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ABSTRACT

In the development of cell-based cancer therapies, quantitative mathematical models of
cellular interactions are instrumental in understanding treatment efficacy. Efforts to validate
and interpret mathematical models of cancer cell growth and death hinge first on proposing a
precise mathematical model, then analyzing experimental data in the context of the chosen model.
In this work, we present the first application of the sparse identification of non-linear dynamics
(SINDy) algorithm to a real biological system in order discover cell-cell interaction dynamics in
in vitro experimental data, using chimeric antigen receptor (CAR) T-cells and patient-derived
glioblastoma cells. By combining the techniques of latent variable analysis and SINDy, we infer
key aspects of the interaction dynamics of CAR T-cell populations and cancer. Importantly, we
show how the model terms can be interpreted biologically in relation to different CAR T-cell
functional responses, single or double CAR T-cell-cancer cell binding models, and density-
dependent growth dynamics in either of the CAR T-cell or cancer cell populations. We show
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how this data-driven model-discovery based approach provides unique insight into CAR T-cell
dynamics when compared to an established model-first approach. These results demonstrate the
potential for SINDy to improve the implementation and efficacy of CAR T-cell therapy in the clinic
through an improved understanding of CAR T-cell dynamics.

Keywords: dynamical systems; latent variables; CAR T-cells; antigen binding; allee effect; SINDy; glioblastoma; cell therapy

1 INTRODUCTION

Dynamical systems modeling is one of the most successfully implemented methodologies
throughout mathematical oncology (1). Applications of these model first approaches have lead
to important insights in fundamental cancer biology as well as the planning and tracking of
treatment response for patient cohorts (2,3,'4} 5, 6, 7, 8, 9). Simultaneously, the last twenty years
have seen explosive growth in the study and application of data-driven methods. These data
first approaches, initially implemented as machine learning methods for imaging and genomics
analyses, have seen much success (10, 11). However, such approaches are often limited to
classification problems and fall short when the intention is to identify and validate mathematical
models of the underlying dynamics. Recent efforts by us and others have aimed to develop
methodologies that bridge these model first and data first approaches. (12,13} [14).

In this work, we combine the methods of latent variable discovery and sparse identification of
nonlinear dynamics (SINDy) (15} 16, 17) to analyze experimental in vitro cell killing assay data
for chimeric antigen receptor (CAR) T-cells and glioblastoma cancer cells (18). This experimental
data, featuring high temporal resolution, offers a unique opportunity to conduct an in situ test of
the SINDy model discovery method. Interpretation of the discovered SINDy model is conducted
under the expectation of a predator-prey interaction model in which the cancer cells function as
the prey and the CAR T-cells the predator (19).

Predator-prey systems are a broad class of ordinary differential equations (ODEs) that aim
to characterize changes in populations between two or more groups of organisms in which at
least one survives via predation on another. Originally applied to the study of plant herbivory
(20) and fishery monitoring (21) in the early 20" century, predator-prey models have since
become a workhorse of ecology, evolutionary biology, and most recently mathematical oncology
(19] 22). For example, predator-prey models of CAR T-cell killing dynamics have shed light
on the underlying biological mechanisms of action (18, 7), and have informed effective dosing
strategies for combination CAR T-cell and targeted radionuclide therapy (23), and CAR T-cell
therapy in combination with the anti-inflammatory steroid Dexamethasone (24). Over time,
important extensions to predator-prey models have been incorporated to account for a variety
of biological phenomena. In this work we focus on the following extensions: predator growth
that is dependent on the density of prey, also known as a functional response (25, 26); individual
predator and prey growth that saturates at some maximum value (logistic growth) (18), or has a
population threshold below which collapse occurs (the Allee effect) (27, 28); and predator-prey
interactions in which one or two CAR T-cells are bound to a single cancer cell at once, referred to
as single or double binding, respectively (29, 30).

An ever-present challenge to quantitative biologists is fitting a proposed model to experimental
data, also known as parameter estimation or model inference. On one hand, quantitative
biologists seek models that capture as much biological realism and complexity as possible.

bioRxiv 2


https://doi.org/10.1101/2022.09.22.508748
http://creativecommons.org/licenses/by-nc-nd/4.0/

56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79

80
81
82
83
84
85
86
87
88
89

90

91
92
93
94
95
96

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.22.508748; this version posted December 13, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Brummer et al. Discovering CAR-T cell dynamical models

On the other hand, increasing model complexity increases the computational challenge to
accurately, confidently, and expediently determine model parameter values. This approach
is further complicated if a researcher chooses to compare competing or complementary models
(31} 32). An alternative approach, examined in this paper, is to leverage newly developed
methods rooted in data science and machine learning which identify the strength of individual
mathematical terms as candidates for an explanatory model. These methods are often referred to
as dynamic mode decomposition, symbolic regression, or sparse identification.

Dynamic mode decomposition (DMD) is a data driven technique that interrogates time-series
data by performing a singular value decomposition (SVD) on carefully structured matrices of the
given data (33} 13). In this formalism, the orthonormal basis vectors generated by singular value
decomposition serve as linear generators of the system dynamics such that forward prediction can
be performed absent a known underlying mathematical model. Alternatively, SINDy identifies
the specific mathematical terms that give rise to the observed dynamics governed by ordinary
and partial differential equation models (15). SINDy achieves this by regressing experimental
data onto a high-dimensional library of candidate model terms, and it has proven successful in
climate modeling (34), fluid mechanics (35), and control theory (36). Since the initial publication of
SINDy, several extensions have been studied, including: discovery of rational ordinary differential
equations (37, 38); robust implementation with under-sampled data (39) or excessive noise (40);
or incorporation of physics informed neural networks when particular symmetries are known to
exist (41).

In this paper we utilize our experimental data to test several aspects of the DMD and SINDy
frameworks. In Section we introduce the families of models that are anticipated to be
simultaneously biologically relevant and identifiable by SINDy, and we introduce a new approach
to performing SINDy-based model inference.

In Section we present the latent variable analysis based on DMD that is used to generate
the time-series CAR T-cell trajectories based on those of the cancer cells and the known boundary
values for the CAR T-cells. In Section 2.3.2)we introduce the SINDy methodology in the particular
context of our application. Results of our approach are presented in Section |3| where we (1)
highlight how the discovered models vary as a result of different initial conditions in the
cancer cell and CAR T-cell populations and (2) examine how well the discovered models found
in this data first approach compare to a typical model first in characterizing the experimental
data. In Section [d] we demonstrate how our results can guide experimental design to validate
the predictions made by the discovered models, and we elaborate on some of the challenges
encountered in this study.

2 MATERIALS AND METHODS

2.1 Experimental setup

The data analyzed in this study come from previously conducted experiments whose procedures
are described in Sahoo et al. (18) and Brummer et al. (24), and summarized in Figure |1, The
primary brain tumor cell line studied (PBT128) was selected for its endogenous high and relatively
uniform expression of IL13Ra2 antigen (89.11% IL13Ra2+) (24). This cell line was derived from
glioblastoma tumor resection tissue as described in (42,43)). To generate IL13Ra2-targeted CAR
T-cell lines, healthy donor CD62L+ naive and memory T-cells were lentivirally transduced to
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express second-generation 4-1BB-containing CAR that utilizes the IL13 cytokine with an E12Y
engineered mutation as the IL13Ra2 targeting domain (44).

Cell killing experiments were conducted and monitored with an xCELLigence cell analyzer
system. Measurements of cancer cell populations are reported every 15 minutes through changes
in electrical impedance as cancer cells adhere to microelectrode plates, and are reported in units
of Cell Index (CI), where 1 CI =~ 10K cells (45, 146, 47). Flow cytometry was used to count the
non-adherent CAR T-cells upon termination of the experiment. Measurements of CAR T-cell
populations are reported in units of CI for the purposes of working in a common scale. We
used the conversion factor of 1 CI ~ 10K cells. Cancer cells were seeded at 10K — 20K cells and
left either untreated or treated with only CAR T-cells, with treatments occurring 24 hours after
seeding and monitored for 6-8 days (Figure [I). CAR T-cell treatments were performed with
effector-to-target ratios (E:T) of 1:4, 1:8, and 1:20. All conditions were conducted in duplicate.

