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Abstract 116 

Butterflies are a diverse and charismatic insect group that are thought to have diversified via 117 

coevolution with plants and in response to dispersals following key geological events. These 118 

hypotheses have been poorly tested at the macroevolutionary scale because a comprehensive 119 

phylogenetic framework and datasets on global distributions and larval hosts of butterflies are 120 

lacking. We sequenced 391 genes from nearly 2,000 butterfly species to construct a new, 121 

phylogenomic tree of butterflies representing 92% of all genera and aggregated global 122 

distribution records and larval host datasets. We found that butterflies likely originated in what is 123 

now the Americas, ~100 Ma, shortly before the Cretaceous Thermal Maximum, then crossed 124 

Beringia and diversified in the Paleotropics. The ancestor of modern butterflies likely fed on 125 

Fabaceae, and most extant families were present before the K/Pg extinction. The majority of 126 

butterfly dispersals occurred from the tropics (especially the Neotropics) to temperate zones, 127 

largely supporting a “cradle” pattern of diversification. Surprisingly, host breadth changes and 128 

shifts to novel host plants had only modest impacts. 129 

 130 

 131 

 132 

 133 

 134 
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Background  135 

Butterflies have captivated naturalists, scientists, and the general public for centuries, and 136 

they have played a central role in studies of speciation, community ecology, plant-insect 137 

interactions, mimicry, genetics, and conservation. Despite being the most studied group of 138 

insects, butterfly evolutionary history and drivers of their diversification are still poorly 139 

understood1,2. Due to over a century of efforts by amateur naturalists, butterflies are one of the 140 

few insect groups for which substantial trait data (e.g., geographic and host plant information) 141 

exist to test diversification hypotheses. Until now, these data have largely been scattered across 142 

the literature, museum collections, and local databases. Butterflies are thought to have diversified 143 

in relation to multiple abiotic and biotic factors, including adaptations to novel climates and 144 

species interactions, with geographic history and caterpillar-host interactions playing a major 145 

role3. However, these have not been studied because a synthesis of associated traits and a robust 146 

phylogenetic framework at the taxonomic scale needed to examine their evolution has not been 147 

available. 148 

We sequenced 391 genes from nearly 2,000 butterfly species to construct a new, robust, 149 

phylogenomic tree of butterflies representing 92% of all genera, aggregated global distribution 150 

records, and assembled a comprehensive host association dataset. Using this tree, we infer the 151 

evolutionary timing, biogeographic history, and diversification patterns of butterflies. We 152 

address three long-standing questions related to butterfly evolution: 1) did butterflies originate in 153 

the northern (Laurasia) or southern (Gondwana) hemisphere?4, 2) what plants did the ancestor of 154 

butterflies feed on?5, and 3) were plants a major driver promoting butterfly diversification?6  155 

 156 

Results and Discussion 157 

To elucidate patterns of global butterfly diversification in space and time, we used 158 

targeted exon capture 7 to assemble a dataset of 391 gene regions (161,166 nucleotides and 159 

53,722 amino acids) from 2,244 butterfly species. The majority (1,914 specimens) of butterflies 160 

sampled were newly sequenced for this study, and represented all families, tribes, and 92% of 161 

recognized genera, with most samples coming from museum collections across the world (see 162 

Supplementary Materials). Phylogenomic trees inferred with nucleotides and amino acids were 163 

highly congruent, with strong support for the monophyly of all families and nearly all 164 

subfamilies with traditional branch support metrics (Table S1), multispecies coalescence (MSC) 165 
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analyses (Table S1), and 4-cluster likelihood mapping (FcLM) (Table S2). Our results strongly 166 

support the need for revision of the classification of at least 32 butterfly tribes (25% of total) as 167 

currently circumscribed (Table S1).  168 

We conducted 24 dating analyses using different fossil and secondary calibration 169 

schemes along with sensitivity analyses to assess the impact of analytical and sampling bias. 170 

