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 8 

Abstract 9 

Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection 10 

against damaged oDNA is mediated in part by segregation – the sorting of different oDNA types into 11 

different cells in the germline. Plants segregate oDNA very rapidly, with oDNA recombination protein 12 

MutS Homolog 1 (MSH1), a key driver of this segregation, but in contrast to mammals, we have very 13 

limited knowledge of the dynamics of this segregation within plants and between generations. Here, 14 

we combine stochastic modelling with tissue-specific heteroplasmy measurements to reveal the 15 

trajectories of oDNA segregation in Arabidopsis thaliana development and reproduction. We obtain 16 

and use new experimental observations of oDNA through development to confirm and refine the 17 

predictions of the theory inferred from existing measurements. Ongoing segregation proceeds 18 

gradually but continually during plant development, with a more rapid increase between 19 

inflorescence formation and the establishment of the next generation. When MSH1 is compromised, 20 

we show that the majority of observed segregation could be achieved through partitioning at cell 21 

divisions. Functional MSH1 accelerates mtDNA segregation far beyond what can be achieved 22 

through cell divisions; we show that increased oDNA gene conversion is a plausible mechanism 23 

quantitatively explaining this acceleration. We also discuss the support for different models of the 24 

plant germline provided by these observations. 25 

 26 

Introduction 27 

Mitochondria and plastids are essential sites of energy transduction across eukaryotes. Originally 28 

independent organisms, they retain their own genomes (organelle DNA or oDNA; mtDNA and ptDNA 29 

respectively) encoding essential aspects of bioenergetic machinery in plants (and other eukaryotes) 30 

[Allen & Martin, 2016; Giannakis et al., 2022a; Mohanta et al., 2020; Palmer et al., 2000; Clegg et 31 

al., 1994]. Plant cells typically contain populations that range from dozens to thousands of mtDNA 32 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.07.515340doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.07.515340
http://creativecommons.org/licenses/by/4.0/


and ptDNA molecules [Preuten et al., 2010; Greiner et al., 2020; Wang et al. 2010; Fernandes 33 

Gyorfy et al., 2021], contained within their respective organelles [MacCauley, 2013; Woloszynska, 34 

2010; Barr et al., 2005; Johnston, 2019a]. Due to their centrality in bioenergetic, metabolic, and other 35 

cellular processes, it is essential to preserve the integrity of oDNA genes. This preservation 36 

necessitates a way of dealing with oDNA mutations and ensuring faithful inheritance of oDNA 37 

between generations. 38 

Mutations in oDNA can give rise to heteroplasmy – a mixture of several oDNA types within a cell 39 

[Wallace & Chalkia, 2013; Stewart & Chinnery, 2015]. Across eukaryotes, developmental and 40 

genetic processes exist to limit the inheritance of heteroplasmy [Edwards et al., 2021]. In several 41 

animals, mtDNA inheritance is shaped by the so-called developmental bottleneck [Johnston, 2019b; 42 

Stewart & Chinnery, 2015; Zhang et al., 2018]. Here, cell-to-cell variance in heteroplasmy is 43 

increased in the female germline, so that individual gametes have a wide range of heteroplasmy 44 

levels. Through this increase in variance – called segregation or “sorting out” – it is then possible for 45 

some gametes to inherit lower levels of damaging mutations than the mother’s average. If gametes 46 

with high levels of such mutations are removed by selection, the mutational burden passed to the 47 

next generation is limited. 48 

How plants limit the inheritance of these damaging mutations is less well understood [MacCauley, 49 

2013; Woloszynska, 2010; Barr et al., 2005; Galtier, 2011]. Although the observation of within-plant 50 

segregation of oDNA-linked phenotypes dates back over a century (and led to the discovery of 51 

cytoplasmic inheritance) [Hagemann, 2010; Greiner 2012], the quantitative dynamics and 52 

mechanisms of this segregation remain unclear. Recent experimental evidence has shown that 53 

sorting out of plant mtDNA and ptDNA is extremely rapid compared to animals [Broz et al., 2022]. 54 

This work showed that this sorting depends on MSH1, a gene responsible for controlling 55 

recombination activity in organelle DNA [Abdelnoor et al., 2003].  Although the precise nature and 56 

mechanism of this control is yet to be determined [Arrieta-Montiel et al., 2009; Virdi et al., 2015; 57 

Christensen, 2014], MSH1 is required to maintain a low mutational burden in plant oDNA [Wu et al., 58 

2020], accelerates oDNA segregation [Broz et al., 2022], and supports oDNA gene conversion 59 

[Gualberto et al., 2014; Edwards et al., 2021]. Other recombination factors including members of the 60 

RECA gene family also contribute to oDNA maintenance [Rowan et al., 2010; Maréchal & Brisson, 61 

2010; Day & Madesis, 2007; Shedge et al., 2007; Miller-Messmer et al., 2012]. Theoretical work has 62 

explored the role of recombination processes in shaping plant oDNA [Atlan & Couvet, 1993; Albert et 63 

al., 1996], suggesting that gene conversion provides a strategy for oDNA segregation [Lonsdale et 64 

al., 1988; Khakhlova & Bock, 2006], with stochastic modelling showing that such segregation can 65 

occur without requiring a reduction in cellular oDNA copy number [Edwards et al., 2021]. This 66 

feature is potentially useful for plants, where, due to developmental dynamics, a germline cannot 67 
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readily be sequestered and manipulated to impose a physical bottleneck. oDNA copy number in 68 

plant meristems is lower than in many animal cases [Edwards et al., 2021; Preuten et al. 2010; 69 

Wang et al. 2010; Greiner et al., 2020], but this reduction alone cannot account for the extent of 70 

segregation observed [Broz et al., 2022]. The developmental history of the plant germline differs 71 

dramatically from the animal case [Lanfear, 2018; Burian et al., 2016], and any understanding of how 72 

oDNA segregation proceeds during development necessitates an analysis approach that can both 73 

account for the developmental history underlying samples [Wilton et al., 2018; Stadler et al., 2021] 74 

and the uncertainty over different models of plant germline development [Lanfear, 2018; Kirk et al., 75 