2.2 Effective interaction models

Challenges to the model first approach to systems biology are (1) deciding on a sufficiently
comprehensive model that captures all pertinent phenomena and (2) fitting the selected model to
available data. Researchers are tasked with justifying their decisions in selecting candidate models.
Yet, a common feature of dynamical systems models are the presence of ratios of polynomials.
Such terms in ODEs can be difficult for the convergence of optimization algorithms to global
solutions due to the possible existence of multiple local solutions within the model parameter
space (48). In such instances researchers must either rely on high performance computational
methods, have collected a vast amount of experimental data, or both. To address this problem,
we utilize binomial expansions of candidate model terms under the assumptions of CAR T-cell
treatment success and fast, irreversible reaction kinetics. In the following sections we present
the space of possible models anticipated to characterize our experimental system, and the steps
necessary to reduce the complexity of these candidate models.

The dynamical model that our experimental system is anticipated to follow is defined
generically as,

dx

2 = Gxl(x) — xBx(y) @)
d
== Gy(y) +yR(x) — xBy(y) @

where G, and gy represent a growth-death model for the cancer cells, x, and the CAR T-cells, y.
By and B, represent a binding model for whether single or pairs of CAR T-cells attack individual
cancer cells, and R represents a model for the CAR T-cell functional response. In the subsections
below, we explore different families of models representing the terms in the above equations.
Explicitly, we examine different types of (a) Growth and death models, (b) Functional response
models, and (c) CAR T-cell-cancer cell binding models.
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2.2.1 Growth and Death

We consider three different growth-death models for both the cancer cells and CAR T-cells.
These are logistic growth, and the weak and strong Allee effect models, presented as,

( PxX (1 - i) Logistic growth 3)
Ky
X x
Ge(x) =< pxx|1—— | (1+-—) Weak Allee effect 4)
X x
PxX (1 — —) <— — 1) Strong Allee effect (5)
\ Ky /) \ Bx

for Gy (x), and similarly for G, (y). Here, p, is the net growth rate, Ky is the population carrying
capacity, Ay is a weak parameterization of deviations from logistic growth, and By is the threshold
for population survival or death absent predation. All model parameters are assumed positive,
with the added constraint that K, > B, > 0. We anticipate similar growth models for the CAR
T-cells, gy(y), with allowance of different models for the different cell types and model constants.
Logistic growth is commonly favored for its simplicity in experimental systems (18| 23| 24), while
there is growing evidence that Allee effects are required for accurate characterization of low
density cancer cell populations (27, 28, 49| 50) or as the result of directed movement (51), the
latter of which being an observable feature of CAR T-cell behavior using bright field imaging
(18, 24).

In Figure |2, graphs of population growth rates versus population size and population size
versus time are presented for each growth model and for a variety of initial conditions. Parameter
values used were p = 0.75 hrs!, K=10CI, A = 5CI, and B = 5 CI. Examination of the logistic
growth model in Figure Za, b and the weak Allee effect in Figure 2, d demonstrates similar
population saturation at the carrying capacity K = 10 CI, but a slight deviation between how the
models reach saturation. Specifically, the weak Allee effect exhibits a reduced per capita growth
rate at low population densities comapared to logistic growth. Examination of Figure 2e and
d demonstrates the crucial difference between the strong Allee effect and either of the logistic
growth or weak Allee effect through the existence of a minimum population threshold, B, above
which the population will persist, and below which the population will die off.

Due to the fact that SINDy produces discovered models in their polynomial form without
factoring, or grouping of terms together, we must consider the un-factored polynomial form
of each model. To determine appropriate constraints on the model coefficients, we will expand
the growth models and factor by common monomials. Doing so for G,(x) and dropping the
subscript gives the following,
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( Px 2 -
pxX — 7 X Logistic growth (6)
X
Px  Px\ 2 Px 3
— D - Weak Allee effect 7
Gre(x) =< pxx + (Ax Kx) X KxAxx ea ee effec (7)
—pxX + Px + Px x? — ‘O—xx3 Strong Allee effect (8)
\ Ky = By KyBx

and similarly for G,(y). Here we can see that the coefficients for x and x* can be positive or
negative, but the coefficients for x3 must be fixed as negative values, where we have absorbed
the minus signs in Egs. (7)-(8) into px /KA.

2.2.2 Functional response

We next consider the first three types of functional response models that characterize how the
CAR T-cells respond, or expand, in the presence of cancer cells. These models are defined as,

(px Typel )
px
——  Typell 10
R _lgrs P (10)
2
P
oy Type I1I (11)

where p is the predator response, or CAR T-cell response rate, and g is the prey population
density threshold at which predator behavior changes (e.g. fast-to-slow or slow-to-fast rates
of killing). Functional responses model changes in predator hunting due to the prey density,
generally defined with respect to some prey population threshold, here denoted as g. The
population dependence on predator hunting behavior can also be interpreted as a handling time
for distinguishing between time spent seeking prey, or recognizing cancer cells, and time spent
consuming and attacking prey (25, 26} 19).

The three types of functional responses are graphed in Figure 3| In a Type I functional response,
the predator response is constant for all prey population sizes. The interpretation of this response
is that there are no differences in time or cost between all predator functions (searching and
capture). In a Type II functional response the predator response is linear at low prey density
(mirroring a Type I behavior) yet saturates at high prey density. Finally, in a Type III functional
response the predator response is low at low prey densities, reflecting the potential for cancer
cells to escape immune surveillance, yet again saturates at high prey densities, with a linear
response at intermediate prey densities.

Importantly, the rational forms of Types II and III functional responses typically complicate
determination of parameter values in conventional dynamical modeling. To reduce model
complexity, we assume a significant level of effectiveness in CAR T-cell treatment such that the
cancer cell population remains relatively low with respect to the functional response threshold,
thatis x < g, or x/g < 1. CAR T-cell effectiveness is demonstrated in Figure 1, where the control
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cancer cell population is shown to achieve a maximum population of approximately 6.5 CI, while
the treatment population of E : T = 1 : 4 reaches a maximum population of approximately
2CI. The approximation condition permits the use of a binomial expansion about x = 0 on the
denominators for the Types II and III functional responses, resulting in,

( px Typel (12)
2 o j
px X X . x
—(1-=4+=+) (-1) (—) ) Type II (13)
2 2 4 oo 2\ J

px X X . x

= 1l11l-=4+—+ —1]<—> Type II1 (14)
\ g2 ( 2 j_23( ) g ) yp

Further assuming that contributions to the functional response models of O(x%/¢%) or greater are
negligible, we terminate the expansions at O(x?/¢?) to arrive at the following effective functional
response models,

([ px Typel (15)
2
px — px
E_E Typell 16
R(x)=4 g & 1o
2
’;iz Type I1I (17)

It is important to highlight that the leading order term for the expansion for a Type II functional
response is indistinguishable from a Type I functional response. This feature is reflected by
the overlap in the graphs of the Type I and Type II responses presented in Figure [3| where
the cancer cell population is small, x € [0,1] CI, compared to the value of ¢ = 5 CI. As the
cancer cell population increases, the density dependence of the CAR T-cells starts to take effect
as demonstrated by the parabolic contribution of the Type II response. In contrast to this, the
expansions for functional responses of Types II and III are significantly unique from one another.
Specifically, only expansions for Type II can lead to odd-powered terms in x, and although both
expansions can express similar even-powered terms, they come with different concavities. That
is, at small cancer populations the Type II functional response is characterized as a concave
down parabola, while the Type III functional response is characterized as a concave up parabola.
This difference regarding the positivity of the terms that are of second-order dependence in x
corresponds to the different density dependent behaviors of the CAR T-cells at small cancer cell
populations, specifically that Type Il is a fast-to-slow response rate while Type III is a slow-to-fast
response rate.

