—

10

11

12

13

14

15

16

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.01.514507; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

What is particular about microplastics? A meta-analysis of the toxicity of
microplastics and suspended sediments

M. Ogonowski'*, M. Wagner?, B. Rogell', M. Haave®*, A. Lusher>®

"Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of
Agricultural Sciences, Stangholmsvagen 2, SE-17893, Drottningholm, Sweden

2 Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen
5, NO-7491 Trondheim, Norway

SNORCE, Norwegian Research Centre AS, Climate & Environment, Nygardsporten 112, NO-5008
Bergen, Norway

4 Department of Chemistry, University of Bergen, NO-5020 Bergen, Norway

SNorwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
®Department of Biological Sciences, University of Bergen, NO-5020 Bergen, Norway

*Corresponding author: martin.ogonowski@slu.se


https://doi.org/10.1101/2022.11.01.514507
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.01.514507; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

17

18  Graphical abstract

19


https://doi.org/10.1101/2022.11.01.514507
http://creativecommons.org/licenses/by-nc/4.0/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.01.514507; this version posted November 3, 2022. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Abstract

Microplastics (MP) are perceived as a threat to aquatic ecosystems but bear many similarities to
suspended sediments which are often considered less harmful. It is, therefore pertinent to determine if
and to what extent MPs are different from other particles occurring in aquatic ecosystems in terms of
their adverse effects. We applied meta-regressions to hazard data extracted from the literature and
harmonized the data to construct Species Sensitivity Distributions (SSDs) for both types of particles.
The results demonstrate that the average toxicity of MPs is approximately one order of magnitude
higher than that of suspended solids. However, the estimates were associated with large uncertainties
and did not provide very strong evidence. In part, this is due to the general lack of comparable
experimental studies and dose-dependent point estimates. We, therefore, argue that a precautionary
approach should be used and MP in the 1-1000 um size range should be considered moderately more
hazardous to aquatic organisms capable of ingesting such particles. Organisms inhabiting oligotrophic
habitats like coral reefs and alpine lakes, with naturally low levels of non-food particles are likely
more vulnerable, and it is reasonable to assume that MP pose a relatively higher risk to aquatic life in

such habitats.

Synopsis

A meta-analysis indicates that microplastics are one order of magnitude more toxic than suspended

sediments/solids, an estimate surrounded by considerable uncertainty.

Keywords

Microplastic, suspended solids, mineral particles, standardization, meta-regression, risk assessment,

hazard
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Introduction

Microplastic pollution has emerged as a potential threat to the environment. This has spurred the
development of a rapidly expanding research field aiming to quantify the hazard and risk of these
pollutants. Assessments of both hazards and risks are complicated by (1) the heterogeneous nature of
microplastics (MP), (2) the lack of standardized test methods (Redondo-Hasselerharm et al. 2018,
Gerdes et al. 2019, Gouin et al. 2019), (3) the general difficulty in identifying and quantifying MP in
complex environmental samples (Cowger et al. 2020, Lusher et al. 2020), and (4) the lack of data
comparability driven by inconsistent reporting of MP characteristics (Cowger et al., 2020; Provencher
et al., 2020). As a consequence, quantitative risk assessments of MP (Burns and Boxall 2018, Everaert
etal. 2018, 2020, Adam et al. 2019, 2021, Besseling et al. 2019, Yang and Nowack 2020) have been
criticized for the lack of alignment between exposure and hazard data (Koelmans et al. 2020). More
specifically, the problem stems from mismatches between the size, shape and density of particles used

in ecotoxicological test assays and those actually quantified in the environment.

Drawing inferences from such data is difficult, and Koelmans et al. (2020) proposed to overcome
these issues by rescaling hazard and exposure data to a comparable distributions of particles. This
method rests on the assumption that MP are inert particles and that the main mode of toxic action is
food dilution, implying that the physicochemical properties of the particles are less important.
Assuming that food dilution predominates as a major mechanism also implies that MP and any other
non-food particles present in the environment are analogous with regards to their effects. In fact,
naturally occurring, non-palatable particles like suspended sediments (SS), chitin and cellulose are
known to induce similar effects in aquatic organisms (Newcombe and Macdonald 1991, Gordon and
Palmer 2015, Ogonowski et al. 2018). Consequently, this begs the question whether MP are unique
with regards to their toxicity, or whether they are toxicologically identical to other non-food particles.
This question is important because, depending on the answer, MP would either need to be studied,
assessed, and managed as a specific group of contaminants or be considered as an integral component
of suspended matter. It is, therefore, important to determine if and to what extent MP differ from other

