

Title: A comparison of fecal glucocorticoid metabolite concentration and gut microbiota diversity in bonobos (*Pan paniscus*)

Authors: Alexana J. Hickmott^{1,2}, Klaree J. Boose¹, Monica L. Wakefield³, Colin M. Brand^{4,5}, J. Josh Snodgrass^{1,6}, Nelson Ting^{1,7}, Frances J. White¹

Affiliations: ¹Department of Anthropology, University of Oregon, ²Population Health, Texas Biomedical Research Institute, ³Sociology, Anthropology, and Philosophy, Northern Kentucky University, ⁴Department of Epidemiology and Biostatistics, University of California, San Francisco, ⁵Bakar Computational Health Sciences Institute, University of California, San Francisco, ⁶Global Health Biomarker Lab, University of Oregon, ⁷ Institute of Ecology and Evolution, University of Oregon

Corresponding Author: Alexana J. Hickmott, ahickmott@txbiomed.org

Repositories: This Targeted Locus Study project has been deposited at DDBJ/EMBL/GenBank under the accession KFUK00000000. The version described in this paper is the first version, KFUK01000000, see also:

https://www.ncbi.nlm.nih.gov/biosample?Db=biosample&DbFrom=bioproject&Cmd=Link&LinkName=bioproject_biosample&LinkReadableName=BioSample&ordinalpos=1&IdsFromResult=794787

GenBank information, SUBID = SUB10902613, BioProject = PRJNA794787, BioSample = SAMN24657338; Accession = KFUK00000000, and Organism = gut metagenome to find the data.

Acknowledgments

We want to thank the following people without whom this work would not be possible: Jef Dupain, Hugues Akpona, and the African Wildlife Foundation, Dipon Bomposo, Beken Bompoma, Teddy Bofaso, Christian Djambo, Mathieu Esaola, Bellevie Iyambe, Augustin Lofili, Isaac Lokoli, Gedeon Lokofo, Thomas Lokuli, Joel Bontambe, Abdulay Bokela, Papa Siri, Paco Bertolani, Ian Takaoka, and many others who generously provided both logistical support and friendship in the field. Additionally, we want to thank Diana Christie and the Molecular Anthropology laboratory group members for their helpful discussions through all stages of this research.

Funding Sources

We would like to acknowledge the many funding agencies that have supported this research. The 2017 field season was funded thanks to a grant from the Leakey Foundation to MLW, grants, and fellowships from Northern Kentucky University to MLW, a Professional Development grant from a National Geographic grant to CMB (WW-099ER-17), and a Global Oregon Award to CMB. Grants and fellowships funded the lab work from Northern Kentucky University to MLW, a University of Oregon Gary Smith Summer Development grant, a University of Oregon Department of Anthropology Research grant to AJH, and a University of Oregon Faculty Research Award to FJW.

Graphical Abstract: See PDF

Legend: We compared the bonobo gut microbiota to fecal glucocorticoid metabolite concentrations (FGMC). FGMC did not explain alpha diversity, but FGMC explained ~1.5% of the variation in beta diversity.

Abstract

Sex, age, diet, stress, and social environment have all been shown to influence the gut microbiota. In several mammals, including humans, increased stress is related to decreasing gut microbial diversity and may differentially impact specific taxa. Recent evidence from gorillas shows fecal glucocorticoid metabolite concentration (FGMC) did not significantly explain gut microbial diversity, but it was significantly associated with the abundance of the family Anaerolineaceae. These patterns have yet to be examined in other primates, like bonobos (*Pan paniscus*). We compared FGMC to 16S rRNA amplicons for 201 bonobo fecal samples collected

across five months to evaluate the impact of stress, measured with FGMC, on the gut microbiota.

Alpha diversity measures (Chao's and Shannon's indexes) were not significantly related to FGMC. FGMC explained 0.08% of the variation in beta diversity for Jensen-Shannon and 1.27% for weighted UniFrac but was not significant for unweighted UniFrac. We found that genus *SHD-231*, a member of the family Anaerolinaceae had a significant positive relationship with FGMC. These results suggest that bonobos are relatively similar to gorillas in alpha diversity and family Anaerolinaceae responses to FGMC, but different from gorillas in beta diversity.

Members of the family Anaerolinaceae may be differentially affected by FGMC across great apes. FGMC appears to be context dependent and may be species-specific for alpha and beta diversity but this study provides an example of consistent change in two African apes. Thus, the relationship between physiological stress and the gut microbiome may be difficult to predict, even among closely related species.

Keywords: microbiota, stress, bonobo, fecal glucocorticoid metabolites, cortisol

1 **Introduction**

2 The gastrointestinal tract (gut) microbiota play essential roles in host nutrition and health
3 across mammals [1]–[3]. Perturbations and dysbiosis to gut microbial communities have been
4 linked to diseases like obesity, diabetes, irritable bowel disorders, and certain cancers in humans
5 [4]–[8]. At the same time, physiological stress, hereafter referred to as stress, has been found to
6 have a negative effect on the gastrointestinal tract and associated microbiota [9]. The definition
7 of stress is a threat to homeostasis, which can be acute or chronic [10]. Chronic stress is stress
8 that is experienced over a longer time frame (e.g., days to years), while acute stress often only
9 lasts for several minutes to hours [11], [12]. As used in the human and non-human primate
10 (NHP) literature, stress often refers to psychosocial stress or stress caused by a response to social
11 stimuli that disrupts the normal physiological equilibrium. We will be using stress to refer to
12 chronic stress, including psychosocial stress and other types of stress like dietary stress.
13 However, determining the cause of stress can be difficult, and a very fine level of both
14 behavioral and biomarker data is needed to determine the source of stress. Therefore, we will be
15 only referring to chronic stress broadly when saying stress. Stress has been linked to dysbiosis,
16 or a disruption to the homeostasis of the microbial community, in the gut microbiota in several
17 mammalian taxa, including humans [13]–[17], and has also been implicated in mediating the
18 communication between a host and their commensal gut microbiota [18], [19]. The
19 gastrointestinal tract and its associated microbiota play essential roles in host nutrition and health
20 across mammals [1]–[3].

21 Perturbations and dysbiosis to gut microbial communities have been linked to diseases
22 like obesity, diabetes, irritable bowel disorders, and certain cancers in humans [4]–[8]. At the
23 same time, stress has been found to have a negative effect on the gastrointestinal tract and

24 associated microbiota for humans in the clinical setting [9]. Stress hormones have been
25 proposed as a mechanism for communication along the gut-brain axis [15]. The gut-brain axis is
26 a bidirectional signaling pathway between the brain and the gut that is potentially mediated by
27 gut microbiota [20]. For example, in humans, stress has been linked to a decrease in the number
28 of species found in the gut microbiota [9]. Additionally, evidence in humans suggests a link
29 between stress, the gut microbiota, and immune system function [21]. This evidence from
30 humans is also recapitulated in laboratory models [11], [22]–[25]. In germ-free rats, the lack of a
31 gut microbial community increases a rat's behavioral and endocrine stress response [22]. Other
32 lab studies in mice have linked depression symptoms, anorexia, and cancer to increased stress
33 levels and disruptions in the murine gut microbiota [24], [26], [27].

34 Stress and the gut microbiota has primarily been examined in laboratory models, with
35 very few studies looking at wild living mammals [15], [25]. In wild-living eastern grey squirrels,
36 physiological indicators of stress were measured in conjunction with gut microbial composition,
37 and physiological stress better explained gut microbiota diversity, or metrics that summarize how
38 abundant and the types of bacterial and archaeal species that are in a microbial community,
39 compared to environmental factors [28], [29]. A recent study on pangolins found those raised in
40 captivity had higher microbial diversity associated with lower stress than those rescued from the
41 wildlife trade [30]. In elephants, a stressful event such as translocation appears to induce
42 alterations to the microbiome in taxa Planococcaceae, Clostridiaceae, Spirochaetaceae, and
43 Bacteroidia increased after the elephants shifted to living in a captive environment [31].
44 Research into glucocorticoid concentration in rhinos found that about 10% of taxa were related
45 to glucocorticoid concentrations with Aerococcaceae, Atopostipes, Carnobacteriaceae, and
46 Solobacterium differentially increased [32]. Therefore, there seems to be a general mammalian

47 pattern that suggests higher stress is associated with increases in specific taxa. However, this
48 pattern has not been well-studied across mammals, and the specific taxa that increase seem to
49 vary widely across mammalian groups.

50 Amongst NHPs, great apes exhibit similar psychosocial and ecological pressures making
51 them an excellent model to understand how stress and the gut microbiome co-vary [33]–[35].

52 The mammalian pattern of higher stress being associated with a more disrupted gut microbiome
53 [28], [30], [31], [36] was not found in a study of wild-living western lowland gorillas (*Gorilla*
54 *gorilla gorilla*) [10]. Vlčková et al. (2018) found no relationship between alpha and beta

55 diversity measures and proximate stress measures in this species. Vlčková and colleagues also
56 found a positive correlation between proximate measures of stress and relative abundance of
57 three different gut microbial taxa (family Anaerolineaceae, genus *Clostridium* cluster XIVb and
58 genus *Oscillibacter*), suggesting that stress is associated with increases in certain types of
59 bacteria within the gastrointestinal tract [10]. These results from western lowland gorillas
60 indicate stress may not have as significant an effect on NHP gut microbial diversity but follows
61 the mammalian trend of having specific taxa differentially abundant with increasing stress.

62 Bonobos (*Pan paniscus*) and gorillas face similar social stressors in that they both are group-
63 living great apes experiencing affiliative and aggressive interactions with conspecifics [37]. They
64 also tend to live in mixed age and mixed-sex groups, though in western lowland gorillas, there is
65 typically only one male [38]–[43]. Whether all NHPs have the same taxa that increase with
66 increasing stress and whether they show similar stability in how the diversity of the gut
67 microbiota remains stable has yet to be determined. Additionally, the amounts and effects of
68 stress hormones vary across different groups of mammals and NHPs and may be different in
69 closely related taxa, like gorillas and bonobos.

70 Stress hormones, specifically glucocorticoids such as cortisol, are considered the
71 principal chemical compounds involved in the stress system of mammals, including NHPs [18],
72 [44]. Glucocorticoids are a type of steroid hormone that fall into the class of corticosteroids, and
73 cortisol, the primary mammalian stress hormone, is one type of glucocorticoid involved in the
74 stress response [18]. Once the adrenal gland excretes cortisol, it is broken down and metabolized
75 [45]. These metabolites are then excreted through saliva, feces, and urine and can be
76 incorporated into tissues like nails and hair [46]–[49]. These metabolites in feces are referred to
77 as FGMC, and are known to be related to chronic stress rather than acute stress [50], [51].
78 Therefore, FGMC are capturing the stress an individual experienced in the preceding forty-eight
79 hours before a fecal sample was collected [52]. It is of note that sometimes low stress can be an
80 indicator of suppression of the stress response as well as low stress. The relationship between the
81 gut microbiota and hormonal systems has far-reaching implications for host physiology [53].
82 Nevertheless, how a host's gut microbiota responds to various stress-based fluctuations during
83 short-term variation in stress remains to be examined in many NHPs, like bonobos.

