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ABSTRACT 
 
Generating masks on training data for augmenting machine learning is one of the challenges as 
it is time-consuming when performed manually. While variable random images can be 
generated by Generative Adversarial Networks, an image-to-image translation is needed to 
generate both images and ground truth data. To generate cells and their corresponding masks, 
we used a new approach to prepare the training data by adding masks on 4 different channels 
preventing any overlapping between masks on the same channel at an exactly 2-pixel distance. 
We used GAN to generate nuclei from only two images (415 and 435 nuclei) and tested 
different GANs with alternating activation functions and kernel sizes. Here, we provide the 
proof-of-principle application of GAN for image-to-image translation for cell nuclei and tested 
variable parameters such as kernel and filter sizes and alternating activation functions, which 
played important roles in GAN learning with small datasets. This approach will decrease the 
time required to generate versatile training datasets for various cell types and shapes with their 
corresponding masks for augmenting machine learning-based image segmentation. 
 
INTRODUCTION 
 
Image segmentation through automated quantification of objects is one of the main challenges 
in machine learning. Generalizing a method that can be commonly used is still a need, even the 
existing ones requires generation of new training data depending on the tissue type, cell types 
or complexity of the image (Stringer et al., 2020; Stringer & Pachitariu, 2022). As a result, 
generating relevant training data is the key step in training neural networks (NNs). In the last 
decade, Convolutional Neural Networks (CNNs) have been successfully applied to solve image 
segmentation by using pixel-wise information classification. Currently, U-Net is a widely used 
method among the state-of-the-art models for image segmentation (Ronneberger et al., 2015). 
The U-Net architecture is composed of encoders (convolution layers) and decoders 
(deconvolution layers) with skip connections between encoder and decoders. Many models 
have been developed based on U-Net architecture: UNet++ (Zhou et al., 2018), UNet3+ (Huang 
et al., 2020), DC-UNet (Lou et al., 2021), MultiResUNet (Ibtehaz & Rahman, 2019), and Half-
UNet (Lu et al., 2022). In almost all of these models, the number of parameters was decreased 
without compromising the accuracy of segmentations. Additionally, some of the U-Net-derived 
models have already been used in image segmentation, such as StarDist (Schmidt et al., 2018) 
and Cellpose (Stringer et al., 2020; Stringer & Pachitariu, 2022). However, despite the existing 
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U-Net architectures, there is still room to generate more models derived from U-Net. For 
instance, in addition of the U-Net architectures aforementioned, chaining of U-Nets (Alom et 
al., 2018; Laibacher et al., 2018; Zhuang, 2018) is another option to generate different U-Net 
architectures. These models can be adapted to various datasets and every one of them may 
perform significantly better than other variants depending on the training datasets used. While 
most of these models have been tested for image segmentation, these models may be further 
used as generative models for GANs. Therefore, in our current study, in addition to classical 
U-Net architecture, we improved the U-Net architecture by generating 3x-U-Net and evaluated 
its performance by comparing it with classical 4, and 6 skip-connected U-Nets.  
 
Training data, besides the architecture of the Neural Networks, is a key step for image 
segmentation. Training data generation requires manual segmentation to construct the ground 
truth data, which is labor-intensive. Evaluation of most models is performed on unseen images, 
for which the test images are not used for training the models. As a result, the generation of the 
unseen image is also needed to evaluate the predictive performance of models on diverse image 
datasets. Generative Adversarial Networks (GANs), especially conditional GANs (Isola et al., 
2016, 2017a), can be used to generate data for image augmentation, either to use as training 
data or as test data for evaluation. While GANs can be used to generate random realistic images 
(Goldsborough et al., 2017; Han et al., 2018; Mannam et al., 2021; Osokin et al., 2017), 
conditional GANs can be used to generate segmented cells (masks) and their images 
(Baniukiewicz et al., 2019). In the latter study, single cells and their intracellular structure were 
generated. However, to our knowledge, there is no study that generates microscopic cell images 
from their masks, especially if the masks are crowded and overlapping. Here, we propose a new 
way of generating masks for cell nuclei and distributing these masks on 4 different channels to 
prevent any overlapping between any adjacent masks on the same channel. Our training data is 
composed of 850 cells from 2 images, augmented by generating small images from the bigger 
images. To generate a model that can perform better image-to-image translation, we used U-
Net and concatenated U-Nets to generate 2x and 3x U-Nets. Thus, in this study, we are 
proposing a new and quick strategy for the segmented mask to target image generation, so that 
U-Nets can perform better than regular U-Net architecture. Our approach is a proof-of-principle 
for surrogate realistic microscopic image data generation that can be used as synthetic test 
images or training image datasets. We believe that this approach can be further developed to 
generate irregular shapes, which are common for various cell types such as astroglia or 
microglia.  
 