Across analyses, our results revealed largely congruent timing of butterfly divergence events 171 

(Table S3), indicating that butterflies originated from nocturnal, herbivorous moth ancestors 172 

during the mid-Cretaceous (101.4 Ma, 102.5–100.0 Ma). This provides independent evidence for 173 

the Cretaceous origin recovered in previous butterfly phylogenies2,8. We conducted 174 

diversification rate analyses that used time-variable models and clade-heterogeneous models that 175 

are less prone to sampling bias (Supplementary Methods). Both approaches recovered similar 176 

patterns of diversification across butterflies, with increased rates in clades such as the diverse 177 

skipper tribe Eudamini and lycaenid subfamily Poritiinae (Fig. 1, Fig. S1). 178 

To determine the geographic origin of butterflies, we used our dated phylogeny (Fig. 1) 179 

to conduct a global biogeographic analysis with 15,764 newly aggregated country-level 180 

distribution records (Table S4). Modeling with three different area categorizations, models of 181 

range evolution, and parameters (e.g., adjacency matrices, time slices, etc.) consistently 182 

recovered butterflies as originating in the Americas, in what is present-day western North 183 

America or Central America (Fig. 4, Table S5). All extant butterfly families excluding the 184 

Neotropical Hedylidae diversified ~10–30 Ma after the Cretaceous Thermal Maximum (CTM), 185 

~90 Ma, when the global climate cooled by nearly 5° C9 (Figs. 1, 2). During the Cretaceous, 186 

butterflies appeared to be dispersing out of the Neotropics at a much higher rate than all other 187 

dispersal pathways (Fig. S2). As new butterfly lineages became established in other bioregions, 188 

other inter-bioregion dispersal avenues became more frequently used, particularly out of 189 

Indomalaya (Figs. S3, S4). 190 

Beginning around 60 Ma, the Neotropics served as an evolutionary “cradle”10 with high 191 

in situ butterfly speciation (Fig. S5), and many dispersal events occurring out of the Neotropics 192 

to other areas (Fig. S6). Relative rate of dispersal out of the Neotropics was still high during the 193 

early Cenozoic, although not as high as it was during the Cretaceous (Figs. S2, S3). Over the 194 

course of their evolution, butterflies experienced significantly higher speciation rates in the 195 

tropics compared to temperate zones (Data S1), and also more dispersal events out of the tropics 196 
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(Fig. S6), as observed by high relative mean dispersal rates out of the tropics (e.g., tropical 197 

Indomalaya to temperate East Palearctic, and the Neotropics to Nearctic; Fig. 3). This pattern 198 

differs from that seen in mammals, which are thought to have dispersed primarily in the opposite 199 

direction during the Pliocene11–13. Some butterflies such as swallowtails showed greater 200 

immigration into the Neotropics, following a “museum” model of diversification (Fig. S7), 201 

corroborating prior findings14. The majority of dispersal events between the Neotropics and the 202 

Nearctic took place after the Eocene-Oligocene boundary, ~33.9 Ma (Fig. S4). Two lineages 203 

dispersed from the East Palearctic around 17 Ma, and these appear to be the first colonizers of 204 

Europe: ancestors of a Nymphalini subclade including Aglais, Nymphalis, and Polygonia, and a 205 

clade of checkered skippers (Carcharodini; Table S6). Butterflies were present on what are now 206 

all modern continental landmasses by the late Eocene (Table S7). 207 

The K/Pg boundary (~66 Ma) marked a major global extinction event that dramatically 208 

reduced vertebrate and marine diversity15. Less is known, however, about the extent to which 209 

insects were affected by this event16. We used two analytical approaches to identify sudden 210 

extinction events and estimate changes in diversification rates, both of which concluded that 211 

butterflies, like amphibians and some mammals17,18, did not experience a major extinction event 212 

at the K/Pg boundary (Fig. S8). Plants experienced a vegetation turnover from gymnosperms to 213 

angiosperms in the Late Cretaceous19 and continued to increase in diversity up to the present 214 