84 Stress has been studied in wild-living bonobos as it relates to sociality and socio-sexual
85 behavior [33], [46], [54], [55]. Bonobos are female bonded, male philopatric, and exhibit a
86 fission-fusion social system, and this social structure may contribute to the sex-based patterns in
87 FGMC [39], [40]. Sex differences in bonobo stress have been quantified in inter-group
88 encounters with both females and males exhibiting higher cortisol during intergroup encounters
89 but with males having overall higher levels of cortisol [56]. Additionally, captive bonobos
90 exhibited a similar pattern where the single male had overall higher cortisol levels than the five
91 other females [57]. These physiological patterns and social structure more likely emulate that of

92 the *Pan-Homo* common ancestor as compared to gorillas making bonobos an ideal model in
93 which to study stress and the microbiome.

94 We aim to use bonobos as a model to test patterns of NHP stress and gut microbiota. We
95 predict that bonobo gut microbiota will exhibit a pattern similar to what was found in western
96 lowland gorillas because gorillas and bonobos live in a similar social and ecological
97 environment. Gorillas and bonobos have been hypothesized to use similar resources, like
98 terrestrial herbaceous vegetation, perhaps buffering dietary stress for both great ape populations,
99 unlike chimpanzees [58], [59]. Bonobos and gorillas may have similar gut microbiota because
100 they are both great ape species or because of similar environments. Bonobos and gorillas
101 diverged 8-19 million years ago and, therefore, may exhibit differences due to phylogenetic
102 differences [60], [61]. However, the gut microbiota may alternatively have similar responses to
103 stress due to these ecological similarities between bonobos and gorillas. If they are very
104 different, then it suggests that ecological environments are not the important factor in a gut
105 microbiota's response to FGMC. We predict that alpha diversity, or within individual diversity,
106 will not be significantly related to FGMC. We predict that beta diversity, or between individual
107 diversity, will not be significantly related to FGMC. We expect to find several taxa's abundance,
108 specifically family Anaerolineaceae, genus *Clostridium* cluster XIVb and genus *Oscillibacter*, to
109 be significantly explained by FGMC.

110 **Methods**

111 *Study Site and Sample Collection*

112 The research site was the Iyema field camp, located in the Lomako-Yokokala Faunal
113 Reserve just north of the Lomako river at (00°55' North, 21°06' East) in the Democratic
114 Republic of Congo (DRC). The site was mainly covered by primary forest in *terra firma* soil

115 with swamps [55], [62].[55], [62]. We followed bonobos to their night nests for data collection
116 as part of the African Wildlife Foundation's habituation efforts from June 2017 to October 2017.
117 Night nest locations were marked, and each nesting site was revisited the following day. We
118 identified each bonobo as it exited the nest and collected approximately five grams of fecal
119 sample into 50 mL tubes with 10 ml of RNALater for each individual in the nesting party [63].
120 While there is some debate about the effectiveness of different sample preservation methods for
121 examining gut microbiomes [62]-[68], there is no clear present consensus. We used RNAlater
122 here due to field site remoteness and downstream host genetic analyses.

123 The samples were stored in a cool, dry place from June- October 2017 until shipped to
124 the Ting Laboratory at the University of Oregon. They were then stored in a minus 20°C freezer
125 until extraction. The remainder of each fecal sample not collected in RNALater was brought
126 back to camp, dried using a camp stove, and placed into bags with desiccant for FGMC analysis.
127 Thus, for each fecal sample, we can obtain data on gut microbiota composition and diversity and
128 FGMC. We collected 218 paired fecal samples.

129

130 *Data Collection*

131 *ELISA assays - FGMC*

132 To evaluate FGMC, we analyzed 218 dried fecal samples in the Global Health Biomarker
133 Laboratory at the University of Oregon using ELISA assays to quantify cortisol as a measure of
134 FGMC. We used the Arbor Assay's DetectX® Cortisol Enzyme Immunoassay Kit (Arbor Assay's
135 DetectX® cat. no. K003-H5W), as it is designed to be used on dried fecal samples and was
136 previously validated for bonobos [71], [72]. We included known controls provided for
137 Cincinnati Zoo bonobos (N=5) for each plate run. Fecal samples were ground to a powder using

138 a mortar and pestle, weighed out to the protocol's recommended ≥ 0.2 g. of fecal material,
139 avoiding any plant or partially digested food material. Samples were then diluted (1:4) in assay
140 buffer. The kit manufacturer reported the detection limit for this assay as 45.4 pg/mL. To control
141 for shifts in circadian rhythm for FGMC, we used those samples collected at the same time of
142 day, specifically in the morning, under night nests, to ensure all bonobo samples were from
143 approximately the same time point. All plates were read using a BioTek microplate reader and
144 analyzed with Gen5 software version 2.0. For the FGMC controls, 100 μ l aliquots of assay
145 buffer were divided into seven aliquots. We then spiked six of the aliquots with 100 μ l of
146 standards such that each aliquot of the sample received one of the six concentrations of standard
147 (1000, 500, 250, 125, 62.5, 31.2 μ g/mL), and one aliquot was left neat following the kit
148 protocol to produce a standard curve. Both the spiked and neat aliquots were assayed according
149 to kit instructions.

150

151 *16S sequencing – gut microbiota composition*

152 We used the 218 RNALater preserved fecal samples to extract, amplify, and sequence
153 microbial DNA. Total genomic DNA was extracted from each fecal sample using the QIAamp
154 PowerFecal DNA kit (QIAGEN) in the Ting Lab at the University of Oregon. Negative controls
155 were included in extraction batches to test for contamination. DNA extracts were quantified
156 using a Qubit dsDNA HS Assay Kit protocol using a Qubit 2.0 Fluorometer (Thermo Fisher
157 Scientific). Samples containing at least 1.0 ng/ μ l were sent for amplification and sequencing of
158 the V4 hypervariable region of the bacterial 16S ribosomal RNA using 515F/806R primers at the
159 Genomics and Cell Characterization Core Facility at the University of Oregon following
160 previously published methods [73], [74]. Barcoded amplicons were sequenced on a 150 PE V3

161 run on the Illumina MiSeq platform (Illumina, San Diego, CA). The resulting sequences were
162 demultiplexed and denoised using DADA2, and amplicon sequence variants (ASVs) were
163 assigned using the Green Genes database. Quality filtering and assembly were done using the
164 QIIME2 pipeline for microbial analyses [75, p. 2]. The ASVs table was created for samples
165 rarified to an average sampling depth of 79,058 reads per sample. We removed samples below
166 315 and above 100,000 reads per sample which accounted for 8.7% of the original dataset. We
167 retained 202 samples for a total of 26,010,213 reads. Negative control samples were sequenced
168 for each extraction, PCR, and library preparation. Any ASVs that appeared in these negative
169 controls were removed from the 202 samples in the R package 'decontam' using the prevalence
170 and frequency methods [76].

171

172 *Data analysis*

173 We tested sex, age, whether a female had an infant, and fecal glucocorticoid metabolite
174 concentration (FGMC) as our predictor variables with bonobo gut microbiota composition and
175 diversity as the response variable. We included these variables because they are associated with
176 differences in FGMC and gut microbiota [77]–[81]. Statistics were run in R version 4.0.2 [82].
177 We included sample ID as a random effect in our models [83]. We estimate 26-38 individuals
178 sampled with an estimated resampling rate of 2-11 times during the data collection period based
179 on observations of individuals and previously published estimates for Iyema [84]. We calculated
180 two measures of alpha diversity, Shannon's and Chao's diversity indices, using the 'vegan'
181 package [85]. We ran two-way ANOVAs against the predictor variables, against sex (N = 55)
182 and age (N=59), sex (N = 55) and whether a female had an infant (N=59), and age (N=59) and
183 whether a female had an infant (N=59). We ran linear regressions for FGMC (N=202) against

184 Shannon's index and Chao's index to study alpha diversity or within individual diversity (Table
185 1). To examine the relationship between FGMC and bonobo gut microbiota beta diversity, we
186 ran a permutational multivariate analysis of variance (PERMANOVA) with 999 permutations
187 using the 'adonis2' function in the R package [85]. PERMANOVAs use the calculated beta
188 diversity for the Jensen-Shannon Distance, weighted UniFrac, and unweighted UniFrac
189 dissimilarity matrices taking the model predictors FGMC, sex, age, and whether or not a female
190 had an infant sequentially (n=202) (Table 1). We used Jensen-Shannon's Distance because it is
191 useful for examining compositional differences [86], [87]. Weighted UniFrac is a metric used to
192 detect differences based on commonly abundant taxa. At the same time, unweighted UniFrac is
193 better at detecting differences in rare or non-abundant taxa in a community. [88]. It is of note that
194 PERMANOVAs factor in the order in which variables are entered into the model, therefore we
195 ran this with the factors in different orders and found that the pattern of significance stayed
196 consistent despite the order of the predictor variables. We also ran Mantel tests on the log
197 transformed FGMC values and the three beta dissimilarity matrices. We also ran abundance
198 models on our filtered data, and ran 302 taxa using the ANCOM R package to test whether a
199 member of the gut microbiota varies with high (21,540 – 7,115 ng/pl and low concentrations
200 (1,073 – 7,115 ng/pl) of FGMC (N=202) [55], [89]. The cut-off was used because ANCOM
201 requires a categorical variable of about equal sample sizes to run. All models were run with
202 FGMC as a continuous variable except the ANCOM results which required the FGMC values to
203 be coded as high or low. We then subsetted out the significant ASVs and verified with general
204 linear model that those significant taxa had a linear relationship with FGMC.

205
206

*Table 1. Predictor variables included in analysis and collection method.
Samples sizes are in parentheses.*

Predictor variable	Factor levels	Collection method	Lab analysis
FGMC	Continuous value (202)	Non-invasive fecal sample collection	ELISA assays to quantify cortisol
Sex	Male (24), female (31)	Behavioral observations corroborated with genetic sexing assay	Sexing assay
Age	Adult (48), sub-adult (4), juvenile (5), infant (2)	Behavioral observations	--
Infant (Whether or not a female had an infant)	Yes (10), no (49)	Behavioral observations	--

207

208

209 **Results**

210 *Alpha diversity*

211 Bonobo's fecal microbiome had similar alpha diversity regardless of FGMC levels, their
212 sex, age or whether a female had an infant. Shannon's and Chao's indexes were not significantly
213 related to FGMC (Figure 1). The ANOVA results were all not significant for Shannon's and
214 Chao's diversity indices against sex (Shannon: p-value = 0.919; Chao's: p-value = 0.488), age
215 (Shannon: p-value = 0.955; Chao's: p-value = 0.699), and whether or not a female had an infant
216 (Shannon: p-value = 0.912; Chao's: p-value = 0.521) (Figure 2).

217 Bonobo's FGMC did not change due to sex, age, and whether or not a female had an
218 infant. We found no significant interaction between FGMC and sex (Shannon: p-value = 0.131;
219 Chao's: p-value = 0.510), age (Shannon: p-value = 0.143; Chao's: p-value = 0.459), and whether
220 or not a female had an infant (Shannon: p-value = 0.131; Chao's: p-value = 0.487) for both alpha
221 diversity metrics when run in two-way ANOVA with an interaction effect. FGMC values had
222 mean $7529 \text{ ng/pl} \pm 266.55 \text{ ng/pl}$ and did not significantly differ by sex (p-value = 0.387), age (p-
223 value = 0.17), and whether or not a female had an infant (p-value = 0.144).