MATERIAL AND METHODS 
 
Generating Masks and Training Images 
 
We cropped two regions (629x1014 and 527x1383 pixels) (Fig. S1) from an image of a 
zebrafish (20X objective) telencephalon and generated masks for each DAPI staining (hereafter 
cell nucleus). Then, we arranged all masks on 4 channels to prevent any overlapping masks on 
the same channel (Fig. 1). Thus, we randomly inserted a mask on the first channel and located 
the remaining masks one by one as follows; if the mask overlapped with the masks on the first 
channel, we tried to insert it on the second channel, otherwise, we tried to locate it on the third 
or fourth channel. We repeated this until all masks were stacked on all layers. If any masks 
could not be fitted on a channel, we randomized the masks and started to arrange them again as 
above.  Based on the image regions and cell density in the two images, 4 channels were enough 
for the current analyses. To create small images for training, we generated images 128x128 
pixels sub-images from the two images, by slicing horizontally and/or vertically 4 pixels, which 
generated 4110 128x128 pixel images. The masks on these images were again randomized 10 
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times and images were further inverted and rotated 90, 180, and 270 degrees. In total, we used 
205500 images with 128-pixel sizes for training. During randomization, some images were 
redundant because of non-overlapping masks, thus all masks were on channels 1 and/or 2. 
These images were not excluded from the training data. 
 
For mouse brain nuclei, we used two images (Supp_Figs. 2a, 3a) taken at 40X with relatively 
visible intranuclear structures. We cropped a less crowded 3451x949 image (Supp_Fig. 2b) 
area from one image (Supp_Fig. 2a) to be used as training data and another 1457x1049 image 
area from Supp_Fig. 3a to be used as test data (Supp_Fig. 3b). An additional 1024x1024 
(Supp_Fig. 3c) pixel area from the CA3 of the hippocampus, which has a relatively high cell 
density area was cropped to generate another test data. We manually generated masks on each 
image as described above. Supp_Fig. 2b was used to generate 256x256 pixel sub-images by 
moving 8-pixel vertically and/or horizontally and 10 different images by randomizing masks 
were generated as described above. Supp_Fig. 3b was used to generate 256x256 pixels to be 
used as testing outputs of the models at each epoch. Supp_Fig. 3c was used directly to challenge 
models at epoch 25. 
 
Generative Adversarial Neural Networks 

We used the implemented version of image-to-image GAN (or pix2pix) from the TensorFlow 
website and previous publications (Isola et al., 2017a, 2017b; Mirza & Osindero, 2014). In 
brief, we used 4 or 6 layers of convolution and deconvolutions (or fractionally strided 
convolutions) with batch normalization and dropout (Fig. 2). Striding the U-Net encoders 
resulted in 1x1 pixel at the lowest layer with 128x128 pixel images for 6 layers U-Net. We used 
the same U-Net and concatenated its output layer with the input layer and passed the resulting 
layer in a second U-Net (2x U-Net). Similarly, we concatenated the output of the 2x U-Net with 
the input layer and pass it to another U-Net (3x U-Net). The output layer of the first U-Net of 
2x and the second U-Net of 3x U-Net were alternating between “tanh” or “gelu” activation 
functions. Additionally, we used 16, 32, and 64 filter sizes for 1x U-Net, while 16 filter sizes 
for 2x and 3x U-Net and 3, 5, and 7 kernel sizes for all models. The 64 filter-sized 1x U-Net 
with 7 kernel sizes has many parameters, which took hours for 1 epoch training, so we skipped 
these conditions for testing. We ran all analyses on V100-SXM2-32GB GPUs. Each model had 
a different running time per epoch, ranging from 1 min to 25 mins depending on the number of 
total variables, concatenations and the training data. 

