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The midpoint of cortical thinning between late childhood and early 1 
adulthood differs between individuals and brain regions: Evidence from 2 

longitudinal modelling in a 12-wave neuroimaging sample 3 
 4 

Abstract 5 

Charting human brain maturation between childhood and adulthood is a fundamental 6 

prerequisite for understanding the rapid biological and psychological changes during human 7 

development. Two barriers have precluded the quantification of maturational trajectories: 8 

demands on data and demands on estimation. Using high-temporal resolution 9 

neuroimaging data of up to 12-waves in the HUBU cohort (N = 90, aged 7-21 years) we 10 

investigate changes in apparent cortical thickness across childhood and adolescence. Fitting 11 

a four-parameter logistic nonlinear random effects mixed model, we quantified the 12 

characteristic, s-shaped, trajectory of cortical thinning in adolescence. This approach yields 13 

biologically meaningful parameters, including the midpoint of cortical thinning (MCT), which 14 

corresponds to the age at which the cortex shows most rapid thinning - in our sample 15 

occurring, on average, at 14 years of age. These results show that, given suitable data and 16 

models, cortical maturation can be quantified with precision for each individual and brain 17 

region. 18 
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 2 

Introduction 23 

The human cortex undergoes protracted microscopic and macroscopic structural changes 24 

between childhood and adulthood1. Individual differences in cortical structure have been 25 

associated with a range of phenotypic differences, including physical and mental health2–5, 26 

neurodevelopmental disorders as well as cognitive performance in childhood and 27 

adolescence2,6.  Although other measures of brain structural development such as brain 28 

volume or white matter connectivity provide complementary insights into brain maturation, 29 

cortical thinning is one of the most widely used proxies of brain maturation7–9. We here use 30 

the term apparent cortical thickness throughout to highlight that Magnetic Resonance 31 

Imaging (MRI) studies measure a proxy of cortical thickness, that follows a similar spatial 32 

patten to that observed in histological studies10, but has absolute values that may be 33 

influenced by signal intensities and contrasts11.  34 

Previous work has generally observed developmental decreases in cortical thickness 35 

from childhood (after 2-3 years of age) to early adulthood8, with longitudinal studies showing 36 

that the rate of cortical thinning increases in adolescence9,12. There is an emerging consensus 37 

on a characteristic s-shaped, non-linear trajectory at the population level (Figure 1)9,12. This 38 

process of cortical thinning is thought to reflect a range of underlying biological processes13, 39 

including increasing myelination of the deeper cortical layers14 and decreasing synaptic 40 

density15.  41 

 42 

Figure 1. Schematic illustration of cortical thinning during adolescence, showing the 43 

Midpoint of Cortical Thinning (MCT), i.e., the age of most rapid cortical thinning. 44 
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 3 

Hypotheses concerning individual differences in the process of cortical thinning and 45 

their link to psychological development feature prominently in neurodevelopmental 46 

theories. For instance, it has been hypothesized that a life history of adversity may lead to 47 

accelerated16,17 or delayed18,19 cortical maturation. The developmental mismatch theory 48 

suggests that a mismatch in maturity between subcortical and cortical brain regions (with 49 

frontal regions commonly thought to thin last) may help explain the prevalence of risk-taking 50 

behaviour during adolescence when this maturation disparity is thought to be maximal20,21. 51 

At the group comparison level, hypotheses posit that girls demonstrate earlier cortical 52 

maturation than boys22–24, with these differences hypothesized to underlie developmental 53 

differences in behavioural and psychopathological phenotypes. Similarly, Nunes et al. (2020) 54 

hypothesized that children with autism spectrum disorder are characterized by accelerated 55 

brain maturation25. Overall, hypothesized differences in cortical maturation are central to 56 

some of the most influential neurodevelopmental theories. However, the data and analytic 57 

methods currently used to capture maturation are no match for ambitions in understanding 58 

and applying the construct of cortical maturation.  59 

Longitudinal data is costly and time-consuming to procure, therefore, most 60 

neuroimaging studies to-date rely on cross-sectional data. Cross-sectional data precludes 61 

the investigation of developmental changes and cross-sectional measures necessarily 62 

conflates distinct sources of cortical thickness differences (baseline thickness, the onset of 63 

maturation, as well as speed and total amount of thinning). Only under extremely restrictive 64 

assumptions (e.g., identical brain thickness in early childhood and late adolescence, identical 65 

