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Abstract

Age-related changes in DNA methylation (DNAm) form the basis for the development of
most robust predictors of age, epigenetic clocks, but a clear mechanistic basis for what
exactly they quantify is lacking. Here, to clarify the nature of epigenetic aging, we analyzed
the aging dynamics of bulk-tissue and single-cell DNAm, together with single-cell DNAmM
changes during early development. We show that aging DNAm changes are widespread, but
are relatively slow and small in amplitude, with DNAm levels trending towards intermediate
values and showing increased heterogeneity with age. By considering dominant types of
DNAm changes, we find that aging manifests in the exponential decay-like loss or gain of
methylation with a universal rate, independent of the initial level of DNAm. We further show
that aging is dominated by the stochastic component, yet co-regulated changes are also
present during both development and adulthood. We support the finding of stochastic
epigenetic aging by direct single-cell DNAmM analyses and modeling of aging DNAm
trajectories with a stochastic process akin to radiocarbon decay. Finally, we describe a
single-cell algorithm for the identification of co-regulated CpG clusters that may provide new
opportunities for targeting aging and evaluating longevity interventions.

Introduction

Epigenetic clocks have been used for almost a decade to accurately predict chronological
ages of cells, tissues and organisms'®. More recently, new epigenetic clocks have been
introduced that are trained on mortality and/or phenotypic, pathological and physiological
readouts’®, as well as on the pace of aging®. In all these cases, the basic feature for age
prediction or model construction is DNA methylation (DNAm) levels averaged over
macroscopic tissue samples, i.e. bulk DNAm levels. The inherent challenge with such an
approach is that the DNAm signal is averaged over a large number of different cells present
in the tissue. Even though the role of various factors contributing to bulk DNAm changes has
been extensively discussed'®', what biological processes drive the epigenetic aging clocks
remains unknown. The observed internal age-related changes across all cells could be
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confounded by multiple factors, such as changes in cell-type composition™ and clonal
expansion’®. An important advance in this area is the development of a single-cell DNA
methylation (scDNAm) clock known as scAge'’, relying on bulk DNAm data for calibration.
Yet, it also does not provide a mechanistic basis for chronological age prediction.

To clarify the principles and biological mechanisms behind epigenetic aging, we turned our
attention to single-cell DNAm aging and embryonic development data. Using mouse as a
model, we examined inter-cell correlations as a marker of co-regulation. We were able to
classify aging changes into two distinct categories: stochastic and co-regulated. Stochastic
changes are not correlated across cells, organisms and CpG sites, thus representing the
accumulation of molecular damage?. Co-regulated changes are coherent across different
cells and animals, thereby changes at different CpG sites are correlated. Co-regulation of a
genomic region in the current context means that there is a shared biological mechanism
protecting cells in the same and other organisms of the same species from accumulating
stochastic changes. However, without longitudinal scDNAm data we are unable to exclude
the stochasticity of dynamics for co-regulated clusters — a cluster may be co-regulated in
the genomic space, but, as a whole, change stochastically in time. Ideally, the only possibility
of a CpG cluster to change its DNAm levels is to do it concordantly within the cell. The
co-regulated clusters are thus good candidates for programmatic, regulatory epigenetic
changes in the sense that they are irreducible to epigenetic damage accumulation. The
embryonic development scDNAm data can be used as a control for co-regulated changes
because of a tightly controlled genetic program that governs development.

By applying these approaches, we show that aging scDNAm changes are dominated by the
stochastic component, in agreement with the concept of aging as the entropic loss of
complexity®*?*, yet co-regulated changes are also present. Embryonic scDNAm data are
dominated by a global wave of methylation from day E4.5 to E5.5, on top of which we
managed to identify a fraction of co-regulated changes. Therefore, our analyses suggest that
the nature of epigenetic aging is largely stochastic. The co-regulated CpG clusters, despite
their sparsity, may show promise as better candidates for testing anti-aging interventions and
aging quantification. For example, the current approaches for building epigenetic clocks are
mostly based on penalized regression (Lasso, Ridge or ElasticNet), which penalize
correlation across CpG sites in order to reduce the number of CpG sites used to build the
clock. The predictions of age or other traits would be insensitive to the composition of the
clock in the correlative analysis, thus the currently built clocks may be biased towards
stochastic CpG sites. However, different parts of co-regulated clusters and stochastic sites
may respond qualitatively differently in the case of interventions applied to an organism. A
more mechanistic understanding of epigenetic aging based on co-regulation may improve
performance of epigenetic clocks in evaluating anti-aging interventions.

Results

Bulk tissue epigenetic aging
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Fig. 1. Key features of bulk DNAm changes during aging. a. Three major life stages of mice
represented by age-related changes in function — development, functional aging and
multimorbidity®>?. b. Predicted Petkovich DNAm age of animals (16 age groups, from 3 till 35 months
old) based on the Petkovich et at. dataset*. c. The range of DNAm changes at CpGs sites in the
dataset. Histograms are shown for all CpG sites and for the CpGs significantly changing with age. d.
Six representative CpG histograms in aging mouse cohorts of 3-14 (green), 14-24 (yellow) and 24-35
(red) months old for the following CpG sites: significantly hypermethylated with age (upper row), not
changing with age (middle row), and significantly hypomethylated with age (lower row)*. e.
Schematics of seven possible aging DNAm dynamics observed in experimental data. Other types of
dynamics are rare but may also be present in the data. f. Genomic enrichment analysis for the CpG
sites comprising the seven aging dynamics from e. Enrichment profiles are similar for the CpG sites
sharing the direction of age-related changes (dynamics 2 and 3, and 5 and 6). Note that entropic
changes do not share a common genomic profile (2 and 5), and the same applies to anti-entropic
changes (3 and 6). g. Aging dynamics of mean DNAm levels (upper row) and the variance of DNAm
levels (lower row) for the seven types of aging dynamics from e. Color scheme is the same as in e. h.
Aging dynamics of logit of mean DNAm levels (upper row), and of the logit of mean DNAm levels

