

1    **Three-dose vaccination-induced immune responses protect against SARS-CoV-2**  
2    **Omicron BA.2**

3    Runhong Zhou<sup>a,b#</sup>, Na Liu<sup>a,b,c#</sup>, Xin Li<sup>d#</sup>, Qiaoli Peng<sup>a,b</sup>, Cheuk-Kwan Yiu<sup>d</sup>, Haode  
4    Huang<sup>a</sup>, Dawei Yang<sup>a</sup>, Zhenglong Du<sup>a</sup>, Hau-Yee Kwok<sup>a</sup>, Ka-Kit Au<sup>a</sup>, Jian-Piao Cai<sup>b</sup>,  
5    Ivan Fan-Ngai Hung<sup>d</sup>, Kelvin Kai-Wang To<sup>b,e</sup>, Xiaoning Xu<sup>g</sup>, Kwok-Yung Yuen<sup>b,c,e,f</sup>,  
6    Zhiwei Chen<sup>a,b,c,e,f\*</sup>

7    **Affiliations:**

8    <sup>a</sup>AIDS Institute, Li Ka Shing Faculty of Medicine, the University of Hong Kong;  
9    Pokfulam, Hong Kong Special Administrative Region, People's Republic of  
10   China.

11   <sup>b</sup>Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of  
12   Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People's  
13   Republic of China.

14   <sup>c</sup>Department of Clinical Microbiology and Infection Control, the University of  
15   Hong Kong-Shenzhen Hospital; Shenzhen, Guangdong, People's Republic of  
16   China.

17   <sup>d</sup>Department of Medicine, Li Ka Shing Faculty of Medicine, The University of  
18   Hong Kong, Hong Kong SAR, People's Republic of China.

19   <sup>e</sup>State Key Laboratory for Emerging Infectious Diseases, the University of Hong  
20   Kong; Pokfulam, Hong Kong Special Administrative Region, People's Republic  
21   of China.

22   <sup>f</sup>Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and  
23   Technology Park, Hong Kong Special Administrative Region, China.

24   <sup>g</sup>Centre for Immunology & Vaccinology, Chelsea and Westminster Hospital,  
25   Department of Medicine, Imperial College London, London, United Kingdom.

26

27   \*Correspondence: Zhiwei Chen, E-mail: [zchenai@hku.hk](mailto:zchenai@hku.hk), AIDS Institute and  
28   Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of  
29   Hong Kong, L5-45, 21 Sasseoon Road, Pokfulam, Hong Kong SAR, People's  
30   Republic of China. Phone: 852-3917-9831; Fax: 852-3917-7805.

31

32   <sup>#</sup>These authors made equal contributions.

33

34 **Summary**

35 **Background**

36 The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the  
37 model city of universal masking of the world, has resulted in a major public health  
38 crisis. Although the third vaccination resulted in strong boosting of neutralization  
39 antibody, vaccine efficacy and correlates of immune protection against the major  
40 circulating Omicron BA.2 remains to be investigated.

41 **Methods**

42 We investigated the vaccine efficacy against the Omicron BA.2 breakthrough  
43 infection among 470 public servants who had received different SARS-CoV-2  
44 vaccine regimens including two-dose BNT162b2 (2×BNT, n=169), three-dose  
45 BNT162b2 (3×BNT, n=170), two-dose CoronaVac (2×CorV, n=34), three-dose  
46 CoronaVac (3×CorV, n=67) and third-dose BNT162b2 following 2×CorV  
47 (2×CorV+1BNT, n=32). Humoral and cellular immune responses after three-dose  
48 vaccination were further characterized and correlated with clinical characteristics of  
49 BA.2 infection.

50 **Findings**

51 During the BA.2 outbreak, 27.7% vaccinees were infected. The timely third-dose  
52 vaccination provided significant protection with lower incidence rates of  
53 breakthrough infections (2×BNT 49.2% vs 3×BNT 13.1%,  $p<0.0001$ ; 2×CorV 44.1%  
54 vs 3×CoV 19.4%,  $p=0.003$ ). Investigation of immune response on blood samples  
55 derived from 92 subjects in three-dose vaccination cohorts collected before the BA.2  
56 outbreak revealed that the third-dose vaccination activated spike (S)-specific memory  
57 B cells and Omicron cross-reactive T cell responses, which correlated with reduced  
58 frequencies of breakthrough infections and disease severity rather than with types of  
59 vaccines. Moreover, the frequency of S-specific activated memory B cells was  
60 significantly lower in infected vaccinees than uninfected vaccinees before vaccine-  
61 breakthrough infection whereas IFN- $\gamma$ <sup>+</sup> CD4 T cells were negatively associated with  
62 age and viral clearance time. Critically, BA.2 breakthrough infection boosted cross-  
63 reactive memory B cells with enhanced cross-neutralizing antibodies to Omicron  
64 sublineages, including BA.2.12.1 and BA.4/5, in all vaccinees tested.

65 **Interpretation**

66 Our results imply that the timely third vaccination and immune responses are likely  
67 required for vaccine-mediated protection against Omicron BA.2 pandemic. Although

68 BA.2 conferred the highest neutralization resistance compared with variants of  
69 concern tested before the emergence of BA.2.12.1 and BA.4/5, the third dose  
70 vaccination-activated S-specific memory B cells and Omicron cross-reactive T cell  
71 responses contributed to reduced frequencies of breakthrough infection and disease  
72 severity. Neutralizing antibody potency enhanced by BA.2 breakthrough infection  
73 with previous 3 doses of vaccines (CoronaVac or BNT162b2) may reduce the risk for  
74 infection of ongoing BA.2.12.1 and BA.4/5.

75 **Funding**

76 Hong Kong Research Grants Council Collaborative Research Fund, Health and  
77 Medical Research Fund, Wellcome Trust, Shenzhen Science and Technology  
78 Program, the Health@InnoHK, Innovation and Technology Commission of Hong  
79 Kong, China, National Program on Key Research Project, Emergency Key Program  
80 of Guangzhou Laboratory, donations from the Friends of Hope Education Fund and  
81 the Hong Kong Theme-Based Research Scheme.

82

83 **Key words**

84 SARS-CoV-2, COVID-19, Omicron, BA.2, Breakthrough infection, Neutralizing  
85 antibody, T cell response

86

87 **Introduction**

88 To fight the ongoing SARS-CoV-2 pandemic, over 10 billion doses of COVID-19  
89 vaccines under emergency use authorization (EUA) have been administered globally,  
90 which has significantly reduced the rates of hospitalization, disease severity and death  
91 <sup>1-5</sup>. Unfortunately, the emergence of variants of concern (VOCs), especially the  
92 Omicron variants, have substantially threatened the vaccine efficacy <sup>6</sup>. We recently  
93 reported that waning anti-Omicron neutralizing antibody and T cell responses  
94 especially among CoronaVac-vaccinees might pose a risk to vaccine-breakthrough  
95 infections in Hong Kong <sup>7</sup>. Although the third heterologous BNT162b2 vaccination  
96 after 2-dose CoronaVac generates high neutralizing antibody responses against  
97 ancestral and Omicron BA.1 than the third homologous CoronaVac booster <sup>8,9</sup>,  
98 vaccine efficacy and its correlations with the immune protection against the major  
99 circulating Omicron BA.2 remains to be investigated <sup>10-12</sup>. In addition, it remains  
100 unclear if BA.2 breakthrough infection would reduce the risk against ongoing  
101 BA.2.12.1 and BA.4/5 reinfection by enhancing cross-reactive neutralizing antibody  
102 potency.

103

104 **Materials and methods**

105 **Human subjects**

106 This study was approved by the Institutional Review Board of the University of Hong  
107 Kong/Hospital Authority Hong Kong West Cluster (Ref No. UW 21-452). A total of  
108 481 participants were recruited in this study. Written informed consent and  
109 questionnaire of vaccination and infection were obtained from these subjects. Patients  
110 provided the information of symptom onset date, type of symptoms, hospitalization,  
111 duration of illness and the date of viral negative conversion as summarized in Table 1.  
112 The vaccination record was officially registered by professional medical staff in the  
113 governmental system called “LeaveHomeSafe”. The diagnosis of SARS-CoV-2  
114 infection was confirmed by results of rapid antigen test and PCR, as well as  
115 quarantine records enforced strictly by law. Peripheral blood mononuclear cells  
116 (PBMCs) from 92 randomly selected-participants who had the third vaccination were  
117 isolated from fresh blood samples before SARS-CoV-2 infection using Ficoll-Paque  
118 density gradient centrifugation in our BSL-3 laboratory at the same day of blood  
119 collection. The majority of purified PBMCs were used for immune cell phenotyping  
120 whereas plasma samples were subjected to antibody testing. The rest of the cells were  
121 cryopreserved in freezing medium (Synth-a-Freeze Cryopreservation Medium,  
122 ThermoFisher Scientific) at  $5 \times 10^6$  cells/mL at  $-150^{\circ}\text{C}$ . Subjects included in the study  
123 were required to complete vaccination (all dose) for at least 7 days, to allow the  
124 manifestation of the delayed immune response to vaccination.

125

126 **Enzyme-linked immunosorbent assays (ELISA)**

127 Serum IgG binding antibodies to Spike were quantitated by ELISA using WHO  
128 International Standard as standard. Briefly, different recombinant trimeric Spike  
129 proteins derived from SARS-CoV-2 VOCs (Sino Biological) were diluted to final  
130 concentrations of 1  $\mu\text{g/mL}$ , then coated onto 96- well plates (Corning 3690) and  
131 incubated at  $4^{\circ}\text{C}$  overnight. Plates were washed with PBST (PBS containing 0.05%  
132 Tween-20) and blocked with blocking buffer (PBS containing 5% skim milk or 1%  
133 BSA) at  $37^{\circ}\text{C}$  for 1 h. Two-fold serial dilution of WHO international standard (from  
134 20 BAU/mL to 0.15625 BAU/mL) and plasma samples (400-fold diluted) were added  
135 to the plates and incubated at  $37^{\circ}\text{C}$  for 1 h. Wells were then incubated with a  
136 secondary goat anti-human IgG labeled with horseradish peroxidase (HRP) (1:5000  
137 Invitrogen) TMB substrate (SIGMA). Optical density (OD) at 450 nm was measured  
138 by SkanIt RE6.1 with VARIOSKAN Lux (Thermo Scientific).

139

140 **Pseudotyped viral neutralization assay**

141 To determine the neutralizing activity of subject’s plasma, the plasma was inactivated  
142 at  $56^{\circ}\text{C}$  for 30 min prior to a pseudotyped viral entry assay. In brief, different SARS-

143 CoV-2 pseudotyped viruses were generated through co-transfection of 293T cells with  
144 2 plasmids, pSARS-CoV-2 S and pNL4-3Luc\_Env\_Vpr, carrying the optimized  
145 SARS-CoV-2 S gene and a human immunodeficiency virus type 1 backbone,  
146 respectively. At 48 h post-transfection, viral supernatant was collected and frozen at  
147  $-150^{\circ}\text{C}$ . Serially diluted plasma samples (from 1:20 to 1:14580) were incubated with  
148 200 TCID<sub>50</sub> of pseudovirus at  $37^{\circ}\text{C}$  for 1 h. The plasma-virus mixtures were then  
149 added into pre-seeded HEK293T-hACE2 cells. After 48 h, infected cells were lysed,  
150 and luciferase activity was measured using Luciferase Assay System kits (Promega)  
151 in a Victor3-1420 Multilabel Counter (PerkinElmer). The 50% inhibitory  
152 concentrations (IC<sub>50</sub>) of each plasma specimen were calculated to reflect anti-SARS-  
153 CoV-2 potency.

154

### 155 **Antigen-specific B cells**

156 To characterize the SARS-CoV-2 Spike-specific B cells, PBMCs from each vaccinee  
157 were first stained with an antibody cocktail contained dead cell dye (Zombie aquae),  
158 CD3-Pacific Blue, CD14-Pacific Blue, CD56-Pacific Blue, CD19-BV785, IgD-  
159 BV605, IgG-PE, CD27-BV711, CD21-PE/Cy7, CD38-Percp/Cy5.5, CD11C-  
160 APC/Fire750 and His-tag Spike protein. Cells were then washed with FACS buffer  
161 (PBS with 2% FBS) and further stained with the secondary antibodies including APC  
162 anti-His and DyLight 488 anti-his antibodies. Stained cells were acquired by  
163 FACS AriaIII Flow Cytometer (BD Biosciences) and analyzed with FlowJo software  
164 (v10.6) (BD Bioscience).

165

### 166 **Intracellular cytokine staining (ICS)**

167 To measure antigen-specific T cell responses, PBMCs were stimulated with 2  $\mu\text{g}/\text{mL}$   
168 Spike peptide pool (15-mer overlapping by 11) from SARS-CoV-2 ancestral or  
169 Omicron variant, or 2  $\mu\text{g}/\text{mL}$  nucleocapsid protein (NP) peptide pool in the presence  
170 of 0.5  $\mu\text{g}/\text{mL}$  anti-CD28 and anti-CD49d mAbs (Biolegend). Cells were incubated at  
171  $37^{\circ}\text{C}$  for 9 hours and BFA was added at 3 h post incubation, as previously described  
172 <sup>11</sup>. PMA/ionomycin stimulation was included as positive control. Cells were then  
173 washed with staining buffer (PBS containing 2% FBS) and stained with mAbs against  
174 surface markers, including dead cell dye (Zombie aqua), CD3-Pacific Blue, CD4-  
175 Percp/Cy5.5, CD8-APC/Fire750, CD45RA-BV711, CCR7-BV785, CXCR5-APC,  
176 CCR6-BV605. For intracellular staining, cells were fixed and permeabilized with BD  
177 Cytofix/Cytoperm (BD Biosciences) prior to staining with the mAbs against IFN- $\gamma$ -  
178 PE, TNF- $\alpha$ -AF488 and IL-2-PE-Cy7. Stained cells were acquired by FACS AriaIII  
179 Flow Cytometer (BD Biosciences) and analyzed with FlowJo software (v10.6) (BD  
180 Bioscience). Results were subtracted from percentage of unstimulated control.

181

182 **Correlation plots and heatmap visualizations**

183 Correlograms plotting the Spearman rank correlation coefficient (r), between all  
184 parameter pairs were generated with the corrplot package (v0.84)<sup>13</sup> running under R  
185 (v3.6.1) in RStudio (1.1.456). Spearman rank two-tailed P values were calculated  
186 using corr.test (psych v1.8.12) and graphed (ggplot2 v3.1.1) based on \*p<0.05,  
187 \*\*p<0.01, \*\*\*p<0.001.

188

189 **Statistical analysis**

190 Statistical analysis was performed using PRISM 8.0. For between-group or multiple-  
191 group categorical values comparison, two-sided chi-square tests or fisher's exact tests  
192 were used. Unpaired Student's t tests were used to compare group means of GMT and  
193 cell frequencies between two groups. The statistic details are depicted in the  
194 respective legends. A P value <0.05 was considered significant.

