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Abstract

Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection
against damaged oDNA is mediated in part by segregation — the sorting of different oDNA types into
different cells in the germline. Plants segregate oDNA very rapidly, with o-DNA recombination protein
MutS Homolog 1 (MSH1), a key driver of this segregation, but in contrast to mammals, we have very
limited knowledge of the dynamics of this segregation within plants and between generations. Here,
we combine stochastic modelling with tissue-specific heteroplasmy measurements to reveal the
trajectories of oDNA segregation in Arabidopsis thaliana development and reproduction. We obtain
and use new experimental observations of oDNA through development to confirm and refine the
predictions of the theory inferred from existing measurements. Ongoing segregation proceeds
gradually but continually during plant development, with a more rapid increase between
inflorescence formation and the establishment of the next generation. When MSH1 is compromised,
we show that the majority of observed segregation could be achieved through partitioning at cell
divisions. Functional MSH1 accelerates mtDNA segregation far beyond what can be achieved
through cell divisions; we show that increased oDNA gene conversion is a plausible mechanism
quantitatively explaining this acceleration. We also discuss the support for different models of the

plant germline provided by these observations.

Introduction

Mitochondria and plastids are essential sites of energy transduction across eukaryotes. Originally
independent organisms, they retain their own genomes (organelle DNA or oDNA; mtDNA and ptDNA
respectively) encoding essential aspects of bioenergetic machinery in plants (and other eukaryotes)
[Allen & Martin, 2016; Giannakis et al., 2022a; Mohanta et al., 2020; Palmer et al., 2000; Clegg et

al., 1994]. Plant cells typically contain populations that range from dozens to thousands of mtDNA
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and ptDNA molecules [Preuten et al., 2010; Greiner et al., 2020; Wang et al. 2010; Fernandes
Gyorfy et al., 2021], contained within their respective organelles [MacCauley, 2013; Woloszynska,
2010; Barr et al., 2005; Johnston, 2019a]. Due to their centrality in bioenergetic, metabolic, and other
cellular processes, it is essential to preserve the integrity of oONA genes. This preservation
necessitates a way of dealing with oDNA mutations and ensuring faithful inheritance of oDNA

between generations.

Mutations in oDNA can give rise to heteroplasmy — a mixture of several oDNA types within a cell
[Wallace & Chalkia, 2013; Stewart & Chinnery, 2015]. Across eukaryotes, developmental and
genetic processes exist to limit the inheritance of heteroplasmy [Edwards et al., 2021]. In several
animals, mtDNA inheritance is shaped by the so-called developmental bottleneck [Johnston, 2019b;
Stewart & Chinnery, 2015; Zhang et al., 2018]. Here, cell-to-cell variance in heteroplasmy is
increased in the female germline, so that individual gametes have a wide range of heteroplasmy
levels. Through this increase in variance — called segregation or “sorting out” — it is then possible for
some gametes to inherit lower levels of damaging mutations than the mother’s average. If gametes
with high levels of such mutations are removed by selection, the mutational burden passed to the

next generation is limited.

How plants limit the inheritance of these damaging mutations is less well understood [MacCauley,
2013; Woloszynska, 2010; Barr et al., 2005; Galtier, 2011]. Although the observation of within-plant
segregation of oDNA-linked phenotypes dates back over a century (and led to the discovery of
cytoplasmic inheritance) [Hagemann, 2010; Greiner 2012], the quantitative dynamics and
mechanisms of this segregation remain unclear. Recent experimental evidence has shown that
sorting out of plant mtDNA and ptDNA is extremely rapid compared to animals [Broz et al., 2022].
This work showed that this sorting depends on MSH1, a gene responsible for controlling
recombination activity in organelle DNA [Abdelnoor et al., 2003]. Although the precise nature and
mechanism of this control is yet to be determined [Arrieta-Montiel et al., 2009; Virdi et al., 2015;
Christensen, 2014], MSH1 is required to maintain a low mutational burden in plant oDNA [Wu et al.,
2020], accelerates oDNA segregation [Broz et al., 2022], and supports oDNA gene conversion
[Gualberto et al., 2014; Edwards et al., 2021]. Other recombination factors including members of the
RECA gene family also contribute to oDNA maintenance [Rowan et al., 2010; Maréchal & Brisson,
2010; Day & Madesis, 2007; Shedge et al., 2007; Miller-Messmer et al., 2012]. Theoretical work has
explored the role of recombination processes in shaping plant oDNA [Atlan & Couvet, 1993; Albert et
al., 1996], suggesting that gene conversion provides a strategy for oDNA segregation [Lonsdale et
al., 1988; Khakhlova & Bock, 2006], with stochastic modelling showing that such segregation can
occur without requiring a reduction in cellular oONA copy number [Edwards et al., 2021]. This

feature is potentially useful for plants, where, due to developmental dynamics, a germline cannot
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readily be sequestered and manipulated to impose a physical bottleneck. oDNA copy number in
plant meristems is lower than in many animal cases [Edwards et al., 2021; Preuten et al. 2010;
Wang et al. 2010; Greiner et al., 2020], but this reduction alone cannot account for the extent of
segregation observed [Broz et al., 2022]. The developmental history of the plant germline differs
dramatically from the animal case [Lanfear, 2018; Burian et al., 2016], and any understanding of how
oDNA segregation proceeds during development necessitates an analysis approach that can both
account for the developmental history underlying samples [Wilton et al., 2018; Stadler et al., 2021]
and the uncertainty over different models of plant germline development [Lanfear, 2018; Kirk et al.,
2013].

Here, we attempt to illuminate the dynamics and mechanisms by which plants perform this rapid
sorting of oDNA heteroplasmy. We combine existing heteroplasmy measurements within and across
plant generations with a stochastic phylodynamic model for cellular o-DNA dynamics during plant
development. We use Bayesian inference and model selection to reveal when and where cell-to-cell
variability is generated; model selection and mathematical analysis reveals the likely physical
mechanisms responsible for this segregation. We confirm the predictions of this model with new
experimental observations, characterising the segregation dynamics of mtDNA and ptDNA within

plants in unprecedented quantitative detail.