2013]. 76 

Here, we attempt to illuminate the dynamics and mechanisms by which plants perform this rapid 77 

sorting of oDNA heteroplasmy. We combine existing heteroplasmy measurements within and across 78 

plant generations with a stochastic phylodynamic model for cellular oDNA dynamics during plant 79 

development. We use Bayesian inference and model selection to reveal when and where cell-to-cell 80 

variability is generated; model selection and mathematical analysis reveals the likely physical 81 

mechanisms responsible for this segregation. We confirm the predictions of this model with new 82 

experimental observations, characterising the segregation dynamics of mtDNA and ptDNA within 83 

plants in unprecedented quantitative detail. 84 

  85 

Results 86 

Developmental models for heteroplasmy within and across plant generations 87 

To use heteroplasmy measurements through developmental history to infer the dynamics of oDNA 88 

segregation, we require a quantitative model connecting the statistics of heteroplasmy at the 89 

different developmental and generational timepoints we observe [Wilton et al., 2018; Johnston et al., 90 

2015; Burgstaller et al., 2018; Burian et al., 2016]. We analyzed bulk tissue samples, so cell-to-cell 91 

variability cannot be directly quantified; instead, we assume that the heteroplasmy mean in a tissue 92 

sample reflects the heteroplasmy of the single cell that was the developmental ancestor of the tissue 93 

[Burian et al., 2016; Furner & Pumfrey, 1992; Irish & Sussex, 1992]. This assumption allows for any 94 

amount of segregation to occur during the development of the tissue from the precursor cell but 95 

assumes there is no systematic shift due to selection for one oDNA type over another. 96 

Given this picture, bulk heteroplasmy samples from different tissues are interpretable as readouts of 97 

single-cell heteroplasmy in the population of stem cell precursors to each tissue. For example, mean 98 

heteroplasmy samples from three leaves are interpreted as three single cell heteroplasmy values 99 

from the (earlier) population of stem cells that gave rise to those leaves. We can then construct a 100 

developmental model inspired by the “ontogenetic phylogeny” picture tracking the relationships 101 
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between cells at different developmental stages [Wilton et al., 2018]. Here, the developmental 102 

history of a set of cells is accounted for by a “cell pedigree” or “lineage tree” [Stadler et al., 2021] 103 

describing the relationship between ancestral and descended cells. Wilton et al. [2018] used such a 104 

picture to infer rates of segregation and mutation through human development given cellular profiles 105 

of the presence of different heteroplasmic variants. We will follow this philosophy but instead work 106 

with plant development and the continuous heteroplasmy level as it varies through development. 107 

This model describes and links the distributions of heteroplasmy in the estimated stem cell 108 

populations through and between generations (Fig 1A-B; see Methods). We consider three different 109 

models, corresponding to no sequestered germline, separate germline and soma developmental 110 

lineages, and a separate developmental lineage for every tissue we consider [Lanfear, 2018] (Fig. 111 

1A).  112 

The amount of segregation occurring between each developmental period is quantified in our model 113 

as “effective segregation events”. This is the number n of binomial cell divisions (and associated 114 

oDNA reamplifications) that would generate the observed heteroplasmy variance, with an effective 115 

population size Ne. We use this variable rather than a “bottleneck size” or “drift parameter” 116 

[Johnston, 2019b; Wonnapinij et al., 2008] because (a) it corresponds to a biological “null model” 117 

where variance is generated by cell divisions alone (see below); and (b) because it is a convenient 118 

additive quantity, so that the effective number of segregation events describing n1 events followed by 119 

n2 events is simply n1+n2. We assume, based on biological observations in the Arabidopsis germline 120 

(see Methods), that Ne = 50 for mtDNA [Wang et al., 2010; Preuten et al., 2010] and 7 for ptDNA 121 

(the latter corresponding to 7 genetically homogeneous organelles [Greiner et al., 2020; Scarcelli et 122 

al., 2016]). We adopt binomial cell divisions and reamplification as a convenient null model with 123 

some empirical support [Johnston et al., 2012; Johnston et al., 2015], although mtDNA partitioning in 124 

yeast has been observed to be controlled to a tighter extent [Jajoo et al., 2016].  125 

To learn the likely mechanisms of oDNA segregation in real plants, we begin with the dataset from 126 

Broz et al. [2022], labelled by different developmental stages (Fig. 1C-E). These stages are early-127 

emerging leaves (EL, fully expanded between 4-6 weeks of growth), late-emerging leaves (LL, upper 128 

rosette leaves that were fully expanded after 8 weeks of growth), and inflorescences (INF) (Fig. 1A; 129 

see Methods), reflecting tissues generated progressively later in development from the SAM. These 130 

data include observations of both mtDNA and ptDNA heteroplasmy, in wild type and/or msh1 mutant 131 

backgrounds. 132 
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Figure 1. Models and data for heteroplasmy segregation in plant development. (A) Developmental 133 
models for heteroplasmy observations. MSi and CSi are the unobserved (latent) ancestral cells at 134 
different developmental stages in Mother and Child shoot apical meristem (SAM). The blue horizontal 135 
bars denote the generation of sex cells and establishment of a new generation. Greyed-out elements are 136 
unidentifiable given our observations and play no role in our model. ni correspond to the number of 137 
effective segregation events (model cell divisions) at each developmental stage. (B) Example of 138 
heteroplasmy model within the linear developmental model in (A). The SAM at the CS2 stage includes 139 
cell with a distribution of heteroplasmy levels. In this example, three cells a, b, and c from this distribution, 140 
with different heteroplasmy levels, go on to be the ancestors of two late leaves (LL1 and LL2) and part of 141 
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the future SAM at stage CS3. Segregation increases heteroplasmy variance as the descendants of a, b, 142 
and c develop, leading to new distributions. These may be sampled (the mean of LL1 and LL2 are 143 
recorded) or unseen (the CS3 distribution plays a latent role in our model). (C-E) Observed heteroplasmy 144 
data through development in different heteroplasmic plant families: (C) mtDNA in mutant msh1 145 
background; (D) mtDNA in wildtype background; (E) ptDNA in mutant msh1 background. Between-146 
generation (upper) and within-plant (lower) observations are shown; plots on the right summarise 147 
normalised heteroplasmy variance V’(h) in each family at each developmental stage with box-and-whisker 148 
plots across families (black dots give mean). 149 

 150 

 151 

Generation of heteroplasmy variance across tissues and between generations 152 

We first aim to infer the number of effective segregation events at each developmental stage in Fig. 153 

