

1 **Title:** Evolution and Diversification Dynamics of Butterflies

2 **Authors:**

3 Akito Y. Kawahara^{1,2,3*}, Caroline Storer¹, Ana Paula S. Carvalho¹, David M. Plotkin^{1,2}, Fabien
4 Condamine⁴, Mariana P. Braga^{5,6}, Emily A. Ellis¹, Ryan A. St Laurent^{1,3}, Xuankun Li^{1,11}, Vijay
5 Barve¹, Liming Cai^{7,8}, Chandra Earl^{1,10}, Paul B. Frandsen⁹, Hannah L. Owens^{10,12}, Wendy A.
6 Valencia-Montoya⁷, Kwaku Aduse-Poku^{13,14}, Emmanuel F. A. Toussaint^{1,15}, Kelly M. Dexter¹,
7 Tenzing Doleck^{13,16}, Amanda Markee¹, Rebeccah Messcher¹, Y-Lan Nguyen¹³, Jade Aster T.
8 Badon¹⁷, Hugo A. Benítez^{18,19}, Michael F. Braby^{20,21}, Perry A. C. Buenavente²², Wei-Ping
9 Chan⁷, Steve C. Collins²³, Richard A. Rabideau Childers⁷, Even Dankowicz⁷, Rod Eastwood⁷,
10 Zdenek F. Fric²⁴, Riley J. Gott^{1,2}, Jason P. W. Hall²⁵, Winnie Hallwachs²⁶, Nate B. Hardy²⁷,
11 Rachel L. Hawkins Sipe⁷, Alan Heath^{7,28}, Jomar D. Hinolan²⁹, Nicholas T. Homziak^{1,2}, Yu-Feng
12 Hsu³⁰, Yutaka Inayoshi³¹, Micael G.A. Itliong¹³, Daniel H. Janzen²⁶, Ian J. Kitching³²,
13 Krushnamegh Kunte³³, Gerardo Lamas³⁴, Michael J. Landis⁶, Elise A. Larsen³⁵, Torben B.
14 Larsen^{†36}, Jing V. Leong^{13,24}, Vladimir Lukhtanov³⁷, Crystal A. Maier⁷, Jose I. Martinez^{1,2}, Dino
15 J. Martins³⁸, Kiyoshi Maruyama³⁹, Sarah C. Maunsell⁷, Nicolás Oliveira Mega⁴⁰, Alexander
16 Monastyrskii^{41,42}, Ana B. B. Morais⁴³, Chris J. Müller⁴⁴, Mark Arcebal K. Naive^{45,46,47}, Gregory
17 Nielsen⁴⁸, Pablo Sebastián Padrón^{1,49}, Djunijanti Peggie⁵⁰, Helena Piccoli Romanowski⁴⁰,
18 Szabolcs Sáfián⁵¹, Motoki Saito⁵², Stefan Schröder⁵³, Vaughn Shirey³⁵, Doug Soltis¹⁰, Pamela
19 Soltis¹⁰, Andrei Sourakov¹, Gerard Talavera^{7,54}, Roger Vila⁵⁵, Petr Vlasanek^{24,56}, Houshuai
20 Wang⁵⁷, Andrew D. Warren¹, Keith R. Willmott¹, Masaya Yago⁵⁸, Walter Jetz⁵⁹, Marta A.
21 Jarzyna^{59,60,61}, Jesse W. Breinholt^{62,63}, Marianne Espeland⁶⁴, Leslie Ries³⁵, Robert P. Guralnick¹⁰,
22 Naomi E. Pierce^{7*}, David J. Lohman^{13,16,22*}

24 **Author Affiliations:**

25 ¹ McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of
26 Florida, Gainesville, FL, USA

27 ² Entomology and Nematology Department, University of Florida, Gainesville, FL, USA

28 ³ Department of Biology, University of Florida, Gainesville, FL, USA

29 ⁴ CNRS, Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier), Montpellier,
30 France

31 ⁵ Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden

32 ⁶ Department of Biology, Washington University in St. Louis, St. Louis, MO, USA

33 ⁷ Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard
34 University, Cambridge, MA, USA

35 ⁸ Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA

36 ⁹ Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA

37 ¹⁰ Florida Museum of Natural History, University of Florida, Gainesville, FL, USA

38 ¹¹ Center for Biodiversity Research, Department of Biological Sciences, University of Memphis,
39 Memphis, TN, USA

40 ¹² Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen,
41 Copenhagen, Denmark

42 ¹³ Biology Department, City College of New York, City University of New York, USA

43 ¹⁴ Department of Life and Earth Sciences, Perimeter College, Georgia State University, GA

44 ¹⁵ Department of Entomology, Natural History Museum of Geneva, Geneva, Switzerland

45 ¹⁶ PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA

46 ¹⁷ Rodolfo B. Gonzales Museum of Natural History, Biology Department, Silliman University, Philippines

48 ¹⁸Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del
49 Maule, Universidad Católica del Maule, Talca, Chile
50 ¹⁹Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo
51 O'Higgins, Avenida Viel 1497, Santiago, 8370993, Chile
52 ²⁰Division of Ecology and Evolution, Research School of Biology, The Australian National University,
53 Acton, ACT, Australia
54 ²¹Australian National Insect Collection, Canberra, ACT, Australia
55 ²²Entomology Section, National Museum of Natural History, Manila, Philippines
56 ²³African Butterfly Research Institute, Nairobi, Kenya
57 ²⁴Biology Centre CAS, České Budějovice, Czech Republic
58 ²⁵Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington,
59 DC, USA
60 ²⁶Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
61 ²⁷Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
62 ²⁸Iziko South African Museum, Cape Town, South Africa
63 ²⁹Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101,
64 Philippines
65 ³⁰College of Life Science, National Taiwan Normal University, Taipei, Taiwan
66 ³¹Sritana Condominium 2, 96/173, Huay Kaeo Rd. T. Suthep, A. Muang, Chiang Mai, Thailand
67 ³²Natural History Museum, London, UK
68 ³³National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
69 ³⁴Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
70 ³⁵Department of Biology, Georgetown University, Washington, DC, USA
71 ³⁶Deceased
72 ³⁷Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, St. Petersburg,
73 Russia
74 ³⁸Mpala Research Center, Department of Ecology and Evolutionary Biology, Princeton University,
75 Princeton, NJ, USA
76 ³⁹89-7-106 Minami-Ôsawa 5 chome, Hachiôji-shi, Japan
77 ⁴⁰Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970,
78 Brazil
79 ⁴¹Fauna & Flora International, Vietnam Programme, Hanoi, Vietnam
80 ⁴²Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc
81 Viet, Cau Giay, Hanoi, Vietnam
82 ⁴³Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Pós-Graduação em
83 Biodiversidade Animal, Santa Maria, RS, Brazil
84 ⁴⁴Australian Museum, Sydney, NSW, Australia
85 ⁴⁵Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of
86 Sciences, Mengla, Yunnan 666303, China
87 ⁴⁶University of Chinese Academy of Sciences, Beijing 100049, China.
88 ⁴⁷College of Arts and Sciences, Jose Rizal Memorial State University, Tampilisan Campus, ZNAC,
89 Tampilisan 7116, Zamboanga del Norte, Philippines
90 ⁴⁸Aquapro, Km 6 Villavicencio, Meta, Colombia
91 ⁴⁹Entomology Laboratory, Museo de Zoología, Universidad del Azuay, Cuenca, Ecuador
92 ⁵⁰Museum Zoologicum Bogoriense, Research Center for Biology-National Research and Innovation
93 Agency (previously Indonesian Institute of Sciences), Cibinong-Bogor, Indonesia
94 ⁵¹Institute of Silviculture and Forest Protection, University of West Hungary, Sopron, Hungary
95 ⁵²The Research Institute of Evolutionary Biology (Insect Study Division), Kami-youga, Setagaya-ku,
96 Tokyo, Japan
97 ⁵³Auf dem Rosenufer 15, D-50997 Köln, Germany

98 ⁵⁴Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Catalonia, Spain
99 ⁵⁵Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Catalonia, Spain
100 ⁵⁶T.G. Masaryk Water Research Institute, Prague, Czech Republic
101 ⁵⁷Department of Entomology, College of Plant Protection, South China Agricultural University,
102 Guangzhou, China
103 ⁵⁸The University Museum, The University of Tokyo, Tokyo, Japan
104 ⁵⁹Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
105 ⁶⁰Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH,
106 USA
107 ⁶¹Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
108 ⁶²Intermountain Healthcare, Intermountain Precision Genomics, Saint George, Utah, USA
109 ⁶³RAPiD Genomics, Gainesville, Florida, USA
110 ⁶⁴Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander
111 Koenig, Bonn, Germany
112
113
114 *Corresponding authors
115

116 **Abstract**

117 Butterflies are a diverse and charismatic insect group that are thought to have diversified via
118 coevolution with plants and in response to dispersals following key geological events. These
119 hypotheses have been poorly tested at the macroevolutionary scale because a comprehensive
120 phylogenetic framework and datasets on global distributions and larval hosts of butterflies are
121 lacking. We sequenced 391 genes from nearly 2,000 butterfly species to construct a new,
122 phylogenomic tree of butterflies representing 92% of all genera and aggregated global
123 distribution records and larval host datasets. We found that butterflies likely originated in what is
124 now the Americas, ~100 Ma, shortly before the Cretaceous Thermal Maximum, then crossed
125 Beringia and diversified in the Paleotropics. The ancestor of modern butterflies likely fed on
126 Fabaceae, and most extant families were present before the K/Pg extinction. The majority of
127 butterfly dispersals occurred from the tropics (especially the Neotropics) to temperate zones,
128 largely supporting a “cradle” pattern of diversification. Surprisingly, host breadth changes and
129 shifts to novel host plants had only modest impacts.