rates of thinning) can a cross-sectional measure be used as a proxy for development. Given 66 

that these assumptions are known to be empirically untrue1, our empirical knowledge of 67 

cortical maturation is likely to be extremely limited.  68 

Where longitudinal data does exist, the average number of waves per subject is 69 

generally below three, and the time between scans is 2.5 years on average26. This limits our 70 

ability to observe more subtle brain changes in time periods with ongoing maturation such 71 

as adolescence, as well as our ability to capture the trajectory of cortical thinning, which is 72 

known to be non-linear27. This is particularly true at the individual level. That said, large 73 

cohorts with multiple time points, like ABCD28, are currently emerging. 74 
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 4 

Most longitudinal studies investigating individual differences to date have used linear 75 

modelling approaches, such as linear mixed effects models, using the percentage of, or 76 

absolute change, in cortical thickness between two ages as an indicator of maturation of a 77 

given brain region, with larger changes commonly equated to more protracted 78 

maturation29,30. However, these estimates are typically confounded by the initial thickness 79 

of a region - thicker regions can thin more than thinner regions. Even when such confounds 80 

are controlled for, the absolute change in thickness remains dependent on the precise age 81 

range studied. Alternative, nonlinear approaches, such as Generalized Additive Mixed 82 

Models (GAMMs)31, can capture complex nonlinear relationships and are excellent tools for 83 

predictive purposes. Nonlinear mixed models offer a similarly flexible approach for capturing 84 

complex nonlinear relationships to GAMMs. A particular advantage of nonlinear mixed 85 

models is that they yield readily interpretable parameters, informative, of, e.g., ages of rapid 86 

development (Figure 1), making them an attractive, but currently underused, tool for 87 

developmental neuroscientists. 88 

To address the challenge of quantifying cortical maturation at the individual level, we 89 

here leverage a unique dataset (with up to 12 longitudinal measurements between late 90 

childhood and early adulthood) and a quantitative framework currently underutilized in 91 

cognitive neuroscience (non-linear random effects modelling) to demonstrate that cortical 92 

maturity can be defined, and estimated, at the individual level, offering a new window of 93 

insight into cortical development across adolescence. Nonlinear mixed models are a 94 

powerful tool that can capture developmental processes at the individual level31 and yield 95 

readily interpretable parameters. One of these parameters allows us to provide a novel 96 

quantitative definition of cortical maturation during adolescence at the individual level: The 97 

midpoint of cortical thinning (MCT, see Figure 1). The MCT is the point in adolescent 98 

development where the rate of cortical thinning is at its peak for an individual. We show that 99 

the MCT can be used to study the extent to which cortical maturation differs between 100 

individuals, sexes, and brain regions. 101 
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Materials and Methods 102 

Cohort 103 

The present longitudinal study included data from 90 typically developing children and 104 

adolescents (53 females, 37 males), who were enrolled in the longitudinal HUBU (“Hjernens 105 

Udvikling hos Børn og Unge”, Brain Maturation in Children and Adolescents) study. The HUBU 106 

study was initiated in 2007, where 95 participants (55 females, 40 males) aged 7 - 13 years 107 

and their families were recruited from three elementary schools in the Copenhagen, DK, 108 

suburban area32. All children whose families volunteered were included, except for children 109 

with a known history of neurological or psychiatric disorders or significant brain injury. Prior 110 

to participation, all children assented to the study procedures and informed written consent 111 

was obtained from parents. Informed written consent was also obtained from the 112 

participants themselves when they turned 18 years of age. The study was approved by the 113 

Ethical Committees of the Capital Region of Denmark (H-KF-01-131/03 and H-3-2013-037) 114 

and performed in accordance with the Declaration of Helsinki. Participants were scanned up 115 

to 12 times with scanning intervals of 6 months for the first 10 visits, one year between visits 116 

10 and 11, and three years between visits 11 and 12 (Figure 2). 117 

Here, we included data from the first 12 assessments of the HUBU study. All baseline 118 