By performing the approximations used to derive Eqgs.(16)-(17), and using truncated terms, we
have reduced the complexity of the functional response terms. This step will simplify the process
of model discovery. However, since this step assumes that the prey population remains small
compared to the functional response threshold, the number of terms needed in Egs.(13)-(14) for
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accurate characterization of the system dynamics may vary as a result of experimental variation
in the effector to target ratio of the CAR T-cells and the cancer cells. This variation in the effector
to target ratio may also influence the structure of other interaction terms, specifically those
pertaining to the single or paired binding dynamics.

2.2.3 CAR T-cell-cancer cell binding

Cell binding models characterize the rates of formation and disassociation of conjugate pairs of
species, also referred to as interaction molecules (Figure . These models historically are known
as Hill-Langmuir functions for their originating studies in hemoglobin formation (52) and gas
adsorption on material surfaces (53), yet perhaps are better known for their use in modeling
enzyme reaction kinetics, or Michaelis-Menten kinetics (54). The same modeling principles
have been extended to examine cell binding in T-cell and cancer cell interactions (2, 29, 30). An
important challenge to the field of cancer immunotherapy modeling is characterizing higher-order
cell binding dynamics. That is, the formation of conjugates that consist of multiple CAR T-cells
attacking single cancer cells (Figure ). These cancer cell-CAR T-cell conjugates are hypothesized
to form as either a consequence of increased effector to target ratios or as a result of increased
antigen density on target cells. As our experiment uses one single cell line with a high and uniform
antigen expression level of IL13Ra2, we assume on average all cancer cells have approximately
the same antigen density. We thus focus our attention to experimental variation in the effector to
target ratios.

Following the work of Li et al. (30), we incorporate fast irreversible single and double cell binding
into our generic model landscape. Here, fast binding implies that conjugate formation and
dissociation occur quickly enough to maintain equilibrium in the conjugate populations, I; and
I, such that dI; /dt = 0 and dI /dt = 0. While irreversible means that all conjugate formation

leads to death, or k(j% = 0and k(ﬁ = 0. These assumptions are consistent with the conditions
of relatively higher effector to target ratios, or high antigen densities on target cells. They also
imply that a mixture of conjugates and dissociates may exist, but that the dynamics happen such
that the conjugate populations are fixed and do not change with time. Furthermore, we only
consider the higher-order binding scenario of two CAR T-cells to one cancer cell. Solving for the

contributions to the cancer and CAR T-cell populations due to binding dynamics results in,

% Single Binding (18)
Bx(y) = 2

ay + by L

Tk Ky Double Binding (19)

% Single Binding (20)
By(y) = 2

cy +dy L

Tk Ky Double Binding (21)
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(1)

where the constants 4, b, ¢, and d are defined in terms of the association rate constants, k;* and

kgz)’ and the death rate constants kél), kgl), kéz), kgz)’ kf) , and kéz) from Figure @ as follows,

single to double

conjugate association double conjugate cancer cell death
single conjugate association l i
(1).(2) 2 2
! K (kP + )
o= KV &V b= (22)

A e e

single conjugate cancer cell death T

T all double conjugate deaths

single to double

conjugate association double conjugate CAR T-cell death
single conjugate association l i
! KD (67 + 267 + k)
c= kP K d= (23)

A e T
single conjugate CAR T-cell death I

I all double conjugate deaths

Finally, the constant / is the sum of the single conjugate death rates, h = kgl) + kél), and the

constant k is simply a renaming of the double conjugate association rate, kgz). As the variable
renaming is admittedly complicated, the constants a, b, c, and d are defined to quickly identify
end states of conjugate formation and have been located next to their corresponding interaction
products in Figure [

The per-cancer cell binding models are graphed in Figure 5l Model parameter values used for
the single and double cell binding models in Egs. —) are: a = 20 CI'2-hrs?, and h = 16
CI'l-hrs! for single binding; and a = 20 CIZ-hrs?, b =5CI3-hrs?, h = 16 CI''-hrs?, and k = 2
CI?-hrs! for double binding. We highlight that we are restricting ourselves to scenarios where
increases in the CAR T-cell population during a given trial leads to increases in the likelihood of
double binding, which results in super-linear increase of per-cancer cell binding. This restriction
enforces concavity of the effective double cell binding model which we explore next. It is possible
for the double binding model to exhibit a sub-linear increase in per-cancer cell antigen binding
as the CAR T-cell population increases, and an overall decrease in cancer cell killing. However,
this scenario does not agree with our experimental data of increased killing with increased
effector-to-target ratios.

As with the functional response models, we are again faced with ODE model terms consisting of
ratios of polynomials. However, potential differences between the rates of conjugate association
and conjugate death can give rise to simplifications. If the product of the CAR T-cell population
and the rate of forming double conjugates, ky, is small compared to the sum of the rates of single
conjugate deaths, h, then ky/h < 1, and we can again perform a binomial expansion in the cell
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binding denominators. A second way of interpreting this condition is to require the number of
CAR T-cells to remain small compared to the ratio of the rate of double conjugate formation to
the sum of the rates of single conjugate deaths, y < h/k. Performing the binomial expansion and
truncating again at O(y?) results in the following effective models of cell binding,

% Effective Single Binding (24)
Bi(y) = 2

% + W Effective Double Binding (25)

% Effective Single Binding (26)
By(y) = 2

% + w Effective Double Binding (27)

Here the effective double conjugate antigen binding model takes the form of the exact single
conjugate binding model plus a correction due to double conjugate formation. Egs. and
are graphed in Figure 5, using the parameter values of 2 = 20 CI2-hrs?, b = 2.75 CI"*-hrs™>?,
h =16 CI't-hrs?, and k = 2 CI2-hrs™!. These values are chosen to demonstrate that the effective
double binding model can accurately approximate both the exact single and double binding
models for small CAR T-cell populations, y < 1 CI. Importantly, we note that if the parameter
values b or d are sufficiently small, corresponding to low double conjugate CAR T-cell or
cancer cell death rates, then the quadratic terms in Egs. and will be negative, and
the concavity of the effective double binding model deviate significantly from the exact model.
This phenomenological consideration of the effective models sets an important constraint on the
positivity of the coefficients for the quadratic terms in Egs. and (27), which we will revisit in
Section

2.2.4 Landscape of effective models

To gain a broader perspective of the overall form of our ODE models, we substitute the effective
models for functional responses and antigen binding into Eqs. (I)-(2), arriving at,

L;_: = Gx(x) —dxy — Exy2 (28)
d
d—% = Gy(y) & axy £ px’y — éxy? (29)

where G again represents any of the potential growth-death models under consideration, a = a/h
and b = (bh — ak) /h? are redefined constants (both assumed to be positive) for the coefficients
of the effective single and double binding models for the cancer cells, axy = (p/g — c/h)xy
and represents the combination of first order terms for CAR T-cell response and single binding,
Bx*y = (p/g*)xy and represents the potential second order term from the CAR T-cell response,
and éxy? = ((dh — ck)/h?)xy? represents the effective double binding model for the CAR T-cells.
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We have explicitly used £ notation to indicate that we do not know a priori the signs for the xy
and x%y terms in Eq. , as these are determined by the relative contributions of Type I and first
order Type II-like CAR T-cell responses and single antigen binding for the xy term, and whether
or not second order Type II or first order Type IIl CAR T-cell response is occurring for the x%y
term. The benefit of the approach demonstrates the presence and/or sign conventions of the
various model coefficients that we determine using the SINDy model discovery algorithm can be
directly interpreted in terms of different underlying biological phenomena.

2.3 Model discovery

Our implementation of the model discovery techniques of dynamic mode decomposition and
sparse identification of non-linear dynamics (SINDy) is performed in two stages. First is latent
variable analysis, the extraction of the latent variable representing the CAR T-cell population from
the time-varying cancer cell population. The second step is implementation of SINDy, whereupon
the functional terms of the underlying models describing the dynamical system are determined.

