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The midpoint of cortical thinning between late childhood and early
adulthood differs between individuals and brain regions: Evidence from
longitudinal modelling in a 12-wave neuroimaging sample

Abstract

Charting human brain maturation between childhood and adulthood is a fundamental
prerequisite for understanding the rapid biological and psychological changes during human
development. Two barriers have precluded the quantification of maturational trajectories:
demands on data and demands on estimation. Using high-temporal resolution
neuroimaging data of up to 12-waves in the HUBU cohort (N = 9o, aged 7-21 years) we
investigate changes in apparent cortical thickness across childhood and adolescence. Fitting
a four-parameter logistic nonlinear random effects mixed model, we quantified the
characteristic, s-shaped, trajectory of cortical thinning in adolescence. This approach yields
biologically meaningful parameters, including the midpoint of cortical thinning (MCT), which
corresponds to the age at which the cortex shows most rapid thinning - in our sample
occurring, on average, at 14 years of age. These results show that, given suitable data and
models, cortical maturation can be quantified with precision for each individual and brain

region.
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23 Introduction

24 The human cortex undergoes protracted microscopic and macroscopic structural changes
25  between childhood and adulthood®. Individual differences in cortical structure have been
26  associated with a range of phenotypic differences, including physical and mental health®™,
27  neurodevelopmental disorders as well as cognitive performance in childhood and
28  adolescence™®. Although other measures of brain structural development such as brain
29  volume or white matter connectivity provide complementary insights into brain maturation,
30  cortical thinning is one of the most widely used proxies of brain maturation’. We here use
31  the term apparent cortical thickness throughout to highlight that Magnetic Resonance
32 Imaging (MRI) studies measure a proxy of cortical thickness, that follows a similar spatial
33  patten to that observed in histological studies™, but has absolute values that may be

34 influenced by signal intensities and contrasts™.

35 Previous work has generally observed developmental decreases in cortical thickness
36  from childhood (after 2-3 years of age) to early adulthood®, with longitudinal studies showing
37  thattherate of cortical thinning increases in adolescence®**. There is an emerging consensus
38  on a characteristic s-shaped, non-linear trajectory at the population level (Figure 1)***. This
39  process of cortical thinning is thought to reflect a range of underlying biological processes™,
40  including increasing myelination of the deeper cortical layers™ and decreasing synaptic

41  density™.

e MCT

Cortical thickness

42 Age (late childhood to early adulthood)

43 Figure 1. Schematic illustration of cortical thinning during adolescence, showing the

44 Midpoint of Cortical Thinning (MCT), i.e., the age of most rapid cortical thinning.
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Hypotheses concerning individual differences in the process of cortical thinning and
their link to psychological development feature prominently in neurodevelopmental
theories. For instance, it has been hypothesized that a life history of adversity may lead to
accelerated™* or delayed®* cortical maturation. The developmental mismatch theory
suggests that a mismatch in maturity between subcortical and cortical brain regions (with
frontal regions commonly thought to thin last) may help explain the prevalence of risk-taking
behaviour during adolescence when this maturation disparity is thought to be maximal®***.
At the group comparison level, hypotheses posit that girls demonstrate earlier cortical

22-24

maturation than boys**™**, with these differences hypothesized to underlie developmental
differences in behavioural and psychopathological phenotypes. Similarly, Nunes et al. (2020)
hypothesized that children with autism spectrum disorder are characterized by accelerated
brain maturation®®. Overall, hypothesized differences in cortical maturation are central to
some of the most influential neurodevelopmental theories. However, the data and analytic
methods currently used to capture maturation are no match for ambitions in understanding

and applying the construct of cortical maturation.

Longitudinal data is costly and time-consuming to procure, therefore, most
neuroimaging studies to-date rely on cross-sectional data. Cross-sectional data precludes
the investigation of developmental changes and cross-sectional measures necessarily
conflates distinct sources of cortical thickness differences (baseline thickness, the onset of
maturation, as well as speed and total amount of thinning). Only under extremely restrictive
assumptions (e.g., identical brain thickness in early childhood and late adolescence, identical
rates of thinning) can a cross-sectional measure be used as a proxy for development. Given
that these assumptions are known to be empirically untrue®, our empirical knowledge of

cortical maturation is likely to be extremely limited.