(Fig. 2). The survival of many plant lineages across the K/Pg boundary may have buffered the 215 

effects of the mass extinction event of butterflies. 216 

Two tests of extinction demonstrate that butterflies underwent two major extinctions after 217 

the K/Pg boundary — one at the Eocene–Oligocene transition (EOT) which coincides with the 218 

Eocene–Oligocene global extinction event (~33.9 Ma), and another during the mid–Miocene that 219 

coincides with the mid-Miocene Climatic Optimum (~14 Ma; Fig. S8). These were global 220 

cooling and warming periods, respectively, that led to the disappearance of many plant and 221 

animal lineages, followed by sharp floral and faunal turnover in temperate and tropical 222 

environments15. Speciation analyses with BioGeoBEARS20 (see Methods), also supports these 223 

findings; there was a dramatic drop in the number of speciation events around 34 Ma, especially 224 

in the East Palearctic region (Fig. S5), which occurred around the EOT extinction event that 225 

significantly reduced floral and faunal diversity of that region21. Soon thereafter, the families 226 

Hesperiidae and Nymphalidae experienced dramatic increases in the number of speciation events 227 
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in the East Palearctic (Fig. S9). This marks a period when East Palaearctic habitats changed from 228 

dense forest to forest-steppe, temperate grassland, and mixed forest biomes21. These serve as 229 

primary habitats of the diverse modern butterfly groups – fritillaries, satyrs, and grassland 230 

skippers, which dominate this region today (Argynnini, Satyrini, and Hesperiinae, respectively). 231 

It is often argued that butterfly evolution is closely tied to the diversification of 232 

angiosperms5,6. Yet, few studies have examined the timing and pattern of butterflies and their 233 

hosts on a broad, macroevolutionary scale. To understand the temporal diversification of 234 

butterflies and plants, we compiled 31,456 butterfly host records from 186 books and databases 235 

(Table S8). We examined how butterfly lineages increased through time and compared these 236 

results with four recent studies that examined plant diversification dynamics. We found that 237 

butterfly diversification lagged far behind the origin of angiosperms (Fig. 2), corroborating prior 238 

studies7,22. Ancestral state estimation provided support for Fabaceae as the host plant of the most 239 

recent common ancestor of butterflies (Tables S9-S10, Fig. S10), a widely accepted hypothesis5 240 

that has lacked empirical support. The crown age of the most recent common ancestor of 241 

Fabaceae is thought to be ~98 Ma23,24, largely coincident with the origin of butterflies.  242 

Although the vast majority of butterfly larvae in our dataset are herbivores, a small 243 

number also feed on detritus, lichens, or insects (Table S8). The oldest associations in the 244 

entirely entomophagous Miletinae (Lycaenidae) appear to originate by 58.4 Ma (58.9–57.1 Ma), 245 

an estimate that corresponds with an earlier estimation of the origin of this group25 (Tables S3, 246 

S11). The Lycaenidae, with caterpillars that are ancestrally symbiotic with ants7,26, date back to 247 

64.5 Ma (65.4–63.7 Ma) (Fig. S11), long after the origin of ants (139–158 Ma27). Together with 248 

plants, ants appear to have provided a template for diversification of Lycaenidae and certain 249 

members of its sister clade, Riodinidae. 250 

To address the possibility that butterfly diversification may have been spurred by co-251 

diversifying plants, we evaluated eight paleoenvironment-dependent models relating butterfly 252 

diversification to host-plant evolution28. We first estimated time-dependent variation of 253 

speciation and extinction rates with time-continuous birth-death models and compared them with 254 

constant-rate diversification models29. In the best-fitting model, speciation rates vary 255 

exponentially through time without extinction (92% of the trees, Akaike ω = 0.549). This time-256 

dependent model is far better supported than the angiosperm-dependent models, the best of 257 