relative to the logit of mean DNAm levels at 3 months of age. The logit was defined as logl—fx, where

x is the DNAm level.
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To assess the behavior of DNAmM over the time course of mouse life, we divided it into three
categories according to the typical aging dynamics of physiological readouts: development,
functional aging and multimorbidity?>?® (Fig. 1a). Similar life-course staging can be applied to
humans?-%. Development, especially early development, is known to be tightly regulated,
even if molecular aging already proceeds there®. Functional aging corresponds to the period
of life between the end of development, accompanied by a gradual functional decline without
major accumulation of comorbidities. Multimorbidity is the final stage of life, when the
functional decline becomes incompatible with survival and normal homeostasis. We focused
our analyses on the period of functional aging and made use of developmental data for
uncovering dissimilarities in DNAm dynamics between these two life stages.

We first analyzed bulk blood DNA methylation (DNAm) changes during aging of male
C57BI/6 mice (16 age groups from 3 to 35 months, 8 animals per group) based on our
previous reduced representation bisulfite sequencing dataset*®'. There were 268,044 CpG
sites that significantly correlated with age (13.6% out of all 1,976,056 measured CpG sites).
After the Bonferroni correction for multiple testing, the number of such CpG sites was 16,889
(0.85% of all sites). Given that a substantial fraction of CpGs change significantly with age,
the prediction of chronological age based on the DNAm levels could be made (Fig. 1b), as
was previously done in the case of the Petkovich et al. clock*. Epigenetic clocks typically
comprise a few hundred of CpG sites out of hundreds of thousands that significantly change
with age, hence the major challenge is how to select CpGs that contain the most biologically
relevant information about aging and would produce valuable biomarkers of this process.
Interestingly, the overall change of DNAm level for each of the numerous age-related CpG
sites over functional aging was small. The largest change of methylation was about 30%,
whereas for most of the sites it was less than 10% throughout lifespan (Fig. 1¢c). For
illustration, we present six representative CpG histograms of aging mouse cohorts for pairs
of CpGs significantly hypermethylated with age, not changing with age, and significantly
hypomethylated with age (Fig. 1d).

We further classified the aging trajectories of DNAm into seven categories depending on the
initial methylation value at the end of development (at 3 months), and the direction of
subsequent changes (Fig. 1e, g, h). Dynamics 1, 4 and 7 represent CpGs, whose
expression remains constant with age and differs only by the initial DNAm level. Dynamics 2
and 3 correspond to the growth of methylation with age, whereas dynamics 5 and 6 to the
loss of methylation. Dynamics 2 and 5 trend towards the methylation level of 0.5 in
accordance with the growth of entropy. At the same time, dynamics 3 and 6 correspond to
an apparent loss of entropy, exhibiting “anti-entropic” behaviors. One may expect different
biologies behind the entropic and “anti-entropic” behaviors of DNAm levels. To characterize
these dynamics, we carried out genomic enrichment analyses of the epigenetic signatures
corresponding to the seven types of dynamics (Fig. 1f). Surprisingly, dynamics 2 and 3
(increasing methylation) and dynamics 5 and 6 (losing methylation) displayed more similarity
than entropic dynamics 2 and 5 or “anti-entropic” ones 3 and 6. Therefore, aging dynamics
cluster according to the direction of DNAm level change over functional aging rather than
according to the initial methylation level at the completion of development. Overall, the
dynamics corresponding to the loss of methylation and higher initial methylation levels (4, 5,
6 and 7) compared to those gaining methylation or having low initial methylation levels (1, 2
and 3) are relatively enriched with inter-CpG island regions, or open sea, enhancers,
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introns,intergenic regions and 3’-UTRs, i.e. generally non-functional regions. Likewise, they
contain relatively fewer CpG islands, coding sequences, exons, 5’-UTRs and promoters.

Interestingly, the aging change was accompanied by the growth of heterogeneity of DNAm
levels within cohorts of the same chronological age, which is indicated by the broadening of
methylation level distribution with age (Fig. 1d), and the growth of DNAm levels variance
(Fig. 1g). Not only the mean DNAm level for CpGs corresponding to dynamics 2 and 5
showed a pronounced increase with age, but also the heterogeneity of DNAm levels in age
cohorts grew with age (Fig. 1g). Additionally, they shared a similar rate of DNAm change
notwithstanding the initial methylation level. We applied the logit transformation of DNAm

X
1—x

levels, log (x is the DNAm level), and found that after this transformation the changes

were essentially linear (Fig. 1h), thus resembling exponential-decay-like changes in the
average methylation levels within the defined dynamics of DNAm changes. This is consistent
with the aging-related increase in entropy metrics based on various molecular and functional
readouts'>*1-34,

The above analysis of bulk blood DNAm aging changes can be summarized by the following
key points. The changes of DNAm during functional aging are omnipresent in the genome,
and are relatively slow and small in the amplitude. DNAm levels, in general, trend towards
the methylation level 0.5 and display increased heterogeneity with age. The aging DNAm
dynamics can be clustered into seven dominant types. Aging manifests in the
exponential-decay-like loss (or gain) of methylation with a universal rate, independent of the
initial level of DNAmM. These key points suggest that the DNAm aging changes demonstrate
common features indicative of a stochastic process.
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Stochastic single-cell model for simulating bulk tissue
epigenetic aging
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Fig. 2. Stochastic single-cell model for modeling bulk DNAm dynamics. a. Sketch for a
three-parameter stochastic decay model: g — initial methylation level, P, and p, — rates of

demethylation and methylation in a unit of time. The flips of methylation occur randomly with the
corresponding rates. The behavior of two CpG sites in single cells comprising a tissue sample is
illustrated. CpG 1 is initially hypomethylated and gets more methylated with age, whereas CpG 2 is
initially hypermethylated and loses its methylation. b. The stochastic decay model produces
exponential decay law for the dynamics of average methylation. The rate of decay equals the sum of
P, and D, The limiting value is defined by the dynamic equilibrium of methylation and demethylation.