130
131
132
133
134

135 **Background**

136 Butterflies have captivated naturalists, scientists, and the general public for centuries, and
137 they have played a central role in studies of speciation, community ecology, plant-insect
138 interactions, mimicry, genetics, and conservation. Despite being the most studied group of
139 insects, butterfly evolutionary history and drivers of their diversification are still poorly
140 understood^{1,2}. Due to over a century of efforts by amateur naturalists, butterflies are one of the
141 few insect groups for which substantial trait data (e.g., geographic and host plant information)
142 exist to test diversification hypotheses. Until now, these data have largely been scattered across
143 the literature, museum collections, and local databases. Butterflies are thought to have diversified
144 in relation to multiple abiotic and biotic factors, including adaptations to novel climates and
145 species interactions, with geographic history and caterpillar-host interactions playing a major
146 role³. However, these have not been studied because a synthesis of associated traits and a robust
147 phylogenetic framework at the taxonomic scale needed to examine their evolution has not been
148 available.

149 We sequenced 391 genes from nearly 2,000 butterfly species to construct a new, robust,
150 phylogenomic tree of butterflies representing 92% of all genera, aggregated global distribution
151 records, and assembled a comprehensive host association dataset. Using this tree, we infer the
152 evolutionary timing, biogeographic history, and diversification patterns of butterflies. We
153 address three long-standing questions related to butterfly evolution: 1) did butterflies originate in
154 the northern (Laurasia) or southern (Gondwana) hemisphere⁴, 2) what plants did the ancestor of
155 butterflies feed on⁵, and 3) were plants a major driver promoting butterfly diversification⁶

156

157 **Results and Discussion**

158 To elucidate patterns of global butterfly diversification in space and time, we used
159 targeted exon capture⁷ to assemble a dataset of 391 gene regions (161,166 nucleotides and
160 53,722 amino acids) from 2,244 butterfly species. The majority (1,914 specimens) of butterflies
161 sampled were newly sequenced for this study, and represented all families, tribes, and 92% of
162 recognized genera, with most samples coming from museum collections across the world (see
163 Supplementary Materials). Phylogenomic trees inferred with nucleotides and amino acids were
164 highly congruent, with strong support for the monophyly of all families and nearly all
165 subfamilies with traditional branch support metrics (Table S1), multispecies coalescence (MSC)

166 analyses (Table S1), and 4-cluster likelihood mapping (FcLM) (Table S2). Our results strongly
167 support the need for revision of the classification of at least 32 butterfly tribes (25% of total) as
168 currently circumscribed (Table S1).

169 We conducted 24 dating analyses using different fossil and secondary calibration
170 schemes along with sensitivity analyses to assess the impact of analytical and sampling bias.
171 Across analyses, our results revealed largely congruent timing of butterfly divergence events
172 (Table S3), indicating that butterflies originated from nocturnal, herbivorous moth ancestors
173 during the mid-Cretaceous (101.4 Ma, 102.5–100.0 Ma). This provides independent evidence for
174 the Cretaceous origin recovered in previous butterfly phylogenies^{2,8}. We conducted
175 diversification rate analyses that used time-variable models and clade-heterogeneous models that
176 are less prone to sampling bias (Supplementary Methods). Both approaches recovered similar
177 patterns of diversification across butterflies, with increased rates in clades such as the diverse
178 skipper tribe Eudamini and lycaenid subfamily Poritiinae (Fig. 1, Fig. S1).

179 To determine the geographic origin of butterflies, we used our dated phylogeny (Fig. 1)
180 to conduct a global biogeographic analysis with 15,764 newly aggregated country-level
181 distribution records (Table S4). Modeling with three different area categorizations, models of
182 range evolution, and parameters (e.g., adjacency matrices, time slices, etc.) consistently
183 recovered butterflies as originating in the Americas, in what is present-day western North
184 America or Central America (Fig. 4, Table S5). All extant butterfly families excluding the
185 Neotropical Hedylidae diversified ~10–30 Ma after the Cretaceous Thermal Maximum (CTM),
186 ~90 Ma, when the global climate cooled by nearly 5° C⁹ (Figs. 1, 2). During the Cretaceous,
187 butterflies appeared to be dispersing out of the Neotropics at a much higher rate than all other
188 dispersal pathways (Fig. S2). As new butterfly lineages became established in other bioregions,
189 other inter-bioregion dispersal avenues became more frequently used, particularly out of
190 Indomalaya (Figs. S3, S4).

191 Beginning around 60 Ma, the Neotropics served as an evolutionary “cradle”¹⁰ with high
192 *in situ* butterfly speciation (Fig. S5), and many dispersal events occurring out of the Neotropics
193 to other areas (Fig. S6). Relative rate of dispersal out of the Neotropics was still high during the
194 early Cenozoic, although not as high as it was during the Cretaceous (Figs. S2, S3). Over the
195 course of their evolution, butterflies experienced significantly higher speciation rates in the
196 tropics compared to temperate zones (Data S1), and also more dispersal events out of the tropics

197 (Fig. S6), as observed by high relative mean dispersal rates out of the tropics (e.g., tropical
198 Indomalaya to temperate East Palearctic, and the Neotropics to Nearctic; Fig. 3). This pattern
199 differs from that seen in mammals, which are thought to have dispersed primarily in the opposite
200 direction during the Pliocene^{11–13}. Some butterflies such as swallowtails showed greater
201 immigration into the Neotropics, following a “museum” model of diversification (Fig. S7),
202 corroborating prior findings¹⁴. The majority of dispersal events between the Neotropics and the
203 Nearctic took place after the Eocene–Oligocene boundary, ~33.9 Ma (Fig. S4). Two lineages
204 dispersed from the East Palearctic around 17 Ma, and these appear to be the first colonizers of
205 Europe: ancestors of a Nymphalini subclade including *Aglais*, *Nymphalis*, and *Polygonia*, and a
206 clade of checkered skippers (Carcharodini; Table S6). Butterflies were present on what are now
207 all modern continental landmasses by the late Eocene (Table S7).

208 The K/Pg boundary (~66 Ma) marked a major global extinction event that dramatically
209 reduced vertebrate and marine diversity¹⁵. Less is known, however, about the extent to which
210 insects were affected by this event¹⁶. We used two analytical approaches to identify sudden
211 extinction events and estimate changes in diversification rates, both of which concluded that
212 butterflies, like amphibians and some mammals^{17,18}, did not experience a major extinction event
213 at the K/Pg boundary (Fig. S8). Plants experienced a vegetation turnover from gymnosperms to
214 angiosperms in the Late Cretaceous¹⁹ and continued to increase in diversity up to the present
215 (Fig. 2). The survival of many plant lineages across the K/Pg boundary may have buffered the
216 effects of the mass extinction event of butterflies.

217 Two tests of extinction demonstrate that butterflies underwent two major extinctions after
218 the K/Pg boundary — one at the Eocene–Oligocene transition (EOT) which coincides with the
219 Eocene–Oligocene global extinction event (~33.9 Ma), and another during the mid–Miocene that
220 coincides with the mid-Miocene Climatic Optimum (~14 Ma; Fig. S8). These were global
221 cooling and warming periods, respectively, that led to the disappearance of many plant and
222 animal lineages, followed by sharp floral and faunal turnover in temperate and tropical
223 environments¹⁵. Speciation analyses with BioGeoBEARS²⁰ (see Methods), also supports these
224 findings; there was a dramatic drop in the number of speciation events around 34 Ma, especially
225 in the East Palearctic region (Fig. S5), which occurred around the EOT extinction event that
226 significantly reduced floral and faunal diversity of that region²¹. Soon thereafter, the families
227 Hesperiidae and Nymphalidae experienced dramatic increases in the number of speciation events

228 in the East Palearctic (Fig. S9). This marks a period when East Palearctic habitats changed from
229 dense forest to forest-steppe, temperate grassland, and mixed forest biomes²¹. These serve as
230 primary habitats of the diverse modern butterfly groups – fritillaries, satyrs, and grassland
231 skippers, which dominate this region today (Argynnini, Satyrini, and Hesperiinae, respectively).