MRI scans were evaluated by an experienced neuroradiologist, and all raw images were 119 

visually inspected to ensure sufficient quality. Five participants were excluded from the 120 

present study, due to receiving a psychiatric diagnosis after study initiation (N = 2), incidental 121 

clinical finding on the MRI scan (N = 1), or no MRI scans or FreeSurfer outcomes of sufficient 122 

quality (N = 2). Our final sample analysed here consisted of 90 participants (53 females, 37 123 

males) aged 7.6 - 21.6 years. For this sample, we excluded 73 MRI sessions if one of the 124 

following criteria was met: participants did not finish the MRI session (2 participants, 2 125 

scans), participants were not scanned due to metallic dental braces (14 participants, 31 126 

scans), had poor MR-image quality (22 participants, 31 scans), or had acquired a brain injury 127 

after baseline (1 participant, 9 scans). A total of 745 valid MRI scans (scans per participant: 128 

range = 1 - 12, mean = 8.3, median = 10, interquartile range (IQR) = 8 – 12) were included in 129 

the statistical analyses. Data from the HUBU cohort has previously been used in cross-130 

sectional33–37 and longitudinal32,38 studies examining brain-behavioural relationships. 131 
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132 
Figure 2: Spacing and timing of scans for each participant (Panel A) and a histogram of the 133 

number of scans included in the analysis (Panel B). 134 
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MRI protocol 135 

Participants underwent structural MRI on a 3T Siemens Magnetom Trio MR scanner 136 

(Siemens, Erlangen, Germany) using an eight-channel head coil (Invivo, FL, USA). Two T1-137 

weighted images were acquired using a 3D MPRAGE sequence (TR = 1550 ms, TE = 3.04 ms, 138 

matrix = 256 × 256, 192 sagittal slices, 1 × 1 × 1 mm3 voxels, acquisition time = 6:38). A T2-139 

weighted image was acquired using a 3D turbo spin echo sequence (TR = 3000 ms, TE = 140 

354 ms, FOV = 282 × 216, matrix = 256 × 196, 192 sagittal slices, 1 × 1 × 1 mm3 voxels, 141 

acquisition time = 8:29).  142 

 143 

FreeSurfer pre-processing and extraction of cortical thickness 144 

All T1-weighted and T2-weighted images were processed using tools available in the 145 

FreeSurfer (version 6.0) software suite39–41. Cortical surface reconstruction was 146 

implemented using the following procedures: skull stripping, non-uniformity correction, 147 

white matter segmentation, creation of initial mesh, correction of topological defects, and 148 

creation of optimal white and pial surfaces39–41. Images were then processed with the 149 

longitudinal stream42 in FreeSurfer, to estimate changes in cortical thickness across time. 150 

Apparent cortical thickness was calculated as a measure of the shortest distance between 151 

the white and pial surfaces. Cortical grey matter parcellations were based on surface-based 152 

nonlinear registration to the Desikan-Killiany atlas based on gyral and sulcal patterns and 153 

Bayesian classification rules41, yielding estimates for 34 ROIs in each hemisphere. Cortical 154 

thickness estimates were averaged across the hemispheres. 155 

To check the quality of the FreeSurfer outputs, we followed the Enigma protocol 156 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/). We used statistical outlier 157 

detection for average thickness and surface area of each cortical parcel. Statistical detection 158 

of both within- and between-subject outliers was performed based on the age, sex, and age-159 

by-sex adjusted residuals derived using GAMMs, to account for age and sex differences in 160 

the brain measures. Scans of concern were then visually inspected. In line with the Enigma 161 

protocol, we did not perform manual editing on the FreeSurfer outputs and instead 162 

discarded data of questionable quality. Based on these quality checks, we excluded one 163 

participant from the entire study. Furthermore, we excluded the following cortical parcels 164 
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 8 

from statistical analysis for N participants: right temporal pole (N = 1), left frontal pole (N = 165 

1), right paracentral (N = 1), right cuneus (N = 1), right lateral occipital (N = 1), and left fusiform 166 

gyrus (N = 2). 167 

Finally, the Euler number, which indicates the topological complexity of the 168 

reconstructed cortical surface, was extracted from FreeSurfer for each scan and used as a 169 

proxy for in-scanner motion and a quantitative measure of image data quality in our 170 

statistical analyses, to account for potential systematical bias in data quality across age. The 171 

Euler number has been correlated with visual image quality inspection scores as well as with 172 

cortical thickness in a regionally heterogeneous pattern across datasets43. The Euler number 173 

was extracted for each hemisphere and summed to produce one value per scan. 174 

 175 

Statistical analyses 176 

We here modelled cortical thinning between childhood and adulthood using nonlinear 177 

mixed models implemented via the saemix44 package (version 2.4) in R (version 4.1.0) and 178 