RESULTS 
 
In general, for image segmentation, original images and their ground truth (hereafter masks) 
data are needed to train convolutional neural networks (CNNs), which generate rules by 
adjusting parameters to find a general rule. However, generating masks on images requires 
expertise and is time-consuming. This is one of the rate-limiting and at the same time 
challenging steps in training NNs, which depends on good and variable training data. To solve 
this problem, GANs are commonly used to generate synthetic images for enhancing machine 
learning. While GANs have been successfully applied to generate images for biomedical and 
fluorescent images (Baniukiewicz et al., 2019; Han et al., 2018; Isola et al., 2017b; Mannam et 
al., 2021; Mirza & Osindero, 2014; Osokin et al., 2017), to our knowledge, it has not been 
applied to generate training data for complex high cell-density data. As a proof-of-principle, 
we have designed a strategy to generate cell nuclei in the zebrafish brain. We achieved this by 
generating a new way of training data and systematically evaluating several parameters on the 
U-Net architecture. As a proof-of-principle, we used zebrafish brain image (20X objective) 
cells stained DAPI, which shows a smooth distribution without visible intranuclear structures. 
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Additionally, we used a mouse CA3 region from a hippocampal image taken at 40X with visible 
intranuclear structures (nuclear domains with high chromatin concentration). We started 
analyses by using Zebrafish brain nuclei to evaluate the U-Net models and then we further 
evaluated the models by using relatively complex cell nuclei from mice.  
 
Randomizing the masks increases the number of variable training data 
 
For machine learning, cell nuclei and their masks are required for training a model. In general, 
masks are generated on images, and a model is used to learn how to generate masks from the 
images. To generate more images, we started from an inverse path, thus we used masks to train 
a model to generate images (here cell nuclei). To generate training data, we used 2 images (Fig. 
S1). We put the masks on 4 channels such that the minimum distance between 2 adjacent masks 
on the same channel was 2 pixels. We sought that masks can be distributed differently on 
channels, so we randomized the masks and arranged them on channels which increased the 
number of variable training data (Fig. 1). We also generated another training data that has one 
additional channel, which is the merge/cumulative sum of 4 channels. In such a case, we aimed 
to check if adding additional information to training data would improve generator 
performance. We generated 128x128 pixel images, the minimum size required to train the 6-
layer U-Net models. We generated images by moving 4 pixels horizontally and/or vertically. 
The resulting 4,110 images were 10 times randomized, inverted, and rotated 3 times 90 degrees, 
which in total resulted in 205,500 images. Here, we started analyses with only 2 images which 
in total have 850 cell nuclei, and by randomizing masks we augmented data that generated 
variable cell nuclei shapes and distributions.  This is a new way of augmenting images to 
generate training data. We did not augment images by image augmentation in TensorFlow, 
which might further add variation in training data that might improve GAN performance (Ching 
et al., 2018). We trained all models with 4,110 images by inverting and rotating as above, to 
check if augmenting images by just randomizing the masks improves the performance of GAN 
models. 
 
Generating random test images by GANs to check the performance of GANs 
 
To generate random test images that have different mask distributions, and densities, we used 
all 850 masks generated from zebrafish images to train a GAN model that can generate random 
masks from random noise. Thus, we used all 850 masks generated above and randomly put 
them in 28x28 pixel images to build test images. In this way, the masks were either in the 28x28 
pixel area or partly outside of the area that generated variable masks. We trained a neural 
network to generate random masks. These random masks were laid on 512x512 pixel images 
to generate low-density to high-density masks. The high-density masks must have had at least 
200 masks on 512x512 pixel images. As the masks were randomly generated and densely 
distributed, we believe that this already constituted unseen/test data to evaluate the performance 
of GANs. This trained model to generate random masks can be used to generate variable dense 
masks with random distribution, which was one of our aims to generate variable nuclei images 
from these masks.  
 