232 It is often argued that butterfly evolution is closely tied to the diversification of
233 angiosperms^{5,6}. Yet, few studies have examined the timing and pattern of butterflies and their
234 hosts on a broad, macroevolutionary scale. To understand the temporal diversification of
235 butterflies and plants, we compiled 31,456 butterfly host records from 186 books and databases
236 (Table S8). We examined how butterfly lineages increased through time and compared these
237 results with four recent studies that examined plant diversification dynamics. We found that
238 butterfly diversification lagged far behind the origin of angiosperms (Fig. 2), corroborating prior
239 studies^{7,22}. Ancestral state estimation provided support for Fabaceae as the host plant of the most
240 recent common ancestor of butterflies (Tables S9-S10, Fig. S10), a widely accepted hypothesis⁵
241 that has lacked empirical support. The crown age of the most recent common ancestor of
242 Fabaceae is thought to be ~98 Ma^{23,24}, largely coincident with the origin of butterflies.

243 Although the vast majority of butterfly larvae in our dataset are herbivores, a small
244 number also feed on detritus, lichens, or insects (Table S8). The oldest associations in the
245 entirely entomophagous Miletinae (Lycaenidae) appear to originate by 58.4 Ma (58.9–57.1 Ma),
246 an estimate that corresponds with an earlier estimation of the origin of this group²⁵ (Tables S3,
247 S11). The Lycaenidae, with caterpillars that are ancestrally symbiotic with ants^{7,26}, date back to
248 64.5 Ma (65.4–63.7 Ma) (Fig. S11), long after the origin of ants (139–158 Ma²⁷). Together with
249 plants, ants appear to have provided a template for diversification of Lycaenidae and certain
250 members of its sister clade, Riodinidae.

251 To address the possibility that butterfly diversification may have been spurred by co-
252 diversifying plants, we evaluated eight paleoenvironment-dependent models relating butterfly
253 diversification to host-plant evolution²⁸. We first estimated time-dependent variation of
254 speciation and extinction rates with time-continuous birth-death models and compared them with
255 constant-rate diversification models²⁹. In the best-fitting model, speciation rates vary
256 exponentially through time without extinction (92% of the trees, Akaike $\omega = 0.549$). This time-
257 dependent model is far better supported than the angiosperm-dependent models, the best of
258 which was ranked fourth (Table S12). We also ran the HiSSE model³⁰ as implemented in the R

259 package hisse³¹ to test for a potential impact of host-plant preference on diversification
260 dynamics. In total, we compared 18 different models of HiSSE and BiSSE-like implementations,
261 accounting for hidden states to alleviate recent concerns regarding the reliability of SSE models
262 and the high incidence of false positive results³². We found little or no indication that association
263 with a specific plant group is linked to butterfly diversification, largely rejecting the hypothesis
264 of hostplant driven diversification (Table S13, Data S2). These results indicate that
265 coevolutionary interactions with angiosperm host-plants were unlikely to have been a driver of
266 butterfly diversification at macroevolutionary scales. Even within families, hypotheses such as
267 the correlated diversification of grasses with grass-feeding skippers (Hesperiinae) and satyrs
268 (Satyrini)³³ were uncorroborated (Table S13). Our results are consistent with smaller studies on
269 particular butterfly groups such as skippers (e.g., Sahoo et al.³⁴), that show that alternative
270 drivers (hidden states) explain best butterfly diversification when compared to hostplant-
271 dependent models.

272 Butterfly diversification may not have been driven by the availability of particular plants,
273 but instead by host specificity (specializing on a few plants [e.g., Janz, Nylin and Nyblom³⁵]). It
274 has been proposed through the resource-use hypothesis³⁶ that specialists that feed on few hosts
275 have higher speciation and extinction rates. Numerous studies on vertebrates support this
276 hypothesis^{37,38}, but few studies have tested the hypothesis on insects. We examined host plant
277 specificity on the butterfly phylogeny (Fig. 1) and found that more than two-thirds of butterfly
278 species feed on a single plant family (67.7%), whereas less than one-third (32.3%) are generalists
279 feeding on two or more (Table S14), a pattern largely in agreement with ecological studies on
280 butterflies³⁹. We also found that 94.2% of generalists feed on plant families that are significantly
281 closely related compared to a randomly sampled null distribution, suggesting that generalists,
282 although capable of feeding on different host families, still consume closely related plants. This
283 finding supports the pattern reported by Ehrlich and Raven⁶ that related butterflies feed on
284 related plants. Finally, we used trait-dependent methods to examine whether diversification rates
285 changed following switches between generalist and specialist, and host plant shifts (Table S13).
286 Our results demonstrate that – at least in analyses of Papilioidea and Hesperiidae, where
287 results were significant – specialists have lower rates of speciation (Fig. S12), contradicting the
288 resource-use hypothesis.

289 This study includes the most comprehensive taxonomic sampling of butterflies to date to
290 understand their evolutionary history. We also compiled two comprehensive trait datasets
291 (geography and host plants) that demonstrate the importance of assembling large trait databases
292 to test key hypotheses. Our study overturns some long-held assumptions of butterfly evolution
293 and provides a framework for future studies of this model insect lineage. The consistency of
294 results obtained using different approaches for each of our analyses suggests that our conclusions
295 are robust. Assembling species-level datasets will be an important future goal to address fine-
296 scale trends within particular butterfly clades.

297 Our data support the hypothesis that butterflies originated in the Americas in the Late
298 Cretaceous 100 million years after the origin of angiosperms, and that they first fed on legumes.
299 They dispersed from the Americas to the East Palearctic likely across Beringia ~75 Ma before
300 diversifying in the Paleotropics. They appear to have been minimally affected by the K/Pg mass
301 extinction. While some evidence points to a Nearctic origin, the evidence for Nearctic versus
302 Neotropical origin is not strong – we therefore only tentatively conclude that a Laurasian origin
303 is possible. Diversification of some lineages has been impacted by host associations, but an
304 escape-and-radiate model of coevolution with angiosperms does not appear to have been a
305 powerful driver of diversification at a broad macroevolutionary scale. Butterfly evolution is
306 better viewed as compatible with a model of diffuse coevolution⁴⁰ in which plants provided an
307 ecological template on which butterflies diversified as opportunities arose.

308
309

310 **References**

- 311 1. Chazot, N. et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of
312 butterflies revisited. *Systematic Biology* **68**, 797–813 (2019).
- 313 2. Allio, R. et al. Whole genome shotgun phylogenomics resolves the pattern and timing of
314 swallowtail butterfly evolution. *Systematic Biology* **69**, 38–60 (2020).
- 315 3. Boggs, C. L., Watt, W. B. & Ehrlich, P. R. *Butterflies: Ecology and Evolution Taking Flight*.
316 (University Of Chicago Press, 2003).
- 317 4. Braby, M. F., Trueman, J. W. H. & Eastwood, R. When and where did troidine butterflies
318 (Lepidoptera: Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an
319 origin in remnant Gondwana in the Late Cretaceous. *Invertebrate Systematics* **19**, 113–143

320 (2005).

321 5. Janz, N. & Nylin, S. Butterflies and plants: a phylogenetic study. *Evolution* **52**, 486–502

322 (1998).

323 6. Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study of coevolution. *Evolution* **18**,

324 586–608 (1965).

325 7. Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. *Current*

326 *Biology* **28**, 770-778.e5 (2018).

327 8. Wahlberg, N., Wheat, C. W. & Peña, C. Timing and patterns in the taxonomic diversification

328 of Lepidoptera (butterflies and moths). *PLOS ONE* **8**, e80875 (2013).

329 9. Linnert, C. et al. Evidence for global cooling in the Late Cretaceous. *Nature*

330 *Communications* **5**, 4194 (2014).

331 10. Stebbins, G. L. *Flowering plants: Evolution above the species level*. (Belknap Press of

332 Harvard Univ. Press, 1974).

333 11. Domingo, L., Tomassini, R. L., Montalvo, C. I., Sanz-Pérez, D. & Alberdi, M. T. The Great

334 American Biotic Interchange revisited: a new perspective from the stable isotope record of

335 Argentine Pampas fossil mammals. *Scientific Reports* **10**, 1608 (2020).

336 12. Carrillo, J. D. et al. Disproportionate extinction of South American mammals drove the

337 asymmetry of the Great American Biotic Interchange. *Proceedings of the National Academy*

338 *of Sciences* **117**, 26281–26287 (2020).

339 13. Rolland, J., Condamine, F. L., Beeravolu, C. R., Jiguet, F. & Morlon, H. Dispersal is a major

340 driver of the latitudinal diversity gradient of Carnivora. *Global Ecology and Biogeography*

341 **24**, 1059–1071 (2015).

342 14. Condamine, F. L., Silva-Brandão, K. L., Kergoat, G. J. & Sperling, F. A. H. Biogeographic

343 and diversification patterns of Neotropical Troidini butterflies (Papilionidae) support a

344 museum model of diversity dynamics for Amazonia. *BMC Evolutionary Biology* **12**, (2012).