which was ranked fourth (Table S12). We also ran the HiSSE model30 as implemented in the R 258 
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package hisse31 to test for a potential impact of host-plant preference on diversification 259 

dynamics. In total, we compared 18 different models of HiSSE and BiSSE-like implementations, 260 

accounting for hidden states to alleviate recent concerns regarding the reliability of SSE models 261 

and the high incidence of false positive results32. We found little or no indication that association 262 

with a specific plant group is linked to butterfly diversification, largely rejecting the hypothesis 263 

of hostplant driven diversification (Table S13, Data S2). These results indicate that 264 

coevolutionary interactions with angiosperm host-plants were unlikely to have been a driver of 265 

butterfly diversification at macroevolutionary scales. Even within families, hypotheses such as 266 

the correlated diversification of grasses with grass-feeding skippers (Hesperiinae) and satyrs 267 

(Satyrini)33 were uncorroborated (Table S13). Our results are consistent with smaller studies on 268 

particular butterfly groups such as skippers (e.g., Sahoo et al.34), that show that alternative 269 

drivers (hidden states) explain best butterfly diversification when compared to hostplant-270 

dependent models. 271 

Butterfly diversification may not have been driven by the availability of particular plants, 272 

but instead by host specificity (specializing on a few plants [e.g., Janz, Nylin and Nyblom35]). It 273 

has been proposed through the resource-use hypothesis36 that specialists that feed on few hosts 274 

have higher speciation and extinction rates. Numerous studies on vertebrates support this 275 

hypothesis37,38, but few studies have tested the hypothesis on insects. We examined host plant 276 

specificity on the butterfly phylogeny (Fig. 1) and found that more than two-thirds of butterfly 277 

species feed on a single plant family (67.7%), whereas less than one-third (32.3%) are generalists 278 

feeding on two or more (Table S14), a pattern largely in agreement with ecological studies on 279 

butterflies39. We also found that 94.2% of generalists feed on plant families that are significantly 280 

closely related compared to a randomly sampled null distribution, suggesting that generalists, 281 

although capable of feeding on different host families, still consume closely related plants. This 282 

finding supports the pattern reported by Ehrlich and Raven6 that related butterflies feed on 283 

related plants. Finally, we used trait-dependent methods to examine whether diversification rates 284 

changed following switches between generalist and specialist, and host plant shifts (Table S13). 285 

Our results demonstrate that – at least in analyses of Papilionoidea and Hesperiidae, where 286 

results were significant – specialists have lower rates of speciation (Fig. S12), contradicting the 287 

resource-use hypothesis. 288 
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 This study includes the most comprehensive taxonomic sampling of butterflies to date to 289 

understand their evolutionary history. We also compiled two comprehensive trait datasets 290 

(geography and host plants) that demonstrate the importance of assembling large trait databases 291 

to test key hypotheses. Our study overturns some long-held assumptions of butterfly evolution 292 

and provides a framework for future studies of this model insect lineage. The consistency of 293 

results obtained using different approaches for each of our analyses suggests that our conclusions 294 

are robust. Assembling species-level datasets will be an important future goal to address fine-295 

scale trends within particular butterfly clades. 296 

Our data support the hypothesis that butterflies originated in the Americas in the Late 297 

Cretaceous 100 million years after the origin of angiosperms, and that they first fed on legumes. 298 

They dispersed from the Americas to the East Palearctic likely across Beringia ~75 Ma before 299 

diversifying in the Paleotropics. They appear to have been minimally affected by the K/Pg mass 300 

extinction. While some evidence points to a Nearctic origin, the evidence for Nearctic versus 301 

Neotropical origin is not strong – we therefore only tentatively conclude that a Laurasian origin 302 

is possible. Diversification of some lineages has been impacted by host associations, but an 303 

escape-and-radiate model of coevolution with angiosperms does not appear to have been a 304 

powerful driver of diversification at a broad macroevolutionary scale. Butterfly evolution is 305 

better viewed as compatible with a model of diffuse coevolution40 in which plants provided an 306 

ecological template on which butterflies diversified as opportunities arose.  307 