particulate matter present in the environment.
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A wide range of experimental conditions has been used for testing the toxicity of anthropogenic
particles to aquatic organisms. This has resulted in a high level of heterogeneity in exposure
conditions and experimental designs that, on the one hand, provides insight into the likely effects of
various exposure scenarios. On the other hand, it hampers comparability across studies. The
variability in test conditions means that any analysis of literature data aiming to assess the relative
toxicity between different particulate stressors needs to be able to account for several factors pertinent
to (1) the test materials, (2) the sensitivity of the test species and specific endpoints, and (3) the

experimental conditions (e.g., exposure duration).

The most straightforward approach to achieve comparable data is to subset data to one or several
common denominators. However, this approach removes valuable information and is rarely feasible
in practice due to the scarcity of studies with comparable experimental designs. One way to solve this
misalignment is to statistically account for the variability and normalize the data to a common scale,
which can be achieved using various multiple regression techniques (Thompson and Higgins 2002,
Sun et al. 2021). For example, if the goal is to compare the toxicities between different materials that
also differ in particle size (a characteristic known to affect toxicity), we can statistically control for the
difference in particle size. This approach will give a comparable test of the toxicity of the materials

that is independent of particle size.

Here, we address the question of whether MP are toxicologically different from naturally occurring
particles by evaluating the relative toxicity of plastic particles and suspended sediments in the size
range 1-1000 pm based on a comprehensive set of published ecotoxicological data. Using a series of
probabilistic approaches coupled with data standardization, we account for the uncertainty in the data
while keeping factors influential to the biological responses at fixed levels. This allows us to obtain

more comparable measures of toxicity and, consequently, perform an improved hazard assessment.
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92 Materials and Methods

93 Literature review and compilation of ecotoxicity data for microplastics and suspended sediments

94  Hazard data from toxicity studies with MP were collected by means of a systematic review, covering
95  the period January 2016 - February 2019 published by the Norwegian Scientific Committee for Food
96  and Environment (VKM 2019). Details regarding the search criteria and the selection process are

97  provided in Appendix I of the VKM report, and the raw data is provided as Supporting Information

98 data table 1.

99  Data collection for toxicity studies with suspended sediments were mainly based on studies from
100  previous data compilations and reviews (Gordon and Palmer 2015, Ogonowski et al. 2018) but
101  complemented with additional searches using Web of Science, Scopus and Google Scholar using the
102 following search terms: “suspended solids”, “suspended matter”, “suspended material”, “sediment”,
103 “mineral particles”, “effects”, “aquatic”, “filter feeder” alone or in combination. In contrast to the
104 search for MP hazard data, no restrictions on publication date were made. For some older studies

105  listed by Gordon & Palmer (2015), the original manuscripts were unavailable. In those cases we used

106  the toxicity data as reported in the paper by Gordon & Palmer (2015).

107  Since manual data extraction for systematic reviews is prone to errors (Mathes et al. 2017), we

108  conducted an additional error screening after the dataset had been compiled. Twenty percent of the
109  data entries (rows in the dataset, Supporting Information data table 1) were selected at random to be
110  reassessed by three of the co-authors. We found minor errors relevant to the data analyses in 6 out of
111 40 endpoints. Out of these six errors, five occurred in one publication. As we account for publication
112 ID in the analysis we conclude that the risk of systematic errors is small and unlikely to affect our

113 conclusions.

114  The particle size, either reported as the mean/median size or by visual inspection of the actual size
115  distribution in each study was assigned to sediment grain size classes according to the Wentworth
116  scale (Wentworth 1922). Size distributions that spanned several grain size classes were assigned to the

117  most predominant class. The division into size classes was necessary as some studies, in particular the
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118 SS studies, lacked clearly defined size distributions. For reasons of consistency, we used a nominal

119  particle density for the material used in the studies (Supporting Information data table 1).

120 The primary aim of the literature search was to compile a dataset for hazard assessment. For this

121 purpose, we extracted effect concentrations reported in each study in the form of the lowest observed
122 effect concentrations (LOEC), effect concentrations derived from dose-response relationships (ECio,
123 ECx, ECso, LDso), and no-effect concentrations defined as the highest observed-no-effect

124 concentration (HONEC). The raw toxicity data in the form of varying dose descriptors other than the
125  no-observed effect concentrations (NOECs) were converted to estimated NOECs using a conversion

126  factor specific to each descriptor (Adam et al. 2019).