Chaining U-Net architectures with alternating activation functions generate better images 
 
U-Net is one of the most used Convolutional Neural Networks (CNNs) for image segmentation 
and image generation (Ronneberger et al., 2015). We started using U-Net as a generator and 
checked if it could learn and generate cell nuclei from the masks.  Based on some preliminary 
analyses (not shown), we realized that we needed to change parameters (kernel size, filter size, 
and activation functions) and the architecture of U-Net. The U-Net that we used had either 4 or 
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6 convolutions and deconvolutions (fractionally-strided convolutions), hereafter 1x U-Net (Fig. 
2). Thus, we tried to test as many different conditions as possible in order to find conditions 
that can be further evaluated on different datasets. To check if chaining 2 or more U-Nets can 
perform better in learning and generating nuclei from the masks, we concatenated the output of 
the 1x U-Net with the input layer and used it as input for a second U-Net (2x U-Net), and we 
concatenated the outputs of 1x and 2x U-Nets with the input layer and used as input for a third 
U-Net (3x U-Net). In total, we used 3 models as generators and a common discriminator for all 
these models. For 1x U-Net, we used 16, 32, and 64 filter sizes, while for 2x and 3x U-Net 16 
filter sizes were used. Additionally, all models were tested for 3, 5, and 7 kernel sizes, except 
1x U-Net with 64 filter sizes and kernel size 7. Furthermore, the first U-Net of 2x and the second 
of 3x U-Nets have either “tanh” or “gelu” activation functions in the output layer. All U-Nets 
and their conditions are summarized in Table 1. All conditions in Table 1 were further trained 
on 4 channels and/or merged of 4 channels. As a result, we checked for 40 different conditions 
and evaluated them on 128x128 and 512x512 test images. We started first with visual 
examinations of the generated cell nuclei in 128x128 pixel images by all models and their 
parameters. If the models did not have a remarkable difference by visual evaluation, then we 
tested on 512x512 test images. 
 
Additional information, kernel sizes, and chaining more U-Nets generate better images 
 
1x U-Net is commonly used for GANs, therefore we first checked using 16, 32, and 64 filter 
sizes and 3, 5, and 7 kernel sizes. Increasing kernel size and/or filter size increases the time 
required for each epoch. As a result, we decreased the filter size from 64 to 32 and 16 for the 
first convolution layer and doubled it at each layer. Interestingly, kernel size 7 was the best for 
filter sizes 16 and 32, while kernel size 7 with filter size 64 was not tested because of the long-
running time. The 1xU-Net with 64 filter sizes may need more epochs to perform as well as 16 
and 32 (not shown here). However, we do not believe this is because of the number of total 
parameters that 1xU-Net with 64 filter size has, as 3xU-Net with almost 8-fold number of 
parameters learns better (with the same data and number of epochs) than 1xU-Net which has 
~14x10e6 total parameters performance (Figs. 3, 4, 5, and 6). 
 
As 1xU-Net with filter size 16 and kernel size 7 performed better, we generated 2x and 3x U-
Nets and compared their performance. 1xU-Net with 16 filter sizes with kernel size 3 performs 
better than 2xU-Net with kernel size 3. However, increasing kernel size to 5 and 7, improved 
the performance of 2x U-Net. Additionally, adding a merged layer of masks to the training data 
further improved 2xU-Net performance (Figs. 3, 4, 5, and 6). 
 
We checked if the increasing chain of U-Nets will further improve learning by testing 3x U-
Net with the same conditions above. We found that 3xU-Net performs even better than 2xU-
Net. In all of these cases, “tanh” was used for the output layers of all U-Nets. We asked whether 
changing the “tanh” to “gelu” in the first U-Net of 2x and the second U-Net of 3x U-Net would 
improve the performance, and found that adding an alternating activation function further 
improved the performance of the 2x and 3x U-Nets (Figs. 3, 4, 5, and 6) while using “gelu” as 
the last U-Net of 1x and 3x U-Net completely abolished the performance of 2x and 3x U-Nets 
(not shown).   
 
