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ABSTRACT

With the growing complexity of single-cell and spatial genomics data, there is an increasing
importance of unbiased and efficient exploratory data analysis tools. One common exploratory
data analysis step is the prediction of genes with different levels of activity in a subset of cells or
locations inside a tissue. We previously developed singleCellHaystack, a method for predicting
differentially expressed genes from single cell transcriptome data, without relying on clustering
of cells. Here we present an update to singleCellHaystack, which is now a universally applicable
method for predicting differentially active features: 1) singleCellHaystack now accepts
continuous features that can be RNA or protein expression, chromatin accessibility or module
scores from single cell, spatial and even bulk genomics data, and 2) it can handle 1D
trajectories, 2-3D spatial coordinates, as well as higher-dimensional latent spaces as input
coordinates. Performance has been drastically improved, with up to ten times reduction in
computational time and scalability to millions of cells, making singleCellHaystack a suitable tool
for exploratory analysis of atlas level datasets. singleCellHaystack is available as an R package

and Python module.
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INTRODUCTION

Recent advances in single-cell and spatial omics technologies allow researchers to obtain
abundance measures of transcripts and proteins, or the accessibility of genomic regions at
single-cell resolution. These technologies present an unprecedented view of the heterogeneity
in cell populations and their spatial distributions within tissues. However, they are also

accompanied by new challenges in data analysis.

A fundamental step in exploring single-cell transcriptomics data is predicting genes that have
different levels of expression in one subset of cells compared to others. Such genes are often
referred to as differentially expressed genes (DEGs). Similarly, in spatial transcriptomics data,
spatial DEGs are genes with altered expression in part of a tissue. In single-cell ATAC
(scATAC-seq) data, differentially accessible genomic region are regions which have a higher
accessibility in one group of cells compared to others. In this paper, we will use the term DEG to
refer to any feature or set of features with differential levels of activity within an input space, be it
the 2D or 3D space within a tissue or latent spaces — such as principal components, tSNE or

UMAP — of any dimension.

The majority of single-cell DEG prediction approaches are based on two steps: 1) clustering of
cells by similarity, and 2) applying statistical tests between clusters to identify DEGs .
However, benchmark studies have reported that DEG prediction approaches for bulk RNA-seq
do not perform worse than methods designed specifically for single-cell RNA-seq (scRNA-seq),
and that the agreement between single-cell DEG prediction approaches is low 2°. Because the
number of clusters tends to be large, a common approach is to compare the cells in each
cluster against all other cells, restricting DEGs that can be detected to genes with high (or low)
expression in a single cluster. For the prediction of spatial DEGs, methods have been

developed that directly employ the spatial coordinates of cells (or spots or pucks) to detect
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genes that have non-random distributions of expression in the 2D (or 3D) space of the tissue 0=
7. However, most existing methods do not scale well with large datasets, suffer from
prohibitively long runtimes, and are limited in the spatial patterns that they can detect in
practice. The development of more flexible approaches for discovering complex differential

expression patterns is one of the grand challenges of this field 8.

We recently developed singleCellHaystack, a method that predicts DEGs based on the
distribution of cells in which they are active within an input space '°. Our method does not rely
on comparisons between clusters of cells and is applicable to both scRNA-seq and spatial
transcriptomics data. An important limitation of the original implementation was that it used a
hard threshold for defining genes as being either detected or not detected in each cell. Treating
detection in a binary way ignores the magnitude of gene expression differences, and some
differential expression patterns might be missed. Furthermore, singleCellHaystack was not able

to handle sparse matrices, limiting its applicability to the ever-increasing dataset sizes.

Here, we present a drastic reformulation of our approach which addresses the above limitations.
First, our method now uses continuous activity levels for predicting DEGs. Second, it uses
cross-validation for choosing a suitable flexibility of splines during its modeling steps. Third, the
computational time has been drastically reduced by incorporating several engineering
improvements to the based code, including the use of sparse matrices. Finally, a python
implementation has been developed which enables the efficient application of
singleCellHaystack to atlas level datasets with millions of cells. These improvements, together
with the fact that it does not make strong assumptions about the statistical distribution of the
input data, make singleCellHaystack applicable to a wide range of data types. In this manuscript
we describe applications to single-cell transcriptomics, spatial transcriptomics (Visium, Slide-
seqV2, HDST, and MERFISH), scATAC-seq, CITE-seq, and a large collection of bulk RNA-seq

samples 2°-24, Moreover, our approach can also be used on sets of genes (e.g. genes sharing a
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common annotation) for predicting differential activities of biological pathways in single-
cell/spatial transcriptomics data or to identify DEG along trajectories. Together, these results
illustrate the usefulness of singleCellHaystack for exploring complex biological datasets.
singleCellHaystack is implemented as an R package and is available from CRAN and GitHub,

and as a Python module from GitHub.