1. We used reversible jump Markov chain Monte Carlo (RJMCMC) [Green, 1995; Dellaportas et al., 154 

2002] with uniform priors over models and all parameters (see Methods) to infer the posterior 155 

probability associated with each of the three possible developmental histories in Fig. 1A. This 156 

approach produces posterior distributions on each parameter and model index, describing the 157 

probability of different mechanisms given the data [Kirk et al., 2013]. We validated this modelling and 158 

inference approach with a set of synthetic observations compatible with different mechanisms of 159 

variance generation through development and between generations, including cases distinguishing 160 

the likely presence of an early germline (Supplementary Fig. S1), and confirmed that inference 161 

results were stable across different MCMC chains (Supplementary Fig. S2). 162 

Fig. 2 shows the inferred posteriors for the number of effective segregation events at different stages 163 

of plant development and between generations, integrated over the different model structures in Fig. 164 

1A. As above, this value is the number of binomial cell divisions that would be required to generate 165 

the observed heteroplasmy variance, given an effective population size of 50 mtDNAs or 7 ptDNAs 166 

per cell. 167 

The amount of segregation occurring between generations (OM→O) is substantially greater than 168 

that occurring within a single plant up to the inflorescence stage (O→INF). In the msh1 mutant, a 169 

total of between 9 and 15 events are inferred to occur for mtDNA and between 15 to 25 for ptDNA 170 

between generations. In the wildtype, between 50 and 100 events – on average around a seven-fold 171 

increase in segregation -- are inferred to occur between generations for mtDNA. These numbers 172 

correspond to normalised heteroplasmy variances V’(h) of 0.17-0.26 for msh1 mtDNA, 0.90-0.98 for 173 

msh1 ptDNA, and 0.64-0.87 for wildtype mtDNA; where the usual “bottleneck size” is 1/V’(h). In all 174 

cases, substantial segregation is inferred to occur between the bulk inflorescences of one generation 175 

and the early stem cells in the next. This could correspond to the generation of large cell-to-cell 176 

variability within the reproductive cells in an inflorescence, matching the generation of variance in 177 

female reproductive cells in mammalian systems.   178 
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  179 

Figure 2. Posteriors from inference process. Posterior distributions, inferred across models, for the 180 
effective segregation events from a precursor state (O) to different tissue precursors (EL, early leaf; LL, 181 
late leaf; INF, inflorescence), and between generations (OM → O): (A) msh1 mtDNA (Ne = 50), (B) msh1 182 
ptDNA (Ne = 7); (C) wildtype mtDNA (Ne = 50, different scale). 183 

 

Segregation differences in samples within a generation were less pronounced, with comparatively 184 

few variance-generating events inferred to occur up to the generation of early leaves (sampled at 4-5 185 

weeks of growth), and few more inferred to occur up to late leaf generation (sampled at 8 weeks of 186 

growth). The means of each posterior show a roughly linear trend through within-plant development, 187 

with heteroplasmy variance increasing through developmental stages; but the extent of this increase 188 

is at most half the total segregation between generations. 189 

Due to sampling limitations in Broz et al. [2022], no within-plant samples were generated for wildtype 190 

mtDNA, and msh1 ptDNA sampling was also somewhat limited. Based on the seven-fold scaling of 191 

mtDNA segregation from the msh1 mutant to the wildtype, we hypothesised that the amount of 192 

segregation at each within-plant developmental stage would also be scaled seven-fold. We next set 193 

out to test this prediction and to verify the results of the ptDNA inference with further experiments. 194 
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Figure 3. New data and predicted segregation behaviour. (A-B) New oDNA observations for (A) 195 
wildtype mtDNA and (B) msh1 ptDNA, displayed as in Fig. 1C-E. (C) Within-plant segregation dynamics 196 
for wildtype mtDNA. Predictions (red) from scaling the msh1 observations seven-fold to match between-197 
generation observations; (blue) inferred effective segregation events from new data. (D) Segregation 198 
dynamics of msh1 ptDNA; previous observations (red); new observations (green); and refined posteriors 199 
inferred from the joint dataset (blue).  200 

 201 

New heteroplasmy observations support and refine model predictions for segregation 202 

dynamics 203 

To further illuminate the developmental dynamics of Arabidopsis heteroplasmy, we measured 204 

mitochondrial heteroplasmy across developmental profiles in lines where MSH1 functionality was 205 

recovered by back crossing to a wildtype male, while preserving the heteroplasmy that was present 206 

in the female. The heteroplasmy dynamics in these lines are expected to reflect those in the wild 207 

type (where heteroplasmy rarely arises because of low mutation rates and the rapid sorting). The 208 

new observations are shown in Fig. 3A-B. 209 

In part matching our scaling predictions, we found dramatically accelerated mtDNA segregation in 210 
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the wildtype at the late leaf and inflorescence stages, not incompatible with the seven-fold scaling 211 

observed in the between-generations data (Fig. 3C). However, the extent of wildtype mtDNA 212 

segregation prior to early leaf development was lower than this hypothesis predicted – and more 213 

similar to the lower levels in the msh1 mutant. This difference suggests that the increased 214 

segregation activity of MSH1 is mainly manifest in later development, in qualitative agreement with 215 

observed patterns of MSH1 expression (Supplementary Fig. S3). 216 

The new ptDNA observations substantially refine the estimates of variance-generating events at 217 

different developmental stages (Fig. 3D). The new observations were always compatible with the 218 

(more uncertain) inferred posteriors from the original measurements, and combined provide a tightly 219 

defined estimate of segregation dynamics through development. Assuming as before an effective 220 

population size Ne = 7, the number of variance-generating events is quite limited from early leaf to 221 

late leaf to inflorescence, with an over ten-fold further increase in segregation following between 222 

generations. It seems likely that this dramatic segregation between generations is due to a severe 223 

physical bottleneck on ptDNA, perhaps involving the inheritance of only approximately one 224 

homoplasmic organelle (see Discussion). 225 

 226 

Cell divisions account for oDNA variance in the msh1 mutant, and gene conversion can 227 

account for additional wildtype segregation of mtDNA 228 

Arabidopsis has been estimated to undergo around 34 germline cell divisions between generations 229 

[Watson et al., 2016]. In the msh1 mutant, the number of inferred effective segregation events 230 