224

225 *Beta diversity*

226 Bonobo FGMC significantly explained a small amount of variation in beta diversity for
227 two of the three beta diversity metrics, Jensen-Shannon's Distance and weighted UniFrac. Beta
228 diversity did not significantly relate to FGMC for unweighted UniFrac. The PERMANOVA
229 results for FGMC showed that it explained 0.08% of the variation in beta diversity for the
230 Jensen-Shannon Distance (Table 2). The PERMAOVA for the weighted UniFrac dissimilarity
231 matrix found FGMC explained 1.27% (Figure 3; Table 2). The PERMANOVA results for
232 FGMC showed that the unweighted UniFrac dissimilarity matrix did not significantly explain

233 variation in beta diversity, but it was suggestive of being significant at a p-value = 0.06 (Table
234 2).

235 Mantel test showed that there was a significant agreement between the FGMC Euclidian
236 distance matrix and the Jensen-Shannon Distance matrix showing that large difference in FGMC
237 value were associated with high values of dissimilarity in Jensen-Shannon Distance (Observed
238 value: 0.09, p-value = 0.02) (Figure 4). The Mantel test for weighted UniFrac (p-value = 0.28)
239 and unweighted UniFrac (p-value = 0.17).

240
 241 *Table 2. PERMANOVA results for Jensen-Shannon Distance (JSD), weighted UniFrac, and*
 242 *unweighted UniFrac against FGMC, sex, age, and whether or not a female had an infant.*

FGMC	1, 195	0.26	0.26	1.98	0.01	0.06
Sex	2, 195	0.21	0.10	0.77	0.01	0.65
Age	3, 195	0.37	0.12	0.91	0.01	0.50
Infant	2, 195	0.11	0.11	0.87	0.004	0.47

243

244

245 *Analysis of community variance (ANCOM) results*

246 Bonobos have 17 taxa whose abundance was explained by FGMC after Bonferroni

247 correction out of 302 taxa tested (Table 3; Supplementary Figure 1). We found 15 of the

248 significant ASVs had a positive linear relation with FGMC while two significant ASVs *RFN20*

249 and *Butyrivibrio*, had a negative linear relation with FGMC.

250

251 *Table 3. Taxa from ANCOM results were significantly related to FGMC after Bonferroni correction. W is*
252 equal to the number of times the log-ratio of a particular taxon compared to every other taxon being tested
253 was detected to be significantly different across groups. For all the listed taxa, we accepted the alternative
hypothesis that the FGMC does significantly explain the abundance of the listed taxa. The taxa are listed
by: Kingdom, Phylum, Class, Order, Family, Genus.

253

254

Classification of Amplicon Sequence Variant (ASV)	W	Linear regression results (FGMC ~ ASV)
Bacteria, Firmicutes, Clostridia, Clostridiales	272	$4.706 \times 10^{-5} \pm 9.766 \times 10^{-7}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 2)
Archaea, Euryarchaeota, Methanobacteria, Methanobacteriales, Methanobacteriaceae, <i>Methanobrevibacter</i>	268	$4.909 \times 10^{-5} \pm 6.995 \times 10^{-7}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 3)

Bacteria, Firmicutes, Clostridia, Clostridiales	266	$5.811 \times 10^{-5} \pm 1.052 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 4)
Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales	266	$1.223 \times 10^{-4} \pm 1.206 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 5)
Archaea, Euryarchaeota, Thermoplasmata, E2, Methanomassiliicoccaceae, <i>vadinCA11</i>	260	$1.107 \times 10^{-4} \pm 1.148 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 6)
Bacteria, Proteobacteria, Betaproteobacteria, Burkholderiales	255	$5.640 \times 10^{-4} \pm 6.092 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 7)
Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales, RF16	253	$2.829 \times 10^{-4} \pm 2.420 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 8)
Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales, Prevotellaceae, <i>Prevotella</i>	249	$1.615 \times 10^{-5} \pm 1.452 \times 10^{-7}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 9)
Bacteria, Chloroflexi, Anaerolineae, Anaerolineales, Anaerolinaceae, SHD-231	247	$6.985 \times 10^{-4} \pm 1.244 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 10)
Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales, Paraprevotellaceae	247	$2.020 \times 10^{-4} \pm 2.521 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 11)
Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales, S24-7	247	$2.393 \times 10^{-4} \pm 3.147 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 12)
Bacteria, Firmicutes, Clostridia, Clostridiales, Ruminococcaceae	246	$4.715 \times 10^{-5} \pm 6.250 \times 10^{-7}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 13)
Bacteria, Firmicutes, Erysipelotrichi, Erysipelotrichales, Erysipelotrichaceae, <i>RFN20</i>	241	$-5.490 \times 10^{-4} \pm 1.261 \times 10^{-5}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 14)
Bacteria, Verrucomicrobia, Verruco-5, WCHB1-41, RFP12	241	$5.358 \times 10^{-5} \pm 3.110 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 15)
Bacteria, Firmicutes, Clostridia, Clostridiales,	239	$1.713 \times 10^{-4} \pm 1.950 \times 10^{-6}$, p-value = $<2 \times 10^{-16}$

Ruminococcaceae		*** (Supplementary Figure 16)
Bacteria, Firmicutes, Clostridia, Clostridiales, Mogibacteriaceae	235	$2.899 \times 10^{-04} \pm 5.295 \times 10^{-06}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 17)
Bacteria, Firmicutes, Clostridia, Clostridiales, Lachnospiraceae, <i>Butyrivibrio</i>	229	$-1.289 \times 10^{-04} \pm 2.256 \times 10^{-06}$, p-value = $<2 \times 10^{-16}$ *** (Supplementary Figure 18)

255

256 **Discussion**

257 We aimed to test the relationship between FGMC and the gut microbiota for bonobos and
258 compare the results to those reported for western lowland gorillas, humans, and other mammals
259 [10]. We predicted that the bonobo gut microbiota would exhibit patterns similar to what was
260 found in western lowland gorillas, where alpha diversity (or within individual diversity) and beta
261 diversity (or between individual diversity) were not significantly explained by FGMC due to the
262 similar social environment, ecology, and phylogenetic relationship between western lowland
263 gorillas and bonobos. The abundance model results for the western lowland gorillas found three
264 taxa significantly correlated with FGMC [10].

265 Consistent with Vlčková et al. (2018), our alpha diversity measures were not significant.
266 This suggests that number of bacterial taxa within the gut microbial community stays constant.
267 Additionally, it suggests there is stability in the number of taxa in the guts of great apes even
268 when the gut microbiome is disrupted by stress. This is constant with several other finding
269 outside of great apes, where despite potentially stressful habitat fragmentation, red colobus
270 (*Procolobus rufomitratus*), black and white colobus (*Colobus guerza*), and red-tailed guenon
271 (*Cercopithecus ascanius*) gut microbiomes remained stable [90]. This stability in alpha diversity
272 may be a wild primate feature as other mammals like elephants [31], pangolins [30], and
273 squirrels [91] have been found to exhibit changes in alpha diversity linked to FGMC. This may

274 point to the ability of primates to buffer stressful events due to their behavioral flexibility and
275 social relationships [92], [93].

276 Our beta diversity results found that FGMC significantly explains a small amount of
277 between individual variation in the bonobo gut microbiota. The amount of variation explained in
278 our PERMANOVA by FGMC was very small and could be due noise in the data, but because we
279 also detected a difference with the mantel tests for the JSD dissimilarity metric this result is
280 likely an actual pattern. The small amount of variation explained implies that there is only a
281 small number of taxa whose abundance is affected by FGMC. In other primates, beta diversity
282 has been found to significantly change with degraded habitats in howler monkeys (*Alouatta*
283 *pigra*), potentially due to the stress of inhabiting and eating much lower quality food items [94].
284 In contrast, beta diversity for red colobus (*Procolobus rufomitratus*), black and white colobus
285 (*Colobus guerza*), and red-tailed guenon in degraded habitats remained stable [90]. In primates,
286 there doesn't seem to be a clear pattern of how stress and beta diversity relate to each other and
287 may depend on the context that a wild primate is living in or may depend on the specific taxa
288 found in the gut of a wild-living primate. In mammals, elephants [31] and pangolins [30], beta
289 diversity significantly changes with a stress. Beta diversity changes in response to stress appear
290 to be context and species specific. The fact that beta diversity was significant for bonobos and
291 not gorillas implies that bonobos gut microbiomes may be more susceptible to stress or that
292 bonobo gut microbiomes are home to bacteria whose abundance is more susceptible to
293 fluctuations in stress. Our abundance model results support the idea that bonobos house more
294 taxa whose abundance changes with fluctuations in stress.

295 There were fourteen more taxa in the bonobo gut microbiome whose abundance was
296 significantly related to FGMC, for both our ANCOM and linear model results. Vlčková et al.

297 (2018) found only three microbial taxa were shown to be significant with FGMC in western
298 lowland gorillas (family Anaerolineaceae; genus *Clostridium* cluster XIVb; genus *Oscillibacter*)
299 [10]. We found members of the family Anaerolineaceae in bonobo samples, and interestingly
300 one taxon (genus SHD-231) was significant in our differential abundance model and linear
301 model results, similar to gorillas [10]. We did find one genus of *Clostridium* in the 201 bonobos
302 that we sampled; however, this genus of *Clostridium* was not a part of cluster XIVb, found in
303 western lowland gorillas to be significant [10]. We found no genus *Oscillibacter*, a genus found
304 to be significant gorillas, in our bonobo samples, nor did we detect any of the higher family level
305 *Oscillospiraceae*. Therefore, bonobos and western lowland gorillas appear to be similar in that
306 members of the family Anaerolineaceae may be differentially affected during periods of high
307 stress but differ in the sixteen other taxa that are differentially abundant based on FGMC in
308 bonobos.

309 Other taxa that we found specific to the bonobo abundance results are two different
310 unknown bacteria in the order Clostridiales that are thought to be linked to early life stress in
311 mice [95]. Additionally, two members of the order Bacteroidales, including family S24-7, which
312 has been associated with changes in circadian rhythm disruption in murine models [96]. We also
313 found Ruminococcaceae and Mogibacteriaceae, which have been found in the human gut
314 microbiota [97], [98]. Other notable genus level associations included *Prevotella* sp., associated
315 with chronic inflammatory conditions [99]. These different patterns between the bonobo and
316 western lowland gorillas suggest that there may be species-specific or temporal-specific effects
317 of FGMC on the abundance of specific taxa in primate gut microbiota, and several of these taxa
318 have been linked to early life stress, circadian rhythm stress, and chronic inflammation [27],

319 [95], [96]. However, it does appear that the family Anaerolinaceae may be particularly affected
320 by stress in great apes.