Where longitudinal data does exist, the average number of waves per subject is
generally below three, and the time between scans is 2.5 years on average®. This limits our
ability to observe more subtle brain changes in time periods with ongoing maturation such
as adolescence, as well as our ability to capture the trajectory of cortical thinning, which is
known to be non-linear®’. This is particularly true at the individual level. That said, large

cohorts with multiple time points, like ABCD*®, are currently emerging.
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75 Most longitudinal studies investigating individual differences to date have used linear
76  modelling approaches, such as linear mixed effects models, using the percentage of, or
77  absolute change, in cortical thickness between two ages as an indicator of maturation of a
78  given brain region, with larger changes commonly equated to more protracted
79  maturation®?3°. However, these estimates are typically confounded by the initial thickness
80  of aregion - thicker regions can thin more than thinner regions. Even when such confounds
81  are controlled for, the absolute change in thickness remains dependent on the precise age
82 range studied. Alternative, nonlinear approaches, such as Generalized Additive Mixed
83  Models (GAMMs)*, can capture complex nonlinear relationships and are excellent tools for
84  predictive purposes. Nonlinear mixed models offer a similarly flexible approach for capturing
85  complex nonlinear relationships to GAMMs. A particular advantage of nonlinear mixed
86  modelsisthat they yield readily interpretable parameters, informative, of, e.g., ages of rapid
87  development (Figure 1), making them an attractive, but currently underused, tool for

88  developmental neuroscientists.

89 To address the challenge of quantifying cortical maturation at the individual level, we
90  here leverage a unique dataset (with up to 12 longitudinal measurements between late
91  childhood and early adulthood) and a quantitative framework currently underutilized in
92  cognitive neuroscience (non-linear random effects modelling) to demonstrate that cortical
93 maturity can be defined, and estimated, at the individual level, offering a new window of
94  insight into cortical development across adolescence. Nonlinear mixed models are a
95  powerful tool that can capture developmental processes at the individual level** and yield
96  readily interpretable parameters. One of these parameters allows us to provide a novel
97  quantitative definition of cortical maturation during adolescence at the individual level: The
98  midpoint of cortical thinning (MCT, see Figure 1). The MCT is the point in adolescent
99  development where the rate of cortical thinning is at its peak for an individual. We show that
100  the MCT can be used to study the extent to which cortical maturation differs between

101  individuals, sexes, and brain regions.
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102 Materials and Methods
103 Cohort
104 The present longitudinal study included data from go typically developing children and

105  adolescents (53 females, 37 males), who were enrolled in the longitudinal HUBU (“Hjernens
106  Udvikling hos Barn og Unge”, Brain Maturation in Children and Adolescents) study. The HUBU
107  study was initiated in 2007, where g5 participants (55 females, 40 males) aged 7 - 13 years
108  and their families were recruited from three elementary schools in the Copenhagen, DK,
109  suburban area®. All children whose families volunteered were included, except for children
110 with a known history of neurological or psychiatric disorders or significant brain injury. Prior
111  to participation, all children assented to the study procedures and informed written consent
112 was obtained from parents. Informed written consent was also obtained from the
113 participants themselves when they turned 18 years of age. The study was approved by the
114 Ethical Committees of the Capital Region of Denmark (H-KF-01-131/03 and H-3-2013-037)
115  and performed in accordance with the Declaration of Helsinki. Participants were scanned up
116  toa2times with scanning intervals of 6 months for the first 10 visits, one year between visits

117  10and 11, and three years between visits 11 and 12 (Figure 2).