The conclusions above were based on 128x128 pixel test images to evaluate the performance 
of all models and conditions indicated. To enhance the qualitative differences between the 
predictions of different models, we challenged the models by using 512x512 pixel images for 
evaluations, as 128x128 pixel images for evaluations might not have provided the required 
challenge for the models. As expected, challenging the models with larger images further 
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enhanced the models’ performance. Interestingly, 3xU-Net with “tanh”, “gelu”, and “tanh” 
activation functions, performed remarkably better than other models (Fig. S4). This further 
supports that 3xU-Net can be trained with small-sized images, while it can be used to generate 
larger images.  
 
We also tested whether randomizing masks to generate more training data had any impact on 
GAN performance. We used each original image one time and inverted, rotated 3 times 90 
degrees. Then, we compared the GAN performance tested on 1 time versus 10 times 
randomized masks on each image. Adding more variation by randomizing the masks further 
improved the performance of GAN (see Figs 3 and 4, Figs 5 and 6). 
 
In summary, based on our results from relatively simple cell nuclei, we concluded the 
followings; (i) increasing kernel sizes improves the performance of GANs, (ii) adding 
additional layers (6-layer U-Net) further improves the performance of GANs, (iii) 2x and 3x 
U-Nets perform better than regular U-Net architecture, (iv) adding an additional layer can 
improve the performance of 6-layer U-Net, but not 4-layer U-Net. However, further evaluation 
of these conditions on different datasets is required, as a result, we tested the same conditions 
on mouse brain nuclei which have more visible intranuclear structures.  
 
3x U-Net can generate nuclei with intranuclear structures as well 
 
In order to test the same conditions with different cell nuclei, we used nuclei images from a 
hippocampal area of the mouse brain. We selected 2 image areas (Sup Fig. 2a and 3a), less 
crowded and relatively highly crowded areas.  
 
We trained U-Nets with training images generated from Sup Figs. 2b and 3b and used sub-
images from Sup Fig. 3c to compare the generated images. As the number of sub-images 
generated from Sup Fig 2b was too many, we did not rotate or invert images to perform faster 
training. Contrary to Zebrafish brain nuclei, 4-layer U-Nets performed better than 6-layer U-
Nets. Especially, kernel sizes 5 and 7 did not generate clear intranuclear structures compared 
to 4-layer U-Nets (Figs. 7, 8). These contrary results show that CNNs may perform differently 
on different datasets (cell shapes, etc.) and further evaluation of the 4 and 6-layer U-Net is 
required for different datasets. A further challenge of the trained models on Sup Fig 3b, further 
supported these conclusions. As Sup Fig 3b had a relatively high cell density data with 
1024x1024 pixel size (4 fold compared to the training data), the difference between 4- and 6-
layer U-Nets is not because of the number of cells but the performance differences (Sup Figs. 
5, 6, 7, 8). We generated two further challenges for the models, by generating random masks 
and arranging them on 4 channels in an image of 1024x1024 pixels (Sup Figs. 7, 8) and an 
image similar to the dentate gyrus of the hippocampus (Sup Figs. 9, 10, 11). These challenges 
further supported that 2x and, especially, 3x U-Nets perform better than regular U-Nets, and 
combinations of activation functions further improve the performance of CNNs.     
 
DISCUSSION 
 
Augmenting images for machine learning by using GAN has been done on real-life images, 
biomedical images, and fluorescent images (Baniukiewicz et al., 2019; Goldsborough et al., 
2017; Han et al., 2018; Isola et al., 2017b; Johnson et al., 2017; Mannam et al., 2021; Osokin 
et al., 2017). Here, we not only generate new images by GAN but provide their masks (ground 
truth or segmented images) as well. In that way, we decreased the time required to generate 
training data. The strategy may be further adapted for irregular cell shapes.  