(averages around 12 for mtDNA and 20 for ptDNA) easily fall within what would be expected from 231 

this number of binomial cell divisions for cellular populations of Ne = 50 mtDNAs and Ne = 7 ptDNAs, 232 

meaning that the observed heteroplasmy variance could then be readily accounted for through 233 

random cell divisions and reamplification alone.  234 

In the wildtype mtDNA, much more segregation is observed than can be accounted for by 34 cell 235 

divisions – the average number of inferred events is around 75. Several possibilities exist for the 236 

mechanism generating this additional variance. As hypothesised in mammalian systems, partitioning 237 

of oDNA clusters, increased random turnover of oDNA, and oDNA replication restricted to a subset 238 

of the cellular population can all increase heteroplasmy variance (reviewed in Johnston [2019b]). 239 

However, given the clear difference between the wildtype and msh1 mutant, we suggest that an 240 

MSH1-dependent process may be responsible for this increased segregation in Arabidopsis. 241 

Following Edwards et al. [2021], we propose that gene conversion may be this process – in the 242 

Discussion we consider alternative mechanisms. That reference characterised the contribution of 243 

gene conversion to V’(h) as 2(1-f) κ t, where f is the proportion of mtDNA molecules in a fused state 244 
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and thus physically capable of recombination, and κ is the rate of gene conversion between a pair of 245 

fused molecules per unit time. As the difference between V’(h) in msh1 and wildtype mtDNA is 246 

roughly 0.5, this expression suggests that a rate of κ = 0.007 per cell division (corresponding to ~0.1 247 

gene conversion events per mtDNA per cell division; see Methods) would be sufficient to generate 248 

the observed segregation patterns over ~34 cell divisions. 249 

This approach employed a linear noise approximation that may be challenged by the substantial 250 

segregation magnitudes involved in this system. To check these results, we constructed a stochastic 251 

model for oDNA during development, including binomial cell divisions, random reamplification 252 

between divisions, and a variable rate of gene conversion in a population of Ne = 50 oDNA 253 

molecules (see Methods). We asked what rates of gene conversion were required to generate the 254 

observed V’(h) within ~34 cell divisions, finding support for a figure around 0.25 events per mtDNA 255 

per cell cycle (Supplementary Fig. S4). This combined model provides predictions for heteroplasmy 256 

distributions at any given stage of plant development (Supplementary Fig. S5). We should note that 257 

this gene conversion activity could be partitioned into more intense bursts in reduced developmental 258 

stages to achieve the same variance generation – as suggested by the new mtDNA observations in 259 

Fig. 3, where early meristem development appears not to generate as much segregation as later 260 

developmental stages. Such a partition of activity would agree with observed patterns of MSH1 261 

expression during plant development (Supplementary Fig. S3) and the observed physical behaviour 262 

of mitochondria, forming a reticulated network in the shoot apical meristem, with the potential to 263 

facilitate recombination between mtDNA molecules [Seguí-Simarro & Staehelin, 2009; Edwards et 264 

al., 2021]. 265 

 266 

Plant germline history 267 

The posterior distributions we have presented are integrated over all the model structures in Fig. 1A, 268 

so that they reflect “universal” behaviour regardless of the support for the individual models. 269 

However, the RJMCMC process also quantifies this support for the different models of the plant 270 

germline. Interestingly, we observed some diversity in the posterior distributions over this model 271 

index. The mtDNA msh1 data has strong support for the “linear germline” model, while the mtDNA 272 

wildtype and ptDNA msh1 data provide strong support for the “all separate lineages” model 273 

(Supplementary Fig. S2).  274 

 275 

 276 

 277 
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Figure 4. Patterns of variance through development. Amalgamated datasets for (A) mtDNA msh1, (B) 278 
mtDNA wildtype, (C) ptDNA msh1. Individual measurements are displayed as in Fig. 1C-E. The mean and 279 
normalised variance of heteroplasmy measurements at different developmental stages, in individual 280 
plants, are also shown as trajectories: these are linked to the support for different developmental models 281 
in Fig. 1A. Shifts in mean heteroplasmy between stages provide support for a linear germline model 282 
(where tissue precursors are sampled from a spread of possible values); decreasing total variance 283 
through development can be achieved either with separate developmental lineages or through cellular 284 
bottlenecking (see text).  285 

 286 

The mtDNA msh1 data show several shifts in mean heteroplasmy across developmental stages that 287 

cannot be accounted for by the “separate lineages” model (Fig. 4; see Methods). The ptDNA msh1 288 

and mtDNA wildtype systems show decreases in V’(h) at the inflorescence stage, without being 289 

accompanied by shifts in mean heteroplasmy that would require a linear germline model. This is not 290 

in itself an argument against the linear model: less spread at later stages can naturally emerge 291 

because of the cellular bottleneck involved (for example, a set of inflorescences arising from a single 292 

precursor cell later in germline development). But the likelihood-based inference approach accounts 293 

for this effect by considering the different possible cellular dynamics and sampling outcomes. There 294 

is at least some support for the heteroplasmy profiles in inflorescences and leaf tissue developing 295 
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independently [Lanfear, 2018], although further characterisation of somatic heteroplasmy in wildtype 296 

lineages will help resolve this question.  297 

 298 

Discussion 299 

We have shown, with a combination of oDNA measurements from heteroplasmic plant lines and 300 

mathematical modelling, how oDNA segregation proceeds through plant development and between 301 

generations (Fig. 5). To our knowledge, this is the first developmentally-resolved characterisation of 302 

the “bottleneck” of oDNA inheritance in plants and the ongoing segregation of oDNA through plant 303 

lifetimes. New experiments support the predictions of the inferred mathematical models; the models 304 

make further predictions about heteroplasmy distributions at any stage of plant development 305 

(Supplementary Fig. S5). We have shown that in the absence of MSH1 functionality, oDNA 306 

segregation can largely be accounted for by the physical process of binomial partitioning at cell 307 

divisions. Although other mechanisms likely support some gene conversion activity in the absence of 308 

MSH1, high rates of such activity are not required to explain observed segregation patterns in the 309 

mutant. By contrast, MSH1 functionality induces a seven- to ten-fold increase in segregation 310 

strength, leading to rapid shifts towards homoplasmy, which cannot be explained by cell divisions 311 

alone. 312 

We do not have measurements of heteroplasmic ptDNA on the wildtype background – all lines 313 

measured so far have been homoplasmic. The predictions of this theory for wildtype plastid 314 

heteroplasmy dynamics depend on the spatial arrangement of ptDNA information. If ptDNA within a 315 

single plastid is homoplasmic, and heteroplasmy arises from a mixture of internally homoplasmic 316 

organelles, then the effect of functional gene conversion will be limited. This is because each ptDNA 317 

will usually only be physically colocalised with an identical partner, leaving no capacity to change 318 

genetic identity. If, however, plastids are internally heteroplasmic, functional gene conversion may 319 

act to further speed up segregation. In this case, following observations for mtDNA, we would expect 320 

roughly seven times as many effective cell divisions to take place (matching the mtDNA case), 321 

leading to an effective 150-200 cell divisions for the Ne = 7 case. This would lead to homoplasmy in 322 

all but a very small proportion of offspring (as observed).  323 
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 324 