2.3.1 Latent Variable Analysis

Despite having only measured the initial and final CAR T-cell populations, we can utilize latent
variable analysis to infer the hidden CAR T-cell dynamics from the cancer cell dynamics. We do
this using the delay coordinate embedding of Taken’s theorem to reconstruct the attractor of the
system that is known to exist in more dimensions than those measured (13} (15} 55). The first step
in this approach is to assemble a Hankel matrix, H, by stacking delayed time-series of the cancer
cell measurements x(t) as follows,

x(t) x(t2) x(t3) c X(ENsme1)7)]
x(t147) x(t247) x(t347) o X(tn—(m-2)7)
H=| x(tt2r) x(t2437) X(tarar) o0 xX(EN—(m-3)r) (30)
_x(tl—l—(m—l)r) x(t2+(m—2)f) x(t3+(m—3)r) T x(tN)

where 7, known as the embedding delay, represents the size of the time-delay we use, and m,
known as the embedding dimension, represents both the number of rows that we assemble in
the Hankel matrix and, importantly, the number of anticipated latent variables we expect to find.

To minimize the effects of experimental noise on the results of Taken’s Theorem, we splined
our cancer cell trajectories and re-sampled at the same experimental sampling rate of one
measurement per 15 minutes. The function smooth.spline from the programming language R
was used to perform the splining. This function uses cubic splines to approximate trajectories,
with a penalty term to control for trajectory curvature. The number of knots used to spline
each trajectory were determined by inspection, and are recorded in the analysis code available
at https://github.com/alexbbrummer/CART_SINDy. Further details on the splining
methods used are available in (56).

To determine optimal values for T and m, we can use two separate formulae to inform the
decisions (55). The optimal time delay is determined by the value of T which minimizes the
mutual information between measurements. This is done by dividing the interval [x,;,, Xnax]
into j equally sized partitions, and calculating the probability P, that a measurement of the time
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series is in the k' partition, and the probability P, x that a measurement x; is in the hth partition

while the neighboring measurement x; . ; is in the k' partition. Mutual information is given by

joJ
ZZ Py (T IOgP;ZkI(Jk)- (31)

The optimal time-delay to use for a given time series is selected by finding the value of T which
results in the first minimum value in mutual information, or arg min|-{I(7)}. A graph of mutual
information versus time delay is presented in Figure [pa. For our cancer cell time series data, this
optimal time delay value was found to be T = 1.

To determine the embedding dimension, m, we calculate the number of false nearest neighbors
to a given measurement as the time series is embedded in successively greater dimensional
spaces. This calculation is done to ensure that the attractor constructed from the latent variables
remains smooth upon embedding. We perform the calculation iteratively by starting with a point
p(i) in an m-dimensional embedding, and identifying a neighboring point p(j) such that the
distance between p(i) and p(j) is less than a constant value typically chosen as the standard
deviation of the data. Next, the normalized distance between the points p(i) and p(j) in the
m + 1-dimensional embedding is calculated using the following expression,

|x(ti+mr) - x(tj—i—mr) |

p(@) =PI

R; is calculated across the entire time series and iteratively for greater embeddings, m = 1,2,3,....
False nearest neighbors are identified when R; > Rypresnord, Where Rypresnnors = 10 has been
identified as satisfactory for most datasets (55). The ideal embedding dimension m is finally
determined as that which results in a negligible fraction of false nearest neighbors. In Figure [pb
we present the calculated fraction of false nearest neighbors versus embedding the dimension.
For our dataset, we identified m = 2 as the ideal embedding dimension, indicating the existence
of one latent variable that we interpret as representing the CAR T-cell population.

R; = (32)

Using values of T = 1 for the time delay and m = 2 for the embedding dimension results in the
following form of the Hankel matrix,

x(t) x(t2) x(ts) - x(tye)
H=2l) xlb) x(t) - x(ty) (39)

To extract the latent variable that represents the CAR T-cell time series, we perform a singular
value decomposition of the Hankel matrix, H = UXV™* (15, 13). Here, the columns of V represent
scaled and standardized versions of both the original data in the first column, and approximations
of the latent data in the subsequent columns. As our experimental procedure measured the initial
and final CAR T-cell populations, our final step was to re-scale and offset the latent CAR T-cell
variable extracted from the second column of V. In Figure[/]we present the measured cancer cells
and CAR T-cells in addition to the discovered latent CAR T-cell time series for each effector to
target ratio and duplicate trial.
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354 2.3.2 Sparse identification of non-linear dynamics

355 SINDy is a data-driven methodology that discovers dynamical systems models through
356 symbolic regression (15,(13). From a conceptual perspective, SINDy allows for the transformation
357 of an analytical, first-order, non-linear dynamical systems model, expressed as

d
gpx(t) = £(x(t)) (34)

358 to a linearized matrix-model, expressed as

X =0(X)E (35)

359 where X are numerical time-derivatives of our measured data, ®(X) is a library of candidate
360 functions that may describe the data and is evaluated on the measured data, and = consists of the
361 coefficients for the model terms from @(X) that describe the time-varying data X. The objective
362 of SINDy is to identify the sparsest version of &, where sparsity is defined as the compromise
363 between fewest number of non-zero terms with the greatest level of accuracy. In the context of
364 our measurements for populations of cancer cells, x(t), and CAR T-cells, y(t), and the anticipated
365 models for cell growth and interactions, X takes the following form,

] [ e
X=| "= : (36)
()] L) gty
366 and O(X) is expressed as,
0(X) = >|< x|2 x|3 (37)

x(t)  y(h) x(h)* x(h)y(h)  y(t)* x(B)® x(b)*y(h)  x(b)y(h)* y(h)?

Yy
O(X) x(h) y(2) x(k)? x(k)y() y()? x() x(k)’y(h) x(k)y()* y(k)®

x(ty) y(tn) x(tn)? x(t)y(ty) y(tn)? x(in)® x(tn)y(ty) x(tmy(m)z@g)(t}vﬁ

367 By solving the matrix-inverse problem in Eq. (35), we can find the column vectors E that
368 determine the coefficients for the model terms ¢ that form the non-linear dynamical system
369 best describing the measured data, in a least-squares sense. However, a simple least-squares
370 implementation will result in a dense coefficient vector E. We enforce sparsity of the coefficient
371 vector E through the method of sparse relaxed regularized regression (SR3) (57), where we seek
372 optimization of the expression,
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1 =112 Lo wie
min 2 [[X — ()| + AR(W) + o_[|2 ~ W| 39)
where W is the relaxed coefficient matrix that approximates &, R(W) is the regularization of W,
and v and A are hyper parameters that control how precisely W approximates & and the strength
of the regularization, respectively. For our problem, we chose to regularize under the /1-norm
with v = 1 x 107°. To determine the value of A, we followed the approach taken in (37) in which
we repeat the analysis for a range of A values from A € [1078,10!] to calculate Pareto fronts
between the root-mean-squared error between the measured and subsequently predicted values
of X and the number of active terms from our library. In Figure |8| we present Pareto fronts for
each of the experimental conditions for the varying effector to target ratios.

As discussed in Section there are a variety of constraints we can expect for possible
coefficients based on expected signs, or the absence of particular terms. An extension to SINDy
allows for the incorporation of these constraints to ensure spurious terms are not discovered (58).

To make clear the constraints that were imposed, we can re-write Eq. symbolically and in
terms of the coefficients ¢; ; as,

X = F11x + Eroy + E1ax? + ELaxy + Eusy? + ELex + ELyxty + ELgxy? + Eoy” (40)
Y = Co1x + Epoy + Ea3x% + Epaxy + Cosy? + Eaex + Ep7xPy + Eagxy? + Eaoy (41)

Then, the constraints that are imposed as per the anticipated effective models from Section 2.2]
are,

G1p=0 €14 <0 G15=0 G16 <0 (42)
G17=0 G18 <0 G19=0 €21 =0 (43)
Go3 =0 Go6 =0 Gog <0 G29 <0 (44)

while the other 6 coefficients in §; ; are left to freely vary.

Implementation of SINDy SR3 with constraints was performed using PySindy, a package
designed for a wide array of implementations of the SINDy algorithm for spatio-temporal model
discovery written in the programming language Python (16, 17). Included in the Supplementary
Material are the associated datasets and Jupyter notebooks used for this study.