195

196 **Results**

197 **Demographic characteristics of breakthrough infection among 481 vaccinees**

198 Considering sociodemographic characteristics and exposure risk may also affect  
199 vaccine efficacy. In this study, therefore, we only focus on 7247 subjects who are  
200 public servants working for Hong Kong Government with comparable exposure risks.  
201 During the time from January to March 2022 (Omicron BA.2 was first found in mid-  
202 January 2022 and reached the peak in the early March as dominant strain in Hong  
203 Kong<sup>10,14</sup>), 5995 (82.7%) and 1012 (14%) study subjects had received two and three  
204 doses of vaccinations, respectively, resulting in an overall vaccination rate of 96.7%.  
205 During the recent fifth wave of COVID-19 in Hong Kong since the end of January  
206 2022<sup>10</sup>, 470 (6.5%) subjects joined our follow-up study. These subjects had received  
207 2-dose BNT162b2 (2×BNT, n=169), 3-dose BNT162b2 (3×BNT, n=168), 2-dose  
208 CoronaVac (2×CorV, n=34), 3-dose CoronaVac (3×CorV, n=67) or a heterologous  
209 booster dose of BNT162b2 after two prior doses of CoronaVac (2×CorV+1×BNT,  
210 n=32) (Table 1). Among these 470 subjects, a total of 141 (128/470, 27.2%) infections  
211 were confirmed by governmental reverse transcriptase-polymerase chain reaction  
212 (RT-PCR) or lateral flow-based rapid antigen test (RAT) during the study period.  
213 Gender difference in infection was not observed. Patients in 2×BNT were relatively  
214 younger than 3×BNT (2×BNT vs 3×BNT: median 32 years vs median 40 years,  
215 p<0.0001), likely indicating the hesitation for taking the third dose BNT162b2 among  
216 younger people. Patients who received two dose BNT162b2 were significantly  
217 younger than patients who received two dose CoronaVac (2×CorV vs 2×BNT: median  
218 41 years vs median 32 years, p=0.0006 (Table 1 and Supplementary Table 1), in line

219 with elderly people's preference of taking CoronaVac with less side effects. Moreover,  
220 a shorter median interval between latest vaccination and symptom onset was noticed  
221 for 3×BNT compared to 2×BNT (2×BNT vs 3×BNT: median 227 days vs median  
222 48.5 days,  $p<0.0001$ ) and for 3×CorV compared to 2×CorV (2×CorV vs 3×CorV:  
223 median 237 days vs median 56 days,  $p<0.0001$ ), respectively ([Table 1](#) and  
224 [Supplementary Table 1](#)).

225 Infections were found in both 2×BNT and 2×CorV groups with comparable incidence  
226 rates of 49.2% (78/169) and 44.1% (15/34) ( $p=0.828$ ), respectively. For the third dose  
227 vaccination groups, however, both third homologous BNT162b2 (3×BNT: 22/168,  
228 13.1%,  $p<0.0001$ ) and CoronaVac vaccination (3×CorV: 13/67, 19.4%,  $p=0.009$ )  
229 showed significantly reduced infection rate compared to 2×BNT and 2×CorV,  
230 respectively. The third heterologous BNT162b2 vaccination group (2×CorV+1×BNT)  
231 exhibited the lowest incident rate of 6.3% compared to the 2×CorV group ( $p<0.0001$ ).  
232 No statistical significance was found in the infection rates between any 3 dose groups,  
233 although 3×BNT and 2×CorV+1×BNT showed lower infection rates than 3×CorV  
234 ([Table 1](#) and [Supplementary Table 1](#)). Notably, most infected subjects developed mild  
235 disease, presenting three major symptoms including fever, cough and/or sore throat.  
236 Asymptomatic infections were only found in 2×BNT groups with a low frequencies of  
237 3.8% (3/78) ([Table 1](#)). The hospitalization rate was lower for 3×BNT (4.5%) than that  
238 of 3×CorV (15.4%) patients. Comparable illness duration was observed in 2×BNT  
239 (median 7 days) and 3×BNT (median 7.5 days) than those of 2×CorV (median 8 days)  
240 and 3×CorV (median 8 days). There was no significant difference in terms of duration  
241 time for viral antigen conversion to negativity between any groups ([Table 1](#) and  
242 [Supplementary Table 1](#)). These results suggested that the third dose vaccination by  
243 both BNT162b2 and CoronaVac reduced the incident rate of BA.2 infection and the  
244 third dose of BNT162b2 vaccination achieved a slightly lower hospitalization rate  
245 compared with the third CoronaVac.

246

#### 247 **Activation of Spike-specific memory B cells by the third vaccination**

248 To characterize the third dose vaccination-induced immune responses, we were able  
249 to obtain 92 blood samples donated by subjects in the same cohort including 41 from  
250 3×BNT, 28 from 3×CorV and 21 from 2×CorV+1×BNT at median 23, 56 and 47 days  
251 after the last vaccination, respectively, on January 27, 2022, right before BA.2  
252 outbreak in Hong Kong <sup>10,14</sup>([Supplementary Table 2](#)). Considering that memory B cell  
253 responses contribute to long-term immunological protection against COVID-19, we  
254 measured the frequency of Spike (S)-specific B cells (gated on  $CD19^+ IgG^+ IgD^-$  cells)  
255 after the third dose vaccination ([Figure 1A](#)). We found that the third dose of  
256 BNT162b2, either 3×BNT (mean 2.83%) or 2×CorV+1×BNT (mean 1.33%), induced

257 significant higher frequency of S-specific B cells than 3×CorV (mean 0.35%) ([Figure 1B](#))  
258 The significant boost effect of S-specific B cells was not observed by the third  
259 dose of CoronaVac ([Figure 1C](#)). Moreover, S-specific B cells elicited by the third dose  
260 of BNT162b2 reached the peak around 4-6 weeks and lasted for 3 months with a  
261 higher mean frequency than that of 3×CorV ([Figure 1D](#)). Further phenotypical  
262 analysis ([Figure 1E](#)) showed that the third dose of BNT162b2 resulted in elevated  
263 frequency of activated memory B cells (AM, CD21<sup>-</sup>CD27<sup>+</sup>) compared with 2×BNT or  
264 2×CorV whereas the third dose of CoronaVac enhanced the frequency of resting  
265 memory (RM) B cells ([Figure 1F](#)). The frequency of AM reached the peak at 4 weeks  
266 after the third booster and subsequently declined, accompanied by proportional  
267 increase of RM, in both 3×BNT and 2×CorV+1×BNT groups whereas AM remained  
268 unchanged in the 3×CorV group around two months ([Figure 1G](#)). These results  
269 demonstrated that S-specific memory B cells were predominantly activated by the  
270 third dose of BNT162b2 but insignificantly by the third dose of CoronaVac. However,  
271 the third BNT162b2 vaccination following 2 doses of CoronaVac-boosted S-specific  
272 B cells was comparable to those induced by three doses of BNT162b2, indicating that  
273 BNT162b2 can recall and augment CoronaVac-induced memory B cells.  
274

## 275 **The titer and breadth of neutralizing antibodies (Nabs) against a full panel of 276 current SARS-CoV-2 VOCs**

277 We then measured the titer and breadth of neutralizing antibodies (Nabs) against a  
278 full panel of current SARS-CoV-2 VOCs including D614G, Alpha, Beta, Delta and  
279 five Omicron variants (BA.1, BA.1.1, BA.2, BA.2.12.1 and BA.4/5) using the  
280 pseudovirus assay as we previously described<sup>7</sup>. We included data from subjects who  
281 previously received 2×BNT or 2×CorV at the activation (0-4 weeks) and memory (4-  
282 15 weeks) periods were used for comparison<sup>7</sup> ([Supplementary Table 2](#)). In line with  
283 significantly higher frequencies of S-specific B cells, both 3×BNT- and  
284 2×CorV+1×BNT-vaccinees displayed significantly stronger geometric mean 50%  
285 neutralizing titers (GMT) than 3×CorV against all variants tested ([Figure 2A](#)). The  
286 overall fold of neutralization resistance followed the order of Alpha < Beta < Delta <  
287 Omicron lineages in all three vaccine groups. Interestingly, Omicron BA.2 and  
288 BA.4/5 were more resistant to other VOCs with comparable reduction fold of GMT  
289 while BA.2.12.1 showed a downward resistance compared to BA.2 among all  
290 vaccinees ([Figure 2B](#)). According to the criteria that convalescent plasma antibody  
291 titer >1:320 were eligible initially for SARS-CoV-2 therapy<sup>15</sup> and considering that  
292 the prophylactic administration of convalescent plasma at 1:320 dilution hardly  
293 prevents SARS-CoV-2 infection in the hamster model<sup>16</sup>, we used 1:320 as the  
294 threshold to define NAb titer: less than 1:320 as “Low”, 1:320-1:1280 as “Medium”

295 and above 1: 1280 as “High” for proportion analysis (Figure 2C). We found that 61%  
296 of 3×BNT and 48% of 2×CorV+1×BNT vaccinees had high neutralization activity  
297 ( $>1280$ ) against D614G whereas none of 3×CorV vaccinees showed similar activities  
298 (Figure 2C). For BA.2, neither 3×BNT nor 2×CorV+1×BNT vaccinees had high  
299 neutralization activity, but 41% of 3×BNT and 29% of 2×CorV+1×BNT vaccinees  
300 still had medium neutralization activity (321-1280). Strikingly, 68% of 3×CorV  
301 vaccinees showed undetectable neutralization antibodies against BA.2. Similar  
302 proportion of GMT magnitude was observed in all vaccine groups against BA.4/5  
303 (Figure 2C). We also compared the binding antibody titers using different VOC spike  
304 protein as the coating antigen. Since spike-specific IgG titers were correlated  
305 positively with the neutralizing potency <sup>7,11</sup>, we found that sera binding titers of  
306 various VOCs in 3×BNT and 2×CorV+1×BNT groups were dramatically higher than  
307 those in 3×CorV group (Figure 2D). However, as vaccine-induced NAbs wane over  
308 time <sup>7</sup>, we further compared the NAb titer between 2-dose and 3-dose vaccinees at the  
309 similar time post-vaccination (without significant difference) (Supplementary Table 3).  
310 The third dose of BNT162b2 induced significant higher NAb titers against all VOCs  
311 in 3×BNT and 2×CorV+1×BNT groups compared to the 2-dose groups at both 0-4  
312 weeks (activation) and  $>4$  weeks (memory) after vaccination (Supplementary Table 3).  
313 In contrast to weak boost effects by the third dose of CoronaVac in the 3×CorV group,  
314 10.1-26.1-fold and 9.7-27.5-fold enhancements against Omicron variants at activation  
315 and memory phases were observed after the third heterologous BNT162b2  
316 (2×CorV+1×BNT), similar to the boost effects in the 3×BNT group (Supplementary  
317 Table 3). Apart from the significantly increased NAb titers, the responder rates of  
318 anti-BA.2 raised from 33% to 100%, from 0% to 38% and from 0% to 100% at 0-4  
319 weeks; from 39% to 100%, from 0% to 35% and from 0% to 100% at  $>4$  weeks in  
320 3×BNT, 3×CorV and 2×CorV+1×BNT groups, respectively, post the last vaccination.  
321 Consistently, BA.2 exhibited the most resistant profile to the boost effect, especially  
322 in 3×CorV (Supplementary Table 4). These results demonstrated that the third  
323 heterologous BNT162b2 vaccination in 2×CorV+1×BNT made significant  
324 improvement on not only bringing the anti-Omicron responder rate to 100% but also  
325 enhancing NAb titers close to 3×BNT at both 0-4 and  $>4$  weeks (Supplementary Table  
326 3 and Supplementary Table 4).  
327

### 328 **Spike-specific CD4 and CD8 T cell responses**

329 T cell responses may play an important role in control of SARS-CoV-2 infection  
330 <sup>11,12,17</sup>, CD4 and CD8 T cell responses to viral Spike (S) and nucleocapsid protein (NP)  
331 were determined by measuring intracellular IFN- $\gamma$ , TNF- $\alpha$  and IL-2 (Figure 3A and  
332 3E). Since many amino acid mutations were found in Omicron Spike protein, we

333 measured ancestral and Omicron S-specific T cell responses in parallel. Significantly  
334 higher mean frequencies of S-specific IFN- $\gamma^+$  CD4 T cells were found in 3×BNT  
335 (ancestral: 0.070% and Omicron: 0.080%) than those in 3×CorV (ancestral: 0.025%  
336 and Omicron: 0.023%) and in 2×CorV+1×BNT (ancestral: 0.034% and Omicron:  
337 0.030%) ([Figure 3B](#)). No significant differences of S-specific IFN- $\gamma^+$  and  
338 polyfunctional CD4 T cells were found between ancestral and Omicron ([Figure 3B](#)  
339 and [3C](#)). There were also no significant differences between 2×BNT and 3×BNT, and  
340 between 2×CorV and 3×CorV at activation period ([Figure 3D, left](#)). However, the  
341 third BNT162b2 vaccination in the 2×CorV+1×BNT group recalled significant higher  
342 frequency of S-specific IFN- $\gamma^+$  cells and responder rate than those in the 3×CorV  
343 group at the memory phase ([Figure 3D, right](#)). In addition, significantly higher mean  
344 frequencies of S-specific IFN- $\gamma^+$  CD8 T cells were found in 3×BNT (ancestral: 0.084%  
345 and Omicron: 0.098%) than those in 3×CorV (ancestral: 0.017% and Omicron:  
346 0.015%) and in 2×CorV+1×BNT (ancestral: 0.021% and Omicron: 0.013%) ([Figure](#)  
347 [3F](#)). The frequency of S-specific polyfunctional CD8 T cells were relatively higher in  
348 3×BNT than those in 3×CorV and 2×CorV+1×BNT ([Figure 3G](#)). Significant increase  
349 of S-specific IFN- $\gamma^+$  CD8 T cells was not observed in 3×BNT compared to that in  
350 2×BNT at acute ([Figure 3H, left](#)) but observed at the memory period ([Figure 3H,](#)  
351 [right](#)). CoronaVac, however, did not show similar activities. Besides the Spike, weak  
352 nucleocapsid protein (NP)-specific IFN- $\gamma^+$  CD4 and CD8 T cells were observed in 3  
353 groups although more CD4 T cell responders (67%) were found in 3×CorV  
354 ([Supplementary Figure 1](#)), indicating the pre-existing of cross-reactive NP-specific T  
355 cell responses in unexposed donors <sup>18</sup>. Considering that S-specific circulating T  
356 follicular helper cells (cTFH, CD45RA $^-$ CXCR5 $^+$ CD4 $^+$ ) are associated with potent  
357 NAb responses <sup>19</sup>, we found that the frequency of IFN- $\gamma^+$  cTFH cells were low with  
358 mean 0.033-0.048%, 0.01-0.023% and 0.017-0.059% in 3×BNT, 3×CorV and  
359 2×BNT+1×CorV groups, respectively ([Supplementary Figure 2A-2B](#)). However, the  
360 responder rate was higher in 3×BNT (20-22%) and 2×BNT+1×CorV (14-24%) than  
361 that of 3×CorV (7-10%) ([Supplementary Figure 2B](#)). These results indicated that the  
362 third dose of BNT162b2 vaccination significantly improved S-specific IFN- $\gamma^+$ ,  
363 polyfunctional and memory T cells in 3×BNT but not in 2×CorV+1×BNT and  
364 3×CorV.  
365

366 **Associations among humoral, cellular immune response and breakthrough**  
367 **infection features**

368 Immune correlation analysis was subsequently conducted for 23 antigen-specific  
369 measurements together with gender, age, time interval between second and third  
370 vaccinations, sampling time after third dose of vaccination and infection. Consistent

371 with the kinetics of AM proportion, S-specific AM correlated negatively with time  
372 after the third dose of vaccination in the 2×CorV+1×BNT group (Figure 4C). Positive  
373 correlations between S-specific B cells and NAbs were observed in both 3×BNT and  
374 2×CorV+1×BNT groups while the RM was positively associated with NAbs in the  
375 3×CorV group (Figure 4A-C, green rectangle). Consistently, significant positive  
376 correlations were found in NAbs titers against all 7 viral variants (Figure 4A-C,  
377 purple triangles). Since the third dose vaccination by BNT162b2 or CoronaVac did  
378 not improve S-specific CD4 T cell responses among 2×CorV vaccinees, positive  
379 correlations among S-specific CD4 T cells, S-specific B cells and NAbs were limited  
380 to the 3×BNT group (Figure 4A, red rectangle). However, positive correlations  
381 between S-specific cTFH cells and NAbs were observed in 3×BNT and  
382 2×CorV+1×BNT, but not in 3×CorV (Figure 4A-C, yellow rectangles). Interestingly,  
383 in the 3×BNT group, Omicron S-specific CD4 T cell and cTFH responses exhibited  
384 stronger correlation with S-specific B cell and the broadly NAbs than those with  
385 ancestral S-specific CD4 T cell and cTFH responses (Figure 4A, yellow rectangle).  
386 We then combined all three groups for overall analysis (Figure 4D). Strong positive  
387 correlations were consistently found in NAbs titers against all 7 viral variants (Figure  
388 4D, purple triangle). Both age and S-specific RM B cells were negatively correlated  
389 with NAb activity (Figure 4D, purple rectangle) whereas S-specific AM B cells were  
390 positively correlated with neutralizing activity (Figure 4D, green rectangle). Moreover,  
391 the frequency of S-specific AM B cells was significantly lower in infected vaccinees  
392 than uninfected vaccinees before vaccine-breakthrough infection (Figure 4E) whereas  
393 the anti-BA.2 NAb titer did not achieve statistical significance (Figure 4F). Notably,  
394 few vaccinees (2/12, 16.7%) with NAb titer higher than 1:320 became infected. We  
395 further analyzed the relationships between immune responses and clinical  
396 characteristics among our study subjects who were subsequently infected by BA.2  
397 (Figure 4G). NAb titer was negatively correlated with hospitalization rate (Figure 4G,  
398 purple rectangle), indicating the importance of NAb in reducing COVID-19 severity.  
399 Age was positively correlated with viral negative conversion time, suggesting a longer  
400 viral clearance time among older patients (Figure 4G, black square). Notably, IFN- $\gamma^+$   
401 CD4 T cells were negatively associated with age and viral negative conversion time  
402 (Figure 4G, red squares). In addition, hospitalization was negatively correlated with  
403 the interval between second and third dose of vaccinations and with the interval  
404 between third dose of vaccination and symptom onset, likely suggesting the  
405 importance of the optimal timing for the third dose vaccination (Figure 4G, black  
406 rectangle). These results demonstrated that the third dose vaccination-induced NAbs  
407 and T cell response contributed to reducing risk of severe clinical outcomes after  
408 infection.