RESULTS

Description of main changes compared to the original version of

singleCellHaystack

Figure 1A shows a schematic summary of singleCellHaystack approach (see Methods for a
more detailed description). In brief, singleCellHaystack requires two types of input data: 1) the
coordinates of the samples (e.g., cells, spots, pucks, etc) inside a space, which could be a 1D
trajectory (e.g., pseudotime), 2D or 3D spatial coordinates, or a latent space such as principal
components and 2) a matrix of continuous observations reflecting the activities of features in
each sample. These typically would be estimates of the concentrations or RNAs or proteins, but
could also be module scores of sets of genes that share a common functional annotation. In a
first step, singleCellHaystack estimates Q, the distribution of samples inside the input space. It
does so by measuring the local density of samples around a set of grid points. Next, for each
feature f it estimates Py, the distribution of the activity of f inside the space employing the same
grid points. Importantly, whereas the original implementation treated activity in a binary way
using a hard threshold (e.g., using the median expression of each gene as a threshold to
determine "on" and "off"), the new version uses continuous values, thus reflecting the

magnitude of activity of each feature around each grid point. The difference between each P

and the reference distribution Q is measured by using the Kullback-Leibler divergence Dy, as
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before '°. Features with a significantly high D, value are DEGs. The statistical significance of
each Dg; value is estimated using randomization of the input data, and by modeling the
expected distribution of Dy, values using splines. A suitable flexibility of the splines is
determined using cross-validation. Finally, a p-value is estimated for each feature, and features
with low p-values are regarded as DEGs. Note that singleCellHaystack does not make
comparisons between clusters of samples, allowing it to detect more complex patterns of

differential activity.

To investigate differences in DEGs returned by the original binary version and the new
continuous version of singleCellHaystack, we applied both versions on 119 scRNA-seq datasets
of Tabula Muris and Mouse Cell Atlas 252¢. Overall, both methods returned consistent results:
the average Spearman correlation between log p values of the binary and the continuous
version was 0.92 (Fig. 1B). For example, both versions returned highly consistent results on the
Tabula Muris lung tissue dataset (Spearman correlation 0.95; Fig. 1C). However, for a number
of genes we observed larger discrepancies caused by the usage of the hard threshold in the
binary version. Two examples in the lung dataset are Itm2b and Lyz2 (Fig. 1C-D). Itm2b has
stable expression levels across the cell clusters in the dataset. In contrast, Lyz2 has high
expression in a few subsets of cells, with lower expression in most others. In the binary version,
the relatively small differences in expression of /tm2b become exaggerated because of the use
of a hard threshold. On the other hand, for Lyz2 the binary version dilutes the differential
expression pattern because some cells with low expression also exceed the hard threshold.
This leads to /tm2b being regarded as a top-scoring DEG by the binary version but not by the
continuous version (ranked 42 by the binary version; 2872 by the continuous version), and
the opposite result for Lyz2 (ranked 1014 by the binary version; 42" by the continuous

version). Other examples are shown in Supplementary Fig. S1.
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Figure 1: Concept of the updated version of singleCellHaystack and comparison with the
previous binary version. (A) A schematic overview of the updated singleCellHaystack method.
(B) Histogram of the Spearman correlation values between p-values estimated by the binary
and the continuous versions of singleCellHaystack on 119 scRNA-seq datasets. (C) Scatter plot
of p values (log1o) estimated using the binary (X axis) and continuous (Y axis) versions of
singleCellHaystack on the Tabula Muris Lung dataset. Two genes with large discrepancies in p-
values are indicated. (D) tSNE plots showing the genes indicated in (C), expression values as
used by the continuous version (top) and detection levels as used by the binary version of

singleCellHaystack (bottom).
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In addition to the changes to the Dy, computation, we made improvements to other parts of the
implementation, including efficient use of sparse matrices that resulted in shorter runtimes
(Supplementary Fig. S2). The continuous version was faster than the binary version on all 119
scRNA-seq Tabula Muris and Mouse Cell Atlas datasets. In addition to these improvements we

implemented singleCellHaystack in Python (https://github.com/ddiez/singleCellHaystack-py)

enabling broader usability and the application to very large datasets. To show this we applied
the Python version to a scRNA-seq dataset with 4 million cells from human fetal tissues 27
(Supplementary Figure 3). This analysis took around 165 minutes to finish on a workstation with
28 cores and 768 GB of physical memory indicating that singleCellHaystack scales to atlas-level

datasets with millions of cells.

Application to spatial transcriptomics data and comparison with existing

methods

We applied several spatial DEG prediction methods on spatial transcriptomics data of several
platforms (MERFISH, 10x Visium, Slide-seqV2, and HDST; see Table 1). The methods
compared were singleCellHaystack, SPARK, SPARK-X, Seurat’s FindSpatiallyVariableFeatures
using the Moran’s | and mark variogram approaches, MERINGUE, and Giotto’s binSpect using
the kmeans and the rank approaches 1215-17.19.2829 \\/e first ran all methods on the top 1,000
highly variable genes (HVGs) in each dataset and recorded their runtimes. Unfortunately, most
methods do not scale well with increasing dataset size (Fig. 2A), or failed to run on the larger
datasets. SPARK-X was in general the fastest method, followed by singleCellHaystack.
Runtimes of singleCellHaystack are not solely a function of the number of spots (or cells, pucks)
in the data, but also of the sparsity of the data. Because of this, runs on HDST datasets (which

