

Genetic control of neuronal activity enhances axonal growth only on permissive substrates

1 **Francina Mesquida-Veny^{1,2,3,4}, Sara Martinez-Torres^{1,2,3,4}, José Antonio Del Río^{1,2,3,4†}, Arnau
2 Hervera^{1,2,3,4†*}**

3 ¹ Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC),
4 Barcelona, Spain

5 ²Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain

6 ³Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of
7 Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain

8 ⁴Institute of Neuroscience, University of Barcelona, Barcelona, Spain

9 [†]These authors share senior authorship

10 *** Correspondence:**

11 ahervera@ibecbarcelona.eu

12 **Keywords: Optogenetics, chemogenetics, regeneration, permissive substrate, neuronal activity.**

13 **Abstract**

14 Neural tissue has limited regenerative ability, to cope with that, in the recent years a diverse set of
15 novel tools have been used to tailor neurostimulation therapies and promote functional regeneration
16 after axonal injuries. In this report, we explore cell-specific methods to modulate neuronal activity,
17 including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion
18 of axonal regeneration after injury. We found that opto- or chemogenetic modulations of neuronal

19 activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth
20 capacity only on permissive substrates.

21 **Background**

22 Following injury, damaged axons from the central nervous system (CNS) degenerate and are unable to
23 regenerate, while surviving fibres, have a limited capacity to sprout and to re-establish lost connections,
24 leading to functional impairment [1].

25 This failure of CNS axons to regenerate after injury is partly attributed to a hostile CNS environment
26 for growth [2–4]. The injury site is rich in growth inhibitory proteins including myelin-associated
27 glycoproteins, and chondroitin sulfate proteoglycans (CSPG) while lacking trophic support for axon
28 regeneration [5–7]. The limited intrinsic regenerative capacity of adult CNS axons also contributes to
29 the failure of axon regeneration after injury [8–10]. Yet, in the last years there have been several studies
30 approaching different aspects of the CNS physiology to both boost the intrinsic regrowth capacity and
31 overcome the extrinsic inhibition [11, 12].

32 During development, when CNS neurons still retain their intrinsic ability to regenerate after axotomy
33 [13], neuronal activity critically determines their connectivity, particularly onto spinal targets [14]. In
34 this direction, neuronal activation has also been explored to try to increase the intrinsic capacity for
35 axon regeneration as well as overcome the extrinsic inhibition. Practically, electrical stimulation has
36 been shown to enhance regeneration of sensory axons after peripheral nerve or dorsal columns injury
37 [15, 16] and sprouting of cortical axons into contralateral spinal cord gray matter after pyramidotomy
38 [17–19].

39 In order to gain insight on the actual mechanisms underlying these improvements, specifically and
40 remotely activating neurons through opto- and chemogenetics, has become the state-of-the-art
41 approach for tailored activity modulation [20, 21].

42 In this direction, the current study explores the therapeutic potential of modulating neuronal activity of
43 sensory (dorsal root ganglia (DRG)) and motor descending (corticospinal motor neurons (CSMN))
44 neurons, via opto- and chemogenetic stimulation in regulating axonal growth after injury.

45 We found that specific neuronal stimulation induced increased axonal growth capacity both *in vitro*
46 and *in vivo*, and both in sensory and motor neurons, but only when in presence of permissive and
47 trophic environments. Opto- or chemogenetic stimulation did not overcome the inhibitory signalling
48 induced by molecules such as myelin-associated glycoproteins and CSPGs.

49 **Methods**

50 ***Mice***

51 B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J (Thy1-ChR2) (Jackson Laboratories) [22] or wild type (WT)
52 C57BL/6J mice (Charles River Laboratories) ranging from 6-10 weeks of age were used for the
53 experiments and were randomly divided into the different experimental groups. Mice were
54 anaesthetized with isoflurane (5% induction, 2% maintenance) during surgeries. For DRG neuronal
55 cultures adult Thy1-ChR2 mice were used. Embryonic day 16.5 (E16.5) OF1 pregnant females were
56 purchased from Charles River Laboratories, and the embryos were used for neuronal cortical cultures.
57 All procedures were approved by the Ethics Committee on Animal Experimentation (CEEA) of the
58 University of Barcelona (CEEA approval #276/16 and 141/15).

59 ***Dorsal root ganglia (DRG) neuronal culture***

60 DRGs from adult Thy1-ChR2 mice were dissected, washed in cooled Hank's balanced salt solution
61 (HBSS; ThermoFisher Scientific), and enzymatically digested (5mg/ml Dispase II (Merck) and
62 2.5mg/ml Collagenase Type II (ThermoFisher Scientific) in DMEM (ThermoFisher Scientific)) for
63 45min at 37°C. Next, the DRGs were resuspended in DMEM:F12 (ThermoFisher Scientific) media
64 supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS; ThermoFisher Scientific) and 1x
65 B27 (ThermoFisher Scientific) and were mechanically dissociated by pipetting. After centrifugation,
66 the resulting single cells were resuspended in culture media (DMEM:F12 media with 1x B27 and
67 penicillin/streptomycin (P/S; ThermoFisher Scientific)) and plated in glass-coverslips (3000-4000
68 cells/well) or in microfluidic devices (20.000cells/device) pre-coated with 0.1mg/ml poly-D-lysine (2h,
69 37°C; Merck) and 2µg/ml laminin (over-night (O/N); ThermoFisher Scientific) at RT (room
70 temperature)). An additional incubation with 5, 10 or 20 µg/ml CSPGs (Merck) was performed (2h at 37°C)
71 in growth-inhibitory substrate experiments. Cells were allowed to grow for 24h or for 8 days (in the case
72 of microfluidic devices) at 37°C in a 5% CO₂ atmosphere.

73 ***Neuronal cortical culture***

74 E16.5 WT mice embryos were used for neuronal cortical cultures. Brains were extracted, washed in
75 cooled 0.1M phosphate-buffered saline (PBS; ThermoFisher Scientific) containing 6.5 mg/ml glucose
76 (Sigma Aldrich) (PBS-glucose) and the meninges excised. Both cortical lobes were dissected, sliced
77 in a McIlwain II tissue chopper (Capdem Instruments) and trypsinized for 15 min at 37°C. The
78 suspension was inactivated with Normal Horse Serum (NHS; ThermoFisher Scientific), incubated with
79 0.025% DNase (Roche) PBS-glucose for 10 min at 37°C and mechanically dissociated. Single cells
80 were spun down and resuspended in NeurobasalTM (ThermoFisher Scientific) medium supplemented
81 with 2mM glutamine (ThermoFisher Scientific), P/S, 6.5mg/ml glucose, NaHCO₃ (Merck), 1x B27
82 and NHS 5% and plated in poly-D-lysine (0.1mg/ml) pre-coated microfluidic devices (see below)
83 (150.000cells/device) or in glass-bottom plates (200.000cels/plate). One day after seeding, culture

84 media was changed, and NHS was excluded from the new media. Cells were maintained at 37°C in a
85 5% CO₂ atmosphere and culture media was changed every two days.

86 ***Microfluidic devices***

87 The design used for microfluidic devices were a modification of a previously published device[23, 24].
88 One of the devices consists in 4 reservoirs of 7mm diameter, connected in pairs by a longitudinal
89 compartment (cell body and axonal compartments) which are in turn interconnected by 100
90 microchannels (10μm x 10μm x 900μm). The other used device presented a similar design and included
91 a perpendicular channel to the microchannels, located at the center of these. The masters were produced
92 using standard photolithography techniques at IBEC Microfab Space. Poly(dimethylsiloxane) (PDMS;
93 Dow) was used to prepare the devices by soft lithography, which were subsequently attached to glass
94 bottom dishes using oxygen plasma treatment.

95 In the first device, cortical neurons were seeded in one of the larger compartments (cell body
96 compartment) and allowed to extend their axons across the microchannels. In the case of the second
97 device, which was used with DRG neurons, neurons were seeded in the central channels. Vacuum
98 aspiration in the axonal compartment allowed complete axotomies [24].

99 ***In vitro lentiviral production and infection***

100 LV-EF1α-hChR2(H134R)-EYFP-WPRE (LV-ChR2) produced in our laboratory were used to
101 introduce ChR2 expression in primary cortical neurons. For LV production, 293-FT (ATCC) cells were
102 simultaneously co-transfected with three plasmids: pMD2.G (VSV-G envelope expressing plasmid),
103 psPAX2 (lentiviral packaging plasmid), and pLenti-EF1α-hChR2(H134R)-EYFP-WPRE (transfer
104 plasmid) in Opti-MEM (ThermoFisher Scientific) using Lipofectamine 2000 Transfection Reagent
105 (ThermoFisher Scientific). Transfection media was changed for culture media (Advanced DMEM

106 (ThermoFisher Scientific) supplemented with 10% FBS, 1% P/S and 0.5% glutamine) 6h after. Media
107 was recovered at 48h and 72h post-transfection, filtered and centrifuged at 1200g to remove debris.
108 The supernatant was then centrifuged at 26.000rpm for 2h at 4°C in a Beckman conical tube containing
109 a sucrose cushion (20%) for purification, and the viral pellet was finally resuspended in PBS-1% BSA.
110 Cortical neurons were infected at 4 days *in vitro* (DIV) for 24h, and high levels of YFP fluorescence
111 could be observed at 7DIV, indicating positive infection.