118 Here, we included data from the first 12 assessments of the HUBU study. All baseline
119  MRI scans were evaluated by an experienced neuroradiologist, and all raw images were
120  visually inspected to ensure sufficient quality. Five participants were excluded from the
121  presentstudy, due to receiving a psychiatric diagnosis after study initiation (N = 2), incidental
122 clinical finding on the MRI scan (N = 1), or no MRl scans or FreeSurfer outcomes of sufficient
123 quality (N = 2). Our final sample analysed here consisted of go participants (53 females, 37
124 males) aged 7.6 - 21.6 years. For this sample, we excluded 73 MRI sessions if one of the
125  following criteria was met: participants did not finish the MRI session (2 participants, 2
126  scans), participants were not scanned due to metallic dental braces (14 participants, 31
127  scans), had poor MR-image quality (22 participants, 31 scans), or had acquired a brain injury
128  after baseline (2 participant, 9 scans). A total of 745 valid MRI scans (scans per participant:
129  range =1 - 12, mean = 8.3, median = 10, interquartile range (/QR) = 8 — 12) were included in
130  the statistical analyses. Data from the HUBU cohort has previously been used in cross-

131 sectional®?¥ and longitudinal?*3® studies examining brain-behavioural relationships.
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133 Figure 2: Spacing and timing of scans for each participant (Panel A) and a histogram of the

134 number of scans included in the analysis (Panel B).
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135 MRl protocol

136  Participants underwent structural MRI on a 3T Siemens Magnetom Trio MR scanner
137  (Siemens, Erlangen, Germany) using an eight-channel head coil (Invivo, FL, USA). Two T1-
138  weighted images were acquired using a 3D MPRAGE sequence (TR = 1550 ms, TE = 3.04 ms,
139  matrix = 256 x 256, 192 sagittal slices, 1 x 1 x 1 mm? voxels, acquisition time = 6:38). A T2-
140  weighted image was acquired using a 3D turbo spin echo sequence (TR = 3000 ms, TE =
141 354 ms, FOV=282x216, matrix=256x196, 192 sagittal slices, 1x1x1 mm3voxels,

142 acquisition time = 8:29).
143
144  FreeSurfer pre-processing and extraction of cortical thickness

145  All Ti-weighted and T2-weighted images were processed using tools available in the
146  FreeSurfer (version 6.0) software suite3®™*. Cortical surface reconstruction was
147  implemented using the following procedures: skull stripping, non-uniformity correction,
148  white matter segmentation, creation of initial mesh, correction of topological defects, and
149  creation of optimal white and pial surfaces®*™*. Images were then processed with the
150  longitudinal stream** in FreeSurfer, to estimate changes in cortical thickness across time.
151  Apparent cortical thickness was calculated as a measure of the shortest distance between
152 the white and pial surfaces. Cortical grey matter parcellations were based on surface-based
153 nonlinear registration to the Desikan-Killiany atlas based on gyral and sulcal patterns and
154  Bayesian classification rules*’, yielding estimates for 34 ROIs in each hemisphere. Cortical

155  thickness estimates were averaged across the hemispheres.

156 To check the quality of the FreeSurfer outputs, we followed the Enigma protocol

157  (http://enigma.ini.usc.edu/protocols/imaging-protocols/). We wused statistical outlier

158  detection for average thickness and surface area of each cortical parcel. Statistical detection
159  of both within- and between-subject outliers was performed based on the age, sex, and age-
160  by-sex adjusted residuals derived using GAMMs, to account for age and sex differences in
161  the brain measures. Scans of concern were then visually inspected. In line with the Enigma
162  protocol, we did not perform manual editing on the FreeSurfer outputs and instead
163  discarded data of questionable quality. Based on these quality checks, we excluded one

164  participant from the entire study. Furthermore, we excluded the following cortical parcels
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165  from statistical analysis for N participants: right temporal pole (N = 1), left frontal pole (N =
166 1), right paracentral (N = 1), right cuneus (N =1), right lateral occipital (N = 1), and left fusiform
167  gyrus(N=2).

168 Finally, the Euler number, which indicates the topological complexity of the
169  reconstructed cortical surface, was extracted from FreeSurfer for each scan and used as a
170  proxy for in-scanner motion and a quantitative measure of image data quality in our
171  statistical analyses, to account for potential systematical bias in data quality across age. The
172 Euler number has been correlated with visual image quality inspection scores as well as with
173 cortical thickness in a regionally heterogeneous pattern across datasets*. The Euler number

174  was extracted for each hemisphere and summed to produce one value per scan.
175
176  Statistical analyses