127

128 Data subsetting to make datasets comparable for hazard assessment

129  The compiled dataset was restricted to studies in which aquatic organisms were directly exposed to
130 MP or SS added to the medium. Thus, studies in which the particles were incorporated into food or
131  delivery via trophic transfer were excluded. Data on fibrous particles were omitted since this particle
132 shape was exclusive to MP. Studies employing particle sizes < 0.98 pm (clay-sized particles) were
133 also removed since the mode of toxic action for nano-sized particles may be different due to their
134 capacity to pass biological barriers and cell membranes (Matthews et al. 2021). Since the main mode
135  of action of microparticles > 1 um is assumed to be food dilution (de Ruijter et al. 2020), we further
136  restricted the data to only contain test organisms where the main route of exposure was through

137  ingestion. This also excluded toxicity data involving primary producers, non-feeding larval stages,
138  eggs, and embryos. We only considered higher levels of biological organization (Galloway et al.

139 2017), i.e. individual and population level endpoints limited to growth, mortality and reproduction
140  since lower-level endpoints may represent transient responses. The subsetted data used for analysis
141  consisted of 43 studies (MP =28, SS = 16) and 200 biological endpoints (MP = 123, SS = 77) and is

142 provided as supplemental material (Supporting Information data table 1).

143
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144  Conversion from numerical and mass-based concentrations to volumetric units.

145 The choice of dose metric, such as volume, mass, or number of particles depends on a toxicant’s main
146  mode of action. The appropriateness of a particular dose metric for solid substances is still under

147  debate, particularly in the field of nanomaterial toxicology (Delmaar et al. 2015, Teunenbroek et al.
148  2017). Assuming that MP as well as SS mainly affect organisms by means of food dilution, the

149 correct dose metric should be based on volume of particles per volume of medium.

150  For studies where spherical particles were used and effect concentrations were reported as particle
151  numbers per volume, we firstly converted the numerical concentrations to a mass-based concentration

152  according to the following equation:

153  Equation 1 Cmass = Cnum(D(4/3)1) r/1000)*

154  Secondly, the mass-based concentrations were converted to volumetric concentrations as
155  Equation 2 Coot = Cmass/D

156  Where Cinass = the mass-based concentration (mg L), Cyum= the numerical concentration (number of
157  particles L"), D = polymer density (g cm™), r = the particle radius in pm and Cyo = the volumetric
158  concentration (mm? L!). This conversion was necessary to explicitly account for differences in

159  particle density between studies.
160
161  Probabilistic modeling of the relative toxicity of microplastics and suspended sediments

162  We used two slightly different statistical models to compare the relative toxicity of MP and SS to
163  assess the robustness of the predicted hazard. Both methods have a probabilistic foundation as to
164  account for the uncertainties in the data but differ somewhat conceptually. Since MP are considered
165  emerging pollutants, we wanted our results to be conservative in terms of not providing a false

166  negative conclusion. We hence used an alpha level of 10% rather than the conventional 5% when

167  comparing toxicities between MP and SS.
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168

169  The hierarchical standardized pSSD+ model

170  To compare the hazards across species, we followed the probabilistic SSD-approach first proposed by
171  Gottschalk & Nowak (2013) and more recently adopted by Adam et al. (2019, 2021) for the risk

172 assessment of MP. In brief, the pSSD+ model developed by Adam and colleagues does not assume
173 the data to fit any specific theoretical distribution and avoids the loss of valuable data by

174  incorporating all available toxicity data at the species level instead of using mean estimates.

175  In the pSSD+ model, the uncertainties in the underlying data are accounted for using arbitrary

176  uncertainty factors. Instead of using such an ad-hoc approach, the heterogeneity can instead be

177  modeled from the data using well-established multiple regression techniques (Thompson and Higgins
178 2002, Sun et al. 2021). Such an approach also has the advantage of estimating the toxicity for specific
179  particle sizes, shapes, exposure times and other parameters. Thus, we utilized a two-step hierarhical
180  approach to model the SSDs. In the first step, we used a Bayesian regression as implemented in the R-
181  package brms (Biirkner 2017) to predict the toxicity of MP and SS for a fixed set of parameters based
182  on the collated literature data. In other words, we estimated the toxicity for each particle type

183  separately, while keeping particle size, shape and exposure duration constant, making data

184  comparable. The probabilistic model also enabled the uncertainty in the estimated toxicity to

185  propagate through all analytical steps. The precursory standardization model can be described as a

186  basic linear regression model:

187  Equation3 Tox value; = By + B1(Exposure duration); + B,(Material type X

188  Particle shape); + B;(Species class); + B4 (Grain size class); + ¢;

189  The toxicity data, translated into volumetric concentrations [mm?® L] (Koelmans et al. 2020) was
190  standardized, by fixing the Exposure duration to 28 days, which was the upper threshold in our data
191  for a chronic exposure (Table S2). Particle shape was set to “irregular” since this is a shape that
192  encompasses both MP and natural suspended solid particles. Material type and Particle shape were

193 modeled as a composite categorical factor (equivalent to an incomplete factorial interaction term) with
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194 three levels (SS-irregular, MP-irregular and MP-spherical) since no spherical SS particles were

195  included in our dataset. Grain size class was set to “clay” (0.98-3.9 um), a common size category for
196  the entire dataset. In contrast to standard SSDs (Kooijman 1987, Aldenberg and Slob 1993), we

197  grouped species-level data to taxonomic class level instead, in order to not overparameterize the

198  model. This was motivated by the assumption that closely related species have similar feeding modes
199  and sensitivities to particle exposures. Specification of the priors is provided in the Supporting

200 Information and Table S3.
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201  In the second step, the predicted and standardized toxicity values were used as input to the pSSD+
202  model described by Adam et al. (2019, 2021) to produce two SSDs, one for MP and another for SS.
203  To retain the uncertainty in the toxicity estimate throughout the analytical process, we used the 5 and
204 95" percentile of the posterior distribution for each predicted toxicity value as input in the pSSD+

205  model. The relative hazard of MPs and suspended sediments was evaluated by comparison of the 5%
206  percentile-hazardous concentration (HCs) from the two standardized pSSD+ models and by

207  comparing the full posterior distributions of the HCs-values. Following the studies by Adam et al.

208 (2019, 2021), HCs was considered equal to the predicted no-effect concentration (PNEC). The pSSD+

209  model was generated using 10,000 random permutations.

210

211 Alternative approach to compare the hazard of microplastic and suspended sediments.

212 In order to validate our approach, we also analyzed our data in an alternative framework using a
213  Bayesian mixed model. The model was used to predict a NOEC (pNOEC) for MP and SS while
214 accounting for the variability in experimental conditions, particle characteristics, exposure duration
215  and variation across taxonomic groups and studies. In contrast to the pSSD+ model, this model

216  accounted for the fact that no-effect studies (HONEC) are right-censored and studies reporting

217  LOECs are left-censored when the LOEC equals the lowest test concentration by explicitly

218  incorporating this uncertainty into the model. Hence, the intention was twofold: (1) to compare

219  chronic NOEC posterior distributions (the relative toxicity) between MPs and suspended sediments
220  while statistically controlling for other explanatory variables, and (2) to identify potential drivers of

221  the toxicity.

222 The criteria and statistical approaches for determining hazardous or safe concentrations differ among
223 studies which makes toxicity data not directly comparable. To align toxicity data to the same scale, it
224 is common to apply uncertainty factors (UF) to derive the chronic NOEC. Although there is no

225  consensus on what these UFs should be, Wigger et al. (2020) suggested a range of conversion factors;

226  one for the dose descriptor conversion (UFose, Table S4) and another one to convert acute to chronic
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227  toxicity data (UFgme). Along these lines, we used the estimated NOEC (eNOEC) as the response

228  variable in the model calculated by dividing the reported dose descriptors by the appropriate

229  uncertainty factor (UF o). Contrary to the common approach (Adam et al. 2019, 2021, Wigger et al.
230  2020), we did not multiply UFgosc With UFime to derive the chronic NOEC. Instead, we modeled the
231  effect of exposure duration as a predictor in the model. By doing so, we estimated the effect directly
232 from the data instead of using an arbitrary UF with an ad hoc associated uncertainty, thus avoiding the

233 assumption of a positive relationship between exposure time and toxicity a priori.