112 ***In vitro optogenetic stimulation***

113 Thy1-ChR2 DRG neurons or cortical neurons infected with LV-ChR2 were used for *in vitro*
114 optogenetic stimulation experiments. A 470nm emission LED array (LuxeonRebelTM) under the
115 control of a Driver LED (FemtoBuck, SparkFun) of 600mA and a pulse generator PulsePal
116 (OpenEphys)[25] was used to deliver blue light to neuronal cultures. The optogenetic stimulation
117 protocol consisted in 1h of illumination at 20Hz of frequency with 5ms-45ms pulses, in 1s ON-1s OFF
118 periods. In the case of DRG neurons, stimulation was applied 2h after seeding. For cortical neurons,
119 two different stimulation time-points after the axotomy were assessed: 30 min after axotomy and 6h
120 after axotomy. To assess neuronal activation, neurons were fixed at the end of the stimulation.
121 Uninjured cortical neurons were stimulated in this experiment.

122 ***In vitro chemogenetic stimulation***

123 10µM CNO (Tocris) was added to DRG cultures 6h after axotomy and left in the media until fixation
124 (24h after the axotomy).

125 ***Corticospinal tract and dorsal columns axotomy***

126 A fine incision to the skin between the shoulder blades of anaesthetized mice and subsequent muscle
127 removal allowed thoracic vertebral column exposure. A T9 laminectomy was performed, and the dura

128 mater was excised. In corticospinal tract injuries, two thirds of the spinal cord approximately were
129 severed laterally with a scalpel. In dorsal column axotomies (DCA), a dorsal hemisection was
130 conducted with fine forceps.

131 ***Sciatic nerve crush (SNC)***

132 The sciatic nerve was exposed after a small incision on the skin over the posterior hindlimb and blunt
133 dissection of the gluteus maximus and the biceps femoralis. Fine forceps were used to carefully
134 compress the nerve orthogonally 2x10s. Animals were allowed to recover for 24h, when were then
135 sacrificed and the sciatic nerve and the sciatic DRGs (L4, L5, L6) were dissected and processed.

136 ***In vivo optogenetic stimulation***

137 An optic fiber cannula (1.25mm, 0.22 NA; Thorlabs) was implanted in the motor cortex (M1) of Thy1-
138 ChR2 transgenic mice by stereotaxic surgery (-1mm antero-posterior (AP), 1.5mm lateral to Bregma,
139 0.5mm deep, (hind limb innervation region)) prior to injury and was fixed to the cranium with screws
140 and dental cement. Correct placement of the cannula was tested for each animal by assessing the
141 induction of unidirectional rotatory locomotion caused by unilateral optical stimulation of the motor
142 component of the hind limb; animals that did not show this response were excluded from the study. At
143 7 days post-injury (DPI) animals started receiving daily optogenetic stimulations consisting in 1h of
144 illumination with 470nm blue light, at 10Hz of frequency with 10ms pulses, in 1sON-4sOFF periods,
145 for 5 consecutive days, 2 resting days followed by 5 more days. The illumination was delivered through
146 the optic fiber cannula which was coupled to a 470nm wavelength LED source (M470F3, Thorlabs)
147 controlled by a pulse generator (Pulse Pal) [25]. The control group went through the same procedures
148 than the experimental group without receiving illumination.

149 ***In vivo chemogenetic stimulation***

150 The commercial AAV5-hSynhM3D(Gq)-mCherry or the control virus AAV5-hSyn-mCherry
151 (Addgene) were injected into the sciatic nerve of C57BL/6J mice (1 μ L/sciatic nerve) 4-5 weeks before
152 the experiment. For chemogenetic stimulation, the animals received two daily intraperitoneal (i.p.)
153 injections of 5mg/kg CNO (Tocris). After DCA, injections were delivered starting from 3DPI and
154 lasted 7 consecutive days. In the case of SNC, the injections were given prior to injury: from 3 days
155 pre-injury to the same day of the injury (in total 4 days of chemogenetic stimulation).

156 ***Behavioural assessment of sensorimotor function***

157 Sensorimotor deficits and recovery were evaluated using the gridwalk and the BMS (Basso Mouse
158 Scale) tests at -1, 1, 7, 14, 21, 28 and 35 DPI for CST injuries and at -1, 1, 3, 7, 10, 21 and 28 DPI for
159 DCA. During the gridwalk animals were recorded while walking three times on a grid of 1 x 1 cm
160 squares (total longitude of the grid: 50cm). The number of missteps in relation to the total number of
161 steps was blindly quantified. In BMS evaluations mice were allowed to freely move in an open field
162 and a score was assigned to each of them according to the BMS scale[26]. In brief, this scale grades
163 from 0 to 9 the locomotor capacity of the hind limbs depending on several aspects such as ankle
164 movement, paw placing and position or stepping.

165 ***Tracing of injured spinal cords***

166 A fluorescent tracer (10% Dextran-Alexa 594, 10.000MW, ThermoFisher Scientific) was injected with
167 a stereotaxic frame (KOPF) into the motor cortex of animals with injured CST at 35DPI using the fibre
168 optic cannula hole, in order to trace the stimulated CST. The tracer was injected at 0.2 μ l/minute for a
169 total of 1 μ l, adding 5 more minutes at the end to avoid liquid spillage. 5 days were waited before
170 sacrifice, to allow the tracer to be reach the axonal terminations

171 ***Immunocytochemistry (ICC)***

172 For immunocytochemistry (ICC), cells were fixed with 4% paraformaldehyde (PFA) 15 min on ice,
173 washed and incubated in blocking solution (1% Bovine serum albumin (BSA), 0,25% Triton X-100
174 (0,25% Tx) in 0.1M PBS) for 1h at RT. Primary antibody (β III tubulin (Tuj1, 1:1000, BioLegend), c-
175 Fos (1:200, Cell Signaling), ChR2 (1:500, Progen), mCherry (1:500, Abcam) GFP (1:500,
176 ThermoFisher Scientific) was added to the cells in blocking solution and incubated O/N at 4°C. After
177 washing, the cells were incubated 1h at RT with Alexa-Fluor-conjugated secondary antibodies (568
178 goat and 488 goat and donkey) and Hoechst (Sigma Aldrich).

179 ***Tissue processing for immunohistochemistry***

180 Anaesthetized mice were transcardially perfused with ice-cold 4% paraformaldehyde (PFA) and the
181 spinal cord, the brain or the DRGs were dissected and allowed to post-fix in 4% PFA for 24h at 4°C.
182 In peripheral experiments the sciatic nerves and the DRGs were directly dissected, as perfusion was
183 not needed, and allowed to fix in 4% PFA for 2h on ice. Fixed tissues were cryoprotected in 30%
184 sucrose in PBS for 24h at 4°C, brains were then directly frozen and sliced at 30 μ m with a freezing
185 microtome (2000R Leica), while spinal cords and DRGs were embedded in tissue freezing medium
186 (OCT, Sigma Aldrich), frozen and 18 μ m or 10 μ m slices respectively were obtained using a cryostat
187 (CM 1900 Leica) and directly mounted. For whole mount stainings cryoprotection was not needed,
188 instead tissues were kept in 0.1M PBS.

189 ***Immunohistochemistry (IHC)***

190 Prior to IHC, brain slices were maintained in cryoprotection solution (30% glycerol, 30% ethylene
191 glycol, 40% PBS). Brain IHCs were performed directly on free floating slices. Slices were blocked for
192 1h at RT (10% FBS, 0.5% Tx, 0.2% gelatine, 0.2M glycine in 0.1M PBS) and incubated with primary
193 antibody O/N at 4°C (5% FBS, 0.5% Tx, 0.2% gelatine in 0.1M PBS; GFP (1:500, ThermoFisher

194 Scientific). Slices were then repeatedly washed with PBS-0.5% Tx, incubated with secondary
195 antibodies (Alexa Fluor 488 donkey; ThermoFisher Scientific) and Hoechst (Sigma Aldrich).

196 IHCs were performed directly on spinal cord or DRG preparations. Slides were blocked for 1h at RT
197 (Blocking solution: 8% BSA, 0.3% Tx in TBS) was added and incubated for 2h at RT, followed by
198 O/N incubation of primary antibody (GFAP (1:500, Dako); cFos (1:200, Cell Signaling); NFH (1:200;
199 Abcam)) in 2% BSA, 0.2% Tx in TBS at 4°C. Secondary antibodies (Alexa Fluor 488 donkey and goat
200 and 568 goat; ThermoFisher Scientific) and Hoechst were added after washing with TTBS and
201 incubated 1h at RT.