RStudio (version 1.4.1717). To capture the characteristic s-shape of cortical thinning, we fit 179 

the four-parameter logistic function45, as defined in the Results section. See [BLINDED] for 180 

our analysis code. Cortical thickness was modelled as the dependent variable and age as the 181 

independent variable. We fit a model to mean cortical thickness, as well as for one for each 182 

of the 34 ROIs of the Desikan-Killiany atlas41. We included sex at birth and in-scanner motion 183 

as covariates in all models, to account for potential differences thereof in developmental 184 

trajectories46,47. In-scanner motion was operationalized by the Euler number (M = -137.07, SE 185 

= 5.33, range = -298.2 - -69.08).  Females were coded as the reference group. While sex was 186 

a covariate of interest, and motion a covariate of no interest, both are modelled the same 187 

way in the NLMM framework. Covariate parameters can, in principle, be included to control 188 

for the effect of motion and sex on any of the main fixed effect parameters of the model (in 189 

our case, the two asymptotes, the MCT, and the hill). This yields a maximum of eight 190 

covariates. To avoid potential overfitting with a highly parametrized model48, we 191 

determined the optimal covariate model via forward stepwise model selection using mean 192 

thickness as the outcome variable. To the best of our knowledge, no consensus methodology 193 

for model selection with covariates exists for nonlinear mixed models. We use forward 194 
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 9 

selection as a pragmatic and tractable solution in the context of demanding model 195 

estimation. Although some have advocated for more complex model selection algorithms, 196 

such as best subset selection49, recent work suggests that forward selection can perform 197 

similarly to these alternatives50. The process starts with no covariate parameters in the 198 

model. It then iteratively adds the variable that best improves the fit. For all covariate 199 

parameters not in the model (e.g., eight at the first iteration), we check their p-value when 200 

added to the model one at a time. We chose the covariate parameter with the lowest p-value 201 

less than 0.05. This process was continued until no new predictors could be added. Based on 202 

this model selection process, we allowed the upper and lower asymptote, and MCTs to differ 203 

between sexes and included the motion parameter as a covariate for the lower asymptote 204 

(see Supplementary Table 1 for the full results). The remaining parameters were held 205 

constant for sex and motion. Estimates were obtained for the four parameters of the logistic 206 

function, as well as the two covariates. Precision was assessed by inspecting the coefficient 207 

of variation (CV) for each parameter, as provided by saemix. CVs are standardized measures 208 

of dispersion and are calculated as the ratio of the standard deviation to the mean. CVs < 209 

20% are generally considered acceptable51.  210 

 211 
In a second step, we assessed differences in MCT estimates across different brain 212 

regions. We assessed whether MCTs across brain regions could be constrained to equality 213 

using Confirmatory Factor Analysis (CFA), as implemented in lavaan52 for R (version 0.6-9). 214 

We used full information maximum likelihood with robust standard errors to account for 215 

missingness and nonnormality. We estimated a one-factor CFA model in which factor 216 

loadings were freely estimated for each brain region. We then compared this model to one 217 

where the factor loadings were still freely estimated, but the intercepts were constrained to 218 

equality using the likelihood ratio test. A significant likelihood ratio test here indicates a loss 219 

in model fit for a constrained model, providing evidence that brain regions differ in their 220 

MCTs. 221 

Third, we used Exploratory Factor Analysis to assess the dimensionality of MCTs across 222 

regions and to identify maturational factors capturing developmental trends across regions. 223 

This was implemented through parallel analysis via the psych53 package for R (version 2.1.6), 224 

using an oblique oblimin transformation. 225 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.02.10.479868doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479868
http://creativecommons.org/licenses/by/4.0/


 10 

Finally, we tested the popular hypothesis of a posterior-anterior gradient of 226 

development54 by correlating MCTs for each region with their y-coordinates in MNI space. 227 