have a lot more zeroes) took less time than runs on Slide-seqV2 datasets of similar sizes.
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For a genome-wide comparison on all genes of each datasets, we restricted ourselves to the
two fasted methods (singleCellHaystack and SPARK-X). We applied both methods on each
dataset and plotted the returned p-values (log+o values) (Fig. 2B-D, Supplementary Fig. S4-S7).
In several datasets, we observed that singleCellHaystack was able to pick up clear DEGs which
were missed by SPARK-X. For example, in the mouse posterior brain 10x Visium dataset, top-
scoring DEGs by singleCellHaystack included Mbp, Calb2, Pip1, and Ttr (Fig. 2B), all of which
show clear spatially differential expression patters, yet were not among top-scoring DEGs
predicted by SPARK-X. A striking example is the highly concentrated expression of Ttr
(transthyretin) in 2 locations in the posterior brain. singleCellHaystack regards Tir as a top-
scoring DEG (p value 1.1 x 10-'%; ranked 58 out of 16,596 genes), but SPARK-X does not (p-
value 0.0087; ranked 11,881%!). In contrast, genes that are top-scoring according to SPARK-X
but not singleCellHaystack are rare. Two such genes are Arpp19 (ranked 18" by SPARK-X;
983 by singleCellHaystack) and Ccdc36 (ranked 73 by SPARK-X; 1,585 by
singleCellHaystack) in the same posterior brain dataset. Although both genes exhibit some
spatial expression pattern, it is relatively weak compared to Ttr and other genes which are
missed by SPARK-X. Similar results were seen in other datasets from posterior brain, anterior

brain and kidney (Supplementary Figure S4).

In Slide-seqV2 datasets, too, top-scoring DEGs picked up by singleCellHaystack but missed by
SPARK-X were relatively common. For example, in the mouse hippocampus sample, several
genes were top-ranking DEGs according to singleCellHaystack but not SPARK-X, including
PIp1 (ranked 20" by singleCellHaystack vs 1,139" by SPARK-X) and Mal (ranked 55" by
singleCellHaystack vs 1,543 by SPARK-X), all showing strong spatial expression patterns (Fig.
2C, Supplementary Figures S5). In contrast, there were no genes that were top-scoring
according to SPARK-X but missed by singleCellHaystack. Two examples of genes that were

relatively higher-scoring for SPARK-X than for singleCellHaystack are Zfhx3 (378" by
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singleCellHaystack vs 64" by SPARK-X) and Cox4i1 (1123 by singleCellHaystack vs 183 by
SPARK-X). Although both Zfhx3 and Cox4i1 show some degree of spatially differential

expression, the tendency is weaker than those of Plp1 and Mal.

In HDST datasets, singleCellHaystack and SPARK-X returned highly consistent results (Fig. 2D
and Supplementary Fig. S6). For example, gene Gm42418 was the top-scoring DEG according
to both methods in one mouse brain sample (Fig. 2D). Only 1 gene was found to have a
discrepant result: Gm10925 was ranked 13" by singleCellHaystack (p value 2.7 x 10-%°) but only

105" by SPARK-X (p value 0.013).

Finally, we compared both methods using three MERFISH datasets (Supplementary Figures
S7) 2. Although the differential patterns of expression are visually less clear, singleCellHaystack
was able to pick up genes for which cells with high/low expression are located proximally in

space.

In summary, top-scoring DEGs predicted by singleCellHaystack include clear spatial DEGs,
including cases that are missed by SPARK-X (Fig. 2B-D). The authors of SPARK-X noted that
the assumptions made by SPARK-X are likely to be not optimal in detecting certain expression
patterns '6. In our results, SPARK-X appears to work well on gradually changing patterns of
expression, but suffers on patterns with abrupt differences between neighboring locations,

exemplified by Ttrin Fig. 2B or PLP1 in Fig. 2C.
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Figure 2: Applications to spatial transcriptomics data. (A) Comparison of runtime of several
spatial DEG prediction methods applied on 1,000 HVGs of datasets of different platforms. For
fair comparison, SPARK and SPARK-X were run on 1 core. Applications which failed to return
results are not shown. (B-D) Example comparisons of the results of singleCellHaystack and
SPARK-X. For each comparison, a scatterplot of p values (log1o) is shown on the left, and
examples of DEGs are shown on the right. Shown examples are for mouse posterior brain (10x
Visium, dataset “posterior1”) (B), mouse hippocampus (Slide-seqV2) (C), and mouse olfactory

bulb (HDST) (D).

So far, we have described applications to the multidimensional PC space of scRNA-seq data
and 2D spatial coordinates of various spatial transcriptomics technologies. However,
singleCellHaystack makes few assumptions about the underlying data distributions (distribution
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of read counts or UMIs, etc.). Because of the versatility of the density distribution and relative
entropy approach on which singleCellHaystack is based, it is applicable to many other data
types and input spaces. In the next sections we illustrate this general applicability using
examples on scRNA-seq trajectory (1D) data, CITE-seq data, scATAC-seq data, a large

collection of bulk RNA-seq data, and on gene set activity data.

