

# Data driven model discovery and interpretation for CAR T-cell killing using sparse identification and latent variables

Alexander B. Brummer<sup>1,2,\*</sup>, Agata Xella<sup>3</sup>, Ryan Woodall<sup>1</sup>, Vikram Adhikarla<sup>1</sup>, Heyrim Cho<sup>4</sup>, Margarita Gutova<sup>5</sup>, Christine E. Brown<sup>3,\*</sup>, Russell C. Rockne<sup>1,\*</sup>

<sup>1</sup> Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA

<sup>2</sup> Department of Physics and Astronomy, College of Charleston, Charleston, SC 29401, USA

<sup>3</sup> Department of Hematology and Hematopoietic Cell Translation and Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA

<sup>4</sup> Department of Mathematics, University of California, Riverside, CA 92521, USA

<sup>5</sup> Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA

Correspondence\*:

Alexander B. Brummer

Department of Physics and Astronomy, College of Charleston, 58 Coming St, Charleston, SC, USA  
brummerab@cofc.edu

Christine E. Brown

Department of Hematology and Hematopoietic Cell Translation and Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA, cbrown@coh.org

Russell C. Rockne

Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA, rrockne@coh.org

## 2 ABSTRACT

3 In the development of cell-based cancer therapies, quantitative mathematical models of  
4 cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate  
5 and interpret mathematical models of cancer cell growth and death hinge first on proposing a  
6 precise mathematical model, then analyzing experimental data in the context of the chosen model.  
7 In this work, we present the first application of the sparse identification of non-linear dynamics  
8 (SINDy) algorithm to a real biological system in order to discover cell-cell interaction dynamics in  
9 *in vitro* experimental data, using chimeric antigen receptor (CAR) T-cells and patient-derived  
10 glioblastoma cells. By combining the techniques of latent variable analysis and SINDy, we infer  
11 key aspects of the interaction dynamics of CAR T-cell populations and cancer. Importantly, we  
12 show how the model terms can be interpreted biologically in relation to different CAR T-cell  
13 functional responses, single or double CAR T-cell-cancer cell binding models, and density-  
14 dependent growth dynamics in either of the CAR T-cell or cancer cell populations. We show

15 how this data-driven model-discovery based approach provides unique insight into CAR T-cell  
16 dynamics when compared to an established model-first approach. These results demonstrate the  
17 potential for SINDy to improve the implementation and efficacy of CAR T-cell therapy in the clinic  
18 through an improved understanding of CAR T-cell dynamics.

19 **Keywords:** dynamical systems; latent variables; CAR T-cells; antigen binding; allee effect; SINDy; glioblastoma; cell therapy

## 1 INTRODUCTION

20 Dynamical systems modeling is one of the most successfully implemented methodologies  
21 throughout mathematical oncology (1). Applications of these *model first* approaches have lead  
22 to important insights in fundamental cancer biology as well as the planning and tracking of  
23 treatment response for patient cohorts (2, 3, 4, 5, 6, 7, 8, 9). Simultaneously, the last twenty years  
24 have seen explosive growth in the study and application of data-driven methods. These *data*  
25 *first* approaches, initially implemented as machine learning methods for imaging and genomics  
26 analyses, have seen much success (10, 11). However, such approaches are often limited to  
27 classification problems and fall short when the intention is to identify and validate mathematical  
28 models of the underlying dynamics. Recent efforts by us and others have aimed to develop  
29 methodologies that bridge these *model first* and *data first* approaches. (12, 13, 14).

30 In this work, we combine the methods of latent variable discovery and sparse identification of  
31 nonlinear dynamics (SINDy) (15, 16, 17) to analyze experimental *in vitro* cell killing assay data  
32 for chimeric antigen receptor (CAR) T-cells and glioblastoma cancer cells (18). This experimental  
33 data, featuring high temporal resolution, offers a unique opportunity to conduct an *in situ* test of  
34 the SINDy model discovery method. Interpretation of the discovered SINDy model is conducted  
35 under the expectation of a predator-prey interaction model in which the cancer cells function as  
36 the prey and the CAR T-cells the predator (19).

37 Predator-prey systems are a broad class of ordinary differential equations (ODEs) that aim  
38 to characterize changes in populations between two or more groups of organisms in which at  
39 least one survives via predation on another. Originally applied to the study of plant herbivory  
40 (20) and fishery monitoring (21) in the early 20<sup>th</sup> century, predator-prey models have since  
41 become a workhorse of ecology, evolutionary biology, and most recently mathematical oncology  
42 (19, 22). For example, predator-prey models of CAR T-cell killing dynamics have shed light  
43 on the underlying biological mechanisms of action (18, 7), and have informed effective dosing  
44 strategies for combination CAR T-cell and targeted radionuclide therapy (23), and CAR T-cell  
45 therapy in combination with the anti-inflammatory steroid Dexamethasone (24). Over time,  
46 important extensions to predator-prey models have been incorporated to account for a variety  
47 of biological phenomena. In this work we focus on the following extensions: predator growth  
48 that is dependent on the density of prey, also known as a functional response (25, 26); individual  
49 predator and prey growth that saturates at some maximum value (logistic growth) (18), or has a  
50 population threshold below which collapse occurs (the Allee effect) (27, 28); and predator-prey  
51 interactions in which one or two CAR T-cells are bound to a single cancer cell at once, referred to  
52 as single or double binding, respectively (29, 30).

53 An ever-present challenge to quantitative biologists is fitting a proposed model to experimental  
54 data, also known as parameter estimation or model inference. On one hand, quantitative  
55 biologists seek models that capture as much biological realism and complexity as possible.

56 On the other hand, increasing model complexity increases the computational challenge to  
57 accurately, confidently, and expediently determine model parameter values. This approach  
58 is further complicated if a researcher chooses to compare competing or complementary models  
59 (31, 32). An alternative approach, examined in this paper, is to leverage newly developed  
60 methods rooted in data science and machine learning which identify the strength of individual  
61 mathematical terms as candidates for an explanatory model. These methods are often referred to  
62 as dynamic mode decomposition, symbolic regression, or sparse identification.

63 Dynamic mode decomposition (DMD) is a data driven technique that interrogates time-series  
64 data by performing a singular value decomposition (SVD) on carefully structured matrices of the  
65 given data (33, 13). In this formalism, the orthonormal basis vectors generated by singular value  
66 decomposition serve as linear generators of the system dynamics such that forward prediction can  
67 be performed absent a known underlying mathematical model. Alternatively, SINDy identifies  
68 the specific mathematical terms that give rise to the observed dynamics governed by ordinary  
69 and partial differential equation models (15). SINDy achieves this by regressing experimental  
70 data onto a high-dimensional library of candidate model terms, and it has proven successful in  
71 climate modeling (34), fluid mechanics (35), and control theory (36). Since the initial publication of  
72 SINDy, several extensions have been studied, including: discovery of rational ordinary differential  
73 equations (37, 38); robust implementation with under-sampled data (39) or excessive noise (40);  
74 or incorporation of physics informed neural networks when particular symmetries are known to  
75 exist (41).

76 In this paper we utilize our experimental data to test several aspects of the DMD and SINDy  
77 frameworks. In Section 2.2 we introduce the families of models that are anticipated to be  
78 simultaneously biologically relevant and identifiable by SINDy, and we introduce a new approach  
79 to performing SINDy-based model inference.

80 In Section 2.3.1 we present the latent variable analysis based on DMD that is used to generate  
81 the time-series CAR T-cell trajectories based on those of the cancer cells and the known boundary  
82 values for the CAR T-cells. In Section 2.3.2 we introduce the SINDy methodology in the particular  
83 context of our application. Results of our approach are presented in Section 3 where we (1)  
84 highlight how the discovered models vary as a result of different initial conditions in the  
85 cancer cell and CAR T-cell populations and (2) examine how well the discovered models found  
86 in this *data first* approach compare to a typical *model first* in characterizing the experimental  
87 data. In Section 4 we demonstrate how our results can guide experimental design to validate  
88 the predictions made by the discovered models, and we elaborate on some of the challenges  
89 encountered in this study.

## 2 MATERIALS AND METHODS

### 90 2.1 Experimental setup

91 The data analyzed in this study come from previously conducted experiments whose procedures  
92 are described in Sahoo et al. (18) and Brummer et al. (24), and summarized in Figure 1. The  
93 primary brain tumor cell line studied (PBT128) was selected for its endogenous high and relatively  
94 uniform expression of IL13R $\alpha$ 2 antigen (89.11% IL13R $\alpha$ 2+) (24). This cell line was derived from  
95 glioblastoma tumor resection tissue as described in (42, 43). To generate IL13R $\alpha$ 2-targeted CAR  
96 T-cell lines, healthy donor CD62L+ naive and memory T-cells were lentivirally transduced to

97 express second-generation 4-1BB-containing CAR that utilizes the IL13 cytokine with an E12Y  
98 engineered mutation as the IL13R $\alpha$ 2 targeting domain (44).

99 Cell killing experiments were conducted and monitored with an xCELLigence cell analyzer  
100 system. Measurements of cancer cell populations are reported every 15 minutes through changes  
101 in electrical impedance as cancer cells adhere to microelectrode plates, and are reported in units  
102 of Cell Index (CI), where  $1 \text{ CI} \approx 10K$  cells (45, 46, 47). Flow cytometry was used to count the  
103 non-adherent CAR T-cells upon termination of the experiment. Measurements of CAR T-cell  
104 populations are reported in units of CI for the purposes of working in a common scale. We  
105 used the conversion factor of  $1 \text{ CI} \approx 10K$  cells. Cancer cells were seeded at  $10K - 20K$  cells and  
106 left either untreated or treated with only CAR T-cells, with treatments occurring 24 hours after  
107 seeding and monitored for 6-8 days (Figure 1). CAR T-cell treatments were performed with  
108 effector-to-target ratios (E:T) of 1:4, 1:8, and 1:20. All conditions were conducted in duplicate.

109 **2.2 Effective interaction models**

110 Challenges to the *model first* approach to systems biology are (1) deciding on a sufficiently  
111 comprehensive model that captures all pertinent phenomena and (2) fitting the selected model to  
112 available data. Researchers are tasked with justifying their decisions in selecting candidate models.  
113 Yet, a common feature of dynamical systems models are the presence of ratios of polynomials.  
114 Such terms in ODEs can be difficult for the convergence of optimization algorithms to global  
115 solutions due to the possible existence of multiple local solutions within the model parameter  
116 space (48). In such instances researchers must either rely on high performance computational  
117 methods, have collected a vast amount of experimental data, or both. To address this problem,  
118 we utilize binomial expansions of candidate model terms under the assumptions of CAR T-cell  
119 treatment success and fast, irreversible reaction kinetics. In the following sections we present  
120 the space of possible models anticipated to characterize our experimental system, and the steps  
121 necessary to reduce the complexity of these candidate models.

122 The dynamical model that our experimental system is anticipated to follow is defined  
123 generically as,

$$\frac{dx}{dt} = \mathcal{G}_x(x) - x\mathcal{B}_x(y) \quad (1)$$

$$\frac{dy}{dt} = \mathcal{G}_y(y) + y\mathcal{R}(x) - x\mathcal{B}_y(y) \quad (2)$$

124 where  $\mathcal{G}_x$  and  $\mathcal{G}_y$  represent a growth-death model for the cancer cells,  $x$ , and the CAR T-cells,  $y$ .  
125  $\mathcal{B}_x$  and  $\mathcal{B}_y$  represent a binding model for whether single or pairs of CAR T-cells attack individual  
126 cancer cells, and  $\mathcal{R}$  represents a model for the CAR T-cell functional response. In the subsections  
127 below, we explore different families of models representing the terms in the above equations.  
128 Explicitly, we examine different types of (a) Growth and death models, (b) Functional response  
129 models, and (c) CAR T-cell-cancer cell binding models.

130 2.2.1 Growth and Death

131 We consider three different growth-death models for both the cancer cells and CAR T-cells.  
132 These are logistic growth, and the weak and strong Allee effect models, presented as,

$$\mathcal{G}_x(x) = \begin{cases} \rho_x x \left(1 - \frac{x}{K_x}\right) & \text{Logistic growth} \end{cases} \quad (3)$$

$$\mathcal{G}_x(x) = \begin{cases} \rho_x x \left(1 - \frac{x}{K_x}\right) \left(1 + \frac{x}{A_x}\right) & \text{Weak Allee effect} \end{cases} \quad (4)$$

$$\mathcal{G}_x(x) = \begin{cases} \rho_x x \left(1 - \frac{x}{K_x}\right) \left(\frac{x}{B_x} - 1\right) & \text{Strong Allee effect} \end{cases} \quad (5)$$

133 for  $\mathcal{G}_x(x)$ , and similarly for  $\mathcal{G}_y(y)$ . Here,  $\rho_x$  is the net growth rate,  $K_x$  is the population carrying  
134 capacity,  $A_x$  is a weak parameterization of deviations from logistic growth, and  $B_x$  is the threshold  
135 for population survival or death absent predation. All model parameters are assumed positive,  
136 with the added constraint that  $K_x > B_x > 0$ . We anticipate similar growth models for the CAR  
137 T-cells,  $\mathcal{G}_y(y)$ , with allowance of different models for the different cell types and model constants.  
138 Logistic growth is commonly favored for its simplicity in experimental systems (18, 23, 24), while  
139 there is growing evidence that Allee effects are required for accurate characterization of low  
140 density cancer cell populations (27, 28, 49, 50) or as the result of directed movement (51), the  
141 latter of which being an observable feature of CAR T-cell behavior using bright field imaging  
142 (18, 24).

143 In Figure 2, graphs of population growth rates versus population size and population size  
144 versus time are presented for each growth model and for a variety of initial conditions. Parameter  
145 values used were  $\rho = 0.75 \text{ hrs}^{-1}$ ,  $K = 10 \text{ CI}$ ,  $A = 5 \text{ CI}$ , and  $B = 5 \text{ CI}$ . Examination of the logistic  
146 growth model in Figure 2a, b and the weak Allee effect in Figure 2c, d demonstrates similar  
147 population saturation at the carrying capacity  $K = 10 \text{ CI}$ , but a slight deviation between how the  
148 models reach saturation. Specifically, the weak Allee effect exhibits a reduced per capita growth  
149 rate at low population densities compared to logistic growth. Examination of Figure 2e and  
150 d demonstrates the crucial difference between the strong Allee effect and either of the logistic  
151 growth or weak Allee effect through the existence of a minimum population threshold,  $B$ , above  
152 which the population will persist, and below which the population will die off.

153 Due to the fact that SINDy produces discovered models in their polynomial form without  
154 factoring, or grouping of terms together, we must consider the un-factored polynomial form  
155 of each model. To determine appropriate constraints on the model coefficients, we will expand  
156 the growth models and factor by common monomials. Doing so for  $\mathcal{G}_x(x)$  and dropping the  
157 subscript gives the following,

$$\mathcal{G}_x(x) = \begin{cases} \rho_x x - \frac{\rho_x}{K_x} x^2 & \text{Logistic growth} \end{cases} \quad (6)$$

$$\mathcal{G}_x(x) = \begin{cases} \rho_x x + \left( \frac{\rho_x}{A_x} - \frac{\rho_x}{K_x} \right) x^2 - \frac{\rho_x}{K_x A_x} x^3 & \text{Weak Allee effect} \end{cases} \quad (7)$$

$$\mathcal{G}_x(x) = \begin{cases} -\rho_x x + \left( \frac{\rho_x}{K_x} + \frac{\rho_x}{B_x} \right) x^2 - \frac{\rho_x}{K_x B_x} x^3 & \text{Strong Allee effect} \end{cases} \quad (8)$$

158 and similarly for  $\mathcal{G}_y(y)$ . Here we can see that the coefficients for  $x$  and  $x^2$  can be positive or  
159 negative, but the coefficients for  $x^3$  must be fixed as negative values, where we have absorbed  
160 the minus signs in Eqs. (7)-(8) into  $\rho_x / K_x A_x$ .