Coordinates were obtained from the brainGraph55 package in R (version 3.0.0). In an 228 

additional exploratory analysis we also correlated MCTs for each region with their z-229 

coordinates in MNI space to test for a potential dorsal-ventral gradient. 230 

 231 

Results 232 

Cortical thickness showed nonlinear changes between childhood and early adulthood across 233 

cortical regions (Figure 3). The characteristic sigmoid, or s-shaped, curve, of cortical thinning, 234 

was apparent across most brain regions. We captured this shape using the four-parameter 235 

logistic function:  236 

𝑦 = 𝐴!"#$% +	
𝐴&''$% − 𝐴!"#$%

1 + ( 𝑥
𝐼𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛3

(	*+,,  237 

The function yields four biologically meaningful parameters: The upper asymptote (AUpper, 238 

maximal apparent thickness in mm), lower asymptote (ALower, minimal apparent thickness in 239 

mm), and Hill, the slope of change, and the Inflection. We were particularly interested in the 240 

latter parameter, which corresponds to the MCT, and was used here as an index of cortical 241 

maturation (see Figure 1). The MCT can be compared across individuals, sexes, and brain 242 

regions. To this end, we first modelled cortical thickness averaged across the cortex, 243 

identified the average pattern of maturation, and assessed sex differences. Next, we 244 

modelled cortical thickness for different brain regions to investigate patterns of maturation 245 

across the cortex. Sex and in-scanner motion, as a proxy for image quality, was controlled for 246 

in all analyses. 247 

Because the sigmoid is asymptotic, there is no age at which the brain is mature. 248 

Instead, the brain develops throughout the age range investigated here (7 – 21 years). 249 

Parameters indicated that mean thickness showed high levels in late childhood, with an 250 

upper asymptote of 2.95 mm (SE = 0.01 mm) and decreasing thereafter to a lower asymptote 251 

of 2.62 mm (SE = 0.03 mm). Our central parameter of interest, the MCT, was estimated to be 252 

14.36 years (SE = 0.28 years). See Table 1. We observed a substantial range of MCTs across 253 

individuals, with a minimum and maximum of 12.25 and 19.54 years (Figure 4) and a variance 254 
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of 1.79 years (SE = 0.46 years). Together, 0ur analysis demonstrates that we can estimate a 255 

novel, quantitative definition of cortical maturity which is independent of overall thickness 256 

and shows substantial differences between people. 257 

 258 
Figure 3. Apparent cortical thickness across brain regions (defined by the Desikan-Killiany 259 

atlas) as a function of age. Average and individual trajectories for each participant are shown. 260 
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Table 1: NLMM Parameter estimates for mean cortical thickness 261 
Parameter Estimate SE CV (%) p 
ALower 2.62 0.03 1.3 - 
bSex(ALower) -0.07 0.04 55.1 0.035 
bMotion(ALower) 0.00 <0.01 52.0 0.027 
AUpper 2.95 0.01 0.4 - 
bSex(AUpper) -0.06 0.02 30.5 0.001 
MCT 14.36 0.28 2.0 - 
bSex(MCT) 1.92 0.51 26.7 <0.001 
Hill -6.34 0.42 6.6 - 

Note. CV = Coefficient of variation – the ratio of the standard deviation to the mean. Used to 262 
assess precision. CV values ≤ 20% are deemed acceptable. SE = standard error, NLMM = 263 
Nonlinear Mixed Models. Females were coded as the reference group. 264 

 265 

There are substantial individual differences in the MCT 266 

We found that the nonlinear model fit the data well (Supplementary Figure 1). To test 267 

whether our model fit better than a simpler alternative, we compared the model fit of the 268 

four-parameter logistic nonlinear model to a simple linear model. We found that the four-269 

parameter logistic model fits better than the simple linear model (ΔAIC = -137.22), 270 

suggesting that our more complex model is plausible across most regions. Mean cortical 271 

thickness was estimated with very good precision for the asymptotes, MCT, and the hill, as 272 

indicated by low coefficients of variation (CV; Table 1). The MCT was uncorrelated with the 273 

upper asymptote, showing that it is independent of the initial thickness of a region (r = 0.01, 274 

t(88) = 0.09, p = .925). It was also independent of the mean cortical thickness in early 275 

adulthood (ALower, r = -0.13, t(88) = -1.22, p = .227). This independence means that cross-276 

sectional measurements of cortical thickness will likely not function well as an approximation 277 

of cortical maturity. The rate of change (Hill) was also not associated with the MCT (r = -0.16, 278 

t(88) = -1.48, p = .141). A sensitivity analysis shows that results were very similar when only 279 

participants with at least three scans were included (N = 84, Supplementary Table 2). 280 

 281 

Significant, but noisy, sex differences in trajectories 282 

There were significant sex differences: Females started with thicker cortices than males (b = 283 

-0.06, p = .001), had thicker corteces in adulthood (b = -0.07, p = .035) and showed earlier MCT 284 
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(b = 1.92, p < .001, Figure 4). However, the CVs for these estimates were all well above 20% 285 

