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Abstract

Butterflies are a diverse and charismatic insect group that are thought to have diversified via
coevolution with plants and in response to dispersals following key geological events. These
hypotheses have been poorly tested at the macroevolutionary scale because a comprehensive
phylogenetic framework and datasets on global distributions and larval hosts of butterflies are
lacking. We sequenced 391 genes from nearly 2,000 butterfly species to construct a new,
phylogenomic tree of butterflies representing 92% of all genera and aggregated global
digtribution records and larval host datasets. We found that butterflies likely originated in what is
now the Americas, ~100 Ma, shortly before the Cretaceous Therma Maximum, then crossed
Beringia and diversified in the Paleotropics. The ancestor of modern butterflies likely fed on
Fabaceae, and most extant families were present before the K/Pg extinction. The mgjority of
butterfly dispersals occurred from the tropics (especially the Neotropics) to temperate zones,
largely supporting a“cradle” pattern of diversification. Surprisingly, host breadth changes and
shifts to novel host plants had only modest impacts.
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Background

Butterflies have captivated naturalists, scientists, and the general public for centuries, and
they have played a central rolein studies of speciation, community ecology, plant-insect
interactions, mimicry, genetics, and conservation. Despite being the most studied group of
insects, butterfly evolutionary history and drivers of their diversification are still poorly
understood™?. Dueto over a century of efforts by amateur naturalists, butterflies are one of the
few insect groups for which substantial trait data (e.g., geographic and host plant information)
exist to test diversification hypotheses. Until now, these data have largely been scattered across
the literature, museum collections, and local databases. Butterflies are thought to have diversified
in relation to multiple abiotic and biotic factors, including adaptations to novel climates and
species interactions, with geographic history and caterpillar-host interactions playing a major
role®. However, these have not been studied because a synthesis of associated traits and a robust
phylogenetic framework at the taxonomic scale needed to examine their evolution has not been
available.

We sequenced 391 genes from nearly 2,000 butterfly species to construct a new, robust,
phylogenomic tree of butterflies representing 92% of all genera, aggregated global distribution
records, and assembled a comprehensive host association dataset. Using this tree, we infer the
evolutionary timing, biogeographic history, and diversification patterns of butterflies. We
address three long-standing questions related to butterfly evolution: 1) did butterflies originate in
the northern (Laurasia) or southern (Gondwana) hemisphere?*, 2) what plants did the ancestor of

butterflies feed on?’, and 3) were plants amajor driver promoting butterfly diversification?

Resultsand Discussion

To elucidate patterns of global butterfly diversification in space and time, we used
targeted exon capture ’ to assemble a dataset of 391 gene regions (161,166 nucleotides and
53,722 amino acids) from 2,244 butterfly species. The majority (1,914 specimens) of butterflies
sampled were newly sequenced for this study, and represented all families, tribes, and 92% of
recognized genera, with most samples coming from museum collections across the world (see
Supplementary Materials). Phylogenomic trees inferred with nucleotides and amino acids were
highly congruent, with strong support for the monophyly of all families and nearly all
subfamilies with traditional branch support metrics (Table S1), multispecies coalescence (M SC)
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166 analyses(Table S1), and 4-cluster likelihood mapping (FcLM) (Table S2). Our results strongly

167  support the need for revision of the classification of at least 32 butterfly tribes (25% of total) as

168 currently circumscribed (Table S1).

169 We conducted 24 dating analyses using different fossil and secondary calibration

170  schemes aong with sensitivity analyses to assess the impact of analytical and sampling bias.

171  Across analyses, our results revealed largely congruent timing of butterfly divergence events

172  (Table S3), indicating that butterflies originated from nocturnal, herbivorous moth ancestors

173  during the mid-Cretaceous (101.4 Ma, 102.5-100.0 Ma). This provides independent evidence for

174  the Cretaceous origin recovered in previous butterfly phylogenies*®. We conducted

175 diversification rate analyses that used time-variable models and clade-heterogeneous models that

176  areless proneto sampling bias (Supplementary Methods). Both approaches recovered similar

177  patterns of diversification across butterflies, with increased rates in clades such as the diverse

178  skipper tribe Eudamini and lycaenid subfamily Poritiinae (Fig. 1, Fig. S1).