 325 

Figure 5. Summary of inferred segregation dynamics within plants and between generations. 326 
Illustrative distributions of heteroplasmy, corresponding to the inferred mean segregation magnitude 327 
(n segregating events, for Ne = 50 mtDNAs or Ne = 7 ptDNAs; and Nb, effective bottleneck size). 328 
Distributions at each developmental stage, and an initial heteroplasmy of 0.5, are shown for mtDNA 329 
(MT) and ptDNA (PT) in wildtype and msh1 mutants (all wildtype PT observations are homoplasmic, 330 
so no inference is possible; see Discussion for hypotheses). Grey lines illustrate the inferred 331 
developmental trajectories linking populations at each stage.   332 

 333 

The quantitative details of our model depend on some assumptions, including a binomial division – 334 

random reamplification model for oDNA at cell divisions, the Kimura model for oDNA heteroplasmy, 335 

and particular choices for effective population size of oDNAs. The choices we have made have 336 

support from the literature (see Methods), but are not expected to be universally true or perfectly 337 

precise single values. oDNA population sizes change through development (see Methods and 338 

references therein) and oDNA partitioning at cell divisions may be more or less tightly controlled than 339 

a binomial distribution [Jajoo et al., 2016; Johnston et al., 2015]. Our effective ptDNA population size 340 
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is based on a picture where ptDNA populations inside individual plastids are homogeneous: this 341 

assumption may be challenged in the case of recent de novo mutations that have not yet fixed within 342 

an organelle. The results we report – the relative magnitudes of segregation at different 343 

developmental stages, the difference between wildtype and msh1 lines, the role for gene conversion, 344 

and the agreement of new experiments with theoretical predictions – are robust with respect to 345 

different choices of these parameters. The specific numbers of segregating events we infer should 346 

be interpreted as effective quantities, reflecting biological reality if our parameter choices are 347 

accurate, otherwise requiring some scaling (see Methods and Supplementary Fig. S6) for a precise 348 

quantitative connection to other conditions. 349 

The indirect evidence from our study is split between suggesting that oDNA segregation follows a 350 

“classical” picture of a linear germline in Arabidopsis (where segregation proceeds through a 351 

developing meristem) and a picture where different tissues, including the germline, have different 352 

developmental lineages [Lanfear, 2018]. Regardless of the within-plant model, most of the between-353 

generation segregation we observe occurs between the inflorescences of the mother and the early 354 

meristem of the offspring. For plastids in particular, it seems likely that this strong segregation may 355 

be in part due to a physical bottleneck, where a small number – perhaps just one in some cases – of 356 

homoplasmic organelles are inherited. 357 

Substoichiometric shifting (SSS) involves the sudden amplification of a rare mtDNA type (a 358 

sublimon) to dominance [Abdelnoor et al., 2003; Arrieta-Montiel et al., 2001; Woloszynska, 2010]. 359 

The dynamics characterised here illustrate how this amplification may occur. Even if a sublimon is 360 

present only rarely in SAM cells, if one of those cells becomes the precursor to a plant branch or 361 

organ, the sublimon can very naturally (and quickly) come to dominate that branch or organ (and 362 

hence offspring from it). Our work here quantifies how this shifting may occur across different organs 363 

in a plant, leading to inherited differences. In a similar vein, branch-to-branch differences in 364 

variegation caused by oDNA features have been recognised for over a century (initially laying the 365 

foundation for the understanding of cytoplasmic inheritance [Hagemann, 2010]). Such branch-to-366 

branch differences are caused by the segregation of oDNA from an initially heteroplasmic state 367 

across different parts of the plant. The quantitative model we present links, for example, the 368 

unobservable initial inherited heteroplasmy to the proportion of different variegated phenotypes 369 

throughout the plant, by quantifying the extent of segregation through different periods of plant 370 

development. 371 

Observations here and in Broz et al. [2022] point to MSH1 dramatically accelerating oDNA 372 

segregation. We have proposed that this acceleration may be due to gene conversion. However, the 373 

function and mechanism of action of MSH1 in plants remain debated. Evidence certainly points to its 374 

role in the control of oDNA recombination (often described as recombination surveillance [Abdelnoor 375 
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et al., 2003; Shedge et al., 2007]). Its unusual structure - - including an endonuclease domain - - has 376 

led to the suggestion that it induces double stand breaks that then provide the substrates for gene 377 

conversion [Christensen, 2014]. The heteroplasmy measurements here strongly suggest that MSH1 378 

acts to generate high cell-to-cell variance in oDNA heteroplasmy through plant development. Theory 379 

has suggested gene conversion as one plausible mechanism with desirable properties [Edwards et 380 

al., 2021]. However, it may be that MSH1 generates heteroplasmy variance via another mechanism. 381 

Depletion of oDNA copy number, for example, would impose a physical bottleneck on the 382 

population, both amplifying variability from divisions and inducing variability from subsampling the 383 

population. If MSH1 acts to deplete oDNA, these effects could be of comparable or greater 384 

importance in generating variability, depending on the quantities involved [Cree et al., 2008; 385 

Johnston et al., 2015]. Broz et al. [2022] showed that oDNA copy number was not significantly 386 

impacted in leaves of MSH1 versus wildtype plants, but it is unknown whether these results reflect 387 

oDNA levels in germline. If, in some way, MSH1 enforces replication of a subset of oDNA molecules 388 

as proposed by Wai et al. [2008] in a mammalian context, this mechanism could also explain the 389 

observed segregation. While the evidence points towards a more direct link between MSH1 and 390 

gene conversion [Wu et al., 2020; Broz et al., 2022], we cannot completely discard these hypotheses 391 

without measurements of copy number and oDNA replication activity. We were unable to find or 392 

acquire estimates for absolute rates of oDNA recombination in Arabidopsis; future estimates of these 393 

quantities will help provide further evidence for these mechanisms. It is noteworthy that MSH1 394 

expression is increased relative to other tissues in the meristem in Arabidopsis and other species 395 