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.12.516283doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.12.516283
http://creativecommons.org/licenses/by-nc-nd/4.0/


To optimize GANs, we further evaluated many parameters and U-Net architecture, to find the 
best model for such kinds of analyses. One of the parameters we tested is kernel size, increasing 
kernel size increases running time. To compensate for it, we decreased the filter size (features) 
which decreased the total number of parameters and running time. Kernel size has also been an 
important parameter in CNN learning (Ding et al., 2022; Hu et al., 2020). However, increasing 
the kernel size increases the running time required for each epoch. For the current study, kernel 
size 5 was sufficient to generate simple cell nuclei, while using 7 gave slightly better results. 
However, different kernel sizes can be further tested for different cell sizes and shapes. 
 
Our reference of comparison was to compare with 1xU-Net, especially with filter size 64, which 
is commonly used. Concatenating 1xU-Nets and adding alternating functions created a model 
that performed better. This might be because of concatenating output layers with the inputs and 
the addition of the “gelu” function, both of which may add variation in feature selection that 
improves the learning ability of the model.  
 
U-Net architecture has been used to generate different U-Net models. These models have not 
been tested here; however, 3x U-Net with alternating activation functions was sufficient to 
generate variable cell nuclei. Further detailed comparisons of all available models as generators 
on our dataset will further help to improve GANs to generate variable data. Thus, understanding 
how and why each CNNs based on U-Net architectures learns from the same data will help us 
to develop a general model that can be used for variable tasks. 
 
Our approach works for zebrafish and mouse brains’ cell nuclei. However, cells may have 
different shapes or intracellular structures in different organisms. Therefore, further evaluation 
and optimization may be needed to apply this strategy to different cell shapes with intracellular 
structures.  
 
One limitation of the current study is the generation of only 2D images instead of 3D images. 
We will adapt this strategy to generate 3D images as well. Additionally, while evaluating the 
models and their parameters, our main aim was to use a minimum number of epochs, training 
data, and time per epoch. However, we do not exclude the possibility that all models could 
perform similarly by running with more epochs, adjusting hyperparameters and especially with 
more variable training data (Lucic et al., n.d.-a). Finally, one of the challenges in assessing the 
quality of the GANs is the qualitative approach that can be applied to GANs. Although there 
are some quantitative approaches to measure the performance of GANs, (Alaa et al., 2021; 
Borji, 2019; Heusel et al., n.d.; Lucic et al., n.d.-b; Salimans et al., n.d.; Xu et al., 2018), we 
challenged the models by using with large-sized images which clearly shows the difference 
between the model evaluated here. 
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Figure_Legends 
 
 
Figure 1: Image 1 of the 2 images used to generate masks. (A) the image with original 
exposure, (B) an example area from the original image with original exposure, (C) an example 
area from the original image with high exposure for visibility, (D) original masks generated by 
a human, (E-M) the masks have been randomized and 9 different masks distribution has been 
shown. The white masks belong to the 3rd layer, and different masks have been shown each 
time. Each color indicates a different layer. 
 
Figure 2: Architecture of U-Nets. (A) 1x-U-Net with 4 or 6 convolutions/deconvolutions 
(fractionally-stridden convolutions) without input and output layers. Each layer has batch 
normalization and some of them have a dropout (see the source code for the details). The lines 
indicate the skip-connections, 4 vs 6 skip-connections. (B) 1x-U-Net, 2x-U-Net, and 3x-U-Net 
architecture. Lines from polygons to 1x-U-Net are inputs and lines from 1x-U-Net to polygons 
are the outputs. Multiple inputs have been concatenated before using as input for the 1x-U-Net. 
 
Figure 3: Generation of de-novo 128x128 pixel cell nuclei from the same test inputs by all 
models and conditions. U-Nets with 4 convolutions and deconvolutions have been used for all 
U-Net models. The original masks have been used for training directly without randomizing 
the masks 10 times. 4 channel masks; 4 mask layers have been used, 5 channel masks, and a 
merged channel of 4 channel masks was additionally added to the training data. The filter size 
and activation information are given on the left side of the figure. Note that 1xU-Net with 64 
filter sizes and kernel size 7 were not tested. 
 