### 161 2.2.2 Functional response

162 We next consider the first three types of functional response models that characterize how the  
163 CAR T-cells respond, or expand, in the presence of cancer cells. These models are defined as,

$$\mathcal{R}(x) = \begin{cases} px & \text{Type I} \end{cases} \quad (9)$$

$$\mathcal{R}(x) = \begin{cases} \frac{px}{g+x} & \text{Type II} \end{cases} \quad (10)$$

$$\mathcal{R}(x) = \begin{cases} \frac{px^2}{g^2+x^2} & \text{Type III} \end{cases} \quad (11)$$

164 where  $p$  is the predator response, or CAR T-cell response rate, and  $g$  is the prey population  
165 density threshold at which predator behavior changes (e.g. fast-to-slow or slow-to-fast rates  
166 of killing). Functional responses model changes in predator hunting due to the prey density,  
167 generally defined with respect to some prey population threshold, here denoted as  $g$ . The  
168 population dependence on predator hunting behavior can also be interpreted as a handling time  
169 for distinguishing between time spent seeking prey, or recognizing cancer cells, and time spent  
170 consuming and attacking prey (25, 26, 19).

171 The three types of functional responses are graphed in Figure 3. In a Type I functional response,  
172 the predator response is constant for all prey population sizes. The interpretation of this response  
173 is that there are no differences in time or cost between all predator functions (searching and  
174 capture). In a Type II functional response the predator response is linear at low prey density  
175 (mirroring a Type I behavior) yet saturates at high prey density. Finally, in a Type III functional  
176 response the predator response is low at low prey densities, reflecting the potential for cancer  
177 cells to escape immune surveillance, yet again saturates at high prey densities, with a linear  
178 response at intermediate prey densities.

179 Importantly, the rational forms of Types II and III functional responses typically complicate  
180 determination of parameter values in conventional dynamical modeling. To reduce model  
181 complexity, we assume a significant level of effectiveness in CAR T-cell treatment such that the  
182 cancer cell population remains relatively low with respect to the functional response threshold,  
183 that is  $x < g$ , or  $x/g < 1$ . CAR T-cell effectiveness is demonstrated in Figure 1, where the control

184 cancer cell population is shown to achieve a maximum population of approximately 6.5 CI, while  
185 the treatment population of  $E : T = 1 : 4$  reaches a maximum population of approximately  
186 2CI. The approximation condition permits the use of a binomial expansion about  $x = 0$  on the  
187 denominators for the Types II and III functional responses, resulting in,

$$\mathcal{R}(x) = \begin{cases} px & \text{Type I} \end{cases} \quad (12)$$

$$\mathcal{R}(x) = \begin{cases} \frac{px}{g} \left( 1 - \frac{x}{g} + \frac{x^2}{g^2} + \sum_{j=3}^{\infty} (-1)^j \left( \frac{x}{g} \right)^j \right) & \text{Type II} \end{cases} \quad (13)$$

$$\mathcal{R}(x) = \begin{cases} \frac{px^2}{g^2} \left( 1 - \frac{x^2}{g^2} + \frac{x^4}{g^4} + \sum_{j=3}^{\infty} (-1)^j \left( \frac{x^2}{g^2} \right)^j \right) & \text{Type III} \end{cases} \quad (14)$$

188 Further assuming that contributions to the functional response models of  $\mathcal{O}(x^3/g^3)$  or greater are  
189 negligible, we terminate the expansions at  $\mathcal{O}(x^2/g^2)$  to arrive at the following effective functional  
190 response models,

$$\mathcal{R}(x) = \begin{cases} px & \text{Type I} \end{cases} \quad (15)$$

$$\mathcal{R}(x) = \begin{cases} \frac{px}{g} - \frac{px^2}{g^2} & \text{Type II} \end{cases} \quad (16)$$

$$\mathcal{R}(x) = \begin{cases} \frac{px^2}{g^2} & \text{Type III} \end{cases} \quad (17)$$

191 It is important to highlight that the leading order term for the expansion for a Type II functional  
192 response is indistinguishable from a Type I functional response. This feature is reflected by  
193 the overlap in the graphs of the Type I and Type II responses presented in Figure 3, where  
194 the cancer cell population is small,  $x \in [0, 1]$  CI, compared to the value of  $g = 5$  CI. As the  
195 cancer cell population increases, the density dependence of the CAR T-cells starts to take effect  
196 as demonstrated by the parabolic contribution of the Type II response. In contrast to this, the  
197 expansions for functional responses of Types II and III are significantly unique from one another.  
198 Specifically, only expansions for Type II can lead to odd-powered terms in  $x$ , and although both  
199 expansions can express similar even-powered terms, they come with different concavities. That  
200 is, at small cancer populations the Type II functional response is characterized as a concave  
201 down parabola, while the Type III functional response is characterized as a concave up parabola.  
202 This difference regarding the positivity of the terms that are of second-order dependence in  $x$   
203 corresponds to the different density dependent behaviors of the CAR T-cells at small cancer cell  
204 populations, specifically that Type II is a fast-to-slow response rate while Type III is a slow-to-fast  
205 response rate.

206 By performing the approximations used to derive Eqs.(16)-(17), and using truncated terms, we  
207 have reduced the complexity of the functional response terms. This step will simplify the process  
208 of model discovery. However, since this step assumes that the prey population remains small  
209 compared to the functional response threshold, the number of terms needed in Eqs.(13)-(14) for

210 accurate characterization of the system dynamics may vary as a result of experimental variation  
211 in the effector to target ratio of the CAR T-cells and the cancer cells. This variation in the effector  
212 to target ratio may also influence the structure of other interaction terms, specifically those  
213 pertaining to the single or paired binding dynamics.

214 2.2.3 CAR T-cell-cancer cell binding

215 Cell binding models characterize the rates of formation and disassociation of conjugate pairs of  
216 species, also referred to as interaction molecules (Figure 4). These models historically are known  
217 as Hill-Langmuir functions for their originating studies in hemoglobin formation (52) and gas  
218 adsorption on material surfaces (53), yet perhaps are better known for their use in modeling  
219 enzyme reaction kinetics, or Michaelis-Menten kinetics (54). The same modeling principles  
220 have been extended to examine cell binding in T-cell and cancer cell interactions (2, 29, 30). An  
221 important challenge to the field of cancer immunotherapy modeling is characterizing higher-order  
222 cell binding dynamics. That is, the formation of conjugates that consist of multiple CAR T-cells  
223 attacking single cancer cells (Figure 4). These cancer cell-CAR T-cell conjugates are hypothesized  
224 to form as either a consequence of increased effector to target ratios or as a result of increased  
225 antigen density on target cells. As our experiment uses one single cell line with a high and uniform  
226 antigen expression level of IL13R $\alpha$ 2, we assume on average all cancer cells have approximately  
227 the same antigen density. We thus focus our attention to experimental variation in the effector to  
228 target ratios.

229 Following the work of Li et al. (30), we incorporate *fast irreversible* single and double cell binding  
230 into our generic model landscape. Here, fast binding implies that conjugate formation and  
231 dissociation occur quickly enough to maintain equilibrium in the conjugate populations,  $I_1$  and  
232  $I_2$ , such that  $dI_1/dt = 0$  and  $dI_2/dt = 0$ . While irreversible means that all conjugate formation  
233 leads to death, or  $k_{-1}^{(1)} = 0$  and  $k_{-1}^{(2)} = 0$ . These assumptions are consistent with the conditions  
234 of relatively higher effector to target ratios, or high antigen densities on target cells. They also  
235 imply that a mixture of conjugates and dissociates may exist, but that the dynamics happen such  
236 that the conjugate populations are fixed and do not change with time. Furthermore, we only  
237 consider the higher-order binding scenario of two CAR T-cells to one cancer cell. Solving for the  
238 contributions to the cancer and CAR T-cell populations due to binding dynamics results in,

$$\mathcal{B}_x(y) = \begin{cases} \frac{ay}{h} & \text{Single Binding} \\ \frac{ay + by^2}{h + ky} & \text{Double Binding} \end{cases} \quad (18)$$

$$\mathcal{B}_y(y) = \begin{cases} \frac{cy}{h} & \text{Single Binding} \\ \frac{cy + dy^2}{h + ky} & \text{Double Binding} \end{cases} \quad (20)$$

$$\quad (21)$$

239 where the constants  $a, b, c$ , and  $d$  are defined in terms of the association rate constants,  $k_1^{(1)}$  and  
 240  $k_1^{(2)}$ , and the death rate constants  $k_2^{(1)}, k_3^{(1)}, k_2^{(2)}, k_3^{(2)}, k_4^{(2)}$ , and  $k_5^{(2)}$  from Figure 4 as follows,

$$a = k_1^{(1)} k_3^{(1)} \quad b = \frac{k_1^{(1)} k_1^{(2)} (k_4^{(2)} + k_5^{(2)})}{k_2^{(2)} + k_3^{(2)} + k_4^{(2)} + k_5^{(2)}} \quad (22)$$

single to double  
conjugate association

single conjugate association

single conjugate cancer cell death

double conjugate cancer cell death

all double conjugate deaths

$$c = k_1^{(1)} k_2^{(1)} \quad d = \frac{k_1^{(1)} k_1^{(2)} (k_2^{(2)} + 2k_3^{(2)} + k_5^{(2)})}{k_2^{(2)} + k_3^{(2)} + k_4^{(2)} + k_5^{(2)}} \quad (23)$$

single to double  
conjugate association

single conjugate association

single conjugate CAR T-cell death

double conjugate CAR T-cell death

all double conjugate deaths

241

242 Finally, the constant  $h$  is the sum of the single conjugate death rates,  $h = k_2^{(1)} + k_3^{(1)}$ , and the  
 243 constant  $k$  is simply a renaming of the double conjugate association rate,  $k_1^{(2)}$ . As the variable  
 244 renaming is admittedly complicated, the constants  $a, b, c$ , and  $d$  are defined to quickly identify  
 245 end states of conjugate formation and have been located next to their corresponding interaction  
 246 products in Figure 4.

247 The per-cancer cell binding models are graphed in Figure 5. Model parameter values used for  
 248 the single and double cell binding models in Eqs. (18)-(27)) are:  $a = 20 \text{ CI}^{-2} \cdot \text{hrs}^{-2}$ , and  $h = 16$   
 249  $\text{CI}^{-1} \cdot \text{hrs}^{-1}$  for single binding; and  $a = 20 \text{ CI}^{-2} \cdot \text{hrs}^{-2}$ ,  $b = 5 \text{ CI}^{-3} \cdot \text{hrs}^{-2}$ ,  $h = 16 \text{ CI}^{-1} \cdot \text{hrs}^{-1}$ , and  $k = 2$   
 250  $\text{CI}^{-2} \cdot \text{hrs}^{-1}$  for double binding. We highlight that we are restricting ourselves to scenarios where  
 251 increases in the CAR T-cell population during a given trial leads to increases in the likelihood of  
 252 double binding, which results in super-linear increase of per-cancer cell binding. This restriction  
 253 enforces concavity of the effective double cell binding model which we explore next. It is possible  
 254 for the double binding model to exhibit a sub-linear increase in per-cancer cell antigen binding  
 255 as the CAR T-cell population increases, and an overall decrease in cancer cell killing. However,  
 256 this scenario does not agree with our experimental data of increased killing with increased  
 257 effector-to-target ratios.

258 As with the functional response models, we are again faced with ODE model terms consisting of  
 259 ratios of polynomials. However, potential differences between the rates of conjugate association  
 260 and conjugate death can give rise to simplifications. If the product of the CAR T-cell population  
 261 and the rate of forming double conjugates,  $ky$ , is small compared to the sum of the rates of single  
 262 conjugate deaths,  $h$ , then  $ky/h < 1$ , and we can again perform a binomial expansion in the cell

263 binding denominators. A second way of interpreting this condition is to require the number of  
 264 CAR T-cells to remain small compared to the ratio of the rate of double conjugate formation to  
 265 the sum of the rates of single conjugate deaths,  $y < h/k$ . Performing the binomial expansion and  
 266 truncating again at  $\mathcal{O}(y^2)$  results in the following effective models of cell binding,

$$\mathcal{B}_x(y) = \begin{cases} \frac{ay}{h} & \text{Effective Single Binding} \\ \frac{ay}{h} + \frac{(bh - ak)y^2}{h^2} & \text{Effective Double Binding} \end{cases} \quad (24)$$

$$\mathcal{B}_y(y) = \begin{cases} \frac{cy}{h} & \text{Effective Single Binding} \\ \frac{cy}{h} + \frac{(dh - ck)y^2}{h^2} & \text{Effective Double Binding} \end{cases} \quad (26)$$

$$\mathcal{B}_y(y) = \begin{cases} \frac{cy}{h} & \text{Effective Single Binding} \\ \frac{cy}{h} + \frac{(dh - ck)y^2}{h^2} & \text{Effective Double Binding} \end{cases} \quad (27)$$

267 Here the effective double conjugate antigen binding model takes the form of the exact single  
 268 conjugate binding model plus a correction due to double conjugate formation. Eqs. (25) and  
 269 (27) are graphed in Figure 5, using the parameter values of  $a = 20 \text{ CI}^2 \cdot \text{hrs}^{-2}$ ,  $b = 2.75 \text{ CI}^3 \cdot \text{hrs}^{-2}$ ,  
 270  $h = 16 \text{ CI}^1 \cdot \text{hrs}^{-1}$ , and  $k = 2 \text{ CI}^2 \cdot \text{hrs}^{-1}$ . These values are chosen to demonstrate that the effective  
 271 double binding model can accurately approximate both the exact single and double binding  
 272 models for small CAR T-cell populations,  $y < 1 \text{ CI}$ . Importantly, we note that if the parameter  
 273 values  $b$  or  $d$  are sufficiently small, corresponding to low double conjugate CAR T-cell or  
 274 cancer cell death rates, then the quadratic terms in Eqs. (25) and (27) will be negative, and  
 275 the concavity of the effective double binding model deviate significantly from the exact model.  
 276 This phenomenological consideration of the effective models sets an important constraint on the  
 277 positivity of the coefficients for the quadratic terms in Eqs. (25) and (27), which we will revisit in  
 278 Section 2.3.

## 279 2.2.4 Landscape of effective models

280 To gain a broader perspective of the overall form of our ODE models, we substitute the effective  
 281 models for functional responses and antigen binding into Eqs. (1)-(2), arriving at,

$$\frac{dx}{dt} = \mathcal{G}_x(x) - \tilde{a}xy - \tilde{b}xy^2 \quad (28)$$

$$\frac{dy}{dt} = \mathcal{G}_y(y) \pm \alpha xy \pm \beta x^2 y - \tilde{c}xy^2 \quad (29)$$

282 where  $\mathcal{G}$  again represents any of the potential growth-death models under consideration,  $\tilde{a} = a/h$   
 283 and  $\tilde{b} = (bh - ak)/h^2$  are redefined constants (both assumed to be positive) for the coefficients  
 284 of the effective single and double binding models for the cancer cells,  $\alpha xy = (p/g - c/h)xy$   
 285 and represents the combination of first order terms for CAR T-cell response and single binding,  
 286  $\beta x^2 y = (p/g^2)xy$  and represents the potential second order term from the CAR T-cell response,  
 287 and  $\tilde{c}xy^2 = ((dh - ck)/h^2)xy^2$  represents the effective double binding model for the CAR T-cells.