(Table 1), indicating that these parameters were estimated with low precision. The low 286 

precision was likely due to the small number of males in the sample (NMales = 37). 287 

288 

289 
Figure 4. Panel A: Predicted apparent mean cortical thickness as a function of age. Estimated 290 

individual trajectories and the average trajectory is shown, as well as the average MCT. Panel 291 

B: Density plot of MCTs showing individual differences in the sample. Panel C: Sex 292 

differences in the sample. MCT = Midpoint of Cortical Thinning. 293 

 294 

MCTs differ across the cortex 295 

To examine the specificity in maturational timing across regions, we estimated the MCT for 296 

each of the 34 cortical regions of the Desikan-Killiany atlas independently (Figure 5), again 297 
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using non-linear mixed models and the four-parameter logistic function. The four 298 

parameters were estimated with good precision (CV < 20%) for all regions51, except for the 299 

entorhinal, lingual, pericalcarine, temporal pole, and transverse temporal regions, which 300 

were all excluded from subsequent analyses (see Supplementary Tables 3 and 4 for all 301 

estimates). For these regions, the logistic may not be a good approximation of the functional 302 

relationship between age and cortical thickness. For the pericalcarine, for instance, we find 303 

that a linear model fits marginally better than the four-parameter logistic (ΔAIC = 0.50), 304 

potentially reflecting the early maturation for this region. The enthorinal is known to be more 305 

likely to be affected by eye-movement artifacts and may therefore show a poor model fit. 306 

Mean MCTs ranged from 13.51 years for the cuneus to 17.75 years for the rostral 307 

anterior cingulate cortex (Figure 5). The brain regions that reached the MCT first were the 308 

occipital (cuneus and lateral occipital) and parietal (precuneus, superior and inferior parietal) 309 

cortices, the rostral middle frontal cortex, and the cortex of the banks of the superior 310 

temporal sulcus (bankssts). The brain regions that reached the MCT last were the caudal and 311 

rostral anterior cingulate and parahippocampal cortices, followed by the sensorimotor pre- 312 

and postcentral. Moreover, the frontal lobe regions (precentral, caudal middle frontal, rostral 313 

middle frontal, superior frontal, and frontal pole) showed the fastest rate of change (i.e., 314 

steepest hill), while the slowest rate of change (i.e., flattest hill) was observed in the 315 

parahippocampal, cuneus, (caudal and rostral) anterior cingulate, and superior temporal 316 

cortices. Most regions showed a relative independence of the MCT, upper and lower 317 

asymptote and hill (Figure 6) and low parameter correlations (Supplementary Table 5). 318 
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 319 
Figure 5. Individual and regional differences in thinning shown in raincloud plots. The 320 

estimated kernel density is shown to visualize the distribution of values. The median is shown 321 

as the black vertical line within a bar, which itself shows the interquartile range. Black 322 

horizontal lines show the 1.5 interquartile range. Values beyond these lines can be 323 

considered outliers. 324 
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 325 
Figure 6. Parameter estimates for the MCT (Panel A), hill (Panel B), upper asymptote (Panel 326 

C) and lower asymptote (Panel D) plotted across the cortex. Darker shades reflect higher 327 

parameter estimates. Excluded regions are shown in grey. 328 

 329 

 330 
Figure 7. Factor loading for Factor 1 (Panel A) and Factor 2 (Panel B) across the cortex. Only 331 

loadings > 0.6 are shown to facilitate interpretation. Darker colours represent higher 332 

loadings. 333 

Next, we implemented a formal quantitative test to examine whether regions differed 334 

in their MCTs. To do so, we compared a confirmatory factor model with intercepts for MCTs 335 

across regions constrained to equality (reflecting the hypothesis that regions mature at the 336 

same approximate age) to a model where they are estimated freely, reflecting the 337 

hypothesis that regions mature at distinct ages). Despite the considerable added complexity, 338 

we found that allowing MCTs to differ between regions, substantially improved model fit 339 

(ΔΧ2(29) = 930.69, p < .001) indicating pronounced differences in maturational timing 340 

between regions independent of their overall thickness. 341 
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In addition to MCT-differences across regions globally, we also examined whether 342 