409

410 **Immune responses after Omicron BA.2 breakthrough infection and the fourth**  
411 **vaccination**

412 Rapidly recalled antibody and T cell responses were observed in vaccine  
413 breakthrough infections by SARS-CoV-2 variants <sup>17,20-22</sup>. At median 137 (range 122-  
414 164) days post symptom onset (Supplementary Table 5), we able to harvest the blood  
415 sample from five 3×BNT, three 3×CorV and one 2×CorV+1×BNT subject who had a  
416 BA.2 breakthrough infections. Six 3×BNT, seven 3×CorV and ten 2×CorV+1×BNT  
417 subjects who never had infection were also included. For comparison, we also  
418 included three subjects who received the fourth vaccination with BNT162b2  
419 following three-dose CoronaVac (3×CorV+1×BNT) (Supplementary Table 5). We  
420 first measured the frequency of S-specific B cells and found that BA.2 S-specific B  
421 cells were consistently lower than ancestral S-specific B cells among all vaccinees no  
422 matter with or without BA.2 infection (2.2-3.1-fold and 1.1-2.3-fold difference among  
423 uninfected and infected vaccinees, respectively) (Figure 5A-C). Among uninfected  
424 vaccinees, the frequency of BA.2 S-specific B cells in 3×CorV group (mean 0.05%)  
425 was significantly lower than those in 3×BNT (mean 0.38%) and 2×CorV+1×BNT  
426 (mean 0.17%) groups (Figure 5B). Although BA.2 infection increased BA.2 S-  
427 specific B cells in 3×CorV (mean 0.18%), it was still significantly lower than those in  
428 3×BNT group (mean 0.53%) and lower than 3×CorV+1×BNT group (mean 0.48%)  
429 without significance (Figure 5C). In contrast to B cell response, all vaccinees showed  
430 similar CD4 and CD8 T cell responses to ancestral and Omicron Spike, and BA.2  
431 infection did not boost a higher T cell response than uninfected vaccinees (Figure 5D-  
432 I). Moreover, uninfected and infected 3×CorV showed lower T cell responses than  
433 those in 3×BNT and 3×CorV+1×BNT without significance (Figure 5F and 5I).  
434 Particularly, markedly higher CD8 T cells were found in 3×BNT uninfected vaccinees  
435 than those in 3×CorV and 2×CorV+1×BNT uninfected vaccinees even at a long term  
436 after vaccination (>4 months) (Figure 5H). These results indicated that BA.2 infection  
437 boosted cross-reactive B cells rather than T cells to ancestral and Omicron Spike.

438

439 **Neutralizing antibody titer after BA.2 breakthrough infection and the fourth**  
440 **vaccination**

441 Since broadly neutralizing activity would be boosted by an increased number of  
442 exposures to SARS-CoV-2 antigens (vaccination or infection) among vaccinees  
443 <sup>17,21,23,24</sup>, pairwise comparison of neutralizing activity was analyzed using the plasma  
444 sample collected before (1<sup>st</sup>) and after (2<sup>nd</sup>) BA.2 breakthrough infection. Three-dose  
445 and 4-dose uninfected vaccinees were also included (Supplementary Table 5).

446 Consistent to our previous findings in two-dose vaccinees<sup>7</sup>, NAb titer of uninfected  
447 vaccinees waned over time, especially when against BA.2.12.1 and BA.4/5 (Figure  
448 6A-E), but the waning effect was not observed in NAbs against D614G (Figure 6A).  
449 However, 100% and 90% of the uninfected 3xBNT and 2xCorV+1xBNT vaccinees  
450 were maintained measurable NAbs against all Omicron variants whereas more  
451 uninfected 3xCorV vaccinees (4/7) loosed neutralizing capacity against Omicron  
452 BA.4/5. Notably, the fourth vaccination can boost higher NAbs titers and responder  
453 rates for 3xCorV vaccinees (Figure 6A-E). Moreover, different 3-dose vaccinees after  
454 BA.2 breakthrough infection and 3xCorV+1xBNT vaccinees consistently exhibited a  
455 stronger GMT against BA.1 (3xBNT: 3653, 3xCorV: 582 and 2xCorV+1xBNT: 221)  
456 and BA.2 (3xBNT: 3005, 3xCorV: 742 and 2xCorV+1xBNT: 417) than those against  
457 BA.2.12.1 (3xBNT: 1857, 3xCorV: 531 and 2xCorV+1xBNT: 135) and BA.4/5  
458 (3xBNT: 957, 3xCorV: 200 and 2xCorV+1xBNT: 94) (Figure 6A-E). This boost  
459 effect by BA.2 breakthrough infection was more profound in 3xCorV vaccinees with  
460 the highest fold-change (up to 21.2-fold increased for BA.2) in GMT against Omicron  
461 sublineages (Figure 6A-E). The results indicated that BA.2 breakthrough infection  
462 and the fourth vaccination enhanced cross-neutralizing antibodies to Omicron  
463 sublineages in all vaccinees.

464

## 465 Discussion

466 Clinical trials have demonstrated that a third heterologous booster vaccination by  
467 EUA SARS-CoV-2 mRNA vaccines (BNT162b2 and mRNA-1273) increased  
468 neutralizing antibody titer accompanied by better prevention and lower disease  
469 severity than the initial two doses with BBIP-CorV or CoronaVac during the Gamma  
470 and Delta epidemics<sup>25-29</sup>. After the emergence of the Omicron variants, some cohort  
471 studies reported that Omicron BA.1 infection was associated with milder disease and  
472 shorter duration of clinical symptoms than Delta infection<sup>30-35</sup>.

473

474 The third vaccination was helpful in reducing the infection and hospitalization rates  
475 during the Delta and Omicron BA.1 prevalence in other countries<sup>25,36,37</sup>. Till now, the  
476 association between immune responses induced by the third vaccination and Omicron  
477 BA.2 breakthrough infection remains unknown. In this study, we investigated the  
478 immune responses of vaccinees after they received the third vaccination right before  
479 the explosive fifth wave of SARS-CoV-2 epidemic caused by Omicron BA.2 in Hong  
480 Kong<sup>10,14</sup>. We also followed up the infection status and clinical outcomes of our study  
481 subjects during the wave period. We found that the third dose of either BNT162b2 or  
482 CoronaVac led to significantly lower infection rates than those who received the  
483 standard 2-dose vaccination regimen, particularly in the heterologous

484 2×CorV+1×BNT group. Furthermore, the third BNT162b2 resulted in significantly  
485 higher rates of asymptomatic and lower rates of hospitalization than 3×CorV group.  
486 Our findings, therefore, provided critical knowledge on understanding the role of third  
487 vaccination-induced immune responses in protection against the globally spreading  
488 Omicron BA.2 infections.

489

490 Omicron BA.2 has higher transmissibility and immune evasion than Omicron BA.1  
491 <sup>38,39</sup>, explaining its rapid spread in Hong Kong and other places <sup>40,41</sup>. Since the end of  
492 January 2022, BA.2 has quickly dominated the fifth wave of SARS-CoV-2 epidemic  
493 in Hong Kong, where the universal masking policy remains unchanged, with a shorter  
494 doubling time of 1.28 days than 1.6-2.8 days of BA.1 <sup>10</sup>. BA.2 shares 21 mutations in  
495 the Spike with BA.1. Although Q496S and N501Y mutations are missing in the BA.2  
496 S-BRD domain, unique S371F, T376A, D405N and R408S mutations have been  
497 found <sup>39</sup>. Due to these mutations, we and others <sup>39,42</sup> demonstrated that NAb titers  
498 against BA.2 showed 0.97-1.18 and 1.14-1.42 time lower than those against BA.1 at  
499 0-4 weeks and >4 weeks after third vaccination by BNT162b2 or CoronaVac. Also,  
500 we consistently found that BA.2 confers the highest NAb resistance compared with  
501 other VOCs including BA.1 and BA.1.1 before emergence of BA.4/5. While 59-71%  
502 and 29-41% BNT162b2 booster recipients had low ( $IC_{50}$ : 20-320) and median ( $IC_{50}$ :  
503 321-1280) NAb titers against BA.2, 66% CoronaVac booster recipients had undetectable  
504 ( $IC_{50}<20$ ) NAb titers. Surprisingly, although the third BNT162b2 vaccination boosted  
505 higher anti-BA.2 NAb titer and responder rate as well as a more S-specific T cell  
506 responses than the third CoronaVac, there was no significant difference in incidence  
507 of breakthrough infections between 3×BNT and 3×CorV. Firstly, the majority of our  
508 vaccinees, including 3×BNT and 3×CorV, have a low neutralizing antibody titer at  
509 the time of exposure, rendering them susceptible to BA.2 breakthrough infection. Ten  
510 of twelve vaccinees who had  $IC_{50}<320$  NAb against BA.2 became infected, which is  
511 consistent to the animal study that the prophylactic administration of convalescent  
512 plasma at 1:320 dilution hardly prevents SARS-CoV-2 infection in hamster model <sup>16</sup>.  
513 Secondly, both CoronaVac and BNT162b2 hardly induce enough mucosal  
514 neutralizing antibody or T cell responses for prevention <sup>43</sup>, as Omicron replicates  
515 faster and stronger than wild type and Delta variant in the nasal and bronchial  
516 compartments but less efficiently in the lung parenchyma <sup>44-46</sup>. Critically, although  
517 CoronaVac displays lower immunogenicity than BNT162b2, it still induced memory  
518 B cell and T cell responses that can be recalled for protection as demonstrated in the  
519 3×CorV vaccinees with BA.2 breakthrough infection. Therefore, the recalled immune  
520 response, especially the comparable T cell responses, which are invoked by the BA.2  
521 breakthrough infection in participants who received different vaccine regimens.

522 In addition, three doses of either CoronaVac or BNT162b2 vaccines provided similar  
523 and high protection against Omicron infection-induced severe outcomes<sup>47,48</sup>. Such  
524 BA.2 infection-mediated immune activation might be even more profound among  
525 3×CorV vaccinees, resulting in significantly reduced infection and hospitalization  
526 rates compared with 2×CorV vaccinees. Therefore, when all vaccinees were analyzed  
527 together, we found that S-specific activated memory B cell subset was a significant  
528 factor in preventing BA.2 infection because these AM B cells could differentiate into  
529 long-lived plasma cells<sup>49</sup> and are associated with expansion of memory B cells, and  
530 the re-establishment of B cell memory after the third vaccination<sup>23,50</sup>. Moreover, T  
531 cell responses could be another protective factor because they may recognize mutated  
532 viral variants without significantly reducing the potency<sup>51</sup>. We found that both  
533 BNT162b2 and CoronaVac-induced T cell responses cross-reacted to Omicron S  
534 peptides with comparable activities to ancestral S<sup>52,53</sup>. Since S-specific T cells are  
535 associated with the control and clearance of the ongoing infection<sup>12</sup>, potent T cell  
536 responses correlated with fewer hospitalization among patients who received the third  
537 vaccination.

538 While we studied the BA.2 variant, the BA.2.12.1, BA.4, and BA.5 have raised and  
539 increased resistance compared to previous VOCs to vaccine-induced NAbs through  
540 the L452R/Q and F486V mutations in the Spike<sup>54-56</sup>. We confirmed that BA.2  
541 breakthrough infection and the fourth vaccination effectively boosts neutralizing  
542 antibody against BA.2.12.1 and BA.4/5. This can explain why BA.1/BA.2 infection in  
543 vaccinated persons were less at risk of BA.4/5 infection than individuals infected with  
544 a pre-Omicron VOCs<sup>57</sup>. However, BA.2 breakthrough infections mainly recalled  
545 vaccine-induced ancestral Spike-specific memory B cells, which may drive further  
546 mutation of virus and variant-associated reinfection<sup>55,58,59,60</sup>.

547 There are some limitations in our study. Firstly, most of our infected vaccinees were  
548 confirmed to have been infected by self-RAT, thus the effect of different vaccine  
549 regimens on controlling viral loads could not be determined. It remains necessary to  
550 compare the dynamics and magnitudes of the recalled immune responses among  
551 vaccinees with BA.2 breakthrough infection patients in the future. Secondly, it should  
552 be noted that the median interval time between the latest vaccination and symptom  
553 onset for the 2×BNT (227 days) and 2×CorV (237 days) groups was significantly  
554 longer than those for 3 dose vaccination groups, including 3×BNT (48.5 days),  
555 3×CorV (56 days) and 2×CorV+1×BNT (25.5 days). Although NAb potency wans  
556 over time<sup>7</sup>, we and others consistently found that timely boost vaccination not only  
557 restore waning NAb titers but also broaden the breadth of NAbs, which is able to  
558 cross-neutralize VOCs, including Omicron<sup>8,23,50,61</sup>. Thirdly, only one sample can be  
559 harvested from 2×CorV+1×BNT vaccinees with BA.2 infections. It's hard to

560 conclude the outcome of BNT162b2 booster for two-dose CoronaVac vaccinees  
561 during BA.2 breakthrough infection.

562

563 In summary, we report that 3×BNT and 3×CorV provided better protection against  
564 SARS-CoV-2 BA.2 than 2×BNT and 2×CorV. High frequencies of S-specific  
565 activated memory B cells and cross-reactive T cell responses induced by the third  
566 vaccination are critical for protection and illness reduction during the Omicron BA.2  
567 breakthrough infection. Enhanced neutralization induced by BA.2 breakthrough  
568 infection and the fourth vaccination may help to reduce the risk for infection of  
569 ongoing BA.2.12.1 and BA.4/5.

570

### 571 **Contributors**

572 Z.C. and R.Z. conceived and designed the study. R.Z. and Z.C. designed experiments,  
573 analyzed data, and wrote the manuscript. Z.C., R.Z. X.L., Y.-C.K., H.-Y.K., I.F.-N.H.,  
574 and K.-Y.Y coordinated donor recruitment and specimen collection. R.Z., N.L., H.H.,  
575 D.Y., Q.P. prepared the clinical sample. R.Z., N.L. and H.H. performed the flow  
576 cytometry analysis. R.Z., N.L. and D.Y. performed the pseudoviral neutralization  
577 assay. Z.D. did the correlation analysis.

578

### 579 **Data sharing**

580 The authors declare that the data supporting the findings of this study are available  
581 from the corresponding author upon request.