Predicting DEGs along trajectories

We applied singleCellHaystack to 1D projections from trajectory pseudotime inference. To this
end we used the thymus dataset from the Tabula Muris 2%, which contains data from developing
thymocytes, progressing from a double negative (Cd4-Cd8-) through a double positive
(Cd4*Cd8a*) stage into mature naive T cells characterized as single positive (i.e., either Cd4* or
Cd8a*). We processed the 10x Genomics Chromium data using the standard pipeline with
Seurat 3° and then used monocle3 3! to order cells from the double negative cluster to the single
positive clusters (Fig. 3A). We used this pseudotime ordering (a 1D space) as input with
singleCellHaystack to identify DEGs with biased expression along this trajectory. To
characterize the patterns and dynamics associated with the changes in expression we clustered
the DEGs into 6 modules. Figure 3B shows the mean expression of the top-scoring genes in
each module along the trajectory, whereas Figure 3C shows the top 10 genes per module.
These results indicate that singleCellHaystack is able to identify patterns of gene expression

changes along trajectories.

11
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Figure 3: Application of singleCellHaystack to the prediction of DEGs along a trajectory.
(A) UMAP plot of a Tabula Muris thymus dataset indicating the monocle3 trajectories and
pseudotime. (B) Top scoring DEGs predicted by singleCellHaystack were clustered into
modules. For each module the average expression of all genes at each pseudotime value is
shown, indicating different patterns of expression changes along the trajectory. (C) For each
module in panel (B), the expression of the top 10 genes along the trajectory is shown in the

heatmap.

Applications to CITE-seq, scATAC-seq, and bulk RNA-seq data

Our method is not restricted to single cell transcriptome data, but can be used with any numerical
data. Here we demonstrate this by applying singleCellHaystack to CITE-seq, scATAC-seq and
bulk RNA-seq data.
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To show singleCellHaystack applications to single-cell protein measurements we used a human
plasma cell mononuclear cell (PBMC) dataset containing the whole transcriptome, and the
expression of more than 200 proteins 30, We calculated PCA and UMAP coordinates, and cell
clusters based on the expression of proteins and ran singleCellHaystack using 50 PCs and the
protein counts. Figure 4A shows the UMAP plot with the clusters, together with the top 8 proteins

identified by singleCellHaystack.

We also applied singleCellHaystack to a single-cell multiome (i.e., RNA and ATAC) dataset from
human PBMCs downloaded from the 10x Genomics website (see Methods). We use the Signac
package to process the RNA and ATAC counts. For ATAC we calculated a Latent Semantic Index
(LSI) embedding and used it, with the peak counts, to identify differential accessibility regions.
Figure 4B shows the UMAP plot derived from the LSI, together with the top 8 regions identified

by singleCellHaystack.

Another possible application is on large numbers of bulk RNA-seq samples. Here, as an example,
we applied singleCellHasytack on a collection of 1,958 RNA-seq samples obtained from various
parts of the mouse brain. singleCellHaystack successfully predicted DEGs with differential

expression in subsets of the samples (Supplementary Fig. S8) .
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Figure 4: Example application to CITE-seq and scATAC-seq data. (A) A UMAP plot of the
CITE-seq data with cell type annotations is shown (top left) together with the top 8 high-scoring
genes predicted by singleCellHaystack. (B) A UMAP plot of the scATAC-seq data with cell types
annotations is shown (top left) together with the top 8 high-scoring differentially accessible

genomic regions predicted by singleCellHaystack.

Predicting differentially active gene sets

Because singleCellHaystack makes few assumptions about the input data, it is not limited to
applications to UMI or read count data, but can be used with any quantitative data associated with
the samples. As an illustration, we applied singleCellHaystack to so-called module scores as
computed by Seurat, which reflect the general activity of a set of genes. Here, as sets of genes,
we used genes associated with 292 pathways as defined in BioCarta by msigdbr 32. For a number
of spatial transcriptomics datasets, we calculated the module scores of each gene set in each
Visium spot, and used singleCellHaystack to predict gene sets with highly non-random spatial
distributions. Examples of high-scoring gene sets in mouse anterior and posterior brain and
kidney tissue are show in Figure 5. For each dataset a variety of patterns was found, reflecting

how different pathways are active in different parts of the tissues.
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module

A CK1 pathway (1) NOS1 pathway (2) Barrestin pathway (3) s

lhigh

low

B NOS1 pathway (1) PGC1A pathway (2) Ghrelin pathway (6)

C Nuclear Receptors (1) AHSP pathway (2) IGF-1 receptor and longevity (3)

Figure 5: Application of singleCellHaystack to sets of genes. We applied
singleCellHaystack on the module scores of sets of genes associated with 292 BioCarta
pathways. Examples of high-scoring BioCarta pathways are shown in three spatial
transcriptomics datasets. Numbers in parentheses represent the rank of the p-value of the
pathway (e.g. 1 indicates the most significant pathway). (A) in mouse anterior brain, (B) in

mouse posterior brain, and (C) in mouse kidney.
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DISCUSSION

In this manuscript we have presented an updated version of singleCellHaystack in which we
addressed some of the weak points, making our method more generally applicable. The original
implementation required binary detection data as input (i.e. genes were treated as either
detected or not in each cell), thus ignoring more subtle differences in expression between
subsets of cells. In this new version this issue has been addressed, and singleCellHaystack now
uses continuous activity levels of features to detect DEGs. This enables singleCellHaystack to
be used with any kind of continuous measurements, whether RNA or protein levels, chromatin
accessibility or gene ontology scores. Furthermore, we showed that we can use
singleCellHaystack with any kind of cell coordinates, whether they are physical spatial locations,

PCA embeddings or pseudotime ranking.