Results
Developmental models for heteroplasmy within and across plant generations

To use heteroplasmy measurements through developmental history to infer the dynamics of oDNA
segregation, we require a quantitative model connecting the statistics of heteroplasmy at the
different developmental and generational timepoints we observe [Wilton et al., 2018; Johnston et al.,
2015; Burgstaller et al., 2018; Burian et al., 2016]. We analyzed bulk tissue samples, so cell-to-cell
variability cannot be directly quantified; instead, we assume that the heteroplasmy mean in a tissue
sample reflects the heteroplasmy of the single cell that was the developmental ancestor of the tissue
[Burian et al., 2016; Furner & Pumfrey, 1992; Irish & Sussex, 1992]. This assumption allows for any
amount of segregation to occur during the development of the tissue from the precursor cell but

assumes there is no systematic shift due to selection for one oDNA type over another.

Given this picture, bulk heteroplasmy samples from different tissues are interpretable as readouts of
single-cell heteroplasmy in the population of stem cell precursors to each tissue. For example, mean
heteroplasmy samples from three leaves are interpreted as three single cell heteroplasmy values
from the (earlier) population of stem cells that gave rise to those leaves. We can then construct a

developmental model inspired by the “ontogenetic phylogeny” picture tracking the relationships
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between cells at different developmental stages [Wilton et al., 2018]. Here, the developmental
history of a set of cells is accounted for by a “cell pedigree” or “lineage tree” [Stadler et al., 2021]
describing the relationship between ancestral and descended cells. Wilton et al. [2018] used such a
picture to infer rates of segregation and mutation through human development given cellular profiles
of the presence of different heteroplasmic variants. We will follow this philosophy but instead work
with plant development and the continuous heteroplasmy level as it varies through development.
This model describes and links the distributions of heteroplasmy in the estimated stem cell
populations through and between generations (Fig 1A-B; see Methods). We consider three different
models, corresponding to no sequestered germline, separate germline and soma developmental
lineages, and a separate developmental lineage for every tissue we consider [Lanfear, 2018] (Fig.
1A).

The amount of segregation occurring between each developmental period is quantified in our model
as “effective segregation events”. This is the number n of binomial cell divisions (and associated
oDNA reamplifications) that would generate the observed heteroplasmy variance, with an effective
population size Ne. We use this variable rather than a “bottleneck size” or “drift parameter”
[Johnston, 2019b; Wonnapinij et al., 2008] because (a) it corresponds to a biological “null model”
where variance is generated by cell divisions alone (see below); and (b) because it is a convenient
additive quantity, so that the effective number of segregation events describing n+ events followed by
n2z events is simply n1+n2. We assume, based on biological observations in the Arabidopsis germline
(see Methods), that Ne = 50 for mtDNA [Wang et al., 2010; Preuten et al., 2010] and 7 for ptDNA
(the latter corresponding to 7 genetically homogeneous organelles [Greiner et al., 2020; Scarcelli et
al., 2016]). We adopt binomial cell divisions and reamplification as a convenient null model with
some empirical support [Johnston et al., 2012; Johnston et al., 2015], although mtDNA partitioning in

yeast has been observed to be controlled to a tighter extent [Jajoo et al., 2016].

To learn the likely mechanisms of oDNA segregation in real plants, we begin with the dataset from
Broz et al. [2022], labelled by different developmental stages (Fig. 1C-E). These stages are early-
emerging leaves (EL, fully expanded between 4-6 weeks of growth), late-emerging leaves (LL, upper
rosette leaves that were fully expanded after 8 weeks of growth), and inflorescences (INF) (Fig. 1A;
see Methods), reflecting tissues generated progressively later in development from the SAM. These
data include observations of both mtDNA and ptDNA heteroplasmy, in wild type and/or msh1 mutant

backgrounds.
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Figure 1. Models and data for heteroplasmy segregation in plant development. (A) Developmental
models for heteroplasmy observations. MSi and CSi are the unobserved (latent) ancestral cells at
different developmental stages in Mother and Child shoot apical meristem (SAM). The blue horizontal
bars denote the generation of sex cells and establishment of a new generation. Greyed-out elements are
unidentifiable given our observations and play no role in our model. n; correspond to the number of
effective segregation events (model cell divisions) at each developmental stage. (B) Example of
heteroplasmy model within the linear developmental model in (A). The SAM at the CS2 stage includes
cell with a distribution of heteroplasmy levels. In this example, three cells a, b, and ¢ from this distribution,
with different heteroplasmy levels, go on to be the ancestors of two late leaves (LL1 and LL2) and part of
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the future SAM at stage CS3. Segregation increases heteroplasmy variance as the descendants of a, b,
and c develop, leading to new distributions. These may be sampled (the mean of LL1 and LL> are
recorded) or unseen (the CS3 distribution plays a latent role in our model). (C-E) Observed heteroplasmy
data through development in different heteroplasmic plant families: (C) mtDNA in mutant msh1
background; (D) mtDNA in wildtype background; (E) ptDNA in mutant msh1 background. Between-
generation (upper) and within-plant (lower) observations are shown; plots on the right summarise
normalised heteroplasmy variance V’(h) in each family at each developmental stage with box-and-whisker
plots across families (black dots give mean).

Generation of heteroplasmy variance across tissues and between generations

We first aim to infer the number of effective segregation events at each developmental stage in Fig.
1. We used reversible jump Markov chain Monte Carlo (RUIMCMC) [Green, 1995; Dellaportas et al.,
2002] with uniform priors over models and all parameters (see Methods) to infer the posterior
probability associated with each of the three possible developmental histories in Fig. 1A. This
approach produces posterior distributions on each parameter and model index, describing the
probability of different mechanisms given the data [Kirk et al., 2013]. We validated this modelling and
inference approach with a set of synthetic observations compatible with different mechanisms of
variance generation through development and between generations, including cases distinguishing
the likely presence of an early germline (Supplementary Fig. S1), and confirmed that inference

results were stable across different MCMC chains (Supplementary Fig. S2).

Fig. 2 shows the inferred posteriors for the number of effective segregation events at different stages
of plant development and between generations, integrated over the different model structures in Fig.
1A. As above, this value is the number of binomial cell divisions that would be required to generate
the observed heteroplasmy variance, given an effective population size of 50 mtDNAs or 7 ptDNAs

per cell.