582

### 583 **Declaration of interests**

584 We declare no competing interests.

585

### 586 **Acknowledgements**

587 We sincerely thank Drs. David D. Ho and Pengfei Wang for the expression plasmids  
588 encoding for D614G, Alpha, Beta variants and Omicron sub-lineages, Dr. Linqi  
589 Zhang for the Delta variant plasmid, Mrs. Tszi-Tat Chan and Mark Wai-Kwan Woo for  
590 helping with the survey. We thank Mr. Shek-Hong Kwan for editorial work. This  
591 study was supported by the Hong Kong Research Grants Council Collaborative  
592 Research Fund (C7156-20G, C1134-20G and C5110-20G) and Health and Medical  
593 Research Fund (19181012, COVID1903010 and COVID190123); Wellcome Trust  
594 (P86433); Shenzhen Science and Technology Program (JSGG20200225151410198  
595 and JCYJ20210324131610027); the Health@InnoHK, Innovation and Technology  
596 Commission of Hong Kong and the China National Program on Key Research Project  
597 (2020YFC0860600, 2020YFA0707500 and 2020YFA0707504); Emergency Key

598 Program of Guangzhou Laboratory (EKGPG22-01) and donations from the Friends of  
599 Hope Education Fund. Z.C.'s team was also partly supported by the Hong Kong  
600 Theme-Based Research Scheme (T11-706/18-N).

601

602 **Figure legends**

603 **Figure 1. Activation of Spike-specific memory B cells by the third dose**  
604 **vaccination.** **(A)** Representative flow cytometry plots showing staining patterns of  
605 SARS-CoV-2 Spike probes on memory B cells ( $\text{IgD}^- \text{ IgG}^+ \text{ CD19}^+$ ). **(B)** Quantified  
606 results depict the percentage of Spike $^+$  B cells in 3xBNT (orange), 3xCorV (blue)  
607 and 2xCorV+1xBNT (purple) groups at median 23, 55 and 47 days after the third  
608 dose vaccination. **(C)** Comparisons of Spike $^+$  B cell frequency between 2-dose  
609 (sample collected at median 28 days after second vaccination for 2xBNT and 2xCorV  
610 groups) and 3-dose (sample collected at median 16, 20 and 18.5 days after third  
611 vaccination for 3xBNT, 3xCorV and 2xCorV+1xBNT groups, respectively) cohorts  
612 within 4 weeks after the last vaccinations. **(D)** Cross-sectional analysis of Spike-  
613 specific B cells by time after third dose vaccination. The connection lines indicate the  
614 mean value. **(E)** Phenotypes of Spike-specific B cells were defined by using CD21  
615 and CD27 markers. **(F)** Pie chart showed the proportion of activated (AM),  
616 tissue $\square$ like (TLM) memory, intermediate memory (IM) and resting-memory (RM) B  
617 cells. **(G)** Cross-sectional analysis of the percentage of AM (upper) and RM (bottom)  
618 in the Spike-specific B cells by time after third vaccination. The connection lines  
619 indicate the mean value.

620

621 **Figure 2. The titer and breadth of neutralizing antibodies (NAbs) against a full**  
622 **panel of current SARS-CoV-2 VOCs.** **(A)** The geometric mean titers (GMT) of  
623 neutralizing antibody ( $\text{IC}_{50}$  represents serum dilution required to achieve 50% virus  
624 neutralization) against nine SARS-CoV-2 strains were measured by pseudovirus-  
625 based assay among 3xBNT (orange), 3xCorV (blue) and 2xCorV+1xBNT vaccinees  
626 (purple) at median 23, 55 and 47 days after the third dose vaccination. Numbers under  
627 the x-axis indicate the responder rates ( $\text{IC}_{50}>20$  termed 'responder'). **(B)** GMT of  
628 neutralizing antibody were depicted on the top of Figure. The green lines indicate the  
629 change of GMT among variants. Numbers on the top of dots indicate the fold change  
630 of different VOC relative to D614G. Each symbol represents an individual donor with  
631 a line indicating the mean of each group. **(C)** Proportion of four neutralizing antibody  
632 magnitudes among vaccinees. **(D)** Levels of anti-Spike IgG (BAU/mL) of all  
633 vaccinated subjected are shown as mean  $\pm$  SEM. Dotted line represents value of 64.5  
634 BAU/mL used as the limit of detection (LOD). Statistics were generated by using 2-  
635 tailed Student's t test. \* $p<0.05$ ; \*\* $p<0.01$ ; \*\*\* $p<0.001$ .

636

637 **Figure 3. Spike-specific CD4 and CD8 T cell responses.** PBMCs were stimulated  
638 with the Spike peptide pools from ancestral or Omicron SARS-CoV-2 prior to  
639 intracellular cytokine staining assay. Representative flow cytometry plots showing  
640 single positive of IFN- $\gamma$ <sup>+</sup> or TNF- $\alpha$ <sup>+</sup> or IL-2<sup>+</sup> as well as the polyfunctional cells with  
641  $\geq 2$  cytokines among CD4<sup>+</sup> (A) and CD8<sup>+</sup> (E) T cells. Paired analysis of the  
642 frequencies of IFN- $\gamma$ -producing CD4<sup>+</sup> (B) and CD8<sup>+</sup> (F) T cells as well as the  
643 frequencies of polyfunctional CD4<sup>+</sup> (C) and CD8<sup>+</sup> (G) T cells to ancestral (open dots)  
644 or Omicron (solid dots) Spike among the 3×BNT (orange), 3×CorV (blue) and  
645 2×CorV+1×BNT (purple) vaccinees. The mean frequencies were depicted under the  
646 x-axis. The frequencies of IFN- $\gamma$ -producing CD4<sup>+</sup> (D) and CD8<sup>+</sup> (H) T cell to ancestral  
647 Spike among 2×BNT, 3×BNT, 2×CorV, 3×CorV and 2×CorV+1×BNT vaccinees at 0-  
648 4 weeks (left) and >4 weeks (right) periods after vaccinations. Undetected (UD): % of  
649 IFN- $\gamma$ <sup>+</sup> cells <0.00781%. The green lines in B, C, F, G indicate the change of mean  
650 responses to ancestral and Omicron Spike. The responses are depicted as the  
651 background-subtracted percentage of S-specific T cells (Background subtraction  
652 refers to the subtraction of the values of the negative control sample from the peptide-  
653 stimulated sample). The responder rates were depicted on the top of dots (% of IFN- $\gamma$ <sup>+</sup>  
654 cells >0.00781% termed ‘responder’ after subtracted from percentage of unstimulated  
655 control). Each symbol represents an individual donor with a line indicating the mean  
656 of each group. Statistics were generated by using 2-tailed Student’s t test. Ns: no  
657 significance, \*p<0.05; \*\*p<0.01; \*\*\*p<0.001.

658

659 **Figure 4. Associations among humoral, cellular immune response and**  
660 **breakthrough infection features.** Correlogram of immune responses among 3×BNT  
661 (A), 3×CorV (B), 2×CorV+1×BNT (C) and overall (D) vaccinees. Comparison of  
662 AM<sup>+</sup> B cell frequency on Spike-specific B cells (E) and neutralizing titer against  
663 BA.2 (F) between uninfected and infected vaccinees. Uninfected vaccinees, infected  
664 3×BNT vaccinees, infected 3×CorV vaccinees and infected 2×CorV+1×BNT  
665 vaccinees were presented as grey, orange, blue and purple dots, respectively. Statistics  
666 were generated by using 2-tailed Student’s t test. \*p<0.05. (G) Correlogram of clinical  
667 characteristics and immune responses among patients. Spearman rank order  
668 correlation values (r) are shown from red (-1.0) to blue (1.0); r values are indicated by  
669 color and square size. p values are indicated by white asterisks. The green rectangles  
670 denote SARS-CoV-2 Spike-specific B cell features, the purple triangle and rectangles  
671 denote anti-SARS-CoV-2 variants’ neutralizing antibody features, the red rectangles  
672 denote the SARS-CoV-2 Spike-specific CD4 T cell features, the yellow rectangle  
673 denotes the SARS-CoV-2 Spike-specific cTFH features and the black rectangles

674 denotes clinical characteristic features.

675

676 **Figure 5. Immune responses after Omicron BA.2 breakthrough infection and the**  
677 **fourth vaccination**

678 (A) Representative flow cytometry plots showing staining patterns of SARS-CoV-2  
679 ancestral or BA.2 Spike probes on memory B cells ( $\text{IgD}^- \text{ IgG}^+ \text{ CD19}^+$ ). (B-C)  
680 Quantified results depict the percentage of ancestral (empty) and BA.2 (solid) Spike $^+$   
681 B cells in uninfected (B) and infected (C) 3×BNT (orange), 3×CorV (blue),  
682 2×CorV+1×BNT (purple) and 3×CorV+1×BNT (grey) groups. The numbers above  
683 the x-axis indicate the fold-change in frequency of positive B cells to ancestral and  
684 BA.2 Spike. The numbers under x-axis indicate the mean frequencies of ancestral or  
685 BA.2-specific B cells. Undetected (UD): % of Spike $^+$  cells $<0.03125\%$ . (D and G)  
686 Representative flow cytometry plots showing the IFN- $\gamma^+$  cells among CD4 $^+$  (D) and  
687 CD8 $^+$  (G) T cells to negative control, ancestral Spike and Omicron Spike peptide  
688 pools. Quantified results depict the percentage of ancestral (empty) and Omicron  
689 (solid)-specific IFN- $\gamma^+$  cells in uninfected (E and H) and infected (F and I) 3×BNT  
690 (orange), 3×CorV (blue), 2×CorV+1×BNT (purple) and 3×CorV+1×BNT (grey)  
691 groups. The numbers above the figures indicate the fold-change in frequency of  
692 positive T cells to ancestral and BA.2 Spike. The numbers under x-axis indicate the  
693 mean frequencies of ancestral or Omicron-specific IFN- $\gamma^+$  cells T cells. Undetected  
694 (UD): % of IFN- $\gamma^+$  cells $<0.00781\%$ . Each symbol represents an individual donor.  
695 Statistics were generated by using 2-tailed Student's t test. Ns: no significance, \*  
696 p $<0.05$ ; \*\*p $<0.01$ .

697

698 **Figure 6. Neutralizing antibody titer after BA.2 breakthrough infection and the**  
699 **fourth vaccination. (A-E)** The neutralizing antibody ( $\text{IC}_{50}$  represents serum dilution

700 required to achieve 50% virus neutralization) against five SARS-CoV-2 strains were  
701 measured by pseudovirus-based assay among uninfected and infected 3×BNT  
702 (orange), 3×CorV (blue), 2×CorV+1×BNT (purple) and 3×CorV+1×BNT (grey)  
703 before (1<sup>st</sup>, empty dots) and after (2<sup>nd</sup>, solid dots) BA.2 infection or the fourth  
704 vaccination. Black dots and lines represent the breakthrough infection sample in each  
705 group. Numbers on the figure top indicate the fold-change in NAb titer between 1<sup>st</sup>  
706 and 2<sup>nd</sup> sample. Numbers under the x-axis indicate the geometric mean titers (GMT).  
707 Statistics were generated by using 2-tailed Student's t test. \*p $<0.05$ ; \*\*p $<0.001$ ; ns:  
708 not significant. (F-H) The ratio of SARS-CoV-2 VOC NAb  $\text{IC}_{50}$  normalized against  
709 the D614G NAb  $\text{IC}_{50}$ . Orange line, blue line and purple line represent uninfected  
710 3×BNT, 3×CorV and 2×CorV+1×BNT vaccinees. Black lines represent the infected  
711 vaccinees in each group. Numbers on the figure top indicate the ratio for

712 corresponding VOCs.

713

## 714 **References**

- 715 1. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2  
716 mRNA Covid-19 Vaccine. *N Engl J Med* 2020; **383**(27): 2603-15.
- 717 2. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273  
718 SARS-CoV-2 Vaccine. *N Engl J Med* 2021; **384**(5): 403-16.
- 719 3. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1  
720 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four  
721 randomised controlled trials in Brazil, South Africa, and the UK. *Lancet* 2021;  
722 **397**(10269): 99-111.
- 723 4. Tanriover MD, Doganay HL, Akova M, et al. Efficacy and safety of an  
724 inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a  
725 double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. *Lancet* 2021;  
726 **398**(10296): 213-22.
- 727 5. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated  
728 SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled,  
729 phase 1/2 trial. *Lancet Infect Dis* 2021; **21**(1): 39-51.
- 730 6. Abu-Raddad LJ, Chemaiteily H, Butt AA, National Study Group for C-V.  
731 Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351  
732 Variants. *N Engl J Med* 2021; **385**(2): 187-9.
- 733 7. Peng Q, Zhou R, Wang Y, et al. Waning immune responses against SARS-CoV-2  
734 variants of concern among vaccinees in Hong Kong. *EBioMedicine* 2022; **77**: 103904.
- 735 8. Perez-Then E, Lucas C, Monteiro VS, et al. Neutralizing antibodies against the  
736 SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus  
737 BNT162b2 booster vaccination. *Nat Med* 2022; **28**: 481-5.
- 738 9. Cheng SMS, Mok CKP, Leung YWY, et al. Neutralizing antibodies against the  
739 SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous  
740 CoronaVac or BNT162b2 vaccination. *Nat Med* 2022; **28**: 486-9.
- 741 10. Cheng VC, Ip JD, Chu AW, et al. Rapid spread of SARS-CoV-2 Omicron  
742 subvariant BA.2 in a single-source community outbreak. *Clin Infect Dis* 2022;  
743 **ciac203**.
- 744 11. Zhou R, To KK, Wong YC, et al. Acute SARS-CoV-2 Infection Impairs  
745 Dendritic Cell and T Cell Responses. *Immunity* 2020; **53**(4): 864-77 e5.
- 746 12. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. *Cell*  
747 2021; **184**(4): 861-80.
- 748 13. Wei T, Sikmo V. package “corrplot”: Visualization of a Correlation Matrix  
749 (Version 0.84). <https://github.com/taiyun/corrplot> 2017.

750 14. Mefsin YM, Chen D, Bond HS, et al. Epidemiology of Infections with SARS-  
751 CoV-2 Omicron BA.2 Variant, Hong Kong, January-March 2022. *Emerg Infect Dis*  
752 2022; **28**(9): 1856-8.

753 15. Wajnberg A, Amanat F, Firpo A, et al. Robust neutralizing antibodies to SARS-  
754 CoV-2 infection persist for months. *Science* 2020; **370**(6521): 1227-30.

755 16. Haagmans BL, Noack D, Okba NMA, et al. SARS-CoV-2 Neutralizing Human  
756 Antibodies Protect Against Lower Respiratory Tract Disease in a Hamster Model. *J*  
757 *Infect Dis* 2021; **223**(12): 2020-8.

758 17. Zhou R, To KK, Peng Q, et al. Vaccine-breakthrough infection by the SARS-  
759 CoV-2 omicron variant elicits broadly cross-reactive immune responses. *Clin Transl*  
760 *Med* 2022; **12**(1): e720.

761 18. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity  
762 in cases of COVID-19 and SARS, and uninfected controls. *Nature* 2020; **584**(7821):  
763 457-62.

764 19. Juno JA, Tan HX, Lee WS, et al. Humoral and circulating follicular helper T cell  
765 responses in recovered patients with COVID-19. *Nat Med* 2020; **26**(9): 1428-34.

766 20. Yu J, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron  
767 BA.1 and BA.2 Variants. *N Engl J Med* 2022.

768 21. Suntruwong N, Yorsaeng R, Puenpa J, et al. COVID-19 Breakthrough Infection  
769 after Inactivated Vaccine Induced Robust Antibody Responses and Cross-  
770 Neutralization of SARS-CoV-2 Variants, but Less Immunity against Omicron.  
771 *Vaccines (Basel)* 2022; **10**(3): 391.

772 22. Koutsakos M, Lee WS, Reynaldi A, et al. The magnitude and timing of recalled  
773 immunity after breakthrough infection is shaped by SARS-CoV-2 variants. *Immunity*  
774 2022; **55**(7): 1316-26 e4.

775 23. Muecksch F, Wang Z, Cho A, et al. Increased Memory B Cell Potency and  
776 Breadth After a SARS-CoV-2 mRNA Boost. *Nature* 2022;  
777 <https://doi.org/10.1038/s41586-022-04778-y>.