 308 

 309 
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Methods 520 

Taxon sampling and sequence acquisition.  521 

A total of 2,248 butterfly specimens representing 2,244 species in 1,644 genera was 522 

included for the molecular component of this study (Table S15). We obtained marker loci used 523 

for phylogenetic analysis via Anchored Hybrid Enrichment (AHE) exon capture of DNA extracts 524 

and subsequent Illumina sequencing41 or by bioinformatically extracting these sequences from 525 

published genomes and transcriptomes. We used the BUTTERFLY1.0 probe set7, which can 526 

capture up to 450 loci.  527 

We extracted DNA from 1,915 specimens that were: 1) stored in ethanol and frozen; 2) 528 

dried and stored in glassine envelopes under ambient conditions (papered); or 3) dried, spread 529 

and pinned in a museum collection. Locus assembly and sequence clean-up followed the pipeline 530 

of Breinholt et al.42. Published sequences comprised: 1) genome assemblies; 2) genomic reads; 531 

and 3) paired or 4) single-end transcriptomes. Three sequence datasets were created for this 532 

study: nt123 (a nucleotide dataset with all codon positions), degen (a nucleotide dataset that 533 

excludes all synonymous changes, created using the perl script, Degen1 v.1.443,44), and aa (an 534 

amino acid dataset translated from the nt123 dataset) (Data S3).  535 

 536 

Phylogenetic analysis and dating. 537 

Maximum likelihood (ML) tree inference was conducted on all three datasets in IQ-538 

TREE 2.0 (nt123, degen, and aa), and parameter settings for each analysis can be found in Table 539 

S16. Branch support was calculated with 1,000 ultrafast bootstrap replicates (UFBS; ‘-B 1000’ 540 

command)45,46, and Shimodaira-Hasegawa approximate likelihood ratio tests (SH-aLRT; ‘-alrt 541 

1000’ command)47. Quartet sampling (see Section 8. Sequence quality check) was performed on 542 

the most-likely degen359 and aa154 trees to examine the topology and provide more 543 

comprehensive and specific information on branch support. Four-cluster likelihood mapping 544 

(FcLM) analyses48 were performed on the degen and aa datasets to assess the placement of 545 

particular butterfly clades that have been the subject of previous phylogenetic studies. We 546 

applied this approach in addition to standard branch support metrics because the latter can be 547 

subject to inflated estimates48.  548 

We obtained divergence time estimates using a penalized-likelihood based approach 549 

implemented in treePL49. We implemented three different methods for calibrating the trees to 550 
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assess similarity among results. Method 1: Dating with secondary calibrations only. We used the 551 

95% credibility intervals of Lepidoptera ages from Figure S12 of Kawahara et al.50 to assign 552 

minimum and maximum ages to 27 ingroup and 6 outgroup nodes in our tree. Method 2: Dating 553 

with fossils and one secondary root calibration. In this approach, we followed the guidelines of 554 

Parham et al.51 by calibrating nodes with 11 butterfly fossils that could be assigned to a butterfly 555 

lineage’s geological age with confidence as verified by de Jong52. None of the outgroup nodes 556 

could be calibrated because the only reliable fossils associated with our non-butterfly 557 