The amount of segregation occurring between generations (OM—OQ) is substantially greater than
that occurring within a single plant up to the inflorescence stage (O—INF). In the msh1 mutant, a
total of between 9 and 15 events are inferred to occur for mtDNA and between 15 to 25 for ptDNA
between generations. In the wildtype, between 50 and 100 events — on average around a seven-fold
increase in segregation -- are inferred to occur between generations for mtDNA. These numbers
correspond to normalised heteroplasmy variances V'(h) of 0.17-0.26 for msh1 mtDNA, 0.90-0.98 for
msh1 ptDNA, and 0.64-0.87 for wildtype mtDNA; where the usual “bottleneck size” is 1/V’(h). In all
cases, substantial segregation is inferred to occur between the bulk inflorescences of one generation
and the early stem cells in the next. This could correspond to the generation of large cell-to-cell
variability within the reproductive cells in an inflorescence, matching the generation of variance in

female reproductive cells in mammalian systems.
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Figure 2. Posteriors from inference process. Posterior distributions, inferred across models, for the
effective segregation events from a precursor state (O) to different tissue precursors (EL, early leaf; LL,
late leaf; INF, inflorescence), and between generations (OM — O): (A) msh1 mtDNA (Ne = 50), (B) msh1
ptDNA (Ne = 7); (C) wildtype mtDNA (Ne = 50, different scale).

Segregation differences in samples within a generation were less pronounced, with comparatively
few variance-generating events inferred to occur up to the generation of early leaves (sampled at 4-5
weeks of growth), and few more inferred to occur up to late leaf generation (sampled at 8 weeks of
growth). The means of each posterior show a roughly linear trend through within-plant development,
with heteroplasmy variance increasing through developmental stages; but the extent of this increase

is at most half the total segregation between generations.

Due to sampling limitations in Broz et al. [2022], no within-plant samples were generated for wildtype
mtDNA, and msh1 ptDNA sampling was also somewhat limited. Based on the seven-fold scaling of
mtDNA segregation from the msh1 mutant to the wildtype, we hypothesised that the amount of
segregation at each within-plant developmental stage would also be scaled seven-fold. We next set

out to test this prediction and to verify the results of the ptDNA inference with further experiments.
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Figure 3. New data and predicted segregation behaviour. (A-B) New oDNA observations for (A)
wildtype mtDNA and (B) msh1 ptDNA, displayed as in Fig. 1C-E. (C) Within-plant segregation dynamics
for wildtype mtDNA. Predictions (red) from scaling the msh1 observations seven-fold to match between-
generation observations; (blue) inferred effective segregation events from new data. (D) Segregation
dynamics of msh1 ptDNA; previous observations (red); new observations (green); and refined posteriors
inferred from the joint dataset (blue).

New heteroplasmy observations support and refine model predictions for segregation
dynamics

To further illuminate the developmental dynamics of Arabidopsis heteroplasmy, we measured
mitochondrial heteroplasmy across developmental profiles in lines where MSH1 functionality was
recovered by back crossing to a wildtype male, while preserving the heteroplasmy that was present
in the female. The heteroplasmy dynamics in these lines are expected to reflect those in the wild
type (where heteroplasmy rarely arises because of low mutation rates and the rapid sorting). The
new observations are shown in Fig. 3A-B.

In part matching our scaling predictions, we found dramatically accelerated mtDNA segregation in
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the wildtype at the late leaf and inflorescence stages, not incompatible with the seven-fold scaling
observed in the between-generations data (Fig. 3C). However, the extent of wildtype mtDNA
segregation prior to early leaf development was lower than this hypothesis predicted — and more
similar to the lower levels in the msh1 mutant. This difference suggests that the increased
segregation activity of MSH1 is mainly manifest in later development, in qualitative agreement with
observed patterns of MSH1 expression (Supplementary Fig. S3).

The new ptDNA observations substantially refine the estimates of variance-generating events at
different developmental stages (Fig. 3D). The new observations were always compatible with the
(more uncertain) inferred posteriors from the original measurements, and combined provide a tightly
defined estimate of segregation dynamics through development. Assuming as before an effective
population size Ne = 7, the number of variance-generating events is quite limited from early leaf to
late leaf to inflorescence, with an over ten-fold further increase in segregation following between
generations. It seems likely that this dramatic segregation between generations is due to a severe
physical bottleneck on ptDNA, perhaps involving the inheritance of only approximately one
homoplasmic organelle (see Discussion).

Cell divisions account for oDNA variance in the msh1 mutant, and gene conversion can

account for additional wildtype segregation of mtDNA

Arabidopsis has been estimated to undergo around 34 germline cell divisions between generations
[Watson et al., 2016]. In the msh1 mutant, the number of inferred effective segregation events
(averages around 12 for mtDNA and 20 for ptDNA) easily fall within what would be expected from
this number of binomial cell divisions for cellular populations of Ne = 50 mtDNAs and Ne = 7 ptDNAs,
meaning that the observed heteroplasmy variance could then be readily accounted for through

random cell divisions and reamplification alone.

In the wildtype mtDNA, much more segregation is observed than can be accounted for by 34 cell
divisions — the average number of inferred events is around 75. Several possibilities exist for the
mechanism generating this additional variance. As hypothesised in mammalian systems, partitioning
of oDNA clusters, increased random turnover of oDNA, and oDNA replication restricted to a subset
of the cellular population can all increase heteroplasmy variance (reviewed in Johnston [2019b]).
However, given the clear difference between the wildtype and msh1 mutant, we suggest that an
MSH1-dependent process may be responsible for this increased segregation in Arabidopsis.
Following Edwards et al. [2021], we propose that gene conversion may be this process — in the
Discussion we consider alternative mechanisms. That reference characterised the contribution of

gene conversion to V’(h) as 2(1-f) k t, where fis the proportion of mtDNA molecules in a fused state
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and thus physically capable of recombination, and k is the rate of gene conversion between a pair of
fused molecules per unit time. As the difference between V’(h) in msh1 and wildtype mtDNA is
roughly 0.5, this expression suggests that a rate of k = 0.007 per cell division (corresponding to ~0.1
gene conversion events per mtDNA per cell division; see Methods) would be sufficient to generate

the observed segregation patterns over ~34 cell divisions.