345 15. Hallam, A. & Wignall, P. B. *Mass Extinctions and Their Aftermath*. (Oxford University

346 Press, UK, 1997).

347 16. Schachat, S. R. & Labandeira, C. C. Are insects heading toward their first mass extinction?

348 Distinguishing turnover from crises in their fossil record. *Annals of the Entomological*

349 *Society of America* **114**, 99–118 (2021).

350 17. Grossnickle, D. M. & Newham, E. Therian mammals experience an ecomorphological

351 radiation during the Late Cretaceous and selective extinction at the K-Pg boundary.

352 *Proceedings of the Royal Society B: Biological Sciences* **283**, 20160256 (2016).

353 18. Feng, Y.-J. et al. Phylogenomics reveals rapid, simultaneous diversification of three major

354 clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. *Proceedings of the*

355 *National Academy of Sciences* **114**, E5864–E5870 (2017).

356 19. Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms

357 pushed conifers to decline during global cooling. *Proceedings of the National Academy of*

358 *Sciences* **117**, 28867 (2020).

359 20. Matzke, N. J. BioGeoBEARS: biogeography with Bayesian (and likelihood) evolutionary

360 analysis in R scripts. (2013).

361 21. Sun, J. et al. Synchronous turnover of flora, fauna and climate at the Eocene–Oligocene

362 Boundary in Asia. *Scientific Reports* **4**, 7463 (2014).

363 22. Heikkilä, M., Kaila, L., Mutanen, M., Peña, C. & Wahlberg, N. Cretaceous origin and

364 repeated tertiary diversification of the redefined butterflies. *Proceedings of the Royal Society*

365 *B: Biological Sciences* **279**, 1093–1099 (2011).

366 23. Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A

367 metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.

368 *New Phytologist* **207**, 437–453 (2015).

369 24. Li, H.-T. et al. Origin of angiosperms and the puzzle of the Jurassic gap. *Nature Plants* **5**,

370 461–470 (2019).

371 25. Kaliszewska, Z. A. et al. When caterpillars attack: Biogeography and life history evolution

372 of the Miletinae (Lepidoptera: Lycaenidae). *Evolution* **69**, 571–588 (2015).

373 26. Pierce, N. E. et al. The ecology and evolution of ant association in the Lycaenidae

374 (Lepidoptera). *Annual Review of Entomology* **47**, 733–771 (2002).

375 27. Moreau, C. S. & Bell, C. D. Testing the museum versus cradle tropical biological diversity

376 hypothesis: phylogeny, diversification, and ancestral biogeographical range evolution of the

377 ants. *Evolution* **67**, 2240–2257 (2013).

378 28. Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to

379 environmental change. *Ecology Letters* **16**, 72–85 (2013).

380 29. Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil

381 record. *Proceedings of the National Academy of Sciences* **108**, 16327 (2011).

382 30. Beaulieu, J. M. & O'Meara, B. C. Detecting hidden diversification shifts in models of trait-
383 dependent speciation and extinction. *Systematic Biology* **65**, 583–601 (2016).

384 31. Beaulieu, J., O'Meara, B., Caetano, D., Boyko, J. & Vasconcelos, T. *Package 'hisse'*.
385 (2021).

386 32. Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-
387 dependent speciation. *Systematic Biology* **64**, 340–355 (2015).

388 33. Peña, C. & Wahlberg, N. Prehistorical climate change increased diversification of a group of
389 butterflies. *Biology Letters* **4**, 274–278 (2008).

390 34. Sahoo, R. K., Warren, A. D., Collins, S. C. & Kodandaramaiah, U. Hostplant change and
391 paleoclimatic events explain diversification shifts in skipper butterflies (Family:
392 Hesperiidae). *BMC Evolutionary Biology* **17**, 174 (2017).

393 35. Janz, N., Nyblom, K. & Nylin, S. Evolutionary dynamics of host-plant specialization: a case
394 study of the tribe Nymphalini. *Evolution* **55**, 783–796 (2001).

395 36. Vrba, E. S. Ecology in relation to speciation rates: some case histories of Miocene-Recent
396 mammal clades. *Evolutionary Ecology* **1**, 283–300 (1987).

397 37. Fernández, M. H. et al. Macroevolution and climate changes: a global multi-family test
398 supports the resource-use hypothesis in terrestrial mammals. *null* 1–9 (2022)
399 doi:10.1080/08912963.2022.2042807.

400 38. Cantalapiedra, J. L., Hernández Fernández, M. & Morales, J. Biomic specialization and
401 speciation rates in Ruminants (Cetartiodactyla, Mammalia): A test of the resource-use
402 hypothesis at the global scale. *PLOS ONE* **6**, e28749 (2011).

403 39. Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. *Proceedings
404 of the National Academy of Sciences* **112**, 442 (2015).

405 40. Levin, S. A., Segel, L. A. & Adler, F. R. Diffuse coevolution in plant-herbivore
406 communities. *Theoretical Population Biology* **37**, 171–191 (1990).

407 41. Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively
408 high-throughput phylogenomics. *Systematic Biology* **61**, 727–744 (2012).

409 42. Breinholt, J. W. et al. Resolving relationships among the megadiverse butterflies and moths
410 with a novel pipeline for Anchored Phylogenomics. *Systematic Biology* **67**, 78–93 (2018).

411 43. Regier, J. C. et al. Arthropod relationships revealed by phylogenomic analysis of nuclear
412 protein-coding sequences. *Nature* **463**, 1079–1083 (2010).

413 44. Zwick, A. *Degeneracy Coding Web Service*. (2010).

414 45. Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic
415 Bootstrap. *Molecular Biology and Evolution* **30**, 1188–1195 (2013).

416 46. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2:
417 Improving the Ultrafast Bootstrap approximation. *Molecular Biology and Evolution* **35**, 518–
418 522 (2018).

419 47. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood
420 phylogenies: assessing the performance of PhyML 3.0. *Systematic Biology* **59**, 307–321
421 (2010).

422 48. Strimmer, K. & von Haeseler, A. Likelihood-mapping: A simple method to visualize
423 phylogenetic content of a sequence□alignment. *Proceedings of the National Academy of
424 Sciences* **94**, 6815 (1997).

425 49. Smith, S. A. & O'Meara, B. C. TreePL: divergence time estimation using penalized
426 likelihood for large phylogenies. *Bioinformatics* **28**, 2689–2690 (2012).

427 50. Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of
428 butterflies and moths. *Proceedings of the National Academy of Sciences of the United States
429 of America* **116**, 22657–22663 (2019).

430 51. Parham, J. F. et al. Best practices for justifying fossil calibrations. *Systematic Biology* **61**,
431 346–359 (2012).

432 52. de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera:
433 Papilioidea). *Zootaxa* **4270**, 1–63 (2017).

434 53. Graur, D. & Martin, W. Reading the entrails of chickens: molecular timescales of evolution
435 and the illusion of precision. *TRENDS in Genetics* **20**, 80–86 (2004).

436 54. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny.
437 *American Journal of Botany* **105**, 302–314 (2018).

438 55. Foster, C. S. et al. Evaluating the impact of genomic data and priors on Bayesian estimates of
439 the angiosperm evolutionary timescale. *Systematic Biology* **66**, 338–351 (2017).

440 56. Shields, O. Fossil butterflies and the evolution of Lepidoptera. *Journal of Research on the
441 Lepidoptera* **15**, 132–143 (1976).

442 57. Wahlberg, N. That awkward age for butterflies: insights from the age of the butterfly
443 subfamily Nymphalinae (Lepidoptera: Nymphalidae). *Systematic Biology* **55**, 703–714

444 (2006).

445 58. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence
446 on phylogenetic trees. *PLOS ONE* **9**, e89543–e89543 (2014).

447 59. Rabosky, D. L. et al. BAMMtools: An R package for the analysis of evolutionary dynamics
448 on phylogenetic trees. *Methods in Ecology and Evolution* **5**, 701–707 (2014).

449 60. Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis.
450 (2018).

451 61. Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating
452 the theory and performance of Bayesian analysis of macroevolutionary mixtures.
453 *Proceedings of the National Academy of Sciences* **113**, 9569–9574 (2016).

454 62. Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical
455 concerns in the analysis of multi-rate diversification models. *Systematic Biology* **66**, 477–498
456 (2017).

457 63. Höhna, S. et al. A Bayesian approach for estimating branch-specific speciation and
458 extinction rates. *bioRxiv* 555805 (2019) doi:10.1101/555805.

459 64. Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an
460 interactive model-specification language. *Systematic Biology* **65**, 726–736 (2016).

461 65. Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. *Bioinformatics*
462 **34**, 1053–1055 (2018).

463 66. Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. *Proceedings of
464 the National Academy of Sciences* **108**, 6187 (2011).

465 67. Höhna, S., May, M. R. & Moore, B. R. TESS: an R package for efficiently simulating
466 phylogenetic trees and performing Bayesian inference of lineage diversification rates.
467 *Bioinformatics* **32**, 789–791 (2016).