Finally, we highlight that the implementation of SINDy which we are relying on is designed
specifically for explicit ordinary differential equations. An extension of SINDy exists for
discovering ODEs with ratios of polynomials (37, 38), however this variation requires a
significantly greater volume of data than that which we could collect. This is the underlying
motivation behind our efforts to derive the effective models, thereby converting them into explicit
ODEs and making effective usage of the volume of experimental data available by the study
methods most usable for model discovery.
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3 RESULTS

3.1 Discovered models and simulated comparison

Upon implementing SINDy on the CAR T-cell cancer cell killing data and performing the
Pareto front analysis described in Section we identified three distinct models describing
the experimental data. Model selection is presented in Figure 8| where we present the tradeoffs
between model complexity, represented by the number of activated library terms, and either
threshold A or the root-mean-squared-error between the measured data and simulated data for
each identified model. Our examination of the Pareto fronts found models with eight terms for
E:T of 1:4, and 1:8, and a six term model for an E:T of 1:20. Below we summarize each of these
models and in relation to how well they predict the measured data in Figure 9] We synthesize
the coefficients and associated model categories for growth in Table [I|and for the CAR T-cell
functional response and cell binding in Table

3.1.1 High E:T discovered model
For the E:T = 1:4 data, the SINDy-discovered model takes the following form,

% = 0.121x 4 0.061x% — 0.018x> — 0.593x1/> (45)
ZZZ—Z = 0.191y — 0.351y? + 0.035xy — 0.009xy (46)

Factoring the terms related to single-species growth, we arrive at,

Weak Allee Double Binding
dx X X 5
= 012Ix (1 _ 4.792) (1.421 n 1) — 0.593xy (47)
dy _ y 2
== 0191y (1- @) +0.035xy — 0.009x%y (48)

Logistic Type Il Response

From Eqs. (47)-(48) we can interpret the discovered types of growth models and interactions.
For cancer cell growth in Eq. , the observable structure indicates a weak Allee effect, with
a growth rate of p = 0.121 hrs™!, a carrying capacity of K = 4.792 CI, and an Allee constant of
A = 1.421 CI. For the CAR T-cells we find a logistic growth model with growth rate p = 0.191
hrs™! and carrying capacity K = 0.544 CI. From the coefficients of « = 0.051 CI'! hrs! on xy and
B = —0.009 CI"2 hrs! on x?y for the CAR T-cells, we can infer a Type II functional response as the
signs are positive and negative, respectively. Finally, the presence of an xy? term in the cancer
cells with a coefficient of b = 0.063 CI"2 hrs! indicates the occurrence of double binding, notably
in the absence of both the xy term in the cancer cells and the xy? term in the CAR T-cells.

3.1.2 Medium E:T discovered model
The SINDy-discovered model for the E:T = 1:8 data takes the following form,
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dx 5 3
i 0.237x + 0.04x* — 0.012x° — 0.626xy (49)
d
d_]t{ = 0.112y — 0.358y* + 0.051xy — 0.009xy (50)

Factoring the terms related to single-species growth, we arrive at,

Weak Allee Single Binding
dx X X
X 0237 (1— —22) (= +1) —o062 1
ar =~ 0 ( 6.413) (3.08 + ) 0.626xy (51)
dy y 2
== 0112y (1 m) +0.051xy — 0.009x%y (52)

Logistic Type Il Response

The model discovered for medium E:T is largely similar to that at high E:T. A weak Allee
effect in growth is observed for the cancer cells, with growth rate p = 0.237 hrs!, carrying
capacity K = 6.413 CI, and Allee constant A = 3.08, while a logistic growth is observed for the
CAR T-cells with growth rate p = 0.112 hrs™ and carrying capacity K = 0.313 CI. We also observe
a Type II CAR T-cell functional response, again indicated from the sign of the coefficients of
a = 0.051 CI'' hrs™! and B = —0.01 CI"2 hrs™! on the xy and xy? terms being positive and negative,
respectively. Unlike the high E:T scenario however, here we find evidence only of single binding
from the sole presence of an xy term in the cancer cells with a coefficient of @ = —0.626 CI'! hrs™.

3.1.3 Low E:T discovered model

Finally, for the E:T = 1:20 data the discovered model is,

dx

= = 0.150x — 0.012x2 — 0.545xy (53)
% = —0.002xy + 0.005x%y — 0.063xy> (54)

Factoring the terms related to single-species growth, we arrive at,

Logistic Single Binding
o e
Z—’t‘ — 0.15x (1 - %) — 0.545xy (55)
% = —0.002xy + 0.005x*y  — 0.063xy> (56)
T Type Ill Response T Double Binding

In this scenario we find significantly different growth and interaction models. The cancer cells
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show logistic growth, with growth rate p = 0.15 hrs™! and carrying capacity K = 12.5 CI, while
the CAR T-cells have no growth model. This time, as the signs for the coefficients of « = —0.002
CI'' hrs! and B = 0.005 CI? hrs! on the xy and x?y terms for the CAR T-cells are now negative
and positive, respectively, we infer a Type III functional response. Interestingly, we find a mixture
of indicators for both single binding and double binding. This comes from the presence of only
the xy term in the cancer cell model with a coefficient of 7 = —0.545 CI'! hrs!, and of an xy? term
in the CAR T-cell model with a coefficient of ¢ = —0.063 CI"Z hrs™.

All three E:T ratios of 1:4, 1:8, and 1:20 resulted in discovered models that accurately
characterized the data, with root-mean-squared-errors of 0.02, 0.195, and 0.359, respectively.
We highlight the discovery of consistent growth models of a weak Allee effect for the cancer cells
and logistic growth for the CAR T-cells for the E:T ratios of 1:4 and 1:8. Importantly, the growth
rates and carrying capacity for these scenarios were found to be comparable across E:T ratios.
Interestingly, we observe a Type II functional response in the CAR T-cells functional response
for both E:T = 1:4 and 1:8, and a transition to Type III for E:T = 1:20. Similarly, our discovered
models indicate a transition from double to single binding as the E:T ratio changed from 1:4 to
1:8, and a model with mixed single and double binding terms was discovered for the E:T = 1:20.

3.2 Comparison with CARRGO model

We compared the data first model discovery methodology of SINDy against a traditional model
first approach originally used to analyze and interpret the CAR T-cell killing dynamics (18, 24).
The model previously studied is referred to as the CAR T-cell Response in GliOma (CARRGO)
model, and is expressed as,

Logistic Single Binding
! |
dx X -
il (1 — K_x) —axy 57)
ay = —0y Haxy (58)

dt
Exponential Death Type | Response

where we have expressed the parameter variables of the CARRGO model in terms of those used
in the SINDy model for ease of comparison. From here we can see that the CARRGO model
assumes logistic growth in the cancer cells, single binding between the cancer cells and CAR
T-cells, a Type I functional response in the CAR T-cells, and exponential CAR T-cell death.

In its original and subsequent implementations, the CARRGO model demonstrated valuable
utility in quantifying CAR T-cell killing dynamics when treating glioblastoma cell lines either
alone (18), or in combination with the steroid dexamethasone (24). Inference of the underlying
biological dynamics were made by examining how parameter values changed along gradients
of E:T ratios or initial dexamethasone concentrations. This is in direct contrast to the SINDy
methodology, where the discovery of different model terms provides insight into the underlying
biological dynamics as a result of variation along the E:T gradient. Comparison of these two
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models on the same data set provides further insight into the trade offs of data first versus model
first approaches.

In Figure [10| are graphs of the best-fit versions of both the CARRGO model and SINDy
discovered models for each E:T ratio. These fits were performed using the Levenberg-Marquadt
optimization (LMO) algorithm, which requires initial guesses and bounds for each model
parameter value. For the CARRGO model published parameter values were used for the starting
guesses, while for the SINDy discovered models the discovered parameter values served as
the guesses. Upper and lower bounds on the LMO search space were set at 80% and 120% of
the originally identified parameter values, respectively, and are listed in the Supplementary
Table. In Table we present the model-fitting statistics for the reduced chi-squared, )Ez, Akaike
information criteria (AIC), and Bayesian information criteria (BIC) methods, as well as the
parameters determined by LMO. Importantly, we note that fits were performed on data points
representing averages and ranges for the two experimental trials at each E:T ratio from only the
measured data.