This approach employed a linear noise approximation that may be challenged by the substantial
segregation magnitudes involved in this system. To check these results, we constructed a stochastic
model for oDNA during development, including binomial cell divisions, random reampilification
between divisions, and a variable rate of gene conversion in a population of Ne = 50 oDNA
molecules (see Methods). We asked what rates of gene conversion were required to generate the
observed V’(h) within ~34 cell divisions, finding support for a figure around 0.25 events per mtDNA
per cell cycle (Supplementary Fig. S4). This combined model provides predictions for heteroplasmy
distributions at any given stage of plant development (Supplementary Fig. S5). We should note that
this gene conversion activity could be partitioned into more intense bursts in reduced developmental
stages to achieve the same variance generation — as suggested by the new mtDNA observations in
Fig. 3, where early meristem development appears not to generate as much segregation as later
developmental stages. Such a partition of activity would agree with observed patterns of MSH1
expression during plant development (Supplementary Fig. S3) and the observed physical behaviour
of mitochondria, forming a reticulated network in the shoot apical meristem, with the potential to
facilitate recombination between mtDNA molecules [Segui-Simarro & Staehelin, 2009; Edwards et
al., 2021].

Plant germline history

The posterior distributions we have presented are integrated over all the model structures in Fig. 1A,
so that they reflect “universal” behaviour regardless of the support for the individual models.
However, the RIMCMC process also quantifies this support for the different models of the plant
germline. Interestingly, we observed some diversity in the posterior distributions over this model
index. The mtDNA msh1 data has strong support for the “linear germline” model, while the mtDNA
wildtype and ptDNA msh1 data provide strong support for the “all separate lineages” model

(Supplementary Fig. S2).
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Figure 4. Patterns of variance through development. Amalgamated datasets for (A) mtDNA msh1, (B)
mtDNA wildtype, (C) ptDNA msh1. Individual measurements are displayed as in Fig. 1C-E. The mean and
normalised variance of heteroplasmy measurements at different developmental stages, in individual
plants, are also shown as trajectories: these are linked to the support for different developmental models
in Fig. 1A. Shifts in mean heteroplasmy between stages provide support for a linear germline model
(where tissue precursors are sampled from a spread of possible values); decreasing total variance
through development can be achieved either with separate developmental lineages or through cellular
bottlenecking (see text).

The mtDNA msh1 data show several shifts in mean heteroplasmy across developmental stages that
cannot be accounted for by the “separate lineages” model (Fig. 4; see Methods). The ptDNA msh1
and mtDNA wildtype systems show decreases in V’(h) at the inflorescence stage, without being
accompanied by shifts in mean heteroplasmy that would require a linear germline model. This is not
in itself an argument against the linear model: less spread at later stages can naturally emerge
because of the cellular bottleneck involved (for example, a set of inflorescences arising from a single
precursor cell later in germline development). But the likelihood-based inference approach accounts
for this effect by considering the different possible cellular dynamics and sampling outcomes. There

is at least some support for the heteroplasmy profiles in inflorescences and leaf tissue developing
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independently [Lanfear, 2018], although further characterisation of somatic heteroplasmy in wildtype

lineages will help resolve this question.

Discussion

We have shown, with a combination of oDNA measurements from heteroplasmic plant lines and
mathematical modelling, how oDNA segregation proceeds through plant development and between
generations (Fig. 5). To our knowledge, this is the first developmentally-resolved characterisation of
the “bottleneck” of oDNA inheritance in plants and the ongoing segregation of oDNA through plant
lifetimes. New experiments support the predictions of the inferred mathematical models; the models
make further predictions about heteroplasmy distributions at any stage of plant development
(Supplementary Fig. S5). We have shown that in the absence of MSH1 functionality, oDNA
segregation can largely be accounted for by the physical process of binomial partitioning at cell
divisions. Although other mechanisms likely support some gene conversion activity in the absence of
MSH1, high rates of such activity are not required to explain observed segregation patterns in the
mutant. By contrast, MSH1 functionality induces a seven- to ten-fold increase in segregation
strength, leading to rapid shifts towards homoplasmy, which cannot be explained by cell divisions

alone.

We do not have measurements of heteroplasmic ptDNA on the wildtype background — all lines
measured so far have been homoplasmic. The predictions of this theory for wildtype plastid
heteroplasmy dynamics depend on the spatial arrangement of ptDNA information. If ptDNA within a
single plastid is homoplasmic, and heteroplasmy arises from a mixture of internally homoplasmic
organelles, then the effect of functional gene conversion will be limited. This is because each ptDNA
will usually only be physically colocalised with an identical partner, leaving no capacity to change
genetic identity. If, however, plastids are internally heteroplasmic, functional gene conversion may
act to further speed up segregation. In this case, following observations for mtDNA, we would expect
roughly seven times as many effective cell divisions to take place (matching the mtDNA case),
leading to an effective 150-200 cell divisions for the Ne = 7 case. This would lead to homoplasmy in

all but a very small proportion of offspring (as observed).
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Figure 5. Summary of inferred segregation dynamics within plants and between generations.
lllustrative distributions of heteroplasmy, corresponding to the inferred mean segregation magnitude
(n segregating events, for Ne = 50 mtDNAs or Ne = 7 ptDNAs; and Nb, effective bottleneck size).
Distributions at each developmental stage, and an initial heteroplasmy of 0.5, are shown for mtDNA
(MT) and ptDNA (PT) in wildtype and msh1 mutants (all wildtype PT observations are homoplasmic,
so no inference is possible; see Discussion for hypotheses). Grey lines illustrate the inferred
developmental trajectories linking populations at each stage.