468 68. Pinkert, S., Barve, V., Guralnick, R. P. & Jetz, W. Global geographical and latitudinal
469 variation in butterfly species richness captured through a comprehensive country-level
470 occurrence database. *Global Ecology and Biogeography* (2022) doi:10.1111/geb.13475.

471 69. Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by
472 dispersal, local extinction, and cladogenesis. *Systematic Biology* **57**, 4–14 (2008).

473 70. Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a
474 parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae.

475 *Journal of Biogeography* **36**, 2324–2337 (2009).

476 71. Beeravolu, C. R. & Condamine, F. L. An extended Maximum Likelihood inference of
477 geographic range evolution by dispersal, local extinction and cladogenesis. *bioRxiv* 038695
478 (2016) doi:10.1101/038695.

479 72. Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies
480 colonizing new host plants. *Nature Communications* **12**, 354 (2021).

481 73. Udvardy, M. D. F. *A classification of the biogeographical provinces of the world. Morges*
482 (Switzerland): International Union of Conservation of Nature and Natural Resources. IUCN
483 *Occasional Paper no. 18*. (1975).

484 74. Ree, R. H. Detecting the historical signature of key innovations using stochastic models of
485 character evolution and cladogenesis. *Evolution* **59**, 257–265 (2005).

486 75. Ronquist, F. Dispersal-vicariance analysis: a new approach to the quantification of historical
487 biogeography. *Systematic Biology* **46**, 195–203 (1997).

488 76. Li, X. et al. A diversification relay race from Caribbean-Mesoamerica to the Andes:
489 historical biogeography of *Xylophanes* hawkmoths. *Proceedings of the Royal Society B:*
490 *Biological Sciences* **289**, 20212435 (2022).

491 77. Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications.
492 *Proceedings of the National Academy of Sciences* **112**, 8362 (2015).

493 78. Braga, M. P., Landis, M. J., Nylin, S., Janz, N. & Ronquist, F. Bayesian inference of
494 ancestral host–parasite interactions under a phylogenetic model of host repertoire evolution.
495 *Systematic Biology* **69**, 1149–1162 (2020).

496 79. Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. *Bioinformatics*
497 **26**, 1463–1464 (2010).

498 80. Beckett, S. J. Improved community detection in weighted bipartite networks. *Royal Society*
499 *Open Science* **3**, 140536 (2016).

500 81. Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing
501 ecological networks. *R News* **8**, 8–11 (2008).

502 82. R Core Team. R: A language and environment for statistical computing. (2009).

503 83. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other
504 things). *Methods in ecology and evolution* **3**, 217–223 (2012).

505 84. Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic

506 trees. *Methods in Ecology and Evolution* **7**, 589–597 (2016).

507 85. Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic
508 paleotemperatures: The earth's changing climate during the last 540 million years. *Earth-
509 Science Reviews* **215**, 103503 (2021).

510 86. van Nieukerken, E. J. et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.)
511 Animal biodiversity: An outline of higher-level classification and survey of taxonomic
512 richness. *Zootaxa* **3148**, 212 (2011).

513 87. Chazot, N. et al. Conserved ancestral tropical niche but different continental histories explain
514 the latitudinal diversity gradient in brush-footed butterflies. *Nature Communications* **12**,
515 5717 (2021).

516 88. Wahlberg, N. et al. Synergistic effects of combining morphological and molecular data in
517 resolving the phylogeny of butterflies and skippers. *Proceedings of the Royal Society B:
518 Biological Sciences* **272**, 1577–1586 (2005).

519

520 **Methods**

521 **Taxon sampling and sequence acquisition.**

522 A total of 2,248 butterfly specimens representing 2,244 species in 1,644 genera was
523 included for the molecular component of this study (Table S15). We obtained marker loci used
524 for phylogenetic analysis via Anchored Hybrid Enrichment (AHE) exon capture of DNA extracts
525 and subsequent Illumina sequencing⁴¹ or by bioinformatically extracting these sequences from
526 published genomes and transcriptomes. We used the BUTTERFLY1.0 probe set⁷, which can
527 capture up to 450 loci.

528 We extracted DNA from 1,915 specimens that were: 1) stored in ethanol and frozen; 2)
529 dried and stored in glassine envelopes under ambient conditions (papered); or 3) dried, spread
530 and pinned in a museum collection. Locus assembly and sequence clean-up followed the pipeline
531 of Breinholt et al.⁴². Published sequences comprised: 1) genome assemblies; 2) genomic reads;
532 and 3) paired or 4) single-end transcriptomes. Three sequence datasets were created for this
533 study: nt123 (a nucleotide dataset with all codon positions), degen (a nucleotide dataset that
534 excludes all synonymous changes, created using the perl script, Degen1 v.1.4^{43,44}), and aa (an
535 amino acid dataset translated from the nt123 dataset) (Data S3).

536

537 **Phylogenetic analysis and dating.**

538 Maximum likelihood (ML) tree inference was conducted on all three datasets in IQ-
539 TREE 2.0 (nt123, degen, and aa), and parameter settings for each analysis can be found in Table
540 S16. Branch support was calculated with 1,000 ultrafast bootstrap replicates (UFBS; ‘-B 1000’
541 command)^{45,46}, and Shimodaira-Hasegawa approximate likelihood ratio tests (SH-aLRT; ‘-alrt
542 1000’ command)⁴⁷. Quartet sampling (see *Section 8. Sequence quality check*) was performed on
543 the most-likely degen359 and aa154 trees to examine the topology and provide more
544 comprehensive and specific information on branch support. Four-cluster likelihood mapping
545 (FcLM) analyses⁴⁸ were performed on the degen and aa datasets to assess the placement of
546 particular butterfly clades that have been the subject of previous phylogenetic studies. We
547 applied this approach in addition to standard branch support metrics because the latter can be
548 subject to inflated estimates⁴⁸.

549 We obtained divergence time estimates using a penalized-likelihood based approach
550 implemented in treePL⁴⁹. We implemented three different methods for calibrating the trees to

551 assess similarity among results. Method 1: Dating with secondary calibrations only. We used the
552 95% credibility intervals of Lepidoptera ages from Figure S12 of Kawahara et al.⁵⁰ to assign
553 minimum and maximum ages to 27 ingroup and 6 outgroup nodes in our tree. Method 2: Dating
554 with fossils and one secondary root calibration. In this approach, we followed the guidelines of
555 Parham et al.⁵¹ by calibrating nodes with 11 butterfly fossils that could be assigned to a butterfly
556 lineage's geological age with confidence as verified by de Jong⁵². None of the outgroup nodes
557 could be calibrated because the only reliable fossils associated with our non-butterfly
558 Lepidoptera were too young to influence the ages of the deeper nodes representing multi-
559 superfamily clades. Consequently, preliminary treePL analyses yielded highly dubious age
560 estimates for deep nodes on the tree, hundreds of millions of years older than expected based on
561 the literature. We therefore added a single secondary calibration to the root of the tree. Although
562 combining secondary and fossil calibrations in a single analysis can create redundancy that
563 negatively impacts the resulting age estimates⁵³, the limited fossil record of Lepidoptera made it
564 a necessity in order to obtain comparable results derived primarily from fossils. We ran two
565 versions of this method, each with a different root calibration. Method 2A used a maximum-age
566 estimate of 139.4 Ma, based on the angiosperm age estimate of Smith and Brown⁵⁴. Method 2B
567 used a more conservative maximum-age estimate of 251 Ma, based on the older end of the
568 credibility interval for the age of angiosperms in Foster et al.⁵⁵. Both of these calibrations were
569 used under the assumption that butterflies diverged from their moth ancestors after their most
570 frequent host-plants, angiosperms, were already present^{56,57}. Method 3: Secondary calibrations
571 and six fossils. In this approach, we combined the 33 secondary calibrations from Method 1 with
572 six fossil calibrations, including some of the fossils used in Method 2. Fossils previously used to
573 time-calibrate trees of Kawahara et al.⁵⁰ were excluded from this analysis to avoid circularity and
574 redundancy with secondary calibrations. Whenever possible, redundant fossil calibrations from
575 Method 2 were replaced with calibrations from unrelated fossils that could be associated with a
576 different node in the same clade.

577

578 **Diversification rate analyses.**

579 We performed a Bayesian analysis of macroevolutionary mixtures using the program
580 BAMM v.1.10.4⁵⁸ to detect shifts in diversification rates between clades. The reversible-jump
581 markov chain Monte Carlo was run for 50 million generations and sampled every 50,000

582 generations. Priors were estimated with the R package BAMMtools v.2.1.6⁵⁹ using the command
583 ‘setBAMMpriors’. The tree was trimmed in Mesquite v.3.6⁶⁰ to remove all outgroups. Six
584 analyses were performed using different priors for expected numbers of shifts (5, 10, 20, 30, 40,
585 and 50 shifts).