321 In other mammals, like squirrels, pangolins, elephants, and rhinos, stress was associated
322 with changes, in specific taxa [30]–[32], [91]. Additionally, specific taxa changed in abundance
323 due to stress or stressful events [28], [30], [32]. The specific taxa are differentially expressed in
324 elephants (Planococcaceae, Clostridiaceae, Spirochaetaceae, and Bacteroidia) and rhinos
325 (Aerococcaceae, Atopostipes, Carnobacteriaceae, and Solobacterium) were not found to be
326 related explicitly to FGMC in bonobos [31]. However, there may be high order similarities
327 between bonobos and other mammals in the specific taxa that are differential abundant due to
328 stress. Clostridiaceae is a family belonging to the class Clostridia that was found to be
329 differentially expressed in elephants [31]. While we did not find this specific family differential
330 expressed in bonobos, we found six Clostridia members to be differentially expressed in
331 bonobos. This result may indicate that stress may affect specific taxa in the gut microbiota across
332 mammalian lineages, including humans. In humans, the proposed mechanism for a host and its
333 associated microbes to communicate is through hormones [15], [81]. We did not see an overall
334 decrease in diversity as has been seen in humans, but we did see certain taxa whose abundance
335 seems to be differentially affected by stress [9]. Indicating that there may be similarities between
336 humans and one of their closest evolutionary relatives, bonobos.

337 There are several differences in methods that could be influencing stress and the gut
338 microbiota between bonobos and gorillas. One of the significant differences between our study
339 and the gorilla study is the sample size. Our larger sample size may be why we picked a small
340 effect of beta diversity and stress, but more studies across wild living primates examining stress
341 and the gut microbiota will help to elucidate how sample size plays into picking up relationships

342 between proximate measures of stress and the gut microbiota. Other differences include,
343 potentially different FGMC measures and differences in the method of sample preservation for
344 FGMC analysis [10], [100]. There are also species-specific patterns in the production,
345 metabolism, and excretion of FGMCs [78]. Therefore, comparing FGMC values between
346 bonobos and gorillas must be done with extreme care. However, since we are not directly
347 comparing our FGMC values to those obtained for the western lowland gorillas. Instead, we are
348 comparing the broad results from comparing those FGMCs to the gut microbiota. Additionally,
349 the gut microbiota may be responding to FGMCs in non-linear ways, and there may be more
350 nuanced changes to consider when comparing stress and the NHP gut microbiota.

351 Other limitations include the metabolism of FGMCs can also be dependent on sex and
352 time of day [79], [101]. At the same time, we attempted to control for this variation by only
353 selecting samples collected around the same time of day and including sex and age as factors in
354 our analyses. This method of controlling for time of day is like the western lowland gorilla paper,
355 where morning fecal samples were analyzed for the unhabituated groups [10]. In addition to
356 variation in FGMCs, there are several other factors that influence the composition and diversity
357 of gut microbiota among NHP.

358 There are other variables that we did not examine in this paper that have been thought to
359 influence the composition and diversity of the gut microbiota in NHP. Disease status could be
360 influencing the gut microbiota [14]. Rank and other social factors like rates of affiliation and
361 aggression both within and between communities could also be affecting the gut microbiota [74],
362 [102], [103]. Diet and seasonality can also be significant factors in changing how nutritionally
363 stressed an individual is and can directly affect the gut microbiota composition [104]–[106]. We
364 aim to examine these factors in future analyses.

365 Future directions for this work include adding metagenomic sequencing and metabolomic
366 data to our dataset to incorporate more functional results. Additionally, we aim to incorporate
367 diet, food availability, and social variables in future analyses of the bonobo gut microbiota.
368 Compared to humans, in bonobos, beta diversity and some taxa change in abundance instead of
369 broadly changing gut microbial diversity in response to stress, but we did find similarities in
370 bonobos and gorillas in the family Anaerolinaceae. Thus, future studies should examine how
371 Anaerolinaceae changes in response to stress in other great apes like humans, chimpanzees, and
372 orangutans. Incorporating FGMC and gut microbiota data can provide a more robust
373 understanding of how stress impacts the gut microbiota of primates.

374

375 **Statement of Ethics**

376 This research was completed with the approval of the University of Oregon's Institutional
377 Animal Care and Use Committee (AUP-17-10), abided by the American Society of
378 Primatologist's Principles for the Ethical Treatment of Human Primates, and was approved by
379 the L'Institut Congolais pour la Conservation de la Nature (ICCN) (permit # 3058) the
380 department withing the Democratic Republic of the Congo that oversees the Lomako-Yokokala
381 Faunal Reserve where the Iyema field site is located. Permissions were obtained through the
382 African Wildlife Foundation Mission Order (No. 033/2017).

383 **Conflict of Interest Statement**

384 The authors have no conflicts of interest to declare.

385 **Author Statements**

Contributor Role	Role Definition
------------------	-----------------

Contributor Role	Role Definition
AJH, MLW, CMB, FJW	Ideas; formulation or evolution of overarching research goals and aims.
AJH, MLW, CMB, FJW	Development or design of methodology; creation of models.
AJH	Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.
AJH, CBM, MLW, KJB	Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection.
JJS, NT	Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools.
AJH	Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.
AJH	Creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).
AJH, KJB, MLW, CMB, FJW, JJS, NT	Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision – including pre- or post-publication stages.
AJH	Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.
FJW	Oversight and leadership responsibility for the research activity planning

Contributor Role	Role Definition
	and execution, including mentorship external to the core team.
FJW, MLW, NT	Management and coordination responsibility for the research activity planning and execution.
AJH, FJW, MLW, CMB	Acquisition of the financial support for the project leading to this publication.

386

387 **Figure Captions**

388 **Figure 1.** Scatterplots of FGMC against A. Shannon's diversity and B. Chao's diversity index
389 were not significant

390 **Figure 2.** The predictor variables, sex (column 1), age (column 2), and infant (column 3) were
391 all not significant for A. Shannon's and B. Chao's.

392 **Figure 3.** PCoA plot of weighted UniFrac dissimilarity matrix. The PERMANOVA results
393 suggest that FGMC explained 1.275% of the variation in beta diversity. While, weighted
394 UniFrac explained the most of the variation in beta diversity, this is very small amount of the
395 variation in beta diversity.

396 **Figure 4.** Frequency distribution from the Mantel test showing the results of the 999
397 randomizations for Jensen Shannon Distance matrix and the FGMC Euclidian distance matrix.
398 The observed value is marked with the line and black diamond.

399 **Supplementary Figure 1.** Volcano plot of W and F statistic for each ASV. 17 taxa (circled in
400 blue) are significantly related to FGMC level.

401 **Supplementary Figure 2.** General linear model regression on the ASV Bacteria, Firmicutes,
402 Clostridia, Clostridiales and FGMC.

403 **Supplementary Figure 3.** General linear model regression on the ASV Archaea, Euryarchaeota,
404 Methanobacteria, Methanobacteriales, Methanobacteriaceae, *Methanobrevibacter* and FGMC.

405 **Supplementary Figure 4.** General linear model regression on the ASV Bacteria, Firmicutes,
406 Clostridia, Clostridiales and FGMC.

407 **Supplementary Figure 5.** General linear model regression on the ASV Bacteria, Bacteroidetes,
408 Bacteroidia, Bacteroidales and FGMC.

409 **Supplementary Figure 6.** General linear model regression on the ASV Archaea, Euryarchaeota,
410 Thermoplasmata, E2, Methanomassilicoccaceae, *vadinCA11* and FGMC.

411 **Supplementary Figure 7.** General linear model regression on the ASV Bacteria, Proteobacteria,
412 Betaproteobacteria, Burkholderiales and FGMC.

413 **Supplementary Figure 8.** General linear model regression on the ASV Bacteria, Bacteroidetes,
414 Bacteroidia, Bacteroidales, RF16 and FGMC.

415 **Supplementary Figure 9.** General linear model regression on the ASV Bacteria, Bacteroidetes,
416 Bacteroidia, Bacteroidales, Prevotellaceae, *Prevotella* and FGMC.

417 **Supplementary Figure 10.** General linear model regression on the ASV Bacteria, Chloroflexi,
418 Anaerolineae, Anaerolineales, Anaerolinaceae, *SHD-231* and FGMC.

419 **Supplementary Figure 11.** General linear model regression on the ASV Bacteria, Bacteroidetes,
420 Bacteroidia, Bacteroidales, Paraprevotellaceae and FGMC.

421 **Supplementary Figure 12.** General linear model regression on the ASV Bacteria, Bacteroidetes,
422 Bacteroidia, Bacteroidales, S24-7 and FGMC.

423 **Supplementary Figure 13.** General linear model regression on the ASV Bacteria, Firmicutes,
424 Clostridia, Clostridiales, Ruminococcaceae and FGMC.

425 **Supplementary Figure 14.** General linear model regression on the ASV Bacteria, Firmicutes,
426 Erysipelotrichi, Erysipelotrichales, Erysipelotrichaceae, *RFN20* and FGMC.

427 **Supplementary Figure 15.** General linear model regression on the ASV Bacteria,
428 Verrucomicrobia, Verruco-5, WCHB1-41, RFP12 and FGMC.

429 **Supplementary Figure 16.** General linear model regression on the ASV Bacteria, Firmicutes,
430 Clostridia, Clostridiales, Ruminococcaceae and FGMC.

431 **Supplementary Figure 17.** General linear model regression on the ASV Bacteria, Firmicutes,
432 Clostridia, Clostridiales, Mogibacteriaceae and FGMC.

433 **Supplementary Figure 18.** General linear model regression on the ASV Bacteria, Firmicutes,
434 Clostridia, Clostridiales, Lachnospiraceae, *Butyrivibrio* and FGMC.

435 **Supplementary Figure 19.** General linear model regression on the first principal coordinate and
436 FGMC.

437

438 **References**

439 [1] C. Allaband *et al.*, “Microbiome 101: studying, analyzing, and interpreting gut microbiome
440 data for clinicians,” *Clin. Gastroenterol. Hepatol.*, vol. 17, no. 2, pp. 218–230, 2019.

441 [2] K. R. Amato, “Incorporating the gut microbiota into models of human and non-human
442 primate ecology and evolution: GUT MICROBIOTA INFLUENCES HOST NUTRITION,
443 HEALTH, AND BEHAVIOR,” *Am. J. Phys. Anthropol.*, vol. 159, pp. 196–215, Jan. 2016,
444 doi: 10.1002/ajpa.22908.

445 [3] G. Dantas, M. O. A. Sommer, P. H. Degnan, and A. L. Goodman, “Experimental
446 Approaches for Defining Functional Roles of Microbes in the Human Gut,” *Annu. Rev.
447 Microbiol.*, vol. 67, no. 1, pp. 459–475, 2013, doi: 10.1146/annurev-micro-092412-155642.

448 [4] G. M. Barlow, A. Yu, and R. Mathur, “Role of the Gut Microbiome in Obesity and
449 Diabetes Mellitus,” *Nutr. Clin. Pract.*, vol. 30, no. 6, pp. 787–797, 2015, doi:
450 10.1177/0884533615609896.

451 [5] I. Chattopadhyay *et al.*, “Exploring the Role of Gut Microbiome in Colon Cancer,” *Appl.
452 Biochem. Biotechnol.*, vol. 193, no. 6, pp. 1780–1799, Jun. 2021, doi: 10.1007/s12010-021-
453 03498-9.