The quantitative details of our model depend on some assumptions, including a binomial division —
random reamplification model for oDNA at cell divisions, the Kimura model for o-DNA heteroplasmy,
and particular choices for effective population size of oDNAs. The choices we have made have
support from the literature (see Methods), but are not expected to be universally true or perfectly
precise single values. oDNA population sizes change through development (see Methods and
references therein) and oDNA partitioning at cell divisions may be more or less tightly controlled than
a binomial distribution [Jajoo et al., 2016; Johnston et al., 2015]. Our effective ptDNA population size
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is based on a picture where ptDNA populations inside individual plastids are homogeneous: this
assumption may be challenged in the case of recent de novo mutations that have not yet fixed within
an organelle. The results we report — the relative magnitudes of segregation at different
developmental stages, the difference between wildtype and msh1 lines, the role for gene conversion,
and the agreement of new experiments with theoretical predictions — are robust with respect to
different choices of these parameters. The specific numbers of segregating events we infer should
be interpreted as effective quantities, reflecting biological reality if our parameter choices are
accurate, otherwise requiring some scaling (see Methods and Supplementary Fig. S6) for a precise

quantitative connection to other conditions.

The indirect evidence from our study is split between suggesting that oDNA segregation follows a
“classical” picture of a linear germline in Arabidopsis (where segregation proceeds through a
developing meristem) and a picture where different tissues, including the germline, have different
developmental lineages [Lanfear, 2018]. Regardless of the within-plant model, most of the between-
generation segregation we observe occurs between the inflorescences of the mother and the early
meristem of the offspring. For plastids in particular, it seems likely that this strong segregation may
be in part due to a physical bottleneck, where a small number — perhaps just one in some cases — of

homoplasmic organelles are inherited.

Substoichiometric shifting (SSS) involves the sudden amplification of a rare mtDNA type (a
sublimon) to dominance [Abdelnoor et al., 2003; Arrieta-Montiel et al., 2001; Woloszynska, 2010].
The dynamics characterised here illustrate how this amplification may occur. Even if a sublimon is
present only rarely in SAM cells, if one of those cells becomes the precursor to a plant branch or
organ, the sublimon can very naturally (and quickly) come to dominate that branch or organ (and
hence offspring from it). Our work here quantifies how this shifting may occur across different organs
in a plant, leading to inherited differences. In a similar vein, branch-to-branch differences in
variegation caused by oDNA features have been recognised for over a century (initially laying the
foundation for the understanding of cytoplasmic inheritance [Hagemann, 2010]). Such branch-to-
branch differences are caused by the segregation of oDNA from an initially heteroplasmic state
across different parts of the plant. The quantitative model we present links, for example, the
unobservable initial inherited heteroplasmy to the proportion of different variegated phenotypes
throughout the plant, by quantifying the extent of segregation through different periods of plant

development.

Observations here and in Broz et al. [2022] point to MSH1 dramatically accelerating oDNA
segregation. We have proposed that this acceleration may be due to gene conversion. However, the
function and mechanism of action of MSH1 in plants remain debated. Evidence certainly points to its

role in the control of oDNA recombination (often described as recombination surveillance [Abdelnoor
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et al., 2003; Shedge et al., 2007]). Its unusual structure - - including an endonuclease domain - - has
led to the suggestion that it induces double stand breaks that then provide the substrates for gene
conversion [Christensen, 2014]. The heteroplasmy measurements here strongly suggest that MSH1
acts to generate high cell-to-cell variance in oDNA heteroplasmy through plant development. Theory
has suggested gene conversion as one plausible mechanism with desirable properties [Edwards et
al., 2021]. However, it may be that MSH1 generates heteroplasmy variance via another mechanism.
Depletion of oDNA copy number, for example, would impose a physical bottleneck on the
population, both amplifying variability from divisions and inducing variability from subsampling the
population. If MSH1 acts to deplete oDNA, these effects could be of comparable or greater
importance in generating variability, depending on the quantities involved [Cree et al., 2008;
Johnston et al., 2015]. Broz et al. [2022] showed that oDNA copy number was not significantly
impacted in leaves of MSH1 versus wildtype plants, but it is unknown whether these results reflect
oDNA levels in germline. If, in some way, MSH1 enforces replication of a subset of oDNA molecules
as proposed by Wai et al. [2008] in a mammalian context, this mechanism could also explain the
observed segregation. While the evidence points towards a more direct link between MSH1 and
gene conversion [Wu et al., 2020; Broz et al., 2022], we cannot completely discard these hypotheses
without measurements of copy number and oDNA replication activity. We were unable to find or
acquire estimates for absolute rates of oODNA recombination in Arabidopsis; future estimates of these
quantities will help provide further evidence for these mechanisms. It is noteworthy that MSH1
expression is increased relative to other tissues in the meristem in Arabidopsis and other species
(Supplementary Fig. S3, [Edwards et al., 2021]), and that mitochondria physically fuse to a greater
extent in the meristem cells [Segui-Simarro & Staehelin, 2009; Edwards et al., 2021]. Physical
colocalization of mitochondria is a prerequisite for mtDNA interaction and recombination [Logan,
2006; Arimura, 2018; Giannakis et al., 2022], and the collective dynamics of mitochondria are altered
in the msh1 mutant, potentially as a compensatory response to support more interaction [Chustecki
et al., 2022; Chustecki et al., 2021]. Together, these observations suggest a linked physical and

genetic axis of control acting to shape oDNA through plant generations.

Methods
Plant material and growth

The initial generation and selection of heteroplasmic plant lines is described in Broz et al. [2022].
Here, plants of the homozygous msh1 (At3g24320) mutant line CS3372 (chm1-2) were used for
analysis of plastid heteroplasmy. For mitochondrial heteroplasmy analysis in a wild type background,

maternal lines of msh1 CS3246 (chm1-1) were crossed with wildtype males to generate F1 progeny.
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All progeny were confirmed to be heterozygous for MSH1. Seeds of desired lines were vernalized in
water at 4 °C for 3 days, sown in 3 inch pots containing Pro-Mix BX media and grown under short
day conditions (10 h light / 14 h dark) on light racks with fluorescent bulbs (~150 uE m? s™) at
ambient temperature (~25 °C). An initial fully expanded rosette leaf sample was taken at 4 weeks of
growth to identify heteroplasmic individuals. Three additional leaves were sampled at 5 weeks of
growth. These 4-5 week old leaf samples are considered “early leaf” (EL) for subsequent analyses.
At 8 weeks, four additional leaf samples were taken. Two were harvested from the base of the
rosette. These leaves were already fully expanded at 5 weeks and emerged from the SAM around
the same time as the EL samples described. Thus, these are also considered "EL". Two additional
fully expanded leaves were harvested at 8 weeks from the top of the rosette, emerging from the
SAM at a later timepoint that ELs, and are considered as late leaf "LL" in the analysis. Inflorescence

tissue (INF) was harvested after plants began to bolt.