586 Because BAMM has been criticized for incorrectly modeling rate shifts on extinct
587 lineages (i.e., extinct or non-sampled lineages inherit the ancestral diversification process and
588 cannot experience subsequent diversification-rate shifts^{61,62}), we conducted a lineage-specific
589 birth-death shift analysis⁶³ in RevBayes⁶⁴. We also utilized the R package castor v.1.6.9⁶⁵ to infer
590 deterministic lineage through time (dLTT), pulled speciation rate (PSR), and pulled
591 diversification rate (PDR) plots for Papilioidea and six of its families, excluding Hedylidae.
592 Finally, we performed diversification analyses in TreePar v.3.3⁶⁶ and TESS v.2.1.0⁶⁷ to
593 determine relative likelihoods of models with different amounts of shifts in diversification and
594 turnover rates.

595 We conducted a series of diversification analyses to evaluate whether there is a
596 correlation between butterflies and plants. For this, we used HiSSE (Hidden State Speciation and
597 Extinction) and a BiSSE-like (Binary State Speciation and Extinction) implementation of
598 HiSSE³⁰ in the R package hisse³¹. We pruned outgroups from the tree (aa154 dated tree, Strategy
599 A) and compared 20 HiSSE models and BiSSE-like implementations of HiSSE. The BiSSE
600 equivalent of HiSSE tests whether there are different diversification rates associated with the two
601 host-plant use states. Other models were built in the HiSSE framework to test alternative
602 combinations of presence or absence of hidden state and host-plant use associations while also
603 considering different transition rate matrices, net turnover rates τ_i (speciation plus extinction: λ_i
604 + μ_i), and extinction fractions ϵ_i (extinction divided by speciation: μ_i/λ_i) (Table S17). We tested
605 whether diversification rates were linked to feeding (A) as a larval specialist or generalist (Table
606 S18), (B) on Poales (Table S19) in Papilioidea, Hesperiidae, and Nymphalidae, (C) on Fabales
607 (Table S20) in Papilioidea and Nymphalidae, (D) on Brassicales (Table S21) in all butterflies
608 and Pieridae, (E) on Fagales (Table S22), (F) on Poaceae module (Table S23), (G) on Fabaceae
609 module (Table S24), and (H) on Fabaceae in Eudaminae (Tables S13, S24). We compared these
610 different models of HiSSE and BiSSE-like implementations to account for hidden states to
611 alleviate recent concerns regarding the reliability of SSE models and the high incidence of false
612 positive results³².

613 **Biogeographic analyses.**

614 To assess the role of geography on diversification, we first aggregated data from multiple
615 sources to create a global butterfly checklist for each country. Primary data sources included: 1)
616 the *Lepidoptera and other life forms* database (http://ftp.funet.fi/index/Tree_of_life/insecta/
617 lepidoptera); 2) WikiSpecies (<https://species.wikimedia.org>); and 3) the type locality of each
618 species or subspecies in our list of valid butterfly names, which was obtained from 1, above. This
619 initial global checklist was vetted using published country checklists and the ButterflyNet Trait
620 Database (<https://butterflytraits.org>). Trait data from *ca.* 100 comprehensive and country-specific
621 field guides have been entered into this database, allowing us to generate species lists to cross-
622 validate checklists assembled⁶⁸.

623 We estimated the ancestral area of origin and geographic range evolution for butterflies
624 using two approaches: the ML approach of the DECX model⁶⁹ as implemented in the C++
625 version^{70,71}, available at <https://github.com/champost/DECX>), and with the program
626 BioGeoBEARS v.1.1.2²⁰. We designated 14 biogeographic regions across the globe (Fig. S13,
627 Table S25), determined which of these regions were occupied by each species in our tree, and
628 developed a 14-state character matrix. DECX uses a time-calibrated tree, the modern distribution
629 of each species for a set of geographic areas, and a time-stratified geographic model that is
630 represented by connectivity matrices for specified time intervals spanning the evolutionary
631 history of clade of interest⁷².

632 Because we could not estimate immigration and emigration rates in DECX, we also ran
633 BioGeoBEARS with 7 and 8 areas (Figs. S14, S15, Table S25). BioGeoBEARS analyses could
634 not be run with 14 states due to computational limitations due to the complexity of our dataset
635 (2,248 tree tips). The 7 and 8 bioregions largely correspond to the biogeographic realms defined
636 by Udvardy⁷³. In BioGeoBEARS, we implemented both Dispersal Extinction Cladogenesis
637 (DEC) model^{69,74} and the Likelihood equivalent of the Dispersal-Vicariance approach
638 (DIVALIKE)⁷⁵ models and different adjacency matrices (Data S4). Both approaches gave largely
639 consistent results, regardless of the model and parameters used (Tables S5, S26).

640 We performed biogeographic stochastic mapping to examine *in-situ* speciation,
641 immigration, and emigration between the 7-bioregions in BioGeoBEARS. We followed the
642 protocol of Li et al.⁷⁶ with 1,000 simulations with the DEC model. Relative mean dispersal rates
643 between all permutations of bioregions were calculated and presented in Figure 3 (see also Data

644 S5). These mean dispersal rates represent dispersal of butterfly lineages throughout the entire
645 evolutionary history of Papilioidea, and thus cannot reveal changes in rates over time. In order
646 to look at historical biogeography of butterflies during different epochs, rates along all possible
647 inter-bioregion colonization rates were calculated at specific time intervals of 5 million years,
648 following Li et al.⁷⁶ (Table S27). These relative rates were then averaged to represent relevant
649 geological time periods and presented in Figures S2-S4.

650

651 **Larval host plant analyses.**

652 Larval host records were compiled from numerous sources (Table S8, Data S6). Given
653 the size of our host datasets and the scale of our analyses, we chose to examine relationships
654 between individual butterfly species and host families that are consumed by their larvae. Plant
655 families are commonly adopted as the taxonomic rank used for examining the evolution of host
656 use^{77,78}. For each plant-feeding butterfly species in our tree, we quantified host-plant richness
657 and phylogenetic distance using six different metrics implemented in the package *picante* v.
658 1.8.2⁷⁹. To calculate these metrics, we used the calibrated tree of seed plants from Smith and
659 Brown⁵⁴.

660 Because the number of host groups was too large for an ancestral state reconstruction
661 (nearly 50 host-plant orders, ~200 plant families plus insect associations), we first reduced the
662 number of host groups by using a network analysis. The Beckett algorithm⁸⁰, as implemented in
663 the function ‘computeModules’ from the package *bipartite*⁸¹ in R v. 3.6.2⁸², assigns plants and
664 butterflies to modules and computes the modularity index, Q. By maximizing Q, the algorithm
665 finds groups of butterflies and hosts that interact more with each other than with other taxa in the
666 network. Thus, host-plants that are assigned to the same module tend to be used by the same
667 butterflies. We found 13 modules for butterfly host associations in our module analysis (Table
668 S28, Table S17). We then conducted three larval host ancestral state reconstruction analyses
669 using stochastic character mapping with *SIMMAP* in *phytools* v.0.7-70⁸³ using the
670 ‘make.simmap’ command. We reconstructed the ancestral state of (A) generalist versus specialist
671 feeding (2 states, Data S7), (B) plant, lichen, Hemiptera, or Hymenoptera as a food source (4
672 states, Data S8), and (C) plant module (13 states as described above, Data S9).

673 We examined the speciation rate of butterflies over time with maximum-likelihood birth-
674 death models to fit constant-rate (CST), time-dependent (TimeVar), and angiosperm-dependent

675 (AngioVar) models of diversification using the R package RPANDA v.1.9⁸⁴. These models
676 jointly tested whether the diversification of angiosperms could have fostered the diversification
677 of butterflies in a single statistical framework. We conducted a series of diversification analyses
678 to evaluate whether there is a correlation between butterflies and plants. For this, we used HisSE
679 (Hidden State Speciation and Extinction) and a BiSSE-like (Binary State Speciation and
680 Extinction) implementation of HisSE in the R package *hisse*^{30,31}.

681

682 Acknowledgments

683 We thank M. Kuhn and E. Mavrodiev for assembling trait data. S. Epstein, T. Girard-Ang, P.
684 Pezzi, and L. Xiao assisted with lab work. J. Barber, M. Brownlee, S. Cinel, J. Daniels, R.
685 Godfrey, H. Gough, C. Hamilton, G. Hill, P. Houlihan, C. Huang, J. Miller, K. Miner, C. Mitter,
686 K. Mitter, A. Renevier-Faure, J. Rubin, M. Scallion, Y. Sondhi, and L. Wu provided specimens
687 or helped improve the manuscript. RAPiD Genomics (Gainesville, FL, USA) conducted
688 sequencing. K. Meusemann (1KITE) provided unpublished FcLM scripts. T. Barve, C. Couch,
689 H. Dansby, K. Casarella, R. Merritt, and X. Zheng helped create figures. High performance
690 clusters at Brigham Young University, Smithsonian Institution, University of Florida, and
691 Zoological Research Museum Alexander Koenig provided computational support.