Single cell genomic datasets are rapidly increasing in numbers and in size, making it more
challenging to perform exploratory analyses, including the identification of DEGs. Our new
implementation of singleCellHaystack is significantly more efficient and faster than the original
version, making it possible to analyzed large datasets in a few minutes. For example, the Mouse
Organogenesis Cell Atlas dataset with over 100 thousand cells took ~45 minutes to finish with
the original version, whereas it takes around 5 minutes to finish with the new one (not shown).
Furthermore, our new Python implementation enables efficient identification of DEGs for atlas

level datasets with millions of cells.

For spatial transcriptomics the fastest method available is SPARK-X. The short runtimes are
accomplished by, among others, making several assumptions about the input data '6. Possibly
because of these assumptions, SPARK-X failed to identify several clear DEGs in spatial
transcriptomics datasets, when compared to singleCellHaystack (see for example Fig. 2B). In

contrast, we found no clear DEGs that were predicted by SPARK-X but not by
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singleCellHaystack. The better sensitivity of singleCellHaystack makes it the best alternative,

despite relatively longer runtimes.

Different methods for the identification of DEGs are being used depending on the technology.
For example, Wilcoxon rank sum tests and t-tests are used to identify DEG between groups of
cells. Moran’s | and other methods are used to identify DEGs in spatial transcriptomics and
trajectory analyses. In this paper we show that singleCellHaystack is not restricted by the
technology or by the particularities of features that were measured, nor by the type of
coordinates that were used as input. This makes singleCellHaystack a universal tool for the

identification of DEGs.

Despite its advantages, singleCellHaystack has a few weak points. One is that comparisons
between multiple conditions (e.g., wild-type and knockout) cannot easily be conducted. We
hope to expand singleCellHaystack to include methods for such comparisons in the future.
Secondly, for better or worse, current scRNA-seq data analyses are often cluster-oriented. The
clustering of cells is a convenient tool for summarizing complex datasets and for performing
additional downstream tests. Compared to cluster-based DEG prediction approaches, it is not
as straightforward to incorporate the results of singleCellHaystack into a cluster-oriented
scRNA-seq analysis. However, other fields of genomics, such as spatial transcriptomics, are
less focused on clustering, and not all scRNA-seq datasets can be easily summarized by
clustering. We believe that a method like singleCellHaystack, which can detect complex
patterns without being restricted by clusters, will play a valuable role in future exploratory

analysis.
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MATERIALS AND METHODS

Updated singleCellHaystack methodology

For a detailed description of the original singleCellHaystack implementation (version 0.3.2) we
refer to Vandenbon and Diez °. In brief, singleCellHaystack uses the distribution of cells inside
an input space to predict DEGs. First, it infers a reference distribution Q of all cells in the space
by estimating the local density of cells surrounding a set of grid points in the space. In a next

step, the original singleCellHaystack estimated the distribution of the cells in which a gene G is
detected (distribution P(G = T)) and not detected (distribution P(G = F)). The Kullback-Leibler
divergence (Dg;) was used to compare P(G = T) and P(G = F) to the reference distribution Q.

The statistical significance of each gene’s DKL was evaluated using random sampling.

The updated version of singleCellHaystack (version 1.0.0) includes several improvements. The
main improvement is that singleCellHaystack no longer treats expression in a binary way (i.e.
detected or not detected), but uses continuous values (see Steps 3-4 below). Secondly, we
updated the modeling of Dy, values using splines. In the new implementation, we use cross-
validation to select a suitable flexibility of the splines (see Step 5). The new implementation also
accepts input data as sparse matrices, and a Python implementation has been made available.

Below follows a more detailed description of the singleCellHaystack version 1.0.0 methodology.

Step 1: Setting parameters

The main inputs to singleCellHaystack are the coordinates of samples inside an input space,
and the observations in each sample. Here, samples include single cells, spots, pucks or even
bulk samples, depending on the platform used. The input space could be the 2D or 3D space in
a tissue or a latent space after typical dimensionality reduction (e.g. first principal components of

a scRNA-seq dataset), or the 1D coordinates of samples along a trajectory (pseudotime).
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Coordinates of samples in d-dimensional space will be denoted as s € R%. By default, the
coordinates in each dimension are rescaled to mean 0 and standard deviation 1. Observations
might be gene expression, chromatin accessibility, gene set module scores, etc. and will be

denoted as y.

Steps 2-4 involve estimating the distribution of samples inside the d-dimensional input space by
estimating the local density of samples around a set of grid points using a Gaussian kernel. By
default, the coordinates of grid points are decided by running k-means clustering on the sample
coordinates s and then using the resulting centroids as grid points. Note that the goal of this
step is not to obtain clusters of cells, but merely to obtain suitable grid points. This approach
tends to result in grid points being roughly uniformly spread over the subspace of the input
space where samples are located. By default, singleCellHaystack uses g=100 grid points
(option grid.points). This number can be reduced (e.g. when the number of samples is low) or
increased (for highly heterogeneous datasets or when the number of samples is high) as
needed. We have shown before that results are stable w.r.t. the number of grid points °.
Alternatively, the user can specify the coordinates of the grid points to use (option grid.coord), or

use seeding, as used in k-means++ clustering, as described before (grid.method="seeding") '°.