177 We here modelled cortical thinning between childhood and adulthood using nonlinear
178  mixed models implemented via the saemix** package (version 2.4) in R (version 4.1.0) and
179  RStudio (version 1.4.1717). To capture the characteristic s-shape of cortical thinning, we fit
180  the four-parameter logistic function*®, as defined in the Results section. See [BLINDED] for
181  ouranalysis code. Cortical thickness was modelled as the dependent variable and age as the
182  independent variable. We fit a model to mean cortical thickness, as well as for one for each
183  ofthe 34 ROIs of the Desikan-Killiany atlas**. We included sex at birth and in-scanner motion
184  as covariates in all models, to account for potential differences thereof in developmental
185  trajectories*®*. In-scanner motion was operationalized by the Euler number (M = -137.07, SE
186  =5.33 range =-298.2 - -69.08). Females were coded as the reference group. While sex was
187  a covariate of interest, and motion a covariate of no interest, both are modelled the same
188  way in the NLMM framework. Covariate parameters can, in principle, be included to control
189  for the effect of motion and sex on any of the main fixed effect parameters of the model (in
190  our case, the two asymptotes, the MCT, and the hill). This yields a maximum of eight
191  covariates. To avoid potential overfitting with a highly parametrized model*®, we
192 determined the optimal covariate model via forward stepwise model selection using mean
193 thickness asthe outcome variable. To the best of our knowledge, no consensus methodology

194  for model selection with covariates exists for nonlinear mixed models. We use forward
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195  selection as a pragmatic and tractable solution in the context of demanding model
196  estimation. Although some have advocated for more complex model selection algorithms,
197  such as best subset selection®, recent work suggests that forward selection can perform
198  similarly to these alternatives®®. The process starts with no covariate parameters in the
199  model. It then iteratively adds the variable that best improves the fit. For all covariate
200  parameters not in the model (e.g., eight at the first iteration), we check their p-value when
201  addedtothe model one at atime. We chose the covariate parameter with the lowest p-value
202  lessthan o.05. This process was continued until no new predictors could be added. Based on
203  this model selection process, we allowed the upper and lower asymptote, and MCTs to differ
204  between sexes and included the motion parameter as a covariate for the lower asymptote
205  (see Supplementary Table 1 for the full results). The remaining parameters were held
206  constant for sex and motion. Estimates were obtained for the four parameters of the logistic
207  function, as well as the two covariates. Precision was assessed by inspecting the coefficient
208  of variation (CV) for each parameter, as provided by saemix. CVs are standardized measures
209  of dispersion and are calculated as the ratio of the standard deviation to the mean. CVs <
210  20% are generally considered acceptable.

211
212 In a second step, we assessed differences in MCT estimates across different brain

213 regions. We assessed whether MCTs across brain regions could be constrained to equality
214 using Confirmatory Factor Analysis (CFA), as implemented in lavaan® for R (version 0.6-9).
215 We used full information maximum likelihood with robust standard errors to account for
216  missingness and nonnormality. We estimated a one-factor CFA model in which factor
217  loadings were freely estimated for each brain region. We then compared this model to one
218  where the factor loadings were still freely estimated, but the intercepts were constrained to
219  equality using the likelihood ratio test. A significant likelihood ratio test here indicates a loss
220  in model fit for a constrained model, providing evidence that brain regions differ in their

221 MCTs.

222 Third, we used Exploratory Factor Analysis to assess the dimensionality of MCTs across
223 regions and to identify maturational factors capturing developmental trends across regions.
224 This wasimplemented through parallel analysis via the psych®? package for R (version 2.1.6),

225  using an oblique oblimin transformation.
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226 Finally, we tested the popular hypothesis of a posterior-anterior gradient of
227  development>* by correlating MCTs for each region with their y-coordinates in MNI space.
228  Coordinates were obtained from the brainGraph® package in R (version 3.0.0). In an
229  additional exploratory analysis we also correlated MCTs for each region with their z-

230  coordinates in MNI space to test for a potential dorsal-ventral gradient.