454 [6] E. A. Franzosa *et al.*, “Gut microbiome structure and metabolic activity in inflammatory
455 bowel disease,” *Nat. Microbiol.*, vol. 4, no. 2, pp. 293–305, Feb. 2019, doi:
456 10.1038/s41564-018-0306-4.

457 [7] Y. S. Kim and J. A. Milner, "Dietary Modulation of Colon Cancer Risk," *J. Nutr.*, vol. 137,
458 no. 11, pp. 2576S-2579S, Nov. 2007, doi: 10.1093/jn/137.11.2576S.

459 [8] P. J. Turnbaugh *et al.*, "A core gut microbiome in obese and lean twins," *Nature*, vol. 457,
460 no. 7228, pp. 480–484, Jan. 2009, doi: 10.1038/nature07540.

461 [9] P. C. Konturek, T. Brzozowski, and S. J. Konturek, "STRESS AND THE GUT:
462 PATHOPHYSIOLOGY, CLINICAL CONSEQUENCES, DIAGNOSTIC APPROACH
463 AND TREATMENT OPTIONS," p. 9.

464 [10] K. Vlčková *et al.*, "Impact of stress on the gut microbiome of free-ranging western lowland
465 gorillas," *Microbiology*, vol. 164, no. 1, pp. 40–44, 2018, doi: 10.1099/mic.0.000587.

466 [11] A. Bharwani, M. F. Mian, J. A. Foster, M. G. Surette, J. Bienenstock, and P. Forsythe,
467 "Structural & functional consequences of chronic psychosocial stress on the microbiome &
468 host," *Psychoneuroendocrinology*, vol. 63, pp. 217–227, Jan. 2016, doi:
469 10.1016/j.psyneuen.2015.10.001.

470 [12] V. Bhatia and R. K. Tandon, "Stress and the gastrointestinal tract," *J. Gastroenterol.*
471 *Hepatol.*, vol. 20, no. 3, pp. 332–339, 2005, doi: 10.1111/j.1440-1746.2004.03508.x.

472 [13] M. T. Bailey, "The Effects of Psychological Stressors on the Intestinal Microbiota," *Biosci.*
473 *Microflora*, vol. 28, no. 4, pp. 125–134, 2009, doi: 10.12938/bifidus.28.125.

474 [14] R. D. Moloney, L. Desbonnet, G. Clarke, T. G. Dinan, and J. F. Cryan, "The microbiome:
475 stress, health and disease," *Mamm. Genome*, vol. 25, no. 1–2, pp. 49–74, Feb. 2014, doi:
476 10.1007/s00335-013-9488-5.

477 [15] M. J. Tetel, G. J. de Vries, R. C. Melcangi, G. Panzica, and S. M. O'Mahony, "Steroids,
478 stress and the gut microbiome-brain axis," *J. Neuroendocrinol.*, vol. 30, no. 2, p. e12548,
479 2018, doi: 10.1111/jne.12548.

480 [16] J. D. Söderholm and M. H. Perdue, "II. Stress and intestinal barrier function," *Am. J.*
481 *Physiol.-Gastrointest. Liver Physiol.*, vol. 280, no. 1, pp. G7–G13, Jan. 2001, doi:
482 10.1152/ajpgi.2001.280.1.G7.

483 [17] S. M. Collins, "IV. Modulation of intestinal inflammation by stress: basic mechanisms and
484 clinical relevance," *Am. J. Physiol.-Gastrointest. Liver Physiol.*, vol. 280, no. 3, pp. G315–
485 G318, Mar. 2001, doi: 10.1152/ajpgi.2001.280.3.G315.

486 [18] J. M. Keay, J. Singh, M. C. Gaunt, and T. Kaur, "FECAL GLUCOCORTICOIDS AND
487 THEIR METABOLITES AS INDICATORS OF STRESS IN VARIOUS MAMMALIAN
488 SPECIES: A LITERATURE REVIEW," *J. Zoo Wildl. Med.*, vol. 37, no. 3, pp. 234–244,
489 Sep. 2006, doi: 10.1638/05-050.1.

490 [19] S. Sandrini, M. Aldriwesh, M. Alruways, and P. Freestone, "Microbial endocrinology:
491 host–bacteria communication within the gut microbiome," *J. Endocrinol.*, vol. 225, no. 2,
492 pp. R21–R34, May 2015, doi: 10.1530/JOE-14-0615.

493 [20] J. A. Foster, L. Rinaman, and J. F. Cryan, "Stress & the gut-brain axis: Regulation by the
494 microbiome," *Neurobiol. Stress*, vol. 7, pp. 124–136, Dec. 2017, doi:
495 10.1016/j.ynstr.2017.03.001.

496 [21] V. Moser, "The Human Microbiome: The Brain-Gut Axis and its Role in Immunity," p. 53.

497 [22] M. Crumeyrolle-Arias *et al.*, "Absence of the gut microbiota enhances anxiety-like
498 behavior and neuroendocrine response to acute stress in rats," *Psychoneuroendocrinology*,
499 vol. 42, pp. 207–217, Apr. 2014, doi: 10.1016/j.psyneuen.2014.01.014.

500 [23] T. Hata *et al.*, "The Gut Microbiome Derived from Anorexia Nervosa Patients Impairs
501 Weight Gain and Behavioral Performance in Mice," *Available SSRN 3155625*, 2018.

502 [24] J. Li *et al.*, “Probiotics modulated gut microbiota suppresses hepatocellular carcinoma
503 growth in mice,” *Proc. Natl. Acad. Sci.*, vol. 113, no. 9, Art. no. 9, Mar. 2016, doi:
504 10.1073/pnas.1518189113.

505 [25] J. A. Bravo *et al.*, “Ingestion of Lactobacillus strain regulates emotional behavior and
506 central GABA receptor expression in a mouse via the vagus nerve,” *Proc. Natl. Acad. Sci.*,
507 vol. 108, no. 38, Art. no. 38, Sep. 2011, doi: 10.1073/pnas.1102999108.

508 [26] T. Hata *et al.*, “The Gut Microbiome Derived from Anorexia Nervosa Patients Impairs
509 Weight Gain and Behavioral Performance in Mice,” *Available SSRN 3155625*, 2018.

510 [27] A. Bharwani, M. F. Mian, J. A. Foster, M. G. Surette, J. Bienenstock, and P. Forsythe,
511 “Structural & functional consequences of chronic psychosocial stress on the microbiome &
512 host,” *Psychoneuroendocrinology*, vol. 63, pp. 217–227, Jan. 2016, doi:
513 10.1016/j.psyneuen.2015.10.001.

514 [28] M. R. Stothart, R. Palme, and A. E. M. Newman, “It’s what’s on the inside that counts:
515 stress physiology and the bacterial microbiome of a wild urban mammal,” *Proc. R. Soc. B-
516 Biol. Sci.*, vol. 286, no. 1913, p. 20192111, Oct. 2019, doi: 10.1098/rspb.2019.2111.

517 [29] A. D. Willis, “Rarefaction, Alpha Diversity, and Statistics,” *Front. Microbiol.*, vol. 10,
518 2019, Accessed: Jun. 09, 2022. [Online]. Available:
519 <https://www.frontiersin.org/article/10.3389/fmicb.2019.02407>

520 [30] D. Yan *et al.*, “Effects of Chronic Stress on the Fecal Microbiome of Malayan Pangolins
521 (*Manis javanica*) Rescued from the Illegal Wildlife Trade,” *Curr. Microbiol.*, vol. 78, no. 3,
522 pp. 1017–1025, Mar. 2021, doi: 10.1007/s00284-021-02357-4.

523 [31] M. A. M. Moustafa *et al.*, “Anthropogenic interferences lead to gut microbiome dysbiosis
524 in Asian elephants and may alter adaptation processes to surrounding environments,” *Sci.
525 Rep.*, vol. 11, no. 1, Art. no. 1, Jan. 2021, doi: 10.1038/s41598-020-80537-1.

526 [32] R. E. Antwis, K. L. Edwards, B. Unwin, S. L. Walker, and S. Shultz, “Rare gut microbiota
527 associated with breeding success, hormone metabolites and ovarian cycle phase in the
528 critically endangered eastern black rhino,” *Microbiome*, vol. 7, p. 27, Feb. 2019, doi:
529 10.1186/s40168-019-0639-0.

530 [33] M. Surbeck, T. Deschner, A. Weltring, and G. Hohmann, “Social correlates of variation in
531 urinary cortisol in wild male bonobos (*Pan paniscus*),” *Horm. Behav.*, vol. 62, no. 1, Art.
532 no. 1, Jun. 2012, doi: 10.1016/j.yhbeh.2012.04.013.

533 [34] L. A. Isbell and T. P. Young, “Ecological Models of Female Social Relationships in
534 Primates: Similarities, Disparities, and Some Directions for Future Clarity,” *Behaviour*, vol.
535 139, no. 2/3, pp. 177–202, 2002.

536 [35] K. R. Amato, “Incorporating the gut microbiota into models of human and non-human
537 primate ecology and evolution,” *Am. J. Phys. Anthropol.*, vol. 159, no. S61, pp. 196–215,
538 2016, doi: 10.1002/ajpa.22908.

539 [36] M. T. Bailey, “The contributing role of the intestinal microbiota in stressor-induced
540 increases in susceptibility to enteric infection and systemic immunomodulation,” *Horm.
541 Behav.*, vol. 62, no. 3, Art. no. 3, Aug. 2012, doi: 10.1016/j.yhbeh.2012.02.006.

542 [37] W. C. McGrew, W. C. McGrew, L. F. Marchant, and T. Nishida, *Great Ape Societies*.
543 Cambridge University Press, 1996.

544 [38] J. Tan, D. Ariely, and B. Hare, “Bonobos respond prosocially toward members of other
545 groups,” *Sci. Rep.*, vol. 7, no. 1, pp. 1–11, 2017.

546 [39] F. J. White, “Pan paniscus 1973 to 1996: Twenty-three years of field research,” *Evol.*
547 *Anthropol. Issues News Rev.*, vol. 5, no. 1, Art. no. 1, 1996, doi: 10.1002/(SICI)1520-
548 6505(1996)5:1<11::AID-EVAN5>3.0.CO;2-Z.

549 [40] T. Gruber and Z. Clay, “A Comparison Between Bonobos and Chimpanzees: A Review and
550 Update,” *Evol. Anthropol. Issues News Rev.*, vol. 25, no. 5, Art. no. 5, 2016, doi:
551 10.1002/evan.21501.

552 [41] G. Forcina *et al.*, “From groups to communities in western lowland gorillas,” *Proc. R. Soc.*
553 *B Biol. Sci.*, vol. 286, no. 1896, p. 20182019, Feb. 2019, doi: 10.1098/rspb.2018.2019.

554 [42] R. J. Parnell, “Group size and structure in western lowland gorillas (*Gorilla gorilla gorilla*)
555 at Mbeli Bai, Republic of Congo,” *Am. J. Primatol.*, vol. 56, no. 4, pp. 193–206, 2002, doi:
556 10.1002/ajp.1074.

557 [43] A. H. Harcourt and K. J. Stewart, “Gorilla society: What we know and don’t know,” *Evol.*
558 *Anthropol. Issues News Rev.*, vol. 16, no. 4, pp. 147–158, 2007, doi: 10.1002/evan.20142.