Heteroplasmy measurements

DNA extraction and heteroplasmy analysis were performed as described previously [Broz et al.
2022]. Briefly, single nucleotide variants (SNVs) in oDNA of msh1 mutant lines were identified by
sequencing [Wu et al. 2021] and ddPCR assays were designed to track these SNVs within plants
and between generations. Allele specific primers and probes were designed to each SNV (this study
used the specific loci plastid 26553, mitochondria 91017 and mitochondria 334038), and droplet
generation and reading was performed using Bio-Rad QX200 system. A correction factor was
applied to mitochondrial data to account for the amplification of nuclear copies of the mitochondrial

genome (numts) found in Arabidopsis.

Developmental history models

First picture a fertilised zygote giving rise to an early population of stem cells. At some
developmental time point this population will contain the single ancestral cell of all early leaf
samples, as well as of cells that will continue to proliferate in the SAM. At a later time point, the new
SAM population will contain the ancestor for all late leaf samples, as well as for further proliferating
cells. At a still later time point, the new SAM population will contain the ancestral cell to all
inflorescence samples. Inflorescences are interpreted as containing the egg cells for the next
generation, in which the developmental outline above is repeated for each single fertilised zygote.
Each tissue's heteroplasmy value is drawn from a distribution describing some amount of

segregation acting on developing descendants of these ancestral stem cells, with relationships
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described via the “cell pedigrees” or “lineage trees” in Fig. 1A [Wilton et al., 2018; Stadler et al.,
2021].

The developmental history of plant germlines is debated [Lanfear, 2018]. To compare hypotheses on
plant germline behaviour, we also consider two additional alternative models. In Fig. 1B, the future
germline is sequestered early in development and then develops in parallel to the somatic tissues.
Here, the model is as above, except the inflorescence ancestral cell is drawn from the early stem cell
population. In Fig. 1C, separate somatic lines also exist, so that the different organs all develop
independently from an original early precursor. In theory, different germline histories — where soma
and germline are sequestered at different developmental timepoints — will give rise to different
correlations and variance structures in the oDNA populations in different tissue types. For example,
if the germline develops independently of the soma, correlations between mean oDNA heteroplasmy
in somatic and inflorescence samples are less likely, and it may be possible for inflorescence oDNA
to have lower variance than soma oDNA. If the germline shares a common developmental ancestry
with the soma, correlations are more likely, and inflorescence variance will be at least as high as

soma variance.

Inference of segregation dynamics

To assign a likelihood to our tissue observations given a developmental model, we need to (a)
estimate the ancestral cell heteroplasmies and (b) estimate the probability of observing a tissue
heteroplasmy given the ancestral value and some parameterised description of segregation
[Burgstaller et al.,2014; Burgstaller et al., 2018]. For (a), we treat ancestral cell heteroplasmies as
latent variables and integrate the likelihood over all possible values for each. For (b), we use the
Kimura distribution [Wonnapinij et al., 2008; Kimura, 1955] to describe the probability of observing a
given heteroplasmy in individual tissue samples, creating a stochastic model with a full likelihood
function [Giannakis et al., 2022b, Broz et al., 2022]. We change variables from the “drift parameter” b
to an effective number of variance-generating events n =log b/ (1 — 1/Ne) (see below) to provide a
convenient, additive parameter for serial segregation events. The corresponding likelihood is then
used in a reversible jump Markov chain Monte Carlo (RIMCMC) framework [Green, 1995;
Dellaportas et al., 2002] (see below) with uninformative uniform priors on initial heteroplasmies and

division numbers and compute posterior distributions over these parameters.

For numerical efficiency, we precompute Kimura distributions for 0 to 200 cell divisions and initial
heteroplasmies from 0 to 1 in steps of 0.01 and use these precomputed distributions as a lookup
table in the inference process. For numerical efficiency, we set effective population size to 50. A

post-hoc correction can be used to interpret the results from this setup in terms of any other
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population size (see below).

To account for the fact that heteroplasmy measurements may have some associated uncertainty, we
implement a degree of granularity within the model. For example, a granularity of 0.01 means that
heteroplasmy values are rounded to the nearest 0.01. This both allows for measurement noise and
improves computational speed; we will show that our results are robust to different choices of this

parameter.

We write {Di} = {Dime, Dick, Dict, Dici} for the set of observations in family i, with elements

respectively corresponding to Mother Early leaf, Child Early leaf, Child Late leaf, and Child
Inflorescence. We write Sc;jfor the latent variable associated with ancestral cell heteroplasmy at
developmental stage j. The likelihood associated with measurements, in the model without a

segregated germline, is then

L{Di} | n, ho)) = P(Dime | hoi; no) | dSc1 P(Sci | hoi; no+n1+n2+ns) P(Dice | Sc1; no)

x [ dSc2 P(Scz | Sci; no) P(DicL | Scz; n1) | dScs P(Sca | Scz; n1) P(Dict | Scs; n2),
(1]
So that SC1 is the precursor to EL and SC2, SC2 is the precursor to LL and SC3, and SC3 is the

precursor to INF (Fig. 1A). With a segregated germline the corresponding expression is

L{D3} | n, hoi) = P(Dime | hoi; no) | dSct P(Sci | hoi; n2+ns) P(Dice | Sc1; no) P(Dici | Sci; n2)

x [ dSc2 P(Scz | Sc1; no) P(DicL | Scz; n1),
(2]
So that SC1 is the precursor to EL, INF, and SC2, and SC2 is the precursor to LL. With completely

separate developmental lineages we have

L{Di} | n, hoi) = P(Dime | hoi; no) | dSct P(Sc1 | hoi; n2+ns) P(Dice | Sc1; no) P(Dict | Sct; ni)

x P(Dici | Sc1; n2),
(3]
So that SC1 is the precursor to all lineages, which develop independently.