231
232 Results

233 Cortical thickness showed nonlinear changes between childhood and early adulthood across
234 cortical regions (Figure 3). The characteristic sigmoid, or s-shaped, curve, of cortical thinning,
235  was apparent across most brain regions. We captured this shape using the four-parameter

236  logistic function:
AUpper - ALower
—Hill
1+ (e
Inflection

238  The function yields four biologically meaningful parameters: The upper asymptote (Aupper,

237 Y = Apower +

239  maximal apparent thickness in mm), lower asymptote (ALower, minimal apparent thickness in
240  mm), and Hill, the slope of change, and the Inflection. We were particularly interested in the
241  latter parameter, which corresponds to the MCT, and was used here as an index of cortical
242  maturation (see Figure 1). The MCT can be compared across individuals, sexes, and brain
243  regions. To this end, we first modelled cortical thickness averaged across the cortex,
244  identified the average pattern of maturation, and assessed sex differences. Next, we
245  modelled cortical thickness for different brain regions to investigate patterns of maturation
246  acrossthe cortex. Sexand in-scanner motion, as a proxy forimage quality, was controlled for

247  inall analyses.

248 Because the sigmoid is asymptotic, there is no age at which the brain is mature.
249  Instead, the brain develops throughout the age range investigated here (7 — 21 years).
250  Parameters indicated that mean thickness showed high levels in late childhood, with an
251  upperasymptote of 2.95 mm (SE = 0.01 mm) and decreasing thereafter to a lower asymptote
252 of 2.62 mm (SE = 0.03 mm). Our central parameter of interest, the MCT, was estimated to be
253 14.36 years (SE = 0.28 years). See Table 1. We observed a substantial range of MCTs across

254  individuals, with @ minimum and maximum of 12.25 and 19.54 years (Figure 4) and a variance

10
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255  of 1.79 years (SE = 0.46 years). Together, our analysis demonstrates that we can estimate a

256  novel, quantitative definition of cortical maturity which is independent of overall thickness

257  and shows substantial differences between people.
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261  Table 1: NLMM Parameter estimates for mean cortical thickness

Parameter Estimate SE CV (%) p
Alower 2.62 0.03 1.3 -
bsex(aLower) -0.07 0.04 55.1 0.035
bumotion(ALower) 0.00 <0.01 52.0 0.027
Aupper 2.95 0.01 0.4 -
bsexaupper) -0.06 0.02 30.5 0.001
MCT 14.36 0.28 2.0 -
bsexmcr) 1.92 0.51 26.7 <0.001
Hill -6.34 0.42 6.6 -

262  Note. CV = Coefficient of variation — the ratio of the standard deviation to the mean. Used to
263  assess precision. CV values < 20% are deemed acceptable. SE = standard error, NLMM =
264  Nonlinear Mixed Models. Females were coded as the reference group.

265
266  There are substantial individual differences in the MCT

267  We found that the nonlinear model fit the data well (Supplementary Figure 1). To test
268  whether our model fit better than a simpler alternative, we compared the model fit of the
269  four-parameter logistic nonlinear model to a simple linear model. We found that the four-
270  parameter logistic model fits better than the simple linear model (AAIC = -137.22),
271  suggesting that our more complex model is plausible across most regions. Mean cortical
272 thickness was estimated with very good precision for the asymptotes, MCT, and the hill, as
273  indicated by low coefficients of variation (CV; Table 1). The MCT was uncorrelated with the
274  upper asymptote, showing that it is independent of the initial thickness of a region (r = 0.01,
275  t(88) = 0.09, p = .925). It was also independent of the mean cortical thickness in early
276  adulthood (ALower, r = -0.13, t(88) = -1.22, p = .227). This independence means that cross-
277  sectional measurements of cortical thickness will likely not function well as an approximation
278  of cortical maturity. The rate of change (Hill) was also not associated with the MCT (r = -0.16,
279  t(88) = -1.48, p = .141). A sensitivity analysis shows that results were very similar when only

280  participants with at least three scans were included (N = 84, Supplementary Table 2).
281
282  Significant, but noisy, sex differences in trajectories

283  There were significant sex differences: Females started with thicker cortices than males (b =

284  -0.06, p=.001), had thicker cortecesin adulthood (b =-0.07, p =.035) and showed earlier MCT

12
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(b=1.92, p <.001, Figure 4). However, the CVs for these estimates were all well above 20%

(Table 1), indicating that these parameters were estimated with low precision. The low
precision was likely due to the small number of males in the sample (Nmates = 37).
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Figure 4. Panel A: Predicted apparent mean cortical thickness as a function of age. Estimated
individual trajectories and the average trajectory is shown, as well as the average MCT. Panel
B: Density plot of MCTs showing individual differences in the sample. Panel C: Sex
differences in the sample. MCT = Midpoint of Cortical Thinning.