MCTs are linked between some or all regions: In other words, if a person is mature in one 343 

region, are they then also more mature in all other regions, or are there clusters of brain 344 

regions that covary in their relative maturity? To examine this question, we first examined 345 

the fit of a one-factor confirmatory model, testing the hypothesis that a single factor could 346 

capture MCTs across the brain. This model fit poorly (X2(377) = 1236.68, p < .001, CFI = 0.787, 347 

SRMR = 0.059, RMSEA = 0.159 [0.150, 0.169]). To determine whether a more complex model 348 

might fit the data, we used Exploratory Factor Analysis. Eigenvalues of a parallel analysis 349 

suggested that a two-factor model yields the best, albeit imperfect, solution (X2(349) = 350 

633.85, p < .001). The two-factor model explained 79.3% of the variance in MCTs. Several 351 

central , as well as cingulate, regions loaded strongly onto Factor 1. Parietal regions regions 352 

and the rostral middle frontal loaded strongly onto Factor 2 (Figure 7, Supplementary Table 353 

6). 354 

Finally, we explored whether there is a regional ordering in the timing of maturation in 355 

line with hypotheses of a posterior-to-anterior gradient across the cortex7,56. We correlated 356 

inflection ages of each region with the region's average y-coordinate in MNI space, as 357 

contained in mni.y in brainGraph55. We found no evidence for a significant correlation 358 

between the spatial location and the MCT (t(27) = 0.12, p = .903, r = 0.02, Bayes Factor = 0.35). 359 

In an additional exploratory analysis, we also analyzed whether there is a regional ordering 360 

in the timing of maturation in line with hypotheses of a dorsal-ventral gradient across the 361 

cortex57. We correlated inflection ages of each region with the region's average z-coordinate 362 

in MNI space, as contained in mni.z in brainGraph55. We found no evidence for a significant 363 

correlation between the spatial location and the inflection ages (t(19) = -0.65, p = .522, r = -364 

0.15, Bayes Factor = 0.45). 365 

Together, these analyses offer new insight into cortical maturation. We demonstrate, 366 

for the first time, that it is possible to estimate non-linear maturation independent of overall 367 

cortical thickness. Maturational trajectories differed between individuals and cortical 368 

regions. The ability to estimate these differences offers a new window into elucidating long-369 

standing debates concerning the speed of maturation, its association with early adversity, 370 

and the implications for cognitive and mental health development. 371 
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Discussion 372 

Using longitudinal data of up to 12-waves imaged between late childhood and early 373 

adulthood and flexible nonlinear mixed models, we here show that cortical maturity as 374 

indexed by the MCT can be separated from other cortical thickness parameters (i.e., 375 

asymptotes and slope – hill) and estimated precisely and reliably for each individual and most 376 

brain regions. We identified a characteristic, s-shaped, trajectory of cortical thinning: 377 

Cortical thickness was high in childhood, followed by decreases in early adolescence, 378 

culminating around the age of 14 years, the average MCT. The reduction in cortical thickness 379 

then decelerates to level off in late adolescence. This finding is in line with previous studies 380 

showing s-shaped reductions in cortical thickness over adolescence9,12 and extend the same 381 

by providing estimates of upper limits in apparent cortical thickness (2.95 mm), lower limits 382 

of apparent cortical thickness (2.62 mm), and, most importantly, an index of maturation: the 383 

MCT (average of 14.36 years). This highlights that cortical thinning is protracted and shows 384 

rapid changes in adolescence. This period of rapid brain development raises questions about 385 

possible sensitive periods in adolescence58,59. Future research will be able to show whether 386 

periods of structural change confer heightened plasticity in adolescence. 387 

Developmental patterns differed between cortical regions, with the superior parietal 388 

and precuneus showing some of the earliest MCTs, around 14 years, and cingulate regions 389 

showing some of the latest MCTs, around 17 years. Early maturing regions were found in 390 

lateral frontal, and parietal areas, while late-maturing regions were found in temporal and 391 

dorsal central areas.  392 

Our finding of an early MCT in several frontal areas is surprising, given previous, mostly 393 

cross-sectional studies. There are several possible explanations for this result, which will 394 

need to be tested in future research: First, while most frontal regions are usually imaged well, 395 

the frontal pole is known to be difficult to image. We therefore advise to interpret the finding 396 

for this region with caution. Second, we cannot rule out that data quality issues or model 397 

misfit may have affected findings, although quality control procedures, statistical control for 398 

in-scanner motion, diagnostic plots and precision estimates do not suggest that this was 399 

likely to be the sole explanation. Third, while the scans were evenly distributed across most 400 

ages, the interval between waves 11 and 12 was longer, and data was sparser at older ages. 401 