202 Whole-mount IHCs were performed for sciatic nerves. Blocking solution (8% BSA, 1% Tx and 1/150
203 mIgG (Fabs) in TBS) was added and incubated for 2h at RT, followed by 3 O/N of primary antibody
204 incubation (SCG-10 (1:1000, Novus Biologicals) in 2% BSA, 0.3% Tx in TBS at 4°C. Secondary
205 antibodies (Alexa Fluor 488 donkey) were added after washing with TTBS and incubated 1 O/N at
206 4°C.

207 Each preparation was subsequently mounted in MowiolTM (Sigma Aldrich).

208 *Fluorescence intensity analysis*

209 To measure c-Fos intensity, DRG neurons were immunostained for c-Fos and ChR2 and imaged at 40x
210 magnification with an Olympus microscope IX71 using an Orca Flash 4 (Hamamatsu Photonics). Only
211 ChR2⁺ cells were selected for this analysis. About 20 cells per well were analysed. The nuclei of the
212 cells were selected, and its mean c-Fos intensity determined by subtracting the corresponding
213 background value to the integrated density (Corrected total cell fluorescence; CTCF), measured using
214 ImageJTM.

215 *Neurite and axonal length analysis*

216 Images were taken at 10x magnification with an Olympus microscope IX71 using an Orca Flash 4 or
217 a CX50 Olympus camera. TUJ1, mCherry or GFP was used to immunolabel neurites and axons. For
218 DRG neurite analysis, three fields per well were analysed and the average neurite length per cell was
219 obtained. Small diameter (<35 μ m) neurons were excluded from the analysis. In microfluidic devices,
220 the percentage of regenerating axons normalized to the total number of axons reaching the axonal
221 compartment was determined. For cortical neuron cultures, 8-9 fields per device were analyzed. Either
222 average axon length or total area covered by axons was quantified. Neurite-J plugin in ImageJTM
223 software was used for neurite and axonal measurements [27]. Area measurements were measured using
224 ImageJTM software.

225 ***Sprouting quantification***

226 To quantify the number of sprouting axons before and after the lesion, we measured the tracer
227 fluorescence intensity on sections at 0,5mm pre-injury and post-injury level. The spinal cord section
228 images were divided in two different ROIs corresponding to grey matter and white matter for analysis.

229 Spinal cord sections of stimulated and non-stimulated Thy1-ChR2 mice at 500 μ m rostral to the lesion
230 core were obtained using a confocal microscope (LSM 800, AxioCam 503c; Zeiss) at 10x
231 magnification. The number of double positive axons for Dextran-Alexa 594/ChR2-YFP in the grey
232 matter at different distances from the CST in the same section was computed and normalized to the
233 number of Dextran-traced CST.

234 ***Nerve regeneration analysis***

235 Regenerating sensory axons were immunolabeled with SCG10. Whole mount preparations were
236 imaged with a confocal microscope (LSM 800, AxioCam 503c; Zeiss) at 5x magnification. 6-8 tiles
237 and 10-15 slices were obtained per nerve and the Blue ZenTM and ImageJTM softwares were used to

238 reconstruct the nerve and obtain a Maximum Intensity Z-projection. The crush site was determined by
239 phase contrast images, the number of regenerating axons at several distances from the crush was
240 determined.

241 ***Statistical analysis***

242 Prism 6.0 (GraphPad™ Software) was used for statistics and graphical representation. Plotted data
243 shows mean \pm s.e.m (standard error of the mean). Normality was determined with Shapiro-Wilk test.
244 Significant differences are indicated by asterisks (* $p < 0.05$; ** $p < 0.01$; *** $p < 0.005$; **** $p < 0.001$).
245 ANOVA followed by Bonferroni post hoc test or Student's t-Test were used in normal distributions as
246 opposed to Mann-Whitney or Kruskal-Wallis tests as non-parametric tests for samples that did not
247 meet normality.

248 **Results**

249 ***Optogenetic stimulation of DRG neurons increase their axonal growth in vitro***

250 We first sought to determine if optogenetic activation of adult DRG neurons could enhance axonal
251 growth *in vitro*. Adult dissociated Thy1-ChR2 DRG neurons were optically stimulated and allowed to
252 grow for 24h.

253 Optical stimulation effectively increased neuronal activity in DRG neurons, as displayed by the
254 increased levels of c-Fos staining after stimulation (49627 \pm 4373 a.u. of nuclear CTCF intensity for
255 stimulated DRGs versus 33897 \pm 3212 a.u. of nuclear CTCF intensity for non-stimulated; $p=0.0058$
256 Student's t-Test) (Fig 1A-B)

257 Optically stimulated neurons showed increased neurite outgrowth (4053 \pm 433.1 μ m) after 24h of culture
258 when compared to non- stimulated ones (2029 \pm 647.7 μ m; $p=0.0267$ Student's t-Test) (Fig 1C-D)

259 ***Chemogenetic stimulation of DRG neurons improve their regenerative capacity after in vitro***
260 ***axotomy and sciatic nerve crush***

261 We then wanted to test if this increased growth capacity also translated in regenerative capacities after
262 axotomy. To this aim we first evaluated regenerative capacity of DRG neurons *in vitro* using
263 microfluidic assisted axotomy and chemogenetic stimulation. DRG neurons were seeded in custom
264 microfluidic devices as previously described, and hM3Dq or mCherry expression was induced by
265 infection with AAVs. Axons were allowed to grow for few days through the microchannels until they
266 reached the axonal chamber, and we then performed a vacuum assisted axotomy. CNO was
267 administered 6 hours after axotomy. Chemogenetic stimulation resulted in axonal regeneration
268 ($p=0.0165$; Student's t-Test) when compared to non-stimulated mCherry controls (Fig 2A-B).

269 We then wanted to determine if the *in vitro* results in fact translated to enhanced axon regeneration *in*
270 *vivo* after PNS injury. Due to the difficulty to apply light for long periods of time in awake animals in
271 the DRGs, we used chemogenetics for activity control. We first wanted to determine if DRGs were
272 transduced *in vivo*. AAV5-hSyn-mCherry or AAV5-hSyn-hM3Dq-mCherry were carefully injected
273 into the sciatic nerve and mCherry expression was examined 4-5 weeks later. Both vectors transduced
274 DRG neurons with similar efficiency (~35% of total DRG neurons; ~65% of large diameter ($>35\mu\text{m}$)
275 neurons (Supp Fig 1A-B). mCherry expression was mainly localized in the soma of large diameter
276 NFH⁺ DRG neurons (Supp Fig 1C).

277 To verify the activation of DRG neurons *in vivo* after chemogenetic stimulation, we performed cFos
278 staining 1h after CNO administration, showing increased cFos signal only in hM3Dq animals compared
279 to mCherry controls (Fig 2B).

280 To assess the effects of neuronal activity on PNS regeneration, animals received 2 daily injections of
281 5mg/kg CNO 3 days before performing a bilateral SNC to guarantee four consecutive stimulation days

282 (Fig 2D). 24h after injury hM3Dq stimulated animals showed increased number of regenerating
283 sensory axons ($SCG10^+$) at further distances ($>750\mu m$) when compared to mCherry controls. The two-
284 way ANOVA showed a significant effect of the distance ($p < 0.0001$) and stimulation ($p = 0.0145$) as
285 well as their interaction ($p = 0.0101$). At $750\mu m$ from the injury stimulated animals showed 27.67 ± 4.19
286 axons versus 12.78 ± 3.34 axons on non-stimulated animals ($p = 0.0694$ Bonferroni post Hoc test), at
287 $1000\mu m$ from the injury stimulated animals showed 21.56 ± 3.72 axons versus 6.44 ± 1.43 axons on non-
288 stimulated animals ($p = 0.0163$ Bonferroni post Hoc test), at $1250\mu m$ from the injury stimulated animals
289 showed 14.89 ± 3.12 axons versus 3.11 ± 1.14 axons on non-stimulated animals ($p = 0.0261$ Bonferroni
290 post Hoc test), and at $1500\mu m$ from the injury stimulated animals showed 8.56 ± 1.81 axons versus
291 1.56 ± 1.06 axons on non-stimulated animals ($p = 0.0259$ Bonferroni post Hoc test) (Fig 2D-E).