c. Distributions of P, and P, for the sites significantly changing with age®, which were observed in the
experiment. The random sampling was performed for a uniform distribution of g, P, and p,on the
following intervals of parameters: g € [0, 1], pp,E€ [0,0.045] . d. Dynamics of CpG sites

included in the Petkovich et al.* DNAm clock (left), results of fitting of those trajectories to the
exponential decay defined in ¢ (middle), and random sampling of aging trajectories b sampled from
the distribution in ¢ (right). Blue lines show trajectories losing methylation, and red lines — gaining
methylation. Thick red and blue lines are the mean trajectories of red and blue lines.
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In an attempt to explain a part of age-related changes of DNAm caused by stochastic
damage accumulation, we tested the hypothesis that it is possible to reproduce the
experimental DNAm aging trajectories with a stochastic single-cell model (see Methods).
The stochastic model assumes that the DNAm dynamics for a CpG site in a cell are purely
stochastic and controlled by three parameters: g — the initial methylation level, P, and P, —

the rates of demethylation and methylation in a unit of time. We illustrate the stochastic
model with an example of two CpG sites in a tissue sample of 40 cells — for CpG 1 the rate
of methylation is higher than the rate of demethylation, whereas the initial level of
methylation is low, and for CpG 2 the parameters are the opposite (Fig. 2a). As the time
passes, some of the cells would flip their methylation state according to the predefined
probabilities. However, the bulk tissue DNAmM would average single-cell levels of methylation
across all cells and produce a single number for the mean DNAm level, which is predicted by
the model. For a sample of n cells, the CpG site is methylated in n. cells. During functional

aging, the CpG can randomly acquire or lose methylation according to the probability rates
P, and pmdefined above. We derived the aging trajectory equation for the average level of

methylation across the whole sample x(t) = nm(t)/n to be an exponential decay curve (Fig.
2b):

pm
PP,

pm
PP,

x(t) = +(q - )exp(— (p, +p)O). (1)

To compare real aging trajectories of CpG sites with the model predictions, we analyzed the
DNAm aging dynamics* and calculated the rates P D, for all sites changing significantly

with age (Fig. 2c), and plotted the aging dynamics for 90 CpGs comprising the Petkovich et
al. epigenetic clock (Fig. 2d, left). Next, we fitted the experimental DNAm levels dynamics to
x(t) for each clock CpG site (Fig. 2d, middle). We also plotted a subset of trajectories
corresponding to the parameters g, PP randomly drawn from the uniform distributions on

m

the following intervals: q € [0, 1], p.p,E€ [0,0.045] (Fig.2c) for each CpG site (Fig. 2d,
right).

The stochastic model predictions can fit the observed behavior of clock CpG aging
trajectories (Fig. 2d left and middle). At the same time, similarity of experimental and
randomly sampled trajectories (Fig. 2d left and right) suggests that the stochastic model is
able to qualitatively reproduce the experimental behavior within a stochastic framework with
the use of a single parameter for all CpG sites — the maximal rate of exponential decay
among all sites (pm + pd)max defined explicitly via the upper limit of sampling intervals

(Fig.2c). This parameter may be used to characterize instability of the aging epigenome and
to predict a potential limit of lifespan due to epigenetic instability.

Bulk epigenetic clocks are agnostic of the single cell patterns of
aging
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Fig. 3. Three single-cell scenarios of DNAm aging changes. a. An example of three single-cell
scenarios used to produce the same 20% change of tissue-bulk DNAm levels with age: co-regulated,
stochastic and mixed. The example is shown for 5 aging animals (horizontal rectangles) with DNAm
levels measured for a set of cells (represented by rows in the rectangles). Each CpG is represented
by a column, the left half of the CpGs are assumed to be hypomethylated in the youthful state,
whereas the right half is initially hypermethylated. Co-regulated aging changes occur in a correlated
manner within one cell (changes of different CpG sites are correlated), and in a coherent way in
different cells and animals. Stochastic changes are uncorrelated among different cells and among
different CpG sites. Mixed changes are a combination of the two. Bulk-tissue DNAm clocks are unable
to distinguish these three scenarios since they all correspond to the same change in DNAm levels. b.
Realistic coverage of NGS in single cells would produce a sparse subset of CpGs measured in only a
handful of the cells. The sparsity in the plot is 90%. ¢. A hypothetical clock with the left half of all CpG
sites hypomethylated in the youthful state, having weight +1, whereas the right half of CpG sites
hypermethylated in the youthful state, having weight -1. For age prediction, the clock weights are
normalized by the number of CpGs in the clock. d. lllustration of the dynamics of stochastic
accumulation of epigenetic changes with age. Age corresponds to the fraction of average DNAm
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levels (from 0 to 0.5). The sparsity level is 50%. e. Prediction of the hypothetical clock from ¢
(normalized to have a unit length) on the simulated data for the three scenarios from a. The clock from
¢ is able to accurately predict chronological age for any used single-cell scenario, and for any NGS
coverage (see legend for the level of sparsity).