179 To determine the geographic origin of butterflies, we used our dated phylogeny (Fig. 1)

180 to conduct aglobal biogeographic analysis with 15,764 newly aggregated country-level

181  didribution records (Table $4). Modeling with three different area categorizations, models of

182  rangeevolution, and parameters (e.g., adjacency matrices, time slices, etc.) consistently

183  recovered butterflies as originating in the Americas, in what is present-day western North

184  Americaor Central America (Fig. 4, Table S5). All extant butterfly families excluding the

185 Neotropical Hedylidae diversified ~10-30 Ma after the Cretaceous Thermal Maximum (CTM),

186  ~90 Ma, when the global climate cooled by nearly 5° C° (Figs. 1, 2). During the Cretaceous,

187  butterflies appeared to be dispersing out of the Neotropics at a much higher rate than all other

188 dispersal pathways (Fig. S2). As new butterfly lineages became established in other bioregions,

189  other inter-bioregion dispersal avenues became more frequently used, particularly out of

190 Indomalaya(Figs. S3, $4).

191 Beginning around 60 Ma, the Neotropics served as an evolutionary “cradle’ *° with high

192 insitu butterfly speciation (Fig. S5), and many dispersal events occurring out of the Neotropics

193 toother areas (Fig. S6). Relative rate of dispersal out of the Neotropics was still high during the

194  early Cenozoic, athough not as high as it was during the Cretaceous (Figs. S2, S3). Over the

195 course of their evolution, butterflies experienced significantly higher speciation ratesin the

196 tropics compared to temperate zones (Data S1), and also more dispersal events out of the tropics
5
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(Fig. S6), as observed by high relative mean dispersal rates out of the tropics (e.g., tropical
Indomalaya to temperate East Palearctic, and the Neotropics to Nearctic; Fig. 3). This pattern
differs from that seen in mammals, which are thought to have dispersed primarily in the opposite

direction during the Pliocene** 3

. Some butterflies such as swallowtails showed greater
immigration into the Neotropics, following a“museum” model of diversification (Fig. S7),
corroborating prior findings'. The majority of dispersal events between the Neotropics and the
Nearctic took place after the Eocene-Oligocene boundary, ~33.9 Ma (Fig. $4). Two lineages
dispersed from the East Palearctic around 17 Ma, and these appear to be thefirst colonizers of
Europe: ancestors of a Nymphalini subclade including Aglais, Nymphalis, and Polygonia, and a
clade of checkered skippers (Carcharodini; Table S6). Butterflies were present on what are now
all modern continental landmasses by the late Eocene (Table S7).

The K/Pg boundary (~66 Ma) marked a major global extinction event that dramatically
reduced vertebrate and marine diversity™. Less is known, however, about the extent to which
insects were affected by this event™®. We used two analytical approaches to identify sudden
extinction events and estimate changes in diversification rates, both of which concluded that
butterflies, like amphibians and some mammals*"*2, did not experience amajor extinction event
at the K/Pg boundary (Fig. S8). Plants experienced a vegetation turnover from gymnosperms to
angiosperms in the Late Cretaceous™ and continued to increase in diversity up to the present
(Fig. 2). The survival of many plant lineages across the K/Pg boundary may have buffered the
effects of the mass extinction event of butterflies.

Two tests of extinction demonstrate that butterflies underwent two major extinctions after
the K/Pg boundary — one at the Eocene-Oligocene transition (EOT) which coincides with the
Eocene-Oligocene global extinction event (~33.9 Ma), and another during the mid-Miocene that
coincides with the mid-Miocene Climatic Optimum (~14 Ma; Fig. S8). These were global
cooling and warming periods, respectively, that led to the disappearance of many plant and
animal lineages, followed by sharp floral and faunal turnover in temperate and tropical
environments™. Speciation analyses with BioGeoBEARS? (see Methods), also supports these
findings, there was a dramatic drop in the number of speciation events around 34 Ma, especially
in the East Palearctic region (Fig. S5), which occurred around the EOT extinction event that
significantly reduced floral and faunal diversity of that region®". Soon thereafter, the families
Hesperiidae and Nymphalidae experienced dramatic increases in the number of speciation events
6
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in the East Palearctic (Fig. S9). This marks a period when East Palaearctic habitats changed from
dense forest to forest-steppe, temperate grassland, and mixed forest biomes?. These serve as
primary habitats of the diverse modern butterfly groups — fritillaries, satyrs, and grassland
skippers, which dominate this region today (Argynnini, Satyrini, and Hesperiinae, respectively).