An important difference between the models is whether samples at different stages can have
different population means. In the separate lineages model, EL, LL, and INF pedigrees all come from
the same precursor, so have the same population mean. In the linear model, each pedigree begins
with a (latent) sample from a previously segregated population (Fig. 1B), so population means can
differ (Supplementary Fig. S1). They also differ in the accumulated amount of segregation at the

population level. The “linear germline” model enforces a monotonic increase in segregation (hence
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in V’(h)) through development — hence EL < LL < INF < cross-generation. The “all separate” model
supports a more flexible picture where INF < EL, for example. However, although these relationships
hold statistically at the population level, a given set of samples may not reflect them: for example, a
sample of inflorescences may not capture the full possible spread of values and may thus suggest a
lower variance than the true case. The full likelihood-based inference process below accounts for

these sampling issues.

Given one of the above likelihood functions for a family set of observations {Di}, the likelihood

associated with a full set of observations is

L(D | n, ho) = Mamiiesi LD} | n, hoi) [4]

Effective population sizes

Preuten et al. [2010] find 50 or fewer mtDNAs in stems and flowers. Wang et al. [2010] found egg
cells from Arabidopsis to possess 59.0 copies of mtDNA on average. Gao et al. [2018] do not
quantify mtDNA molecules in Arabidopsis but observe around 250 mtDNA nucleoids in mature eggs
and mature zygotes, and 100-200 mtDNA nucleoids per cell during embryogenesis, with a doubling
between early apical cells and mature apical cells. We choose an effective population size of 50 for

consistency with those studies where mtDNA copy number is more directly observed.

In a comprehensive survey across species, Greiner et al. [2020] report an increase in plastids per
cell in Arabidopsis development from 4-10 in the meristematic region, through 22-34 in young
leaves, to 50-90+ in mature leaves. Corresponding ptDNA counts per plastid (per cell) are given as
8-21 (71-146), 48-84 (997-2476), 79-121 (2900-5500+). We choose an effective population size of 7,
corresponding to the central estimate for the meristematic observations, and assuming that plastids
are internally genetically homogeneous [Scarcelli et al., 2016]. This assumption may be challenged

in the case of recent mutations (see Discussion).

For numerical convenience we used a population size of Ne = 50 in the numerical simulations. As
b= (1—1/Ne)", [5]

we can immediately interpret an inferred value of n for Ne as equivalent to a value n’ for N’ :

(1= 1/Ne)" = (1 = 1/N’)"

nlog (1 —1/Ne)=n’log (1 -1/ N%)

n'=nlog (1—1/ Ne)/log (1—1/ N%) [6]

so that, for example, n = 10 divisions for Ne = 50 give roughly the same heteroplasmy distribution as
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n’ = 20 divisions for Ne = 100. We can then scale the results for Ne = 50, chosen for numerical
convenience in our simulation, to the required effective population size in our estimates of biological
reality. Hence, any of the inferred numbers n of segregating events we report (using Ne = 50 for
mtDNA and Ne = 7 for ptDNA) can readily be interpreted for another effective population size Ne’ by
multiplying by the factor log (1 — 1/ Ne) / log (1 — 1/ N’¢), which for most values is close to Ne/Ne’
(Supplementary Fig. S6). Finally, effective “bottleneck size” Ni (the effective population size if

variance is generated by a single event) can be recovered from our inferred n with
Nbo =11 (1-(1-1/Ne)") [7]
Reversible jump MCMC

We use reversible jump MCMC to identify the support for different models of developmental histories
[Green, 1995; Dellaportas et al., 2002; Kirk et al., 2013]. We explored several options for relating
parameters in each model class, which all gave convergent results in the long-term limit of the
MCMC chains, but found the best mixing between model classes to be achieved simply using ni{") =
ni® = ni® for all developmental stages i and with model classes given by superscripts (1: linear
germline; 2: separate germline; 3: all separate lineages), enforcing these (and preserving ho values)
as deterministic proposal rules upon a proposed shift from model i to model j. These expressions
immediately provide the (trivial) mapping functions gi(n") for implementing such a step from model i
to model j [Green, 1995; Dellaportas et al., 2002]. All models have the same dimensionality and the
Jacobean determinants associated with each of these mapping functions are all one. We employ
uniform priors on all parameters and model indices, making the acceptance rule for the RIMCMC
implementation equivalent to the normal Metropolis-Hastings acceptance rule when a between-
model step is proposed. We propose such steps with probability 1/3, employing the above
perturbation to parameters when this option is not chosen. MCMC chains were run over 10°

samples, discarding 10* as burn-in and subsequently recording every 10" sample.

Estimating and simulating variance due to gene conversion

The parameter k in the main text is the rate constant associated with the gene conversion processes
WT+MU — WT+WT and WT+MU — MU+MU [Edwards et al., 2021]. In a simple picture we could
assume that half our Ne = 50 mtDNAs are WT and half are MU. Then the rate of gene conversion is
Kk x 25 x 25, which for k = 0.007 per cell division gives ~4 events per cell division or ~4/50 = 0.08

events per mtDNA per cell division.

The derivation of this expression depends on a linear noise approximation, and the rates in the

above argument will of course vary as segregation proceeds. To provide a more precise estimate,
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we implemented a simple stochastic simulation of binomial cell divisions, random re-amplification,
and gene conversion in a model cellular population. We simulated these processes for various gene
conversion rates and 300 cell divisions and asked what gene conversion rates were needed to
generate a given normalised heteroplasmy variance V’(h) within ~34 cell divisions (Supplementary
Fig. S4).