The bandwidth h of the Gaussian kernel is set as before '°. For each sample, the Euclidean
distance to the closest grid point is calculated, and h is defined as the median of those
distances. Normalized distances between samples and grid points are subsequently defined as
the Euclidean distances divided by the bandwidth h. The density contribution d; ; of each
sample i to each grid point j is calculated as:

(-4
dij=e z

where dist; ; is the normalized distance between sample i and grid point ;.
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Step 2: Estimating reference distribution Q
The reference distribution @ = (Q4, ..., Q4) of all n samples in a dataset is estimated as

described before '°. In brief, the density of cells around grid point j is calculated as the sum of

all d; j values:

After this, Q is normalized to sum to unity.

Step 3: Estimating Py distributions

Whereas the original version of singleCellHaystack treated observations in a binary way (a gene
is either detected or not detected in each cell), this updated version of singleCellHaystack
addresses this weak point and treats observations in a continuous manner. To do so, the

distribution Pr = (P, ..., Pr4) of feature f in the input space is calculated as follows:

n
Prj= Z dij¥ri
i=1

where d; ; is the density contribution of sample i to grid point j, and yy; is the activity of feature
f insample i. P ; is therefore the sum of density contributions of samples to grid point j

weighted by the activity of f. Subsequently, Py is normalized to sum to unity.

Step 4: Estimating the Kullback-Leibler divergence of feature f, Dy, (f)

The divergence of feature f, Dy (f), is calculated as follows:

g
P .
D) = ) Brslog (%)
=1

This approach is simpler than the original version, because no distinction needs to be made
between samples in which a feature was detected or not detected °. If the activity of feature f

does not show a biased distribution, and approximately follows the reference distribution Q, then
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Dk (f) is close to 0. As the discrepancy with the reference distribution Q increases, the value of

Dk (f) also increases.

Step 5: Estimating the significance of Dy (f)

In a final step, singleCellHaystack evaluates the statistical significance of Dy, (f) values by
comparing them to randomized data. In principle, it would be possible to generate many
randomly shuffled sets of activity values of each feature f, and use these to estimate a null
distribution of randomized D} anaom (f) Values. However, doing this for each feature would be
prohibitively time-consuming. Instead, singleCellHaystack uses the following approach.

First, singleCellHaystack calculates the coefficient of variation (CV = standard deviation / mean)
of each feature f. Features are ordered by CV, and a subset of features (100 by default) that
are spread evenly over the range of CV values is selected. These features are used for making
randomly permutated datasets (100 by default for each selected feature) based on which

Dy 1 ranaom (f) Values are calculated.

For each randomized feature f, the log(Dk; ranaom (f)) Values follow an approximately normal
distribution. This allows us to use their mean and standard deviation to estimate p-values of
actually observed Dg; (f) values. Moreover, we can use CV values as predictor of the mean and
standard deviations of log (D1, ranaom (f)) Values. In singleCellHaystack, by default we model
the mean and standard deviation of the log(Dk; ranaom (f)) Values in function of log(CV) values
using natural cubic splines. Splines are trained using function ns in the splines R package. A
suitable degree of freedom (between 1 and 10) is decided using 10-fold cross-validation.
Alternatively, B-splines can be used, using function bs. In this case, a suitable degree (between
1 and 5) and degree of freedom (between 1 and 10) is decided in the same way.

Using the splines, the expected mean and standard deviation of log (Dky, ranaom (f)) are
predicted for every feature, in function of its CV, and based on that the corresponding p-value of

Dy, (f) using the pnorm function in R.
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Application to Tabula Muris and Mouse Cell Atlas scRNA-seq datasets

We obtained the Tabula Muris data from
https://figshare.com/articles/dataset/Robject_files_for tissues processed by Seurat/5821263
(version 3) 2°. For the Mouse Cell Atlas data, we downloaded file MCA_BatchRemove_dge.zip
from https://figshare.com/articles/MCA_DGE_Data/5435866 2. This data has been treated to
reduce batch effects. Data from both Tabula Muris (32 datasets) and Mouse Cell Atlas (87
datasets) were processed using the Seurat R package (version 4.0.0) 3°. We used the same
pipeline for the processing and normalization of all datasets: genes detected in less than 3 cells
and cells with fewer than 100 detected genes were removed. After this initial filtering, cells with
extreme UMI counts (bottom 1 percentile and top 1 percentile), or extreme numbers of detected
genes (bottom 1 percentile and top 1 percentile), or with a high fraction of mitochondrial reads
(>10%) were removed. The data for the remaining cells of each dataset was normalized
(NormalizeData, default settings), scaled (ScaleData, regressing out the UMI count and
mitochondrial fraction), and highly variable genes (HVGs) were detected (FindVariableFeatures,
default settings). The HVGs were used for principal component analysis (PCA), and the 20 first
principal components (PCs) were used for further dimensionality reduction (t-SNE and UMAP)
and for clustering of cells (FindNeighbors and FindClusters, using 20 PCs and otherwise default
settings). Both the binary (version 0.3.2) and updated (version 1.0.0) singleCellHaystack were
applied on the first 20 PCs of each dataset. For the binary version, in each dataset, for each
gene, the median expression level of each gene was used as a threshold to define detection.
The detection data was used as input. For the updated version, the continuous expression

levels were used as input.
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Application to large scRNA-seq dataset

We downloaded scRNA-seq expression data for 4,062,980 cells and 35,686 transcripts from
fetal tissues 2. For the analysis we used our Python implementation of singleCellHaystack

(https://github.com/ddiez/singleCellHaystack-py) using PCA coordinates with 50 components.