(Supplementary Fig. S3, [Edwards et al., 2021]), and that mitochondria physically fuse to a greater 396 

extent in the meristem cells [Seguí-Simarro & Staehelin, 2009; Edwards et al., 2021]. Physical 397 

colocalization of mitochondria is a prerequisite for mtDNA interaction and recombination [Logan, 398 

2006; Arimura, 2018; Giannakis et al., 2022], and the collective dynamics of mitochondria are altered 399 

in the msh1 mutant, potentially as a compensatory response to support more interaction [Chustecki 400 

et al., 2022; Chustecki et al., 2021]. Together, these observations suggest a linked physical and 401 

genetic axis of control acting to shape oDNA through plant generations. 402 

 403 

Methods 404 

Plant material and growth 405 

The initial generation and selection of heteroplasmic plant lines is described in Broz et al. [2022]. 406 

Here, plants of the homozygous msh1 (At3g24320) mutant line CS3372 (chm1-2) were used for 407 

analysis of plastid heteroplasmy. For mitochondrial heteroplasmy analysis in a wild type background, 408 

maternal lines of msh1 CS3246 (chm1-1) were crossed with wildtype males to generate F1 progeny. 409 
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All progeny were confirmed to be heterozygous for MSH1. Seeds of desired lines were vernalized in 410 

water at 4 °C for 3 days, sown in 3 inch pots containing Pro-Mix BX media and grown under short 411 

day conditions (10 h light / 14 h dark) on light racks with fluorescent bulbs (~150 µE m-2 s-1) at 412 

ambient temperature (~25 °C). An initial fully expanded rosette leaf sample was taken at 4 weeks of 413 

growth to identify heteroplasmic individuals. Three additional leaves were sampled at 5 weeks of 414 

growth. These 4-5 week old leaf samples are considered “early leaf” (EL) for subsequent analyses. 415 

At 8 weeks, four additional leaf samples were taken. Two were harvested from the base of the 416 

rosette. These leaves were already fully expanded at 5 weeks and emerged from the SAM around 417 

the same time as the EL samples described. Thus, these are also considered "EL". Two additional 418 

fully expanded leaves were harvested at 8 weeks from the top of the rosette, emerging from the 419 

SAM at a later timepoint that ELs, and are considered as late leaf "LL" in the analysis. Inflorescence 420 

tissue (INF) was harvested after plants began to bolt. 421 

 422 

Heteroplasmy measurements 423 

DNA extraction and heteroplasmy analysis were performed as described previously [Broz et al. 424 

2022]. Briefly, single nucleotide variants (SNVs) in oDNA of msh1 mutant lines were identified by 425 

sequencing [Wu et al. 2021] and ddPCR assays were designed to track these SNVs within plants 426 

and between generations. Allele specific primers and probes were designed to each SNV (this study 427 

used the specific loci plastid 26553, mitochondria 91017 and mitochondria 334038), and droplet 428 

generation and reading was performed using Bio-Rad QX200 system. A correction factor was 429 

applied to mitochondrial data to account for the amplification of nuclear copies of the mitochondrial 430 

genome (numts) found in Arabidopsis.  431 

 432 

Developmental history models 433 

First picture a fertilised zygote giving rise to an early population of stem cells. At some 434 

developmental time point this population will contain the single ancestral cell of all early leaf 435 

samples, as well as of cells that will continue to proliferate in the SAM. At a later time point, the new 436 

SAM population will contain the ancestor for all late leaf samples, as well as for further proliferating 437 

cells. At a still later time point, the new SAM population will contain the ancestral cell to all 438 

inflorescence samples. Inflorescences are interpreted as containing the egg cells for the next 439 

generation, in which the developmental outline above is repeated for each single fertilised zygote. 440 

Each tissue's heteroplasmy value is drawn from a distribution describing some amount of 441 

segregation acting on developing descendants of these ancestral stem cells, with relationships 442 
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described via the “cell pedigrees” or “lineage trees” in Fig. 1A [Wilton et al., 2018; Stadler et al., 443 

2021]. 444 

The developmental history of plant germlines is debated [Lanfear, 2018]. To compare hypotheses on 445 

plant germline behaviour, we also consider two additional alternative models. In Fig. 1B, the future 446 

germline is sequestered early in development and then develops in parallel to the somatic tissues. 447 

Here, the model is as above, except the inflorescence ancestral cell is drawn from the early stem cell 448 

population. In Fig. 1C, separate somatic lines also exist, so that the different organs all develop 449 

independently from an original early precursor. In theory, different germline histories – where soma 450 

and germline are sequestered at different developmental timepoints – will give rise to different 451 

correlations and variance structures in the oDNA populations in different tissue types. For example, 452 

if the germline develops independently of the soma, correlations between mean oDNA heteroplasmy 453 

in somatic and inflorescence samples are less likely, and it may be possible for inflorescence oDNA 454 

to have lower variance than soma oDNA. If the germline shares a common developmental ancestry 455 

with the soma, correlations are more likely, and inflorescence variance will be at least as high as 456 

soma variance. 457 

 458 

Inference of segregation dynamics 459 

To assign a likelihood to our tissue observations given a developmental model, we need to (a) 460 

estimate the ancestral cell heteroplasmies and (b) estimate the probability of observing a tissue 461 

heteroplasmy given the ancestral value and some parameterised description of segregation 462 

[Burgstaller et al.,2014; Burgstaller et al., 2018]. For (a), we treat ancestral cell heteroplasmies as 463 

latent variables and integrate the likelihood over all possible values for each. For (b), we use the 464 

Kimura distribution [Wonnapinij et al., 2008; Kimura, 1955] to describe the probability of observing a 465 

given heteroplasmy in individual tissue samples, creating a stochastic model with a full likelihood 466 

function [Giannakis et al., 2022b, Broz et al., 2022]. We change variables from the “drift parameter” b 467 

to an effective number of variance-generating events n = log b / (1 – 1/Ne) (see below) to provide a 468 

convenient, additive parameter for serial segregation events. The corresponding likelihood is then 469 

used in a reversible jump Markov chain Monte Carlo (RJMCMC) framework [Green, 1995; 470 