Different single-cell DNAm distributions can produce the same bulk tissue DNAm levels.
Specifically, single-cell aging changes can be caused by drastically different biological
processes without being detected by bulk tissue DNAm signals. To illustrate this point, we
sketch three possible scenarios of single-cell DNAm changes that correspond to the same
bulk DNAm pattern (Fig. 3a). The left half of CpGs were initially unmethylated in all cells and
organisms, whereas the right half — methylated. Then, over the course of aging, each
unmethylated CpG site acquires 20% of methylation, and each methylated CpG site loses
20% of methylation. Three single-cell scenarios are shown: stochastic, co-regulated and
mixed. The stochastic one assumes that all changes are scattered across cells in an
uncorrelated manner — the DNAm changes occur independently at CpGs in cells and
organisms. This scenario corresponds to damage accumulation. The co-regulated scenario
represents a model wherein there are two states for a cluster of CpGs, young and old, and
during aging 20% of cells switch from the young state to the old state. This scenario
corresponds, for instance, to the case of senescent cells, whose population grows with age.
The third scenario is a mixture of the two described above — all cells accumulate stochastic
changes of methylation, whereas some genomic regions are co-regulated. Bulk DNAm data
are unable to distinguish these scenarios. In real scDNAm data, low sequence coverage
produces a severely sparse signal (Fig. 3b), making the analysis of scDNAm challenging but
not impossible in mitotic or clonally expanding cells. Below, for our analysis, we use
single-cell muscle stem cells and embryonic cells to partially overcome this challenge.

We use a hypothetical example of a clock built for the simulated single-cell scenarios (Fig.
3c). Since bulk changes of DNAm are the same 20% for all CpGs, the clock has two
constant parts: it has weights +1 for the right half of CpGs, and -1 for the left half (nhormalized
to the total number of CpGs). We illustrate the dynamics of accumulation of aging changes
in the stochastic scenario example (Fig. 3d). We show that the prediction of chronological
age is possible no matter what single-cell scenario or the level of sparsity of the scDNAm
signal were used to simulate the aging dynamics (Fig. 3e). At the same time, the clock is
unable to distinguish the single-cell scenarios used to generate scDNAm levels. The
mechanism behind such a clock is a gradual accumulation of stochastic damage, or the
growth of the population of “old” cells. In both cases the predictive power of the clock is
based on the inevitable change of average methylation levels with age. Further, we turn to
real scDNAm data to clarify what scenario is realized in an experiment.

Single-cell epigenetic dynamics during functional aging and
embryonic development
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Fig. 4. Single-cell DNAm dynamics during functional aging. a. All seven types of aging
trajectories are present in the muscle stem cells (muSC) scDNAm data®* (Fig. 1e). Raw sparse
scDNAm data are shown for a subset of 275 cells from 4 young mice (2 months old) and 2 old mice
(24 months old), single cells from which represent horizontal lines (left panel). Black lines separate
cells corresponding to different mice. For each CpG (vertical column), compression omits
non-measured cells, and shows only the measured ones (right panel). All measured cells for the
young mice are collapsed to the top of the figure, and for the old mice to the bottom. One old mouse
showed a significantly lower coverage than other animals, and was censored from the following
analyses. b. Dynamics of a subset of CpG sites that change significantly with age in scDNAm data
(from 2 month-old to 24 month-old mice) (upper panel). All age-related CpGs were classified into
co-regulated and stochastic clusters by their inter-cell correlation (lower panel). The co-regulated
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cluster has characteristic stripes of CpGs whose DNAm levels change concordantly (lower left
panel). The stochastic cluster does not show strong correlation among different cells (lower right
panel). The largest co-regulated cluster (green box), and a stochastic cluster of the same size
(brown box) were chosen for an additional close-up view. c. Close-up view of the co-regulated cluster
(left) and a stochastic cluster (right) from b. The co-regulated cluster indicates the stretches of CpGs
that show high correlation among themselves, and change their DNAm levels as a single unit. The
stochastic cluster does not have similar clustering of CpG sites. Each CpG site in the stochastic
cluster changes independently from others.

We analyzed two scDNAm datasets that provide high NGS coverage for each cell: mouse
embryos prior and during gastrulation® and aging muscle stem cells (muSC)*’. In the case of
aging muSCs, we had 275 single cells derived from four 2-month-old mice and two
24-month-old mice (one old mouse was censored because of the low coverage of NGS in its
cells). First, we filtered CpGs by coverage: each CpG must be measured in at least 15 cells
of young mice, and 15 cells of old mice. Out of 35,584,147 CpGs measured in at least one
cell, only 155,359 had sufficient coverage and passed the filter. Second, we identified CpGs
changing significantly with age, thus leaving 502 CpG sites. Within those CpGs, we
managed to observe all seven types of bulk DNAmM aging dynamics present in Fig. 1d (Fig.
4a). For convenient comparison with the bulk DNAm dynamics, we present both raw and
compressed scDNAm data, where for each CpG we omit non-measured cells and collapse
all the cells for the young mice to the top, and for the old mice to the bottom of the figure
(Fig. 4a left and right).

Out of 502 CpGs changing methylation with age, we identified 121 CpG sites increasing
methylation and 381 CpG sites losing methylation with age (Fig. 4b). To identify the
co-regulated clusters of CpGs, for each pair of CpGs, we calculated the inter-cell correlation
coefficient separately for the young mice, for the old mice, and for all mice together. The
values of correlation had to be higher than 0.4 in all three cases to include the pair of CpGs
into the co-regulated cluster. Non-measured values of DNAmM were imputed by zeros. The
method of identifying co-regulated clusters is conceptually similar to the global coordination
level (GCL) metric developed independently for scRNAseq data analysis®. The majority of
age-related CpG sites, 76%, changed according to the stochastic scenario, whereas 24% of
the CpG sites changed in a co-regulated manner. Such a definition of co-regulation is
relatively strict, and would rather tend to mark a CpG site stochastic if it has low coverage.
However, for a larger number of sequenced cells, the method would be able to identify more
co-regulated clusters. Therefore, the ability to identify real co-regulated clusters may be
strongly influenced by experimental limitations. With the advancements in sequencing
technologies, it may be possible to improve the quality of prediction of co-regulation.