It is often argued that butterfly evolution is closdly tied to the diversification of
angiosperms™®. Y et, few studies have examined the timing and pattern of butterflies and their
hosts on a broad, macroevolutionary scale. To understand the temporal diversification of
butterflies and plants, we compiled 31,456 butterfly host records from 186 books and databases
(Table S8). We examined how butterfly lineages increased through time and compared these
results with four recent studies that examined plant diversification dynamics. We found that
butterfly diversification lagged far behind the origin of angiosperms (Fig. 2), corroborating prior
studies’?. Ancestral state estimation provided support for Fabaceae as the host plant of the most
recent common ancestor of butterflies (Tables S9-S10, Fig. S10), awidely accepted hypothesis®
that has lacked empirical support. The crown age of the most recent common ancestor of
Fabaceae is thought to be ~98 Ma?>?*, largely coincident with the origin of butterflies.

Although the vast mgjority of butterfly larvae in our dataset are herbivores, a small
number also feed on detritus, lichens, or insects (Table S8). The oldest associations in the
entirely entomophagous Miletinae (Lycaenidae) appear to originate by 58.4 Ma (58.9-57.1 Ma),
an estimate that corresponds with an earlier estimation of the origin of this group® (Tables S3,
S11). The Lycaenidae, with caterpillars that are ancestrally symbiotic with ants"?°, date back to
64.5 Ma (65.4-63.7 Ma) (Fig. S11), long after the origin of ants (139-158 Ma?’). Together with
plants, ants appear to have provided atemplate for diversification of Lycaenidae and certain
members of its sister clade, Riodinidae.

To address the possibility that butterfly diversification may have been spurred by co-
diversifying plants, we evaluated eight pal eoenvironment-dependent models relating butterfly
diversification to host-plant evolution®®. We first estimated time-dependent variation of
speciation and extinction rates with time-continuous birth-death models and compared them with
constant-rate diversification models™. In the best-fitting model, speciation rates vary
exponentially through time without extinction (92% of the trees, Akaike o = 0.549). Thistime-
dependent model is far better supported than the angi osperm-dependent models, the best of
which was ranked fourth (Table S12). We also ran the Hi SSE model*® asimplemented in the R

7
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259  package hisse™ to test for a potential impact of host-plant preference on diversification

260 dynamics. In total, we compared 18 different models of Hi SSE and BiSSE-like implementations,
261 accounting for hidden states to aleviate recent concerns regarding the reliability of SSE models
262  and the high incidence of false positive results®. We found little or no indication that association
263  with aspecific plant group is linked to butterfly diversification, largely rgecting the hypothesis
264  of hostplant driven diversification (Table S13, Data S2). These results indicate that

265  coevolutionary interactions with angiosperm host-plants were unlikely to have been a driver of
266  butterfly diversification at macroevolutionary scales. Even within families, hypotheses such as
267  the correlated diversification of grasses with grass-feeding skippers (Hesperiinae) and satyrs
268  (Satyrini)® were uncorroborated (Table S13). Our results are consistent with smaller studies on
269  particular butterfly groups such as skippers (e.g., Sahoo et al.**), that show that alternative

270  drivers (hidden states) explain best butterfly diversification when compared to hostplant-

271  dependent models.