692

693 **Funding:** Funding came from the US National Science Foundation (NSF) GoLife
694 “ButterflyNet” collaborative grant (DEB-1541500, 1541557, 1541560) to AK, RG, DL, and
695 NEP. Specimen collection and preservation was funded by NSF DBI-1349345, 1601369, DEB-
696 1557007 and IOS-1920895 (AYK), NSF DEB-1120380 (DJL), Grants 9285-13 and WW-227R-
697 17 from the National Geographic Society (DJL), NSF DBI-1256742 (AYK and KRW), NSF
698 DEB-0639861 (KRW) and NSF SES-0750480, DEB-0447244 and DEB-9615760 to NEP. ME
699 was supported by the Research Council of Norway (#204308), and the Hintelmann Scientific
700 Award for Zoological Systematics. FLC is supported by the European Research Council (ERC)
701 under the European Union's Horizon 2020 research and innovation programme (project GAIA,
702 #851188). RV was supported by the Spanish Ministry of Science and Innovation grant PID2019-
703 107078GB-I00/AEI/10.13039/501100011033. GT was supported by the Spanish Ministry of
704 Science and Innovation (grants PID2020-117739GA-I00/AEI/ 10.13039/501100011033 and
705 RYC2018-025335-I). VL was supported by the Russian Science Foundation grant 19-14-00202.

706 MY was supported by MEXT KAKENHI #19916010 and JSPS KAKENHI Grant #13010131,
707 23570111, 26440207, 17K07528 and 21H02215. ABBM, HPR and NOM were supported by
708 CNPQ grants Proc #563332/2010-7 and 304273/2014-7. We are thankful for continuous support
709 from Putnam Expedition grants from the Museum of Comparative Zoology. We acknowledge
710 Research Computing at the University of Florida and the Faculty of Arts and Sciences, Harvard
711 University, for providing computational resources (<https://www.rc.ufl.edu>,
712 <https://www.rc.fas.harvard.edu>).

713

714 **Competing interests:** Authors declare that they have no competing interests.

715

716 **Data and materials availability:** All data in the main text, supplementary materials, or in
717 gzipped data archives will be made available at the Dryad Digital Repository
718 (www.datadryad.org.xxxx) upon acceptance.

719

720 **Author contributions:**

721 Analysis: APSC, AYK, CE, CS, DMP, EAE, EFAT, FLC, HLO, JWB, ME, MPB, PBF, RAS,
722 XL

723 Conceptualization: AYK, DJL, LR, JWB, ME, NEP, RG

724 Funding acquisition: AYK, DJL, MJZ, NEP, RG, WJ

725 Data assembly: CS, DJL, DMP, EAE, EAL, FLC, HW, JH, JWB, LR, ME, MI, MN, NEP, RG,
726 VB, VS, WAVM

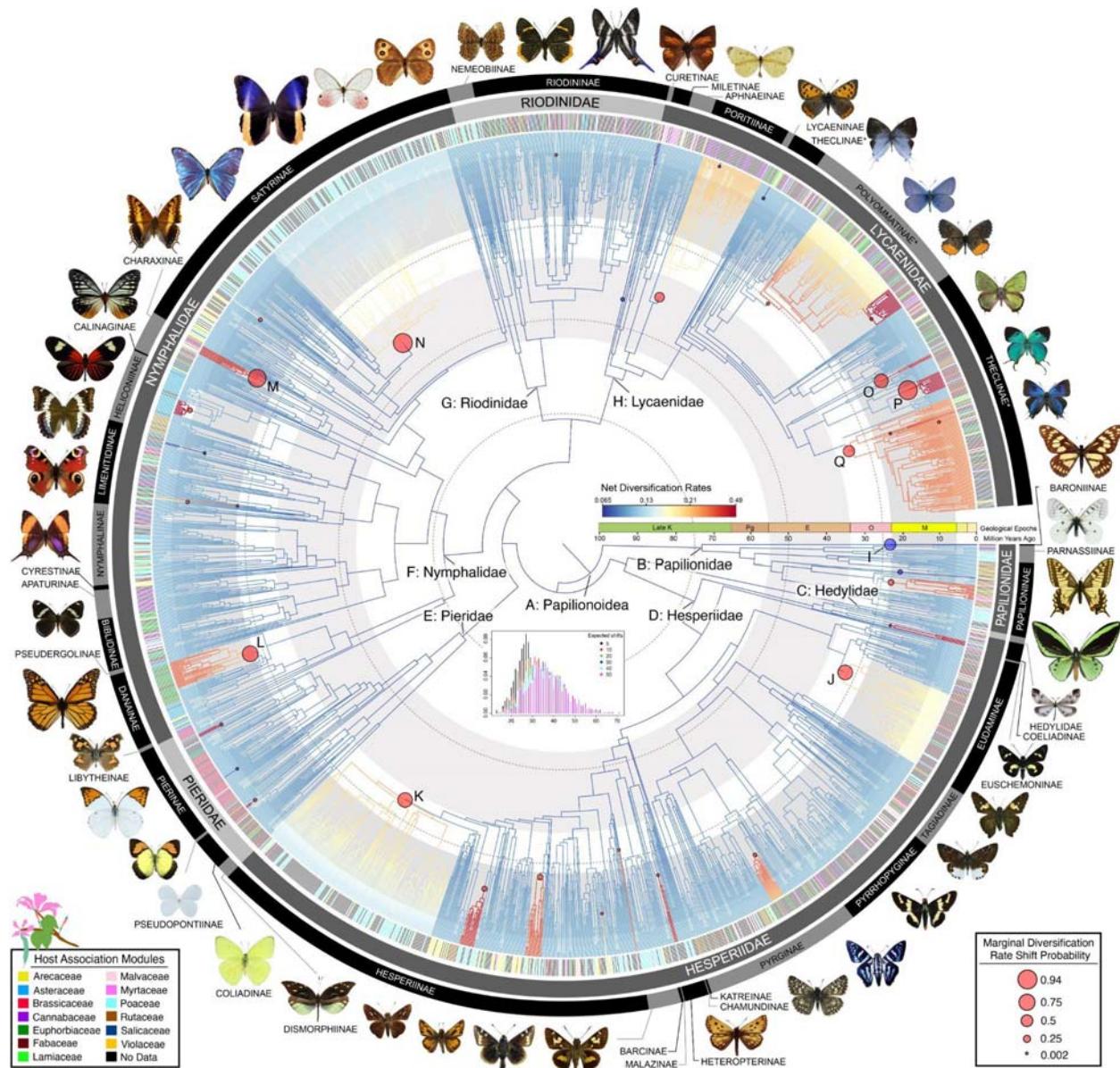
727 Methodology: CW, EH, FTGS, HP, JLS, JRK, JWB

728 Project administration: AYK, DJL, NEP

729 Sampling: ABBM, APSC, AYK, DJL, EFAT, FH, GT, HPR, JIM, JWB, ME, MY, NEP, RAS,
730 RV, PV, ZFF

731 Sequence workflow: JWB, ME

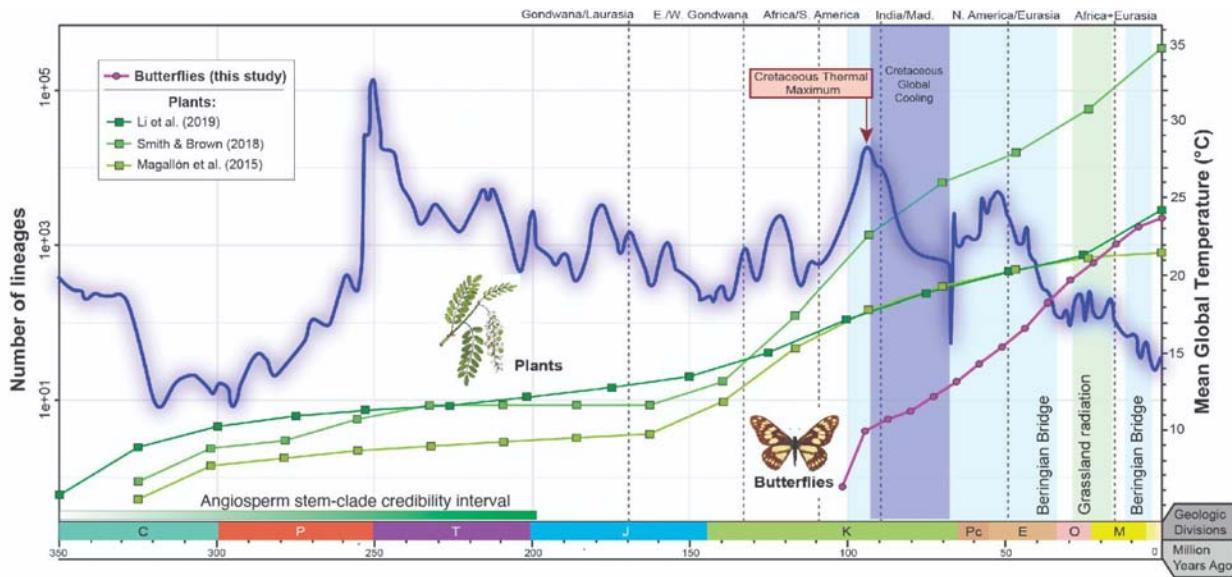
732 Specimen identification and preparation: ADW, AM, APSC, AYK, DJL, HPR, JIM, JVL, KMD,
733 ME, MY, NOM, RAS, RM, SCM, TD, YLN, ZFF