559 [44] I. Kyrou and C. Tsigos, “Stress hormones: physiological stress and regulation of
560 metabolism,” *Curr. Opin. Pharmacol.*, vol. 9, no. 6, pp. 787–793, Dec. 2009, doi:
561 10.1016/j.coph.2009.08.007.

562 [45] L. Thau, J. Gandhi, and S. Sharma, *Physiology, Cortisol*. StatPearls Publishing, 2021.
563 Accessed: Apr. 22, 2022. [Online]. Available:
564 <https://www.ncbi.nlm.nih.gov/books/NBK538239/>

565 [46] P. J. Tkaczynski *et al.*, “Patterns of urinary cortisol levels during ontogeny appear
566 population specific rather than species specific in wild chimpanzees and bonobos,” *J. Hum.*
567 *Evol.*, vol. 147, p. 102869, Oct. 2020, doi: 10.1016/j.jhevol.2020.102869.

568 [47] N. H. Fourie, J. L. Brown, C. J. Jolly, J. E. Phillips-Conroy, J. Rogers, and R. M. Bernstein,
569 “Sources of variation in hair cortisol in wild and captive non-human primates,” *Zoology*,
570 vol. 119, no. 2, pp. 119–125, Apr. 2016, doi: 10.1016/j.zool.2016.01.001.

571 [48] K. B. Strier, T. E. Ziegler, and D. J. Wittwer, “Seasonal and Social Correlates of Fecal
572 Testosterone and Cortisol Levels in Wild Male Muriquies (*Brachyteles arachnoides*),” *Horm.*
573 *Behav.*, vol. 35, no. 2, Art. no. 2, Apr. 1999, doi: 10.1006/hbeh.1998.1505.

574 [49] G. Hohmann, R. Mundry, and T. Deschner, “The relationship between socio-sexual
575 behavior and salivary cortisol in bonobos: tests of the tension regulation hypothesis,” *Am. J.*
576 *Primatol.*, vol. 71, no. 3, Art. no. 3, 2009, doi: 10.1002/ajp.20640.

577 [50] H. L. Mason, C. S. Myers, and E. C. Kendall, “Chemical studies of the suprarenal cortex II.
578 The identification of a substance which possesses the qualitative action of cortin; Its
579 conversion into a diketone closely related to androstenedione,” *J. Biol. Chem.*, vol. 116, no.
580 1, pp. 267–276, 1936.

581 [51] H. L. Mason, W. M. Hoehn, and E. C. Kendall, “CHEMICAL STUDIES OF THE
582 SUPRARENAL CORTEX,” *J. Biol. Chem.*, vol. 124, no. 2, Art. no. 2, Jul. 1938, doi:
583 10.1016/S0021-9258(18)74051-9.

584 [52] J. J. Millspaugh and B. E. Washburn, “Use of fecal glucocorticoid metabolite measures in
585 conservation biology research: considerations for application and interpretation,” *Gen.*
586 *Comp. Endocrinol.*, vol. 138, no. 3, pp. 189–199, Sep. 2004, doi:
587 10.1016/j.ygcen.2004.07.002.

588 [53] E. R. Davenport, J. G. Sanders, S. J. Song, K. R. Amato, A. G. Clark, and R. Knight, “The
589 human microbiome in evolution,” *BMC Biol.*, vol. 15, no. 1, pp. 1–12, 2017.

590 [54] L. Cheng, S. Lucchesi, R. Mundry, L. Samuni, T. Deschner, and M. Surbeck, “Variation in
591 aggression rates and urinary cortisol levels indicates intergroup competition in wild

592 bonobos," *Horm. Behav.*, vol. 128, p. 104914, Feb. 2021, doi:
593 10.1016/j.yhbeh.2020.104914.

594 [55] A. K. Cobden, "Party Animals: Food, Sociality and Stress in Wild Bonobos (*Pan paniscus*)
595 of Iyema, Lomako Forest, Democratic Republic of Congo," PhD Thesis, Emory University,
596 2014.

597 [56] L. Cheng, S. Lucchesi, R. Mundry, L. Samuni, T. Deschner, and M. Surbeck, "Variation in
598 aggression rates and urinary cortisol levels indicates intergroup competition in wild
599 bonobos," *Horm. Behav.*, vol. 128, p. 104914, Feb. 2021, doi:
600 10.1016/j.yhbeh.2020.104914.

601 [57] G. Hohmann, R. Mundry, and T. Deschner, "The relationship between socio-sexual
602 behavior and salivary cortisol in bonobos: tests of the tension regulation hypothesis," *Am. J.*
603 *Primateol.*, vol. 71, no. 3, pp. 223–232, 2009, doi: 10.1002/ajp.20640.

604 [58] R. K. Malenky and R. W. Wrangham, "A quantitative comparison of terrestrial herbaceous
605 food consumption by *Pan paniscus* in the Lomako Forest, Zaire, and *Pan troglodytes* in the
606 Kibale Forest, Uganda," *Am. J. Primateol.*, vol. 32, no. 1, Art. no. 1, 1994, doi:
607 10.1002/ajp.1350320102.

608 [59] R. W. Wrangham and F. J. White, "Feeding Competition and Patch Size in the Chimpanzee
609 Species *Pan Paniscus* and *Pan Troglodytes*," *Behaviour*, vol. 105, no. 1–2, Art. no. 1–2, Jan.
610 1988, doi: 10.1163/156853988X00494.

611 [60] J. Prado-Martinez *et al.*, "Great ape genetic diversity and population history," *Nature*, vol.
612 499, no. 7459, Art. no. 7459, Jul. 2013, doi: 10.1038/nature12228.

613 [61] K. E. Langergraber *et al.*, "Generation times in wild chimpanzees and gorillas suggest
614 earlier divergence times in great ape and human evolution," *Proc. Natl. Acad. Sci.*, vol. 109,
615 no. 39, pp. 15716–15721, Sep. 2012, doi: 10.1073/pnas.1211740109.

616 [62] J. Dupain, E. Van Krunkelsven, L. Van Elsacker, and R. F. Verheyen, "Current status of the
617 bonobo (*Pan paniscus*) in the proposed Lomako Reserve (Democratic Republic of Congo),"
618 *Biol. Conserv.*, vol. 94, no. 3, Art. no. 3, Jul. 2000, doi: 10.1016/S0006-3207(00)00004-5.

619 [63] C. M. Brand, F. J. White, M. L. Wakefield, M. T. Waller, M. J. Ruiz-Lopez, and N. Ting,
620 "Initiation of genetic demographic monitoring of bonobos (*Pan paniscus*) at Iyema, Lomako
621 Forest, DRC," *Primate Conserv. Newslett. J. IUCNSSC Primate Spec. Group*, vol. 30, p. 103.

622 [64] R. Blekhman *et al.*, "Common methods for fecal sample storage in field studies yield
623 consistent signatures of individual identity in microbiome sequencing data," *Sci. Rep.*, vol.
624 6, no. 1, p. 31519, Nov. 2016, doi: 10.1038/srep31519.

625 [65] T. Hayakawa *et al.*, "Improving the standards for gut microbiome analysis of fecal samples:
626 insights from the field biology of Japanese macaques on Yakushima Island," *Primates*, vol.
627 59, no. 5, pp. 423–436, Sep. 2018, doi: 10.1007/s10329-018-0671-x.

628 [66] K. Vlčková, J. Mrázek, J. Kopečný, and K. J. Petrželková, "Evaluation of different storage
629 methods to characterize the fecal bacterial communities of captive western lowland gorillas
630 (*Gorilla gorilla gorilla*)," *J. Microbiol. Methods*, vol. 91, no. 1, pp. 45–51, Oct. 2012, doi:
631 10.1016/j.mimet.2012.07.015.

632 [67] V. L. Hale, C. L. Tan, R. Knight, and K. R. Amato, "Effect of preservation method on
633 spider monkey (*Ateles geoffroyi*) fecal microbiota over 8 weeks," *J. Microbiol. Methods*,
634 vol. 113, pp. 16–26, Jun. 2015, doi: 10.1016/j.mimet.2015.03.021.

635 [68] M. A. Gorzelak, S. K. Gill, N. Tasnim, Z. Ahmadi-Vand, M. Jay, and D. L. Gibson,
636 "Methods for Improving Human Gut Microbiome Data by Reducing Variability through

682 [83] M. J. Anderson, “Permutational multivariate analysis of variance (PERMANOVA),” *Wiley
683 Statsref Stat. Ref. Online*, pp. 1–15, 2014.

684 [84] C. M. Brand, F. J. White, M. L. Wakefield, M. T. Waller, M. J. Ruiz-López, and N. Ting,
685 “Initiation of genetic demographic monitoring of bonobos (*Pan paniscus*) at Iyema, Lomako
686 Forest, DRC,” *Primate Conserv.*, vol. 30, pp. 103–111, 2016.

687 [85] J. Oksanen *et al.*, “Package Vegan: Community ecology package, version 2.0 10.” Cran,
688 2013.

689 [86] M. L. Menéndez, J. A. Pardo, L. Pardo, and M. C. Pardo, “The Jensen-Shannon
690 divergence,” *J. Frankl. Inst.*, vol. 334, no. 2, pp. 307–318, Mar. 1997, doi: 10.1016/S0016-
691 0032(96)00063-4.

692 [87] L. J. Jensen *et al.*, “STRING 8—a global view on proteins and their functional interactions
693 in 630 organisms,” *Nucleic Acids Res.*, vol. 37, no. suppl_1, pp. D412–D416, Jan. 2009,
694 doi: 10.1093/nar/gkn760.

695 [88] C. Lozupone and R. Knight, “UniFrac: a New Phylogenetic Method for Comparing
696 Microbial Communities,” *Appl. Environ. Microbiol.*, vol. 71, no. 12, Art. no. 12, Dec. 2005,
697 doi: 10.1128/AEM.71.12.8228-8235.2005.

698 [89] S. Mandal, W. Van Treuren, R. A. White, M. Eggesbø, R. Knight, and S. D. Peddada,
699 “Analysis of composition of microbiomes: a novel method for studying microbial
700 composition,” *Microb. Ecol. Health Dis.*, vol. 26, no. 1, p. 27663, Dec. 2015, doi:
701 10.3402/mehd.v26.27663.

702 [90] A. I. McCord *et al.*, “Fecal microbiomes of non-human primates in Western Uganda reveal
703 species-specific communities largely resistant to habitat perturbation,” *Am. J. Primatol.*,
704 vol. 76, no. 4, pp. 347–354, 2014, doi: 10.1002/ajp.22238.

705 [91] M. R. Stothart *et al.*, “Stress and the microbiome: linking glucocorticoids to bacterial
706 community dynamics in wild red squirrels,” *Biol. Lett.*, vol. 12, no. 1, p. 20150875, Jan.
707 2016, doi: 10.1098/rsbl.2015.0875.

708 [92] D. L. Cheney and R. M. Seyfarth, “Chapter 1 Stress and Coping Mechanisms in Female
709 Primates,” in *Advances in the Study of Behavior*, vol. 39, Academic Press, 2009, pp. 1–44.
710 doi: 10.1016/S0065-3454(09)39001-4.