778 24. Walls AC, Sprouse KR, Bowen JE, et al. SARS-CoV-2 breakthrough infections  
779 elicit potent, broad, and durable neutralizing antibody responses. *Cell* 2022; **185**(5):  
780 872-80 e3.

781 25. Accorsi EK, Britton A, Fleming-Dutra KE, et al. Association Between 3 Doses of  
782 mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2  
783 Omicron and Delta Variants. *JAMA* 2022; **327**(7): 639-51.

784 26. Zeng G, Wu Q, Pan H, et al. Immunogenicity and safety of a third dose of  
785 CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim  
786 results from two single-centre, double-blind, randomised, placebo-controlled phase 2  
787 clinical trials. *Lancet Infect Dis* 2021; **22**: 483-95.

788 27. Moghnieh R, Mekdashi R, El-Hassan S, et al. Immunogenicity and  
789 reactogenicity of BNT162b2 booster in BBIBP-CorV-vaccinated individuals  
790 compared with homologous BNT162b2 vaccination: Results of a pilot prospective  
791 cohort study from Lebanon. *Vaccine* 2021; **39**(46): 6713-9.

792 28. Costa Clemens SA, Weckx L, Clemens R, et al. Heterologous versus  
793 homologous COVID-19 booster vaccination in previous recipients of two doses of  
794 CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single  
795 blind, randomised study. *Lancet* 2022; **399**(10324): 521-9.

796 29. Cerqueira-Silva T, Katikireddi SV, de Araujo Oliveira V, et al. Vaccine  
797 effectiveness of heterologous CoronaVac plus BNT162b2 in Brazil. *Nat Med* 2022; **28**:  
798 838-43.

799 30. Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk  
800 of hospital admission in individuals infected with SARS-CoV-2 during periods of  
801 omicron and delta variant dominance: a prospective observational study from the  
802 ZOE COVID Study. *Lancet* 2022; **399**: 1618-24.

803 31. Kim MK, Lee B, Choi YY, et al. Clinical Characteristics of 40 Patients Infected  
804 With the SARS-CoV-2 Omicron Variant in Korea. *J Korean Med Sci* 2022; **37**(3): e31.

805 32. Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of  
806 the SARS-CoV-2 omicron variant in South Africa: a data linkage study. *Lancet* 2022;  
807 **399**(10323): 437-46.

808 33. Maslo C, Friedland R, Toubkin M, Laubscher A, Akaloo T, Kama B.  
809 Characteristics and Outcomes of Hospitalized Patients in South Africa During the  
810 COVID-19 Omicron Wave Compared With Previous Waves. *JAMA* 2022; **327**(6):  
811 583-4.

812 34. Jassat W, Abdool Karim SS, Mudara C, et al. Clinical severity of COVID-19  
813 patients admitted to hospitals during the Omicron wave in South Africa. *medRxiv*  
814 2022: 2022.02.22.21268475.

815 35. Houhamdi L, Gautret P, Hoang VT, Fournier PE, Colson P, Raoult D.  
816 Characteristics of the first 1119 SARS-CoV-2 Omicron variant cases, in Marseille,  
817 France, November-December 2021. *J Med Virol* 2022; **94**(5): 2290-5.

818 36. Yoon SK, Hegmann KT, Thiese MS, et al. Protection with a Third Dose of  
819 mRNA Vaccine against SARS-CoV-2 Variants in Frontline Workers. *N Engl J Med*  
820 2022; **DOI: 10.1056/NEJMc2201821**.

821 37. Thompson MG, Natarajan K, Irving SA, et al. Effectiveness of a Third Dose of  
822 mRNA Vaccines Against COVID-19-Associated Emergency Department and Urgent  
823 Care Encounters and Hospitalizations Among Adults During Periods of Delta and  
824 Omicron Variant Predominance - VISION Network, 10 States, August 2021-January  
825 2022. *MMWR Morbidity and mortality weekly report* 2022; **71**(4): 139-45.

826 38. Barnes CO, Jette CA, Abernathy ME, et al. SARS-CoV-2 neutralizing antibody  
827 structures inform therapeutic strategies. *Nature* 2020; **588**(7839): 682-7.

828 39. Sho Iketani, Lihong Liu, Yicheng Guo, et al. Antibody evasion properties of  
829 SARS-CoV-2 Omicron sublineages. *Nature* 2022; **604**: 553-6.

830 40. Yamasoba D, Kimura I, Nasser H, et al. Virological characteristics of SARS-  
831 CoV-2 BA.2 variant. *bioRxiv* 2022: 2022.02.14.480335.

832 41. Lyngse FP, Kirkeby CT, Denwood M, et al. Transmission of SARS-CoV-2  
833 Omicron VOC subvariants BA.1 and BA.2: Evidence from Danish Households.  
834 *medRxiv* 2022: 2022.01.28.22270044.

835 42. Yu J, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron  
836 BA.1 and BA.2 Variants. *N Engl J Med* 2022; **386**: 1579-80.

837 43. Zhou D, Chan JF, Zhou B, et al. Robust SARS-CoV-2 infection in nasal  
838 turbinates after treatment with systemic neutralizing antibodies. *Cell Host Microbe*  
839 2021; **29**(4): 551-63 e5.

840 44. Hui KPY, Ho JCW, Cheung MC, et al. SARS-CoV-2 Omicron variant replication  
841 in human bronchus and lung ex vivo. *Nature* 2022; **603**(7902): 715-20.

842 45. Hui KPY, Ng KC, Ho JCW, et al. Replication of SARS-CoV-2 Omicron BA.2  
843 variant in ex vivo cultures of the human upper and lower respiratory tract.  
844 *EBioMedicine* 2022; **83**: 104232.

845 46. Shuai H, Chan JF, Hu B, et al. Attenuated replication and pathogenicity of  
846 SARS-CoV-2 B.1.1.529 Omicron. *Nature* 2022; **603**(7902): 693-9.

847 47. McMenamin ME, Nealon J, Lin Y, et al. Vaccine effectiveness of one, two, and  
848 three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong: a  
849 population-based observational study. *Lancet Infect Dis* 2022.

850 48. Yan VKCB, Wan EYFP, Ye XM, et al. Effectiveness of BNT162b2 and  
851 CoronaVac vaccinations against mortality and severe complications after SARS-CoV-  
852 2 Omicron BA.2 infection: a case-control study. *Emerg Microbes Infect* 2022: 1-48.

853 49. Lau D, Lan LY, Andrews SF, et al. Low CD21 expression defines a population of  
854 recent germinal center graduates primed for plasma cell differentiation. *Sci Immunol*  
855 2017; **2**(7): eaai8153.

856 50. Goel RR, Painter MM, Lundgreen KA, et al. Efficient recall of Omicron-reactive  
857 B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. *Cell* 2022.

858 51. Scully C, Georgakopoulou EA, Hassona Y. The Immune System: Basis of so  
859 much Health and Disease: 3. Adaptive Immunity. *Dent Update* 2017; **44**(4): 322-4, 7.

860 52. Gao Y, Cai C, Grifoni A, et al. Ancestral SARS-CoV-2-specific T cells cross-  
861 recognize the Omicron variant. *Nat Med* 2022; **28**: 472-6.

862 53. Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike  
863 cross-recognize Omicron. *Nature* 2022; **603**(7901): 488-92.

864 54. Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron  
865 subvariants BA.2.12.1, BA.4 and BA.5. *Nature* 2022; **608**(7923): 603-8.

866 55. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies  
867 elicited by Omicron infection. *Nature* 2022; **608**(7923): 593-602.

868 56. Tuekprakhon A, Nutalai R, Dijokait-Guraliuc A, et al. Antibody escape of  
869 SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. *Cell* 2022;  
870 **185**(14): 2422-33 e13.

871 57. Malato J, Ribeiro RM, Leite PP, et al. Risk of BA.5 Infection among Persons  
872 Exposed to Previous SARS-CoV-2 Variants. *N Engl J Med* 2022; **387**: 953-4.

873 58. Kaku CI, Bergeron AJ, Ahlm C, et al. Recall of preexisting cross-reactive B cell  
874 memory after Omicron BA.1 breakthrough infection. *Sci Immunol* 2022; **7**(73):  
875 eabq3511.

876 59. Quandt J, Muik A, Salisch N, et al. Omicron BA.1 breakthrough infection drives  
877 cross-variant neutralization and memory B cell formation against conserved epitopes.  
878 *Sci Immunol* 2022: eabq2427.

879 60. van Zelm MC. Immune memory to SARS-CoV-2 Omicron BA.1 breakthrough  
880 infections: To change the vaccine or not? *Sci Immunol* 2022; **7**(74): eabq5901.

881 61. Chu L, Vrbicky K, Montefiori D, et al. Immune response to SARS-CoV-2 after a  
882 booster of mRNA-1273: an open-label phase 2 trial. *Nat Med* 2022; **28**(5): 1042-9.  
883

884 **Supplementary materials**

885 **Supplementary Table 1. Significance in demographic characteristics among each**  
886 **vaccine cohort.**

887

888 **Supplementary Table 2. Characteristics of the third doses of SARS-CoV-2**  
889 **vaccinee cohorts.**

890

891 **Supplementary Table 3. Comparison in neutralizing antibody titers between 2-**  
892 **dose and 3-dose vaccinations.**

893

894 **Supplementary Table 4. Comparison in antibody responder rates between 2-dose**  
895 **and 3-dose vaccination.**

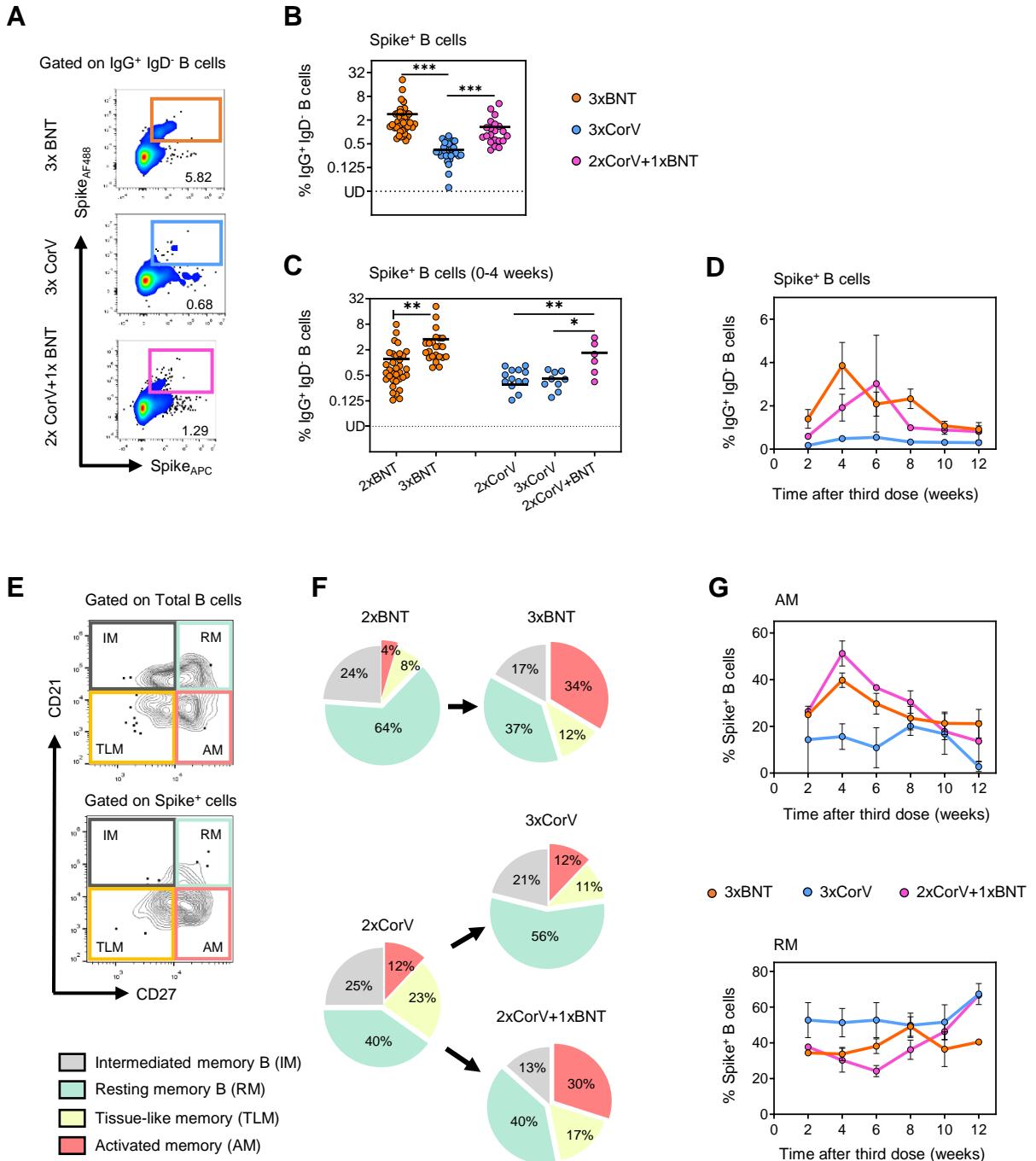
896

897 **Supplementary Table 5. Characteristics of three doses and 4 doses of SARS-CoV-**  
898 **2 vaccinees with or without BA.2 infection.**

899

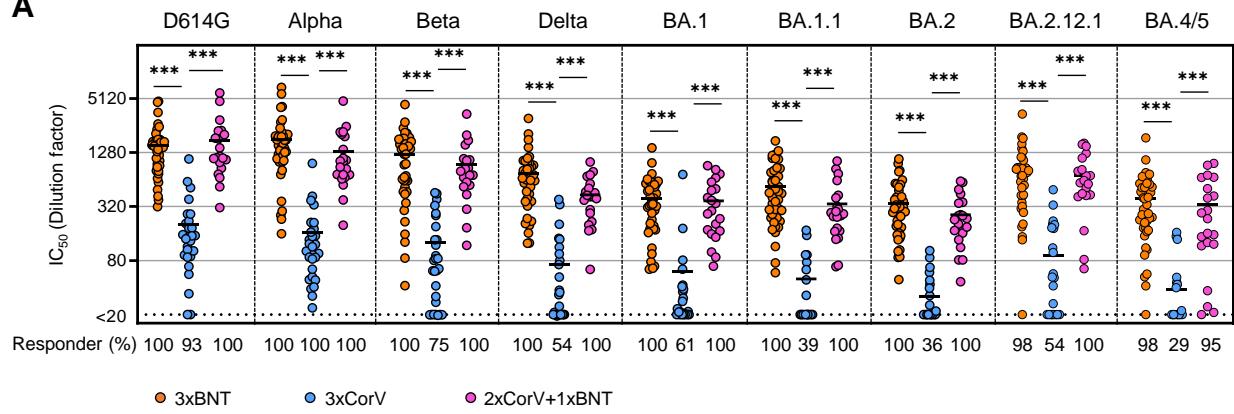
900 **Supplementary Figure 1. SARS-CoV-2 NP-specific T cell responses.** PBMCs from  
901 vaccinees were subjected to the intracellular cytokine staining assay against NP

902 peptide pool. IFN- $\gamma$ <sup>+</sup> cells were gated on CD4 (**A**) and CD8 (**B**) T cells, respectively.  
903 Quantified results depict the percentage of IFN- $\gamma$ <sup>+</sup> cells as background subtracted  
904 data from the same sample stimulated with negative control (anti-CD28/CD49d only).  
905 Each symbol represents an individual donor with a line indicating the mean of each  
906 group among the 3×BNT (orange), 3×CorV (blue) and 2×CorV+1×BNT (purple)  
907 vaccinees. The mean frequency of IFN- $\gamma$ <sup>+</sup> cells and responder rates were depicted  
908 under x-axis (% of IFN- $\gamma$ <sup>+</sup> cells>0.00781% termed ‘responder’ after subtracted from  
909 percentage of unstimulated control). Undetected (UD): % of IFN- $\gamma$ <sup>+</sup> cells<0.00781%.  
910