We find that across the three statistical tests considered, the CARRGO model performs slightly
better than the SINDy discovered models at E:T = 1:4 and E:T = 1:20, whereas the SINDy
discovered model for E:T = 1:8 performed better than the CARRGO model (Table [3). Interestingly,
the CARRGO model predictions for the CAR T-cell trajectories fail to intercept the final CAR
T-cell values, where as the SINDy discovered models do. This result highlights a key difference
between these two approaches, particularly that the SINDy approach required generating a
time-series trajectory for the CAR T-cells that enforced interception with the final CAR T-cell
measurement. Alternatively, traditional optimization methods like LMO weight each data point
by the range of measurement uncertainty, allowing for the possibility of significant deviation
from the final CAR T-cell measurements as long as such deviations can be compensated with
better fitting elsewhere amongst the data.

Another essential difference between the CARRGO and SINDy predictions regarding the CAR
T-cell trajectories is the CAR T-cell response at the high E:T ratio of E:T = 1:4. Specifically, the
CARRGO model predicts that the CAR T-cells reach a maximum population exceeding the
maximum population of cancer cells. This result has significant translational implications for
CAR T-cell therapy related to patient immune response that we address in the discussion section.

Despite the noted differences, the overall similarities between the CARRGO and SINDy
models is demonstrated by the order of magnitude agreement in most shared parameter values,
specifically the cancer cell growth rate py, the cancer cell carrying capacity Ky, and the CAR T-cell
functional response coefficient a for the specific scenarios of E:T = 1:4 and E:T = 1:8 (Table [3).
Taken together, these results demonstrate significant value in the SINDy methodology when
compared to established procedures for parameter estimation.

3.3 Model Stability

An important question in performing model discovery for dynamical systems is in relation
to the overall stability. Automating the task of examining stability for every discovered model
is challenging given the combination of symbolic computation with floating point coefficients.
However, by predicting forward in time for each of the models and experimental replicates we
can qualitatively characterize the stability (see Figure[9).
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For the E:T = 1:4 scenario, both the data and model indicate complete cancer cell death, with
the model accurately maintaining a cancer cell population of zero. We note that in several of
the alternate discovered models produced by SINDy, the cancer cell population would become
negative in the forward predicted regime. This unrealistic result can be used as an aide in ruling
out alternative models.

For the E:T = 1:8 and 1:20 scenarios, both the data and models indicate cancer cell-CAR T-cell
coexistence, with the forward predictions reaching non-oscillatory steady states. Despite the
discovered models being the ones with the best accuracy, they all struggle to match the observed
oscillatory frequency, particularly in the E:T = 1:20 scenario. These results demonstrate the
capability of SINDy to discover models with variability in solution stability, a core feature of
nonlinear dynamical systems.

3.4 Parameter Identifiability

To better understand the rarity of the discovered models and their respective coefficients, we
examined histograms for the coefficients of each of the model terms along the Pareto fronts for
each E:T ratio, presented in Figure |11, This approach allows us to qualitatively assess parameter
identifiability by seeing the extent to which variability in coefficient values exists, and at the
expense of prediction accuracy. For most active terms encountered, the coefficients corresponding
to the selected models based on the Pareto front analysis were the most commonly occurring
values until deactivation (elimination from discovered models). However, in a few situations we
see that the coefficient values corresponding to the greatest model accuracy were relatively rare,
and varied significantly as increasingly more terms were removed. This occurs in the coefficients
for the x and xy? terms in the cancer cells for the E:T = 1:4 scenario in figure , and the x and xy
terms in the cancer cells for both the E:T = 1:8 and 1:20 scenarios in figure and c. These terms
were shown to be the final remaining active terms in discovered model, suggesting that they are
capable of capturing the greatest extent of variation in our cancer cell-CAR T-cell killing data. Of
note once again is that amongst these dominant interaction terms we see a transition from those
indicative of double binding at high E:T ratios to single binding at medium and low E:T ratios.

4 DISCUSSION

We examined in vitro experimental CAR T-cell killing assay data for a human-derived
glioblastoma cell line (Figure[I). From our results we infer transitions in the phenomenological
killing behavior of the CAR T-cells as a consequence of varying their initial concentration
compared to the cancer cells. Our discovered models predict that at high effector to target
ratios (E:T = 1:4) the CAR T-cell levels respond according to a Type II functional response in
which they survive and/or expand faster at low density, and slower at high density, and they
predominantly form double binding conjugates with cancer cells prior to cell killing. At medium
E:T ratios of E:T = 1:8 our discovered model again predicts the CAR T-cells undergoing a Type
IT functional response, but now forming only singly bound conjugates prior to cell killing. At
low E:T ratios of E:T = 1:20 our discovered model predicts the CAR T-cells shift to a Type III
functional response, in which they survive and/or expand slower at low density, and faster at
high density. In this final scenario we find a mixture of single and double conjugate formation
occurring. Finally, our discovered models predict the growth strategies of the cancer cells as
being a weak Allee effect at high and medium E:T ratios, and logistic at low E:T ratios, while
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the cancer cells are predicted to follow logistic growth for high and medium E:T ratios. Model
coefficients used to deduce these results are found in Tables|l|and 2, and model simulations and
forward predictions are shown in Figure 9}

A crucial result of this work is the comparison between the data first approach of SINDy to
the traditional model first approach of CARRGO. Despite the discovered SINDy models having
more degrees of freedom (i.e. mathematical terms) than the CARRGO model, both models were
found to perform comparably as indicated in Figure|10|and Table 3| Yet, there are key differences
regarding the interpretation of these two approaches. Traditional model first approaches like the
CARRGO model assume a strict individual model that may exhibit variation in its coefficients or
model parameters to reflect variation in the underlying biology or experimental conditions. On
the other hand, one of the strengths of the data first approach of SINDy is that these coefficient
variations can be shifted onto discovery of altogether different model terms. As we show, these
different terms can have direct interpretations related to the underlying biology and dynamics.
For example in (18), variation in the CAR T-cell response due to changes in the experimental
E:T ratio could only be indicated through variation in the coefficients of the Type I functional
response term, or the value of a in Eq. (58). Specifically, increases in « were interpreted as a high
CAR T-cell response rate, or CAR T-cell expansion, and decreases in « were interpreted as a low
response rate, or as CAR T-cell exhaustion. Whereas the SINDy model predicts entirely different
CAR T-cell functional response terms, providing greater interpretation of these transitions in the
CAR T dynamics and biology. Specifically, a Type II functional response at high and medium
E:T, or a fast-to-slow CAR T-cell response rate, and a Type III functional response at low E:T, or a
slow-to-fast CAR T-cell response that is again suggestive of exhaustion.

4.1 Interpreting Discovered Coefficients

We demonstrate the value of the effective model parameters for inferring underlying biology by
considering the high E:T model presented in Eqs. (7)-(48). In this scenario, a Type II functional
response in the CAR T-cells is deduced from the negative sign on 8, corresponding to the concave
down parabolic nature of the CAR T-cell functional response with fast proliferation at low cancer
cell density and slow proliferation at high cancer cell density (Figure [3). The implication that
cancer cell killing is induced by double binding of CAR T-cells to cancer cells comes from multiple
terms. The most direct indicator is b # 0, where b= (bh — ak)/ k% with bh/k representing the
rate of cancer cell death from double conjugates, and a/k the rate of cancer cell death from single
conjugates. Supporting indicators come from the positive sign on o = p/g — c/h, suggesting that
the CAR T-cell death rate from single conjugate formation, c/h is small compared to the leading
order CAR T-cell response rate, p/g. Further evidence is in the inactivation of the xy term in
the x(t) equation with coefficient a. Here, & = a/h is the rate of cancer cell death from single
conjugate formation, whose absence suggests that double binding formation is predominantly
responsible for cancer cell death.