Dellaportas et al., 2002] (see below) with uninformative uniform priors on initial heteroplasmies and 471 

division numbers and compute posterior distributions over these parameters. 472 

For numerical efficiency, we precompute Kimura distributions for 0 to 200 cell divisions and initial 473 

heteroplasmies from 0 to 1 in steps of 0.01 and use these precomputed distributions as a lookup 474 

table in the inference process. For numerical efficiency, we set effective population size to 50. A 475 

post-hoc correction can be used to interpret the results from this setup in terms of any other 476 
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population size (see below). 477 

To account for the fact that heteroplasmy measurements may have some associated uncertainty, we 478 

implement a degree of granularity within the model. For example, a granularity of 0.01 means that 479 

heteroplasmy values are rounded to the nearest 0.01. This both allows for measurement noise and 480 

improves computational speed; we will show that our results are robust to different choices of this 481 

parameter. 482 

We write {Di} = {Di,ME, Di,CE, Di,CL, Di,CI} for the set of observations in family i, with elements 483 

respectively corresponding to Mother Early leaf, Child Early leaf, Child Late leaf, and Child 484 

Inflorescence. We write SCj for the latent variable associated with ancestral cell heteroplasmy at 485 

developmental stage j. The likelihood associated with measurements, in the model without a 486 

segregated germline, is then 487 

L({Di} | n, h0i) = P(Di,ME | h0i; n0) ∫ dSC1 P(SC1 | h0i; n0+n1+n2+n3) P(Di,CE | SC1; n0) 488 

                     × ∫ dSC2 P(SC2 | SC1; n0) P(Di,CL | SC2; n1) ∫ dSC3 P(SC3 | SC2; n1) P(Di,CI | SC3; n2), 489 

[1] 490 

So that SC1 is the precursor to EL and SC2, SC2 is the precursor to LL and SC3, and SC3 is the 491 

precursor to INF (Fig. 1A). With a segregated germline the corresponding expression is 492 

L({Di} | n, h0i) = P(Di,ME | h0i; n0) ∫ dSC1 P(SC1 | h0i; n2+n3) P(Di,CE | SC1; n0) P(Di,CI | SC1; n2) 493 

                     × ∫ dSC2 P(SC2 | SC1; n0) P(Di,CL | SC2; n1), 494 

[2] 495 

So that SC1 is the precursor to EL, INF, and SC2, and SC2 is the precursor to LL. With completely 496 

separate developmental lineages we have 497 

L({Di} | n, h0i) = P(Di,ME | h0i; n0) ∫ dSC1 P(SC1 | h0i; n2+n3) P(Di,CE | SC1; n0) P(Di,CL | SC1; n1) 498 

                     × P(Di,CI | SC1; n2), 499 

         [3] 500 

So that SC1 is the precursor to all lineages, which develop independently. 501 

An important difference between the models is whether samples at different stages can have 502 

different population means. In the separate lineages model, EL, LL, and INF pedigrees all come from 503 

the same precursor, so have the same population mean. In the linear model, each pedigree begins 504 

with a (latent) sample from a previously segregated population (Fig. 1B), so population means can 505 

differ (Supplementary Fig. S1). They also differ in the accumulated amount of segregation at the 506 

population level. The “linear germline” model enforces a monotonic increase in segregation (hence 507 
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in V’(h)) through development – hence EL ≤ LL ≤ INF ≤ cross-generation. The “all separate” model 508 

supports a more flexible picture where INF < EL, for example. However, although these relationships 509 

hold statistically at the population level, a given set of samples may not reflect them: for example, a 510 

sample of inflorescences may not capture the full possible spread of values and may thus suggest a 511 

lower variance than the true case. The full likelihood-based inference process below accounts for 512 

these sampling issues. 513 

Given one of the above likelihood functions for a family set of observations {Di}, the likelihood 514 

associated with a full set of observations is 515 

L(D | n, h0) = Πfamilies i L({Di} | n, h0i)        [4] 516 

  517 

Effective population sizes 518 

Preuten et al. [2010] find 50 or fewer mtDNAs in stems and flowers. Wang et al. [2010] found egg 519 

cells from Arabidopsis to possess 59.0 copies of mtDNA on average. Gao et al. [2018] do not 520 

quantify mtDNA molecules in Arabidopsis but observe around 250 mtDNA nucleoids in mature eggs 521 

and mature zygotes, and 100-200 mtDNA nucleoids per cell during embryogenesis, with a doubling 522 

between early apical cells and mature apical cells. We choose an effective population size of 50 for 523 

consistency with those studies where mtDNA copy number is more directly observed. 524 

In a comprehensive survey across species, Greiner et al. [2020] report an increase in plastids per 525 

cell in Arabidopsis development from 4-10 in the meristematic region, through 22-34 in young 526 

leaves, to 50-90+ in mature leaves. Corresponding ptDNA counts per plastid (per cell) are given as 527 

8-21 (71-146), 48-84 (997-2476), 79-121 (2900-5500+). We choose an effective population size of 7, 528 

corresponding to the central estimate for the meristematic observations, and assuming that plastids 529 

are internally genetically homogeneous [Scarcelli et al., 2016]. This assumption may be challenged 530 

in the case of recent mutations (see Discussion). 531 

For numerical convenience we used a population size of Ne = 50 in the numerical simulations. As 532 

b = (1 – 1/Ne)n,          [5] 533 

we can immediately interpret an inferred value of n for Ne as equivalent to a value n’ for N’e : 534 

(1 – 1/Ne)n = (1 – 1/N’e)n’ 535 

n log (1 – 1/ Ne) = n’ log (1 – 1/ N’e) 536 

n’ = n log (1 – 1/ Ne) / log (1 – 1/ N’e)        [6] 537 

so that, for example, n = 10 divisions for Ne = 50 give roughly the same heteroplasmy distribution as 538 
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n’ = 20 divisions for Ne = 100. We can then scale the results for Ne = 50, chosen for numerical 539 

convenience in our simulation, to the required effective population size in our estimates of biological 540 

reality. Hence, any of the inferred numbers n of segregating events we report (using Ne = 50 for 541 

mtDNA and Ne = 7 for ptDNA) can readily be interpreted for another effective population size Ne’ by 542 

multiplying by the factor log (1 – 1/ Ne) / log (1 – 1/ N’e), which for most values is close to Ne/Ne’ 543 

(Supplementary Fig. S6). Finally, effective “bottleneck size” Nb (the effective population size if 544 

variance is generated by a single event) can be recovered from our inferred n with  545 

Nb = 1 / (1-(1-1/Ne)n)           [7] 546 

Reversible jump MCMC 547 

We use reversible jump MCMC to identify the support for different models of developmental histories 548 