272 Butterfly diversification may not have been driven by the availability of particular plants,
273  but instead by host specificity (specializing on afew plants [e.g., Janz, Nylin and Nyblom™®]). It
274 has been proposed through the resource-use hypothesis® that specialists that feed on few hosts
275  have higher speciation and extinction rates. Numerous studies on vertebrates support this

276  hypothesis®®®, but few studies have tested the hypothesis on insects. We examined host plant
277  specificity on the butterfly phylogeny (Fig. 1) and found that more than two-thirds of butterfly
278  speciesfeed on asingle plant family (67.7%), whereas less than one-third (32.3%) are generalists
279  feeding on two or more (Table S14), a pattern largely in agreement with ecological studies on
280  butterflies®. We also found that 94.2% of generalists feed on plant families that are significantly
281 closaly related compared to a randomly sampled null distribution, suggesting that generalists,
282  athough capable of feeding on different host families, still consume closely related plants. This
283  finding supports the pattern reported by Ehrlich and Raven® that related butterflies feed on

284  related plants. Finally, we used trait-dependent methods to examine whether diversification rates
285  changed following switches between generalist and specialist, and host plant shifts (Table S13).
286  Our results demonstrate that — at least in analyses of Papilionoidea and Hesperiidae, where

287  results were significant — specialists have lower rates of speciation (Fig. S12), contradicting the
288  resource-use hypothesis.
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This study includes the most comprehensive taxonomic sampling of butterflies to dateto
understand their evolutionary history. We also compiled two comprehensive trait datasets
(geography and host plants) that demonstrate the importance of assembling large trait databases
to test key hypotheses. Our study overturns some long-held assumptions of butterfly evolution
and provides aframework for future studies of this model insect lineage. The consistency of
results obtained using different approaches for each of our analyses suggests that our conclusions
are robust. Assembling species-level datasets will be an important future goal to address fine-
scale trends within particular butterfly clades.

Our data support the hypothesis that butterflies originated in the Americas in the Late
Cretaceous 100 million years after the origin of angiosperms, and that they first fed on legumes.
They dispersed from the Americas to the East Palearctic likely across Beringia~75 Ma before
diversifying in the Paleotropics. They appear to have been minimally affected by the K/Pg mass
extinction. While some evidence points to a Nearctic origin, the evidence for Nearctic versus
Neotropical origin isnot strong — we therefore only tentatively conclude that a Laurasian origin
ispossible. Diversification of some lineages has been impacted by host associations, but an
escape-and-radiate model of coevolution with angiosperms does not appear to have been a
powerful driver of diversification at a broad macroevolutionary scale. Butterfly evolution is
better viewed as compatible with amodel of diffuse coevolution® in which plants provided an

ecological template on which butterflies diversified as opportunities arose.
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M ethods
Taxon sampling and sequence acquisition.

A total of 2,248 butterfly specimens representing 2,244 speciesin 1,644 generawas
included for the molecular component of this study (Table S15). We obtained marker loci used
for phylogenetic analysis via Anchored Hybrid Enrichment (AHE) exon capture of DNA extracts
and subsequent Illumina sequencing® or by biocinformatically extracting these sequences from
published genomes and transcriptomes. We used the BUTTERFLY 1.0 probe set’, which can
capture up to 450 loci.

We extracted DNA from 1,915 specimens that were: 1) stored in ethanol and frozen; 2)
dried and stored in glassine envelopes under ambient conditions (papered); or 3) dried, spread
and pinned in a museum collection. Locus assembly and sequence clean-up followed the pipeline
of Breinholt et al.*2. Published sequences comprised: 1) genome assemblies; 2) genomic reads;
and 3) paired or 4) single-end transcriptomes. Three sequence datasets were created for this
study: nt123 (a nucleotide dataset with all codon positions), degen (a nucleotide dataset that
excludes all synonymous changes, created using the perl script, Degenl v.1.4**%), and aa (an
amino acid dataset tranglated from the nt123 dataset) (Data S3).

Phylogenetic analysis and dating.

Maximum likelihood (ML) tree inference was conducted on all three datasetsin 1Q-
TREE 2.0 (nt123, degen, and aa), and parameter settings for each analysis can be found in Table
S16. Branch support was calculated with 1,000 ultrafast bootstrap replicates (UFBS; ‘-B 1000’

command)*>4¢

, and Shimodaira-Hasegawa approximate likelihood ratio tests (SH-aLRT; ‘-alrt
1000" command)*’. Quartet sampling (see Section 8. Sequence quality check) was performed on
the most-likely degen359 and aal54 trees to examine the topology and provide more
comprehensive and specific information on branch support. Four-cluster likelihood mapping
(FcLM) analyses® were performed on the degen and aa datasets to assess the placement of
particular butterfly clades that have been the subject of previous phylogenetic studies. We
applied this approach in addition to standard branch support metrics because the latter can be
subject to inflated estimates™.