MCTs differ across the cortex

To examine the specificity in maturational timing across regions, we estimated the MCT for

each of the 34 cortical regions of the Desikan-Killiany atlas independently (Figure 5), again
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298  using non-linear mixed models and the four-parameter logistic function. The four
299  parameters were estimated with good precision (CV < 20%) for all regions>, except for the
300  entorhinal, lingual, pericalcarine, temporal pole, and transverse temporal regions, which
301  were all excluded from subsequent analyses (see Supplementary Tables 3 and 4 for all
302  estimates). For these regions, the logistic may not be a good approximation of the functional
303  relationship between age and cortical thickness. For the pericalcarine, for instance, we find
304 that a linear model fits marginally better than the four-parameter logistic (AAIC = 0.50),
305  potentially reflecting the early maturation for this region. The enthorinal is known to be more

306 likely to be affected by eye-movement artifacts and may therefore show a poor model fit.

307 Mean MCTs ranged from 13.51 years for the cuneus to 17.75 years for the rostral
308  anterior cingulate cortex (Figure 5). The brain regions that reached the MCT first were the
309  occipital (cuneus and lateral occipital) and parietal (precuneus, superior and inferior parietal)
310  cortices, the rostral middle frontal cortex, and the cortex of the banks of the superior
311  temporal sulcus (bankssts). The brain regions that reached the MCT last were the caudal and
312 rostral anterior cingulate and parahippocampal cortices, followed by the sensorimotor pre-
313  and postcentral. Moreover, the frontal lobe regions (precentral, caudal middle frontal, rostral
314  middle frontal, superior frontal, and frontal pole) showed the fastest rate of change (i.e.,
315  steepest hill), while the slowest rate of change (i.e., flattest hill) was observed in the
316  parahippocampal, cuneus, (caudal and rostral) anterior cingulate, and superior temporal
317  cortices. Most regions showed a relative independence of the MCT, upper and lower

318  asymptote and hill (Figure 6) and low parameter correlations (Supplementary Table 5).
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Figure 5. Individual and regional differences in thinning shown in raincloud plots. The
estimated kernel density is shown to visualize the distribution of values. The median is shown
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horizontal lines show the 1.5 interquartile range. Values beyond these lines can be

considered outliers.
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325
326  Figure 6. Parameter estimates for the MCT (Panel A), hill (Panel B), upper asymptote (Panel

327  C) and lower asymptote (Panel D) plotted across the cortex. Darker shades reflect higher

328  parameter estimates. Excluded regions are shown in grey.
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331  Figure 7. Factor loading for Factor 1 (Panel A) and Factor 2 (Panel B) across the cortex. Only
332 loadings > 0.6 are shown to facilitate interpretation. Darker colours represent higher

333 loadings.

334 Next, we implemented a formal quantitative test to examine whether regions differed
335  intheir MCTs. To do so, we compared a confirmatory factor model with intercepts for MCTs
336 across regions constrained to equality (reflecting the hypothesis that regions mature at the
337 same approximate age) to a model where they are estimated freely, reflecting the
338  hypothesisthat regions mature at distinct ages). Despite the considerable added complexity,
339  we found that allowing MCTs to differ between regions, substantially improved model fit
340  (AX*(29) = 930.69, p < .001) indicating pronounced differences in maturational timing