292 ***Optogenetic stimulation of cortical neurons does not improve the sensorimotor performance after***
293 ***SCI***

294 We then wanted to test if this increased regeneration capacity also was present in the CNS neurons. To
295 this aim we first evaluated regenerative capacity of cortical neurons *in vitro* after optogenetic
296 stimulation. Embryonic cortical neurons were seeded in custom microfluidic devices as previously
297 described, ChR2 was induced by infection with LV-ChR2 (Fig 3A), and activation of neurons upon
298 stimulation was assessed by cFos staining immediately after stimulation (Fig 3B). Axons were allowed
299 to grow for few days through the microchannels until they reached the other chamber, when a vacuum
300 assisted axotomy was performed. Optogenetic stimulation of cortical neurons decreased the axonal
301 regrowth when stimulated 30 minutes after the axotomy (Fig 3C). In contrast, 6 hours after axotomy,
302 optogenetic stimulation resulted in increase in axonal regrowth when compared to non-stimulated ones
303 ($p = 0.0056$; Mann-Whitney test; Fig 3D-F). To control the intrinsic effect of blue light on neuronal
304 growth, we applied the light stimulation pattern on non-stimulated (GFP controls) embryonic cortical
305 neurons and observed no difference in axonal growth (Fig 3E).

306 To test if these results further translated to a better motor performance after SCI *in vivo*, we implanted
307 optic fibre cannulas on Thy1-ChR2 animals, that have the cortical expression of ChR2 predominantly
308 concentrated in the layer V, where corticospinal motor projecting neurons lay (Supp. Fig 2A). After
309 recovery, animals were subjected to a CST axotomy, and optical stimulation was performed daily from
310 day 7 after injury (Fig 4A). Stimulated animals did not show any improvement in their motor
311 performance on the Gridwalk (Fig 4B) or the BMS (Fig 4C) when compared to non-stimulated controls.
312 For each test evaluated, the two-way ANOVA showed a significant effect of the time (BMS $p<0.0001$;
313 Gridwalk $p<0.0001$) but neither from the stimulation (BMS $p=0.7201$; Gridwalk $p=0.1308$) nor from
314 their interaction (BMS $p=0.9905$; Gridwalk $p=0.0707$). In all tests, non-significant changes were
315 observed for each timepoint when compared stimulated versus non-stimulated mice (Bonferroni
316 multiple comparisons test).

317 These results indicate that embryonic CNS neurons have the ability to increase their axonal growth
318 capacity *in vitro* when stimulated, but there are inhibitory signals in the CNS injury that block this
319 regeneration *in vivo*.

320 ***Chemogenetic stimulation of DRG neurons does not improve their sensorimotor performance after***
321 ***SCI***

322 To test whether the lack of *in vivo* functional recovery was due to an intrinsic inability to regenerate
323 from corticospinal neurons or the presence of an extrinsic inhibitory signal in the CNS injury, we tested
324 the effects of chemogenetic stimulation on DRG neurons after a dorsal hemisection *in vivo*. Similarly,
325 to what was done for the PNS injury, AAV5-hSyn-mCherry or AAV5-hSyn-hM3Dq-mCherry were
326 carefully injected into the sciatic nerve to induce its expression on the DRG (Supp Fig 1A-C). 4-5
327 weeks later animals were subjected to a dorsal hemisection, and 3 days after injury animals received 2
328 daily injections of CNO (5mg/kg b.w.) for 7 days (Fig 4 D). As observed for the cortical stimulation,

329 stimulated animals did not show any improvement in their motor performance on the Gridwalk (Fig
330 4E) or the BMS (Fig 4F) when compared to mCherry-veh, mCherry-CNO or hM3Dq-veh controls.
331 For each test evaluated, the two-way ANOVA showed a significant effect of the time (BMS $p<0.0001$;
332 Gridwalk $p<0.0001$) but neither from the stimulation (BMS $p=0.2289$; Gridwalk $p=0.0694$) nor from
333 their interaction (BMS $p=0.3614$; Gridwalk $p=0.0785$). In all tests, no significant changes were
334 observed for each timepoint when compared stimulated versus non-stimulated mice (Bonferroni
335 multiple comparisons).

336

337 These results suggest the presence of inhibitory cues after CNS injury that could be blocking the
338 regeneration induced by neuronal stimulation. In contrast after PNS injury where no inhibitory
339 environment is present stimulation did induce enhanced growing capacities. ***Optogenetic stimulation***
340 ***of DRG neurons increase their axonal growth in vitro, only on permissive substrates***

341 To further assess the impact of CNS inhibitory signals in the activity-induced increased axonal growth,
342 we cultured adult DRG neurons in both permissive (Laminin) and different concentrations of inhibitory
343 (CSPG) substrates and subjected them to optogenetic stimulation.

344 As previously observed (Fig 1C-D), optogenetic stimulation increased the neurite outgrowth in
345 permissive substrates ($3761\pm290.8\mu\text{m}$ for stimulated DRGs versus $2735\pm162.9\mu\text{m}$ for non-stimulated
346 DRGs), but not on neurons seeded at any concentration of CSPGs, including the $5\mu\text{g}/\text{ml}$ concentration,
347 that did not reduce basal growth, where optogenetic stimulation did not produce any change in neurite
348 outgrowth (Fig 5A-B), the two-way ANOVA did not show a significant effect from the stimulation
349 ($p=0.4785$), but it did show a significant effect of the substrate ($p<0.0001$) and their interaction ($p=0.0398$),
350 highlighting the blockage of the stimulation effects in the presence of CSPGs.

351 ***Optogenetic stimulation of corticospinal motor neurons increases prelesion sprouting but does not***
352 ***induce regeneration across the lesion.***

353 Since activity dependant therapies have been shown to increase lateral sprouting and plasticity [17–19,
354 28–30], we sought to investigate if our stimulation paradigm increased the sprouting of injured axons
355 before the lesion. To this aim, we analysed the spinal cords of stimulated Thy1-ChR2 mice after tracing
356 their corticospinal tracts. Interestingly, we found that optogenetic stimulated animals did show more
357 axonal tracing in the grey matter (33.60 ± 1.13 a.u. of CTCF intensity for stimulated animals versus
358 23.27 ± 0.89 a.u. of CTCF intensity on non-stimulated animals; $p=0.0015$ Student's t-Test) in segments
359 before (-0.5mm) the injury, but not beyond (+0.5mm) the injury (14.61 ± 1.21 a.u. of CTCF intensity
360 for stimulated animals versus 12.80 ± 0.47 a.u. of CTCF intensity on non-stimulated animals; $p=0.30328$
361 Student's t-Test) (Supp Fig 2B-C). Additionally, we also quantified the number of sprouted axons in
362 the grey matter as a ratio from traced CST axons (in order to normalize the tracing efficiency between
363 animals). Interestingly we found that stimulated animals showed a significantly higher percentage of
364 traced sprouts up until 400 μ m ventrally and laterally from the CST. The two-way ANOVA showed a
365 significant effect of the distance ($p<0.0001$), the stimulation ($p=0.0401$) as well as their interaction
366 ($p=0.0013$). These findings suggest that the positive effects of modulation of the activity on the axonal
367 regrowth are inhibited by CNS inhibitory signals present in the injury.

368 **Discussion**

369 Neuronal activity-triggered plasticity is commonly recognized as the main component of recovery in
370 current activity-based therapies [31, 32], however, this is mainly built on therapies that use exercise or
371 electrical stimulation to induce neuronal activity (as in [17–19, 28–30]). Even so, even though these
372 approaches increase neuronal activity, they do so without cellular specificity, hindering the
373 identification of underlying cellular and molecular mechanisms induced by neuronal activity itself.

374 Taking advantage of the cellular specificity of optogenetics and chemogenetics [20, 21] we performed
375 different experiments to assess the specific cellular effects of neuronal activity on axonal growth using
376 different *in vitro* and *in vivo* neuronal models.

377 Consistent with previous works [23, 33–35], we showed that increasing neuronal activity on DRG
378 sensory neurons enhanced axonal growth in non-inhibitory *in vitro* and *in vivo* peripheral injury
379 models. Additionally, and still accordingly to previous studies [36], we also demonstrated these effects
380 in embryonic cortical cells *in vitro*, highlighting the presence of similar mechanisms among different
381 neuronal types.

382 It is important to mention that before the achievement of these results, a fine tuning of the stimulation
383 protocol was needed, as axonal growth capacities showed to be highly dependent on the timing after
384 injury and the pulse frequency during the stimulation (data not shown), highlighting the fact that
385 neuronal activity needs, not only to be stimulated, but to be finely regulated in order to promote the
386 desired outcomes. For instance, high frequency stimulations (>20Hz in 1 second trains, or >10Hz in
387 continuous stimulation) reduced the axonal growth *in vitro*, and induced seizures *in vivo*. This has also
388 been emphasized in previous studies indicating activity-dependant effects on gene expression [37–39]
389 and plasticity (reviewed in [40]).