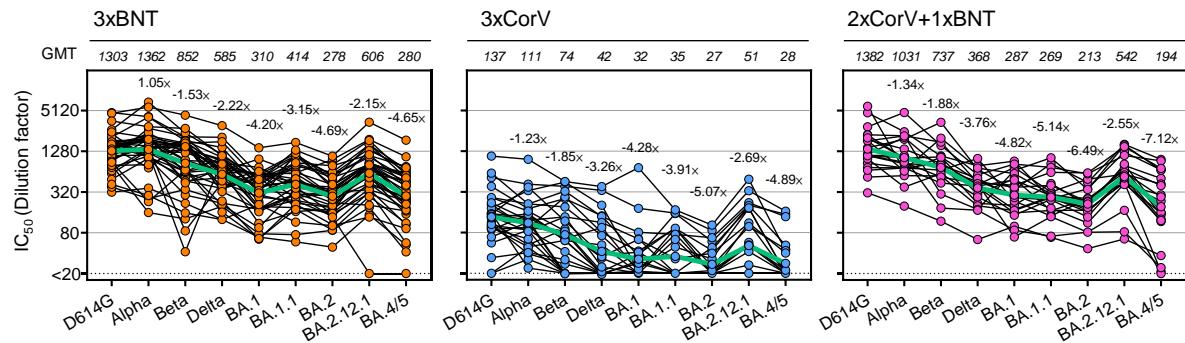

911 **Supplementary Figure 2. SARS-CoV-2 Spike-specific cTFH responses.** PBMCs  
912 from vaccinees were subjected to the intracellular cytokine staining assay against  
913 Spike peptide pools from ancestral or Omicron SARS-CoV-2. **(A)** IFN- $\gamma$ <sup>+</sup> cells were  
914 gated on cTFHs. **(B)** Quantified results depict the percentage of IFN- $\gamma$ <sup>+</sup> cells as  
915 background subtracted data from the same sample stimulated with negative control  
916 (anti-CD28/CD49d only). Each symbol represents an individual donor with a line  
917 indicating the mean of each group to ancestral (open dots) or Omicron (solid dots)  
918 Spike among the 3×BNT (orange), 3×CorV (blue) and 2×CorV+1×BNT (purple)  
919 vaccinees. The mean frequency of IFN- $\gamma$ <sup>+</sup> cells and responder rates were depicted  
920 under x-axis. Undetected (UD): % of IFN- $\gamma$ <sup>+</sup> cells<0.00781%. Statistics were  
921 generated by using 2-tailed Student’s t test. Ns: no significanceNs: no significance.

**Table 1. Demographic characteristics of breakthrough infection among 470 vaccinees**

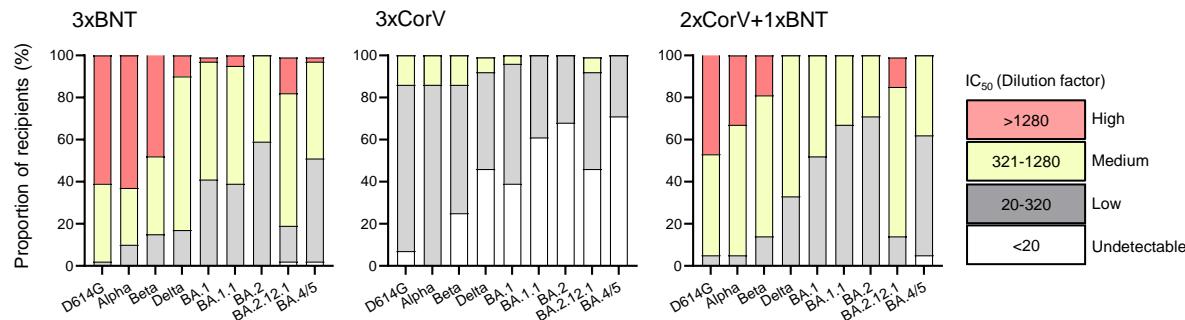
| Vaccinations                                                                                       | 2xBNT<br>(n=169)  | 3xBNT<br>(n=168)  | 2xCorV<br>(n=34) | 3xCorV<br>(n=67) | 2xCorV+1xBNT<br>(n=32) |
|----------------------------------------------------------------------------------------------------|-------------------|-------------------|------------------|------------------|------------------------|
| Infection rate %<br>(No. patient/Total No.)                                                        | 49.2%<br>(78/169) | 13.1%<br>(22/168) | 44.1%<br>(15/34) | 19.4%<br>(13/67) | 6.3%<br>(2/32)         |
| Patients                                                                                           | (n=78)            | (n=22)            | (n=15)           | (n=13)           | .                      |
| Age, year<br>(ranges in parentheses)                                                               | 32<br>(24-58)     | 40<br>(27-60)     | 41<br>(24-64)    | 50<br>(20-62)    | 47.5<br>(37-58)        |
| Gender                                                                                             |                   |                   |                  |                  |                        |
| Male (% of all participants)                                                                       | 60 (48.8%)        | 14 (12.3%)        | 9 (42.9%)        | 8 (18.2%)        | 2 (7.1%)               |
| Female (% of all participants)                                                                     | 18 (39.1%)        | 8 (14.8%)         | 6 (46.2%)        | 5 (21.7%)        | 0 (0%)                 |
| Median interval days<br>between latest vaccination<br>and symptom onset (ranges<br>in parentheses) | 227<br>(140-332)  | 48.5<br>(10-111)  | 237<br>(52-341)  | 56<br>(7-109)    | 25.5<br>(10-41)        |
| Asymptomatic rate %<br>(No. Asymptomatic<br>patient/No. total patient)                             | 3.8%<br>(3/78)    | 0%<br>(0/22)      | 0 %<br>(0/15)    | 0%<br>(0/13)     | 0%<br>(0/2)            |
| Disease severity                                                                                   | Mild              | Mild              | Mild             | Mild             | Mild                   |
| Number of symptoms<br>(ranges in parentheses)                                                      | 4<br>(0-6)        | 3<br>(1-5)        | 3<br>(1-6)       | 2<br>(1-5)       | 3.5<br>(3-5)           |
| Presentation to hospital %<br>(No. patients presenting to<br>hospital/No. total patient)           | 19.2%<br>(15/78)  | 4.5%<br>(1/22)    | 20%<br>(3/15)    | 15.4%<br>(2/13)  | 50%<br>(1/2)           |
| Duration of illness, days<br>(ranges in parentheses)                                               | 7<br>(0-19)       | 7.5<br>(2-19)     | 8<br>(6-21)      | 8<br>(2-14)      | 9.5<br>(2-17)          |
| The interval days between<br>symptom onset and two<br>negative RAT                                 | 8<br>(1-20)       | 9<br>(6-13)       | 8<br>(6-12)      | 9<br>(3-14)      | 8<br>(5-11)            |