341  between regions independent of their overall thickness.
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342 In addition to MCT-differences across regions globally, we also examined whether
343  MCTs are linked between some or all regions: In other words, if a person is mature in one
344  region, are they then also more mature in all other regions, or are there clusters of brain
345  regions that covary in their relative maturity? To examine this question, we first examined
346  the fit of a one-factor confirmatory model, testing the hypothesis that a single factor could
347  capture MCTs across the brain. This model fit poorly (X*(377) = 1236.68, p < .001, CFl = 0.787,
348 SRMR=0.059, RMSEA =0.159[0.150, 0.169]). To determine whether a more complex model
349  might fit the data, we used Exploratory Factor Analysis. Eigenvalues of a parallel analysis
350  suggested that a two-factor model yields the best, albeit imperfect, solution (X*(349) =
351  633.85, p < .001). The two-factor model explained 79.3% of the variance in MCTs. Several
352 central, as well as cingulate, regions loaded strongly onto Factor 1. Parietal regions regions
353  and the rostral middle frontal loaded strongly onto Factor 2 (Figure 7, Supplementary Table
354 6).

355 Finally, we explored whether there is a regional ordering in the timing of maturation in

756 We correlated

356 line with hypotheses of a posterior-to-anterior gradient across the cortex
357 inflection ages of each region with the region's average y-coordinate in MNI space, as
358 contained in mni.y in brainGraph®. We found no evidence for a significant correlation
359  betweenthe spatial location and the MCT (t(27) = 0.12, p =.903, r=0.02, Bayes Factor = 0.35).
360 In an additional exploratory analysis, we also analyzed whether there is a regional ordering
361 in the timing of maturation in line with hypotheses of a dorsal-ventral gradient across the
362  cortex’’. We correlated inflection ages of each region with the region's average z-coordinate
363  in MNI space, as contained in mni.z in brainGraph®. We found no evidence for a significant

364  correlation between the spatial location and the inflection ages (t(19) = -0.65, p = .522, r = -

365 o0.15, Bayes Factor = 0.45).

366 Together, these analyses offer new insight into cortical maturation. We demonstrate,
367  forthefirst time, thatitis possible to estimate non-linear maturation independent of overall
368  cortical thickness. Maturational trajectories differed between individuals and cortical
369  regions. The ability to estimate these differences offers a new window into elucidating long-
370  standing debates concerning the speed of maturation, its association with early adversity,

371  andthe implications for cognitive and mental health development.
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372 Discussion

373  Using longitudinal data of up to 12-waves imaged between late childhood and early
374  adulthood and flexible nonlinear mixed models, we here show that cortical maturity as
375 indexed by the MCT can be separated from other cortical thickness parameters (i.e.,
376  asymptotes and slope — hill) and estimated precisely and reliably for each individual and most
377  brain regions. We identified a characteristic, s-shaped, trajectory of cortical thinning:
378  Cortical thickness was high in childhood, followed by decreases in early adolescence,
379  culminating around the age of 14 years, the average MCT. The reduction in cortical thickness
380  then decelerates to level off in late adolescence. This finding is in line with previous studies
381  showing s-shaped reductions in cortical thickness over adolescence®*” and extend the same
382 by providing estimates of upper limits in apparent cortical thickness (2.95 mm), lower limits
383  ofapparent cortical thickness (2.62 mm), and, most importantly, an index of maturation: the
384  MCT (average of 14.36 years). This highlights that cortical thinning is protracted and shows
385  rapid changesin adolescence. This period of rapid brain development raises questions about
386  possible sensitive periods in adolescence’®5°. Future research will be able to show whether

387  periods of structural change confer heightened plasticity in adolescence.

388 Developmental patterns differed between cortical regions, with the superior parietal
389  and precuneus showing some of the earliest MCTs, around 14 years, and cingulate regions
390  showing some of the latest MCTs, around 17 years. Early maturing regions were found in
391 lateral frontal, and parietal areas, while late-maturing regions were found in temporal and

392  dorsal central areas.

393 Our finding of an early MCT in several frontal areas is surprising, given previous, mostly
394  cross-sectional studies. There are several possible explanations for this result, which will
395  needtobetested in future research: First, while most frontal regions are usually imaged well,
396  thefrontal pole is known to be difficult to image. We therefore advise to interpret the finding
397  for this region with caution. Second, we cannot rule out that data quality issues or model
398  misfit may have affected findings, although quality control procedures, statistical control for
399 in-scanner motion, diagnostic plots and precision estimates do not suggest that this was
400 likely to be the sole explanation. Third, while the scans were evenly distributed across most
401  ages, the interval between waves 11 and 12 was longer, and data was sparser at older ages.