We obtained divergence time estimates using a penalized-likelihood based approach
implemented in treePL*°. We implemented three different methods for calibrating the trees to

17
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assess similarity among results. Method 1: Dating with secondary calibrations only. We used the
95% credibility intervals of Lepidoptera ages from Figure S12 of Kawahara et al.™° to assign
minimum and maximum ages to 27 ingroup and 6 outgroup nodes in our tree. Method 2: Dating
with fossils and one secondary root calibration. In this approach, we followed the guidelines of
Parham et al.>! by calibrating nodes with 11 butterfly fossils that could be assigned to a butterfly
lineage’ s geological age with confidence as verified by de Jong™. None of the outgroup nodes
could be calibrated because the only reliable fossils associated with our non-butterfly

L epidoptera were too young to influence the ages of the deeper nodes representing multi-
superfamily clades. Consequently, preliminary treePL analyses yielded highly dubious age
estimates for deep nodes on the tree, hundreds of millions of years older than expected based on
the literature. We therefore added a single secondary calibration to the root of the tree. Although
combining secondary and fossil calibrationsin a single analysis can create redundancy that
negatively impacts the resulting age estimates™, the limited fossil record of Lepidoptera made it
anecessity in order to obtain comparable results derived primarily from fossils. We ran two
versions of this method, each with a different root calibration. Method 2A used a maximum-age
estimate of 139.4 Ma, based on the angiosperm age estimate of Smith and Brown>*. Method 2B
used a more conservative maximum-age estimate of 251 Ma, based on the older end of the
credibility interval for the age of angiospermsin Foster et al.>. Both of these calibrations were
used under the assumption that butterflies diverged from their moth ancestors after their most
frequent host-plants, angiosperms, were already present®®>’. Method 3: Secondary calibrations
and six fossils. In this approach, we combined the 33 secondary calibrations from Method 1 with
six fossi| calibrations, including some of the fossils used in Method 2. Fossils previously used to
time-calibrate trees of Kawahara et al.>® were excluded from this analysis to avoid circularity and
redundancy with secondary calibrations. Whenever possible, redundant fossil calibrations from
Method 2 were replaced with calibrations from unrelated fossils that could be associated with a
different node in the same clade.

Diver sification rate analyses.

We performed a Bayesian analysis of macroevolutionary mixtures using the program
BAMM v.1.10.4%® to detect shiftsin diversification rates between clades. The reversible-jump
markov chain Monte Carlo was run for 50 million generations and sampled every 50,000
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582  generations. Priors were estimated with the R package BAMMtools v.2.1.6™ using the command
583 ‘setBAMMpriors’. The tree was trimmed in Mesquite v.3.6% to remove all outgroups. Six

584  analyses were performed using different priors for expected numbers of shifts (5, 10, 20, 30, 40,
585 and 50 shifts).

586 Because BAMM has been criticized for incorrectly modeling rate shifts on extinct

587  lineages (i.e., extinct or non-sampled lineages inherit the ancestral diversification process and

s°1%%) 'we conducted a lineage-specific

588  cannot experience subsequent diversification-rate shift
589  hirth-death shift analysis® in RevBayes™. We also utilized the R package castor v.1.6.9%° to infer
500 deterministic lineage through time (dLTT), pulled speciation rate (PSR), and pulled

591 diversification rate (PDR) plots for Papilionoidea and six of its families, excluding Hedylidae.
592  Finally, we performed diversification analysesin TreePar v.3.3% and TESSv.2.1.0° to

593 determinerelative likelihoods of models with different amounts of shiftsin diversification and
594  turnover rates.