Commonly used for building epigenetic clocks, penalized regression methods have the
advantage of selecting CpG sites that add the most new information to the regression model
at the cost of reducing the number of collinear CpG sites. However, their major drawback in
the context of scDNAm data is that they may be biased towards stochastically changing CpG
sites (see Extended Fig. 1, Lasso and ElasticNet clocks). The reason for the bias is that
the CpG sites comprising co-regulated clusters are strongly collinear to each other. For the
purposes of mathematical regression, they do not add any additional information to the
model, whereas the stochastic sites are poorly correlated with each other, and the addition of
each new stochastic CpG site is beneficial for the mathematical algorithm. The biological
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meaning of co-regulation implies that there is a well-defined biological process that controls
each co-regulated cluster and does not allow the components of this cluster to accumulate
epigenetic damage. Therefore, the mathematical collinearity is coherent with the biological
meaning behind the cluster, which is ignored by penalized regression models.
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Fig. 5. Comparison of single-cell DNAm dynamics during functional aging and embryonic
development. a. Comparison of aging dynamics of CpGs (left) to their dynamics in mouse embryos
before and during gastrulation (right). Common CpG sites measured in both experiments were used
for plotting. Both hyper- and hypo-methylated with age CpGs (left) were initially hypomethylated at
embryonic day E4.5, and largely acquired global methylation by day E5.5 (right). Afterwards little
qualitative change of methylation was detected up to day E7.5. The qualitative character of changes
during functional aging comprises both co-regulated and stochastic clusters, whereas the
pre-gastrulation development is characterized by the program-like global hypermethylation. b.
Co-regulated and stochastic clusters identified for changes for days E4.5, E5.5, E6.5 and E7.5. The
dominant process is gaining methylation at all co-regulated CpG sites.

To test the co-regulation scenario in the context of developmental genetic programs, we
further analyzed embryonic scDNAm data®*. There, we had 758 single-cell samples for
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embryonic days E4.5, E5.5, E6.5 and E7.5. First, we chose the CpGs changing during
functional aging (Fig. 5a left) that were also measured in the embryos (370 out of 502
CpGs). These CpGs changed in a coherent co-regulated and program-like manner: at E4.5
the global methylation was low, whereas by E5.5 it was largely set to a methylated state, and
only slightly further increased during E6.5 and E7.5 (Fig. 5a right). Overall, the dynamics of
scDNAm changes during functional aging was different from that during gastrulation. Some
of CpGs losing methylation in old animals gained it during gastrulation. The global change of
DNAm during gastrulation follows a trend opposite to the aging changes of DNAm age. At
the same time, aging co-regulated clusters also changed during embryonic development,
which may signify the developmental activation of the same biological mechanisms
becoming prominent later in aging.

The global change of methylation during gastrulation represents a complication for our
algorithm — in the case of global changes of methylation, the inter-cell correlation turns out
to be less meaningful because of minor variation of methylation levels among cells and
organisms at each developmental stage. In a hypothetical example of the methylation
switching from 0 to 1 in all cells of all organisms, it is unclear how to identify individual
clusters responsible for the global change of methylation. Therefore, we look for
co-regulation in those regions that do not exactly follow the global wave of methylation. To
identify such co-regulated clusters in the DNAm changes pre- and during gastrulation, we
filtered CpGs by coverage: each CpG must be measured in at least 25 cells for samples
corresponding to each embryonic day. Out of 20,073,742 CpGs measured in at least one cell
only 44,711 had sufficient coverage and passed the filtering, whereas 6,000 CpGs changed
significantly with age. An application of our algorithm produced a co-regulated cluster of 304
CpGs, and 5,796 stochastic CpGs (Fig. 5b). For the embryonic dataset, it turned out that
there were only 5% co-regulated CpGs that we could identify in the background of the global
methylation event.

Overall, our analysis showed that the major component in the aging scDNAm signal is
stochastic. However, a quarter of aging CpG sites were identified as co-regulated with some
of the clusters spanning extensive genomic regions. In the following section, we present a
biological annotation of the identified clusters.

Biological annotation of co-regulated and stochastic clusters
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Fig. 6. Biological annotation of co-regulated and stochastic clusters. a. PhyloP (upper panel)
and phastCons (lower panel) evolutionary conservation score distributions for CpGs comprising
stochastic and co-regulated clusters compared to random regions of the genome. Co-regulated
clusters show significantly higher evolutionary conservation than the random regions, whereas
stochastic clusters are significantly less conserved than both the random regions and co-regulated
clusters. b. PhyloP (upper panel) and phastCons (lower panel) evolutionary conservation score
distributions for CpGs comprising hypermethylated and hypomethylated clusters compared to random
regions of the genome. Hypermethylated clusters show significantly lower evolutionary conservation
scores than both the random regions and hypomethylated regions. ¢. Enrichment with
transcription-factor (TF) binding sites and CpG islands for co-regulated clusters vs. stochastic clusters
and hypermethylated vs. hypomethylated regions (upper panel), and co-regulated and stochastic
clusters, hypermethylated and hypomethylated regions vs. random regions of the genome (lower
panel). d. Enrichment analysis of age-associated alternative splicing events (Alt Spl) for the CpGs
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comprising co-regulated, stochastic, hypermethylated and hypomethylated clusters (left), and for the
alternative splicing events within a 5 kb distance of the CpGs clusters in the genome (right).
Co-regulated clusters showed a lower percentage of alternative splicing events than stochastic
clusters, though the difference was not statistically significant (Fisher’s exact test). e. Enrichment of
co-regulated and stochastic clusters against EWAS hits. Each horizontal bar represents an enriched
term. The X-axis shows the -log10(P-value), signed by log2 (Odds ratio). Only the EWAS ftrait with
significant enrichment (P < 0.05) are included and annotated. Independent t-test p-values for legend
inarns:0.05 < p < 1,%0.01 <p< 005 10" <p< 00,10 <p< 10 ==

