouse olfactory bulb 21 
12 Vickovic_CN21_C1 HDST human breast cancer 21 
13 Vickovic_CN21_D1 HDST human breast cancer 21 
14 Vickovic_CN21_E2 HDST human breast cancer 21 
17 Xia_B1 MERFISH human osteosarcoma  22 
18 Xia_B2 MERFISH human osteosarcoma 22 
19 Xia_B3 MERFISH human osteosarcoma 22 
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Application to large collection of bulk RNA-seq data 

We downloaded a large collection of RNA-seq samples covering 76 mouse cell types and 

tissues 23. This data has been normalized using Upper Quartile normalization and treated for 

batch effects using ComBat 35,36. From this dataset, we selected samples obtained from brain, 

prefrontal cortex, hippocampus, cortex, frontal cortex, olfactory bulb, cerebellum, forebrain, 

neocortex, and cerebral cortex. We treated the data using Seurat, including scaling, finding 

1,000 highly variable genes, and PCA. We filtered out genes with generally low expression 

(mean expression in the bottom 25%), and applied singleCellHaystack on the resulting 1,958 

samples and 18,260 genes, using as input space the first 5 PCs, using 25 grid points and 

otherwise default parameters. For visualization purposes, we applied UMAP on the first 5 PCs. 

Application to module scores of gene sets 

We used the R package msigdbr (version 7.5.1) to retrieve sets of mouse genes associated with 

BIOCARTA pathways 32. For 292 pathways which had at least 10 associated genes, we 

collected their genes, and used the Seurat function AddModuleScore to calculate module 

scores in the spots of the Visium datasets. These module scores reflect the general activity of 

the genes in each pathway. Subsequently, we ran singleCellHaystack on each Visium datasets, 

using as input the coordinates of spots and the module scores of all pathways. High-scoring 

pathways thus reflect pathways with spatial differences in activity within the tissue (see Fig. 5 for 

examples). 

NOTES 

Code availability: singleCellHaystack is implemented as an R package and is available from 

CRAN (https://CRAN.R-project.org/package=singleCellHaystack) and GitHub 
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(https://github.com/alexisvdb/singleCellHaystack), and as a Python module available from 

GitHub (https://github.com/ddiez/singleCellHaystack-py). 

Data availability: Single-cell RNA-seq datasets analyzed in this study are available from 

https://figshare.com/articles/dataset/Robject_files_for_tissues_processed_by_Seurat/5821263 

(Tabula Muris), https://figshare.com/articles/MCA_DGE_Data/5435866 (Mouse Cell Atlas), 

https://atlas.fredhutch.org/nygc/multimodal-pbmc/ (PMBC CITE-seq), 

https://support.10xgenomics.com/single-cell-multiome-atac-

gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k (PBMC scRNA-seq and scATAC-seq). 

Visium data was obtained through the SeuratData package. Slide-seqV2 and HDST data from 

the Broad Institute Single Cell Portal, accession numbers SCP815 and SCP420. MERFISH data 

from the supplementary data in Xia et al. Bulk RNA-seq data was downloaded from 

https://figshare.com/articles/dataset/Mouse_data/14178425/1.  
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