Lepidoptera were too young to influence the ages of the deeper nodes representing multi-558 

superfamily clades. Consequently, preliminary treePL analyses yielded highly dubious age 559 

estimates for deep nodes on the tree, hundreds of millions of years older than expected based on 560 

the literature. We therefore added a single secondary calibration to the root of the tree. Although 561 

combining secondary and fossil calibrations in a single analysis can create redundancy that 562 

negatively impacts the resulting age estimates53, the limited fossil record of Lepidoptera made it 563 

a necessity in order to obtain comparable results derived primarily from fossils. We ran two 564 

versions of this method, each with a different root calibration. Method 2A used a maximum-age 565 

estimate of 139.4 Ma, based on the angiosperm age estimate of Smith and Brown54. Method 2B 566 

used a more conservative maximum-age estimate of 251 Ma, based on the older end of the 567 

credibility interval for the age of angiosperms in Foster et al.55. Both of these calibrations were 568 

used under the assumption that butterflies diverged from their moth ancestors after their most 569 

frequent host-plants, angiosperms, were already present56,57. Method 3: Secondary calibrations 570 

and six fossils. In this approach, we combined the 33 secondary calibrations from Method 1 with 571 

six fossil calibrations, including some of the fossils used in Method 2. Fossils previously used to 572 

time-calibrate trees of Kawahara et al.50 were excluded from this analysis to avoid circularity and 573 

redundancy with secondary calibrations. Whenever possible, redundant fossil calibrations from 574 

Method 2 were replaced with calibrations from unrelated fossils that could be associated with a 575 

different node in the same clade.  576 

 577 

Diversification rate analyses. 578 

We performed a Bayesian analysis of macroevolutionary mixtures using the program 579 

BAMM v.1.10.458 to detect shifts in diversification rates between clades. The reversible-jump 580 

markov chain Monte Carlo was run for 50 million generations and sampled every 50,000 581 
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generations. Priors were estimated with the R package BAMMtools v.2.1.659 using the command 582 

‘setBAMMpriors’. The tree was trimmed in Mesquite v.3.660 to remove all outgroups. Six 583 

analyses were performed using different priors for expected numbers of shifts (5, 10, 20, 30, 40, 584 

and 50 shifts).  585 

Because BAMM has been criticized for incorrectly modeling rate shifts on extinct 586 

lineages (i.e., extinct or non-sampled lineages inherit the ancestral diversification process and 587 

cannot experience subsequent diversification-rate shifts61,62), we conducted a lineage-specific 588 

birth-death shift analysis63 in RevBayes64. We also utilized the R package castor v.1.6.965 to infer 589 

deterministic lineage through time (dLTT), pulled speciation rate (PSR), and pulled 590 

diversification rate (PDR) plots for Papilionoidea and six of its families, excluding Hedylidae. 591 

Finally, we performed diversification analyses in TreePar v.3.366 and TESS v.2.1.067 to 592 

determine relative likelihoods of models with different amounts of shifts in diversification and 593 

turnover rates.  594 

We conducted a series of diversification analyses to evaluate whether there is a 595 

correlation between butterflies and plants. For this, we used HiSSE (Hidden State Speciation and 596 

Extinction) and a BiSSE-like (Binary State Speciation and Extinction) implementation of 597 

HiSSE30 in the R package hisse31. We pruned outgroups from the tree (aa154 dated tree, Strategy 598 

A) and compared 20 HiSSE models and BiSSE-like implementations of HiSSE. The BiSSE 599 

equivalent of HiSSE tests whether there are different diversification rates associated with the two 600 

host-plant use states. Other models were built in the HiSSE framework to test alternative 601 

combinations of presence or absence of hidden state and host-plant use associations while also 602 

considering different transition rate matrices, net turnover rates τi (speciation plus extinction: λi 603 

+ μi), and extinction fractions εi (extinction divided by speciation: μi/λi) (Table S17). We tested 604 

whether diversification rates were linked to feeding (A) as a larval specialist or generalist (Table 605 

S18), (B) on Poales (Table S19) in Papilionoidea, Hesperiidae, and Nymphalidae, (C) on Fabales 606 

(Table S20) in Papilionoidea and Nymphalidae, (D) on Brassicales (Table S21) in all butterflies 607 

and Pieridae, (E) on Fagales (Table S22), (F) on Poaceae module (Table S23), (G) on Fabaceae 608 

module (Table S24), and (H) on Fabaceae in Eudaminae (Tables S13, S24). We compared these 609 

different models of HiSSE and BiSSE-like implementations to account for hidden states to 610 

alleviate recent concerns regarding the reliability of SSE models and the high incidence of false 611 

positive results32. 612 
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Biogeographic analyses. 613 