Data and code availability

All data and code is freely available at https://github.com/StochasticBiology/plant-segregation. The

inference code is written in C; the data curation and visualisation is written in R [R Core Team,
2022], using libraries readxl [Wickham and Bryan, 2022], stringr [Wickham, 2019], ggplot2
[Wickham, 2016], and gridExtra [Auguie, 2017].
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Supplementary Figure S1. Validating model and inference approach. Each row corresponds to a
synthetic dataset generated to match a different type of segregation dynamics. The synthetic
observations are shown in the first column, followed by the inferred effective segregating events to
EL, LL, INF, and next-generation stages (eff1-4); the inferred model index (0, linear; 1, separate
germline; 2, all separate); and finally a trace of likelihood over the MCMC chain as a readout of chain
dynamics. Individual experiments reflect (1) segregation between generations, generating diversity
between siblings but not within plants; (2) segregation in inflorescence development (and possibly
between generations) but not in somatic tissue; (3) segregation only in somatic tissue, with a
separate germline; (4) segregation between generations and in somatic tissue, but with germline
protected; (5) segregation throughout linear germline, with precursor cells causing shifts in mean
(see Methods). In case (1), segregation between generations but nowhere else is inferred, with
uniform posteriors over model index in the absence of further information. In case (2), segregation at
inflorescence development but not in somatic tissue is inferred, with a linear model favoured. In case
(3), zero segregation in the germline and nonzero in somatic tissue is inferred, with models 1 and 2
(separate germline) inferred. Case (4) mirrors case (3) but with between-generation segregation also
inferred. Case (5) supports the linear germline model as others cannot account for the shifts in mean
heteroplasmy between stages.


https://doi.org/10.1101/2022.11.07.515340
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.07.515340; this version posted November 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

0.4
< _o03 0.6
< = 20, 203
g :c; 0.2 % - g 0.2
o3 0.1 Joz S 0.1
E ool 2 oo L ool &
S 0 10 20 0 10 20 0 10 20
S} eff1 eff2 eff3
] 0.034
o 50% 20015 >
T G004 5 5 0021
22 @ 0010 @
A R Y RE
g ool L 0.000 ,|“,| ! 0.004 ;-| ! l-r, .
2 0 50 100150 0 50 100150 0 50 100150
eff1 eff2 eff3
o | 0.061 0.031
= 008 2z 2z
2 3004 @ 0.04 1 ® 0.024
25 5 o)
:*é' 3 0.021 5 0.021 5 0.01 I I
2 oooii . ool By ool FEE_
3 0 50 100150 0 50 100150 0 50 100150
= eff1 eff2 eff3
0.06 0.04 1
o > 0091 > 20034
= 2 | 20 2
$ 80.06 2 g 0.02
L 8003 8 0.021 I 3001 | I
E ool t . ool ool FR_
= 0 50 100150 0 50 100150 0 50 100150
eff1 eff2 eff3
0.41 0.6
T 203 204 =941
2 ? B 0-31
£ £02 2 202
1 B
T G011 goz2 So1] |
S ool ool b ool M _
o) 0 10 20 0 10 20 0 10 20
o eff1 eff2 eff3
- 0.41 0.6
B 204 2031 204
£ G 0.2 5 7] &
2o S 011 5 027
¢ ool M 004 00l
2 0 10 20 0 10 20 0 10 20
c eff1 eff2 eff3
0.6 0.5
c 20,1 2041 2041
g e 2031 2
£ 5 0.2 o 0.2 @ 021
Ee] T 0.1 I o I
S 0.0t—eFea— 0.0t—TFoa—r 0.0t—Fea—
(=;5 0 10 20 0 10 20 0 10 20
eff1 eff2 eff3

2

density density density density density dens

density

0.3
0.2
0.1 ”
0.0 -
0 10 20
eff4
0.05
0.04
0.03
0.02
0.01 |
0.00 L
0 50 100150
eff4
0.025
0.020
0.015
0.010
0.005 Il
0.000 il Iy
0 50100150
eff4
0.05
0.04
0.03
0.02
0.01
00 | 1
0 50 100150
eff4
0.201
0.15
0.101
0.05 | |
o004 AR
0 10 20
eff4
0.151
0.10
0.05 | |
OOO. . II
0 10 20
eff4
0.2
0.1 |
00 il
0 10 20
eff4

count

count

count

count

count

count

count

400 1
300 1
2001
100

400 1
300 4
200 4
100 1

750 4
500 4
2501

7501
500 1
2501

5004
400 1
3001
2001
100 1

7501
500 1
2501

model
0 1 2
model
—
1 2
model
Y—
0 1 2
model
1
0 1 2
model

model
Y
1 2

model

lik

lik

E .

lik

E |

-298 1
-300 1

-242.5
-245.0

index

L
250600G500000!
index

—_—TT T
2506005000001
index
-294 1
-296 1

-302 -
250800G 5000001
index
-237.5
-240.0

250800050@00
index

—T T T T
250600G 5000001
index

38 t—o—7——
250600G500000!
index

Supplementary Figure S2. Inferred behaviour for different datasets. Each row is the result of
inference on the given dataset. Effective numbers of segregating events to EL, LL, inflorescence,
and between-generation stages (eff1-4); the inferred model index (0, linear; 1, separate germline; 2,
all separate); and finally a trace of likelihood over the MCMC chain as a readout of chain dynamics.
Results for two independent MCMC chains (red and blue) are shown for all except the likelihood
traces. Divergence in the “old-mito-wild” case reflects the unidentifiability of within-plant segregation
parameters from this between-generational data.
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Supplementary Figure S3. Msh1 expression patterns during development. Data from Schmid et
al. [2005], visualised by the “eFP browser” from the Bio-Analytic Resource for Plant Biology [Winter
et al., 2007].
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Supplementary Figure S4. Simulated segregation with and without gene conversion. (left) V(h)
with number of divisions for different rates of gene conversion attempts (GC rate). (right) Actual gene
conversion events per mtDNA per division, with number of divisions for different R. Within 34
divisions, the R = 75 and R = 150 cases readily generate the V(h) ~ 0.25 (corresponding to V’(h) ~ 1
for these simulations where h = 0.5) values observed for 75 divisions of the R=0 case,
corresponding to a mean around 0.25 gene conversion events per mtDNA per cell cycle.
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Supplementary Figure S5. Predicted heteroplasmy distributions over cell divisions. Example
model predictions for heteroplasmy distributions in mtDNA populations of size Ne = 50, with a given
number of cell divisions (rows). (left) No gene conversion, modelling the msh1 case; (right) gene
conversion at the rate suggested by our analysis in the wildtype plants.
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Supplementary Figure S6. Scaling factors for converting effective population sizes. To interpret
a number of inferred segregating events n from a population with Ne = 7 or 50 with a new population
size Ne’, read off the scale factor corresponding to the new population size on the horizontal axis and
scale n by this factor. For most cases this scale factor is very close to Ne/Ne’.
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