[Green, 1995; Dellaportas et al., 2002; Kirk et al., 2013]. We explored several options for relating 549 

parameters in each model class, which all gave convergent results in the long-term limit of the 550 

MCMC chains, but found the best mixing between model classes to be achieved simply using ni(1) = 551 

ni(2) = ni(3) for all developmental stages i and with model classes given by superscripts (1: linear 552 

germline; 2: separate germline; 3: all separate lineages), enforcing these (and preserving h0 values) 553 

as deterministic proposal rules upon a proposed shift from model i to model j. These expressions 554 

immediately provide the (trivial) mapping functions gij(n(i)) for implementing such a step from model i 555 

to model j [Green, 1995; Dellaportas et al., 2002]. All models have the same dimensionality and the 556 

Jacobean determinants associated with each of these mapping functions are all one. We employ 557 

uniform priors on all parameters and model indices, making the acceptance rule for the RJMCMC 558 

implementation equivalent to the normal Metropolis-Hastings acceptance rule when a between-559 

model step is proposed. We propose such steps with probability 1/3, employing the above 560 

perturbation to parameters when this option is not chosen. MCMC chains were run over 105 561 

samples, discarding 104 as burn-in and subsequently recording every 10th sample. 562 

 563 

Estimating and simulating variance due to gene conversion 564 

The parameter κ in the main text is the rate constant associated with the gene conversion processes 565 

WT+MU → WT+WT and WT+MU → MU+MU [Edwards et al., 2021]. In a simple picture we could 566 

assume that half our Ne = 50 mtDNAs are WT and half are MU. Then the rate of gene conversion is 567 

κ × 25 × 25, which for κ = 0.007 per cell division gives ~4 events per cell division or ~4/50 = 0.08 568 

events per mtDNA per cell division. 569 

The derivation of this expression depends on a linear noise approximation, and the rates in the 570 

above argument will of course vary as segregation proceeds. To provide a more precise estimate, 571 
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we implemented a simple stochastic simulation of binomial cell divisions, random re-amplification, 572 

and gene conversion in a model cellular population. We simulated these processes for various gene 573 

conversion rates and 300 cell divisions and asked what gene conversion rates were needed to 574 

generate a given normalised heteroplasmy variance V’(h) within ~34 cell divisions (Supplementary 575 

Fig. S4). 576 

 577 

Data and code availability 578 

All data and code is freely available at https://github.com/StochasticBiology/plant-segregation. The 579 

inference code is written in C; the data curation and visualisation is written in R [R Core Team, 580 

2022], using libraries readxl [Wickham and Bryan, 2022], stringr [Wickham, 2019], ggplot2 581 

[Wickham, 2016], and gridExtra [Auguie, 2017]. 582 
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Supplementary Information 838 

 

 

Supplementary Figure S1. Validating model and inference approach. Each row corresponds to a 839 
synthetic dataset generated to match a different type of segregation dynamics. The synthetic 840 
observations are shown in the first column, followed by the inferred effective segregating events to 841 
EL, LL, INF, and next-generation stages (eff1-4); the inferred model index (0, linear; 1, separate 842 
germline; 2, all separate); and finally a trace of likelihood over the MCMC chain as a readout of chain 843 
dynamics. Individual experiments reflect (1) segregation between generations, generating diversity 844 
between siblings but not within plants; (2) segregation in inflorescence development (and possibly 845 
between generations) but not in somatic tissue; (3) segregation only in somatic tissue, with a 846 
separate germline; (4) segregation between generations and in somatic tissue, but with germline 847 
protected; (5) segregation throughout linear germline, with precursor cells causing shifts in mean 848 
(see Methods). In case (1), segregation between generations but nowhere else is inferred, with 849 
uniform posteriors over model index in the absence of further information. In case (2), segregation at 850 
inflorescence development but not in somatic tissue is inferred, with a linear model favoured. In case 851 
(3), zero segregation in the germline and nonzero in somatic tissue is inferred, with models 1 and 2 852 
(separate germline) inferred. Case (4) mirrors case (3) but with between-generation segregation also 853 
inferred. Case (5) supports the linear germline model as others cannot account for the shifts in mean 854 
heteroplasmy between stages. 855 
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 857 

 858 

Supplementary Figure S2. Inferred behaviour for different datasets. Each row is the result of 
inference on the given dataset. Effective numbers of segregating events to EL, LL, inflorescence, 
and between-generation stages (eff1-4); the inferred model index (0, linear; 1, separate germline; 2, 
all separate); and finally a trace of likelihood over the MCMC chain as a readout of chain dynamics. 
Results for two independent MCMC chains (red and blue) are shown for all except the likelihood 
traces. Divergence in the “old-mito-wild” case reflects the unidentifiability of within-plant segregation 
parameters from this between-generational data. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.07.515340doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.07.515340
http://creativecommons.org/licenses/by/4.0/


 
Supplementary Figure S3. Msh1 expression patterns during development. Data from Schmid et 859 
al. [2005], visualised by the “eFP browser” from the Bio-Analytic Resource for Plant Biology [Winter 860 
et al., 2007]. 861 

  

  
Supplementary Figure S4. Simulated segregation with and without gene conversion. (left) V(h) 862 
with number of divisions for different rates of gene conversion attempts (GC rate). (right) Actual gene 863 
conversion events per mtDNA per division, with number of divisions for different R. Within 34 864 
divisions, the R = 75 and R = 150 cases readily generate the V(h) ~ 0.25 (corresponding to V’(h) ~ 1 865 
for these simulations where h = 0.5) values observed for 75 divisions of the R=0 case, 866 
corresponding to a mean around 0.25 gene conversion events per mtDNA per cell cycle.  867 
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Supplementary Figure S5. Predicted heteroplasmy distributions over cell divisions. Example 868 
model predictions for heteroplasmy distributions in mtDNA populations of size Ne = 50, with a given 869 
number of cell divisions (rows). (left) No gene conversion, modelling the msh1 case; (right) gene 870 
conversion at the rate suggested by our analysis in the wildtype plants. 871 
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  872 

Supplementary Figure S6. Scaling factors for converting effective population sizes. To interpret 873 
a number of inferred segregating events n from a population with Ne = 7 or 50 with a new population 874 
size Ne’, read off the scale factor corresponding to the new population size on the horizontal axis and 875 
scale n by this factor. For most cases this scale factor is very close to Ne/Ne’.  876 
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