Figure 4: Generation of de-novo 128x128 pixel cell nuclei from the same test inputs by all 
models and conditions. U-Nets with 4 convolutions and deconvolutions have been used for all 
U-Net models. The original masks have been randomized 10 times. 4 channel masks; 4 mask 
layers have been used, 5 channel masks, and a merged channel for 4 channel masks was 
additionally added to the training data. The filter size and activation information are given on 
the left side of the figure. Note that 1xU-Net with 64 filter sizes and kernel size 7 were not 
tested. 
 
Figure 5: Generation of de-novo 128x128 pixel cell nuclei from the same test inputs by all 
models and conditions. U-Nets with 6 convolutions and deconvolutions have been used for all 
U-Net models. The original masks have been used for training directly without randomizing 
the masks 10 times. 4 channel masks; 4 mask layers have been used, 5 channel masks, and a 
merged chanel for 4 channel masks was additionally added to the training data. The filter size 
and activation information are given on the left side of the figure. Note that 1xU-Net with 64 
filter sizes and kernel size 7 were not tested. 
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Figure 6: Generation of de-novo 128x128 pixel cell nuclei from the same test inputs by all 
models and conditions. U-Nets with 6 convolutions and deconvolutions have been used for all 
U-Net models. The original masks have been randomized 10 times. 4 channel masks; 4 mask 
layers have been used, 5 channel masks, and a merged chanel for 4 channel masks was 
additionally added to the training data. The filter size and activation information are given on 
the left side of the figure. Note that 1xU-Net with 64 filter sizes and kernel size 7 were tested. 
 
Figure 7: Generation of de-novo 256x256 pixel mouse cell nuclei from the same test inputs by 
all models and conditions. U-Nets with 4 convolutions and deconvolutions have been used for 
all U-Net models. The original masks have been randomized 10 times. 4 channel masks; 4 mask 
layers have been used, 5 channel masks, and a merged chanel for 4 channel masks was 
additionally added to the training data. The filter size and activation information are given on 
the left side of the figure. Note that 1xU-Net with 64 filter sizes and kernel size 7 were not 
tested. The original image and masks used for testing have been provided on the left side of the 
image (Merged Layer, Chanel 1-4, Original Image).  
 
Figure 8: Generation of de-novo 256x256 pixel mouse cell nuclei from the same test inputs by 
all models and conditions. U-Nets with 6 convolutions and deconvolutions have been used for 
all U-Net models. The original masks have been randomized 10 times. 4 channel masks; 4 mask 
layers have been used, 5 channel masks, and a merged chanel for 4 channel masks was 
additionally added to the training data. The filter size and activation information are given on 
the left side of the figure. Note that 1xU-Net with 64 filter sizes and kernel size 7 were not 
tested. The original image and masks used for testing have been provided on the left side of the 
image (Merged Layer, Chanel 1-4, Original Image). 
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  4-layers 6-layers 

  FS KS AF 4-channels 5-channels 4-channels 5-channels 

1x
 U

-N
et

 

16 3 tanh 883.873 884.017 14.164.129 14.164.273 
32 3 tanh 3.528.001 3.528.289 56.630.593 56.630.881 
64 3 tanh 14.097.025 14.097.601 226.470.529 226.471.105 
16 5 tanh 2.450.081 2.450.481 39.323.297 39.323.697 
32 5 tanh 9.789.761 9.790.561 157.264.193 157.264.993 
64 5 tanh 39.137.921 39.139.521 628.998.785 629.000.385 
16 7 tanh 4.799.393 4.800.177 77.062.049 77.062.833 
32 7 tanh 19.182.401 19.183.969 308.214.593 308.216.161 
64 7 tanh 76.699.265 76.702.401 1.232.791.169 1.232.794.305 

2x
 U

-N
et

 

16 3 tanh, tanh 1.767.890 1.768.178 28.328.402 28.328.690 
16 3 gelu, tanh 1.767.890 1.768.178 28.328.402 28.328.690 
16 5 tanh, tanh 4.900.562 4.901.362 78.646.994 78.647.794 
16 5 gelu, tanh 4.900.562 4.901.362 78.646.994 78.647.794 
16 7 tanh, tanh 9.599.570 9.601.138 154.124.882 154.126.450 
16 7 gelu, tanh 9.599.570 9.601.138 154.124.882 154.126.450 