390 Meanwhile, timing of stimulation after injury seems to be very relevant as well, as stimulating 30 min
391 after axotomy results in reduction of axonal growth compared to non-stimulated controls. This might
392 be caused by the ionic imbalance generated by membrane disruption after axonal injury, that leads to
393 exaggerated Ca^{2+} influx. Membrane sealing and restoring the ionic balance and permeability occurs
394 early after injury, but maintaining neuronal depolarization during this period leads to the activation of
395 some voltage gated cation channels that have been shown to inhibit growth [15, 41, 42] In accordance,
396 little changes in the stimulation patterns might lead to opposed effects, therefore we used optogenetics

397 whenever possible as our method of choice to stimulate activity since it allowed us a higher temporal
398 resolution [43]. Nonetheless, the anatomical setting of the DRGs impeded the implantation of a
399 permanent optic fiber canula, and therefore did not allow us to perform awake stimulations, as this
400 would have compromised the wellbeing of the animals, therefore, we opted for a chemogenetic
401 approach for *in vivo* DRG stimulation. Effectively, this method rendered similar results on neurons as
402 those observed *in vitro* with optogenetics, resulting in enhanced regeneration. For this experiment we
403 delivered the chemogenetic agonist (CNO) before the injury (as a preconditioning to allow enough
404 stimulation days in this setting), leading to similar effects as those observed in previous studies using
405 enriched environment [44] or electrical stimulation [15, 16, 45] as a preconditioning.

406 Since our *in vitro* and PNS injury results have shown comparable regeneration outcomes than electrical
407 stimulations [46–48], we believe that neuronal activity itself might be responsible, at least partially, of
408 these effects on axonal growth.

409 However, when we tested this paradigm in an *in vivo* model of SCI, we found that optogenetic
410 stimulation of spinal-projecting cortical neurons did not promote the expected functional recovery after
411 SCI, contrarily to what other studies observed using electrical stimulation [17–19], or exercise [29, 30,
412 49] showed.

413 We then focused on clarifying whether our model did not induce any kind of axonal regeneration, or it
414 did, but was insufficient to promote recovery. In that sense, an *in vivo* CNS model of injury implies
415 the presence of a number of factors absent in our previous experiments, including both the presence of
416 an intrinsic lack of regenerative capacity as well as the presence of extrinsic inhibitory substrates for
417 regeneration [9, 50, 51]. Accordingly, when we performed further histological characterization
418 together with complementing *in vitro* experiments, we found that stimulated neurons displayed
419 increased axonal growth in permissive substrates (laminin), but not in growth inhibitory substrates

420 (CSPGs), and stimulated neurons showed an increased amount of growth and sprouting in the rostral
421 vicinity of the injury, especially in the grey matter of the SC, but not caudally across or beyond the
422 injury. While we cannot exclude that the lack of regeneration across the injury might be due, at least
423 in part, to the intrinsic low regenerative capacity of corticospinal neurons, our data suggests that
424 neuronal activity stimulates the axonal growth capacity of these neurons, as seen in embryonic cortical
425 neurons *in vitro*, through a mechanism that cannot overcome the repressive signalling of growth-
426 inhibitory molecules, such as CSPGs. Additionally, *in vivo* injured neurons when stimulated start
427 growing through uninjured areas of the SC, similarly to what is described in other studies with classical
428 stimulation approaches [17–19], where injured and uninjured axons grow axonal processes searching
429 for spared intraspinal circuitry, these new connections will eventually restore the injured connections
430 through neuronal plasticity, bypassing the injury [52]. Interestingly, classical non-specific stimulations
431 such as epidural electrical stimulation or rehabilitation lead to stimulation of intraspinal circuits,
432 involving spinal interneurons and motoneurons, this stimulation in turn promotes the reorganization
433 and activation of this circuitry [53]. Whether the lack of these functional effects with our paradigm was
434 due to a shorter stimulation period, or that it lacked the direct stimulation of this intraspinal circuitry
435 and thus not inducing the plasticity needed, remains still unanswered. However, a recent study also
436 observed a blockage of activity-induced axonal growth in the presence of inhibitory-substrates after
437 cellular specific stimulation [54]. In this study, functional recovery after SCI was only achieved after
438 combining chemogenetic stimulation and ChABC administration (a CSPG degrading enzyme) [54],
439 surprisingly functional recovery was only achieved after 6 weeks of continuous combined treatment.
440 In contrast to both this work and our results, both chemogenetic stimulation and visual stimulation
441 induce functional regeneration after optic nerve crush, a CNS injury model [55]. Importantly however,
442 the expression of the different chemogenetic receptors in this study was induced by intravitreal
443 injection of the vectors, meaning that retinal interneurons, including amacrine and bipolar cells, will
444 most likely be expressing the channels and be subjected to stimulation upon agonist administration.

445 This paradigm resembles to that of electrical stimulation, considering activation of this retinal
446 interneurons might be inducing neuronal plasticity that facilitates functional recovery.

447 There is plenty of evidence that neuronal activity itself is key in promoting regeneration and recovery,
448 however, the presence of growth inhibitory substrates in the injured CNS limits the success of activity-
449 based therapies. In line with this, combining functional rehabilitation or exercise with CSPG degrading
450 therapies (including ChABC [56, 57] or ADAMTS4 (a disintegrin and metalloproteinase with
451 thrombospondin motifs 4) (Griffin et al., 2020)) lead to synergistic effects, even when applied at
452 chronic time-points [57]. These reinforce the concept that multifactorial therapies are the way to go in
453 order to tackle the different aspects of the pathophysiology of SCIs [59].

454 Although neither our experiments nor other studies [54], did not demonstrate the presence of an
455 activity-triggered transcriptional switch, more chronic stimulations could be leading to it, although
456 with our current knowledge, more local and transient cellular mechanisms seem responsible of the the
457 growth differences observed with stimulation of activity specifically at a cellular level. For example,
458 neuronal activity changes the excitability of neurons through reorganization of several ionic channels
459 [41, 60, 61]. This can in turn influence growth, as a result of intracellular ionic adjustments and their
460 downstream associated signalling [42, 62], or even translational changes [41]. Neuronal activity can
461 also alter neuronal metabolism, increasing glycolysis, and lipid synthesis and integration to the
462 membrane, a cellular process essential during axonal extension [63, 64]. Another important cellular
463 component altered by activity is the cytoskeleton and its dynamics, for instance, neuronal activity has
464 been shown to increase dendritic spine microtubule polymerization [65]. Accordingly, chemogenetic
465 stimulation increases microtubule dynamics in the distal axonal portion, by reducing tubulin
466 acetylation and increasing tyrosination in this region [54]. These mechanisms may not be exclusive,
467 on the contrary, they are likely to take place all together facilitating activity-induced axonal growth.

468

469 On the other hand, success of activity-based therapies does not depend solely on the cellular effects of
470 activity modulations, instead, these therapies, that target activity in a more general and chronic way (as
471 different neurons or even circuits are stimulated simultaneously), benefit from a raised general
472 excitability that seems to be ultimate the responsible for the plasticity and reorganization that leads to
473 recovery [52]. In that direction, rehabilitation and electrical stimulation after injury promote the
474 formation of new synapses in the spinal cord [49, 66], respiratory function recovery after optogenetic
475 stimulation is also attributed to synaptic plasticity [67], and a recent study showing that rehabilitation
476 together with electrochemical stimulation promotes recovery, is credited to cortico-reticulo-spinal
477 circuit remodelling [68]. Additionally, sprouting of spared axons, instead of injured ones, is also
478 responsible for recovery after exercise and/or electrical stimulation [17–19, 29, 30]. In agreement to
479 that, success of these approaches is only significant in incomplete injuries, and greater as more tissue
480 is spared. Incomplete injuries might also help explaining why in our model we did not observe recovery
481 after optogenetic stimulation of the motor cortex while others did [69], as different spinal injuries were
482 used. Compellingly, compression injury leaves more uninjured tissue and spinal tracts than our injury,
483 that axotomizes all the dorsal tracts, including the main component of the CST in mice. Besides,
484 complete injuries also present larger glial scars, and therefore greater accumulation of growth
485 inhibitory molecules, which translates in larger distances and hurdles to overcome or bypass to achieve
486 functional connections, together with a greater loss of intraspinal circuits.

487 These observations strengthen the view that current activity-based therapies stimulate plasticity on top
488 of inducing regeneration in specifically stimulated neurons, but probably without inducing long-lasting
489 cellular reprogramming. This plasticity results from activity-triggered local changes, therefore
490 prolonged stimulations are more effective increasing growth or regeneration [52]. This is also
491 evidenced by the presence of functional recovery after 12, but not after 4 weeks of chemogenetic

492 stimulation [54]. Therapeutically, holistic more unspecific approaches, have a more potent effect than
493 cellular specific stimulations alone, as evidenced by enriched environment compared to chemogenetic
494 stimulation, which presents a lower rate of regeneration [44]. Studies have also shown that this activity-
495 induced plasticity can be accelerated and improved by linking the activation of different relays
496 topographically in a system [53, 70, 71]. These systems are however more challenging to define
497 underlying mechanisms and understand the true nature of the gains of these therapies.