234 Toxicity values that equal the highest or the lowest employed test concentrations are so called

235  “censored” data. This means that the true hazardous concentration exceeds the tested concentration
236  range and is unknown. The censoring of HONEC and LOEC-values was accommodated using the
237  cens-function in the R-package brms. Apart from the focal variable Material type, the variables

238  Feeding strategy, Particle exposure, Grain size class and Particle shape were included as co-variates
239  in the model because they are intimately linked to exposure, food processing and the organism’s

240  sensitivity to particles. To account for the fact that Particle shape and Material Type were not fully
241  crossed (spherical shape missing from the suspended sediments dataset), we modeled the interaction
242 of these two variables as a single composite factor (the fused combination of Particle shape and

243 Material Type) the same way as for the precursory pSSD+ model. Grain size class was moreover

244  modeled as a monotonic variable due to the ordered nature of the size classes (Biirkner and

245  Charpentier 2015). To account for the variability between studies, we considered Study as a random
246  effect on the intercept. To account for variability across species we initially also included Species as a
247  random intercept term together with the interaction between Species and Study, but this resulted in a
248  too complex model and unsatisfactory low effective sample size for the interaction term. The final
249 model thus omitted the Species term but retained the interaction term which rests on the assumption
250 that the sensitivities of species within a particular study are more similar than across studies (Table
251  S2). The error structure was modeled as a t-distribution to accommodate the presence of outlying data
252 points further out in the tails of the distribution. For all models, we ran four chains with 5000

253  iterations each after a burn-in of 2500 iterations was discarded. Thinning was set to one. Markov
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254  chain Monte Carlo (MCMC) convergence to the equilibrium distribution was monitored visually
255  using the bayesplot package (Gabry et al. 2019) and by evaluation of R values and effective sample
256 sizes. We found no sign of failed convergence and R-vales were equal to one, indicating that the
257  MCMC chains had converged at similar values. Model residuals for the Bayesian mixed model were

258  evaluated visually (Figure S1). Specification of the priors is provided in the Supporting Information

259 and Table S5.

260
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261 Results and Discussion

262 Microplastic toxicity compared to suspended sediments

263  Based on the Bayesian mixed model, the standardized mean NOEC for MP on the data scale was

264  approximately 12-fold lower compared to that of SS but the credible interval for the groups

265  overlapped, indicating no significant difference between MP and SS (Table S1). However, the one-
266  sided 90% probability distribution of the difference in posteriors did not contain zero, suggesting that
267  MP are more hazardous than SS. The mode of the difference in posterior distributions was centered
268  around one unit on the logl0-scale, corresponding to a ten-fold difference in toxicity (Figure 1). This
269  pattern was consistent with the standardized pSSD+ model where the PNEC-distributions for MP and
270  SS overlapped (Figure 2) but the one-sided 90% probability distribution of the difference in PNEC
271  posteriors did not overlap zero (Figure 3) and the PNEC for MP was 7.7 times lower than that of SS,
272 suggesting that species likely are more sensitive to MP exposure compared to other particulate matter.
273 This is also in line with a previous assessment based on a smaller dataset where the LOEC (at

274  individual and population level) was significantly lower for MPs compared to suspended sediments
275  (Ogonowski et al. 2018). It is, however, important to consider that the differences in hazard can be
276 attributed to other causes than actual differences in toxicity, such as differences in experimental

277  designs and exposure conditions that are difficult to account for statistically.
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279  Figure 1. Marginal mean difference in posterior probabilities between suspended sediments
280  (SS) and microplastic (MP) groups in the censored, Bayesian mixed model (model 2, Table
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281  82). The shaded area shows the 90% probability (one sided test) for MP to have a lower
282  eNOEC compared to SS.

283

284  The use of model particles in test assays yields unrealistic toxicity estimates

285  Two aspects, we did not capture statistically, may result in a higher toxicity of MP compared to SS.
286  Both relate to the use of pristine MP versus SS in toxicity studies. First, MP will leach plastic

287 chemicals that can, at least in some cases, drive the overall MP toxicity (Martinez-Gémez et al. 2017,
288  Heinrich et al. 2020, Zimmermann et al. 2020, Beiras et al. 2021). In addition, commercially available
289  MP can contain preservatives (e.g., sodium azide) that exacerbate the particles’ toxicity (Yang and
290  Nowack 2020). Accordingly, the hazard data we used here may include the toxicity of plastic

291 chemicals and preservatives, which does not occur in studies with natural particles. Like MP, SS can
292  also contain chemicals adsorbed from their environment, such as polycyclic aromatic hydrocarbons,
293 polychlorinated biphenyls (PCBs) and other persistent pollutants (Santiago et al. 1993, Riigner et al.
294 2019) Thus, SS toxicity may also be caused by their physical and chemical composition (Rivetti et al.
295 2015, Lu et al. 2021). However, since many of our SS-studies used pristine, unconditioned mineral
296  particles (78% of the SS endpoints, SI data table 1) they likely underestimate the toxicity that would
297  occur under natural conditions. Conversely, the presence of toxic preservatives and other plastic

298  chemicals such as UV stabilizers, surfactants and monomer residues which are specific to some MP
299  studies can leach from the MP during exposure and induce chemical toxicity. Indeed, Yang and

300  Nowak (2020) demonstrated for nanoplastics that removing hazard data for particles that contained

301  sodium azide resulted in higher PNECs (i.e., lower toxicity).