0.05 < p < 10

To obtain more CpGs belonging to co-regulated and stochastic clusters for subsequent
biological annotation, we modified our filters. First, we lowered the filter for CpGs based on
coverage: instead of requiring 15 young and 15 old cells, we required 5 cells in each case.
We identified 5,999,943 CpGs out of 35,584,147 CpGs measured in at least one cell,
including 51,895 CpGs that changed significantly with age. In this case, the co-regulated and
stochastic clusters comprised 8,431 and 43,464 CpGs, respectively. As expected from the
algorithm’s properties being biased towards a stricter criterion for co-regulated sites, the
fraction of stochastic sites increased from 76% to 84%. In addition to 51,895 CpGs changing
methylation with age, we selected 51,895 random CpGs from the genome for subsequent
enrichment analyses.

We calculated evolutionary conservation scores phyloP*4° and phastCons*'* for
co-regulated and stochastic clusters (Fig. 6a), as well as for genomic regions corresponding
to dynamics 2 and 3, hypermethylated with age, and dynamics 5 and 6, hypomethylated with
age (Fig. 6b). Co-regulated clusters showed a significantly higher evolutionary conservation
than stochastic clusters and random regions, in agreement with the hypothesis of a tighter
regulatory control and a higher biological importance of those regions (Fig. 6a). At the same
time, stochastic regions showed a significantly lower evolutionary conservation than random
genomic regions (Fig. 6a). The hypermethylated clusters also showed a significantly lower
evolutionary conservation than hypomethylated clusters and random genomic regions (Fig.
6b).

We also examined the enrichment of co-regulated clusters vs stochastic clusters and
hypermethylated vs hypomethylated clusters with transcription factor (TF) binding sites (Fig.
6¢c upper panel), and compared the trends with random genomic regions (Fig. 6¢c lower
panel). The co-regulated regions contained significantly fewer EZH2 binding sites than the
stochastic clusters, and fewer ZFX, EZH2, SIN3A, TAF1, POLR2A binding sites than the
random regions. The stochastic sites contained fewer PHF8, ASH2L, ZFX, EZH2, SIN3A,
TAF1, POLR2A binding sites than random regions. Overall, both co-regulated and stochastic
clusters showed fewer binding sites than random genomic regions.

We further analyzed age-associated splicing events in the muscle tissue from the
Genotype-Tissue Expression (GTEXx) database*. For each CpG site from the co-regulated,
stochastic clusters and random regions, we checked if it was located in the region from the
beginning of the first exon to the end site of the last exon in an alternative splicing event
(Fig. 6d left), or surrounding the splicing event within 5 kb (Fig. 6d right). The stochastic
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clusters were enriched with alternative splicing events in comparison with co-regulated
clusters, however, the difference was not statistically significant.

Finally, we analyzed the enrichment of CpG sites from the co-regulated and stochastic
clusters with hits from 6,993 epigenome-wide association studies (EWAS)*. The
co-regulated clusters were enriched with the phenotypes related to smoking and age (Fig.
6e). The stochastic clusters were enriched with the phenotypes related to aging, Alzheimer’s
and Crohn’s diseases.

Discussion

We analyzed the aging dynamics of bulk-tissue DNAm and single-cell DNAm, together with
scDNAm changes during gastrulation, with the primary goal of separating stochastic
accumulation of DNAm changes from co-regulated DNAmM changes driven by a common
biological mechanism.

By examining bulk DNAmM changes with age and bulk DNAm aging clocks, we observed that
epigenetic aging is omnipresent in the genome (for example, 13.6% of the measured CpGs
changed significantly with age), and is a relatively slow process. It is also very small in
amplitude (most sites change only by 10%), shares common temporal dynamics and shows
increased heterogeneity with age. By simulating a null-hypothesis that DNAm aging changes
occur randomly in single cells, we managed to reproduce the experimental aging clocks
dynamics with the derived stochastic decay model. All these observations are consistent
with the concept of epigenetic aging being a stochastic process characterized by increasing
entropy.

In order to test whether other aging dynamics are present in DNAm data, we turned to aging
scDNAm data and found that 76% of measured CpGs behaved in a stochastic manner
during aging, whereas 24% changed in a co-regulated way. In contrast, during gastrulation
scDNAm changes were dominated by a global methylation event, in the background of
which we managed to identify only 5% of co-regulated CpGs. Even though the available
scDNAm data are currently scant to provide more detailed insights into epigenetic aging, the
methods developed in the present paper would be applicable to future single-cell data
generated with advanced sequencing techniques. In particular, the algorithm we developed
for the identification of co-regulated CpG clusters may allow improving the accuracy and
interpretability of DNAm aging clocks.

We applied typical epigenetic clock-building routines (Lasso and ElasticNet penalized
regressions) in order to build epigenetic aging clocks, and showed that they may be biased
towards the stochastic CpG clusters. Without lowering accuracy of chronological age
predictions, they may ignore most of the co-regulated CpG sites due to their high collinearity.
In response to an intervention, the co-regulation of a cluster may be disrupted, which may be
missed by such clocks. It is likely that the stochastic CpG sites bear less information
regarding the biology involved because of their high tolerance to stochastic epigenetic
changes. In other words, the clocks built to measure stochastic accumulation of epigenetic
changes, might not perform well where one expects reversal of biological pathways and
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processes, for example, in the case of rejuvenation therapies. On the other hand, clocks built
on the co-regulated cluster of CpG sites may perform worse in the context of chronological
age prediction but may be able to better capture the effects of longevity interventions.