Values displayed are medians, with ranges in parentheses

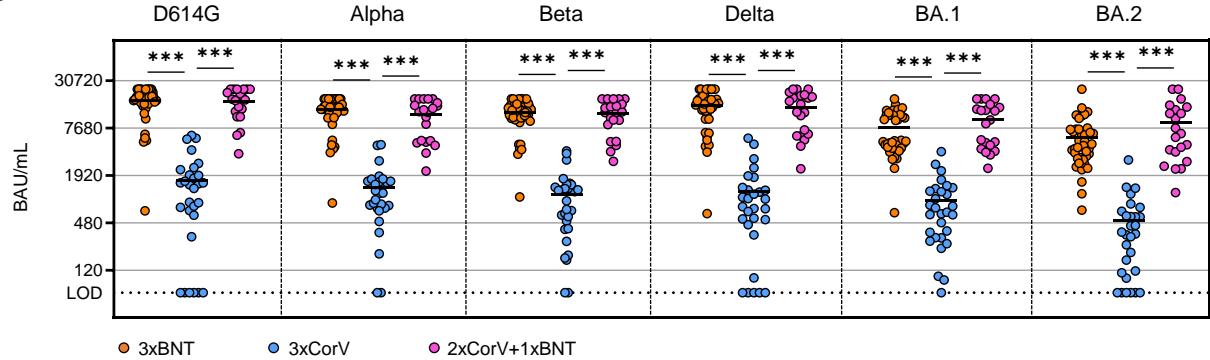
## Figure 1



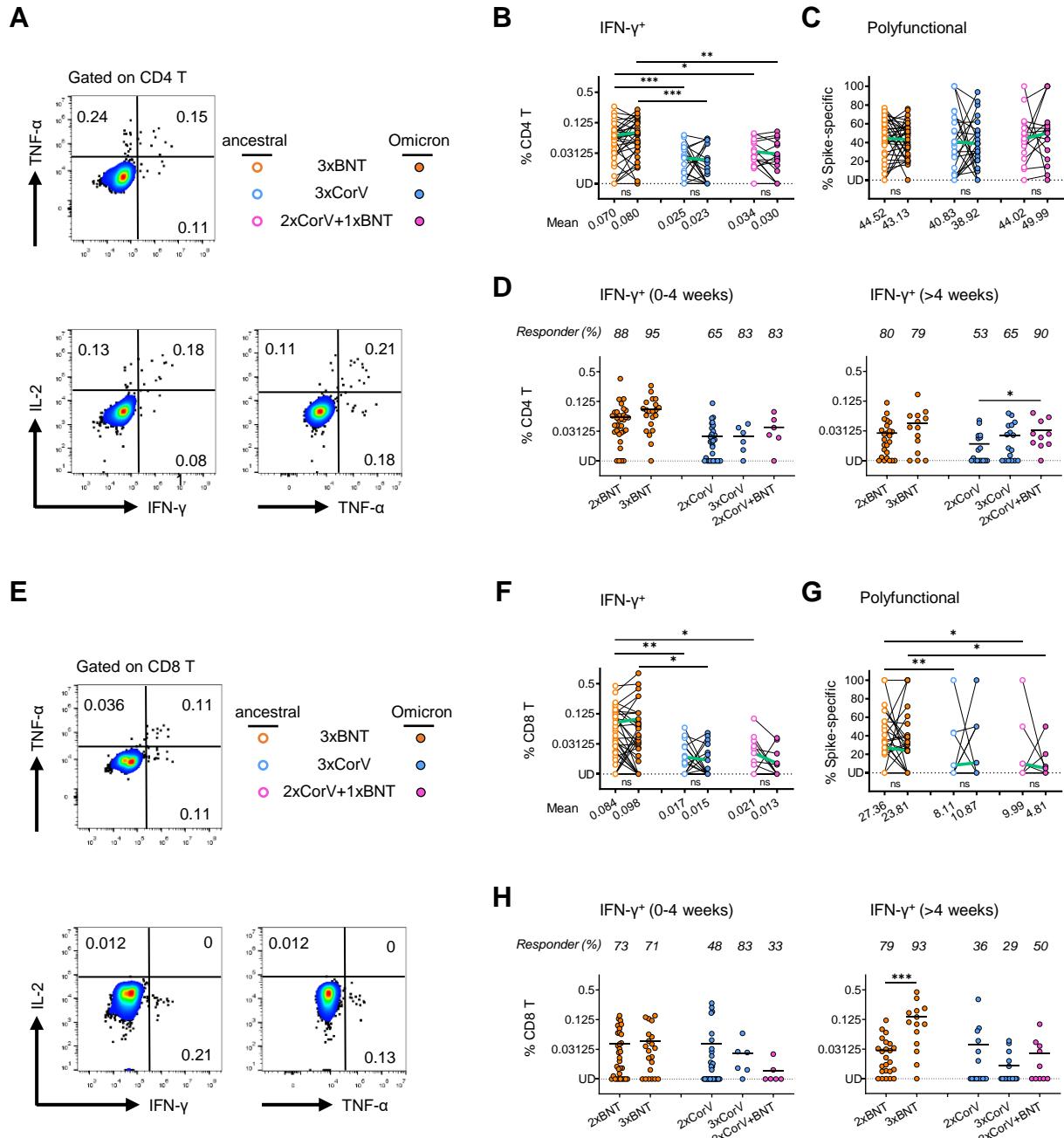

## Figure 2


**A**

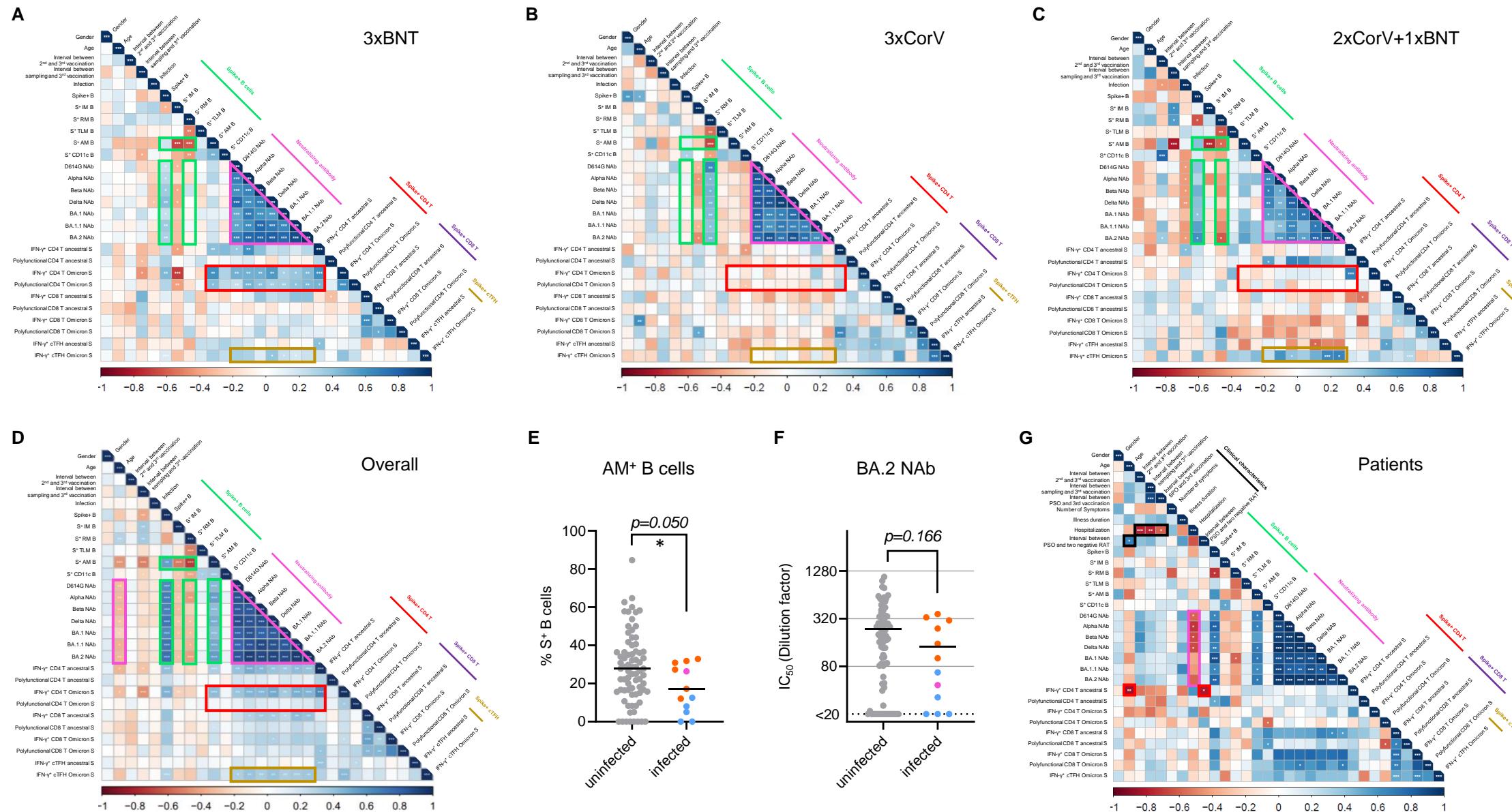



**B**



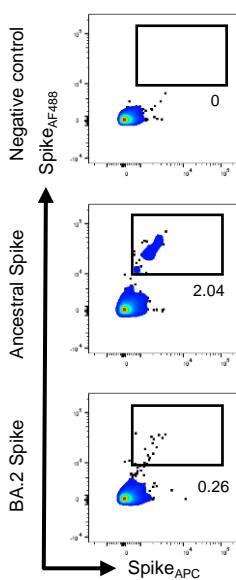

**C**



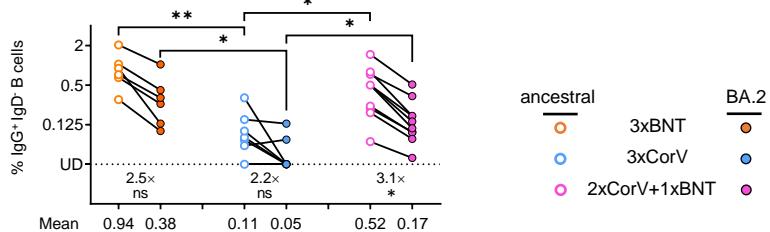

**D**



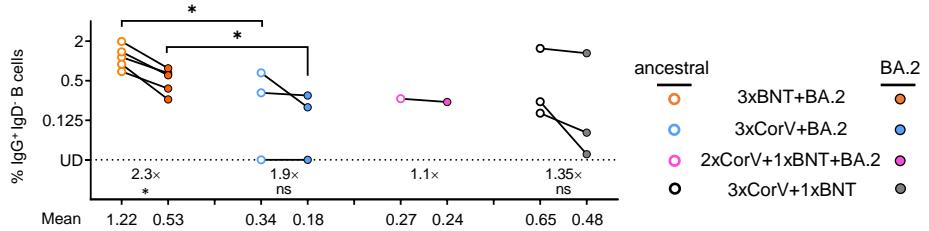
## Figure 3



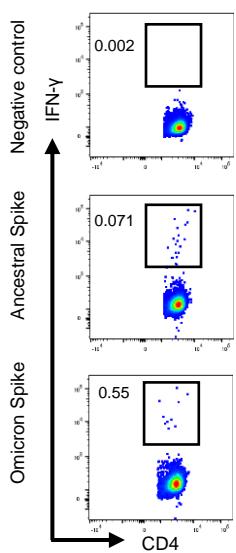

**Figure 4**



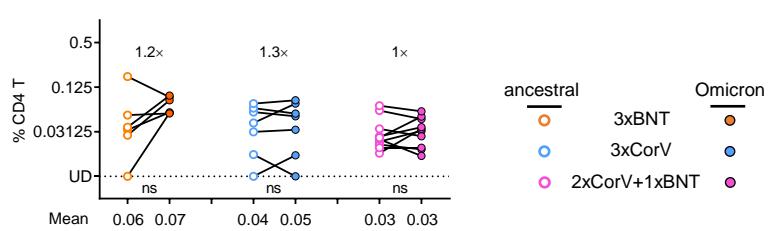

## Figure 5


### A Gated on IgG<sup>+</sup> IgD<sup>-</sup> B cells

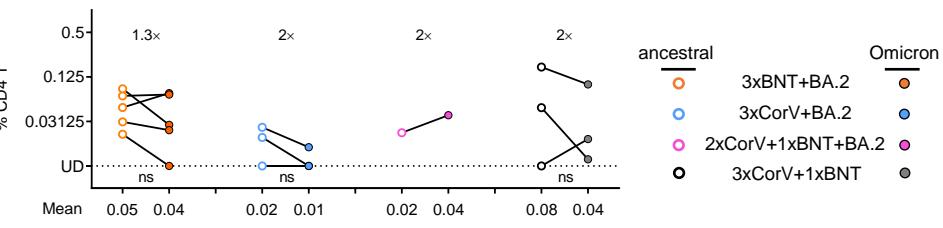



### B Spike<sup>+</sup> B cells (Uninfected)

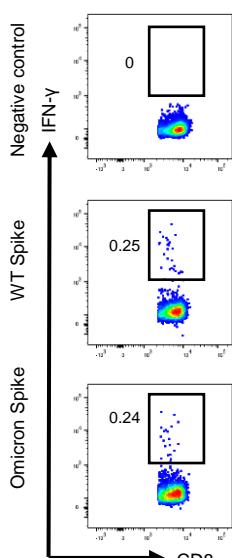



### C Spike<sup>+</sup> B cells (Infected & 4-dose)

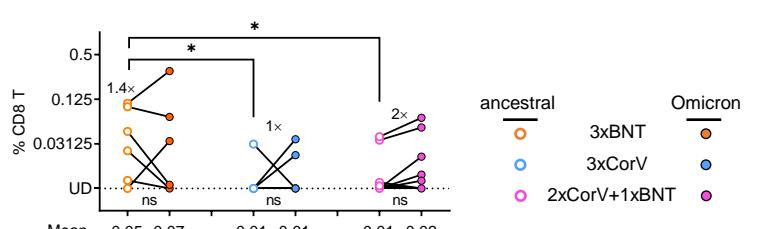



### D Gated on CD4 T

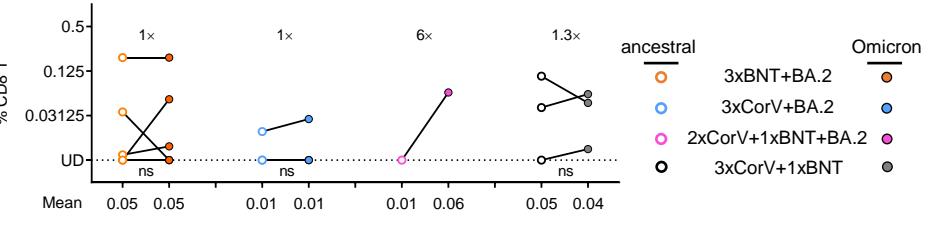



### E IFN- $\gamma$ <sup>+</sup> CD4 T (Uninfected)

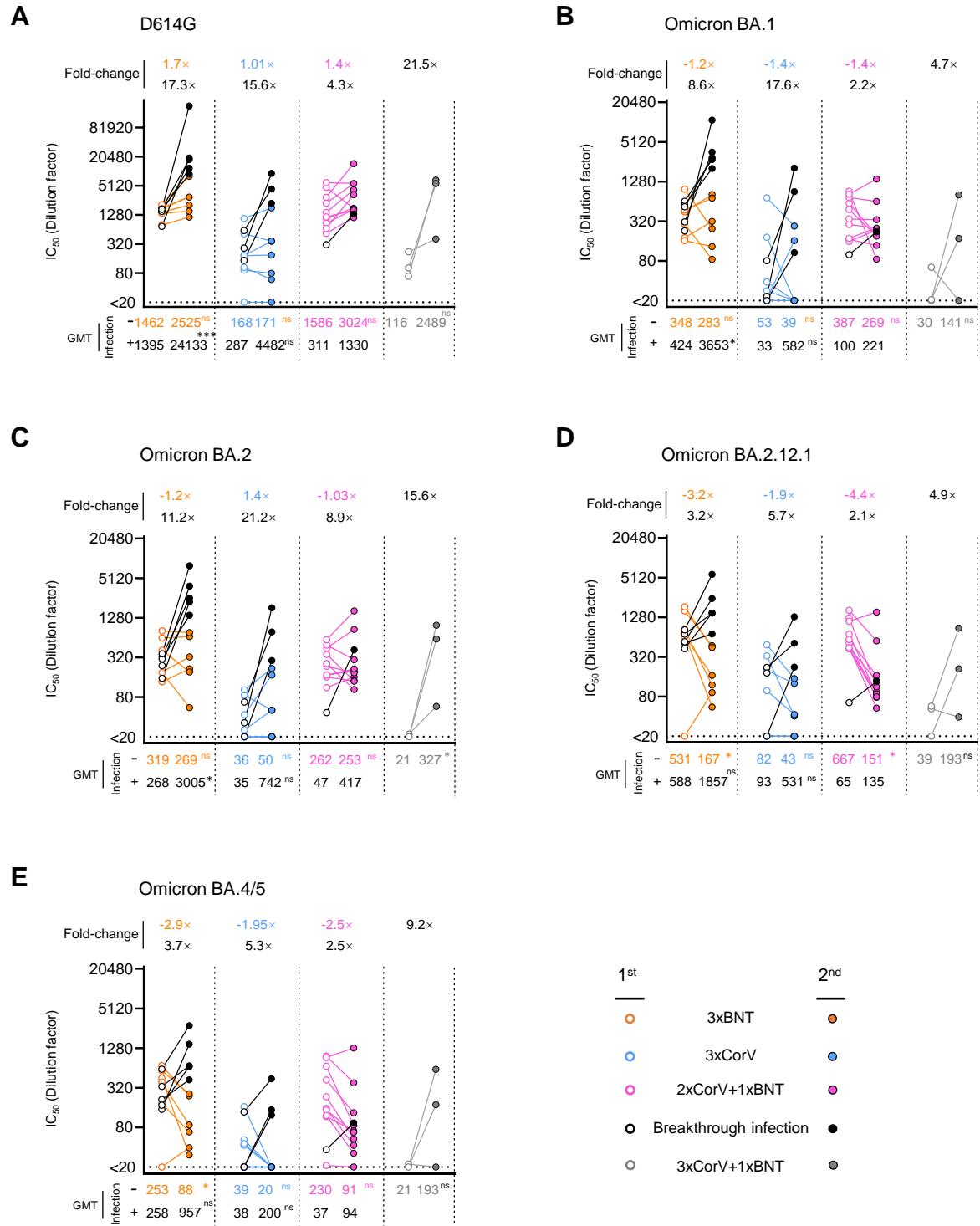



### F IFN- $\gamma$ <sup>+</sup> CD4 T (Infected & 4-dose)




### G Gated on CD8 T




### H IFN- $\gamma$ <sup>+</sup> CD8 T (Uninfected)



### I IFN- $\gamma$ <sup>+</sup> CD8 T (Infected & 4-dose)



## Figure 6



**Supplementary Table 1. Significance in demographic characteristics among each vaccine cohort.**

|                                                                            | P value              |                        |                       |                       |                                  |                                  |                                 |
|----------------------------------------------------------------------------|----------------------|------------------------|-----------------------|-----------------------|----------------------------------|----------------------------------|---------------------------------|
|                                                                            | 2×BNT<br>vs<br>3×BNT | 2×CorV<br>vs<br>3×CorV | 2×CorV<br>vs<br>2×BNT | 3×CorV<br>vs<br>3×BNT | 2×CorV<br>+1×BNT<br>vs<br>2×CorV | 2×CorV<br>+1×BNT<br>vs<br>3×CorV | 2×CorV<br>+1×BNT<br>vs<br>3×BNT |
| Infection rate %                                                           | <0.0001              | 0.009                  | 0.828                 | 0.22                  | <0.0001                          | 0.159                            | 0.426                           |
| Age                                                                        | <0.0001              | 0.2654                 | 0.0006                | 0.1024                | 0.6595                           | 0.9274                           | 0.4714                          |
| Gender                                                                     | 0.21                 | 1.0                    | 0.294                 | 1.0                   | 0.515                            | 0.524                            | 1.0                             |
| Median interval days<br>between latest<br>vaccination and symptom<br>onset | <0.0001              | <0.0001                | 0.4355                | 0.3926                | 0.0027                           | 0.1598                           | 0.2162                          |
| Asymptomatic rate %                                                        | 0.821                | ns                     | 1.0                   | ns                    | ns                               | ns                               | ns                              |
| Number of symptoms                                                         | 0.3009               | 0.2634                 | 0.7435                | 0.6130                | 0.8218                           | 0.3983                           | 0.5026                          |
| Presentation to hospital %                                                 | 0.183                | 1.0                    | 1.0                   | 0.541                 | 0.426                            | 0.371                            | 0.163                           |
| Duration of illness, days                                                  | 0.8024               | 0.4392                 | 0.1780                | 0.8306                | 0.9264                           | 0.6639                           | 0.8108                          |
| The interval days between<br>symptom onset and two<br>negative RAT         | 0.9501               | 0.474                  | 0.3277                | 0.8324                | 0.9645                           | 0.7541                           | 0.5315                          |

**Supplementary Table 2. Characteristics of the two and three doses of SARS-CoV-2 vaccinee cohorts who included for comparison of immune responses**

| Characteristics                                    | 2xBNT<br>(n=27) | 2xCorV<br>(n=16) | 3xBNT<br>(n=41)  | 3xCorV<br>(n=28) | 2xCorV+1xBNT<br>(n=21) |
|----------------------------------------------------|-----------------|------------------|------------------|------------------|------------------------|
| Age                                                | 30 (22-66)      | 27 (22-33)       | 46 (27-55)       | 51 (40-58)       | 47 (32-53)             |
| Gender                                             |                 |                  |                  |                  |                        |
| Male (n)                                           | 11              | 10               | 29               | 15               | 19                     |
| Female (n)                                         | 16              | 6                | 12               | 13               | 2                      |
| Days between the 1st and 2nd dose                  | 21 (20-31)      | 28 (22-35)       | 23 (21-36)       | 28 (28-71)       | 29 (28-97)             |
| Days between the 2nd and 3rd dose                  | -               | -                | 236<br>(180-283) | 236 (191-287)    | 240 (189-284)          |
| Days between last vaccination and blood collection | 31 (7-47)       | 27 (10-105)      | 23 (7-75)        | 56 (13-77)       | 47 (7-77)              |
| Number of Infection after last vaccination         | 0               | 0                | 6                | 5                | 1                      |