3x
 U

-N
et

 

16 3 tanh, tanh, tanh 2.652.051 2.652.483 42.492.819 42.493.251 
16 3 tanh, gelu, tanh 2.652.051 2.652.483 42.492.819 42.493.251 
16 5 tanh, tanh, tanh 7.351.443 7.352.643 117.971.091 117.972.291 
16 5 tanh, gelu, tanh 7.351.443 7.352.643 117.971.091 117.972.291 
16 7 tanh, tanh, tanh 14.400.531 14.402.883 231.188.499 231.190.851 
16 7 tanh, gelu, tanh 14.400.531 14.402.883 231.188.499 231.190.851 
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Table 1: The number of total parameters for each model with different options. FS; filter size, KS; kernel size, AF; activation function, 4,6-
layers are for each 1x-U-Net layer of all models, 4/5-channels are the number of input channels. Note; the 1st chanel of 5-channels is the cumulative 
sum of the last 4-channels. 
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Supplementary Figure Legends 
 
Fig. S1: The original dapi staining of 2 cropped images (left images), with their masks (right 
images). Blue, Green, Red, and Light Gray in channels 1, 2, 3, and 4, respectively. 
 
Fig. S2: Generation of training images from mouse hippocampal area. (a) the original image 
and the area (right-bottom) selected to generate training data (b) the dapi and masks on channels 
(msk0, msk1, msk2, msk3).  
 
Fig. S3: Generation of training and test images from mouse hippocampal area. (a) the original 
image and the areas selected to generate training data, (b) a 1024x1024 pixel area used to 
challenge the models after 25 epochs of the training. (c) an area used to generate sub-images 
for testing models’ performance at each epoch; the dapi, and masks on channels (msk0, msk1, 
msk2, msk3). 
 
Fig. S4: 512x512 pixel images test images. All models with kernel size 5 were tested on (a) 1-
time randomized masks, (b) 10-times randomized masks, (c) 1-time randomized and with an 
additional merged layer, (d) 10-times randomized and with an additional merged layer.  
 
Fig. S5: Generation of training data from mouse hippocampus. (a) the mouse hippocampus, (b) 
the area of the mask used to add as many masks as possible, (c) the masks, (d) the generated 
image by 3xU-Net, with kernel size 3, the addition of merged masks, 4-layer U-Nets. Note: The 
black area in the generated image is caused by zero-padding to the training data which generated 
the black area around nuclei. The original image has a background that has not been removed. 
 
Fig. S6: A custom image generated by generating random masks and arranged on 1024x1024 
pixel image, cell nuclei were generated by the models trained on Sup Fig. 2b, (a) 4-layer U-
Nets, (b) 6-layer U-Nets.  
 
Fig. S7: A custom image generated by generating random masks and arranging them on 
1024x1024 pixel image, cell nuclei were generated by models were trained on Sup Fig. 3b, (a) 
4-layer U-Nets, (b) 6-layer U-Nets. 
 
Fig. S8: The models trained on Sup Fig 2b have been challenged on a relatively crowded area 
in Sup Fig 3b, (a) 4-layer U-Nets, (b) 6-layer U-Nets. 
 
Fig. S9: Generation of dentate gyrus (DG) area of mouse hippocampus. (a) a mask area from 
crowded cell area in Sup Fig. 3a, (b) randomly generated masks arranged and enriched in the 
DG, (c) cell nuclei generated by 3x-U-Net with “gelu” activations and kernel size 5 (d) cell 
nuclei generated by 3x-U-Net with “gelu” activation and kernel size 7. 
 
Fig. S10: Generation of dentate gyrus (DG) area of mouse hippocampus using the model trained 
on Sup Fig. 2b. 
 
Fig. S11: Generation of dentate gyrus (DG) area of mouse hippocampus using the model trained 
on Sup Fig. 3b. 
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