402  This may cause the model fit to be poorer at older ages, although this would be more likely
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403  to affect estimation of late maturing, rather than early maturing regions. Fourth, the late
404  maturation suggested by the, mostly, cross-sectional analyses to date, do not replicate in
405  appropriate longitudinal analyses like ours, because of the inherent limitation of cross-
406  sectional data for the examination of developmental patterns. Finally, it may be that cross-
407  sectional analyses have captured aspects of maturation that are independent of the MCT,
408  the time point of fastest thinning. It may be, for instance, that frontal regions asymptote
409 later than other region, even though the peak of thinning happens quite early. Altogether
410  this finding, along with recent work identifying structural brain networks and hubs®®,
411  supports a complex systems account, in which the brain matures in a distributed pattern.
412  Future studies could use complex systems approaches like network models to identify how

413  maturation across regions produces changes in cognition and mental states across

414  development.

415 We found evidence for pronounced individual differences, with MCTs differing by
416  several years between individuals. This supports the notion that brain maturation is highly
417  variable and invites questions of potential predictors and outcomes. We here investigated
418  sex as a potential predictor of individual differences. There was some evidence for sex
419  differences, with females showing earlier maturation than males, by about 2 years. This

6
49,47 and

420  supports initial evidence for earlier maturation in girls from older longitudinal studies
421  may be linked to earlier puberty and different socialization in girls®®. Our estimates of sex
422  differences were relatively noisy, however. Future studies could use nonlinear mixed models
423 in larger cohorts, such as ABCD?*, to investigate the robustness of sex differences in
424 maturation. Future studies could also investigate other candidate predictors such as
425  environmental influences (e.g., adversity and education) to identify whether these
426  accelerate or decelerate maturation — a yet unsolved conundrum in developmental

427  science®®9%®

. Investigations of potential outcomes of maturational differences, e.g.,
428  cognitive performance or psychiatric diagnosis, would be similarly fascinating, and could

429  eventually include distal effects, such as cognitive and brain changes during ageing*®.

430 It is worth noting that our analytical approach, using the four-parameter logistic
431  function, depends on the nature of cortical thinning: Other measures of brain maturation
432 (e.g., brain volume) likely show different developmental shapes and different maturational

433 timelines, not all of which will be amenable to estimating the MCT. The simple linear
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434 decreases, reported for volume changes in some cortical regions, would not allow for a
435  quantitative ‘midpoint.” However, nonlinear mixed models are extremely versatile and can
436  be fit, in principle, to any functional relationship. This also includes more complex
437  relationships than that captured by the four-parameter logistic fit here, allowing, e.g., for
438  asymmetries in development before and after adolescence. In the future, these nonlinear
439  mixed models can be used to model white matter trajectories and other morphometric
440  measures of cortical and subcortical development to better understand similarities and
441  differences across brain tissues. This will yield a more precise understanding of how changes
442  in grey and white matter work in concert to produce functional changes in the brain and

443 behaviour.

444 Readers may be interested in understanding the power prerequisites for using
445  nonlinear mixed models. Power in nonlinear mixed models depends on the interaction
446  between several factors, including the number of participants, number of timepoints,
447  spacing between time points, missingness and model complexity®®*®®. While past studies of
448  optimal design in pharmacology indicate that at least three time points may be sufficient to
449  estimate simple nonlinear mixed models’®, future studies will need to evaluate power for

450  plausible developmental functions and typical designs of neuroimaging studies in detail.

451 In conclusion, this study shows that apparent cortical thinning in adolescence is s-
452  shaped, with the most rapid changes occurring in mid-adolescence, at around 14 years of
453  age, on average. Further, we show that individuals vary substantially, with up to several
454  years, inthe age at which the cortex undergoes most rapid changes. On a practical level, this
455  work shows that high-resolution temporal data, combined with nonlinear modelling
456  approaches, can be used to quantify brain maturation with unprecedented precision. This
457  will allow the field to provide rigorous tests of prominent theoretical models of adolescent

20,21

458  development, such as the structural mismatch hypothesis or accelerated maturation

459  hypotheses™.
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