498 Briefly, we found that specific cellular stimulation of neuronal activity induced axonal growth, but
499 only in the absence of inhibitory substrates. Likewise, this approach seems to be therapeutically less
500 efficient in enhancing recovery than other more chronic or general stimulations. This also suggests and
501 strengthens the idea that activity-based therapies succeed because of local transient cellular changes
502 coupled with neuronal plasticity, rather than resulting in a cellular reprogramming of growth capacities,
503 and because of that, longer stimulation periods elicit more robust responses.

504 **Conclusions**

505 **List of abbreviations**

506 **Declarations**

507 ***Ethics approval and consent to participate***

508 Not applicable

509 ***Consent for publication***

510 Not applicable

511 ***Availability of data and materials***

512 All data generated or analysed during this study are included in this published article or available
513 from the corresponding author on reasonable request.

514 **Competing interests**

515 The authors declare that they have no competing interests" in this section.

516 **Funding**

517 This research was supported by HDAC3-EAE-SCI Project with ref. PID2020-119769RA-I00 from
518 MCIN/ AEI /10.13039/501100011033 to AH and PRPSEM Project with ref. RTI2018-099773-B-I00
519 from MCINN/AEI/10.13039/501100011033/ FEDER “Una manera de hacer Europa”, the CERCA
520 Programme, and the Commission for Universities and Research of the Department of Innovation,
521 Universities, and Enterprise of the Generalitat de Catalunya (SGR2017-648) to JADR. The project
522 leading to these results received funding from the María de Maeztu Unit of Excellence (Institute of
523 Neurosciences, University of Barcelona) MDM-2017-0729 and Severo Ochoa Unit of Excellence
524 (Institute of Bioengineering of Catalonia) CEX2018-000789-S from MCIN/AEI
525 /10.13039/501100011033. FMV was supported by a fellowship from the “Ayudas para la Formación
526 de Profesorado Universitario” (FPU16/03992) program, from the Spanish Ministry of Universities.

527 **Authors' contributions**

528 FMV performed, designed experiments, performed data analysis, and wrote the manuscript; SMT
529 performed and designed experiments and performed data analysis; JADR supervised experiments,
530 provided experimental funds and edited the manuscript; AH performed, designed experiments,
531 performed data analysis, provided experimental funds, and wrote the manuscript.

532 **Acknowledgements**

533 The authors thank Miriam Segura-Feliu and Ana López-Mengual for their technical help.

534 **1 References**

535 1. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular
536 matrices and regeneration failure. *Experimental Neurology*.

537 <https://doi.org/10.1016/j.expneurol.2007.05.014>

538 2. Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurones regenerate
539 into PNS grafts. *Nature*. <https://doi.org/10.1038/284264a0>

540 3. Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous
541 systems. *Results and Problems in Cell Differentiation*. https://doi.org/10.1007/400_2009_19

542 4. Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J (2014) Functional regeneration
543 beyond the glial scar. *Experimental Neurology*.

544 <https://doi.org/10.1016/j.expneurol.2013.12.024>

545 5. Jones LL, Sajed D, Tuszynski MH (2003) Axonal Regeneration through Regions of
546 Chondroitin Sulfate Proteoglycan Deposition after Spinal Cord Injury: A Balance of
547 Permissiveness and Inhibition. *Journal of Neuroscience*. <https://doi.org/10.1523/jneurosci.23-28-09276.2003>

549 6. Ohtake Y, Li S (2015) Molecular mechanisms of scar-sourced axon growth inhibitors. *Brain*
550 *Research*. <https://doi.org/10.1016/j.brainres.2014.08.064>

551 7. Sami A, Selzer ME, Li S (2020) Advances in the Signaling Pathways Downstream of Glial-
552 Scar Axon Growth Inhibitors. *Frontiers in Cellular Neuroscience*.
553 <https://doi.org/10.3389/fncel.2020.00174>

554 8. Curcio M, Bradke F (2018) Axon Regeneration in the Central Nervous System: Facing the
555 Challenges from the Inside. *Annual Review of Cell and Developmental Biology*.
556 <https://doi.org/10.1146/annurev-cellbio-100617-062508>

557 9. Mahar M, Cavalli V (2018) Intrinsic mechanisms of neuronal axon regeneration. *Nature*
558 *Reviews Neuroscience*. <https://doi.org/10.1038/s41583-018-0001-8>

559 10. He Z, Jin Y (2016) Intrinsic Control of Axon Regeneration. *Neuron*.
560 <https://doi.org/10.1016/j.neuron.2016.04.022>

561 11. Anderson MA, O'Shea TM, Burda JE, et al (2018) Required growth facilitators propel axon
562 regeneration across complete spinal cord injury. *Nature*. [https://doi.org/10.1038/s41586-018-0467-6](https://doi.org/10.1038/s41586-018-
563 0467-6)

564 12. Wu D, Klaw MC, Connors T, Kholodilov N, Burke RE, Tom VJ (2015) Expressing
565 constitutively active *rheb* in adult neurons after a complete spinal cord injury enhances axonal
566 regeneration beyond a chondroitinase-treated glial scar. *Journal of Neuroscience*.
567 <https://doi.org/10.1523/JNEUROSCI.0719-15.2015>

568 13. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, MacKlis JD (2005) Neuronal
569 subtype-specific genes that control corticospinal motor neuron development *in vivo*. *Neuron*
570 45:207–221

571 14. Friel KM, Williams PTJA, Serradj N, Chakrabarty S, Martin JH (2014) Activity-Based
572 Therapies for Repair of the Corticospinal System Injured during Development. *Frontiers in*
573 *Neurology*. <https://doi.org/10.3389/fneur.2014.00229>

574 15. Gogana I, Sandner B, Weidner N, Fouad K, Blesch A (2018) Depolarization and electrical
575 stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.
576 Experimental Neurology 300:247–258

577 16. Udina E, Furey M, Busch S, Silver J, Gordon T, Fouad K (2008) Electrical stimulation of
578 intact peripheral sensory axons in rats promotes outgrowth of their central projections.
579 Experimental Neurology 210:238–247

580 17. Carmel JB, Kimura H, Berrol LJ, Martin JH (2013) Motor cortex electrical stimulation
581 promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by
582 unilateral corticospinal injury. European Journal of Neuroscience 37:1090–1102

583 18. Carmel JB, Kimura H, Martin JH (2014) Electrical stimulation of motor cortex in the
584 uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion
585 through ipsilateral control. Journal of Neuroscience 34:462–466

586 19. Carmel JB, Berrol LJ, Brus-Ramer M, Martin JH (2010) Chronic electrical stimulation of the
587 intact corticospinal system after unilateral injury restores skilled locomotor control and
588 promotes spinal axon outgrowth. Journal of Neuroscience 30:10918–10926

589 20. Deisseroth K (2015) H I S T O R I C A L C O M M E N T A R Y Optogenetics : 10 years of
590 microbial opsins in neuroscience. 18:1213–1225

591 21. Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annual
592 Review of Neuroscience 37:387–407

593 22. Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJJ, Ehlers MD, Feng
594 G (2007) In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing
595 Channelrhodopsin-2. Neuron. <https://doi.org/10.1016/j.neuron.2007.03.005>

596 23. Sala-Jarque J, Mesquida-Veny F, Badiola-Mateos M, Samitier J, Hervera A, del Río JA (2020)
597 Neuromuscular Activity Induces Paracrine Signaling and Triggers Axonal Regrowth after
598 Injury in Microfluidic Lab-On-Chip Devices. *Cells* 9:302

599 24. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A
600 microfluidic culture platform for CNS axonal injury, regeneration and transport. *Nature*
601 Methods. <https://doi.org/10.1038/nmeth777>

602 25. Siegle JH, López AC, Patel YA, Abramov K, Ohayon S, Voigts J (2017) Open Ephys: An
603 open-source, plugin-based platform for multichannel electrophysiology. *Journal of Neural*
604 *Engineering*. <https://doi.org/10.1088/1741-2552/aa5eea>

605 26. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso
606 mouse scale for locomotion detects differences in recovery after spinal cord injury in five
607 common mouse strains. *Journal of Neurotrauma*. <https://doi.org/10.1089/neu.2006.23.635>

608 27. Meijering E, Jacob M, Sarria JCF, Steiner P, Hirling H, Unser M (2004) Design and
609 Validation of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images.
610 *Cytometry Part A*. <https://doi.org/10.1002/cyto.a.20022>

611 28. Sánchez-Ventura J, Giménez-Llort L, Penas C, Udina E (2021) Voluntary wheel running
612 preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after
613 spinal cord injury. *Experimental Neurology*. <https://doi.org/10.1016/j.expneurol.2020.113533>

614 29. Goldshmit Y, Lythgo N, Galea MP, Turnley AM (2008) Treadmill training after spinal cord
615 hemisection in mice promotes axonal sprouting and synapse formation and improves motor
616 recovery. *Journal of Neurotrauma* 25:449–465

617 30. Engesser-Cesar C, Ichiyama RM, Nefas AL, Hill MA, Edgerton VR, Cotman CW, Anderson
618 AJ (2007) Wheel running following spinal cord injury improves locomotor recovery and
619 stimulates serotonergic fiber growth. *Eur J Neurosci* 25:1931–1939

620 31. Carulli D, Foscarin S, Rossi F (2011) Activity-Dependent Plasticity and Gene Expression
621 Modifications in the Adult CNS. *Frontiers in Molecular Neuroscience* 4:1–12

622 32. Hogan MK, Hamilton GF, Horner PJ (2020) Neural Stimulation and Molecular Mechanisms
623 of Plasticity and Regeneration: A Review. *Frontiers in Cellular Neuroscience* 14:1–16

624 33. Jaiswal PB, English AW (2017) Chemogenetic enhancement of functional recovery after a
625 sciatic nerve injury. *European Journal of Neuroscience* 45:1252–1257

626 34. Ward PJ, Jones LN, Mulligan A, Goolsby W, Wilhelm JC, English AW (2016) Optically-
627 induced neuronal activity is sufficient to promote functional motor axon regeneration *in vivo*.
628 *PLoS ONE* 11:1–16

629 35. Park S, Koppes RA, Froriep UP, Jia X, Achyuta AKH, McLaughlin BL, Anikeeva P (2015)
630 Optogenetic control of nerve growth. *Scientific Reports* 5:1–9

631 36. Ward PJ, Clanton SL, English AW (2018) Optogenetically enhanced axon regeneration: motor
632 versus sensory neuron-specific stimulation. *European Journal of Neuroscience*.
633 <https://doi.org/10.1111/ejn.13836>

634 37. Tyssowski KM, DeStefino NR, Cho JH, et al (2018) Different Neuronal Activity Patterns
635 Induce Different Gene Expression Programs. *Neuron* 98:530-546.e11

636 38. Lee PR, Cohen JE, Iacobas DA, Iacobas S, Douglas Fields R (2017) Gene networks activated
637 by specific patterns of action potentials in dorsal root ganglia neurons. *Scientific Reports* 7:1–
638 14

639 39. Miyasaka Y, Yamamoto N (2021) Neuronal Activity Patterns Regulate Brain-Derived
640 Neurotrophic Factor Expression in Cortical Cells via Neuronal Circuits. *Frontiers in*
641 *Neuroscience*. <https://doi.org/10.3389/fnins.2021.699583>

642 40. Fauth M, Tetzlaff C (2016) Opposing effects of neuronal activity on structural plasticity.
643 *Frontiers in Neuroanatomy* 10:1–18

644 41. Enes J, Langwieser N, Ruschel J, et al (2010) Electrical activity suppresses axon growth
645 through Cav1.2 channels in adult primary sensory neurons. *Current Biology* 20:1154–1164

646 42. Tedeschi A, Dupraz S, Laskowski CJ, Xue J, Ulas T, Beyer M, Schultze JL, Bradke F (2016)
647 The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration in the Adult CNS.
648 *Neuron* 92:419–434

649 43. Rost BR, Schneider-warmer F, Schmitz D, Hegemann P (2017) Primer Optogenetic Tools for
650 Subcellular Applications in Neuroscience. *Neuron* 96:572–603

651 44. Hutson TH, Kathe C, Palmisano I, et al (2019) Cbp-dependent histone acetylation mediates
652 axon regeneration induced by environmental enrichment in rodent spinal cord injury models.
653 *Science Translational Medicine*. <https://doi.org/10.1126/scitranslmed.aaw2064>

654 45. Senger JLB, Verge VMK, Macandili HSJ, Olson JL, Chan KM, Webber CA (2018) Electrical
655 stimulation as a conditioning strategy for promoting and accelerating peripheral nerve
656 regeneration. *Experimental Neurology* 302:75–84

657 46. Ahlborn P, Schachner M, Irintchev A (2007) One hour electrical stimulation accelerates
658 functional recovery after femoral nerve repair. *Experimental Neurology* 208:137–144

659 47. Al-Majed AA, Siu LT, Gordon T (2004) Electrical stimulation accelerates and enhances
660 expression of regeneration-associated genes in regenerating rat femoral motoneurons. *Cellular
661 and Molecular Neurobiology* 24:379–402

662 48. Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases
663 expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. *Eur J Neurosci*
664 12:4381–4390

665 49. Loy K, Schmalz A, Hoche T, Jacobi A, Kreutzfeldt M, Merkler D, Bareyre FM (2018)
666 Enhanced Voluntary Exercise Improves Functional Recovery following Spinal Cord Injury by
667 Impacting the Local Neuroglial Injury Response and Supporting the Rewiring of Supraspinal
668 Circuits. *J Neurotrauma* 35:294–2915

669 50. Bradbury EJ, Burnside ER (2019) Moving beyond the glial scar for spinal cord repair. *Nature
670 Communications*. <https://doi.org/10.1038/s41467-019-11707-7>

671 51. Mesquida-Veny F, del Río JA, Hervera A (2021) Macrophagic and microglial complexity after
672 neuronal injury. *Progress in Neurobiology*. <https://doi.org/10.1016/j.pneurobio.2020.101970>

673 52. Courtine G, Sofroniew M v. (2019) Spinal cord repair: advances in biology and technology.
674 *Nature Medicine*. <https://doi.org/10.1038/s41591-019-0475-6>

675 53. Wagner FB, Mignardot JB, le Goff-Mignardot CG, et al (2018) Targeted neurotechnology
676 restores walking in humans with spinal cord injury. *Nature* 563:65–93

677 54. Wu D, Jin Y, Shapiro TM, Hinduja A, Baas PW, Tom VJ (2020) Chronic neuronal activation
678 increases dynamic microtubules to enhance functional axon regeneration after dorsal root
679 crush injury. *Nature Communications* 11:1–16

680 55. Lim JHA, Stafford BK, Nguyen PL, Lien B V., Wang C, Zukor K, He Z, Huberman AD
681 (2016) Neural activity promotes long-distance, target-specific regeneration of adult retinal
682 axons. *Nature Neuroscience* 19:1073–1084

683 56. García-Alías G, Barkhuysen S, Buckle M, Fawcett JW (2009) Chondroitinase ABC treatment
684 opens a window of opportunity for task-specific rehabilitation. *Nature Neuroscience* 12:1145–
685 1151

686 57. Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW (2011) Chondroitinase combined
687 with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord
688 injury. 31:9332–9344

689 58. Griffin JM, Fackelmeier B, Clemett CA, Fong DM, Mouravlev A, Young D, O’Carroll SJ
690 (2020) Astrocyte-selective AAV-ADAMTS4 gene therapy combined with hindlimb
691 rehabilitation promotes functional recovery after spinal cord injury. *Experimental Neurology*.
692 <https://doi.org/10.1016/j.expneurol.2020.113232>

693 59. Griffin JM, Bradke F (2020) Therapeutic repair for spinal cord injury: combinatory
694 approaches to address a multifaceted problem. *EMBO Molecular Medicine* 12:1–29

695 60. Misonou H, Mohapatra DP, Park EW, Leung V, Zhen D, Misonou K, Anderson AE, Trimmer
696 JS (2004) Regulation of ion channel localization and phosphorylation by neuronal activity.
697 *Nature Neuroscience* 7:711–718

698 61. Romer SH, Deardorff AS, Fyffe REW (2016) Activity-dependent redistribution of Kv2.1 ion
699 channels on rat spinal motoneurons. *Physiological Reports* 4:1–11

700 62. Shim S, Ming GL (2010) Roles of channels and receptors in the growth cone during PNS
701 axonal regeneration. *Experimental Neurology* 223:38–44

702 63. Bas-Orth C, Tan YW, Lau D, Bading H (2017) Synaptic activity drives a genomic program
703 that promotes a neuronal warburg effect. *Journal of Biological Chemistry* 292:5183–5194

704 64. Segarra-Mondejar M, Casellas-Díaz S, Ramiro-Pareta M, Müller-Sánchez C, Martorell-Riera
705 A, Hermelo I, Reina M, Aragónés J, Martínez-Estrada OM, Soriano FX (2018) Synaptic
706 activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth. *The*
707 *EMBO Journal* 37:1–16

708 65. Hu X, Viesselmann C, Nam S, Merriam E, Dent EW (2008) Activity-dependent dynamic
709 microtubule invasion of dendritic spines. *Journal of Neuroscience* 28:13094–13105

710 66. Eisdorfer JT, Smit RD, Keefe KM, Lemay MA, Smith GM, Spence AJ (2020) Epidural
711 Electrical Stimulation: A Review of Plasticity Mechanisms That Are Hypothesized to Underlie
712 Enhanced Recovery From Spinal Cord Injury With Stimulation. *Frontiers in Molecular*
713 *Neuroscience* 13:1–12