A similar analysis of model coefficients for the low and medium E:T ratio scenarios predicts a
transition in the interactions between the CAR T-cells and cancer cells. Specifically, our approach
predicts that the CAR T-cells form double conjugate pairs with high E:T ratios, then switch to
single conjugate pairs at medium and low E:T ratios. Similarly, our results predict a transition in
the functional response, indicating Type II functional responses in the CAR T-cells for high E:T
ratios and Type III responses in the low E:T ratios. These transitions in detected model terms are
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phenomenologically consistent with the interactions being dependent on CAR T-cell density, and
highlight the hypothesis generating strength of data first model discovery techniques. Namely,
the prediction of CAR T-cell killing dynamics being dependent on the relative abundance of CAR
T-cells compared to cancer cells. We next present several opportunities for experimental testing
of these model predictions.

4.2 Challenges and Limitations

A challengze to the implementation of SINDy is data sparsity. Despite having high temporal
resolution of the cancer cell trajectories (1 measurement per 15 minutes), the CAR T-cell
populations consisted of only the initial and final measurements. To resolve sparsity in the
CAR T-cell levels, we used latent variable analysis to extract the CAR T-cell trajectory from an
approximation to the attractor of the dynamical system as determined by the cancer cell trajectory.
We note that in determining the dimensionality of the latent variable subspace, we selected an
embedding dimension of m = 2 despite the appearance of further benefit in using an embedding
dimension of m = 3, as indicated in Figureépb. This choice was made due to our experimental
limitations in only having flow cytometry data for the CAR T-cells at the initial and final time
points, and no further data with which to constrain any additional latent variables. The existence
of a second latent variable, as suggested by the third embedding dimension, could be due to
single or double binding conjugates if the reaction rates are sufficiently slow, or, alternatively,
a biochemical secretion that is modulating the cancer cell and CAR T-cell interactions. Future
experimental and modeling efforts may further illuminate the nature of this third state variable.

One potential limitation with latent variable analysis is that the trajectories retrieved through
Taken’s Theorem are not guaranteed to be unique, but rather will be diffeomorphic to the
true latent variable. That is, subject to topological stretching or skewing, which translates to
variation in discovered model coefficients. This effect can be seen in Bakarji et. al (59), where
the coefficients of the latent variables discovered for the two-state, predator-prey model are not
in precise agreement to those used in the original simulation. However, it is important to note
that the model terms discovered by SINDy with this methodology are biologically insightful,
even though the coefficients multiplying the discovered model terms on latent variables may
be subject to variation. Importantly, we provide further experimental information for the latent
CAR-T cell variable through bounding of the initial and final CAR-T cell trajectory with direct
measurements. Likewise, we only discover terms which are structurally identifiable through
model inversion, minimizing the potential for diffeomorphic skewing of CAR-T cell trajectories
to be discovered from Taken’s Theorem.

A second challenge is that our data in total consists of two trials for each effector-to-target ratio.
While there exist SINDy implementations designed to discover models with ratios of polynomials,
the approaches require prohibitively many experimental trials to ensure accuracy (37, 38). To
resolve sparsity in the number of experimental trials, we derived effective interaction models
of cancer cell and CAR T-cell dynamics from model ODE terms with ratios of the polynomials
using binomial approximations. These effective interaction models allowed for the identification
of multiple constraints on the library function space used in SINDy, and guided our inferential
analysis of the discovered models.
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4.3 Future Directions

To validate the hypothesized binding and functional response dynamics, we propose two
potential experiments. Both experiments rely on similar initial conditions as those conducted
for this study, but in one we propose the use of bright field microscopy to visually inspect CAR
T-cell dynamics at different points in time and for the different E:T ratios. This approach ought
to aide in identifying the relative abundance of binding types and functional responses. The
second experiment would be to conduct endpoint analyses using flow cytometry to determine
the population of CAR T-cells throughout the trajectory. This experiment would test the different
CAR T-cell predictions from the CARRGO model and the SINDy models, most notably the
predicted time to reach maximum CAR T-cell populations (Figure [10). Furthermore, targeted
staining can provide information on the number of CAR T-cell generations and the ratio of helper
T-cells (CD4+) to cytotoxic, killer T-cells (CD8+). These metrics may better inform the number of
true effector cells responsible for killing cancer cells, allowing for more accurate characterization
of CAR T-cell response.

Despite having high measurement sampling rates for the cancer cell population, the total
experiment duration prevents the observation of highly periodic dynamics, a challenge to the
standard implementation of SINDy in which observation windows generally span multiple
periods of system dynamics. Thus we propose experimentally resolving the CAR T-cell trajectory
to overcome this obstacle. This experiment additionally serves to test the validity of our latent
variable analysis, which uses the cancer cell trajectory to predict the CAR T-cell trajectory as
presented in Figure [7] Future experiments will also extend this analysis to include other CAR
designs, including evaluating the impact of costimulatory signaling, CAR affinity and target
density on modeling of CAR T-cell killing dynamics.

4.4 Clinical Applications

The clinical relevance of the data first framework is in the domain of precision medicine. The
approach naturally caters to in situ monitoring of patient response to therapy and forecasting
future trajectories. An open question in this field is determining the sufficient number of early
measurements necessary for accurate forecasting, and quantifying the extent of reliable forward
prediction. This type of application falls under the field of control theory, in which real-time
measurements for systems such as navigation, fluid dynamics and disease monitoring can inform
model-based interventions (15). Control theory has been identified as a key tool in achieving
optimized individual treatment outcomes, yet challenges are ever-present in parsimonious model
selection. The SINDy methodology may help streamline and simplify the model selection process,
while simultaneously incorporating control theory methods for treatment optimization. As an
example related to the experiments considered here, one could envision a therapeutic intervention
to administer more CAR T-cells in the low E:T ratio of 1:20 as soon as the Type III functional
response and single binding dynamics are predicted in a patient. This intervention would serve to
push the dynamics of the patients immune response into the double biding and Type II response
regime, thereby improving therapeutic efficacy.
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5 CONCLUSIONS

In this work we present the first, to our knowledge, application of the sparse identification of
non-linear dynamics (SINDy) methodology to a real biological system. We used SINDy with
highly time-resolved experimental data to discover biological mechanisms underlying CAR T-cell-
cancer cell killing dynamics. Our implementation highlights the hypothesis generating potential
of data-driven model discovery and illuminates challenges for future extensions and applications.
To overcome challenges related to data limitation, we utilized latent variable analysis to construct
the trajectory of the CAR T-cells, and we implemented binomial expansions to simplify specific
model terms. Our results predict key mechanisms and transitions in the interaction dynamics
between the CAR T-cells and cancer cells under different experimental conditions that may be
encountered in the application of these therapies in human patients. Specifically, we identified
transitions from double CAR T-cell binding to single CAR T-cell binding, and from fast-to-slow
CAR T-cell responses (Type II) to slow-to-fast responses (Type III). Both transitions occur as a
result of decreasing the relative abundances of CAR T-cells to cancer cells (initial E:T ratios).
Importantly, these results demonstrate the potential for data first model discovery methods to
provide deeper insight into the underlying dynamics and biology than model first approaches,
and offer a new avenue for integrating predictive modeling into precision medicine and cancer
therapy by an improved mechanistic understanding of cancer progression and efficacy of CAR
T-cell therapy.
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Supplementary Table 2 - Parameter seed values for Levenberg-Marquardt Optimization of
CARRGO and SINDy interaction model terms.
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Figure 1. Diagram of experimental procedure highlighting use of microelectrode plates in an
xCELLigence cell analyzer system and sample Cell Index (CI) measurements for control and
treatment groups (E:T = 1:4). This system utilizes real-time voltage measurements to determine CI
values representative of the adherent cancer cell population as a function of time. CAR T-cells are
added following 24 hours of cancer cell expansion and attachment. After 6-8 days of monitoring
the cancer cell growth and death dynamics, cells are harvested and enumerated using flow
cytometry.
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Figure 2. Conceptual graphs of rates of change in cancer cell populations versus population

size (left panels) and p
presented in Egs. -
and f. Model parameter values are: p = 0.75 hrs,

opulation size versus time

(right panels) for the three growth models

: logistic growth a and b; weak Allee effect ¢ and d; strong Allee effect e

K=10CI, A =5CI, and B = 5 CI. Colors

correspond to different initial cancer cell seeding conditions which are the same for each model
in a cancer cell only scenario (blue = 12CI, orange = 8CI, green = 4CI, red = 1CI).
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Figure 3. Functional responses (per-CAR T-cell response rates) versus cancer cell population.
Model parameters for functional responses are: p = 6/5 CI'!-hrs! for Type I, p = 6 CI''-hrs™! and
g = 5 CI for Types II and III. Note overlap of Types I and II functional responses for x < 1 CI, and
distinct differences in concavity between Types II (negative) and III (positive) for x < 2 CI. These
characteristics correspond to Type I and Type II functional responses being indistinguishable
at low cancer cell populations, and Type II and Type III being differentiated by fast-then-slow
response rates (Type II) versus slow-then-fast response rates (Type III).
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Figure 4. Compartmental model for single and double cell binding kinetics. Expressions for how
rate constants combine to contribute to the growth or death of the cancer cell and CAR T-cell
populations are presented in Egs. (I8)-(23). See (30) for further development and analysis of the
cell binding model.