302  To compare MP and SS particles on equal terms, the potential effects of leachable chemicals should
303  be accounted for either by removing data for particles containing chemicals (e.g., if they have not
304  been washed) from the meta-analysis or by modeling it statistically (e.g., as covariates in the meta-
305  regression). However, to do so completely and without bias would be practically impossible because
306  the presence of reported toxic preservatives likely is non-random and skewed towards commercially

307  available MP. In addition, the latter may also contain a multitude of other proprietary and undisclosed
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308  chemicals which cannot be easily accounted for (Heinrich et al. 2020). Hence, we chose to treat the
309  chemical component as an integral part of the toxic response, not discriminating between specific
310  physical and chemical toxicity. This results in a higher-than-expected average toxicity but also higher

311  uncertainty of that estimate.

312 A second aspect regards the fact that MP which are aged under natural conditions, will be more

313 comparable to SS and have a different toxicity than pristine MPs which dominate our dataset. This has
314  been demonstrated experimentally with some studies reporting a lower toxicity of aged vs pristine MP
315  (Zou et al. 2020, Schiir et al. 2021) and other studies reporting an increase in toxicity after weathering
316  (Zhanget al. 2021, 2022). Although the causes of the altered toxicity are not fully understood, they
317  seem to be related to the disassociation of plastic chemicals, the formation of a protein corona and

318  biofilms as well as the fragmentation into smaller nano-sized particles. The latter can increase toxicity
319  of the overall particle mixture during ageing but may reduce the toxicity of the particles in the same

320  size fraction as pristine MP (Zhang et al. 2021, 2022).

321  The sorption of biomolecules on the particle surface (eco-corona) and ultimately biofilm formation
322 (Galloway et al. 2017) may promote particle aggregation and larger average particle size (Porter et al.
323 2018, Michels et al. 2018, Motiei et al. 2021). Although the same would be theoretically true for

324  mineral particles there is evidence to suggest that these particles do not aggregate to the same extent
325  as MP (Motiei et al. 2021). This shift in particle sizes may lead to the formation of MP aggregates that
326  are too large to be consumed, which may decrease their bioavailability and hence their capacity to
327  cause adverse effects. In addition, the eco-corona or biofilm on particles can provide extra nutrition
328  and, thus, counteract food dilution effects for some types of aging (incubation in nutrient rich raw
329  wastewater) but not for others (e.g., treated wastewater and river water which are lower in nutrients
330  and microbial activity) (Amariei et al. 2022). Whether and to which extent such modulation also

331  applies to SS is not clear from the literature. Given the dearth of studies on the toxicity of aged MP,
332 we could not account for this factor in our meta-analysis. Consequently, our MP and SS toxicity

333  estimates are likely not directly translatable to natural systems since they reflect somewhat artificial

334 conditions.
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337  Figure 2. Probabilistic species sensitivity distribution based on volume-based toxicity data
338  corrected for inter-study differences in particle characteristics and exposure conditions, A)
339  for suspended sediments and B) for microplastics. The dark shaded horizontal bars represent
340  the 25-75™ percentile ranges and lighter shaded area the 5-95" percentile range.
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Figure 3. Posterior distribution of the difference in PNEC values (mm’ L!) between
suspended sediments (SS) and microplastic (MP) SSDs. The shaded area shows the
90% probability (one-sided test) for MP to have a lower PNEC compared to SS.


https://doi.org/10.1101/2022.11.01.514507
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.01.514507; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

347  Differences in test-concentration ranges affect the predicted hazard

348  The pSSD+ model does not account for the fact that no-effect studies are right-censored (undefined
349  upper effect concentration) or that LOEC values can be left-censored if they equal the lowest used test
350  concentration (undefined lower effect concentration). This may lead to an over- or underestimation in
351  toxicity, respectively. In our data collection, the distribution of no-effect data was unequal across MP
352  and SS studies with a higher frequency of such data points in the MP data compared to the SS data
353 (69.9 vs. 24.7%, Table S6). Also, neither of our models accounts for the fact that the experiments

354  were conducted using different concentration ranges. Experiments involving natural suspended solids
355  or minerals usually employ test concentrations in the order of grams L' (Cohen et al. 2014) to cover a
356  natural range of concentrations. MP studies on the other hand use orders of magnitude lower