To assess the role of geography on diversification, we first aggregated data from multiple 614 

sources to create a global butterfly checklist for each country. Primary data sources included: 1) 615 

the Lepidoptera and other life forms database (http://ftp.funet.fi/index/Tree_of_life/insecta/ 616 

lepidoptera); 2) WikiSpecies (https://species.wikimedia.org); and 3) the type locality of each 617 

species or subspecies in our list of valid butterfly names, which was obtained from 1, above. This 618 

initial global checklist was vetted using published country checklists and the ButterflyNet Trait 619 

Database (https://butterflytraits.org). Trait data from ca. 100 comprehensive and country-specific 620 

field guides have been entered into this database, allowing us to generate species lists to cross-621 

validate checklists assembled68. 622 

We estimated the ancestral area of origin and geographic range evolution for butterflies 623 

using two approaches: the ML approach of the DECX model69 as implemented in the C++ 624 

version70,71, available at https://github.com/champost/DECX), and with the program 625 

BioGeoBEARS v.1.1.220. We designated 14 biogeographic regions across the globe (Fig. S13, 626 

Table S25), determined which of these regions were occupied by each species in our tree, and 627 

developed a 14-state character matrix. DECX uses a time-calibrated tree, the modern distribution 628 

of each species for a set of geographic areas, and a time-stratified geographic model that is 629 

represented by connectivity matrices for specified time intervals spanning the evolutionary 630 

history of clade of interest72.  631 

Because we could not estimate immigration and emigration rates in DECX, we also ran 632 

BioGeoBEARS with 7 and 8 areas (Figs. S14, S15, Table S25). BioGeoBEARS analyses could 633 

not be run with 14 states due to computational limitations due to the complexity of our dataset 634 

(2,248 tree tips). The 7 and 8 bioregions largely correspond to the biogeographic realms defined 635 

by Udvardy73. In BioGeoBEARS, we implemented both Dispersal Extinction Cladogenesis 636 

(DEC) model69,74 and the Likelihood equivalent of the Dispersal-Vicariance approach 637 

(DIVALIKE)75 models and different adjacency matrices (Data S4). Both approaches gave largely 638 

consistent results, regardless of the model and parameters used (Tables S5, S26). 639 

We performed biogeographic stochastic mapping to examine in-situ speciation, 640 

immigration, and emigration between the 7-bioregions in BioGeoBEARS. We followed the 641 

protocol of Li et al.76 with 1,000 simulations with the DEC model. Relative mean dispersal rates 642 

between all permutations of bioregions were calculated and presented in Figure 3 (see also Data 643 
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S5). These mean dispersal rates represent dispersal of butterfly lineages throughout the entire 644 

evolutionary history of Papilionoidea, and thus cannot reveal changes in rates over time. In order 645 

to look at historical biogeography of butterflies during different epochs, rates along all possible 646 

inter-bioregion colonization rates were calculated at specific time intervals of 5 million years, 647 

following Li et al.76 (Table S27). These relative rates were then averaged to represent relevant 648 

geological time periods and presented in Figures S2-S4. 649 

 650 

Larval host plant analyses. 651 

Larval host records were compiled from numerous sources (Table S8, Data S6). Given 652 

the size of our host datasets and the scale of our analyses, we chose to examine relationships 653 

between individual butterfly species and host families that are consumed by their larvae. Plant 654 

families are commonly adopted as the taxonomic rank used for examining the evolution of host 655 

use77,78. For each plant-feeding butterfly species in our tree, we quantified host-plant richness 656 

and phylogenetic distance using six different metrics implemented in the package picante v. 657 