595 We conducted a series of diversification analyses to evaluate whether thereisa

596 correlation between butterflies and plants. For this, we used HiSSE (Hidden State Speciation and
597  Extinction) and a BiSSE-like (Binary State Speciation and Extinction) implementation of

508 HiSSE® in the R package hisse™. We pruned outgroups from the tree (aal54 dated tree, Strategy
599 A) and compared 20 Hi SSE models and BiSSE-like implementations of HiSSE. The BiSSE

600 equivalent of HiSSE tests whether there are different diversification rates associated with the two
601 host-plant use states. Other models were built in the Hi SSE framework to test alternative

602  combinations of presence or absence of hidden state and host-plant use associations while al'so
603  considering different transition rate matrices, net turnover rates ti (Speciation plus extinction: Al
604  + pni), and extinction fractions i (extinction divided by speciation: pi/Ai) (Table S17). We tested
605 whether diversification rates were linked to feeding (A) as alarval specialist or generalist (Table
606 S18), (B) on Poales (Table S19) in Papilionoidea, Hesperiidae, and Nymphalidae, (C) on Fabales
607 (Table S20) in Papilionoidea and Nymphalidae, (D) on Brassicales (Table S21) in all butterflies
608 and Pieridae, (E) on Fagales (Table S22), (F) on Poaceae module (Table S23), (G) on Fabaceae
609 module (Table S24), and (H) on Fabaceae in Eudaminae (Tables S13, S24). We compared these
610 different models of HiSSE and BiSSE-like implementations to account for hidden states to

611 alleviate recent concerns regarding the reliability of SSE models and the high incidence of false
612  positive results™.
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Biogeogr aphic analyses.

To assess the role of geography on diversification, we first aggregated data from multiple
sources to create a global butterfly checklist for each country. Primary data sources included: 1)
the Lepidoptera and other life forms database (http://ftp.funet.fi/index/Tree_of lifelinsecta/
lepidoptera); 2) WikiSpecies (https://species.wikimedia.org); and 3) the type locality of each
species or subspeciesin our list of valid butterfly names, which was obtained from 1, above. This
initial global checklist was vetted using published country checklists and the ButterflyNet Trait
Database (https://butterflytraits.org). Trait data from ca. 100 comprehensive and country-specific
field guides have been entered into this database, allowing us to generate species lists to cross-
validate checklists assembled®.

We estimated the ancestral area of origin and geographic range evolution for butterflies
using two approaches: the ML approach of the DECX model® as implemented in the C++
version’®"
BioGeoBEARS v.1.1.2%°. We designated 14 biogeographic regions across the globe (Fig. S13,

, available at https://github.com/champost/DECX), and with the program

Table S25), determined which of these regions were occupied by each speciesin our tree, and
developed a 14-state character matrix. DECX uses atime-calibrated tree, the modern distribution
of each speciesfor a set of geographic areas, and a time-stratified geographic model that is
represented by connectivity matrices for specified time intervals spanning the evolutionary
history of clade of interest”.

Because we could not estimate immigration and emigration ratesin DECX, we also ran
BioGeoBEARS with 7 and 8 areas (Figs. S14, S15, Table S25). BioGeoBEARS analyses could
not be run with 14 states due to computational limitations due to the complexity of our dataset
(2,248 treetips). The 7 and 8 bioregions largely correspond to the biogeographic realms defined
by Udvardy”. In BioGeoBEARS, we implemented both Dispersal Extinction Cladogenesis
(DEC) model®®™ and the Likelihood equivalent of the Dispersal-Vicariance approach
(DIVALIKE)”™ models and different adjacency matrices (Data $4). Both approaches gave largely
consistent results, regardless of the model and parameters used (Tables S5, S26).

We performed biogeographic stochastic mapping to examine in-situ speciation,
immigration, and emigration between the 7-bioregionsin BioGeoBEARS. We followed the
protocol of Li et al.” with 1,000 simulations with the DEC model. Relative mean dispersal rates
between all permutations of bioregions were calculated and presented in Figure 3 (see also Data
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S5). These mean dispersal rates represent dispersal of butterfly lineages throughout the entire
evolutionary history of Papilionoidea, and thus cannot reveal changesin rates over time. In order
to look at historical biogeography of butterflies during different epochs, rates along all possible
inter-bioregion colonization rates were calculated at specific timeintervals of 5 million years,
following Li et al.”® (Table S27). These relative rates were then averaged to represent relevant
geological time periods and presented in Figures S2-4.