288 We have explicitly used  $\pm$  notation to indicate that we do not know *a priori* the signs for the  $xy$   
289 and  $x^2y$  terms in Eq. (29), as these are determined by the relative contributions of Type I and first  
290 order Type II-like CAR T-cell responses and single antigen binding for the  $xy$  term, and whether  
291 or not second order Type II or first order Type III CAR T-cell response is occurring for the  $x^2y$   
292 term. The benefit of the approach demonstrates the presence and/or sign conventions of the  
293 various model coefficients that we determine using the SINDy model discovery algorithm can be  
294 directly interpreted in terms of different underlying biological phenomena.

295 **2.3 Model discovery**

296 Our implementation of the model discovery techniques of dynamic mode decomposition and  
297 sparse identification of non-linear dynamics (SINDy) is performed in two stages. First is latent  
298 variable analysis, the extraction of the latent variable representing the CAR T-cell population from  
299 the time-varying cancer cell population. The second step is implementation of SINDy, whereupon  
300 the functional terms of the underlying models describing the dynamical system are determined.

301 **2.3.1 Latent Variable Analysis**

302 Despite having only measured the initial and final CAR T-cell populations, we can utilize latent  
303 variable analysis to infer the hidden CAR T-cell dynamics from the cancer cell dynamics. We do  
304 this using the delay coordinate embedding of Taken's theorem to reconstruct the attractor of the  
305 system that is known to exist in more dimensions than those measured (13, 15, 55). The first step  
306 in this approach is to assemble a Hankel matrix,  $\mathbf{H}$ , by stacking delayed time-series of the cancer  
307 cell measurements  $x(t)$  as follows,

$$\mathbf{H} = \begin{bmatrix} x(t_1) & x(t_2) & x(t_3) & \cdots & x(t_{N-(m-1)\tau}) \\ x(t_{1+\tau}) & x(t_{2+\tau}) & x(t_{3+\tau}) & \cdots & x(t_{N-(m-2)\tau}) \\ x(t_{1+2\tau}) & x(t_{2+3\tau}) & x(t_{3+4\tau}) & \cdots & x(t_{N-(m-3)\tau}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x(t_{1+(m-1)\tau}) & x(t_{2+(m-2)\tau}) & x(t_{3+(m-3)\tau}) & \cdots & x(t_N) \end{bmatrix} \quad (30)$$

308 where  $\tau$ , known as the embedding delay, represents the size of the time-delay we use, and  $m$ ,  
309 known as the embedding dimension, represents both the number of rows that we assemble in  
310 the Hankel matrix and, importantly, the number of anticipated latent variables we expect to find.

311 To minimize the effects of experimental noise on the results of Taken's Theorem, we splined  
312 our cancer cell trajectories and re-sampled at the same experimental sampling rate of one  
313 measurement per 15 minutes. The function `smooth.spline` from the programming language **R**  
314 was used to perform the splining. This function uses cubic splines to approximate trajectories,  
315 with a penalty term to control for trajectory curvature. The number of knots used to spline  
316 each trajectory were determined by inspection, and are recorded in the analysis code available  
317 at [https://github.com/alexbbrummer/CART\\_SINDy](https://github.com/alexbbrummer/CART_SINDy). Further details on the splining  
318 methods used are available in (56).

319 To determine optimal values for  $\tau$  and  $m$ , we can use two separate formulae to inform the  
320 decisions (55). The optimal time delay is determined by the value of  $\tau$  which minimizes the  
321 mutual information between measurements. This is done by dividing the interval  $[x_{min}, x_{max}]$   
322 into  $j$  equally sized partitions, and calculating the probability  $P_k$  that a measurement of the time

323 series is in the  $k^{\text{th}}$  partition, and the probability  $P_{h,k}$  that a measurement  $x_i$  is in the  $h^{\text{th}}$  partition  
324 while the neighboring measurement  $x_{i+\tau}$  is in the  $k^{\text{th}}$  partition. Mutual information is given by

$$I(\tau) = \sum_{h=1}^j \sum_{k=1}^j -P_{h,k}(\tau) \log \frac{P_{h,k}(\tau)}{P_h P_k}. \quad (31)$$

325 The optimal time-delay to use for a given time series is selected by finding the value of  $\tau$  which  
326 results in the first minimum value in mutual information, or  $\arg \min_{\tau} \{I(\tau)\}$ . A graph of mutual  
327 information versus time delay is presented in Figure 6a. For our cancer cell time series data, this  
328 optimal time delay value was found to be  $\tau = 1$ .

329 To determine the embedding dimension,  $m$ , we calculate the number of false nearest neighbors  
330 to a given measurement as the time series is embedded in successively greater dimensional  
331 spaces. This calculation is done to ensure that the attractor constructed from the latent variables  
332 remains smooth upon embedding. We perform the calculation iteratively by starting with a point  
333  $p(i)$  in an  $m$ -dimensional embedding, and identifying a neighboring point  $p(j)$  such that the  
334 distance between  $p(i)$  and  $p(j)$  is less than a constant value typically chosen as the standard  
335 deviation of the data. Next, the normalized distance between the points  $p(i)$  and  $p(j)$  in the  
336  $m + 1$ -dimensional embedding is calculated using the following expression,

$$R_i = \frac{|x(t_{i+m\tau}) - x(t_{j+m\tau})|}{\|p(i) - p(j)\|} \quad (32)$$

337  $R_i$  is calculated across the entire time series and iteratively for greater embeddings,  $m = 1, 2, 3, \dots$   
338 False nearest neighbors are identified when  $R_i > R_{\text{threshold}}$ , where  $R_{\text{threshold}} = 10$  has been  
339 identified as satisfactory for most datasets (55). The ideal embedding dimension  $m$  is finally  
340 determined as that which results in a negligible fraction of false nearest neighbors. In Figure 6b  
341 we present the calculated fraction of false nearest neighbors versus embedding the dimension.  
342 For our dataset, we identified  $m = 2$  as the ideal embedding dimension, indicating the existence  
343 of one latent variable that we interpret as representing the CAR T-cell population.

344 Using values of  $\tau = 1$  for the time delay and  $m = 2$  for the embedding dimension results in the  
345 following form of the Hankel matrix,

$$\mathbf{H} = \begin{bmatrix} x(t_1) & x(t_2) & x(t_3) & \cdots & x(t_{N-1}) \\ x(t_2) & x(t_3) & x(t_4) & \cdots & x(t_N) \end{bmatrix} \quad (33)$$

346 To extract the latent variable that represents the CAR T-cell time series, we perform a singular  
347 value decomposition of the Hankel matrix,  $\mathbf{H} = \mathbf{U}\Sigma\mathbf{V}^*$  (15, 13). Here, the columns of  $\mathbf{V}$  represent  
348 scaled and standardized versions of both the original data in the first column, and approximations  
349 of the latent data in the subsequent columns. As our experimental procedure measured the initial  
350 and final CAR T-cell populations, our final step was to re-scale and offset the latent CAR T-cell  
351 variable extracted from the second column of  $\mathbf{V}$ . In Figure 7 we present the measured cancer cells  
352 and CAR T-cells in addition to the discovered latent CAR T-cell time series for each effector to  
353 target ratio and duplicate trial.

354 2.3.2 Sparse identification of non-linear dynamics

355 SINDy is a data-driven methodology that discovers dynamical systems models through  
 356 symbolic regression (15, 13). From a conceptual perspective, SINDy allows for the transformation  
 357 of an analytical, first-order, non-linear dynamical systems model, expressed as

$$\frac{d}{dt} \mathbf{x}(t) = \mathbf{f}(\mathbf{x}(t)) \quad (34)$$

358 to a linearized matrix-model, expressed as

$$\dot{\mathbf{X}} = \Theta(\mathbf{X}) \Xi \quad (35)$$

359 where  $\dot{\mathbf{X}}$  are numerical time-derivatives of our measured data,  $\Theta(\mathbf{X})$  is a library of candidate  
 360 functions that may describe the data and is evaluated on the measured data, and  $\Xi$  consists of the  
 361 coefficients for the model terms from  $\Theta(\mathbf{X})$  that describe the time-varying data  $\dot{\mathbf{X}}$ . The objective  
 362 of SINDy is to identify the sparsest version of  $\Xi$ , where sparsity is defined as the compromise  
 363 between fewest number of non-zero terms with the greatest level of accuracy. In the context of  
 364 our measurements for populations of cancer cells,  $x(t)$ , and CAR T-cells,  $y(t)$ , and the anticipated  
 365 models for cell growth and interactions,  $\dot{\mathbf{X}}$  takes the following form,

$$\dot{\mathbf{X}} = \begin{bmatrix} \dot{\mathbf{x}}^T(t_1) \\ \dot{\mathbf{x}}^T(t_2) \\ \vdots \\ \dot{\mathbf{x}}^T(t_N) \end{bmatrix} = \begin{bmatrix} \dot{x}(t_1) & \dot{y}(t_1) \\ \dot{x}(t_2) & \dot{y}(t_2) \\ \vdots & \vdots \\ \dot{x}(t_N) & \dot{y}(t_N) \end{bmatrix} \quad (36)$$

366 and  $\Theta(\mathbf{X})$  is expressed as,

$$\Theta(\mathbf{X}) = \begin{bmatrix} | & | & | \\ \mathbf{X} & \mathbf{X}^2 & \mathbf{X}^3 \\ | & | & | \end{bmatrix} \quad (37)$$

$$\Theta(\mathbf{X}) = \begin{bmatrix} x(t_1) & y(t_1) & x(t_1)^2 & x(t_1)y(t_1) & y(t_1)^2 & x(t_1)^3 & x(t_1)^2y(t_1) & x(t_1)y(t_1)^2 & y(t_1)^3 \\ x(t_2) & y(t_2) & x(t_2)^2 & x(t_2)y(t_2) & y(t_2)^2 & x(t_2)^3 & x(t_2)^2y(t_2) & x(t_2)y(t_2)^2 & y(t_2)^3 \\ \vdots & \vdots \\ x(t_N) & y(t_N) & x(t_N)^2 & x(t_N)y(t_N) & y(t_N)^2 & x(t_N)^3 & x(t_N)^2y(t_N) & x(t_N)y(t_N)^2 & y(t_N)^3 \end{bmatrix} \quad (38)$$

367 By solving the matrix-inverse problem in Eq. (35), we can find the column vectors  $\Xi$  that  
 368 determine the coefficients for the model terms  $\zeta$  that form the non-linear dynamical system  
 369 best describing the measured data, in a least-squares sense. However, a simple least-squares  
 370 implementation will result in a dense coefficient vector  $\Xi$ . We enforce sparsity of the coefficient  
 371 vector  $\Xi$  through the method of sparse relaxed regularized regression (SR3) (57), where we seek  
 372 optimization of the expression,

$$\min_{\Xi, W} \frac{1}{2} \|\dot{\mathbf{X}} - \Theta(\Xi)\|^2 + \lambda R(\mathbf{W}) + \frac{1}{2\nu} \|\Xi - \mathbf{W}\|^2 \quad (39)$$

373 where  $\mathbf{W}$  is the relaxed coefficient matrix that approximates  $\Xi$ ,  $R(\mathbf{W})$  is the regularization of  $\mathbf{W}$ ,  
374 and  $\nu$  and  $\lambda$  are hyper parameters that control how precisely  $\mathbf{W}$  approximates  $\Xi$  and the strength  
375 of the regularization, respectively. For our problem, we chose to regularize under the  $\ell_1$ -norm  
376 with  $\nu = 1 \times 10^{-5}$ . To determine the value of  $\lambda$ , we followed the approach taken in (37) in which  
377 we repeat the analysis for a range of  $\lambda$  values from  $\lambda \in [10^{-8}, 10^1]$  to calculate Pareto fronts  
378 between the root-mean-squared error between the measured and subsequently predicted values  
379 of  $\mathbf{X}$  and the number of active terms from our library. In Figure 8 we present Pareto fronts for  
380 each of the experimental conditions for the varying effector to target ratios.

381 As discussed in Section 2.2, there are a variety of constraints we can expect for possible  
382 coefficients based on expected signs, or the absence of particular terms. An extension to SINDy  
383 allows for the incorporation of these constraints to ensure spurious terms are not discovered (58).

384 To make clear the constraints that were imposed, we can re-write Eq. (35) symbolically and in  
385 terms of the coefficients  $\xi_{i,j}$  as,

$$\dot{x} = \xi_{1,1}x + \xi_{1,2}y + \xi_{1,3}x^2 + \xi_{1,4}xy + \xi_{1,5}y^2 + \xi_{1,6}x^3 + \xi_{1,7}x^2y + \xi_{1,8}xy^2 + \xi_{1,9}y^3 \quad (40)$$

$$\dot{y} = \xi_{2,1}x + \xi_{2,2}y + \xi_{2,3}x^2 + \xi_{2,4}xy + \xi_{2,5}y^2 + \xi_{2,6}x^3 + \xi_{2,7}x^2y + \xi_{2,8}xy^2 + \xi_{2,9}y^3 \quad (41)$$

386 Then, the constraints that are imposed as per the anticipated effective models from Section 2.2  
387 are,

$$\xi_{1,2} = 0 \quad \xi_{1,4} < 0 \quad \xi_{1,5} = 0 \quad \xi_{1,6} < 0 \quad (42)$$

$$\xi_{1,7} = 0 \quad \xi_{1,8} < 0 \quad \xi_{1,9} = 0 \quad \xi_{2,1} = 0 \quad (43)$$

$$\xi_{2,3} = 0 \quad \xi_{2,6} = 0 \quad \xi_{2,8} < 0 \quad \xi_{2,9} < 0 \quad (44)$$

388 while the other 6 coefficients in  $\xi_{i,j}$  are left to freely vary.

389 Implementation of SINDy SR3 with constraints was performed using PySindy, a package  
390 designed for a wide array of implementations of the SINDy algorithm for spatio-temporal model  
391 discovery written in the programming language Python (16, 17). Included in the Supplementary  
392 Material are the associated datasets and Jupyter notebooks used for this study.

393 Finally, we highlight that the implementation of SINDy which we are relying on is designed  
394 specifically for explicit ordinary differential equations. An extension of SINDy exists for  
395 discovering ODEs with ratios of polynomials (37, 38), however this variation requires a  
396 significantly greater volume of data than that which we could collect. This is the underlying  
397 motivation behind our efforts to derive the effective models, thereby converting them into explicit  
398 ODEs and making effective usage of the volume of experimental data available by the study  
399 methods most usable for model discovery.

### 3 RESULTS

#### 400 3.1 Discovered models and simulated comparison

401 Upon implementing SINDy on the CAR T-cell cancer cell killing data and performing the  
402 Pareto front analysis described in Section 2.3, we identified three distinct models describing  
403 the experimental data. Model selection is presented in Figure 8, where we present the tradeoffs  
404 between model complexity, represented by the number of activated library terms, and either  
405 threshold  $\lambda$  or the root-mean-squared-error between the measured data and simulated data for  
406 each identified model. Our examination of the Pareto fronts found models with eight terms for  
407 E:T of 1:4, and 1:8, and a six term model for an E:T of 1:20. Below we summarize each of these  
408 models and in relation to how well they predict the measured data in Figure 9. We synthesize  
409 the coefficients and associated model categories for growth in Table 1 and for the CAR T-cell  
410 functional response and cell binding in Table 2.

##### 411 3.1.1 High E:T discovered model

412 For the E:T = 1:4 data, the SINDy-discovered model takes the following form,

$$\frac{dx}{dt} = 0.121x + 0.061x^2 - 0.018x^3 - 0.593xy^2 \quad (45)$$

$$\frac{dy}{dt} = 0.191y - 0.351y^2 + 0.035xy - 0.009x^2y \quad (46)$$

413 Factoring the terms related to single-species growth, we arrive at,

$$\frac{dx}{dt} = \underbrace{0.121x \left(1 - \frac{x}{4.792}\right) \left(\frac{x}{1.421} + 1\right)}_{\substack{\text{Weak Allee} \\ \text{Logistic}}} - 0.593xy^2 \quad (47)$$

$$\frac{dy}{dt} = \underbrace{0.191y \left(1 - \frac{y}{0.544}\right)}_{\substack{\text{Type II Response}}} + 0.035xy - 0.009x^2y \quad (48)$$

414 415  
416 From Eqs. (47)-(48) we can interpret the discovered types of growth models and interactions.  
417 For cancer cell growth in Eq. (47), the observable structure indicates a weak Allee effect, with  
418 a growth rate of  $\rho = 0.121 \text{ hrs}^{-1}$ , a carrying capacity of  $K = 4.792 \text{ CI}$ , and an Allee constant of  
419  $A = 1.421 \text{ CI}$ . For the CAR T-cells we find a logistic growth model with growth rate  $\rho = 0.191$   
420  $\text{hrs}^{-1}$  and carrying capacity  $K = 0.544 \text{ CI}$ . From the coefficients of  $\alpha = 0.051 \text{ CI}^{-1} \text{ hrs}^{-1}$  on  $xy$  and  
421  $\beta = -0.009 \text{ CI}^{-2} \text{ hrs}^{-1}$  on  $x^2y$  for the CAR T-cells, we can infer a Type II functional response as the  
422 signs are positive and negative, respectively. Finally, the presence of an  $xy^2$  term in the cancer  
423 cells with a coefficient of  $\tilde{b} = 0.063 \text{ CI}^{-2} \text{ hrs}^{-1}$  indicates the occurrence of double binding, notably  
424 in the absence of both the  $xy$  term in the cancer cells and the  $xy^2$  term in the CAR T-cells.

##### 425 3.1.2 Medium E:T discovered model

426 The SINDy-discovered model for the E:T = 1:8 data takes the following form,

$$\frac{dx}{dt} = 0.237x + 0.04x^2 - 0.012x^3 - 0.626xy \quad (49)$$

$$\frac{dy}{dt} = 0.112y - 0.358y^2 + 0.051xy - 0.009x^2y \quad (50)$$

427 Factoring the terms related to single-species growth, we arrive at,

$$\frac{dx}{dt} = \underbrace{0.237x \left(1 - \frac{x}{6.413}\right) \left(\frac{x}{3.08} + 1\right)}_{\substack{\text{Weak Allee} \\ \downarrow}} - 0.626xy \quad (51)$$

$$\frac{dy}{dt} = \underbrace{0.112y \left(1 - \frac{y}{0.313}\right)}_{\substack{\text{Logistic} \\ \uparrow}} + 0.051xy - 0.009x^2y \quad (52)$$

428

429

430 The model discovered for medium E:T is largely similar to that at high E:T. A weak Allee  
 431 effect in growth is observed for the cancer cells, with growth rate  $\rho = 0.237 \text{ hrs}^{-1}$ , carrying  
 432 capacity  $K = 6.413 \text{ CI}$ , and Allee constant  $A = 3.08$ , while a logistic growth is observed for the  
 433 CAR T-cells with growth rate  $\rho = 0.112 \text{ hrs}^{-1}$  and carrying capacity  $K = 0.313 \text{ CI}$ . We also observe  
 434 a Type II CAR T-cell functional response, again indicated from the sign of the coefficients of  
 435  $\alpha = 0.051 \text{ CI}^{-1} \text{ hrs}^{-1}$  and  $\beta = -0.01 \text{ CI}^{-2} \text{ hrs}^{-1}$  on the  $xy$  and  $xy^2$  terms being positive and negative,  
 436 respectively. Unlike the high E:T scenario however, here we find evidence only of single binding  
 437 from the sole presence of an  $xy$  term in the cancer cells with a coefficient of  $\tilde{\alpha} = -0.626 \text{ CI}^{-1} \text{ hrs}^{-1}$ .

### 438 3.1.3 Low E:T discovered model

439 Finally, for the E:T = 1:20 data the discovered model is,

$$\frac{dx}{dt} = 0.150x - 0.012x^2 - 0.545xy \quad (53)$$

$$\frac{dy}{dt} = -0.002xy + 0.005x^2y - 0.063xy^2 \quad (54)$$

440 Factoring the terms related to single-species growth, we arrive at,

$$\frac{dx}{dt} = \underbrace{0.15x \left(1 - \frac{x}{12.5}\right)}_{\substack{\text{Logistic} \\ \downarrow}} - 0.545xy \quad (55)$$

$$\frac{dy}{dt} = \underbrace{-0.002xy + 0.005x^2y}_{\substack{\text{Type III Response} \\ \uparrow}} - 0.063xy^2 \quad (56)$$

441

442

443 In this scenario we find significantly different growth and interaction models. The cancer cells

444 show logistic growth, with growth rate  $\rho = 0.15 \text{ hrs}^{-1}$  and carrying capacity  $K = 12.5 \text{ CI}$ , while  
445 the CAR T-cells have no growth model. This time, as the signs for the coefficients of  $\alpha = -0.002$   
446  $\text{CI}^{-1} \text{ hrs}^{-1}$  and  $\beta = 0.005 \text{ CI}^{-2} \text{ hrs}^{-1}$  on the  $xy$  and  $x^2y$  terms for the CAR T-cells are now negative  
447 and positive, respectively, we infer a Type III functional response. Interestingly, we find a mixture  
448 of indicators for both single binding and double binding. This comes from the presence of only  
449 the  $xy$  term in the cancer cell model with a coefficient of  $\tilde{\alpha} = -0.545 \text{ CI}^{-1} \text{ hrs}^{-1}$ , and of an  $xy^2$  term  
450 in the CAR T-cell model with a coefficient of  $\tilde{c} = -0.063 \text{ CI}^{-2} \text{ hrs}^{-1}$ .

451 All three E:T ratios of 1:4, 1:8, and 1:20 resulted in discovered models that accurately  
452 characterized the data, with root-mean-squared-errors of 0.02, 0.195, and 0.359, respectively.  
453 We highlight the discovery of consistent growth models of a weak Allee effect for the cancer cells  
454 and logistic growth for the CAR T-cells for the E:T ratios of 1:4 and 1:8. Importantly, the growth  
455 rates and carrying capacity for these scenarios were found to be comparable across E:T ratios.  
456 Interestingly, we observe a Type II functional response in the CAR T-cells functional response  
457 for both E:T = 1:4 and 1:8, and a transition to Type III for E:T = 1:20. Similarly, our discovered  
458 models indicate a transition from double to single binding as the E:T ratio changed from 1:4 to  
459 1:8, and a model with mixed single and double binding terms was discovered for the E:T = 1:20.

### 460 3.2 Comparison with CARRGO model

461 We compared the *data first* model discovery methodology of SINDy against a traditional *model*  
462 *first* approach originally used to analyze and interpret the CAR T-cell killing dynamics (18, 24).  
463 The model previously studied is referred to as the CAR T-cell Response in GliOma (CARRGO)  
464 model, and is expressed as,

465

$$\frac{dx}{dt} = \rho_x x \left(1 - \frac{x}{K_x}\right) - \tilde{\alpha} xy \quad (57)$$

$$\frac{dy}{dt} = -\theta y + \alpha xy \quad (58)$$

466

467

468 where we have expressed the parameter variables of the CARRGO model in terms of those used  
469 in the SINDy model for ease of comparison. From here we can see that the CARRGO model  
470 assumes logistic growth in the cancer cells, single binding between the cancer cells and CAR  
471 T-cells, a Type I functional response in the CAR T-cells, and exponential CAR T-cell death.

472 In its original and subsequent implementations, the CARRGO model demonstrated valuable  
473 utility in quantifying CAR T-cell killing dynamics when treating glioblastoma cell lines either  
474 alone (18), or in combination with the steroid dexamethasone (24). Inference of the underlying  
475 biological dynamics were made by examining how parameter values changed along gradients  
476 of E:T ratios or initial dexamethasone concentrations. This is in direct contrast to the SINDy  
477 methodology, where the discovery of different model terms provides insight into the underlying  
478 biological dynamics as a result of variation along the E:T gradient. Comparison of these two

479 models on the same data set provides further insight into the trade offs of *data first* versus *model*  
480 *first* approaches.

481 In Figure 10 are graphs of the best-fit versions of both the CARRGO model and SINDy  
482 discovered models for each E:T ratio. These fits were performed using the Levenberg-Marquadt  
483 optimization (LMO) algorithm, which requires initial guesses and bounds for each model  
484 parameter value. For the CARRGO model published parameter values were used for the starting  
485 guesses, while for the SINDy discovered models the discovered parameter values served as  
486 the guesses. Upper and lower bounds on the LMO search space were set at 80% and 120% of  
487 the originally identified parameter values, respectively, and are listed in the Supplementary  
488 Table. In Table 3 we present the model-fitting statistics for the reduced chi-squared,  $\chi^2$ , Akaike  
489 information criteria (AIC), and Bayesian information criteria (BIC) methods, as well as the  
490 parameters determined by LMO. Importantly, we note that fits were performed on data points  
491 representing averages and ranges for the two experimental trials at each E:T ratio from only the  
492 measured data.

493 We find that across the three statistical tests considered, the CARRGO model performs slightly  
494 better than the SINDy discovered models at E:T = 1:4 and E:T = 1:20, whereas the SINDy  
495 discovered model for E:T = 1:8 performed better than the CARRGO model (Table 3). Interestingly,  
496 the CARRGO model predictions for the CAR T-cell trajectories fail to intercept the final CAR  
497 T-cell values, whereas the SINDy discovered models do. This result highlights a key difference  
498 between these two approaches, particularly that the SINDy approach required generating a  
499 time-series trajectory for the CAR T-cells that enforced interception with the final CAR T-cell  
500 measurement. Alternatively, traditional optimization methods like LMO weight each data point  
501 by the range of measurement uncertainty, allowing for the possibility of significant deviation  
502 from the final CAR T-cell measurements as long as such deviations can be compensated with  
503 better fitting elsewhere amongst the data.

504 Another essential difference between the CARRGO and SINDy predictions regarding the CAR  
505 T-cell trajectories is the CAR T-cell response at the high E:T ratio of E:T = 1:4. Specifically, the  
506 CARRGO model predicts that the CAR T-cells reach a maximum population exceeding the  
507 maximum population of cancer cells. This result has significant translational implications for  
508 CAR T-cell therapy related to patient immune response that we address in the discussion section.

509 Despite the noted differences, the overall similarities between the CARRGO and SINDy  
510 models is demonstrated by the order of magnitude agreement in most shared parameter values,  
511 specifically the cancer cell growth rate  $\rho_x$ , the cancer cell carrying capacity  $K_x$ , and the CAR T-cell  
512 functional response coefficient  $\alpha$  for the specific scenarios of E:T = 1:4 and E:T = 1:8 (Table 3).  
513 Taken together, these results demonstrate significant value in the SINDy methodology when  
514 compared to established procedures for parameter estimation.

### 515 3.3 Model Stability

516 An important question in performing model discovery for dynamical systems is in relation  
517 to the overall stability. Automating the task of examining stability for every discovered model  
518 is challenging given the combination of symbolic computation with floating point coefficients.  
519 However, by predicting forward in time for each of the models and experimental replicates we  
520 can qualitatively characterize the stability (see Figure 9).

521 For the E:T = 1:4 scenario, both the data and model indicate complete cancer cell death, with  
522 the model accurately maintaining a cancer cell population of zero. We note that in several of  
523 the alternate discovered models produced by SINDy, the cancer cell population would become  
524 negative in the forward predicted regime. This unrealistic result can be used as an aide in ruling  
525 out alternative models.

526 For the E:T = 1:8 and 1:20 scenarios, both the data and models indicate cancer cell-CAR T-cell  
527 coexistence, with the forward predictions reaching non-oscillatory steady states. Despite the  
528 discovered models being the ones with the best accuracy, they all struggle to match the observed  
529 oscillatory frequency, particularly in the E:T = 1:20 scenario. These results demonstrate the  
530 capability of SINDy to discover models with variability in solution stability, a core feature of  
531 nonlinear dynamical systems.

### 532 3.4 Parameter Identifiability

533 To better understand the rarity of the discovered models and their respective coefficients, we  
534 examined histograms for the coefficients of each of the model terms along the Pareto fronts for  
535 each E:T ratio, presented in Figure 11. This approach allows us to qualitatively assess parameter  
536 identifiability by seeing the extent to which variability in coefficient values exists, and at the  
537 expense of prediction accuracy. For most active terms encountered, the coefficients corresponding  
538 to the selected models based on the Pareto front analysis were the most commonly occurring  
539 values until deactivation (elimination from discovered models). However, in a few situations we  
540 see that the coefficient values corresponding to the greatest model accuracy were relatively rare,  
541 and varied significantly as increasingly more terms were removed. This occurs in the coefficients  
542 for the  $x$  and  $xy^2$  terms in the cancer cells for the E:T = 1:4 scenario in figure 11a, and the  $x$  and  $xy$   
543 terms in the cancer cells for both the E:T = 1:8 and 1:20 scenarios in figure 11b and c. These terms  
544 were shown to be the final remaining active terms in discovered model, suggesting that they are  
545 capable of capturing the greatest extent of variation in our cancer cell-CAR T-cell killing data. Of  
546 note once again is that amongst these dominant interaction terms we see a transition from those  
547 indicative of double binding at high E:T ratios to single binding at medium and low E:T ratios.

## 4 DISCUSSION

548 We examined *in vitro* experimental CAR T-cell killing assay data for a human-derived  
549 glioblastoma cell line (Figure 1). From our results we infer transitions in the phenomenological  
550 killing behavior of the CAR T-cells as a consequence of varying their initial concentration  
551 compared to the cancer cells. Our discovered models predict that at high effector to target  
552 ratios (E:T = 1:4) the CAR T-cell levels respond according to a Type II functional response in  
553 which they survive and/or expand faster at low density, and slower at high density, and they  
554 predominantly form double binding conjugates with cancer cells prior to cell killing. At medium  
555 E:T ratios of E:T = 1:8 our discovered model again predicts the CAR T-cells undergoing a Type  
556 II functional response, but now forming only singly bound conjugates prior to cell killing. At  
557 low E:T ratios of E:T = 1:20 our discovered model predicts the CAR T-cells shift to a Type III  
558 functional response, in which they survive and/or expand slower at low density, and faster at  
559 high density. In this final scenario we find a mixture of single and double conjugate formation  
560 occurring. Finally, our discovered models predict the growth strategies of the cancer cells as  
561 being a weak Allee effect at high and medium E:T ratios, and logistic at low E:T ratios, while

562 the cancer cells are predicted to follow logistic growth for high and medium E:T ratios. Model  
563 coefficients used to deduce these results are found in Tables 1 and 2, and model simulations and  
564 forward predictions are shown in Figure 9.

565 A crucial result of this work is the comparison between the *data first* approach of SINDy to  
566 the traditional *model first* approach of CARRGO. Despite the discovered SINDy models having  
567 more degrees of freedom (i.e. mathematical terms) than the CARRGO model, both models were  
568 found to perform comparably as indicated in Figure 10 and Table 3. Yet, there are key differences  
569 regarding the interpretation of these two approaches. Traditional *model first* approaches like the  
570 CARRGO model assume a strict individual model that may exhibit variation in its coefficients or  
571 model parameters to reflect variation in the underlying biology or experimental conditions. On  
572 the other hand, one of the strengths of the *data first* approach of SINDy is that these coefficient  
573 variations can be shifted onto discovery of altogether different model terms. As we show, these  
574 different terms can have direct interpretations related to the underlying biology and dynamics.  
575 For example in (18), variation in the CAR T-cell response due to changes in the experimental  
576 E:T ratio could only be indicated through variation in the coefficients of the Type I functional  
577 response term, or the value of  $\alpha$  in Eq. (58). Specifically, increases in  $\alpha$  were interpreted as a high  
578 CAR T-cell response rate, or CAR T-cell expansion, and decreases in  $\alpha$  were interpreted as a low  
579 response rate, or as CAR T-cell exhaustion. Whereas the SINDy model predicts entirely different  
580 CAR T-cell functional response terms, providing greater interpretation of these transitions in the  
581 CAR T dynamics and biology. Specifically, a Type II functional response at high and medium  
582 E:T, or a fast-to-slow CAR T-cell response rate, and a Type III functional response at low E:T, or a  
583 slow-to-fast CAR T-cell response that is again suggestive of exhaustion.

#### 584 4.1 Interpreting Discovered Coefficients

585 We demonstrate the value of the effective model parameters for inferring underlying biology by  
586 considering the high E:T model presented in Eqs. (47)-(48). In this scenario, a Type II functional  
587 response in the CAR T-cells is deduced from the negative sign on  $\beta$ , corresponding to the concave  
588 down parabolic nature of the CAR T-cell functional response with fast proliferation at low cancer  
589 cell density and slow proliferation at high cancer cell density (Figure 3). The implication that  
590 cancer cell killing is induced by double binding of CAR T-cells to cancer cells comes from multiple  
591 terms. The most direct indicator is  $\tilde{b} \neq 0$ , where  $\tilde{b} = (bh - ak)/k^2$  with  $bh/k$  representing the  
592 rate of cancer cell death from double conjugates, and  $a/k$  the rate of cancer cell death from single  
593 conjugates. Supporting indicators come from the positive sign on  $\alpha = p/g - c/h$ , suggesting that  
594 the CAR T-cell death rate from single conjugate formation,  $c/h$  is small compared to the leading  
595 order CAR T-cell response rate,  $p/g$ . Further evidence is in the inactivation of the  $xy$  term in  
596 the  $\dot{x}(t)$  equation with coefficient  $\tilde{a}$ . Here,  $\tilde{a} = a/h$  is the rate of cancer cell death from single  
597 conjugate formation, whose absence suggests that double binding formation is predominantly  
598 responsible for cancer cell death.

599 A similar analysis of model coefficients for the low and medium E:T ratio scenarios predicts a  
600 transition in the interactions between the CAR T-cells and cancer cells. Specifically, our approach  
601 predicts that the CAR T-cells form double conjugate pairs with high E:T ratios, then switch to  
602 single conjugate pairs at medium and low E:T ratios. Similarly, our results predict a transition in  
603 the functional response, indicating Type II functional responses in the CAR T-cells for high E:T  
604 ratios and Type III responses in the low E:T ratios. These transitions in detected model terms are

605 phenomenologically consistent with the interactions being dependent on CAR T-cell density, and  
606 highlight the hypothesis generating strength of *data first* model discovery techniques. Namely,  
607 the prediction of CAR T-cell killing dynamics being dependent on the relative abundance of CAR  
608 T-cells compared to cancer cells. We next present several opportunities for experimental testing  
609 of these model predictions.

610 **4.2 Challenges and Limitations**

611 A challenge to the implementation of SINDy is data sparsity. Despite having high temporal  
612 resolution of the cancer cell trajectories (1 measurement per 15 minutes), the CAR T-cell  
613 populations consisted of only the initial and final measurements. To resolve sparsity in the  
614 CAR T-cell levels, we used latent variable analysis to extract the CAR T-cell trajectory from an  
615 approximation to the attractor of the dynamical system as determined by the cancer cell trajectory.  
616 We note that in determining the dimensionality of the latent variable subspace, we selected an  
617 embedding dimension of  $m = 2$  despite the appearance of further benefit in using an embedding  
618 dimension of  $m = 3$ , as indicated in Figure 6b. This choice was made due to our experimental  
619 limitations in only having flow cytometry data for the CAR T-cells at the initial and final time  
620 points, and no further data with which to constrain any additional latent variables. The existence  
621 of a second latent variable, as suggested by the third embedding dimension, could be due to  
622 single or double binding conjugates if the reaction rates are sufficiently slow, or, alternatively,  
623 a biochemical secretion that is modulating the cancer cell and CAR T-cell interactions. Future  
624 experimental and modeling efforts may further illuminate the nature of this third state variable.

625 One potential limitation with latent variable analysis is that the trajectories retrieved through  
626 Taken's Theorem are not guaranteed to be unique, but rather will be diffeomorphic to the  
627 true latent variable. That is, subject to topological stretching or skewing, which translates to  
628 variation in discovered model coefficients. This effect can be seen in Bakarji et. al (59), where  
629 the coefficients of the latent variables discovered for the two-state, predator-prey model are not  
630 in precise agreement to those used in the original simulation. However, it is important to note  
631 that the model terms discovered by SINDy with this methodology are biologically insightful,  
632 even though the coefficients multiplying the discovered model terms on latent variables may  
633 be subject to variation. Importantly, we provide further experimental information for the latent  
634 CAR-T cell variable through bounding of the initial and final CAR-T cell trajectory with direct  
635 measurements. Likewise, we only discover terms which are structurally identifiable through  
636 model inversion, minimizing the potential for diffeomorphic skewing of CAR-T cell trajectories  
637 to be discovered from Taken's Theorem.

638 A second challenge is that our data in total consists of two trials for each effector-to-target ratio.  
639 While there exist SINDy implementations designed to discover models with ratios of polynomials,  
640 the approaches require prohibitively many experimental trials to ensure accuracy (37, 38). To  
641 resolve sparsity in the number of experimental trials, we derived effective interaction models  
642 of cancer cell and CAR T-cell dynamics from model ODE terms with ratios of the polynomials  
643 using binomial approximations. These effective interaction models allowed for the identification  
644 of multiple constraints on the library function space used in SINDy, and guided our inferential  
645 analysis of the discovered models.

646 **4.3 Future Directions**

647 To validate the hypothesized binding and functional response dynamics, we propose two  
648 potential experiments. Both experiments rely on similar initial conditions as those conducted  
649 for this study, but in one we propose the use of bright field microscopy to visually inspect CAR  
650 T-cell dynamics at different points in time and for the different E:T ratios. This approach ought  
651 to aide in identifying the relative abundance of binding types and functional responses. The  
652 second experiment would be to conduct endpoint analyses using flow cytometry to determine  
653 the population of CAR T-cells throughout the trajectory. This experiment would test the different  
654 CAR T-cell predictions from the CARRGO model and the SINDy models, most notably the  
655 predicted time to reach maximum CAR T-cell populations (Figure 10). Furthermore, targeted  
656 staining can provide information on the number of CAR T-cell generations and the ratio of helper  
657 T-cells (CD4+) to cytotoxic, killer T-cells (CD8+). These metrics may better inform the number of  
658 true effector cells responsible for killing cancer cells, allowing for more accurate characterization  
659 of CAR T-cell response.

660 Despite having high measurement sampling rates for the cancer cell population, the total  
661 experiment duration prevents the observation of highly periodic dynamics, a challenge to the  
662 standard implementation of SINDy in which observation windows generally span multiple  
663 periods of system dynamics. Thus we propose experimentally resolving the CAR T-cell trajectory  
664 to overcome this obstacle. This experiment additionally serves to test the validity of our latent  
665 variable analysis, which uses the cancer cell trajectory to predict the CAR T-cell trajectory as  
666 presented in Figure 7. Future experiments will also extend this analysis to include other CAR  
667 designs, including evaluating the impact of costimulatory signaling, CAR affinity and target  
668 density on modeling of CAR T-cell killing dynamics.

669 **4.4 Clinical Applications**

670 The clinical relevance of the *data first* framework is in the domain of precision medicine. The  
671 approach naturally caters to *in situ* monitoring of patient response to therapy and forecasting  
672 future trajectories. An open question in this field is determining the sufficient number of early  
673 measurements necessary for accurate forecasting, and quantifying the extent of reliable forward  
674 prediction. This type of application falls under the field of control theory, in which real-time  
675 measurements for systems such as navigation, fluid dynamics and disease monitoring can inform  
676 model-based interventions (15). Control theory has been identified as a key tool in achieving  
677 optimized individual treatment outcomes, yet challenges are ever-present in parsimonious model  
678 selection. The SINDy methodology may help streamline and simplify the model selection process,  
679 while simultaneously incorporating control theory methods for treatment optimization. As an  
680 example related to the experiments considered here, one could envision a therapeutic intervention  
681 to administer more CAR T-cells in the low E:T ratio of 1:20 as soon as the Type III functional  
682 response and single binding dynamics are predicted in a patient. This intervention would serve to  
683 push the dynamics of the patients immune response into the double bidding and Type II response  
684 regime, thereby improving therapeutic efficacy.

## 5 CONCLUSIONS

685 In this work we present the first, to our knowledge, application of the sparse identification of  
686 non-linear dynamics (SINDy) methodology to a real biological system. We used SINDy with  
687 highly time-resolved experimental data to discover biological mechanisms underlying CAR T-cell-  
688 cancer cell killing dynamics. Our implementation highlights the hypothesis generating potential  
689 of data-driven model discovery and illuminates challenges for future extensions and applications.  
690 To overcome challenges related to data limitation, we utilized latent variable analysis to construct  
691 the trajectory of the CAR T-cells, and we implemented binomial expansions to simplify specific  
692 model terms. Our results predict key mechanisms and transitions in the interaction dynamics  
693 between the CAR T-cells and cancer cells under different experimental conditions that may be  
694 encountered in the application of these therapies in human patients. Specifically, we identified  
695 transitions from double CAR T-cell binding to single CAR T-cell binding, and from fast-to-slow  
696 CAR T-cell responses (Type II) to slow-to-fast responses (Type III). Both transitions occur as a  
697 result of decreasing the relative abundances of CAR T-cells to cancer cells (initial E:T ratios).  
698 Importantly, these results demonstrate the potential for *data first* model discovery methods to  
699 provide deeper insight into the underlying dynamics and biology than *model first* approaches,  
700 and offer a new avenue for integrating predictive modeling into precision medicine and cancer  
701 therapy by an improved mechanistic understanding of cancer progression and efficacy of CAR  
702 T-cell therapy.

## CONFLICT OF INTEREST STATEMENT

703 The authors declare no conflict of interest. The funders had no role in the design of the study;  
704 in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the  
705 decision to publish the results.

## AUTHOR CONTRIBUTIONS

706 Conceptualization, AB and RR; methodology, AB, RW, VA, HC and RR; validation, AB, RR;  
707 formal analysis, AB; investigation, AB; resources, MG, CB, and RR; data curation, AB; writing—  
708 original draft preparation, AB; writing—review and editing, AB, AX, AW, VA, HC, MG, CB, RR;  
709 visualization, AB, AX, RW, VA, RR; supervision, CB and RR; project administration, AB and RR;  
710 funding acquisition, CB and RR All authors have read and agreed to the published version of the  
711 manuscript.

## FUNDING

712 Research reported in this work was supported by the National Cancer Institute of the National  
713 Institutes of Health under grant numbers R01CA254271 (CB), R01NS115971 (CB, RR), and  
714 P30CA033572, the Marcus Foundation, and the California Institute of Regenerative Medicine  
715 (CIRM) under CLIN2-10248 (CB).

## SUPPLEMENTAL MATERIALS

716 Supplementary Table 1 - Parameter seed values for Levenberg-Marquardt Optimization of  
717 CARRGO and SINDy growth-death model terms.

718 Supplementary Table 2 - Parameter seed values for Levenberg-Marquardt Optimization of  
719 CARRGO and SINDy interaction model terms.

## DATA AVAILABILITY STATEMENT

720 The data presented in this study and Python code used to analyze data and generate figures are  
721 openly available from the following online location [https://github.com/alexbbrummer/CART\\_SINDy](https://github.com/alexbbrummer/CART_SINDy).  
722

## REFERENCES

723 1 .Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, et al. The 2019  
724 mathematical oncology roadmap. *Physical biology* **16** (2019) 041005.

725 2 .Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS. Nonlinear dynamics of immunogenic  
726 tumors: parameter estimation and global bifurcation analysis. *Bulletin of mathematical biology*  
727 **56** (1994) 295–321.

728 3 .de Pillis LG, Radunskaya AE, Wiseman CL. A validated mathematical model of cell-mediated  
729 immune response to tumor growth. *Cancer research* **65** (2005) 7950–7958.

730 4 .Roy M, Finley SD. Computational model predicts the effects of targeting cellular metabolism  
731 in pancreatic cancer. *Frontiers in Physiology* **8** (2017) 217. doi:10.3389/fphys.2017.00217.

732 5 .Stein AM, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, Boyer MW, et al. Tisagenlecleucel  
733 model-based cellular kinetic analysis of chimeric antigen receptor-t cells. *CPT: Pharmacometrics  
734 & Systems Pharmacology* **8** (2019) 285–295.

735 6 .West J, You L, Zhang J, Gatenby RA, Brown JS, Newton PK, et al. Towards multidrug adaptive  
736 therapy. *Cancer Research* **80** (2020) 1578–1589. doi:10.1158/0008-5472.CAN-19-2669.

737 7 .Kimmel GJ, Locke FL, Altrock PM. The roles of t cell competition and stochastic extinction  
738 events in chimeric antigen receptor t cell therapy. *Proceedings of the Royal Society B* **288** (2021)  
739 20210229.

740 8 .Owens K, Bozic I. Modeling car t-cell therapy with patient preconditioning. *Bulletin of  
741 Mathematical Biology* **83** (2021) 1–36.

742 9 .Mascheroni P, Savvopoulos S, Alfonso JCL, Meyer-Hermann M, Hatzikirou H. Improving  
743 personalized tumor growth predictions using a bayesian combination of mechanistic modeling  
744 and machine learning. *Communications medicine* **1** (2021) 1–14.

745 10 .Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, et al. Radiomics:  
746 the bridge between medical imaging and personalized medicine. *Nature Reviews Clinical  
747 Oncology* **14** (2017) 749.

748 11 .Zhou M, Leung A, Echegaray S, Gentles A, Shrager JB, Jensen KC, et al. Non-small cell  
749 lung cancer radiogenomics map identifies relationships between molecular and imaging  
750 phenotypes with prognostic implications. *Radiology* **286** (2018) 307–315.

751 12 .Kamb M, Kaiser E, Brunton SL, Kutz JN. Time-delay observables for koopman: Theory and  
752 applications. *SIAM Journal on Applied Dynamical Systems* **19** (2020) 886–917.

753 13 .Brunton SL, Budišić M, Kaiser E, Kutz JN. Modern koopman theory for dynamical systems.  
754 *SIAM Review* **64** (2022) 229–340. doi:10.1137/21M1401243.

755 14 .Frankhouser DE, O'Meally D, Branciamore S, Uechi L, Zhang L, Chen YC, et al. Dynamic  
756 patterns of microrna expression during acute myeloid leukemia state-transition. *Science  
757 advances* **8** (2022) eabj1664.

758 15 .Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse  
759 identification of nonlinear dynamical systems. *Proceedings of the national academy of sciences*  
760 113 (2016) 3932–3937.

761 16 .de Silva BM, Champion K, Quade M, Loiseau JC, Kutz JN, Brunton SL. Pysindy: A python  
762 package for the sparse identification of nonlinear dynamical systems from data. *Journal of*  
763 *Open Source Software* 5 (2020) 2104. doi:10.21105/joss.02104.

764 17 .Kaptanoglu AA, de Silva BM, Fasel U, Kaheman K, Goldschmidt AJ, Callaham J, et al. Pysindy:  
765 A comprehensive python package for robust sparse system identification. *Journal of Open*  
766 *Source Software* 7 (2022) 3994. doi:10.21105/joss.03994.

767 18 .Sahoo P, Yang X, Abler D, Maestrini D, Adhikarla V, Frankhouser D, et al. Mathematical  
768 deconvolution of car t-cell proliferation and exhaustion from real-time killing assay data.  
769 *Journal of the Royal Society Interface* 17 (2020) 20190734.

770 19 .Hamilton PT, Anholt BR, Nelson BH. Tumour immunotherapy: lessons from predator–prey  
771 theory. *Nature Reviews Immunology* (2022) 1–11.

772 20 .Lotka AJ. *Elements of physical biology* (Williams & Wilkins) (1925).

773 21 .Volterra V. Variazioni e fluttazioni del numero d'individui in specie animali conviventi. *Mem.*  
774 *Acad. Lincei Roma* (1926) 31–113.

775 22 .Kareva I, Luddy KA, O'Farrelly C, Gatenby RA, Brown JS. Predator-prey in tumor-immune  
776 interactions: A wrong model or just an incomplete one? *Frontiers in Immunology* (2021) 3391.

777 23 .Adhikarla V, Awuah D, Brummer AB, Caserta E, Krishnan A, Pichiorri F, et al. A mathematical  
778 modeling approach for targeted radionuclide and chimeric antigen receptor t cell combination  
779 therapy. *Cancers* 13 (2021). doi:10.3390/cancers13205171.

780 24 .Brummer AB, Yang X, Ma E, Gutova M, Brown CE, Rockne RC. Dose-dependent thresholds  
781 of dexamethasone destabilize car t-cell treatment efficacy. *PLOS Computational Biology* 18  
782 (2022) e1009504.

783 25 .Holling CS. The components of predation as revealed by a study of small-mammal predation  
784 of the european pine sawfly1. *The Canadian Entomologist* 91 (1959) 293–320.

785 26 .Gatenby RA. Population ecology issues in tumor growth. *Cancer Research* 51 (1991) 2542–2547.

786 27 .Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A. An  
787 emerging allee effect is critical for tumor initiation and persistence. *PLOS Computational*  
788 *Biology* 11 (2015) 1–14. doi:10.1371/journal.pcbi.1004366.

789 28 .Johnson KE, Howard G, Mo W, Strasser MK, Lima EABF, Huang S, et al. Cancer cell population  
790 growth kinetics at low densities deviate from the exponential growth model and suggest an  
791 allee effect. *PLOS Biology* 17 (2019) 1–29. doi:10.1371/journal.pbio.3000399.

792 29 .Chaudhury A, Zhu X, Chu L, Goliae A, June CH, Kearns JD, et al. Chimeric antigen receptor  
793 t cell therapies: A review of cellular kinetic-pharmacodynamic modeling approaches. *The*  
794 *Journal of Clinical Pharmacology* 60 (2020) S147–S159.

795 30 .Li R, Sahoo P, Wang D, Brown CE, Rockne RC, Cho H. Modeling interaction of glioma cells  
796 and car t-cells considering multiple car t-cells bindings. *arXiv* (2022).

797 31 .Gábor A, Banga JR. Robust and efficient parameter estimation in dynamic models of biological  
798 systems. *BMC systems biology* 9 (2015) 1–25.

799 32 .Mitra ED, Hlavacek WS. Parameter estimation and uncertainty quantification for systems  
800 biology models. *Current Opinion in Systems Biology* 18 (2019) 9–18. doi:10.1016/j.coisb.2019.10.  
801 006.

802 33 .Schmid PJ. Dynamic mode decomposition of numerical and experimental data. *Journal of*  
803 *fluid mechanics* **656** (2010) 5–28.

804 34 .Yadav N, Ravela S, Ganguly AR. Machine learning for robust identification of complex  
805 nonlinear dynamical systems: Applications to earth systems modeling (2020). doi:10.48550/  
806 ARXIV.2008.05590.

807 35 .Alves EP, Fiuza F. Data-driven discovery of reduced plasma physics models from fully kinetic  
808 simulations. *Phys. Rev. Research* **4** (2022) 033192. doi:10.1103/PhysRevResearch.4.033192.

809 36 .Ren Y, Adams C, Melz T. Uncertainty analysis and experimental validation of identifying  
810 the governing equation of an oscillator using sparse regression. *Applied Sciences* **12** (2022).  
811 doi:10.3390/app12020747.

812 37 .Mangan NM, Brunton SL, Proctor JL, Kutz JN. Inferring biological networks by sparse  
813 identification of nonlinear dynamics. *IEEE Transactions on Molecular, Biological and Multi-Scale*  
814 *Communications* **2** (2016) 52–63.

815 38 .Kaheman K, Kutz JN, Brunton SL. Sindy-pi: a robust algorithm for parallel implicit sparse  
816 identification of nonlinear dynamics. *Proceedings of the Royal Society A* **476** (2020) 20200279.

817 39 .Kaiser E, Kutz JN, Brunton SL. Sparse identification of nonlinear dynamics for model  
818 predictive control in the low-data limit. *Proceedings of the Royal Society A* **474** (2018) 20180335.

819 40 .Messenger DA, Bortz DM. Weak sindy: Galerkin-based data-driven model selection. *Multiscale*  
820 *Modeling & Simulation* **19** (2021) 1474–1497. doi:10.1137/20M1343166.

821 41 .Chen Z, Liu Y, Sun H. Physics-informed learning of governing equations from scarce data.  
822 *Nature communications* **12** (2021) 1–13.

823 42 .Brown CE, Starr R, Aguilar B, Shami AF, Martinez C, D'Apuzzo M, et al. Stem-like tumor-  
824 initiating cells isolated from il13r $\alpha$ 2 expressing gliomas are targeted and killed by il13-zetakine-  
825 redirected t cells. *Clinical Cancer Research* **18** (2012) 2199–2209.

826 43 .Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of  
827 glioblastoma after chimeric antigen receptor t-cell therapy. *New England Journal of Medicine*  
828 **375** (2016) 2561–2569.

829 44 .Brown CE, Aguilar B, Starr R, Yang X, Chang WC, Weng L, et al. Optimization of  
830 il13r $\alpha$ 2-targeted chimeric antigen receptor t cells for improved anti-tumor efficacy against  
831 glioblastoma. *Molecular Therapy* **26** (2018) 31–44.

832 45 .Moniri MR, Young A, Reinheimer K, Rayat J, Dai LJ, Warnock GL. Dynamic assessment of cell  
833 viability, proliferation and migration using real time cell analyzer system (rtca). *Cytotechnology*  
834 **67** (2015) 379–386.

835 46 .Xing JZ, Zhu L, Gabos S, Xie L. Microelectronic cell sensor assay for detection of cytotoxicity  
836 and prediction of acute toxicity. *Toxicology in vitro* **20** (2006) 995–1004.

837 47 .Chiu CH, Lei KF, Yeh WL, Chen P, Chan YS, Hsu KY, et al. Comparison between xcelligence  
838 biosensor technology and conventional cell culture system for real-time monitoring human  
839 tenocytes proliferation and drugs cytotoxicity screening. *Journal of orthopaedic surgery and*  
840 *research* **12** (2017) 1–13.

841 48 .Hanke M. *Conjugate gradient type methods for ill-posed problems* (Longman Scientific and  
842 Technical) (1995).

843 49 .Fadai NT, Simpson MJ. Population dynamics with threshold effects give rise to a diverse  
844 family of allee effects. *Bulletin of mathematical biology* **82** (2020) 1–22.

845 50 .Fadai NT, Johnston ST, Simpson MJ. Unpacking the allee effect: determining individual-level  
846 mechanisms that drive global population dynamics. *Proceedings of the Royal Society A* **476**  
847 (2020) 20200350.

848 51 .Cosner C, Rodriguez N. The effect of directed movement on the strong allee effect. *SIAM  
849 Journal on Applied Mathematics* **81** (2021) 407–433. doi:10.1137/20M1330178.

850 52 .Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its  
851 dissociation curves. *Proceedings of the Physiological Society* **40** (1910) i–vii. doi:<https://doi.org/10.1113/jphysiol.1910.sp001386>.

853 53 .Langmuir I. The adsorption of gases on plane surfaces on glass, mica and platinum. *Journal of  
854 the American Chemical Society* **40** (1918) 1361–1403. doi:10.1021/ja02242a004.

855 54 .Michaelis L, Menten ML, et al. Die kinetik der invertinwirkung. *Biochemische Zeitschrift* **49**  
856 (1913) 352.

857 55 .Kodba S, Perc M, Marhl M. Detecting chaos from a time series. *European journal of physics* **26**  
858 (2004) 205.

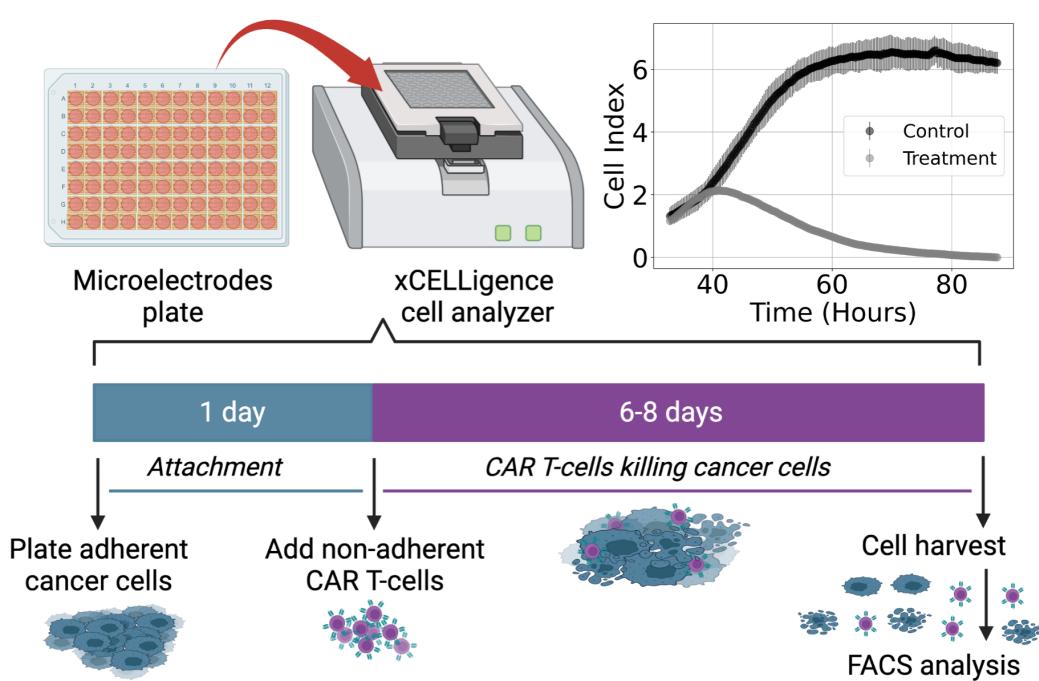
859 56 .Brummer AB, Hunt D, Savage V. Improving blood vessel tortuosity measurements via highly  
860 sampled numerical integration of the frenet-serret equations. *IEEE Transactions on Medical  
861 Imaging* **40** (2021) 297–309. doi:10.1109/TMI.2020.3025467.

862 57 .Zheng P, Askham T, Brunton SL, Kutz JN, Aravkin AY. A unified framework for sparse  
863 relaxed regularized regression: Sr3. *IEEE Access* **7** (2018) 1404–1423.

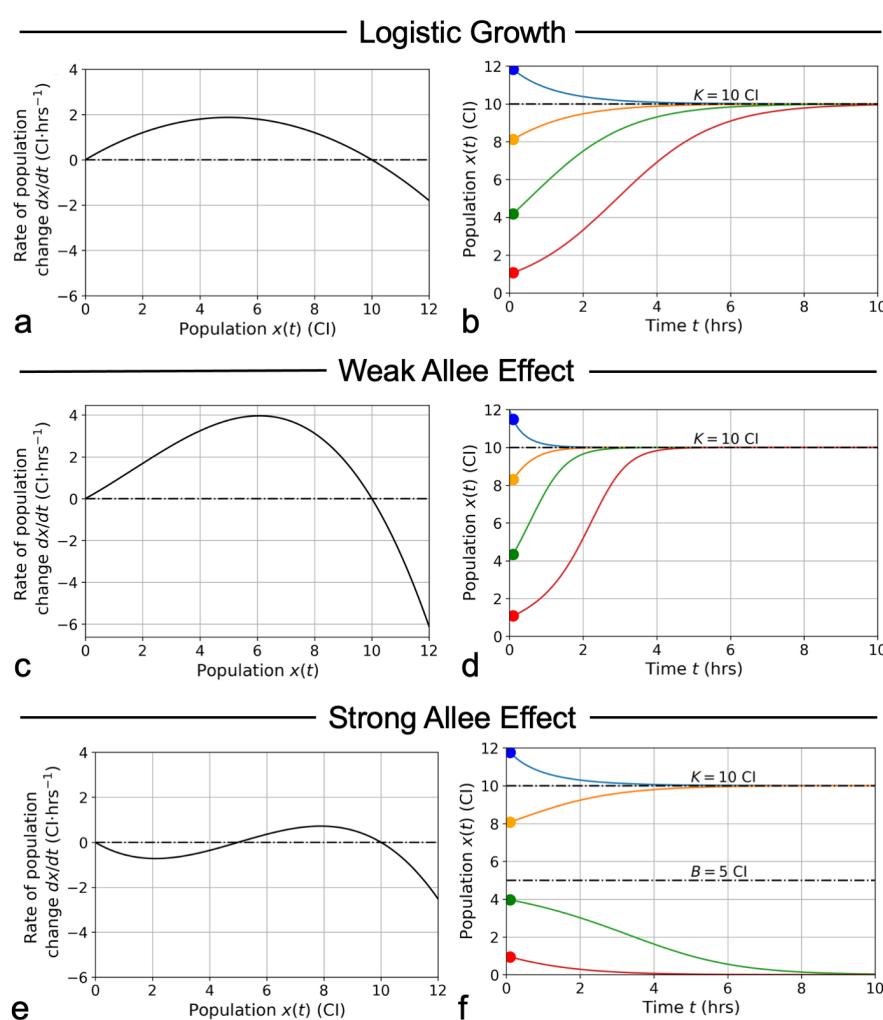
864 58 .Champion K, Zheng P, Aravkin AY, Brunton SL, Kutz JN. A unified sparse optimization  
865 framework to learn parsimonious physics-informed models from data. *IEEE Access* **8** (2020)  
866 169259–169271. doi:10.1109/ACCESS.2020.3023625.

867 59 .Bakarji J, Champion K, Kutz JN, Brunton SL. Discovering governing equations from partial  
868 measurements with deep delay autoencoders (2022). doi:10.48550/ARXIV.2201.05136.

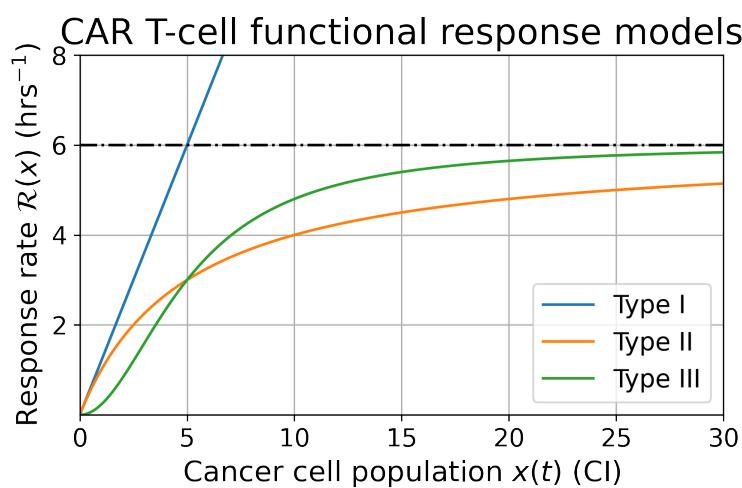
## FIGURE CAPTIONS



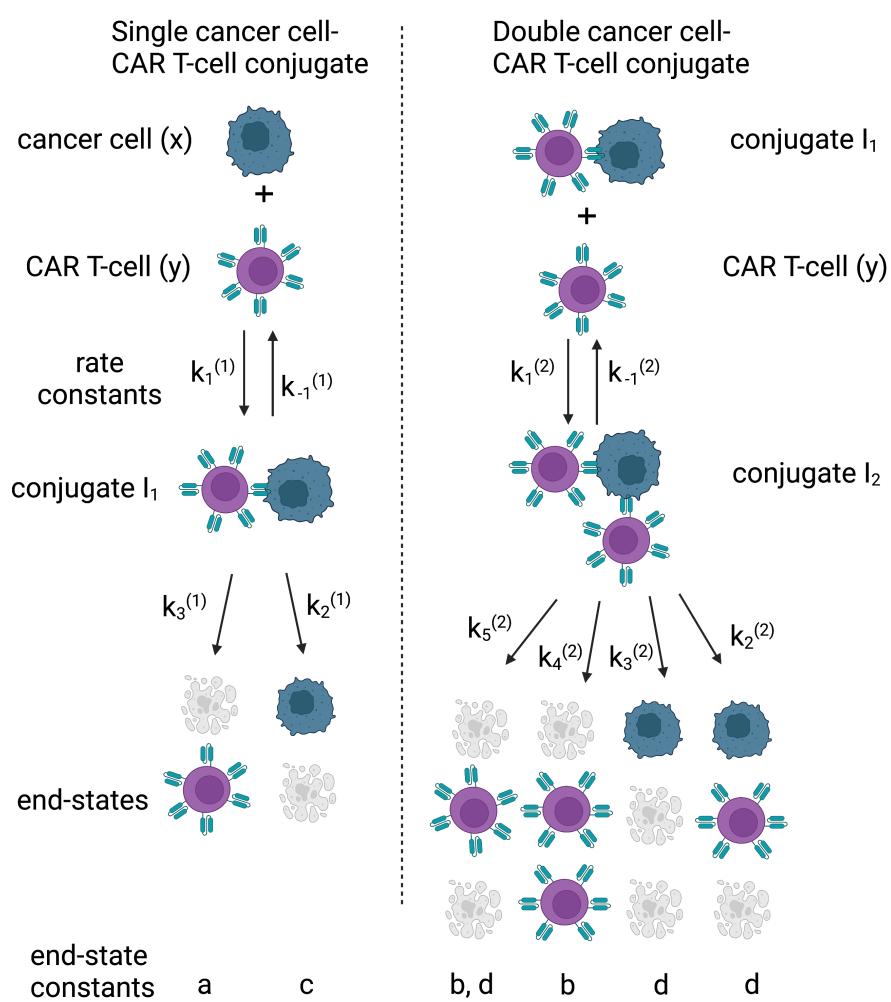
**Figure 1.** Diagram of experimental procedure highlighting use of microelectrode plates in an xCELLigence cell analyzer system and sample Cell Index (CI) measurements for control and treatment groups (E:T = 1:4). This system utilizes real-time voltage measurements to determine CI values representative of the adherent cancer cell population as a function of time. CAR T-cells are added following 24 hours of cancer cell expansion and attachment. After 6-8 days of monitoring the cancer cell growth and death dynamics, cells are harvested and enumerated using flow cytometry.



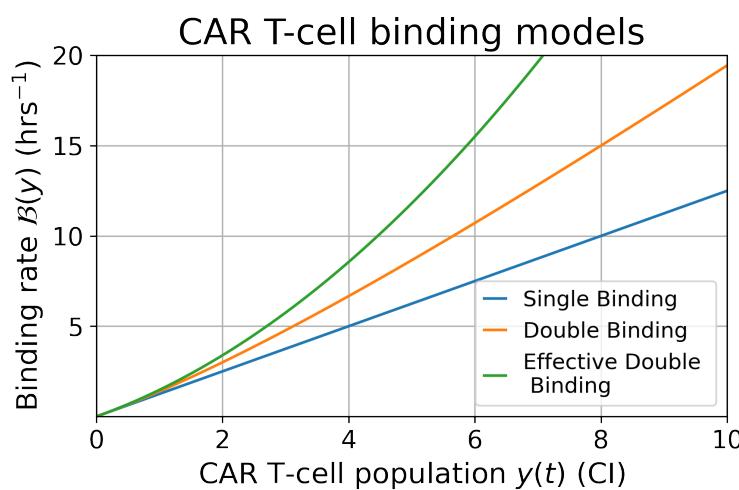
**Figure 2.** Conceptual graphs of rates of change in cancer cell populations versus population size (left panels) and population size versus time (right panels) for the three growth models presented in Eqs. (3)-(5): logistic growth **a** and **b**; weak Allee effect **c** and **d**; strong Allee effect **e** and **f**. Model parameter values are:  $\rho = 0.75 \text{ hrs}^{-1}$ ,  $K = 10 \text{ CI}$ ,  $A = 5 \text{ CI}$ , and  $B = 5 \text{ CI}$ . Colors correspond to different initial cancer cell seeding conditions which are the same for each model in a cancer cell only scenario (blue = 12CI, orange = 8CI, green = 4CI, red = 1CI).



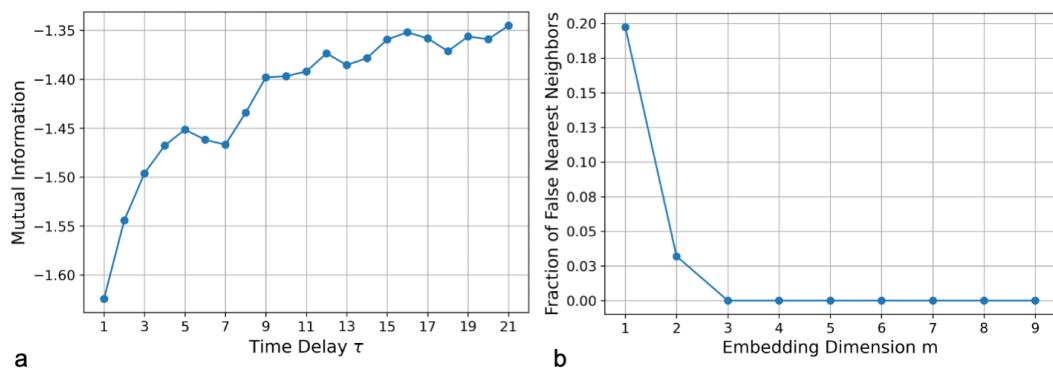
**Figure 3.** Functional responses (per-CAR T-cell response rates) versus cancer cell population. Model parameters for functional responses are:  $p = 6/5 \text{ CI}^{-1} \cdot \text{hrs}^{-1}$  for Type I;  $p = 6 \text{ CI}^{-1} \cdot \text{hrs}^{-1}$  and  $g = 5 \text{ CI}$  for Types II and III. Note overlap of Types I and II functional responses for  $x < 1 \text{ CI}$ , and distinct differences in concavity between Types II (negative) and III (positive) for  $x < 2 \text{ CI}$ . These characteristics correspond to Type I and Type II functional responses being indistinguishable at low cancer cell populations, and Type II and Type III being differentiated by fast-then-slow response rates (Type II) versus slow-then-fast response rates (Type III).



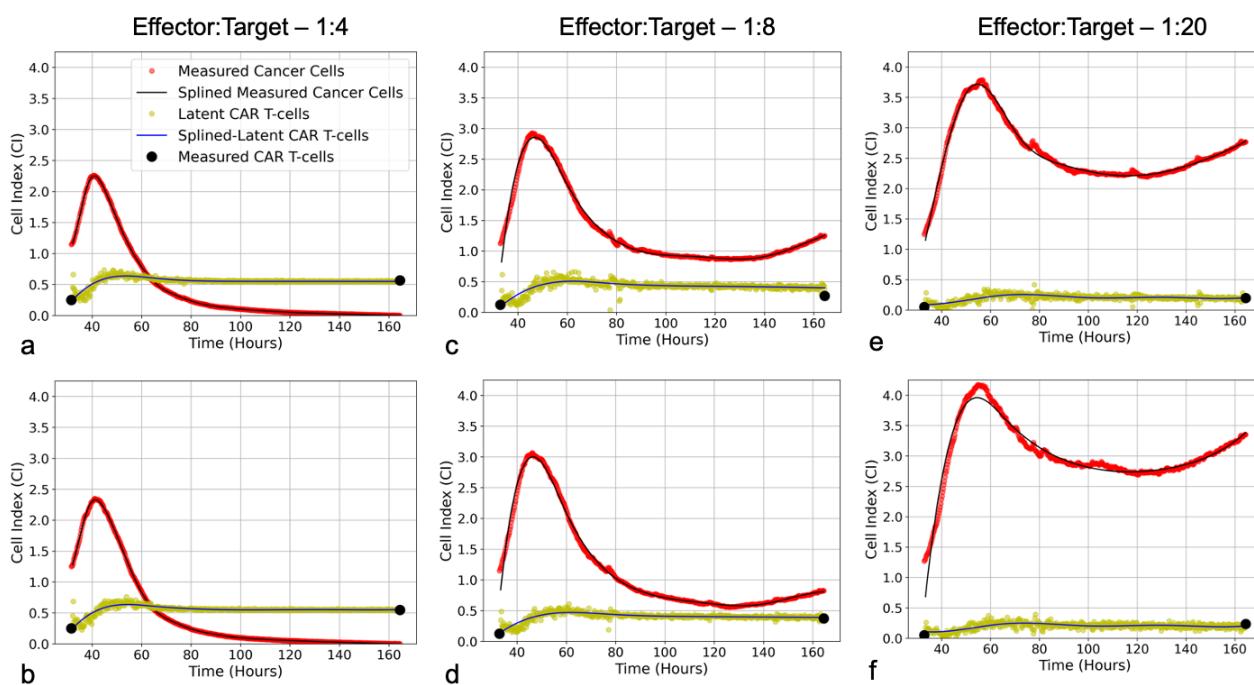
**Figure 4.** Compartmental model for single and double cell binding kinetics. Expressions for how rate constants combine to contribute to the growth or death of the cancer cell and CAR T-cell populations are presented in Eqs. (18)-(23). See (30) for further development and analysis of the cell binding model.



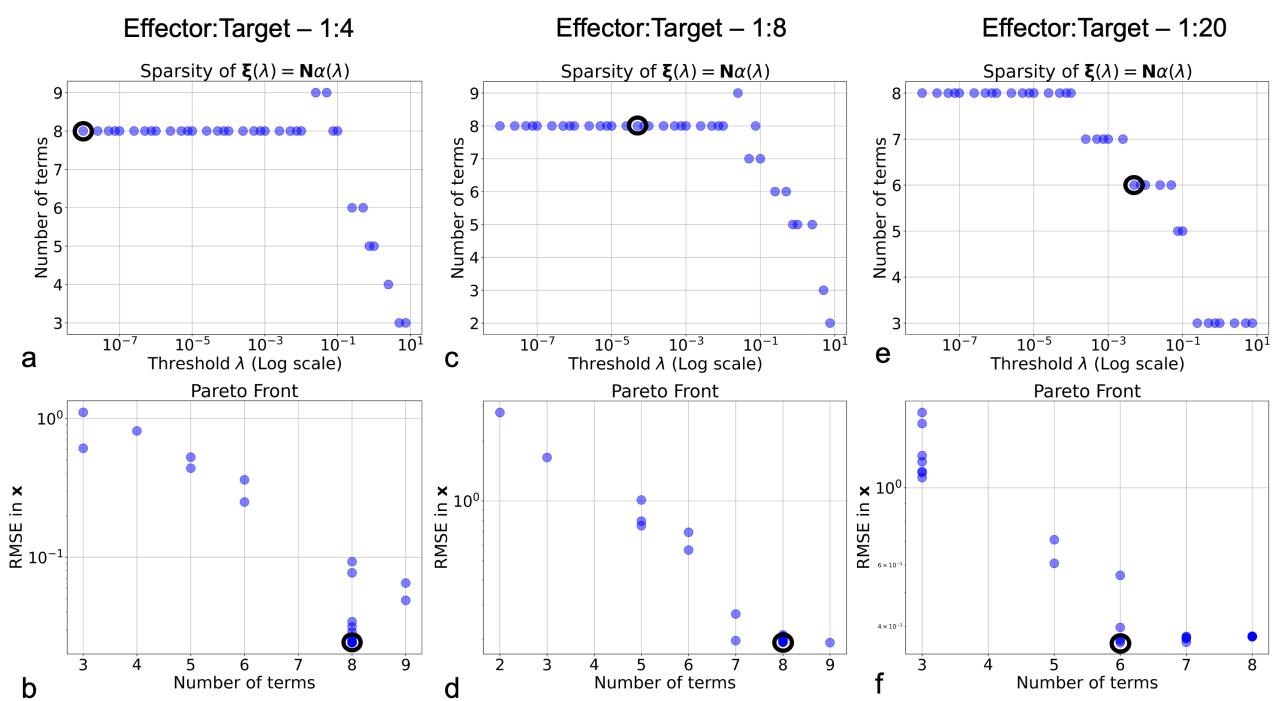
**Figure 5.** Binding rates (per-cancer cell CAR T-cell binding) versus CAR T-cell population for the single binding, double binding, and effective double binding models in Eqs. (18)-(21), (25), and (27). Model parameters for antigen bindings are:  $a = 20 \text{ CI}^2 \cdot \text{hrs}^{-2}$  and  $h = 16 \text{ CI}^{-1} \cdot \text{hrs}^{-1}$  for single binding;  $a = 20 \text{ CI}^2 \cdot \text{hrs}^{-2}$ ,  $b = 5 \text{ CI}^3 \cdot \text{hrs}^{-2}$ ,  $h = 16 \text{ CI}^{-1} \cdot \text{hrs}^{-1}$ , and  $k = 2 \text{ CI}^2 \cdot \text{hrs}^{-1}$  for double binding; and  $a = 20 \text{ CI}^2 \cdot \text{hrs}^{-2}$ ,  $b = 2.75 \text{ CI}^3 \cdot \text{hrs}^{-2}$ ,  $h = 16 \text{ CI}^{-1} \cdot \text{hrs}^{-1}$ , and  $k = 2 \text{ CI}^2 \cdot \text{hrs}^{-1}$  for effective double binding. These parameter values were chosen to highlight how well the effective double binding model can approximate both the single and double binding models at low CAR T-cell population values,  $y < 1 \text{ CI}$ . Note that since the original double binding model in this scenario is concave-up, the effective double binding model parameters should be chosen to match concavity. This requirement sets a positivity constraint on the quadratic term in Eqs. (25) and (27).



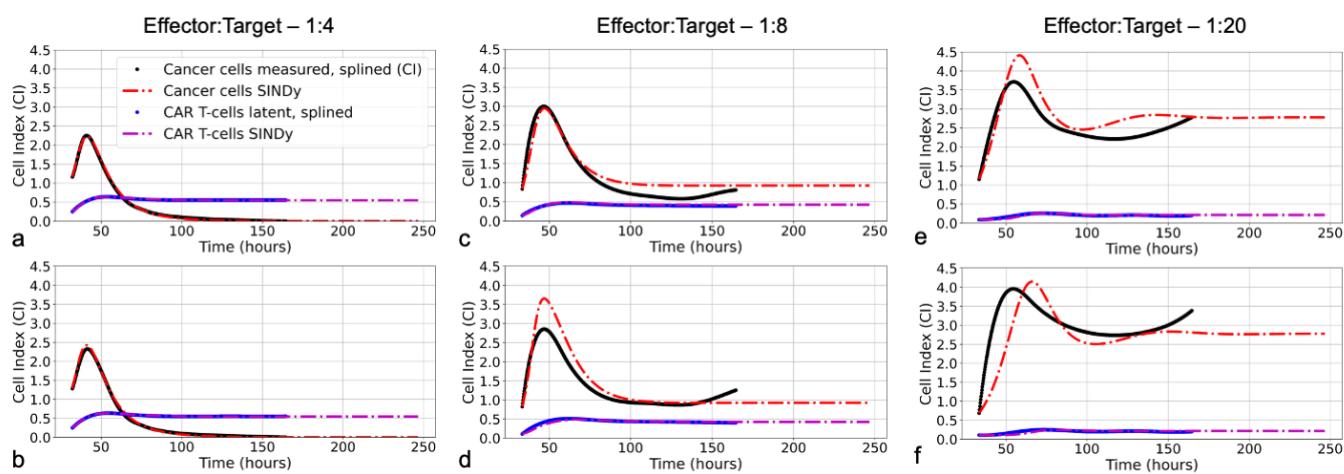
**Figure 6.** Graphs for determining **a** the ideal time delay,  $\tau$ , by examining mutual information and **b** the ideal embedding dimension,  $m$ , by examining the fraction of false nearest neighbors. These methods are explained in detail in (55). For our data, the optimal time delay found was  $\tau = 1$  and the optimal embedding dimension  $m = 2$ .



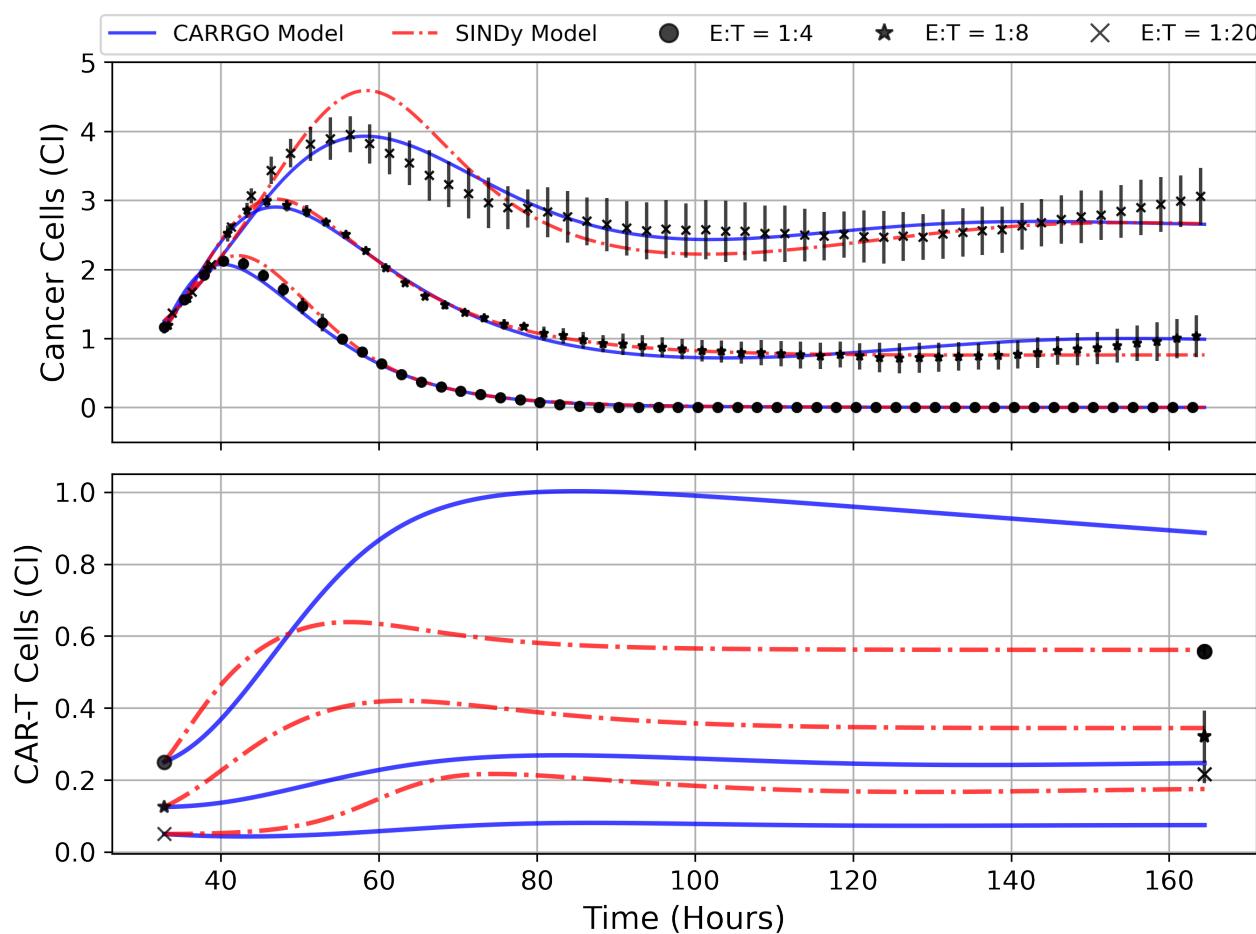
**Figure 7.** Latent variable analysis results. **a-b** are replicates 1 and 2 for the high E:T ratio, **c-d** are replicates 1 and 2 for the medium E:T ratio, and **e-f** are replicates 1 and 2 for the low E:T ratio. Presented for each trial are the cancer cell index measurements from the xCELLigence machine in red, overlaid with the splined measurements for the cancer cells in black; the two endpoint measurements for the CAR T-cell levels enumerated by flow cytometry in black, with the CAR T-cell population trajectory as determined by latent variable analysis in yellow, overlaid with the splined CAR T-cell trajectory in blue. Note that despite the CAR T-cell populations being measured with flow cytometry, we have converted levels to units of Cell Index for ease of comparison with the cancer cells, using a conversion factor of  $1\text{CI} \approx 10,000$  cells.



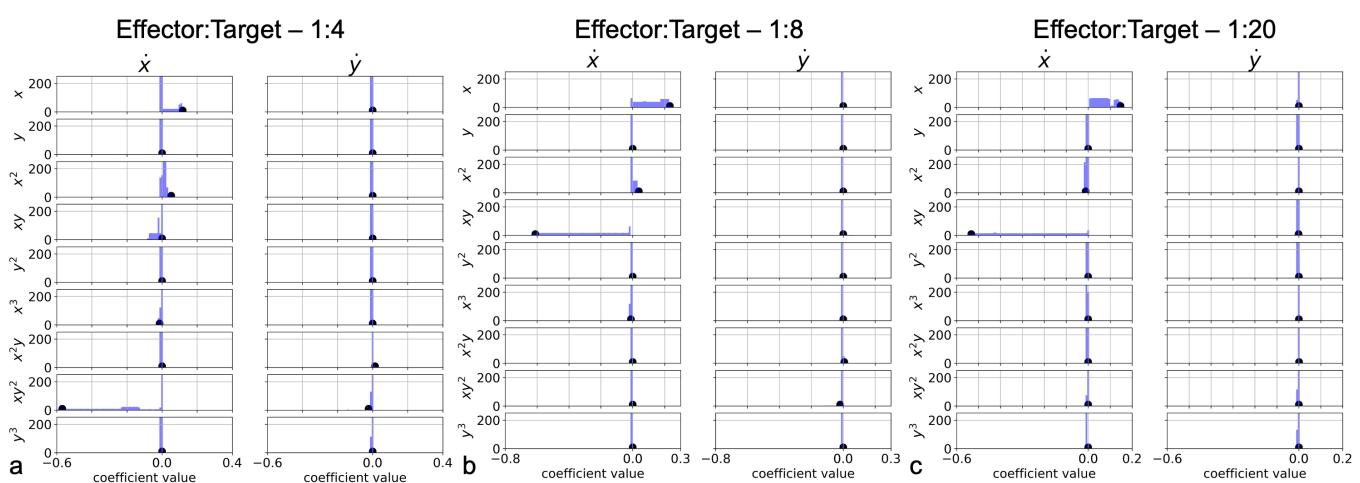
**Figure 8.** Pareto front analysis of system sparsity. **a-b:** high E:T, **c-d** medium E:T. **a** and **c** sparsity (number of discovered terms) versus threshold  $\lambda$  and **b** and **c** root-mean-squared-error (RMSE) versus number of terms. Note that the RMSE values were calculated using the discovered models and the splined measurements. Selected models are represented by purple circles.



**Figure 9.** Predicted trajectories of discovered models compared to splined measurements of cancer cells and CAR T-cells. Cancer cell measurements are the black points, while CAR T-cell measurements are the blue points. Predicted trajectories for cancer cells are the red dot-dashed lines, while the CAR T-cells are the purple dot-dashed lines. Model simulations and forward predictions for replicates 1 and 2 for scenarios of (a-b) high E:T, (c-d) medium E:T, and (e-f) low E:T. Note that the best fits between predictions and measurements occur in the high E:T scenario, where assumptions made regarding treatment success and low cancer cell populations in determining model candidate terms are best adhered to. As the E:T ratios get smaller, increasing deviation between discovered model predictions and splined measurements can be qualitatively observed.



**Figure 10.** Predictions of cell trajectories for E:T ratios of 1:4, 1:8, and 1:20 from CARRGO model (blue) and SINDy model (red). Model fits were performed using Levenberg-Marquadt Optimization on data aggregated across experimental replicates. Data points represent the mean of all experimental replicates, while error bars represent the ranges across replicates. Of note are the differences in CARRGO and SINDy model predictions for the final CAR T-cell values compared to measurements, and the notable difference in when the maximum CAR T-cell population is reached between CARRGO and SINDy models.



**Figure 11.** Frequency of discovery for model terms as threshold  $\lambda$  is varied across 1000 values from the interval  $[5^{-3}, 10^1]$  for **a** high E:T, **b** medium E:T, and **c** low E:T. Black circles indicate values for coefficients corresponding to the selected model based on the Pareto front analysis in Figure 8.

## 6 TABLES

**Table 1.** Coefficients for discovered growth model terms across all effector to target ratios.

| $E : T$ | Growth of cancer cells ( $x$ ) | Growth rate $\rho_x$ (hrs $^{-1}$ ) | Carrying capacity $K_x$ (CI) | Allee constants $A_x, B_x$ (CI) | Growth of CAR T-cells ( $y$ ) | Growth rate $\rho_y$ (hrs $^{-1}$ ) | Carrying capacity $K_y$ (CI) | Allee constants $A_y, B_y$ (CI) |
|---------|--------------------------------|-------------------------------------|------------------------------|---------------------------------|-------------------------------|-------------------------------------|------------------------------|---------------------------------|
| 1 : 4   | Weak Allee                     | 0.121                               | 4.792                        | 1.421                           | Logistic                      | 0.191                               | 0.544                        | – <sup>1</sup>                  |
| 1 : 8   | Weak Allee                     | 0.237                               | 6.413                        | 3.08                            | Logistic                      | 0.112                               | 0.313                        | –                               |
| 1 : 20  | Logistic                       | 0.15                                | 12.5                         | –                               | –                             | –                                   | –                            | –                               |

<sup>1</sup> – indicates term not discovered.

**Table 2.** Coefficients for discovered interaction model terms across all effector to target ratios.

| $E : T$ | Response of CAR T-cells | Type I & II response $\alpha$ ( $\text{Cl}^{-1} \text{ hrs}^{-1}$ ) | Type II & III response $\beta$ ( $\text{Cl}^{-2} \text{ hrs}^{-1}$ ) | Cancer cell-CAR T-cell binding | Single binding $\tilde{a}$ ( $\text{Cl}^{-1} \text{ hrs}^{-1}$ ) | Double binding $\tilde{b}$ ( $\text{Cl}^{-2} \text{ hrs}^{-1}$ ) | Double binding $\tilde{c}$ ( $\text{Cl}^{-2} \text{ hrs}^{-1}$ ) |
|---------|-------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| 1 : 4   | Type II                 | 0.035                                                               | -0.009                                                               | Double                         | - <sup>1</sup>                                                   | 0.593                                                            | -                                                                |
| 1 : 8   | Type II                 | 0.051                                                               | -0.009                                                               | Single                         | 0.626                                                            | -                                                                | -                                                                |
| 1 : 20  | Type III                | -0.002                                                              | 0.005                                                                | Mixed                          | 0.545                                                            | -                                                                | 0.063                                                            |

<sup>1</sup> – indicates term not discovered.

**Table 3.** Fitting statistics for CARRGO and SINDy models and comparison of shared parameters. Fitting statistics considered are the reduced chi-squared,  $\tilde{\chi}^2$ , the Akaike information criteria (AIC) and Bayesian information criteria (BIC). Of note are the scores indicating a better fit for the CARRGO model at E:T = 1:4 and 1:20, despite differences in the endpoint CAR T-cell population predictions in Figure 10. Furthermore, we observe generally favorable agreement between parameter estimates, suggesting the *data first* approach of SINDy as a viable alternative to traditional *model first* parameter inference methods.

| Model -E:T   | $\tilde{\chi}^2$ | AIC   | BIC   | Cancer growth rate $\rho$ (hrs $^{-1}$ ) | Cancer carrying capacity $K_x$ (Cl) | Cancer killing $\tilde{\alpha}$ (Cl $^{-1}$ hrs $^{-1}$ ) | CAR T response $\alpha$ (Cl $^{-1}$ hrs $^{-1}$ ) |
|--------------|------------------|-------|-------|------------------------------------------|-------------------------------------|-----------------------------------------------------------|---------------------------------------------------|
| CARRGO -1:4  | 13.6             | 1380  | 1400  | 0.471                                    | 3.70                                | 0.555                                                     | 0.0318                                            |
| SINDy -1:4   | 23.0             | 1660  | 1700  | 0.116                                    | 4.78                                | - <sup>1</sup>                                            | 0.0327                                            |
| CARRGO -1:8  | 0.919            | -39.6 | -18.3 | 0.361                                    | 6.82                                | 1.26                                                      | 0.015                                             |
| SINDy -1:8   | 0.401            | -474  | -440  | 0.190                                    | 7.06                                | 0.588                                                     | 0.0436                                            |
| CARRGO -1:20 | 3.14             | 609   | 631   | 0.206                                    | 7.69                                | 1.81                                                      | 0.0195                                            |
| SINDy -1:20  | 3.55             | 674   | 700   | 0.123                                    | 11.1                                | 0.540                                                     | -0.0024                                           |

<sup>1</sup> – indicates term not discovered.