Application to trajectory analysis

We applied singleCellHaystack to pseudotime projection on the Tabula Muris thymus data 25. In
this dataset the development of T cells can be followed from double negative (CD4-CD8"),
through double positive (CD4*CD8*) and into mature, single positive (CD4*CD8- and CD4-CD8")
T cells. To identified the differentiation trajectory we used monocle3 3. Briefly, the data was first
processed using the standard Seurat pipeline (see above), except that 30 PCs were used to
calculate UMAP coordinates. We converted the Seurat object into a cell_data_set object with
the SeuratWrappers package (https://github.com/satijalab/seurat-wrappers). Then monocle3
was used to calculate clusters and partitions using the UMAP coordinates with the function
cluster_cells. Next, the principal graph is learned using the learn_graph function, and cell were
ordered selecting as root the node in the graph starting in the cluster of double negative cells.
We used singleCellHaystack using the pseudotime coordinates. We selected the top 1,000

predicted DEGs and clustered them into modules using kmeans, using k=6.

Application to CITE-seq

Single-cell data from human peripheral blood mononuclear cells (PBMC) data was downloaded

from https://atlas.fredhutch.org/nygc/multimodal-pbmc/. This dataset contains information about

the expression of 228 immune marker proteins on over 200k cells. As input to

23


https://doi.org/10.1101/2022.11.13.516355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.13.516355; this version posted November 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

singleCellHaystack we used the protein based PCA coordinates (50 PCs), and the normalized

expression levels included in the downloaded data, which was processed as described here .

Application to scATAC-seq

Single-cell multiome (RNA + ATAC) data from human PBMC was downloaded from 10x web
site (https://support.10xgenomics.com/single-cell-multiome-atac-
gex/datasets/1.0.0/pbmc_granulocyte sorted_10k). The raw data (fragments and peak
information from cellranger) were processed with Signac 33, following the workflow described
here: https://satijalab.org/seurat/articles/weighted_nearest_neighbor_analysis.html#wnn-
analysis-of-10x-multiome-rna-atac-1. Briefly, the expression and chromatin accessibility peak
information data were loaded into a Seurat object. For the peaks, the information about genomic
ranges was obtained using the function GetGRangesFromEnsDb with the Bioconductor
package EnsDb.Hsapiens.v86 (http://bioconductor.org/packages/EnsDb.Hsapiens.v86/). Cells
were filtered to have less than 20% of mitochondrial counts, RNA counts between 1,000 and
25,000 and ATAC counts between 5x102 and 7x107. For the RNA data the SCTransform
pipeline was used, and UMAP coordinates calculated using 50 PCs. For the ATAC counts, first
term-frequency inverse-document-frequency was calculated with RunTFIDF. Top features were
selected with FindTopFeatures and min.cutoff="q0". Then, a Latent Semantic Index (LSI)
embedding was calculated with RunSVD. ATAC based UMAP was constructed from dimensions

2 to 50 from LSI. singleCellHaystack was run using LS| embedding and ATAC peak counts.

Applications to spatial transcriptomics datasets

We obtained and processed data for the following four platforms (Table 1).

Visium platform data. Data for mouse kidney and brain were obtained through the SeuratData

R package 3. We filtered out mitochondrial genes and genes with non-zero counts in less than

24


https://doi.org/10.1101/2022.11.13.516355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.13.516355; this version posted November 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

10 spots. Data was normalized using the Seurat R package (function NormalizeData, with

default parameters).

Slide-seqV2 data. We obtained the data from the Broad Institute Single Cell Portal (accession
number SCP815) 2°. We filtered out mitochondrial genes and genes with non-zero counts in less
than 10 spots, as well as pucks with less than 100 reads in total. Data was normalized using the

Seurat R package (function NormalizeData, with default parameters).

HDST data. We obtained the data from the Broad Institute Single Cell Portal (accession number
SCP420) %!. We filtered out mitochondrial genes and genes with non-zero counts in less than 10

spots. Data was normalized using the Seurat R package (function NormalizeData, with default

parameters).

MERFISH data. RNA counts and cell position information was obtained from Xia et al.
(Datasets S12 and S15) ?2. We filtered out genes with non-zero counts in less than 10 spots, as
well as cells with less than 6,000 detected genes. Data was normalized using the Seurat R

package (function NormalizeData, with default parameters).