357  concentrations, due to the desire to test “environmentally relevant” concentrations. In fact, in our data,
358  the average highest concentration for SS was two orders of magnitude higher compared to the MP
359  studies (Table S6). Although many MP studies have been criticized for using unrealistically high test
360  concentrations (Lenz et al. 2016, Connors et al. 2017, Cunningham and Sigwart 2019), these

361  concentrations are still much lower than naturally occurring levels of SS. The difference in

362  concentration ranges poses a problem when the objective is to compare the hazard of different

363  toxicants based on dose metrics like the LOEC or the NOEC — which are directly dependent on the
364  range of test concentrations used (Laskowski 1995, Warne and Van Dam 2008, Fox and Landis 2016,
365  see also tables S4 and S6). The high proportion of no-effect studies in the MP data indicates that the
366  hazardous concentrations likely are higher and closer to those of SS than our statistical models

367  suggest.

368  Even though an uncertainty factor was applied to adjust for the unknown effect concentration it may
369  not have been large enough. Such disparities in the experimental designs cannot be statistically

370  accounted for unless dose dependent point estimates are used exclusively (Van Der Hoeven et al.
371 1997). This was, however, not possible due to the general lack of such data, in particular for MP.

372 Excluding HONEC-data from the model was on the other hand not feasible either because it resulted
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373 in atoo complex model for the data. Moreover, the removal of censored data (e.g., HONEC) usually

374  results in biased estimates and variances (Turkson et al. 2021, Bouaziz n.d.).

375  The best approach to make data fully compatible would be to perform paired comparisons of different
376  particle types within an experiment where the exposure conditions are the same. The use of natural
377  reference particles in MP testing has recently been advocated (Ogonowski et al. 2016, 2018, Connors
378  etal. 2017, Scherer et al. 2018, Gerdes et al. 2019, Gouin et al. 2019, Arp et al. 2021) but it’s

379  adoption has until recently been comparatively scarce in the scientific literature. We argue that the use
380  of reference particles such as natural minerals is a way to increase the ecological relevance of

381  ecotoxicological studies since it provides a benchmark for particle toxicity (Scherer et al. 2020, Schiir

382  etal. 2020). Such setups will also help to identify the mechanisms driving toxic responses to particles.

383

384  Drivers of toxicity

385  The Bayesian mixed model enabled the toxicity data to be standardized and comparable between MP
386  and SS studies. The heterogeneity in the data was large and varied considerably between specific
387  studies (e.g., experimental setups) and test species. The proportion of variance explained by the

388  variability across studies was on average 81% and the 95% Credible Interval (CI) ranged 33 — 84%.
389  Variability across species nested within studies was on the other hand lower (24%, 95% CI=11 —
390  46%). Although this high level of variation is expected given the wide variety of test materials,

391  species and experimental designs, this contributed to a high degree of uncertainty in the regression
392 coefficients, with the credible intervals all overlapping or being close to overlap, indicating a low
393  degree of confidence (Table S1, Figure S2). In this context, one advantage of Bayesian over

394  frequentist models is their ability to make probabilistic statements regarding the parameter estimates,
395  which allows for a more nuanced interpretation. A closer inspection of the central tendencies of the
396  coefficient posteriors reveals that even though the overall uncertainty was high, the highest

397  probability densities were centered away from zero for several variables (Figure S2, Figure 4).

398  Notably, the probability of Grain size class to have a positive slope (one-sided evidence ratio) was >

20
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399  95% suggesting decreasing toxicity (higher pPNOEC) with increasing particle size. This is in line with
400  previous observations of MPs in the current size range (Ziajahromi et al. 2018). We can also see that
401  39% of the total change in pNOEC due to Grain size class happens between the first two predictor
402  categories (i.c., clay and silt, Table S1) which indicates that the relationship is non-linear. It is

403  probable that very fine particles have additional effect mechanisms apart from food dilution, such as
404  an obstruction of gas exchange through the gills in fishes and invertebrates (Hess et al. 2015, 2017,
405  Lowe et al. 2015, Watts et al. 2016), clogged feeding appendages in filtrating invertebrates (Cole et al.
406 2013, Savinelli et al. 2020) or tissue translocation with potential consecutive down-stream effects

407  (Haave et al. 2021).
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409  Figure 4. Marginal means plot for the explanatory variables in the censored, Bayesian mixed
410  model (model 2, Table S2).