This may cause the model fit to be poorer at older ages, although this would be more likely 402 
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to affect estimation of late maturing, rather than early maturing regions. Fourth, the late 403 

maturation suggested by the, mostly, cross-sectional analyses to date, do not replicate in 404 

appropriate longitudinal analyses like ours, because of the inherent limitation of cross-405 

sectional data for the examination of developmental patterns. Finally, it may be that cross-406 

sectional analyses have captured aspects of maturation that are independent of the MCT, 407 

the time point of fastest thinning. It may be, for instance, that frontal regions asymptote 408 

later than other region, even though the peak of thinning happens quite early. Altogether 409 

this finding, along with recent work identifying structural brain networks and hubs60–63, 410 

supports a complex systems account, in which the brain matures in a distributed pattern. 411 

Future studies could use complex systems approaches like network models to identify how 412 

maturation across regions produces changes in cognition and mental states across 413 

development. 414 

We found evidence for pronounced individual differences, with MCTs differing by 415 

several years between individuals. This supports the notion that brain maturation is highly 416 

variable and invites questions of potential predictors and outcomes. We here investigated 417 

sex as a potential predictor of individual differences. There was some evidence for sex 418 

differences, with females showing earlier maturation than males, by about 2 years. This 419 

supports initial evidence for earlier maturation in girls from older longitudinal studies46,47 and 420 

may be linked to earlier puberty and different socialization in girls64,65. Our estimates of sex 421 

differences were relatively noisy, however. Future studies could use nonlinear mixed models 422 

in larger cohorts, such as ABCD28, to investigate the robustness of sex differences in 423 

maturation. Future studies could also investigate other candidate predictors such as 424 

environmental influences (e.g., adversity and education) to identify whether these 425 

accelerate or decelerate maturation – a yet unsolved conundrum in developmental 426 

science18,19,66. Investigations of potential outcomes of maturational differences, e.g., 427 

cognitive performance or psychiatric diagnosis, would be similarly fascinating, and could 428 

eventually include distal effects, such as cognitive and brain changes during ageing1,67. 429 

It is worth noting that our analytical approach, using the four-parameter logistic 430 

function, depends on the nature of cortical thinning:  Other measures of brain maturation 431 

(e.g., brain v0lume) likely show different developmental shapes and different maturational 432 

timelines, not all of which will be amenable to estimating the MCT. The simple linear 433 
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decreases, reported for volume changes in some cortical regions, would not allow for a 434 

quantitative ‘midpoint.’ However, nonlinear mixed models are extremely versatile and can 435 

be fit, in principle, to any functional relationship. This also includes more complex 436 

relationships than that captured by the four-parameter logistic fit here, allowing, e.g., for 437 

asymmetries in development before and after adolescence. In the future, these nonlinear 438 

mixed models can be used to model white matter trajectories and other morphometric 439 

measures of cortical and subcortical development to better understand similarities and 440 

differences across brain tissues. This will yield a more precise understanding of how changes 441 

in grey and white matter work in concert to produce functional changes in the brain and 442 

behaviour.  443 

Readers may be interested in understanding the power prerequisites for using 444 

nonlinear mixed models. Power in nonlinear mixed models depends on the interaction 445 

between several factors, including the number of participants, number of timepoints, 446 

spacing between time points, missingness and model complexity68,69. While past studies of 447 

optimal design in pharmacology indicate that at least three time points may be sufficient to 448 

estimate simple nonlinear mixed models70, future studies will need to evaluate power for 449 

plausible developmental functions and typical designs of neuroimaging studies in detail. 450 

In conclusion, this study shows that apparent cortical thinning in adolescence is s-451 

shaped, with the most rapid changes occurring in mid-adolescence, at around 14 years of 452 

age, on average. Further, we show that individuals vary substantially, with up to several 453 

years, in the age at which the cortex undergoes most rapid changes. On a practical level, this 454 

work shows that high-resolution temporal data, combined with nonlinear modelling 455 

approaches, can be used to quantify brain maturation with unprecedented precision. This 456 

will allow the field to provide rigorous tests of prominent theoretical models of adolescent 457 

development, such as the structural mismatch hypothesis20,21 or accelerated maturation 458 

hypotheses17. 459 
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