We applied the following methods on each of the spatial datasets: the updated version of
singleCellHaystack, SPARK, SPARK-X, Seurat’s FindSpatiallyVariableFeatures function using
Moran’s | and mark variogram approaches, MERINGUE, and Giotto’s binSpect using the
kmeans and the rank approaches 1215-17.19.2829 Because several methods have long runtimes or
returned errors on large datasets (Fig. 2A), we limited the analysis to the top 1,000 highly
variable genes (detected using function FindVariableFeatures). In addition, we applied
singleCellHaystack and SPARK-X on all genes in the datasets. To each method, we gave as
input the same 2D spatial coordinates of the samples, along with the expression data (counts or

processed data as needed). Each method was run with default parameter settings on the 1,000
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HVGs (without other pre-filtering steps), and the number of cores used was set to 1, to make the
comparison of runtimes fair. Method-specific normalization steps were not included in the
runtimes. SPARK was applied using CreateSPARKODbject (option percentage and
min_total_reads set to 0), spark.vc (with covariates set to NULL and library sizes set to the total
number of counts per sample) and spark.test. SPARK-X was run with function sparkx (option
set to “mixture”). MERINGUE was run using functions normalizeCounts, getSpatialNeighbors,
and getSpatialPatterns. Seurat’s FindSpatiallyVariableFeatures was run with assay set to
“Spatial”. Giotto was applied using functions createGiottoObject, normalizeGiotto,
createSpatialNetwork, and binSpect (with bin_method set to “kmeans” or “rank” and

got_av_expr and get_high_expr set to FALSE).

Table 1: Overview of spatial transcriptomics datasets

ID Name Platform Species  Tissue / origin Reference

1 Anteriorl ‘ Visium mouse  brain ‘ 10x Genomics
2 | Anterior2 Visium mouse brain 10x Genomics
3 Posteriorl ' Visium mouse | brain '~ 10x Genomics
4 | Posterior2 Visium mouse brain 10x Genomics
5 | Kidney ' Visium mouse | kidney ' 10x Genomics
6 | Stickels hippol Slide-seqV2 | mouse | hippocampus 20

7  Stickels hippo2 Slide-seqV2 | mouse  hippocampus 20

8 | Stickels embryo Slide-seqV2 | mouse | embryo 20

9 | Stickels olfactory Slide-seqV2 | mouse | olfactory bulb 20

10 | Stickels cortex Slide-seqV2 | mouse | cortex 20

11 | Vickovic CN13 D2 HDST mouse | olfactory bulb 2

15 | Vickovic CN24 D1 | HDST mouse olfactory bulb 21

16 | Vickovic CN24 E1  HDST mouse | olfactory bulb B

12 | Vickovic CN21 C1 | HDST human | breast cancer 21

13 | Vickovic CN21 DI  HDST human | breast cancer B

14 | Vickovic CN21 E2 | HDST human | breast cancer 2!

17 | Xia Bl ' MERFISH human | osteosarcoma 2

18 | Xia B2 MERFISH human  osteosarcoma 2

19 | Xia B3 ' MERFISH human | osteosarcoma 2

26


https://doi.org/10.1101/2022.11.13.516355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.13.516355; this version posted November 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Application to large collection of bulk RNA-seq data

We downloaded a large collection of RNA-seq samples covering 76 mouse cell types and
tissues 2. This data has been normalized using Upper Quartile normalization and treated for
batch effects using ComBat 3%%. From this dataset, we selected samples obtained from brain,
prefrontal cortex, hippocampus, cortex, frontal cortex, olfactory bulb, cerebellum, forebrain,
neocortex, and cerebral cortex. We treated the data using Seurat, including scaling, finding
1,000 highly variable genes, and PCA. We filtered out genes with generally low expression
(mean expression in the bottom 25%), and applied singleCellHaystack on the resulting 1,958
samples and 18,260 genes, using as input space the first 5 PCs, using 25 grid points and

otherwise default parameters. For visualization purposes, we applied UMAP on the first 5 PCs.

Application to module scores of gene sets

We used the R package msigdbr (version 7.5.1) to retrieve sets of mouse genes associated with
BIOCARTA pathways 2. For 292 pathways which had at least 10 associated genes, we
collected their genes, and used the Seurat function AddModuleScore to calculate module
scores in the spots of the Visium datasets. These module scores reflect the general activity of
the genes in each pathway. Subsequently, we ran singleCellHaystack on each Visium datasets,
using as input the coordinates of spots and the module scores of all pathways. High-scoring
pathways thus reflect pathways with spatial differences in activity within the tissue (see Fig. 5 for

examples).

NOTES

Code availability: singleCellHaystack is implemented as an R package and is available from

CRAN (https://CRAN.R-project.org/package=singleCellHaystack) and GitHub
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(https://qithub.com/alexisvdb/singleCellHaystack), and as a Python module available from

GitHub (https://github.com/ddiez/singleCellHaystack-py).

Data availability: Single-cell RNA-seq datasets analyzed in this study are available from

https://figshare.com/articles/dataset/Robject files for tissues processed by Seurat/5821263

(Tabula Muris), https://figshare.com/articlessMCA DGE Data/5435866 (Mouse Cell Atlas),

https://atlas.fredhutch.org/nygc/multimodal-pbmc/ (PMBC CITE-seq),

https://support.10xgenomics.com/single-cell-multiome-atac-

gex/datasets/1.0.0/pbmc_granulocyte sorted 10k (PBMC scRNA-seq and scATAC-seq).

Visium data was obtained through the SeuratData package. Slide-seqV2 and HDST data from
the Broad Institute Single Cell Portal, accession numbers SCP815 and SCP420. MERFISH data
from the supplementary data in Xia et al. Bulk RNA-seq data was downloaded from

https://figshare.com/articles/dataset/Mouse data/14178425/1.
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