734 Supervision: AYK, DJL, JWB, ME, NEP, RG

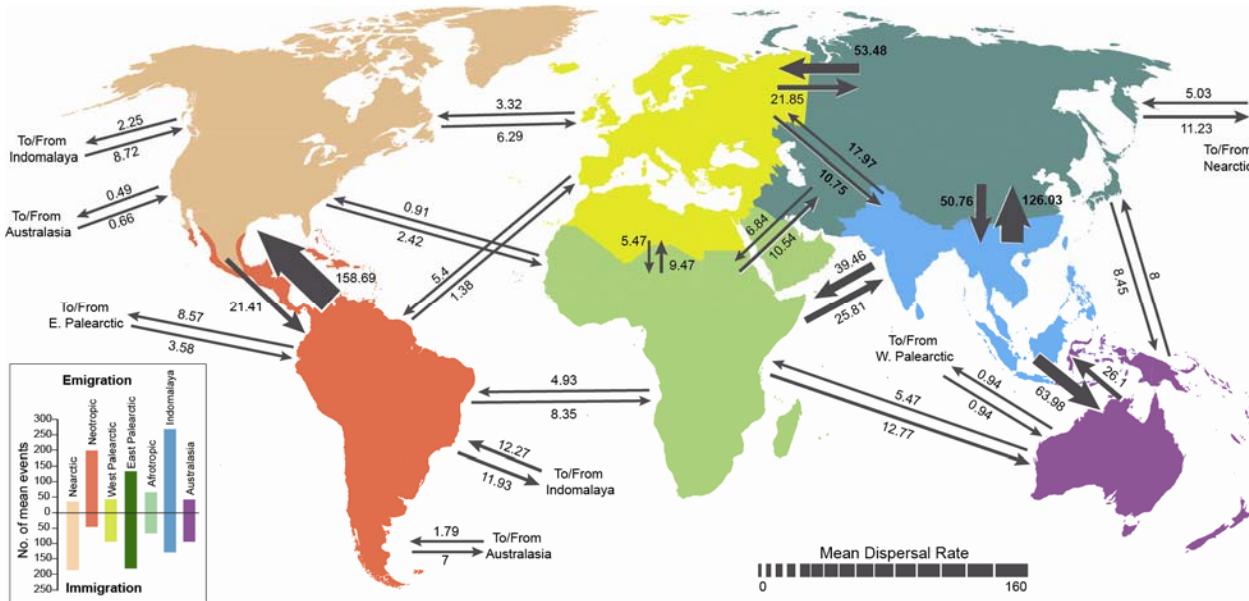
735 Taxonomy and curation: DJL, GL, RG, VB

736 Visualization: AM, APSC, AYK, DJL, FLC, XL

737 Writing – original draft: APSC, AYK, DJL, DMP
738 Writing – review & editing: All authors
739

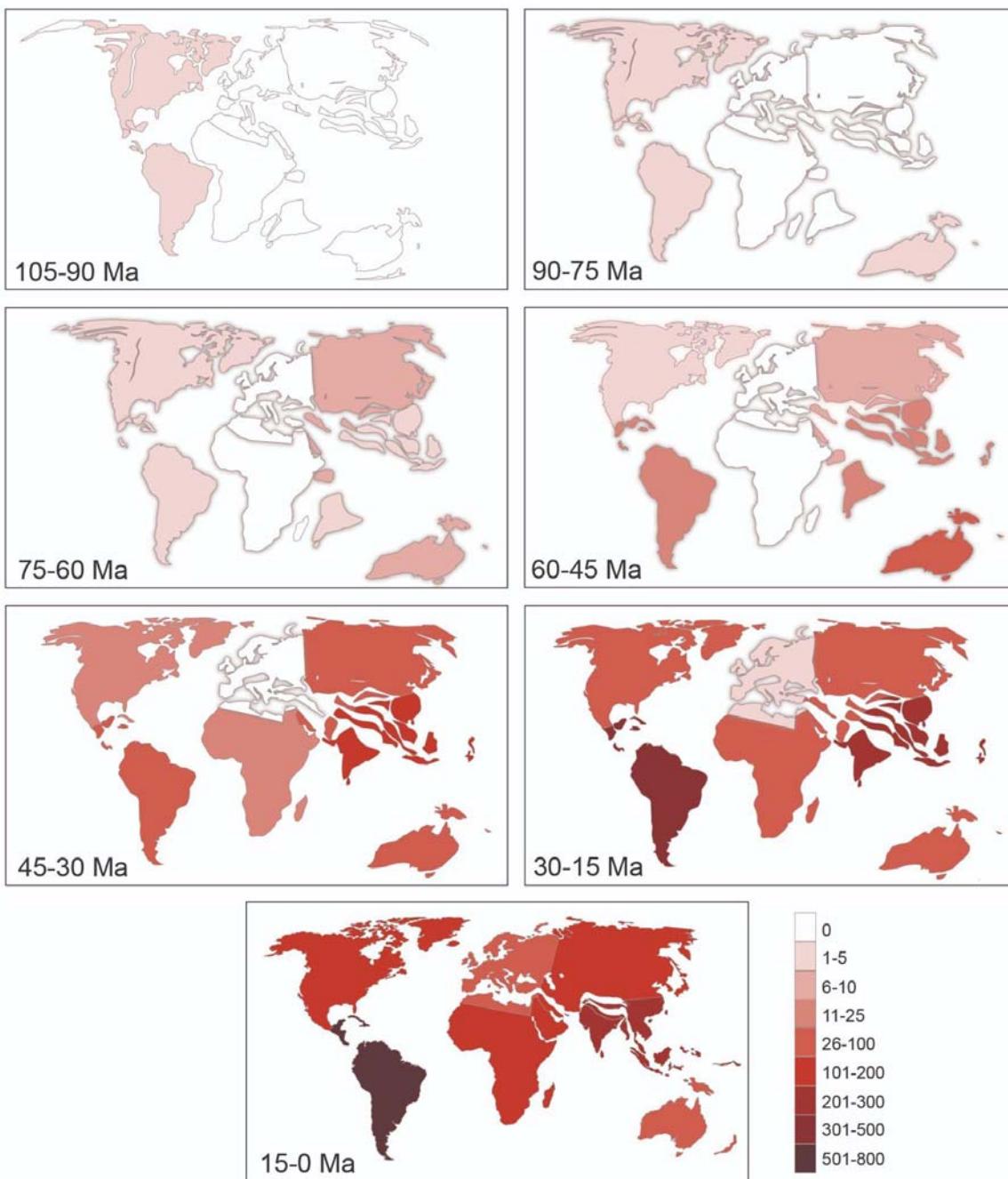

740 **Display Items**

741


742 **Fig. 1.** Evolutionary relationships and diversification patterns of butterflies. Time-calibrated tree
 743 based on 2,244 species, 391 loci, and 150 amino acid partitions. Branches show distinct shift
 744 configurations (circles) as estimated by clade-specific diversification models. Letters at nodes
 745 refer to clades with significant rate shifts (See section 6 of Supplementary Text). Colored lines in
 746 the outer ring beside tips indicate association with one of the 13 host modules (see section 17 of
 747 Extended Online Methods). Black lines in the host-association ring are species without data. The
 748 inset graph shows the posterior probability distribution, with alternative and expected number of
 749 diversification rate shifts, converging around 30.

750

751
752
753
754
755
756
757
758
759
760


Fig. 2. Global butterfly diversification over time. Butterfly diversity increased well after the origin of flowering plants. Colored lines with dots show butterfly diversity compared to vascular plant diversity from three widely accepted, recent plant diversification studies. Mean global temperature and major geological events during the last 350 Ma were calculated from Scotese et al.⁸⁵. The angiosperm stem to clade credibility interval is a consensus of seven studies (see section 14 of Extended Online Methods).

761
762
763
764
765
766

Fig. 3. Relative mean dispersal rates of butterflies between different bioregions. Numbers associated with each arrow are the average rates from 1000 simulations using biogeographical stochastic mapping in BioGeoBEARS, which were then divided by 100 for ease of comparison (raw values can be found in Data S5).

767
768
769
770

771
772 **Fig. 4.** Distribution of ancestral butterflies over time. Each map corresponds to a 15 Ma
773 interval of butterfly evolution. Bioregion color indicates the number of lineages in the
774 Papilionoidea phylogeny that are associated with that bioregion during that time period, as
775 determined by the BioGeoBears ASR.