711 [93] C. Young, B. Majolo, M. Heistermann, O. Schülke, and J. Ostner, “Responses to social and
712 environmental stress are attenuated by strong male bonds in wild macaques,” *Proc. Natl.
713 Acad. Sci.*, vol. 111, no. 51, pp. 18195–18200, Dec. 2014, doi: 10.1073/pnas.1411450111.

714 [94] K. R. Amato *et al.*, “Habitat degradation impacts black howler monkey (*Alouatta pigra*)
715 gastrointestinal microbiomes,” *ISME J.*, vol. 7, no. 7, Art. no. 7, 2013.

716 [95] N. Usui, H. Matsuzaki, and S. Shimada, “Characterization of Early Life Stress-Affected
717 Gut Microbiota,” *Brain Sci.*, vol. 11, no. 7, Art. no. 7, Jul. 2021, doi:
718 10.3390/brainsci11070913.

719 [96] Y.-M. Kim *et al.*, “Light-Stress Influences the Composition of the Murine Gut Microbiome,
720 Memory Function, and Plasma Metabolome,” *Front. Mol. Biosci.*, vol. 6, 2019, Accessed:
721 Apr. 11, 2022. [Online]. Available:
722 <https://www.frontiersin.org/article/10.3389/fmolb.2019.00108>

723 [97] K. Oki, M. Toyama, T. Banno, O. Chonan, Y. Benno, and K. Watanabe, “Comprehensive
724 analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage
725 associated with a phenotype characterized by a high frequency of bowel movements and a
726 lean body type,” *BMC Microbiol.*, vol. 16, no. 1, p. 284, Nov. 2016, doi: 10.1186/s12866-
727 016-0898-x.

728 [98] M. Rajilić-Stojanović and W. M. de Vos, “The first 1000 cultured species of the human
729 gastrointestinal microbiota,” *Fems Microbiol. Rev.*, vol. 38, no. 5, pp. 996–1047, Sep. 2014,
730 doi: 10.1111/1574-6976.12075.

731 [99] R. E. Ley, “Prevotella in the gut: choose carefully,” *Nat. Rev. Gastroenterol. Hepatol.*, vol.
732 13, no. 2, pp. 69–70, Feb. 2016, doi: 10.1038/nrgastro.2016.4.

733 [100] K. Shutt, J. M. Setchell, and M. Heistermann, “Non-invasive monitoring of physiological
734 stress in the Western lowland gorilla (*Gorilla gorilla gorilla*): Validation of a fecal
735 glucocorticoid assay and methods for practical application in the field,” *Gen. Comp.
736 Endocrinol.*, vol. 179, no. 2, pp. 167–177, Nov. 2012, doi: 10.1016/j.ygcn.2012.08.008.

737 [101] C. Touma, N. Sachser, E. Möstl, and R. Palme, “Effects of sex and time of day on
738 metabolism and excretion of corticosterone in urine and feces of mice,” *Gen. Comp.
739 Endocrinol.*, vol. 130, no. 3, pp. 267–278, Feb. 2003, doi: 10.1016/S0016-6480(02)00620-
740 2.

741 [102] G. Bennett *et al.*, “Host age, social group, and habitat type influence the gut microbiota of
742 wild ring-tailed lemurs (*Lemur catta*),” *Am. J. Primatol.*, vol. 78, no. 8, Art. no. 8, 2016,
743 doi: 10.1002/ajp.22555.

744 [103] J. Tung *et al.*, “Social networks predict gut microbiome composition in wild baboons,”
745 *eLife*, vol. 4, p. e05224, Mar. 2015, doi: 10.7554/eLife.05224.

746 [104] K. R. Amato *et al.*, “The gut microbiota appears to compensate for seasonal diet variation
747 in the wild black howler monkey (*Alouatta pigra*),” *Microb. Ecol.*, vol. 69, no. 2, Art. no. 2,
748 2015.

749 [105] M. R. Bruorton, C. L. Davis, and M. R. Perrin, “Gut microflora of vervet and samango
750 monkeys in relation to diet,” *Appl. Environ. Microbiol.*, vol. 57, no. 2, Art. no. 2, Feb. 1991,
751 doi: 10.1128/aem.57.2.573-578.1991.

752 [106] A. Baniel *et al.*, “Seasonal shifts in the gut microbiome indicate plastic responses to diet
753 in wild geladas,” *Microbiome*, vol. 9, no. 1, Art. no. 1, Dec. 2021, doi: 10.1186/s40168-
754 020-00977-9.

755

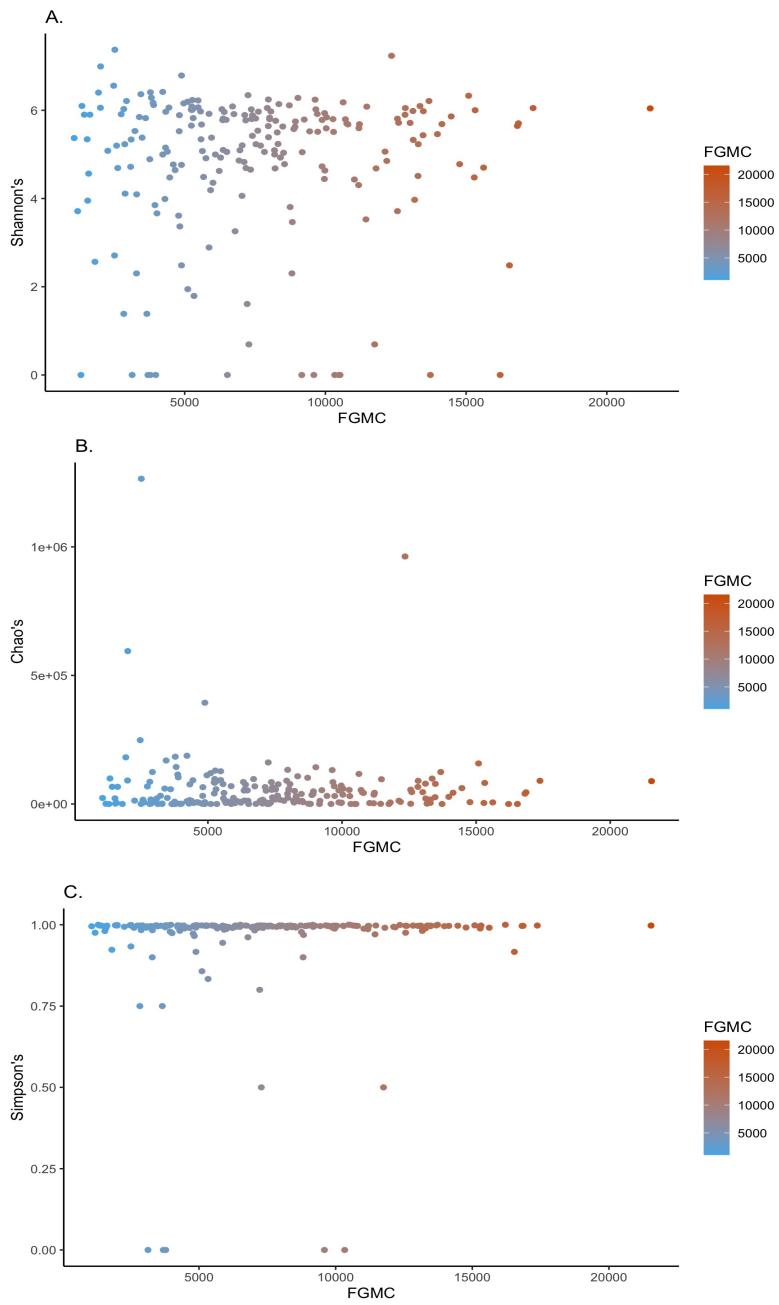
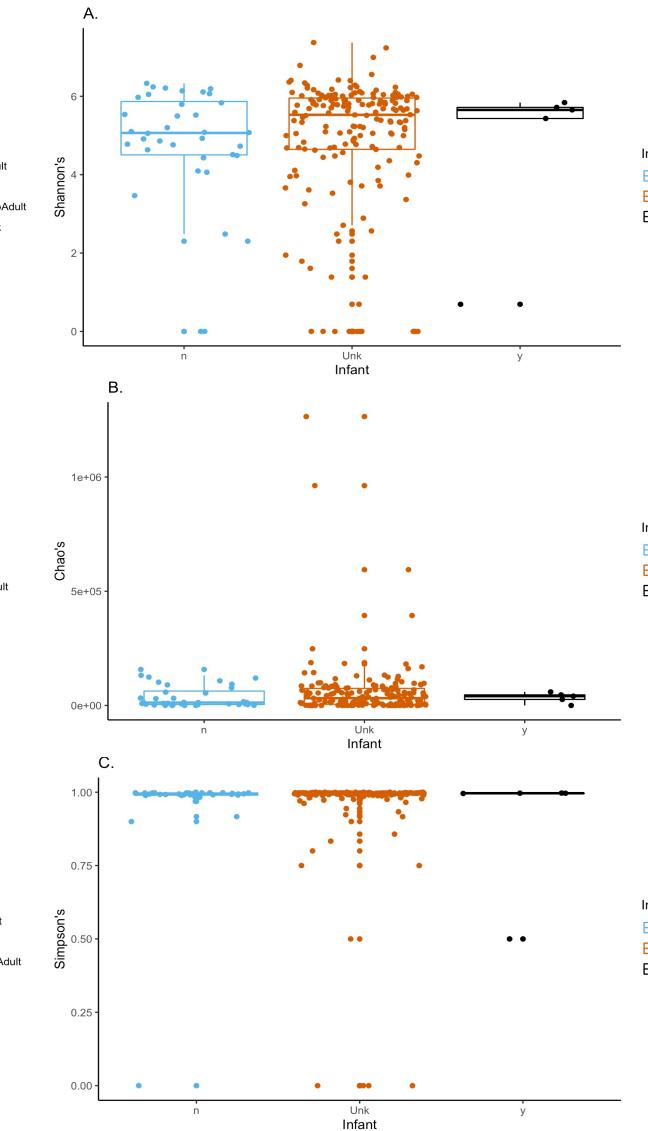
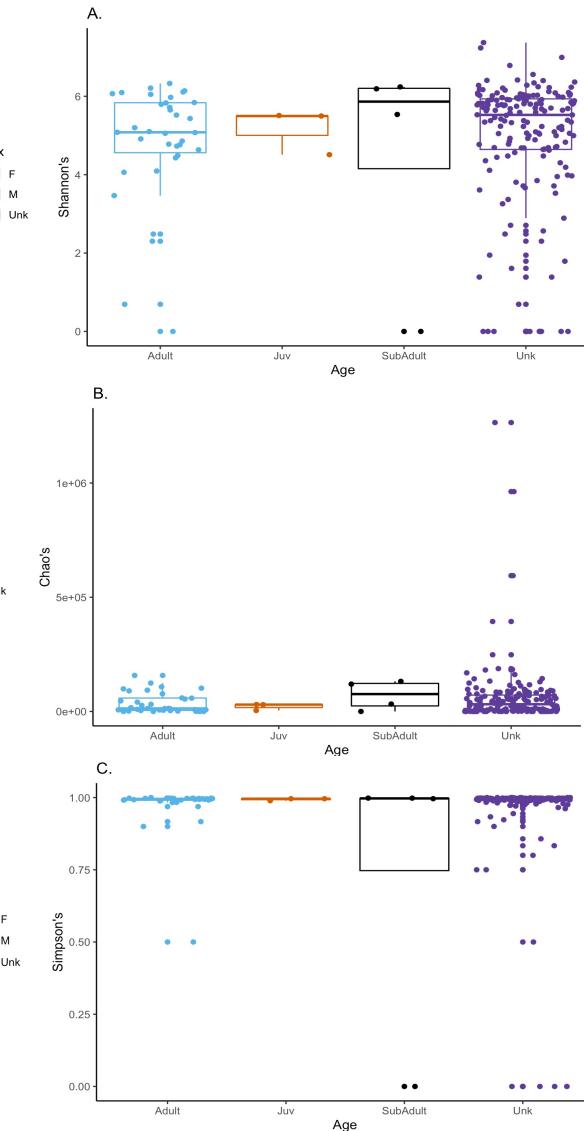
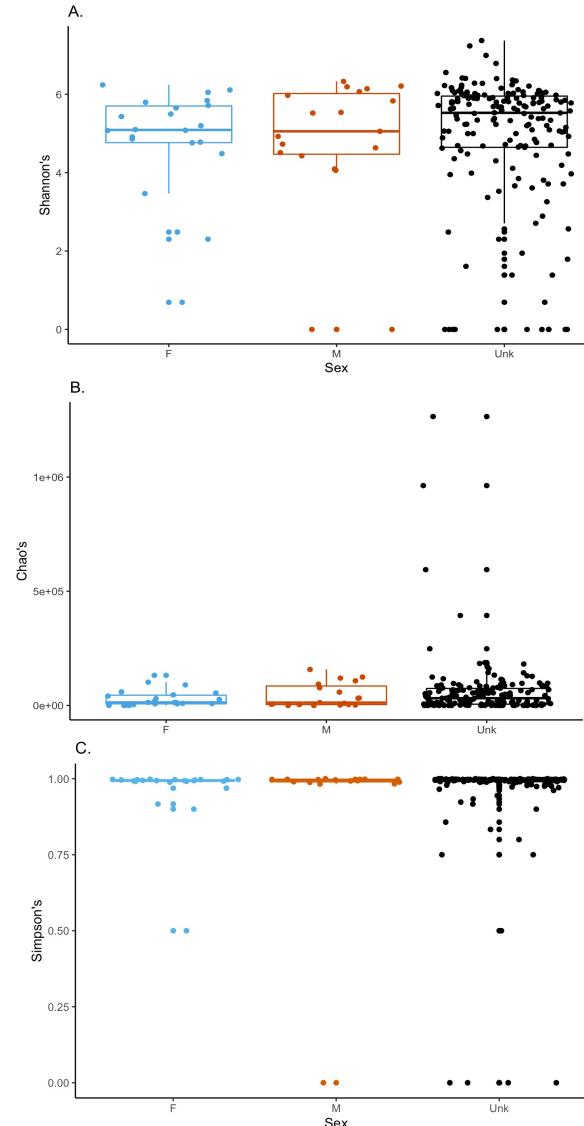