bioRxiv 31


https://doi.org/10.1101/2022.09.22.508748
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.22.508748; this version posted December 13, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Brummer et al. Discovering CAR-T cell dynamical models

CAR T-cell binding models

N
o

=
(9]
L

— Single Binding
5 Double Binding
Effective Double

Binding

Binding rate B(y) (hrs~1)
'—I
o

0 2 4 6 8 10
CAR T-cell population y(t) (CI)

Figure 5. Binding rates (per-cancer cell CAR T-cell binding) versus CAR T-cell p ulatlon for
the single binding, double binding, and effective double binding models in Eqs

and (27). Model parameters for antigen bindings are: a = 20 CI">-hrs? and h = 16 CI‘ hrs‘1
for single binding; a = 20 CI'2-hrs?, b = 5CI3-hrs?, h = 16 CI'thrs!, and k = 2 CI2-hrs! for
double binding; and a = 20 CI"2-hrs?, b = 2.75 CI3-hrs?, h = 16 CI''-hrs!, and k = 2 CI"2-hrs’!
for effective double binding. These parameter values were chosen to highlight how well the
effective double binding model can approximate both the single and double binding models at
low CAR T-cell population values, y < 1 CI. Note that since the original double binding model in
this scenario is concave-up, the effective double binding model parameters should be chosen to
match concavity. This requirement sets a positivity constraint on the quadratic term in Egs.

and (27).
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Figure 6. Graphs for determining a the ideal time delay, 7, by examining mutual information
and b the ideal embedding dimension, m, by examining the fraction of false nearest neighbors.
These methods are explained in detail in (55). For our data, the optimal time delay found was
T = 1 and the optimal embedding dimension m = 2.
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Figure 7. Latent variable analysis results. a-b are replicates 1 and 2 for the high E:T ratio, c-d
are replicates 1 and 2 for the medium E:T ratio, and e-f are replicates 1 and 2 for the low E:T
ratio. Presented for each trial are the cancer cell index measurements from the xCELLigence
machine in red, overlaid with the splined measurements for the cancer cells in black; the two
endpoint measurements for the CAR T-cell levels enumerated by flow cytometry in black, with
the CAR T-cell population trajectory as determined by latent variable analysis in yellow, overlaid
with the splined CAR T-cell trajectory in blue. Note that despite the CAR T-cell populations
being measured with flow cytometry, we have converted levels to units of Cell Index for ease of
comparison with the cancer cells, using a conversion factor of 1CI ~ 10, 000 cells.
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Figure 8. Pareto front analysis of system sparsity. a-b: high E:T, c-d medium E:T. a and ¢ sparsity
(number of discovered terms) versus threshold A and b and ¢ root-mean-squared-error (RMSE)
versus number of terms. Note that the RMSE values were calculated using the discovered models
and the splined measurements. Selected models are represented by purple circles.
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Figure 9. Predicted trajectories of discovered models compared to splined measurements of
cancer cells and CAR T-cells. Cancer cell measurements are the black points, while CAR T-cell
measurements are the blue points. Predicted trajectories for cancer cells are the red dot-dashed
lines, while the CAR T-cells are the purple dot-dashed lines. Model simulations and forward
predictions for replicates 1 and 2 for scenarios of (a-b) high E:T, (c-d) medium E:T, and (e-f)
low E:T. Note that the best fits between predictions and measurements occur in the high E:T
scenario, where assumptions made regarding treatment success and low cancer cell populations
in determining model candidate terms are best adhered to. As the E:T ratios get smaller, increasing
deviation between discovered model predictions and splined measurements can be qualitatively

observed.
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Figure 10. Predictions of cell trajectories for E:T ratios of 1:4, 1:8, and 1:20 from CARRGO
model (blue) and SINDy model (red). Model fits were performed using Levenberg-Marquadt
Optimization on data aggregated across experimental replicates. Data points represent the mean
of all experimental replicates, while error bars represent the ranges across replicates. Of note
are the differences in CARRGO and SINDy model predictions for the final CAR T-cell values
compared to measurements, and the notable difference in when the maximum CAR T-cell
population is reached between CARRGO and SINDy models.
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Figure 11. Frequency of discovery for model terms as threshold A is varied across 1000 values

from the interval [573,10!] for a high E:T, b medium E:T, and ¢ low E:T. Black circles indicate
values for coefficients corresponding to the selected model based on the Pareto front analysis in

Figure[8|
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6 TABLES

Table 1. Coefficients for discovered growth model terms across all effector to target ratios.

E:T Growth of Growth rate Carrying Allee Growth of Growth rate Carrying Allee
cancer cells px (hrs™) capacity Ky constants CAR T-cells Py (hrs™) capacity Ky constants
(x) (€D Ay, By (CT) (v) (@ Ay, By (CD)
1:4 Weak Allee 0.121 4.792 1.421 Logistic 0.191 0.544 -1
1:8 Weak Allee 0.237 6.413 3.08 Logistic 0.112 0.313 -
1:20 Logistic 0.15 12.5 - - - - -

1 _ indicates term not discovered.
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Table 2. Coefficients for discovered interaction model terms across all effector to target ratios.

E:T Response of TypeI & 11 Type II & 111 Cancer Single binding Double Double
CAR T-cells response & response f3 cell-CAR @ (CI'' hrs™) binding b binding ¢ (CI?
(CI hrs1) (CI'? hrs?) T-cell binding (CI2 hrs1) hrs?)
1:4 Type II 0.035 —0.009 Double -1 0.593 -
1:8 Type I 0.051 —0.009 Single 0.626 - -
1:20 Type III —0.002 0.005 Mixed 0.545 - 0.063

1 _ indicates term not discovered.
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Discovering CAR-T cell dynamical models

Table 3. Fitting statistics for CARRGO and SINDy models and comparison of shared parameters.
Fitting statistics considered are the reduced chi-squared, %2, the Akaike information criteria
(AIC) and Bayesian information criteria (BIC). Of note are the scores indicating a better fit
for the CARRGO model at E:T = 1:4 and 1:20, despite differences in the endpoint CAR T-cell
population predictions in Figure 10l Furthermore, we observe generally favorable agreement
between parameter estimates, suggesting the data first approach of SINDy as a viable alternative
to traditional model first parameter inference methods.

=2

Model -E:T X AIC BIC Cancer growth | Cancer carrying | Cancer killing | CAR T response
rate p (hrs™) capacity Ky (CI) | 7 (CI'! hrs!) a (CI'! hrs)

CARRGO -1:4 | 13.6 1380 1400 0471 3.70 0.555 0.0318

SINDy -1:4 23.0 1660 1700 0.116 4.78 -1 0.0327

CARRGO-1:8 | 0919 | -396 |-183 | 0.361 6.82 1.26 0.015

SINDy -1:8 0.401 | -474 -440 0.190 7.06 0.588 0.0436

CARRGO -1:20 | 3.14 609 631 0.206 7.69 1.81 0.0195

SINDy -1:20 3.55 674 700 0.123 11.1 0.540 -0.0024

1

— indicates term not discovered.
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