Values displayed are medians, with ranges in parentheses

**Supplementary Table 3. Comparison in neutralizing antibody titers between 2-dose and 3-dose vaccinations.**

| Vaccinations                        | Homologous BNT162b2                |                  |         | Homologous CoronaVac               |               |        | Heterologous BNT162b2              |          |
|-------------------------------------|------------------------------------|------------------|---------|------------------------------------|---------------|--------|------------------------------------|----------|
|                                     | 2xBNT                              | 3xBNT            |         | 2xCorV                             | 3xCorV        |        | 2xCorV+1xBNT                       |          |
| 0-4 weeks after vaccination         | n=9                                | n=24             |         | n=9                                | n=8           |        |                                    | n=6      |
| Median time (days) post-vaccination | 14 (7-26)                          | 16 (7-28)        | ns      | 25 (10-28)                         | 20 (13-28)    | ns     | 18.5 (7-24)                        | ns       |
|                                     | †NAb IC <sub>50</sub> GMT (95% CI) | ‡Fold            |         | †NAb IC <sub>50</sub> GMT (95% CI) | €Fold         |        | †NAb IC <sub>50</sub> GMT (95% CI) | δFold    |
| D614G                               | 736 (334-1621)                     | 1393 (1061-1830) | 1.9 ns  | 80 (39-165)                        | 181 (106-308) | 2.3 ns | 1242 (481-3204)                    | 15.6 **  |
| Alpha                               | 589 (242-1434)                     | 1545 (1099-2171) | 2.6 ns  | 80 (30-215)                        | 90 (43-185)   | 1.1 ns | 1000 (387-2582)                    | 12.5 **  |
| Beta                                | 143 (41-491)                       | 923 (608-1400)   | 6.5 **  | 24 (15-38)                         | 109 (49-244)  | 4.5 *  | 788 (253-2459)                     | 32.8 **  |
| Delta                               | 241 (86-677)                       | 586 (425-807)    | 2.4 ns  | 28 (20-38)                         | 46 (19-116)   | 1.6 ns | 324 (123-852)                      | 11.6 *** |
| BA.1                                | 66 (32-140)                        | 295 (215-404)    | 4.5 **  | 22 (18-28)                         | 36 (20-66)    | 1.6 ns | 238 (105-535)                      | 10.8 *   |
| BA.1.1                              | 30 (15-58)                         | 411 (287-589)    | 12.1 ** | 21 (19-22)                         | 58 (27-124)   | 2.8 ** | 257 (106-626)                      | 12.2 **  |
| BA.2                                | 43 (17-109)                        | 273 (202-370)    | 13.7 ** | 20 (20-20)                         | 28 (17-46)    | 1.4 ns | 202 (87-465)                       | 10.1 *** |
| BA.2.12.1                           | 50 (20-126)                        | 707 (514-971)    | 14.1 ** | 20 (20-20)                         | 65 (26-164)   | 3.3 *  | 521 (155-1744)                     | 26.1 **  |
| BA.4/5                              | 67 (24-187)                        | 339 (232-496)    | 5.1 *   | 20 (20-20)                         | 37 (17-81)    | 1.9 ns | 298 (37-1062)                      | 14.9 **  |
| >4 weeks after vaccination          | n=18                               | n=17             |         | n=7                                | n=20          |        |                                    | n=15     |
| Median time (days) post-vaccination | 31 (30-47)                         | 45 (30-75)       | ns      | 40 (32-105)                        | 66 (30-77)    | ns     | 59 (35-77)                         | ns       |
|                                     | †NAb IC <sub>50</sub> GMT (95% CI) | ‡Fold            |         | †NAb IC <sub>50</sub> GMT (95% CI) | €Fold         |        | †NAb IC <sub>50</sub> GMT (95% CI) | δFold    |
| D614G                               | 399 (297-536)                      | 1106 (832-1471)  | 2.8 *** | 21 (25-105)                        | 122 (77-194)  | 5.8 ns | 1443 (1018-2044)                   | 68.7 **  |
| Alpha                               | 687 (44-1051)                      | 1140 (760-1709)  | 1.7 ns  | 44 (20-96)                         | 121 (82-179)  | 2.8 ns | 1044 (726-1501)                    | 23.7 **  |
| Beta                                | 132 (72-243)                       | 762 (448-1296)   | 5.8 *** | 20 (20-20)                         | 64 (38-107)   | 3.2 ns | 718 (503-1025)                     | 35.9 *** |
| Delta                               | 110 (79-153)                       | 584 (407-839)    | 5.3 *** | 23 (16.8-32)                       | 41 (26-63)    | 1.8 ns | 387 (293-511)                      | 16.8 *** |
| BA.1                                | 37 (24-58)                         | 326 (219-484)    | 8.8 *** | 20 (20-20)                         | 31 (21-46)    | 1.6 ns | 310 (203-473)                      | 15.5 *** |
| BA.1.1                              | 31 (22-41)                         | 284 (485-435)    | 9.2 *** | 20 (20-20)                         | 29 (21-40)    | 1.5 ns | 274 (186-402)                      | 13.7 **  |
| BA.2                                | 28 (21-38)                         | 284 (199-406)    | 10.1*** | 20 (20-20)                         | 27 (21-34)    | 1.4 ns | 218 (152-311)                      | 10.9 **  |
| BA.2.12.1                           | 36 (25-53)                         | 488 (285-836)    | 13.6*** | 20 (20-20)                         | 47 (28-78)    | 2.4 ns | 550 (361-838)                      | 27.5 *** |
| BA.4/5                              | 36 (23-56)                         | 214 (135-340)    | 5.9 *** | 20 (20-20)                         | 25 (20-32)    | 1.3 ns | 193 (104-357)                      | 9.7 *    |

<sup>†</sup>The neutralizing antibody titer was measured as the geometric mean titer (GMT) and 95% confidence interval (95% CI) of the 50% inhibitory concentrations (IC<sub>50</sub>) against the series SARS-CoV-2 variants.

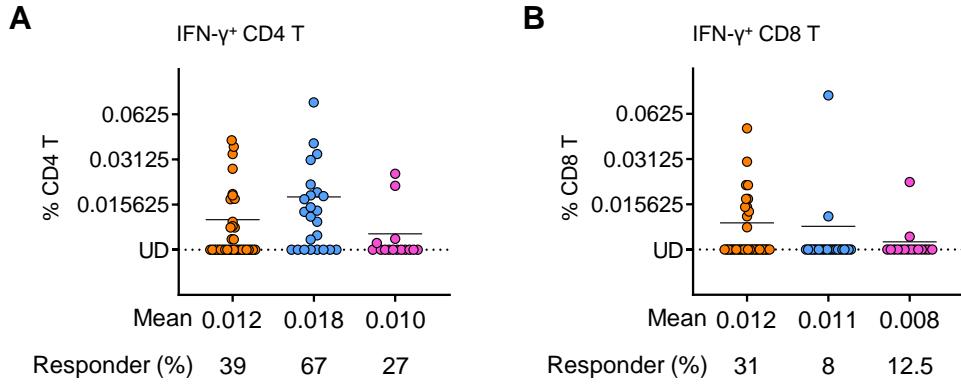
<sup>‡</sup>Fold indicates the change of neutralizing antibody titers in 3xBNT relative to 2xBNT.

<sup>€</sup>Fold indicates the change of neutralizing antibody titers in 3xCorV relative to 2xCorV.

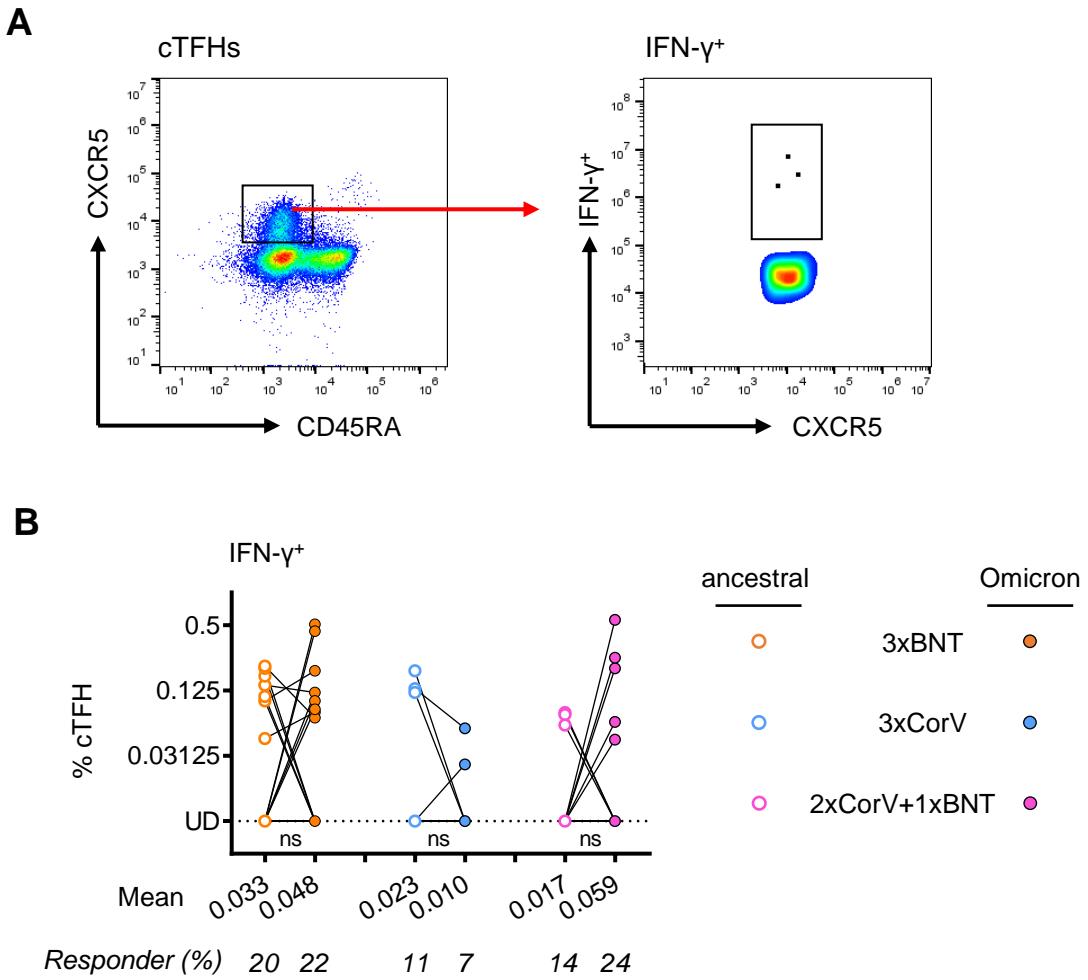
<sup>δ</sup>Fold indicates the change of neutralizing antibody titers in 2xCorV+1xBNT relative to 2xCorV.

Significant differences in neutralizing antibody titers between 2-dose and 3-dose were performed using the 2-tailed Student's t test.

ns: no significance; \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.001.


**Supplementary Table 4. Comparison in antibody responder rates between 2-dose and 3-dose vaccination.**

| Vaccinations                                                | Homologous BNT162b2 |             | Homologous CoronaVac |             | Heterologous BNT162b2 |
|-------------------------------------------------------------|---------------------|-------------|----------------------|-------------|-----------------------|
|                                                             | 2xBNT               | 3xBNT       | 2xCorV               | 3xCorV      | 2xCorV+1xBNT          |
| 0-4 weeks after vaccination                                 |                     |             |                      |             |                       |
| Median time (days) post-vaccination                         | 14 (7-26)           | 16 (7-28)   | 25 (10-28)           | 20 (13-28)  | 18.5 (7-24)           |
| Responder rate % (No. participants with response/Total No.) |                     |             |                      |             |                       |
| D614G                                                       | 100 (9/9)           | 100 (24/24) | 89 (8/9)             | 100 (8/8)   | 100 (6/6)             |
| Alpha                                                       | 100 (9/9)           | 100 (24/24) | 67 (6/9)             | 100 (8/8)   | 100 (6/6)             |
| Beta                                                        | 67 (6/9)            | 100 (24/24) | 11 (1/9)             | 88 (7/8)    | 100 (6/6)             |
| Delta                                                       | 89 (8/9)            | 100 (24/24) | 56 (5/9)             | 63 (5/8)    | 100 (6/6)             |
| BA.1                                                        | 67 (6/9)            | 100 (24/24) | 11 (1/9)             | 88 (7/8)    | 100 (6/6)             |
| BA.1.1                                                      | 22 (2/9)            | 100 (24/24) | 11 (1/9)             | 63 (5/8)    | 100 (6/6)             |
| BA.2                                                        | 33 (3/9)            | 100 (24/24) | 0 (0/9)              | 38 (3/8)    | 100 (6/6)             |
| BA.2.12.1                                                   | 67 (6/9)            | 100 (24/24) | 0 (0/9)              | 63 (5/8)    | 100 (6/6)             |
| BA.4/5                                                      | 56 (5/9)            | 100 (24/24) | 0 (0/9)              | 38 (3/8)    | 100 (6/6)             |
| >4 weeks after vaccination                                  |                     |             |                      |             |                       |
| Median time (days) post-vaccination                         | 31 (30-47)          | 45 (30-75)  | 40 (32-105)          | 66 (30-77)  | 59 (35-77)            |
| Responder rate % (No. participants with response/Total No.) |                     |             |                      |             |                       |
| D614G                                                       | 100 (18/18)         | 100 (17/17) | 86 (6/7)             | 90 (18/20)  | 100 (15/15)           |
| Alpha                                                       | 100 (18/18)         | 100 (17/17) | 71 (5/7)             | 100 (20/20) | 100 (15/15)           |
| Beta                                                        | 89 (16/18)          | 100 (17/17) | 0 (0/7)              | 70 (14/20)  | 100 (15/15)           |
| Delta                                                       | 94 (17/18)          | 100 (17/17) | 71 (5/7)             | 50 (10/20)  | 100 (15/15)           |
| BA.1                                                        | 50 (9/18)           | 100 (17/17) | 0 (0/7)              | 50 (10/20)  | 100 (15/15)           |
| BA.1.1                                                      | 39 (7/18)           | 100 (17/17) | 0 (0/7)              | 30 (6/20)   | 100 (15/15)           |
| BA.2                                                        | 39 (7/18)           | 100 (17/17) | 0 (0/7)              | 35 (7/20)   | 100 (15/15)           |
| BA.2.12.1                                                   | 56 (10/18)          | 94 (16/17)  | 0 (0/7)              | 50 (10/20)  | 100 (15/15)           |
| BA.4/5                                                      | 33 (6/18)           | 94 (16/17)  | 0 (0/7)              | 25 (5/20)   | 93 (14/15)            |


**Supplementary Table 5. Characteristics of three doses and four doses of SARS-CoV-2 vaccinees with or without BA.2 infection**

| Characteristics                                                                  | 3xBNT<br>(n=11)    |                  | 3xCorV<br>(n=10) |                  | 2xCorV+1xBNT<br>(n=11) |               | 3xCorV+1xBNT<br>(n=3) |  |
|----------------------------------------------------------------------------------|--------------------|------------------|------------------|------------------|------------------------|---------------|-----------------------|--|
|                                                                                  | Without<br>(n=6)   | With<br>(n=5)    | Without<br>(n=7) | With<br>(n=3)    | Without<br>(n=10)      | With<br>(n=1) | Without<br>(n=3)      |  |
| BA.2 infection                                                                   |                    |                  |                  |                  |                        |               |                       |  |
| Age                                                                              | 35<br>(30-42)      | 40<br>(40-49)    | 50<br>(42-57)    | 50<br>(48-58)    | 46<br>(32-52)          | 37            | 53<br>(50-56)         |  |
| Gender                                                                           |                    |                  |                  |                  |                        |               |                       |  |
| Male (n)                                                                         | 4                  | 4                | 3                | 1                | 9                      | 1             | 2                     |  |
| Female (n)                                                                       | 2                  | 1                | 4                | 2                | 1                      | 0             | 1                     |  |
| Days between last vaccination and 1 <sup>st</sup> blood collection               | 31.5<br>(14-56)    | 31<br>(14-59)    | 56<br>(20-70)    | 47<br>(35-70)    | 38.5<br>(14-77)        | 7             | 63<br>(30-73)         |  |
| Days between last vaccination and 2 <sup>nd</sup> blood collection               | 210.5<br>(193-235) | 210<br>(193-238) | 235<br>(199-249) | 226<br>(214-249) | 217.5<br>(193-256)     | 186           | 40<br>(14-47)         |  |
| Days between symptom onset last vaccination and 2 <sup>nd</sup> blood collection | -                  | 134<br>(133-148) | -                | 147<br>(123-165) | -                      | 145           | -                     |  |

Values displayed are medians, with ranges in parentheses



**Supplementary Figure 1. SARS-CoV-2 NP-specific T cell responses.** PBMCs from vaccinees were subjected to the intracellular cytokine staining assay against NP peptide pool. IFN- $\gamma$ <sup>+</sup> cells were gated on CD4 (A) and CD8 (B) T cells, respectively. Quantified results depict the percentage of IFN- $\gamma$ <sup>+</sup> cells as background subtracted data from the same sample stimulated with negative control (anti-CD28/CD49d only). Each symbol represents an individual donor with a line indicating the mean of each group among the 3xBNT (orange), 3xCorV (blue) and 2xCorV+1xBNT (purple) vaccinees. The mean frequency of IFN- $\gamma$ <sup>+</sup> cells and responder rates were depicted under x-axis (% of IFN- $\gamma$ <sup>+</sup> cells > 0.00781% termed 'responder' after subtracted from percentage of unstimulated control). Undetected (UD): % of IFN- $\gamma$ <sup>+</sup> cells < 0.00781%.



**Supplementary Figure 2. SARS-CoV-2 spike-specific cTFH responses.** PBMCs from vaccinees were subjected to the intracellular cytokine staining assay against Spike peptide pools from ancestral or Omicron SARS-CoV-2. **(A)** IFN- $\gamma^+$  cells were gated on cTFHs. **(B)** Quantified results depict the percentage of IFN- $\gamma^+$  cells as background subtracted data from the same sample stimulated with negative control (anti-CD28/CD49d only). Each symbol represents an individual donor with a line indicating the mean of each group to ancestral (open dots) or Omicron (solid dots) Spike among the 3xBNT (orange), 3xCorV (blue) and 2xCorV+1xBNT (purple) vaccinees. The mean frequency of IFN- $\gamma^+$  cells and responder rates were depicted under x-axis. Undetected (UD): % of IFN- $\gamma^+$  cells < 0.00781%. Statistics were generated by using 2-tailed Student's t test. Ns: no significanceNs: no significance.