Both bulk and single-cell DNAm analyses suggest that the high accuracy of epigenetic aging
clocks may be predetermined by the stochastic decay of the epigenetic state set during early
development. We describe a mechanism for epigenetic clocks which is strikingly similar to
radiocarbon decay often used for dating in archeology: there is no need to have a
biologically relevant mechanism as soon as the mean concentration of radioactive carbon or
of the fraction of methylated DNA change monotonically with age. Radiocarbon dating works
surprisingly well even though it is based on a purely stochastic process of radioactive decay
according to the exponential decay law. In contrast to the radioactive decay of carbon-14, in
the case of epigenetic clocks, we deal with two separate stochastic processes of gaining
methylation in some genomic regions, and losing methylation in others, which are obviously
actively driven by metabolism. Thus, the analogy with radiocarbon decay is rather
mathematical and conceptual rather than biological. The two processes of loss and gain of
methylation are controlled by two different kinds of biological machinery, but the measured
mean methylation level changes are affected by both processes. Stochasticity implies that
over time those machineries unavoidably make mistakes, which accumulate gradually with
age and can be used as robust predictors of age.

It is important to note that our analyses are limited to the process of functional aging, and do
not consider the effects of rejuvenation therapies on the epigenome**-*. Stochasticity of
age-related epigenetic changes does not imply the impossibility of reversal, as is the case
for epigenetic reprogramming protocols resetting the DNAm patterns. At the same time,
stochasticity behind the process of accumulation of epigenetic changes with age does not
preclude programmatic behavior, a quasi-program of aging, defined by the developmental
biology predisposing species to follow a particular aging trajectory. Moreover, components of
the stochastic part of epigenetic clocks would be predetermined by development and
biological organization of the organism. The sites that were initialized in the hypo- or
hyper-methylated states by the end of early development would tend to stochastically gain or
lose methylation with age, hence they would make good candidates for epigenetic clock
CpG sites. Thus, the developmental program initializes the epigenome into a state that later
stochastically decays during aging. Therefore, the multispecies epigenetic clocks®' may work
well because closely related species, such as mammals, share the associated
developmental biology setting them into similar initial states of the epigenome. Overall, the
effects of early embryonic development on aging need to be further investigated®"°2,

The question of the biological meaning of existing epigenetic clocks deserves separate
discussion. The causal relationship between the molecular changes during aging and
functional decline resulting in mortality is also the subject of an ongoing debate. A highly
desirable feature of aging clocks is the ability to predict mortality events and lifespan;
however, the state-of-the-art epigenetic clocks continue ticking in immortalized cell
cultures™' and in naked-mole rats®®?', where mortality exhibits minimal changes with age.
These observations raise questions about the use of epigenetic clocks for the prediction of
mortality. At the same time, the absence of a mechanistic explanation behind epigenetic
clocks impedes their clinical use as aging biomarkers.
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Stochasticity behind the clock does not imply that there is no biological value in the clock.
The stochastic accumulation of damage may be influenced by lifestyle, diet, interventions
and other factors, hence it is possible both to reset the stochastic changes to some other
state (younger or older), and to change the rate of damage accumulation (in both directions,
up and down). Therefore, stochasticity of epigenetic clocks might be a good indicator of
cumulative deleteriousness of the environment in which an organism lives, or of cumulative
non-specific damage. However, it is less clear how stochastic epigenetic clocks would
capture the effects of target-specific therapies or some non-promiscuous aging changes. We
anticipate that there might be two different kinds of clocks necessary for the quantification of
aging: stochastic for estimation of cumulative damage, and co-regulated for estimation of
programmatic effects of longevity interventions. The current approaches for building
epigenetic clocks mix up these two qualitatively different components, and may have a
limited predictive power for testing interventions.

Acknowledgements

The authors thank Didac Santesmasses, Alexander Tyshkovskiy, Jeyoung Bang, Wayne
Mitchell, Anastasia Shindyapina for discussion. The work was supported by NIA grants to
VNG.

Methods

Single-cell stochastic model of DNAmM changes

For each CpG site, we assume the aging trajectory of methylation level is controlled by three
parameters: g — the initial methylation level, p,— the rate of demethylation in a unit of time,

P, — the rate of methylation in a unit of time. The model is assumed to be purely stochastic,

which means that the state of a CpG site in a short time interval At has probability to get
methylated pmAt and probability to get demethylated pdAt.

Assuming that there are n cells in a sample, we can denote by n, and n. the numbers of
cells that are demethylated or methylated for a given CpG site. The aging dynamics for n_
and n, would be describable by the following rate equations:

nm(t + At) = nm(t) 1 - pdAt) + nd(t)pmAt,

nd(t + At) = nd(t) 1 - pmAt) + nm(t)pdAt.

The conservation of the total number of sites is satisfied, which is shown by the summation

of the two equations above: nm(t + At) + nd(t + At) = nm(t) + nd(t) = n. To derive the

®
differential equation for the average methylation level x(t) = n'"T we use the fact that

nd(t) =n — nm(t),
nm(t+At)— nm(t)
S =—n (Op,+ (n —n (O,

and by dividing both sides of the equation by n, we obtain:
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dx(t) x(t+At)— x(t)

T o =p, —x®O®@,+tp,)
The exact solution of the above equation reads
pm pm
X(0) =2—-+ (@ ) exp(= (p, +p )0 (S1)

To understand the meaning of the three introduced parameters g, PP, let us further

analyze the above equation. The initial value of the average methylation level is defined by
x(0) = q, whereas with time the methylation level tends to the asymptotic value

lim x(t) = pp"‘ . The rate of exponential decay is equal to the sum of the rates of

t—o0 m+pd
methylation and demethylation P, tD,

It is worth noting that even though the process generating the dynamics is purely stochastic,
it doesn’t necessarily lead to the saturation of the methylation level at the level 0.5. To the
contrary, by varying the three parameters we may obtain an aging trajectory of a CpG site
starting at any point from 0 to 1, and tending to any other methylation level from 0 to 1,
whereas the rate of change would be controlled by the absolute values of the methylation
and demethylation rates for each particular site. The above analysis considers a single CpG
site and its aging trajectories. The values of the model parameters g, p ,p, may be

characteristic of a genomic position, and may bear some biological meaning.