411

412 As for the variable Grain size class, we saw the same pattern for Exposure duration (Figure 4).

413 Although decreasing toxicity with increasing exposure time may seem counterintuitive at first, it is
414  plausible in circumstances where sedimentation is allowed to occur without renewal of the test

415  medium or an effect of increased food intake due to the secondary ingestion of nutritious biofilms

416  associated with the particles (Amariei et al. 2022). Alternatively, it can be an artefact linked to the fact
417  that experiments with longer exposures tend to employ lower test concentrations which is problematic

418  when concentration dependent dose metrics, like LOECs and NOECs, are used (Supporting

21
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419  information Figure S3-Figure S6). The failure to control for such effects can bias toxicity assessments
420  when particles of different density and sedimentation rates are compared, in particular for suspension
421 feeding organisms (Connors et al. 2017, Ogonowski et al. 2018, Gerdes et al. 2019, Gouin et al.

422 2019). Although such experimental designs have been rather common in the past, procedures to

423  overcome these shortcomings have recently been proposed (Gerdes et al. 2019, Motiei et al. 2021).
424 Albeit not fully conclusive, the pattern of decreasing toxicity with exposure time remains when the
425  more robust dose-dependent point estimates (ECso) are considered (Figure S7) suggesting this is a true

426 effect.

427  Moreover, we expected the sensitivity of a species/life stage to be linked to its native environment,
428  meaning that organisms during different stages of development should be well adapted to cope with
429  local turbidity levels (McFarland and Peddicord 1980). Contrary to our expectation, we did not find
430  any coherent evidence to support this hypothesis. Species in the low turbidity category (variable

431  particle exposure) had only a 45% probability to be more sensitive to particle exposures than the ones
432  in the high turbidity category (one-sided posterior probability). However, compared to the

433  intermediate turbidity, the probability was 86%, suggesting rather strong evidence for species adapted
434 to a low-particle environment to be more sensitive than species that more often are exposed to higher
435  levels of SS. We expected species classified to the high turbidity category to be the least sensitive, but
436  we found low support for this hypothesis and the probability for the intermediate class to be more

437  sensitive than the high turbidity class was merely 21%. One reason could be that our classification
438  into the “low turbidity” group is more accurate as the boundary between clearwater and more tolerant
439  species is simply more distinct and easily defined. Clearwater species were almost exclusively those
440  inhabiting tropical and oligotrophic waters or species with a fully pelagic life history where the

441  occurrence of suspended particles is naturally low (Supporting information data table 1). In contrast, it
442 is more difficult to distinguish between the medium and high categories because most of these species
443 and life stages are mobile and can switch between clear and turbid water and their exposure is

444  generally dependent on seasonality and habitat specific conditions.

22
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445  Out of the three selected endpoints (growth, reproduction and mortality), growth was the most

446  sensitive and mortality the least (Figure 4, Table S1, Table S2, Figure S2). The higher sensitivity of
447  the sublethal endpoints was expected and indicates that the model behaved as predicted. This also
448  supports the hypothesis that food dilution and/or increased energy expenditure are important

449  mechanisms when exposed to non-caloric particles because they compromise growth which in turn
450  decreases reproductive capacity and ultimately leads to starvation (Madon et al. 1998, Wright et al.
451 2013, Ogonowski et al. 2016, Foley et al. 2018). It does however not exclude other possible modes of
452  action for which Dynamic Energy Budget models or other individual-based modelling approaches

453 would be needed.

454  Using a meta-regression based approach combined with a novel standardization step to harmonize
455  data for SSD analysis, we have demonstrated that the average toxicity of MPs is approximately one
456  order of magnitude higher than that of SS. However, the uncertainties around these estimates are large
457  and the apparent difference in toxicity is partly due to systematic differences in experimental designs
458  that cannot be accounted for statistically. Well-designed comparative experiments with plastic and
459  non-plastic particles, where the potential effect of associated chemicals is accounted for and dose-
460  dependent point estimates are derived, are needed to accurately assess the effects of MPs in the field
461  relative to those of SS. In lack of better evidence, it is advisable to apply a precautionary approach.
462  Hence, MP in the 1-1000 um size range should, for the time being, be considered as moderately more
463  hazardous to aquatic organisms capable of ingesting particles in this size range. Organisms inhabiting
464  oligotrophic habitats like coral reefs and alpine lakes, with naturally low levels of non-food particles
465  are likely more vulnerable, and it is reasonable to assume that MP pose a relatively higher risk to

466  aquatic life in those areas.
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