Larval host plant analyses.

Larval host records were compiled from numerous sources (Table S8, Data S6). Given
the size of our host datasets and the scale of our analyses, we chose to examine relationships
between individual butterfly species and host families that are consumed by their larvae. Plant
families are commonly adopted as the taxonomic rank used for examining the evolution of host
use""®. For each plant-feeding butterfly speciesin our tree, we quantified host-plant richness
and phylogenetic distance using six different metrics implemented in the package picante v.
1.8.2"°. To calculate these metrics, we used the calibrated tree of seed plants from Smith and
Brown™.

Because the number of host groups was too large for an ancestral state reconstruction
(nearly 50 host-plant orders, ~200 plant families plus insect associations), we first reduced the
number of host groups by using a network analysis. The Beckett algorithm™®, asimplemented in
the function ‘ computeModules’ from the package bipartite®™ in R v. 3.6.2%, assigns plants and
butterflies to modules and computes the modularity index, Q. By maximizing Q, the algorithm
finds groups of butterflies and hosts that interact more with each other than with other taxa in the
network. Thus, host-plants that are assigned to the same module tend to be used by the same
butterflies. We found 13 modules for butterfly host associations in our module analysis (Table
S28, Table S17). We then conducted three larval host ancestral state reconstruction analyses
using stochastic character mapping with SIMMAP in phytools v.0.7-70% using the
‘make.simmap’ command. We reconstructed the ancestral state of (A) generalist versus specialist
feeding (2 states, Data S7), (B) plant, lichen, Hemiptera, or Hymenoptera as a food source (4
states, Data S8), and (C) plant module (13 states as described above, Data S9).

We examined the speciation rate of butterflies over time with maximum-likelihood birth-
death models to fit constant-rate (CST), time-dependent (TimeVar), and angiosperm-dependent
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(AngioVar) models of diversification using the R package RPANDA v.1.9*. These models
jointly tested whether the diversification of angiosperms could have fostered the diversification
of butterfliesin asingle statistical framework. We conducted a series of diversification analyses
to evaluate whether there is a correlation between butterflies and plants. For this, we used HiSSE
(Hidden State Speciation and Extinction) and a BiSSE-like (Binary State Speciation and
Extinction) implementation of HiSSE in the R package hisse®™*.,
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Fig. 1. Evolutionary relationships and diversification patterns of butterflies. Time-calibrated tree
based on 2,244 species, 391 loci, and 150 amino acid partitions. Branches show distinct shift
configurations (circles) as estimated by clade-specific diversification models. Letters at nodes
refer to clades with significant rate shifts (See section 6 of Supplementary Text). Colored linesin
the outer ring beside tips indicate association with one of the 13 host modules (see section 17 of
Extended Online Methods). Black lines in the host-association ring are species without data. The

inset graph shows the posterior probability distribution, with alternative and expected number of
diversification rate shifts, converging around 30.
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752  Fig. 2. Global butterfly diversification over time. Butterfly diversity increased well after the
753  origin of flowering plants. Colored lines with dots show butterfly diversity compared to vascular
754  plant diversity from three widely accepted, recent plant diversification studies. Mean global

755  temperature and major geological events during the last 350 Ma were calculated from Scotese et
756  al.®°. The angiosperm stem to clade credibility interval is a consensus of seven studies (see

757  section 14 of Extended Online Methods).
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763  Fig. 3. Relative mean dispersal rates of butterflies between different bioregions. Numbers

764  associated with each arrow are the average rates from 1000 simulations using biogeographical
765  stochastic mapping in BioGeoBEARS, which were then divided by 100 for ease of comparison
766  (raw values can befound in Data Sb).
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772  Fig. 4. Distribution of ancestral butterflies over time. Each map correspondsto a 15 Ma
773 interval of butterfly evolution. Bioregion color indicates the number of lineagesin the

774  Papilionoidea phylogeny that are associated with that bioregion during that time period, as
775  determined by the BioGeoBears ASR.
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