1.8.279. To calculate these metrics, we used the calibrated tree of seed plants from Smith and 658 

Brown54. 659 

Because the number of host groups was too large for an ancestral state reconstruction 660 

(nearly 50 host-plant orders, ~200 plant families plus insect associations), we first reduced the 661 

number of host groups by using a network analysis. The Beckett algorithm80, as implemented in 662 

the function ‘computeModules’ from the package bipartite81 in R v. 3.6.282, assigns plants and 663 

butterflies to modules and computes the modularity index, Q. By maximizing Q, the algorithm 664 

finds groups of butterflies and hosts that interact more with each other than with other taxa in the 665 

network. Thus, host-plants that are assigned to the same module tend to be used by the same 666 

butterflies. We found 13 modules for butterfly host associations in our module analysis (Table 667 

S28, Table S17). We then conducted three larval host ancestral state reconstruction analyses 668 

using stochastic character mapping with SIMMAP in phytools v.0.7-7083 using the 669 

‘make.simmap’ command. We reconstructed the ancestral state of (A) generalist versus specialist 670 

feeding (2 states, Data S7), (B) plant, lichen, Hemiptera, or Hymenoptera as a food source (4 671 

states, Data S8), and (C) plant module (13 states as described above, Data S9).  672 

We examined the speciation rate of butterflies over time with maximum-likelihood birth-673 

death models to fit constant-rate (CST), time-dependent (TimeVar), and angiosperm-dependent 674 
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(AngioVar) models of diversification using the R package RPANDA v.1.984. These models 675 

jointly tested whether the diversification of angiosperms could have fostered the diversification 676 

of butterflies in a single statistical framework. We conducted a series of diversification analyses 677 

to evaluate whether there is a correlation between butterflies and plants. For this, we used HiSSE 678 

(Hidden State Speciation and Extinction) and a BiSSE-like (Binary State Speciation and 679 

Extinction) implementation of HiSSE in the R package hisse30,31. 680 

 681 
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Display Items 740 

 741 
Fig. 1. Evolutionary relationships and diversification patterns of butterflies. Time-calibrated tree 742 
based on 2,244 species, 391 loci, and 150 amino acid partitions. Branches show distinct shift 743 
configurations (circles) as estimated by clade-specific diversification models. Letters at nodes 744 
refer to clades with significant rate shifts (See section 6 of Supplementary Text). Colored lines in 745 
the outer ring beside tips indicate association with one of the 13 host modules (see section 17 of 746 
Extended Online Methods). Black lines in the host-association ring are species without data. The 747 
inset graph shows the posterior probability distribution, with alternative and expected number of 748 
diversification rate shifts, converging around 30. 749 
  750 
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 751 
Fig. 2. Global butterfly diversification over time. Butterfly diversity increased well after the 752 
origin of flowering plants. Colored lines with dots show butterfly diversity compared to vascular 753 
plant diversity from three widely accepted, recent plant diversification studies. Mean global 754 
temperature and major geological events during the last 350 Ma were calculated from Scotese et 755 
al.85. The angiosperm stem to clade credibility interval is a consensus of seven studies (see 756 
section 14 of Extended Online Methods).  757 
 758 
 759 
 760 

 761 
 762 
Fig. 3. Relative mean dispersal rates of butterflies between different bioregions. Numbers 763 
associated with each arrow are the average rates from 1000 simulations using biogeographical 764 
stochastic mapping in BioGeoBEARS, which were then divided by 100 for ease of comparison 765 
(raw values can be found in Data S5). 766 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.17.491528doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.491528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 
 

 

 767 
 768 
 769 
 770 

 771 
Fig. 4. Distribution of ancestral butterflies over time. Each map corresponds to a 15 Ma  772 
interval of butterfly evolution. Bioregion color indicates the number of lineages in the 773 
Papilionoidea phylogeny that are associated with that bioregion during that time period, as 774 
determined by the BioGeoBears ASR. 775 
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