Fitting experimental bulk DNAm aging trajectories to the
stochastic model prediction

In order to fit the experimental aging trajectories for CpG sites comprising the Petkovich et
al. clock, we use the three-parametric stochastic aging trajectory derived above in Eq. (S1),
and apply Python's fitting tool scipy.optimize.curve_fit>>.

Simulating random subset of aging trajectories predicted by the
stochastic model

To show how a subset of aging trajectories corresponding to randomly sampled parameters
q.p, P, We use Eq. (S1) and randomly draw the parameters from the uniform distributions

defined on the following intervals: q € [0, 1], PP, € [0,0.0015]. The number of sampled

sets is equal to the number of CpG sites in the Petkovich et al. clock.
The bundle of random ftrajectories is thus fully defined by a single parameter — the upper
bound for the rates PP, which is set here to 0.0015. The maximal rate of exponential

decay among all CpG sites (pm + pd)max hence represents the critical parameter of the

stochastic model. It might be related to the typical level of deleteriousness of the
environment for the organism. Therefore, (pm + pd)max might be a proxy to the identification

of the maximal lifespan for a species.

Genomic enrichment analysis for epigenetic profiles

For genomic annotation of epigenetic profiles we used R package annotatr®.
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Single-cell DNAm data analysis

Due to high sparsity of single-cell DNAm data, we had to extensively use filtering by
coverage. For illustrative purposes of identifying visually recognizable co-regulated clusters,
we set a threshold of coverage for each CpG for it to be measured in 15 young cells and 15
old cells. In each of the cells, we had to keep all CpGs covered by at least 1 NGS read due
to low coverage. For enrichment analysis, we lowered the filter to 5 young and 5 old cells.
For muSCs, one old mouse had to be censored because of an extremely low coverage. For
embryonic scDNAm, we set the threshold at 25 covered cells for each embryonic stage for
each CpG.

For correlation analysis we developed custom correlative algorithms that were able to ignore
omitted CpGs in some cells, and use only those that were measured. To avoid the
confounding factor of different coverage in young and old cells for identifying CpGs whose
methylation significantly correlated with age, we also produced a pseudo-bulk sample for
each of the mice by calculating the average methylation level for each of the CpGs. A CpG
was considered significantly correlated with age if it was associated with age in both single
cell data, and in the pseudo-bulked data.

For inter-cell correlative analysis, we imputed absent methylation values with zeros. The
threshold correlation value for a pair of CpGs to be considered co-regulated was chosen to
be 0.4, which must be satisfied in three groups of mice: only young mice, only old mice and
all mice. For embryonic data, there were four groups corresponding to each of the embryonic
days E4.5-7.5. That further allowed lowering the limit for false positive identification of
co-regulation in the case of low coverage.

Enrichment analysis in phenome-wide EWAS signals

We analyzed the enrichment of CpG sites from co-regulated and stochastic clusters in hits
from 6,993 epigenome-wide association studies in humans, obtained from the EWAS
catalog*’. Mouse CpG sites from the mm10 reference mouse genome were mapped to the
conserved human CpG sites in the hg19 human reference genome with the help of the
UCSC Genome Browser liftover tool®. Then, the nearest human CpG sites in the lllumina
EPIC array within 100 base-pairs were identified and used for the enrichment. For each
EWAS hit, Fisher’'s exact test was performed to determine the enrichment of either
co-regulated or stochastic clusters for a given trait.

Enrichment analysis in aging-associated splicing events

To detect age-associated splicing events, we downloaded the RNA-sequencing files of
muscle tissue from Genotype-Tissue Expression (GTEx) database*®, quantified all alternative
splicing events and modeled the association with age using linear regression. In total, 2260
aging-associated alternative splicing events were identified. For each CpG site, we checked
if the CpG site fell in at least one aging-associated splicing event (from the start site of the
first exon to the end site of the last exon in an alternative splicing event), or surrounding the
splicing event within 5kb. We counted this type of CpG site in each CpG cluster and
compared it with the random regions of the background genome.
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Transcription factor binding regions

We used the ENCODE transcription factor binding database® for identification of genomic
regions corresponding to TF bindings sites. The database is based on ChIP-seq combining
chromatin immunoprecipitation with DNA sequencing to infer the possible binding sites of
DNA-associated proteins. Prior to use mouse CpG sites from the mm10 reference mouse
genome were mapped to the conserved human CpG sites in the hg38 human reference
genome with the help of the UCSC Genome Browser liftover tool®®.
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Extended Data Fig. 1. Dynamics of CpG sites significantly associated with age in scDNAm data®.
The dominant cluster of CpG sites changes stochastically (green boxes), whereas the co-regulated
clusters represent 24% of all CpG sites changing with age (red boxes). The penalized regression
models are biased towards stochastic CpG sites, since they penalize any kind of correlation across
the CpG sites used in the model (Lasso and ElasticNet clocks). The color represents the value of
the regression weights. The co-regulated clusters contain fewer non-zero weights in the regression
models. Therefore, the penalized regression models further lower the fraction of co-regulated sites
used for building DNAm aging clocks.
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