Figure 1. Linear model results of FGMC against A. Shannon's diversity, B. Chao's, and C. Simpson's diversity index were not significant.

Figure 2. The predictor variables, sex (column 1), age (column 2), and infant (column 3) were all not significant for A. Shannon's, B. Chao's, and C. Simpson's diversity indices.

Figure 3:

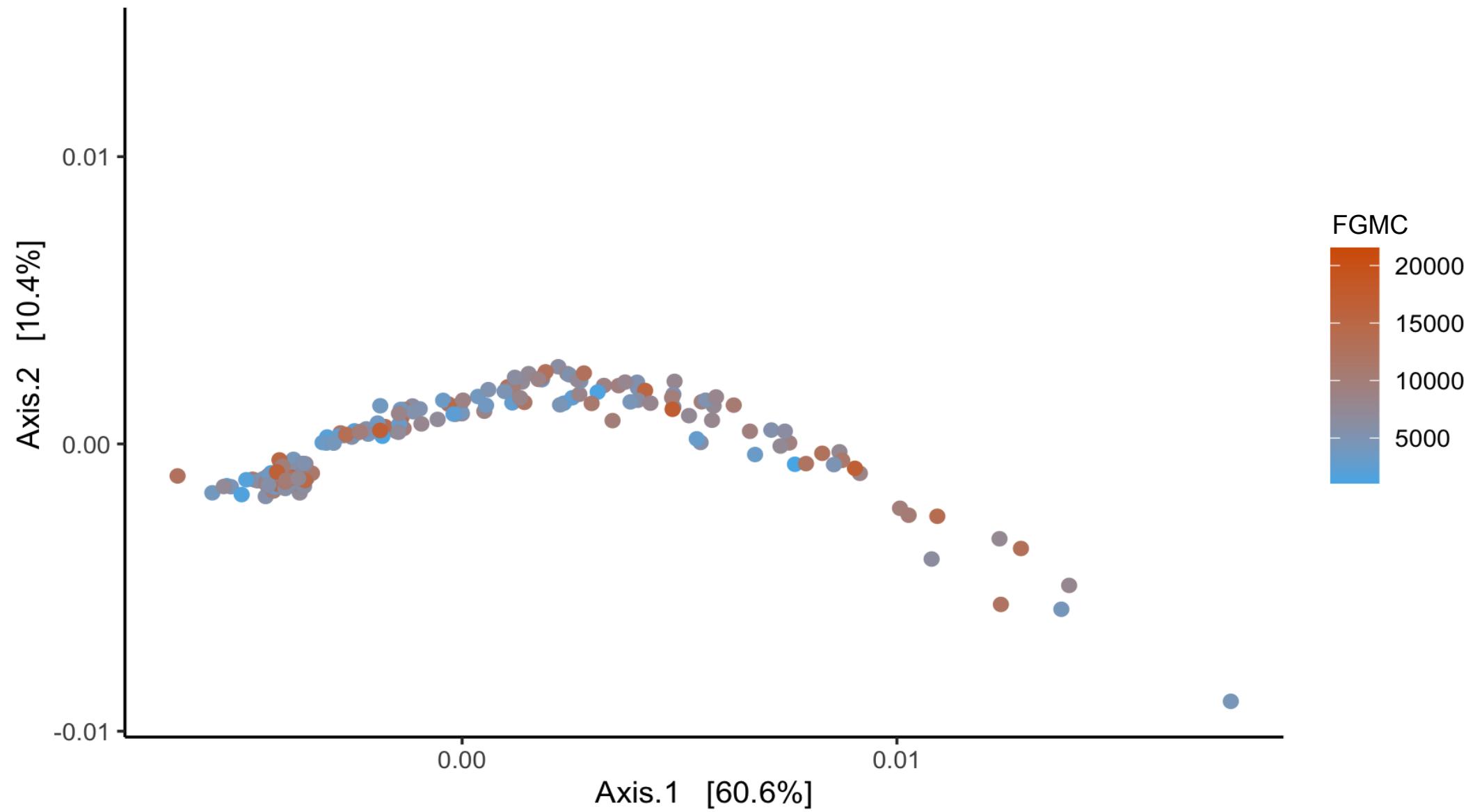
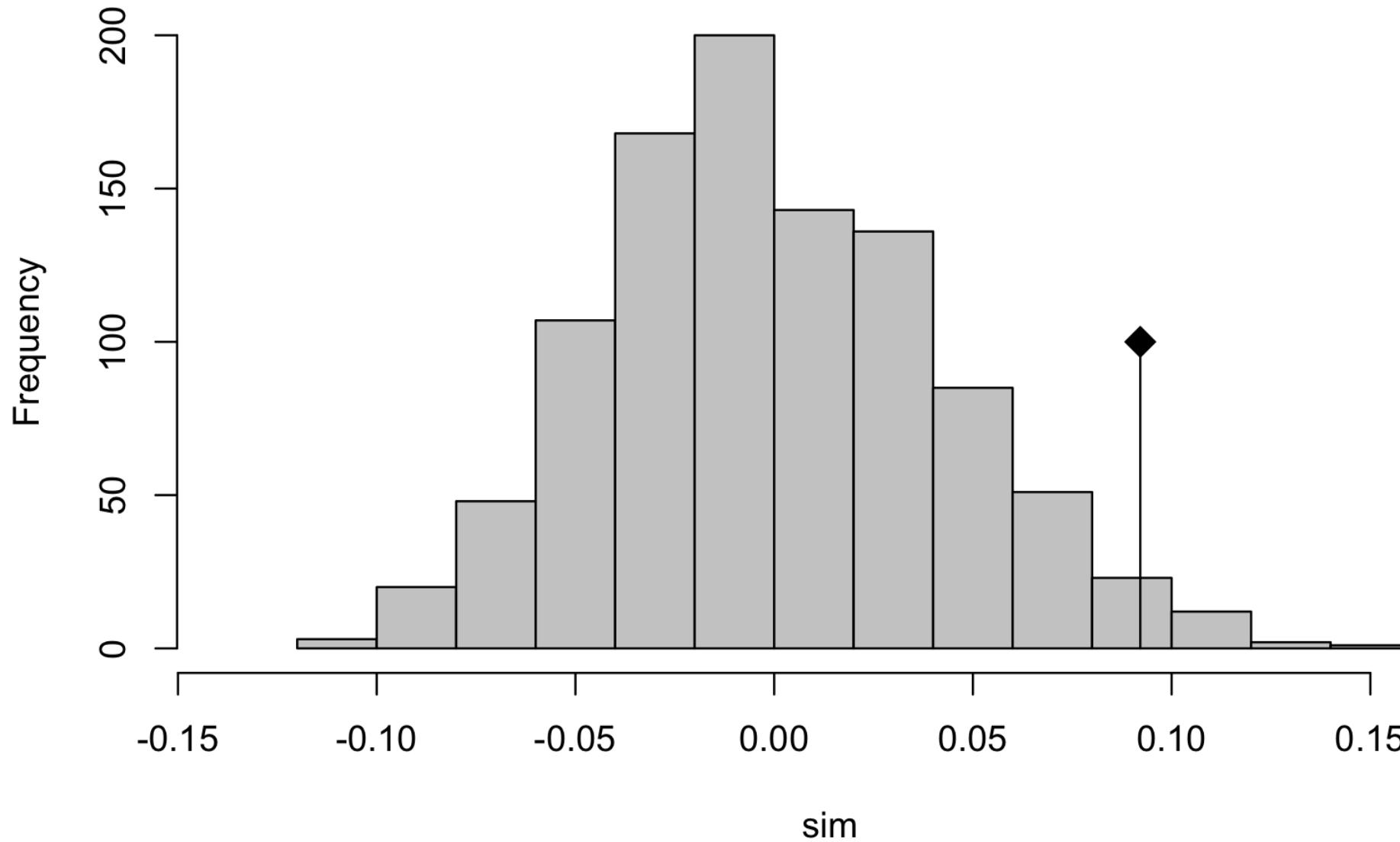



Figure 4:

