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ABSTRACT2

In the development of cell-based cancer therapies, quantitative mathematical models of3
cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate4
and interpret mathematical models of cancer cell growth and death hinge first on proposing a5
precise mathematical model, then analyzing experimental data in the context of the chosen model.6
In this work, we present the first application of the sparse identification of non-linear dynamics7
(SINDy) algorithm to a real biological system in order discover cell-cell interaction dynamics in8
in vitro experimental data, using chimeric antigen receptor (CAR) T-cells and patient-derived9
glioblastoma cells. By combining the techniques of latent variable analysis and SINDy, we infer10
key aspects of the interaction dynamics of CAR T-cell populations and cancer. Importantly, we11
show how the model terms can be interpreted biologically in relation to different CAR T-cell12
functional responses, single or double CAR T-cell-cancer cell binding models, and density-13
dependent growth dynamics in either of the CAR T-cell or cancer cell populations. We show14
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how this data-driven model-discovery based approach provides unique insight into CAR T-cell15
dynamics when compared to an established model-first approach. These results demonstrate the16
potential for SINDy to improve the implementation and efficacy of CAR T-cell therapy in the clinic17
through an improved understanding of CAR T-cell dynamics.18

Keywords: dynamical systems; latent variables; CAR T-cells; antigen binding; allee effect; SINDy; glioblastoma; cell therapy19

1 INTRODUCTION

Dynamical systems modeling is one of the most successfully implemented methodologies20
throughout mathematical oncology (1). Applications of these model first approaches have lead21
to important insights in fundamental cancer biology as well as the planning and tracking of22
treatment response for patient cohorts (2, 3, 4, 5, 6, 7, 8, 9). Simultaneously, the last twenty years23
have seen explosive growth in the study and application of data-driven methods. These data24
first approaches, initially implemented as machine learning methods for imaging and genomics25
analyses, have seen much success (10, 11). However, such approaches are often limited to26
classification problems and fall short when the intention is to identify and validate mathematical27
models of the underlying dynamics. Recent efforts by us and others have aimed to develop28
methodologies that bridge these model first and data first approaches. (12, 13, 14).29

In this work, we combine the methods of latent variable discovery and sparse identification of30
nonlinear dynamics (SINDy) (15, 16, 17) to analyze experimental in vitro cell killing assay data31
for chimeric antigen receptor (CAR) T-cells and glioblastoma cancer cells (18). This experimental32
data, featuring high temporal resolution, offers a unique opportunity to conduct an in situ test of33
the SINDy model discovery method. Interpretation of the discovered SINDy model is conducted34
under the expectation of a predator-prey interaction model in which the cancer cells function as35
the prey and the CAR T-cells the predator (19).36

Predator-prey systems are a broad class of ordinary differential equations (ODEs) that aim37
to characterize changes in populations between two or more groups of organisms in which at38
least one survives via predation on another. Originally applied to the study of plant herbivory39
(20) and fishery monitoring (21) in the early 20th century, predator-prey models have since40
become a workhorse of ecology, evolutionary biology, and most recently mathematical oncology41
(19, 22). For example, predator-prey models of CAR T-cell killing dynamics have shed light42
on the underlying biological mechanisms of action (18, 7), and have informed effective dosing43
strategies for combination CAR T-cell and targeted radionuclide therapy (23), and CAR T-cell44
therapy in combination with the anti-inflammatory steroid Dexamethasone (24). Over time,45
important extensions to predator-prey models have been incorporated to account for a variety46
of biological phenomena. In this work we focus on the following extensions: predator growth47
that is dependent on the density of prey, also known as a functional response (25, 26); individual48
predator and prey growth that saturates at some maximum value (logistic growth) (18), or has a49
population threshold below which collapse occurs (the Allee effect) (27, 28); and predator-prey50
interactions in which one or two CAR T-cells are bound to a single cancer cell at once, referred to51
as single or double binding, respectively (29, 30).52

An ever-present challenge to quantitative biologists is fitting a proposed model to experimental53
data, also known as parameter estimation or model inference. On one hand, quantitative54
biologists seek models that capture as much biological realism and complexity as possible.55
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On the other hand, increasing model complexity increases the computational challenge to56
accurately, confidently, and expediently determine model parameter values. This approach57
is further complicated if a researcher chooses to compare competing or complementary models58
(31, 32). An alternative approach, examined in this paper, is to leverage newly developed59
methods rooted in data science and machine learning which identify the strength of individual60
mathematical terms as candidates for an explanatory model. These methods are often referred to61
as dynamic mode decomposition, symbolic regression, or sparse identification.62

Dynamic mode decomposition (DMD) is a data driven technique that interrogates time-series63
data by performing a singular value decomposition (SVD) on carefully structured matrices of the64
given data (33, 13). In this formalism, the orthonormal basis vectors generated by singular value65
decomposition serve as linear generators of the system dynamics such that forward prediction can66
be performed absent a known underlying mathematical model. Alternatively, SINDy identifies67
the specific mathematical terms that give rise to the observed dynamics governed by ordinary68
and partial differential equation models (15). SINDy achieves this by regressing experimental69
data onto a high-dimensional library of candidate model terms, and it has proven successful in70
climate modeling (34), fluid mechanics (35), and control theory (36). Since the initial publication of71
SINDy, several extensions have been studied, including: discovery of rational ordinary differential72
equations (37, 38); robust implementation with under-sampled data (39) or excessive noise (40);73
or incorporation of physics informed neural networks when particular symmetries are known to74
exist (41).75

In this paper we utilize our experimental data to test several aspects of the DMD and SINDy76
frameworks. In Section 2.2 we introduce the families of models that are anticipated to be77
simultaneously biologically relevant and identifiable by SINDy, and we introduce a new approach78
to performing SINDy-based model inference.79

In Section 2.3.1 we present the latent variable analysis based on DMD that is used to generate80
the time-series CAR T-cell trajectories based on those of the cancer cells and the known boundary81
values for the CAR T-cells. In Section 2.3.2 we introduce the SINDy methodology in the particular82
context of our application. Results of our approach are presented in Section 3 where we (1)83
highlight how the discovered models vary as a result of different initial conditions in the84
cancer cell and CAR T-cell populations and (2) examine how well the discovered models found85
in this data first approach compare to a typical model first in characterizing the experimental86
data. In Section 4 we demonstrate how our results can guide experimental design to validate87
the predictions made by the discovered models, and we elaborate on some of the challenges88
encountered in this study.89

2 MATERIALS AND METHODS

2.1 Experimental setup90

The data analyzed in this study come from previously conducted experiments whose procedures91
are described in Sahoo et al. (18) and Brummer et al. (24), and summarized in Figure 1. The92
primary brain tumor cell line studied (PBT128) was selected for its endogenous high and relatively93
uniform expression of IL13Rα2 antigen (89.11% IL13Rα2+) (24). This cell line was derived from94
glioblastoma tumor resection tissue as described in (42, 43). To generate IL13Rα2-targeted CAR95
T-cell lines, healthy donor CD62L+ naive and memory T-cells were lentivirally transduced to96
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express second-generation 4-1BB-containing CAR that utilizes the IL13 cytokine with an E12Y97
engineered mutation as the IL13Rα2 targeting domain (44).98

Cell killing experiments were conducted and monitored with an xCELLigence cell analyzer99
system. Measurements of cancer cell populations are reported every 15 minutes through changes100
in electrical impedance as cancer cells adhere to microelectrode plates, and are reported in units101
of Cell Index (CI), where 1 CI ≈ 10K cells (45, 46, 47). Flow cytometry was used to count the102
non-adherent CAR T-cells upon termination of the experiment. Measurements of CAR T-cell103
populations are reported in units of CI for the purposes of working in a common scale. We104
used the conversion factor of 1 CI ≈ 10K cells. Cancer cells were seeded at 10K − 20K cells and105
left either untreated or treated with only CAR T-cells, with treatments occurring 24 hours after106
seeding and monitored for 6-8 days (Figure 1). CAR T-cell treatments were performed with107
effector-to-target ratios (E:T) of 1:4, 1:8, and 1:20. All conditions were conducted in duplicate.108

2.2 Effective interaction models109

Challenges to the model first approach to systems biology are (1) deciding on a sufficiently110
comprehensive model that captures all pertinent phenomena and (2) fitting the selected model to111
available data. Researchers are tasked with justifying their decisions in selecting candidate models.112
Yet, a common feature of dynamical systems models are the presence of ratios of polynomials.113
Such terms in ODEs can be difficult for the convergence of optimization algorithms to global114
solutions due to the possible existence of multiple local solutions within the model parameter115
space (48). In such instances researchers must either rely on high performance computational116
methods, have collected a vast amount of experimental data, or both. To address this problem,117
we utilize binomial expansions of candidate model terms under the assumptions of CAR T-cell118
treatment success and fast, irreversible reaction kinetics. In the following sections we present119
the space of possible models anticipated to characterize our experimental system, and the steps120
necessary to reduce the complexity of these candidate models.121

The dynamical model that our experimental system is anticipated to follow is defined122
generically as,123

dx
dt

= Gx(x)− xBx(y) (1)

dy
dt

= Gy(y) + yR(x)− xBy(y) (2)

where Gx and Gy represent a growth-death model for the cancer cells, x, and the CAR T-cells, y.124
Bx and By represent a binding model for whether single or pairs of CAR T-cells attack individual125
cancer cells, and R represents a model for the CAR T-cell functional response. In the subsections126
below, we explore different families of models representing the terms in the above equations.127
Explicitly, we examine different types of (a) Growth and death models, (b) Functional response128
models, and (c) CAR T-cell-cancer cell binding models.129
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2.2.1 Growth and Death130

We consider three different growth-death models for both the cancer cells and CAR T-cells.131
These are logistic growth, and the weak and strong Allee effect models, presented as,132

Gx(x) =



ρxx
(

1 − x
Kx

)
Logistic growth (3)

ρxx
(

1 − x
Kx

)(
1 +

x
Ax

)
Weak Allee effect (4)

ρxx
(

1 − x
Kx

)(
x

Bx
− 1
)

Strong Allee effect (5)

for Gx(x), and similarly for Gy(y). Here, ρx is the net growth rate, Kx is the population carrying133
capacity, Ax is a weak parameterization of deviations from logistic growth, and Bx is the threshold134
for population survival or death absent predation. All model parameters are assumed positive,135
with the added constraint that Kx > Bx > 0. We anticipate similar growth models for the CAR136
T-cells, Gy(y), with allowance of different models for the different cell types and model constants.137
Logistic growth is commonly favored for its simplicity in experimental systems (18, 23, 24), while138
there is growing evidence that Allee effects are required for accurate characterization of low139
density cancer cell populations (27, 28, 49, 50) or as the result of directed movement (51), the140
latter of which being an observable feature of CAR T-cell behavior using bright field imaging141
(18, 24).142

In Figure 2, graphs of population growth rates versus population size and population size143
versus time are presented for each growth model and for a variety of initial conditions. Parameter144
values used were ρ = 0.75 hrs-1, K = 10 CI, A = 5 CI, and B = 5 CI. Examination of the logistic145
growth model in Figure 2a, b and the weak Allee effect in Figure 2c, d demonstrates similar146
population saturation at the carrying capacity K = 10 CI, but a slight deviation between how the147
models reach saturation. Specifically, the weak Allee effect exhibits a reduced per capita growth148
rate at low population densities comapared to logistic growth. Examination of Figure 2e and149
d demonstrates the crucial difference between the strong Allee effect and either of the logistic150
growth or weak Allee effect through the existence of a minimum population threshold, B, above151
which the population will persist, and below which the population will die off.152

Due to the fact that SINDy produces discovered models in their polynomial form without153
factoring, or grouping of terms together, we must consider the un-factored polynomial form154
of each model. To determine appropriate constraints on the model coefficients, we will expand155
the growth models and factor by common monomials. Doing so for Gx(x) and dropping the156
subscript gives the following,157
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Gx(x) =



ρxx − ρx

Kx
x2 Logistic growth (6)

ρxx +

(
ρx

Ax
− ρx

Kx

)
x2 − ρx

Kx Ax
x3 Weak Allee effect (7)

−ρxx +

(
ρx

Kx
+

ρx

Bx

)
x2 − ρx

KxBx
x3 Strong Allee effect (8)

and similarly for Gy(y). Here we can see that the coefficients for x and x2 can be positive or158
negative, but the coefficients for x3 must be fixed as negative values, where we have absorbed159
the minus signs in Eqs. (7)-(8) into ρx/Kx Ax.160

2.2.2 Functional response161

We next consider the first three types of functional response models that characterize how the162
CAR T-cells respond, or expand, in the presence of cancer cells. These models are defined as,163

R(x) =



px Type I (9)
px

g + x
Type II (10)

px2

g2 + x2 Type III (11)

where p is the predator response, or CAR T-cell response rate, and g is the prey population164
density threshold at which predator behavior changes (e.g. fast-to-slow or slow-to-fast rates165
of killing). Functional responses model changes in predator hunting due to the prey density,166
generally defined with respect to some prey population threshold, here denoted as g. The167
population dependence on predator hunting behavior can also be interpreted as a handling time168
for distinguishing between time spent seeking prey, or recognizing cancer cells, and time spent169
consuming and attacking prey (25, 26, 19).170

The three types of functional responses are graphed in Figure 3. In a Type I functional response,171
the predator response is constant for all prey population sizes. The interpretation of this response172
is that there are no differences in time or cost between all predator functions (searching and173
capture). In a Type II functional response the predator response is linear at low prey density174
(mirroring a Type I behavior) yet saturates at high prey density. Finally, in a Type III functional175
response the predator response is low at low prey densities, reflecting the potential for cancer176
cells to escape immune surveillance, yet again saturates at high prey densities, with a linear177
response at intermediate prey densities.178

Importantly, the rational forms of Types II and III functional responses typically complicate179
determination of parameter values in conventional dynamical modeling. To reduce model180
complexity, we assume a significant level of effectiveness in CAR T-cell treatment such that the181
cancer cell population remains relatively low with respect to the functional response threshold,182
that is x < g, or x/g < 1. CAR T-cell effectiveness is demonstrated in Figure 1, where the control183
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cancer cell population is shown to achieve a maximum population of approximately 6.5 CI, while184
the treatment population of E : T = 1 : 4 reaches a maximum population of approximately185
2CI. The approximation condition permits the use of a binomial expansion about x = 0 on the186
denominators for the Types II and III functional responses, resulting in,187

R(x) =



px Type I (12)

px
g

(
1 − x

g
+

x2

g2 +
∞

∑
j=3

(−1)j
(

x
g

)j
)

Type II (13)

px2

g2

(
1 − x2

g2 +
x4

g4 +
∞

∑
j=3

(−1)j
(

x2

g2

)j)
Type III (14)

Further assuming that contributions to the functional response models of O(x3/g3) or greater are188
negligible, we terminate the expansions at O(x2/g2) to arrive at the following effective functional189
response models,190

R(x) =



px Type I (15)

px
g

− px2

g2 Type II (16)

px2

g2 Type III (17)

It is important to highlight that the leading order term for the expansion for a Type II functional191
response is indistinguishable from a Type I functional response. This feature is reflected by192
the overlap in the graphs of the Type I and Type II responses presented in Figure 3, where193
the cancer cell population is small, x ∈ [0, 1] CI, compared to the value of g = 5 CI. As the194
cancer cell population increases, the density dependence of the CAR T-cells starts to take effect195
as demonstrated by the parabolic contribution of the Type II response. In contrast to this, the196
expansions for functional responses of Types II and III are significantly unique from one another.197
Specifically, only expansions for Type II can lead to odd-powered terms in x, and although both198
expansions can express similar even-powered terms, they come with different concavities. That199
is, at small cancer populations the Type II functional response is characterized as a concave200
down parabola, while the Type III functional response is characterized as a concave up parabola.201
This difference regarding the positivity of the terms that are of second-order dependence in x202
corresponds to the different density dependent behaviors of the CAR T-cells at small cancer cell203
populations, specifically that Type II is a fast-to-slow response rate while Type III is a slow-to-fast204
response rate.205

By performing the approximations used to derive Eqs.(16)-(17), and using truncated terms, we206
have reduced the complexity of the functional response terms. This step will simplify the process207
of model discovery. However, since this step assumes that the prey population remains small208
compared to the functional response threshold, the number of terms needed in Eqs.(13)-(14) for209
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accurate characterization of the system dynamics may vary as a result of experimental variation210
in the effector to target ratio of the CAR T-cells and the cancer cells. This variation in the effector211
to target ratio may also influence the structure of other interaction terms, specifically those212
pertaining to the single or paired binding dynamics.213

2.2.3 CAR T-cell-cancer cell binding214

Cell binding models characterize the rates of formation and disassociation of conjugate pairs of215
species, also referred to as interaction molecules (Figure 4). These models historically are known216
as Hill-Langmuir functions for their originating studies in hemoglobin formation (52) and gas217
adsorption on material surfaces (53), yet perhaps are better known for their use in modeling218
enzyme reaction kinetics, or Michaelis-Menten kinetics (54). The same modeling principles219
have been extended to examine cell binding in T-cell and cancer cell interactions (2, 29, 30). An220
important challenge to the field of cancer immunotherapy modeling is characterizing higher-order221
cell binding dynamics. That is, the formation of conjugates that consist of multiple CAR T-cells222
attacking single cancer cells (Figure 4). These cancer cell-CAR T-cell conjugates are hypothesized223
to form as either a consequence of increased effector to target ratios or as a result of increased224
antigen density on target cells. As our experiment uses one single cell line with a high and uniform225
antigen expression level of IL13Rα2, we assume on average all cancer cells have approximately226
the same antigen density. We thus focus our attention to experimental variation in the effector to227
target ratios.228

Following the work of Li et al. (30), we incorporate fast irreversible single and double cell binding229
into our generic model landscape. Here, fast binding implies that conjugate formation and230
dissociation occur quickly enough to maintain equilibrium in the conjugate populations, I1 and231
I2, such that dI1/dt = 0 and dI2/dt = 0. While irreversible means that all conjugate formation232

leads to death, or k(1)−1 = 0 and k(2)−1 = 0. These assumptions are consistent with the conditions233
of relatively higher effector to target ratios, or high antigen densities on target cells. They also234
imply that a mixture of conjugates and dissociates may exist, but that the dynamics happen such235
that the conjugate populations are fixed and do not change with time. Furthermore, we only236
consider the higher-order binding scenario of two CAR T-cells to one cancer cell. Solving for the237
contributions to the cancer and CAR T-cell populations due to binding dynamics results in,238

Bx(y) =


ay
h

Single Binding (18)

ay + by2

h + ky
Double Binding (19)

By(y) =


cy
h

Single Binding (20)

cy + dy2

h + ky
Double Binding (21)
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where the constants a, b, c, and d are defined in terms of the association rate constants, k(1)1 and239

k(2)1 , and the death rate constants k(1)2 , k(1)3 , k(2)2 , k(2)3 , k(2)4 , and k(2)5 from Figure 4 as follows,240

a = k(1)1 k(1)3 b =

k(1)1 k(2)1

(
k(2)4 + k(2)5

)
k(2)2 + k(2)3 + k(2)4 + k(2)5

(22)

c = k(1)1 k(1)2 d =

k(1)1 k(2)1

(
k(2)2 + 2k(2)3 + k(2)5

)
k(2)2 + k(2)3 + k(2)4 + k(2)5

(23)

single conjugate association

single conjugate cancer cell death

single conjugate association

single conjugate CAR T-cell death

double conjugate cancer cell death

single to double

conjugate association

all double conjugate deaths

double conjugate CAR T-cell death

single to double

conjugate association

all double conjugate deaths

241

Finally, the constant h is the sum of the single conjugate death rates, h = k(1)2 + k(1)3 , and the242

constant k is simply a renaming of the double conjugate association rate, k(2)1 . As the variable243
renaming is admittedly complicated, the constants a, b, c, and d are defined to quickly identify244
end states of conjugate formation and have been located next to their corresponding interaction245
products in Figure 4.246

The per-cancer cell binding models are graphed in Figure 5. Model parameter values used for247
the single and double cell binding models in Eqs. (18)-(27)) are: a = 20 CI-2·hrs-2, and h = 16248
CI-1·hrs-1 for single binding; and a = 20 CI-2·hrs-2, b = 5 CI-3·hrs-2, h = 16 CI-1·hrs-1, and k = 2249
CI-2·hrs-1 for double binding. We highlight that we are restricting ourselves to scenarios where250
increases in the CAR T-cell population during a given trial leads to increases in the likelihood of251
double binding, which results in super-linear increase of per-cancer cell binding. This restriction252
enforces concavity of the effective double cell binding model which we explore next. It is possible253
for the double binding model to exhibit a sub-linear increase in per-cancer cell antigen binding254
as the CAR T-cell population increases, and an overall decrease in cancer cell killing. However,255
this scenario does not agree with our experimental data of increased killing with increased256
effector-to-target ratios.257

As with the functional response models, we are again faced with ODE model terms consisting of258
ratios of polynomials. However, potential differences between the rates of conjugate association259
and conjugate death can give rise to simplifications. If the product of the CAR T-cell population260
and the rate of forming double conjugates, ky, is small compared to the sum of the rates of single261
conjugate deaths, h, then ky/h < 1, and we can again perform a binomial expansion in the cell262
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binding denominators. A second way of interpreting this condition is to require the number of263
CAR T-cells to remain small compared to the ratio of the rate of double conjugate formation to264
the sum of the rates of single conjugate deaths, y < h/k. Performing the binomial expansion and265
truncating again at O(y2) results in the following effective models of cell binding,266

Bx(y) =


ay
h

Effective Single Binding (24)

ay
h

+
(bh − ak)y2

h2 Effective Double Binding (25)

By(y) =


cy
h

Effective Single Binding (26)

cy
h
+

(dh − ck)y2

h2 Effective Double Binding (27)

Here the effective double conjugate antigen binding model takes the form of the exact single267
conjugate binding model plus a correction due to double conjugate formation. Eqs. (25) and268
(27) are graphed in Figure 5, using the parameter values of a = 20 CI-2·hrs-2, b = 2.75 CI-3·hrs-2,269
h = 16 CI-1·hrs-1, and k = 2 CI-2·hrs-1. These values are chosen to demonstrate that the effective270
double binding model can accurately approximate both the exact single and double binding271
models for small CAR T-cell populations, y < 1 CI. Importantly, we note that if the parameter272
values b or d are sufficiently small, corresponding to low double conjugate CAR T-cell or273
cancer cell death rates, then the quadratic terms in Eqs. (25) and (27) will be negative, and274
the concavity of the effective double binding model deviate significantly from the exact model.275
This phenomenological consideration of the effective models sets an important constraint on the276
positivity of the coefficients for the quadratic terms in Eqs. (25) and (27), which we will revisit in277
Section 2.3.278

2.2.4 Landscape of effective models279

To gain a broader perspective of the overall form of our ODE models, we substitute the effective280
models for functional responses and antigen binding into Eqs. (1)-(2), arriving at,281

dx
dt

= Gx(x)− ãxy − b̃xy2 (28)

dy
dt

= Gy(y)± αxy ± βx2y − c̃xy2 (29)

where G again represents any of the potential growth-death models under consideration, ã = a/h282
and b̃ = (bh − ak)/h2 are redefined constants (both assumed to be positive) for the coefficients283
of the effective single and double binding models for the cancer cells, αxy = (p/g − c/h)xy284
and represents the combination of first order terms for CAR T-cell response and single binding,285
βx2y = (p/g2)xy and represents the potential second order term from the CAR T-cell response,286
and c̃xy2 = ((dh − ck)/h2)xy2 represents the effective double binding model for the CAR T-cells.287

bioRxiv 10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.09.22.508748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.508748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brummer et al. Discovering CAR-T cell dynamical models

We have explicitly used ± notation to indicate that we do not know a priori the signs for the xy288
and x2y terms in Eq. (29), as these are determined by the relative contributions of Type I and first289
order Type II-like CAR T-cell responses and single antigen binding for the xy term, and whether290
or not second order Type II or first order Type III CAR T-cell response is occurring for the x2y291
term. The benefit of the approach demonstrates the presence and/or sign conventions of the292
various model coefficients that we determine using the SINDy model discovery algorithm can be293
directly interpreted in terms of different underlying biological phenomena.294

2.3 Model discovery295

Our implementation of the model discovery techniques of dynamic mode decomposition and296
sparse identification of non-linear dynamics (SINDy) is performed in two stages. First is latent297
variable analysis, the extraction of the latent variable representing the CAR T-cell population from298
the time-varying cancer cell population. The second step is implementation of SINDy, whereupon299
the functional terms of the underlying models describing the dynamical system are determined.300

2.3.1 Latent Variable Analysis301

Despite having only measured the initial and final CAR T-cell populations, we can utilize latent302
variable analysis to infer the hidden CAR T-cell dynamics from the cancer cell dynamics. We do303
this using the delay coordinate embedding of Taken’s theorem to reconstruct the attractor of the304
system that is known to exist in more dimensions than those measured (13, 15, 55). The first step305
in this approach is to assemble a Hankel matrix, H, by stacking delayed time-series of the cancer306
cell measurements x(t) as follows,307

H =


x(t1) x(t2) x(t3) · · · x(tN−(m−1)τ)

x(t1+τ) x(t2+τ) x(t3+τ) · · · x(tN−(m−2)τ)

x(t1+2τ) x(t2+3τ) x(t3+4τ) · · · x(tN−(m−3)τ)
...

...
... . . . ...

x(t1+(m−1)τ) x(t2+(m−2)τ) x(t3+(m−3)τ) · · · x(tN)

 (30)

where τ, known as the embedding delay, represents the size of the time-delay we use, and m,308
known as the embedding dimension, represents both the number of rows that we assemble in309
the Hankel matrix and, importantly, the number of anticipated latent variables we expect to find.310

To minimize the effects of experimental noise on the results of Taken’s Theorem, we splined311
our cancer cell trajectories and re-sampled at the same experimental sampling rate of one312
measurement per 15 minutes. The function smooth.spline from the programming language R313
was used to perform the splining. This function uses cubic splines to approximate trajectories,314
with a penalty term to control for trajectory curvature. The number of knots used to spline315
each trajectory were determined by inspection, and are recorded in the analysis code available316
at https://github.com/alexbbrummer/CART_SINDy. Further details on the splining317
methods used are available in (56).318

To determine optimal values for τ and m, we can use two separate formulae to inform the319
decisions (55). The optimal time delay is determined by the value of τ which minimizes the320
mutual information between measurements. This is done by dividing the interval [xmin, xmax]321
into j equally sized partitions, and calculating the probability Pk that a measurement of the time322
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series is in the kth partition, and the probability Ph,k that a measurement xi is in the hth partition323
while the neighboring measurement xi+τ is in the kth partition. Mutual information is given by324

I(τ) =
j

∑
h=1

j

∑
k=1

−Ph,k(τ) log
Ph,k(τ)

PhPk
. (31)

The optimal time-delay to use for a given time series is selected by finding the value of τ which325
results in the first minimum value in mutual information, or arg min|τ{I(τ)}. A graph of mutual326
information versus time delay is presented in Figure 6a. For our cancer cell time series data, this327
optimal time delay value was found to be τ = 1.328

To determine the embedding dimension, m, we calculate the number of false nearest neighbors329
to a given measurement as the time series is embedded in successively greater dimensional330
spaces. This calculation is done to ensure that the attractor constructed from the latent variables331
remains smooth upon embedding. We perform the calculation iteratively by starting with a point332
p(i) in an m-dimensional embedding, and identifying a neighboring point p(j) such that the333
distance between p(i) and p(j) is less than a constant value typically chosen as the standard334
deviation of the data. Next, the normalized distance between the points p(i) and p(j) in the335
m + 1-dimensional embedding is calculated using the following expression,336

Ri =
|x(ti+mτ)− x(tj+mτ)|

||p(i)− p(j)|| (32)

Ri is calculated across the entire time series and iteratively for greater embeddings, m = 1, 2, 3, . . . .337
False nearest neighbors are identified when Ri > Rthreshold, where Rthreshhold = 10 has been338
identified as satisfactory for most datasets (55). The ideal embedding dimension m is finally339
determined as that which results in a negligible fraction of false nearest neighbors. In Figure 6b340
we present the calculated fraction of false nearest neighbors versus embedding the dimension.341
For our dataset, we identified m = 2 as the ideal embedding dimension, indicating the existence342
of one latent variable that we interpret as representing the CAR T-cell population.343

Using values of τ = 1 for the time delay and m = 2 for the embedding dimension results in the344
following form of the Hankel matrix,345

H =

[
x(t1) x(t2) x(t3) · · · x(tN−1)
x(t2) x(t3) x(t4) · · · x(tN)

]
(33)

To extract the latent variable that represents the CAR T-cell time series, we perform a singular346
value decomposition of the Hankel matrix, H = UΣV∗ (15, 13). Here, the columns of V represent347
scaled and standardized versions of both the original data in the first column, and approximations348
of the latent data in the subsequent columns. As our experimental procedure measured the initial349
and final CAR T-cell populations, our final step was to re-scale and offset the latent CAR T-cell350
variable extracted from the second column of V. In Figure 7 we present the measured cancer cells351
and CAR T-cells in addition to the discovered latent CAR T-cell time series for each effector to352
target ratio and duplicate trial.353
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2.3.2 Sparse identification of non-linear dynamics354

SINDy is a data-driven methodology that discovers dynamical systems models through355
symbolic regression (15, 13). From a conceptual perspective, SINDy allows for the transformation356
of an analytical, first-order, non-linear dynamical systems model, expressed as357

d
dt

x(t) = f(x(t)) (34)

to a linearized matrix-model, expressed as358

Ẋ = Θ(X)Ξ (35)

where Ẋ are numerical time-derivatives of our measured data, Θ(X) is a library of candidate359
functions that may describe the data and is evaluated on the measured data, and Ξ consists of the360
coefficients for the model terms from Θ(X) that describe the time-varying data Ẋ. The objective361
of SINDy is to identify the sparsest version of Ξ, where sparsity is defined as the compromise362
between fewest number of non-zero terms with the greatest level of accuracy. In the context of363
our measurements for populations of cancer cells, x(t), and CAR T-cells, y(t), and the anticipated364
models for cell growth and interactions, Ẋ takes the following form,365

Ẋ =


ẋT(t1)
ẋT(t2)

...
ẋT(tN)

 =


ẋ(t1) ẏ(t1)
ẋ(t2) ẏ(t2)

...
...

ẋ(tN) ẏ(tN)

 (36)

and Θ(X) is expressed as,366

Θ(X) =

 | | |
X X2 X3

| | |

 (37)

Θ(X) =


x(t1) y(t1) x(t1)

2 x(t1)y(t1) y(t1)
2 x(t1)

3 x(t1)
2y(t1) x(t1)y(t1)

2 y(t1)
3

x(t2) y(t2) x(t2)
2 x(t2)y(t2) y(t2)

2 x(t2)
3 x(t2)

2y(t2) x(t2)y(t2)
2 y(t2)

3

...
...

...
...

...
...

...
...

...
x(tN) y(tN) x(tN)

2 x(tN)y(tN) y(tN)
2 x(tN)

3 x(tN)
2y(tN) x(tN)y(tN)

2 y(tN)
3


(38)

By solving the matrix-inverse problem in Eq. (35), we can find the column vectors Ξ that367
determine the coefficients for the model terms ξ that form the non-linear dynamical system368
best describing the measured data, in a least-squares sense. However, a simple least-squares369
implementation will result in a dense coefficient vector Ξ. We enforce sparsity of the coefficient370
vector Ξ through the method of sparse relaxed regularized regression (SR3) (57), where we seek371
optimization of the expression,372

bioRxiv 13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.09.22.508748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.508748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brummer et al. Discovering CAR-T cell dynamical models

min
Ξ,W

1
2
||Ẋ − Θ(Ξ)||2 + λR(W) +

1
2ν

||Ξ − W||2 (39)

where W is the relaxed coefficient matrix that approximates Ξ, R(W) is the regularization of W,373
and ν and λ are hyper parameters that control how precisely W approximates Ξ and the strength374
of the regularization, respectively. For our problem, we chose to regularize under the ℓ1-norm375
with ν = 1 × 10−5. To determine the value of λ, we followed the approach taken in (37) in which376
we repeat the analysis for a range of λ values from λ ∈ [10−8, 101] to calculate Pareto fronts377
between the root-mean-squared error between the measured and subsequently predicted values378
of X and the number of active terms from our library. In Figure 8 we present Pareto fronts for379
each of the experimental conditions for the varying effector to target ratios.380

As discussed in Section 2.2, there are a variety of constraints we can expect for possible381
coefficients based on expected signs, or the absence of particular terms. An extension to SINDy382
allows for the incorporation of these constraints to ensure spurious terms are not discovered (58).383

To make clear the constraints that were imposed, we can re-write Eq. (35) symbolically and in384
terms of the coefficients ξi,j as,385

ẋ = ξ1,1x + ξ1,2y + ξ1,3x2 + ξ1,4xy + ξ1,5y2 + ξ1,6x3 + ξ1,7x2y + ξ1,8xy2 + ξ1,9y3 (40)

ẏ = ξ2,1x + ξ2,2y + ξ2,3x2 + ξ2,4xy + ξ2,5y2 + ξ2,6x3 + ξ2,7x2y + ξ2,8xy2 + ξ2,9y3 (41)

Then, the constraints that are imposed as per the anticipated effective models from Section 2.2386
are,387

ξ1,2 = 0 ξ1,4 < 0 ξ1,5 = 0 ξ1,6 < 0 (42)

ξ1,7 = 0 ξ1,8 < 0 ξ1,9 = 0 ξ2,1 = 0 (43)

ξ2,3 = 0 ξ2,6 = 0 ξ2,8 < 0 ξ2,9 < 0 (44)

while the other 6 coefficients in ξi,j are left to freely vary.388

Implementation of SINDy SR3 with constraints was performed using PySindy, a package389
designed for a wide array of implementations of the SINDy algorithm for spatio-temporal model390
discovery written in the programming language Python (16, 17). Included in the Supplementary391
Material are the associated datasets and Jupyter notebooks used for this study.392

Finally, we highlight that the implementation of SINDy which we are relying on is designed393
specifically for explicit ordinary differential equations. An extension of SINDy exists for394
discovering ODEs with ratios of polynomials (37, 38), however this variation requires a395
significantly greater volume of data than that which we could collect. This is the underlying396
motivation behind our efforts to derive the effective models, thereby converting them into explicit397
ODEs and making effective usage of the volume of experimental data available by the study398
methods most usable for model discovery.399

bioRxiv 14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.09.22.508748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.508748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brummer et al. Discovering CAR-T cell dynamical models

3 RESULTS

3.1 Discovered models and simulated comparison400

Upon implementing SINDy on the CAR T-cell cancer cell killing data and performing the401
Pareto front analysis described in Section 2.3, we identified three distinct models describing402
the experimental data. Model selection is presented in Figure 8, where we present the tradeoffs403
between model complexity, represented by the number of activated library terms, and either404
threshold λ or the root-mean-squared-error between the measured data and simulated data for405
each identified model. Our examination of the Pareto fronts found models with eight terms for406
E:T of 1:4, and 1:8, and a six term model for an E:T of 1:20. Below we summarize each of these407
models and in relation to how well they predict the measured data in Figure 9. We synthesize408
the coefficients and associated model categories for growth in Table 1 and for the CAR T-cell409
functional response and cell binding in Table 2.410

3.1.1 High E:T discovered model411

For the E:T = 1:4 data, the SINDy-discovered model takes the following form,412

dx
dt

= 0.121x + 0.061x2 − 0.018x3 − 0.593xy2 (45)

dy
dt

= 0.191y − 0.351y2 + 0.035xy − 0.009x2y (46)

Factoring the terms related to single-species growth, we arrive at,413

dx
dt

= 0.121x
(

1 − x
4.792

) ( x
1.421

+ 1
)

− 0.593xy2 (47)

dy
dt

= 0.191y
(

1 − y
0.544

)
+ 0.035xy − 0.009x2y (48)

Weak Allee Double Binding

Logistic Type II Response414
415

From Eqs. (47)-(48) we can interpret the discovered types of growth models and interactions.416
For cancer cell growth in Eq. (47), the observable structure indicates a weak Allee effect, with417
a growth rate of ρ = 0.121 hrs-1, a carrying capacity of K = 4.792 CI, and an Allee constant of418
A = 1.421 CI. For the CAR T-cells we find a logistic growth model with growth rate ρ = 0.191419
hrs-1 and carrying capacity K = 0.544 CI. From the coefficients of α = 0.051 CI-1 hrs-1 on xy and420
β = −0.009 CI-2 hrs-1 on x2y for the CAR T-cells, we can infer a Type II functional response as the421
signs are positive and negative, respectively. Finally, the presence of an xy2 term in the cancer422
cells with a coefficient of b̃ = 0.063 CI-2 hrs-1 indicates the occurrence of double binding, notably423
in the absence of both the xy term in the cancer cells and the xy2 term in the CAR T-cells.424

3.1.2 Medium E:T discovered model425

The SINDy-discovered model for the E:T = 1:8 data takes the following form,426
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dx
dt

= 0.237x + 0.04x2 − 0.012x3 − 0.626xy (49)

dy
dt

= 0.112y − 0.358y2 + 0.051xy − 0.009x2y (50)

Factoring the terms related to single-species growth, we arrive at,427

dx
dt

= 0.237x
(

1 − x
6.413

) ( x
3.08

+ 1
)

− 0.626xy (51)

dy
dt

= 0.112y
(

1 − y
0.313

)
+ 0.051xy − 0.009x2y (52)

Weak Allee Single Binding

Logistic Type II Response428
429

The model discovered for medium E:T is largely similar to that at high E:T. A weak Allee430
effect in growth is observed for the cancer cells, with growth rate ρ = 0.237 hrs-1, carrying431
capacity K = 6.413 CI, and Allee constant A = 3.08, while a logistic growth is observed for the432
CAR T-cells with growth rate ρ = 0.112 hrs-1 and carrying capacity K = 0.313 CI. We also observe433
a Type II CAR T-cell functional response, again indicated from the sign of the coefficients of434
α = 0.051 CI-1 hrs-1 and β = −0.01 CI-2 hrs-1 on the xy and xy2 terms being positive and negative,435
respectively. Unlike the high E:T scenario however, here we find evidence only of single binding436
from the sole presence of an xy term in the cancer cells with a coefficient of ã = −0.626 CI-1 hrs-1.437

3.1.3 Low E:T discovered model438

Finally, for the E:T = 1:20 data the discovered model is,439

dx
dt

= 0.150x − 0.012x2 − 0.545xy (53)

dy
dt

= −0.002xy + 0.005x2y − 0.063xy2 (54)

Factoring the terms related to single-species growth, we arrive at,440

dx
dt

= 0.15x
(

1 − x
12.5

)
− 0.545xy (55)

dy
dt

= − 0.002xy + 0.005x2y − 0.063xy2 (56)

Logistic Single Binding

Type III Response Double Binding441
442

In this scenario we find significantly different growth and interaction models. The cancer cells443
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show logistic growth, with growth rate ρ = 0.15 hrs-1 and carrying capacity K = 12.5 CI, while444
the CAR T-cells have no growth model. This time, as the signs for the coefficients of α = −0.002445
CI-1 hrs-1 and β = 0.005 CI-2 hrs-1 on the xy and x2y terms for the CAR T-cells are now negative446
and positive, respectively, we infer a Type III functional response. Interestingly, we find a mixture447
of indicators for both single binding and double binding. This comes from the presence of only448
the xy term in the cancer cell model with a coefficient of ã = −0.545 CI-1 hrs-1, and of an xy2 term449
in the CAR T-cell model with a coefficient of c̃ = −0.063 CI-2 hrs-1.450

All three E:T ratios of 1:4, 1:8, and 1:20 resulted in discovered models that accurately451
characterized the data, with root-mean-squared-errors of 0.02, 0.195, and 0.359, respectively.452
We highlight the discovery of consistent growth models of a weak Allee effect for the cancer cells453
and logistic growth for the CAR T-cells for the E:T ratios of 1:4 and 1:8. Importantly, the growth454
rates and carrying capacity for these scenarios were found to be comparable across E:T ratios.455
Interestingly, we observe a Type II functional response in the CAR T-cells functional response456
for both E:T = 1:4 and 1:8, and a transition to Type III for E:T = 1:20. Similarly, our discovered457
models indicate a transition from double to single binding as the E:T ratio changed from 1:4 to458
1:8, and a model with mixed single and double binding terms was discovered for the E:T = 1:20.459

3.2 Comparison with CARRGO model460

We compared the data first model discovery methodology of SINDy against a traditional model461
first approach originally used to analyze and interpret the CAR T-cell killing dynamics (18, 24).462
The model previously studied is referred to as the CAR T-cell Response in GliOma (CARRGO)463
model, and is expressed as,464

465

dx
dt

= ρxx
(

1 − x
Kx

)
− ãxy (57)

dy
dt

= − θy + αxy (58)

Logistic Single Binding

Type I ResponseExponential Death466
467

where we have expressed the parameter variables of the CARRGO model in terms of those used468
in the SINDy model for ease of comparison. From here we can see that the CARRGO model469
assumes logistic growth in the cancer cells, single binding between the cancer cells and CAR470
T-cells, a Type I functional response in the CAR T-cells, and exponential CAR T-cell death.471

In its original and subsequent implementations, the CARRGO model demonstrated valuable472
utility in quantifying CAR T-cell killing dynamics when treating glioblastoma cell lines either473
alone (18), or in combination with the steroid dexamethasone (24). Inference of the underlying474
biological dynamics were made by examining how parameter values changed along gradients475
of E:T ratios or initial dexamethasone concentrations. This is in direct contrast to the SINDy476
methodology, where the discovery of different model terms provides insight into the underlying477
biological dynamics as a result of variation along the E:T gradient. Comparison of these two478
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models on the same data set provides further insight into the trade offs of data first versus model479
first approaches.480

In Figure 10 are graphs of the best-fit versions of both the CARRGO model and SINDy481
discovered models for each E:T ratio. These fits were performed using the Levenberg-Marquadt482
optimization (LMO) algorithm, which requires initial guesses and bounds for each model483
parameter value. For the CARRGO model published parameter values were used for the starting484
guesses, while for the SINDy discovered models the discovered parameter values served as485
the guesses. Upper and lower bounds on the LMO search space were set at 80% and 120% of486
the originally identified parameter values, respectively, and are listed in the Supplementary487
Table. In Table 3 we present the model-fitting statistics for the reduced chi-squared, χ̃2, Akaike488
information criteria (AIC), and Bayesian information criteria (BIC) methods, as well as the489
parameters determined by LMO. Importantly, we note that fits were performed on data points490
representing averages and ranges for the two experimental trials at each E:T ratio from only the491
measured data.492

We find that across the three statistical tests considered, the CARRGO model performs slightly493
better than the SINDy discovered models at E:T = 1:4 and E:T = 1:20, whereas the SINDy494
discovered model for E:T = 1:8 performed better than the CARRGO model (Table 3). Interestingly,495
the CARRGO model predictions for the CAR T-cell trajectories fail to intercept the final CAR496
T-cell values, where as the SINDy discovered models do. This result highlights a key difference497
between these two approaches, particularly that the SINDy approach required generating a498
time-series trajectory for the CAR T-cells that enforced interception with the final CAR T-cell499
measurement. Alternatively, traditional optimization methods like LMO weight each data point500
by the range of measurement uncertainty, allowing for the possibility of significant deviation501
from the final CAR T-cell measurements as long as such deviations can be compensated with502
better fitting elsewhere amongst the data.503

Another essential difference between the CARRGO and SINDy predictions regarding the CAR504
T-cell trajectories is the CAR T-cell response at the high E:T ratio of E:T = 1:4. Specifically, the505
CARRGO model predicts that the CAR T-cells reach a maximum population exceeding the506
maximum population of cancer cells. This result has significant translational implications for507
CAR T-cell therapy related to patient immune response that we address in the discussion section.508

Despite the noted differences, the overall similarities between the CARRGO and SINDy509
models is demonstrated by the order of magnitude agreement in most shared parameter values,510
specifically the cancer cell growth rate ρx, the cancer cell carrying capacity Kx, and the CAR T-cell511
functional response coefficient α for the specific scenarios of E:T = 1:4 and E:T = 1:8 (Table 3).512
Taken together, these results demonstrate significant value in the SINDy methodology when513
compared to established procedures for parameter estimation.514

3.3 Model Stability515

An important question in performing model discovery for dynamical systems is in relation516
to the overall stability. Automating the task of examining stability for every discovered model517
is challenging given the combination of symbolic computation with floating point coefficients.518
However, by predicting forward in time for each of the models and experimental replicates we519
can qualitatively characterize the stability (see Figure 9).520
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For the E:T = 1:4 scenario, both the data and model indicate complete cancer cell death, with521
the model accurately maintaining a cancer cell population of zero. We note that in several of522
the alternate discovered models produced by SINDy, the cancer cell population would become523
negative in the forward predicted regime. This unrealistic result can be used as an aide in ruling524
out alternative models.525

For the E:T = 1:8 and 1:20 scenarios, both the data and models indicate cancer cell-CAR T-cell526
coexistence, with the forward predictions reaching non-oscillatory steady states. Despite the527
discovered models being the ones with the best accuracy, they all struggle to match the observed528
oscillatory frequency, particularly in the E:T = 1:20 scenario. These results demonstrate the529
capability of SINDy to discover models with variability in solution stability, a core feature of530
nonlinear dynamical systems.531

3.4 Parameter Identifiability532

To better understand the rarity of the discovered models and their respective coefficients, we533
examined histograms for the coefficients of each of the model terms along the Pareto fronts for534
each E:T ratio, presented in Figure 11. This approach allows us to qualitatively assess parameter535
identifiability by seeing the extent to which variability in coefficient values exists, and at the536
expense of prediction accuracy. For most active terms encountered, the coefficients corresponding537
to the selected models based on the Pareto front analysis were the most commonly occurring538
values until deactivation (elimination from discovered models). However, in a few situations we539
see that the coefficient values corresponding to the greatest model accuracy were relatively rare,540
and varied significantly as increasingly more terms were removed. This occurs in the coefficients541
for the x and xy2 terms in the cancer cells for the E:T = 1:4 scenario in figure 11a, and the x and xy542
terms in the cancer cells for both the E:T = 1:8 and 1:20 scenarios in figure 11b and c. These terms543
were shown to be the final remaining active terms in discovered model, suggesting that they are544
capable of capturing the greatest extent of variation in our cancer cell-CAR T-cell killing data. Of545
note once again is that amongst these dominant interaction terms we see a transition from those546
indicative of double binding at high E:T ratios to single binding at medium and low E:T ratios.547

4 DISCUSSION

We examined in vitro experimental CAR T-cell killing assay data for a human-derived548
glioblastoma cell line (Figure 1). From our results we infer transitions in the phenomenological549
killing behavior of the CAR T-cells as a consequence of varying their initial concentration550
compared to the cancer cells. Our discovered models predict that at high effector to target551
ratios (E:T = 1:4) the CAR T-cell levels respond according to a Type II functional response in552
which they survive and/or expand faster at low density, and slower at high density, and they553
predominantly form double binding conjugates with cancer cells prior to cell killing. At medium554
E:T ratios of E:T = 1:8 our discovered model again predicts the CAR T-cells undergoing a Type555
II functional response, but now forming only singly bound conjugates prior to cell killing. At556
low E:T ratios of E:T = 1:20 our discovered model predicts the CAR T-cells shift to a Type III557
functional response, in which they survive and/or expand slower at low density, and faster at558
high density. In this final scenario we find a mixture of single and double conjugate formation559
occurring. Finally, our discovered models predict the growth strategies of the cancer cells as560
being a weak Allee effect at high and medium E:T ratios, and logistic at low E:T ratios, while561
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the cancer cells are predicted to follow logistic growth for high and medium E:T ratios. Model562
coefficients used to deduce these results are found in Tables 1 and 2, and model simulations and563
forward predictions are shown in Figure 9.564

A crucial result of this work is the comparison between the data first approach of SINDy to565
the traditional model first approach of CARRGO. Despite the discovered SINDy models having566
more degrees of freedom (i.e. mathematical terms) than the CARRGO model, both models were567
found to perform comparably as indicated in Figure 10 and Table 3. Yet, there are key differences568
regarding the interpretation of these two approaches. Traditional model first approaches like the569
CARRGO model assume a strict individual model that may exhibit variation in its coefficients or570
model parameters to reflect variation in the underlying biology or experimental conditions. On571
the other hand, one of the strengths of the data first approach of SINDy is that these coefficient572
variations can be shifted onto discovery of altogether different model terms. As we show, these573
different terms can have direct interpretations related to the underlying biology and dynamics.574
For example in (18), variation in the CAR T-cell response due to changes in the experimental575
E:T ratio could only be indicated through variation in the coefficients of the Type I functional576
response term, or the value of α in Eq. (58). Specifically, increases in α were interpreted as a high577
CAR T-cell response rate, or CAR T-cell expansion, and decreases in α were interpreted as a low578
response rate, or as CAR T-cell exhaustion. Whereas the SINDy model predicts entirely different579
CAR T-cell functional response terms, providing greater interpretation of these transitions in the580
CAR T dynamics and biology. Specifically, a Type II functional response at high and medium581
E:T, or a fast-to-slow CAR T-cell response rate, and a Type III functional response at low E:T, or a582
slow-to-fast CAR T-cell response that is again suggestive of exhaustion.583

4.1 Interpreting Discovered Coefficients584

We demonstrate the value of the effective model parameters for inferring underlying biology by585
considering the high E:T model presented in Eqs. (47)-(48). In this scenario, a Type II functional586
response in the CAR T-cells is deduced from the negative sign on β, corresponding to the concave587
down parabolic nature of the CAR T-cell functional response with fast proliferation at low cancer588
cell density and slow proliferation at high cancer cell density (Figure 3). The implication that589
cancer cell killing is induced by double binding of CAR T-cells to cancer cells comes from multiple590
terms. The most direct indicator is b̃ ̸= 0, where b̃ = (bh − ak)/k2 with bh/k representing the591
rate of cancer cell death from double conjugates, and a/k the rate of cancer cell death from single592
conjugates. Supporting indicators come from the positive sign on α = p/g − c/h, suggesting that593
the CAR T-cell death rate from single conjugate formation, c/h is small compared to the leading594
order CAR T-cell response rate, p/g. Further evidence is in the inactivation of the xy term in595
the ẋ(t) equation with coefficient ã. Here, ã = a/h is the rate of cancer cell death from single596
conjugate formation, whose absence suggests that double binding formation is predominantly597
responsible for cancer cell death.598

A similar analysis of model coefficients for the low and medium E:T ratio scenarios predicts a599
transition in the interactions between the CAR T-cells and cancer cells. Specifically, our approach600
predicts that the CAR T-cells form double conjugate pairs with high E:T ratios, then switch to601
single conjugate pairs at medium and low E:T ratios. Similarly, our results predict a transition in602
the functional response, indicating Type II functional responses in the CAR T-cells for high E:T603
ratios and Type III responses in the low E:T ratios. These transitions in detected model terms are604
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phenomenologically consistent with the interactions being dependent on CAR T-cell density, and605
highlight the hypothesis generating strength of data first model discovery techniques. Namely,606
the prediction of CAR T-cell killing dynamics being dependent on the relative abundance of CAR607
T-cells compared to cancer cells. We next present several opportunities for experimental testing608
of these model predictions.609

4.2 Challenges and Limitations610

A challengze to the implementation of SINDy is data sparsity. Despite having high temporal611
resolution of the cancer cell trajectories (1 measurement per 15 minutes), the CAR T-cell612
populations consisted of only the initial and final measurements. To resolve sparsity in the613
CAR T-cell levels, we used latent variable analysis to extract the CAR T-cell trajectory from an614
approximation to the attractor of the dynamical system as determined by the cancer cell trajectory.615
We note that in determining the dimensionality of the latent variable subspace, we selected an616
embedding dimension of m = 2 despite the appearance of further benefit in using an embedding617
dimension of m = 3, as indicated in Figure6b. This choice was made due to our experimental618
limitations in only having flow cytometry data for the CAR T-cells at the initial and final time619
points, and no further data with which to constrain any additional latent variables. The existence620
of a second latent variable, as suggested by the third embedding dimension, could be due to621
single or double binding conjugates if the reaction rates are sufficiently slow, or, alternatively,622
a biochemical secretion that is modulating the cancer cell and CAR T-cell interactions. Future623
experimental and modeling efforts may further illuminate the nature of this third state variable.624

One potential limitation with latent variable analysis is that the trajectories retrieved through625
Taken’s Theorem are not guaranteed to be unique, but rather will be diffeomorphic to the626
true latent variable. That is, subject to topological stretching or skewing, which translates to627
variation in discovered model coefficients. This effect can be seen in Bakarji et. al (59), where628
the coefficients of the latent variables discovered for the two-state, predator-prey model are not629
in precise agreement to those used in the original simulation. However, it is important to note630
that the model terms discovered by SINDy with this methodology are biologically insightful,631
even though the coefficients multiplying the discovered model terms on latent variables may632
be subject to variation. Importantly, we provide further experimental information for the latent633
CAR-T cell variable through bounding of the initial and final CAR-T cell trajectory with direct634
measurements. Likewise, we only discover terms which are structurally identifiable through635
model inversion, minimizing the potential for diffeomorphic skewing of CAR-T cell trajectories636
to be discovered from Taken’s Theorem.637

A second challenge is that our data in total consists of two trials for each effector-to-target ratio.638
While there exist SINDy implementations designed to discover models with ratios of polynomials,639
the approaches require prohibitively many experimental trials to ensure accuracy (37, 38). To640
resolve sparsity in the number of experimental trials, we derived effective interaction models641
of cancer cell and CAR T-cell dynamics from model ODE terms with ratios of the polynomials642
using binomial approximations. These effective interaction models allowed for the identification643
of multiple constraints on the library function space used in SINDy, and guided our inferential644
analysis of the discovered models.645
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4.3 Future Directions646

To validate the hypothesized binding and functional response dynamics, we propose two647
potential experiments. Both experiments rely on similar initial conditions as those conducted648
for this study, but in one we propose the use of bright field microscopy to visually inspect CAR649
T-cell dynamics at different points in time and for the different E:T ratios. This approach ought650
to aide in identifying the relative abundance of binding types and functional responses. The651
second experiment would be to conduct endpoint analyses using flow cytometry to determine652
the population of CAR T-cells throughout the trajectory. This experiment would test the different653
CAR T-cell predictions from the CARRGO model and the SINDy models, most notably the654
predicted time to reach maximum CAR T-cell populations (Figure 10). Furthermore, targeted655
staining can provide information on the number of CAR T-cell generations and the ratio of helper656
T-cells (CD4+) to cytotoxic, killer T-cells (CD8+). These metrics may better inform the number of657
true effector cells responsible for killing cancer cells, allowing for more accurate characterization658
of CAR T-cell response.659

Despite having high measurement sampling rates for the cancer cell population, the total660
experiment duration prevents the observation of highly periodic dynamics, a challenge to the661
standard implementation of SINDy in which observation windows generally span multiple662
periods of system dynamics. Thus we propose experimentally resolving the CAR T-cell trajectory663
to overcome this obstacle. This experiment additionally serves to test the validity of our latent664
variable analysis, which uses the cancer cell trajectory to predict the CAR T-cell trajectory as665
presented in Figure 7. Future experiments will also extend this analysis to include other CAR666
designs, including evaluating the impact of costimulatory signaling, CAR affinity and target667
density on modeling of CAR T-cell killing dynamics.668

4.4 Clinical Applications669

The clinical relevance of the data first framework is in the domain of precision medicine. The670
approach naturally caters to in situ monitoring of patient response to therapy and forecasting671
future trajectories. An open question in this field is determining the sufficient number of early672
measurements necessary for accurate forecasting, and quantifying the extent of reliable forward673
prediction. This type of application falls under the field of control theory, in which real-time674
measurements for systems such as navigation, fluid dynamics and disease monitoring can inform675
model-based interventions (15). Control theory has been identified as a key tool in achieving676
optimized individual treatment outcomes, yet challenges are ever-present in parsimonious model677
selection. The SINDy methodology may help streamline and simplify the model selection process,678
while simultaneously incorporating control theory methods for treatment optimization. As an679
example related to the experiments considered here, one could envision a therapeutic intervention680
to administer more CAR T-cells in the low E:T ratio of 1:20 as soon as the Type III functional681
response and single binding dynamics are predicted in a patient. This intervention would serve to682
push the dynamics of the patients immune response into the double biding and Type II response683
regime, thereby improving therapeutic efficacy.684
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5 CONCLUSIONS

In this work we present the first, to our knowledge, application of the sparse identification of685
non-linear dynamics (SINDy) methodology to a real biological system. We used SINDy with686
highly time-resolved experimental data to discover biological mechanisms underlying CAR T-cell-687
cancer cell killing dynamics. Our implementation highlights the hypothesis generating potential688
of data-driven model discovery and illuminates challenges for future extensions and applications.689
To overcome challenges related to data limitation, we utilized latent variable analysis to construct690
the trajectory of the CAR T-cells, and we implemented binomial expansions to simplify specific691
model terms. Our results predict key mechanisms and transitions in the interaction dynamics692
between the CAR T-cells and cancer cells under different experimental conditions that may be693
encountered in the application of these therapies in human patients. Specifically, we identified694
transitions from double CAR T-cell binding to single CAR T-cell binding, and from fast-to-slow695
CAR T-cell responses (Type II) to slow-to-fast responses (Type III). Both transitions occur as a696
result of decreasing the relative abundances of CAR T-cells to cancer cells (initial E:T ratios).697
Importantly, these results demonstrate the potential for data first model discovery methods to698
provide deeper insight into the underlying dynamics and biology than model first approaches,699
and offer a new avenue for integrating predictive modeling into precision medicine and cancer700
therapy by an improved mechanistic understanding of cancer progression and efficacy of CAR701
T-cell therapy.702
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FIGURE CAPTIONS

Figure 1. Diagram of experimental procedure highlighting use of microelectrode plates in an
xCELLigence cell analyzer system and sample Cell Index (CI) measurements for control and
treatment groups (E:T = 1:4). This system utilizes real-time voltage measurements to determine CI
values representative of the adherent cancer cell population as a function of time. CAR T-cells are
added following 24 hours of cancer cell expansion and attachment. After 6-8 days of monitoring
the cancer cell growth and death dynamics, cells are harvested and enumerated using flow
cytometry.
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Figure 2. Conceptual graphs of rates of change in cancer cell populations versus population
size (left panels) and population size versus time (right panels) for the three growth models
presented in Eqs. (3)-(5): logistic growth a and b; weak Allee effect c and d; strong Allee effect e
and f. Model parameter values are: ρ = 0.75 hrs-1, K = 10 CI, A = 5 CI, and B = 5 CI. Colors
correspond to different initial cancer cell seeding conditions which are the same for each model
in a cancer cell only scenario (blue = 12CI, orange = 8CI, green = 4CI, red = 1CI).
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Figure 3. Functional responses (per-CAR T-cell response rates) versus cancer cell population.
Model parameters for functional responses are: p = 6/5 CI-1·hrs-1 for Type I; p = 6 CI-1·hrs-1 and
g = 5 CI for Types II and III. Note overlap of Types I and II functional responses for x < 1 CI, and
distinct differences in concavity between Types II (negative) and III (positive) for x < 2 CI. These
characteristics correspond to Type I and Type II functional responses being indistinguishable
at low cancer cell populations, and Type II and Type III being differentiated by fast-then-slow
response rates (Type II) versus slow-then-fast response rates (Type III).
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Figure 4. Compartmental model for single and double cell binding kinetics. Expressions for how
rate constants combine to contribute to the growth or death of the cancer cell and CAR T-cell
populations are presented in Eqs. (18)-(23). See (30) for further development and analysis of the
cell binding model.
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Figure 5. Binding rates (per-cancer cell CAR T-cell binding) versus CAR T-cell population for
the single binding, double binding, and effective double binding models in Eqs. (18)-(21), (25),
and (27). Model parameters for antigen bindings are: a = 20 CI-2·hrs-2 and h = 16 CI-1·hrs-1

for single binding; a = 20 CI-2·hrs-2, b = 5 CI-3·hrs-2, h = 16 CI-1·hrs-1, and k = 2 CI-2·hrs-1 for
double binding; and a = 20 CI-2·hrs-2, b = 2.75 CI-3·hrs-2, h = 16 CI-1·hrs-1, and k = 2 CI-2·hrs-1

for effective double binding. These parameter values were chosen to highlight how well the
effective double binding model can approximate both the single and double binding models at
low CAR T-cell population values, y < 1 CI. Note that since the original double binding model in
this scenario is concave-up, the effective double binding model parameters should be chosen to
match concavity. This requirement sets a positivity constraint on the quadratic term in Eqs. (25)
and (27).
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Figure 6. Graphs for determining a the ideal time delay, τ, by examining mutual information
and b the ideal embedding dimension, m, by examining the fraction of false nearest neighbors.
These methods are explained in detail in (55). For our data, the optimal time delay found was
τ = 1 and the optimal embedding dimension m = 2.
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Figure 7. Latent variable analysis results. a-b are replicates 1 and 2 for the high E:T ratio, c-d
are replicates 1 and 2 for the medium E:T ratio, and e-f are replicates 1 and 2 for the low E:T
ratio. Presented for each trial are the cancer cell index measurements from the xCELLigence
machine in red, overlaid with the splined measurements for the cancer cells in black; the two
endpoint measurements for the CAR T-cell levels enumerated by flow cytometry in black, with
the CAR T-cell population trajectory as determined by latent variable analysis in yellow, overlaid
with the splined CAR T-cell trajectory in blue. Note that despite the CAR T-cell populations
being measured with flow cytometry, we have converted levels to units of Cell Index for ease of
comparison with the cancer cells, using a conversion factor of 1CI ≈ 10, 000 cells.
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Figure 8. Pareto front analysis of system sparsity. a-b: high E:T, c-d medium E:T. a and c sparsity
(number of discovered terms) versus threshold λ and b and c root-mean-squared-error (RMSE)
versus number of terms. Note that the RMSE values were calculated using the discovered models
and the splined measurements. Selected models are represented by purple circles.
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Figure 9. Predicted trajectories of discovered models compared to splined measurements of
cancer cells and CAR T-cells. Cancer cell measurements are the black points, while CAR T-cell
measurements are the blue points. Predicted trajectories for cancer cells are the red dot-dashed
lines, while the CAR T-cells are the purple dot-dashed lines. Model simulations and forward
predictions for replicates 1 and 2 for scenarios of (a-b) high E:T, (c-d) medium E:T, and (e-f)
low E:T. Note that the best fits between predictions and measurements occur in the high E:T
scenario, where assumptions made regarding treatment success and low cancer cell populations
in determining model candidate terms are best adhered to. As the E:T ratios get smaller, increasing
deviation between discovered model predictions and splined measurements can be qualitatively
observed.
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Figure 10. Predictions of cell trajectories for E:T ratios of 1:4, 1:8, and 1:20 from CARRGO
model (blue) and SINDy model (red). Model fits were performed using Levenberg-Marquadt
Optimization on data aggregated across experimental replicates. Data points represent the mean
of all experimental replicates, while error bars represent the ranges across replicates. Of note
are the differences in CARRGO and SINDy model predictions for the final CAR T-cell values
compared to measurements, and the notable difference in when the maximum CAR T-cell
population is reached between CARRGO and SINDy models.
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Figure 11. Frequency of discovery for model terms as threshold λ is varied across 1000 values
from the interval [5−3, 101] for a high E:T, b medium E:T, and c low E:T. Black circles indicate
values for coefficients corresponding to the selected model based on the Pareto front analysis in
Figure 8.

bioRxiv 38

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.09.22.508748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.508748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brummer et al. Discovering CAR-T cell dynamical models

6 TABLES

Table 1. Coefficients for discovered growth model terms across all effector to target ratios.
E : T Growth of

cancer cells
(x)

Growth rate
ρx (hrs-1)

Carrying
capacity Kx

(CI)

Allee
constants
Ax , Bx (CI)

Growth of
CAR T-cells

(y)

Growth rate
ρy (hrs-1)

Carrying
capacity Ky

(CI)

Allee
constants
Ay, By (CI)

1 : 4 Weak Allee 0.121 4.792 1.421 Logistic 0.191 0.544 –1

1 : 8 Weak Allee 0.237 6.413 3.08 Logistic 0.112 0.313 –
1 : 20 Logistic 0.15 12.5 – – – – –

1 – indicates term not discovered.
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Table 2. Coefficients for discovered interaction model terms across all effector to target ratios.
E : T Response of

CAR T-cells
Type I & II
response α
(CI-1 hrs-1)

Type II & III
response β
(CI-2 hrs-1)

Cancer
cell-CAR

T-cell binding

Single binding
ã (CI-1 hrs-1)

Double
binding b̃

(CI-2 hrs-1)

Double
binding c̃ (CI-2

hrs-1)

1 : 4 Type II 0.035 −0.009 Double –1 0.593 –
1 : 8 Type II 0.051 −0.009 Single 0.626 – –

1 : 20 Type III −0.002 0.005 Mixed 0.545 – 0.063
1 – indicates term not discovered.
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Table 3. Fitting statistics for CARRGO and SINDy models and comparison of shared parameters.
Fitting statistics considered are the reduced chi-squared, χ̃2, the Akaike information criteria
(AIC) and Bayesian information criteria (BIC). Of note are the scores indicating a better fit
for the CARRGO model at E:T = 1:4 and 1:20, despite differences in the endpoint CAR T-cell
population predictions in Figure 10. Furthermore, we observe generally favorable agreement
between parameter estimates, suggesting the data first approach of SINDy as a viable alternative
to traditional model first parameter inference methods.

Model –E:T χ̃2 AIC BIC Cancer growth
rate ρ (hrs-1)

Cancer carrying
capacity Kx (CI)

Cancer killing
ã (CI-1 hrs-1)

CAR T response
α (CI-1 hrs-1)

CARRGO –1:4 13.6 1380 1400 0.471 3.70 0.555 0.0318
SINDy –1:4 23.0 1660 1700 0.116 4.78 –1 0.0327
CARRGO –1:8 0.919 -39.6 -18.3 0.361 6.82 1.26 0.015
SINDy –1:8 0.401 -474 -440 0.190 7.06 0.588 0.0436
CARRGO –1:20 3.14 609 631 0.206 7.69 1.81 0.0195
SINDy –1:20 3.55 674 700 0.123 11.1 0.540 -0.0024

1 – indicates term not discovered.
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