714 67. Alilain WJ, Li X, Horn KP, Dhingra R, Dick TE, Herlitze S, Silver J (2008) Light-induced
715 rescue of breathing after spinal cord injury. *Journal of Neuroscience* 28:11862–11870

716 68. Asboth L, Friedli L, Beauparlant J, et al (2018) Cortico-reticulo-spinal circuit reorganization
717 enables functional recovery after severe spinal cord contusion. *Nat Neurosci* 21:576–588

718 69. Deng WW, Wu GY, Min LX, Feng Z, Chen H, Tan ML, Sui JF, Liu HL, Hou JM (2021)
719 Optogenetic Neuronal Stimulation Promotes Functional Recovery After Spinal Cord Injury.
720 Frontiers in Neuroscience 15:1–10

721 70. McPherson JG, Miller RR, Perlmutter SI, Poo MM (2015) Targeted, activity-dependent spinal
722 stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc
723 Natl Acad Sci U S A 112:12193–12198

724 71. Mishra AM, Pal A, Gupta D, Carmel JB (2017) Paired motor cortex and cervical epidural
725 electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor
726 responses. Journal of Physiology 595:6953–6968

727

728 **2 Figure legends**

729 **Figure 1. Increased neuronal activity promotes neurite outgrowth.** A. Representative images of
730 c-Fos (red) and ChR2 (green) immunostaining. White arrows depict ChR2⁺ neurons. Scale bar:
731 100 μ m. a. Higher magnification image of a stimulated neuron. ChR2 expression is mainly located in
732 the membrane of large-diameter neurons. Scale bar: 20 μ m. B. c-Fos expression in the nucleus is
733 increased just after optogenetic stimulation of Thy1-ChR2 DRG neurons (n=20-25 cells). MFI: mean
734 fluorescence intensity. a.u.: arbitrary units. Data are expressed as mean nuclear fluorescence
735 intensity \pm s.e.m. **p < 0.01 denotes significant differences in Student's t-Test. C. Stimulated neurons
736 presented significantly higher neurite lengths when compared to non-stimulated ones. Average
737 neurite length per neuron was determined at 24h *in vitro*. Data are expressed as mean \pm s.e.m. *p <
738 0.05 denotes significant differences in Student's t-Test. D. Representative images of Tuj-1 staining
739 used to analyze neurite length. Scale bar: 200 μ m.

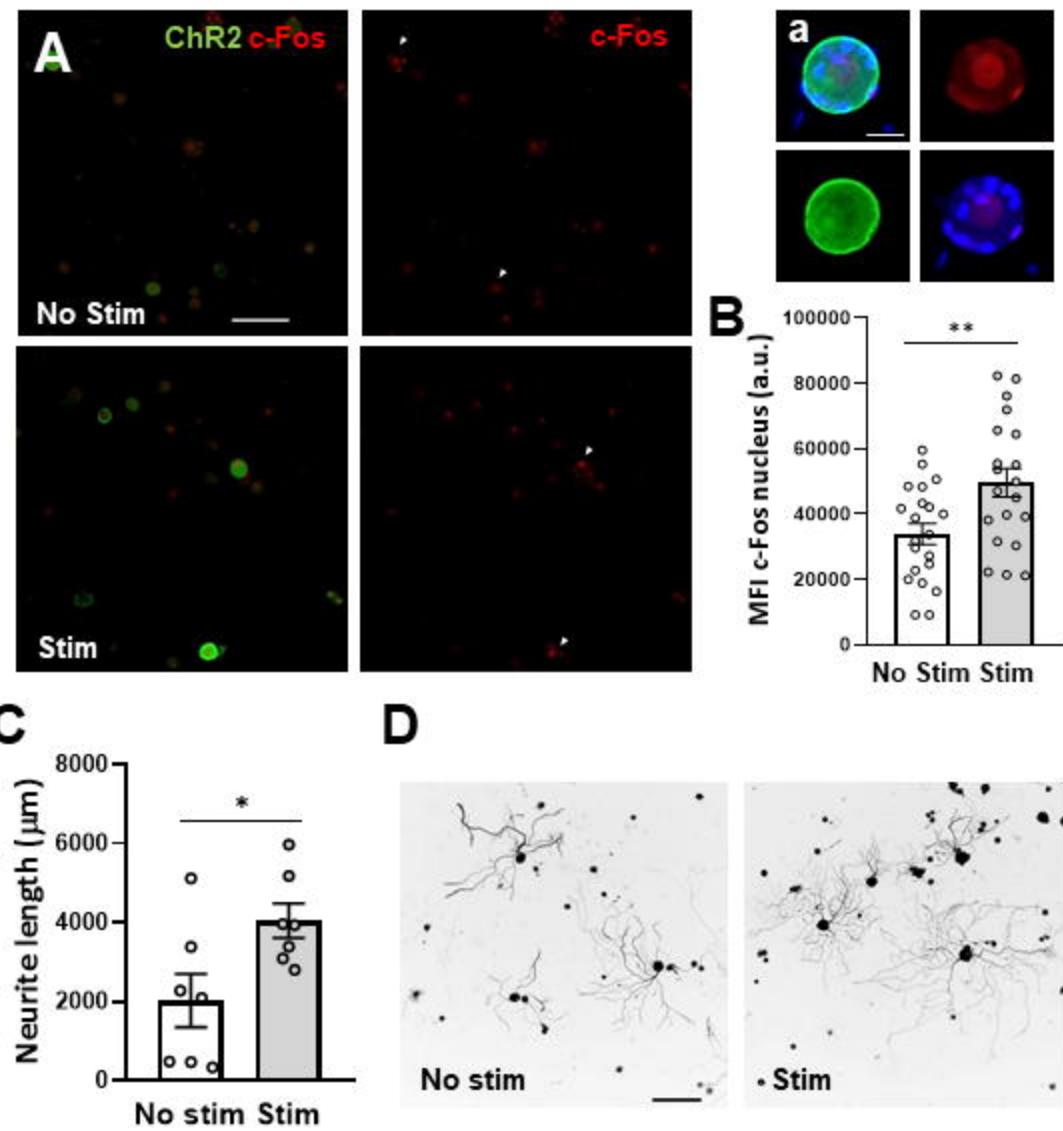
740

741 **Figure 2. Chemogenetic stimulation induced PNS regeneration.** A. Chemogenetically stimulating
742 DRG neurons *in vitro* 6h after axotomy resulted in regeneration promotion. Data are expressed as the
743 mean percentage of infected regenerating axons compared to the total of infected axons reaching the
744 axonal compartment \pm s.e.m (n=7-8 axonal compartments). *p < 0.05 denotes significant differences
745 in Student's t-Test. B. Representative images of hM3Dq/mCherry⁺ axons. Scale bar: 50 μ m. C. c-Fos
746 nuclear staining is observed in hM3Dq infected DRG neurons (white arrows) 1h after CNO injection,
747 but not in mCherry⁺ DRG neurons after the same treatment. Scale bar: 25 μ m. D. Schematic timeline
748 of the experiment. E. The number of regenerating sensory axons (SCG-10⁺) in stimulated nerves
749 (hM3Dq-CNO) is increased in all assessed distances compared to the non-stimulated (mCherry-
750 CNO) reaching statistical significance in long distances. Data are expressed as mean \pm s.e.m. at each
751 distance from the injury site (n=9 sciatic nerves). *p < 0.05 denotes significant differences in
752 ANOVA followed by Bonferroni test. F. SCG-10 immunostaining of mCherry or hM3Dq infected
753 sciatic nerves 24h after SNC. Dotted lines indicate the injury site. Scale bar: 200 μ m.

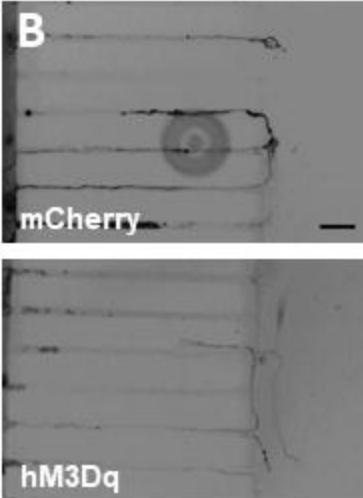
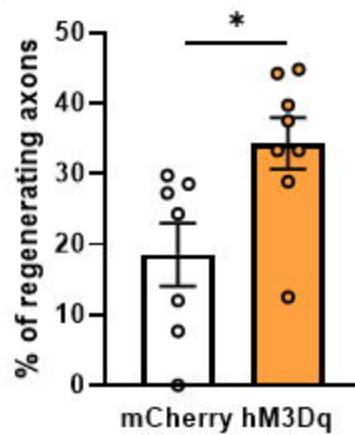
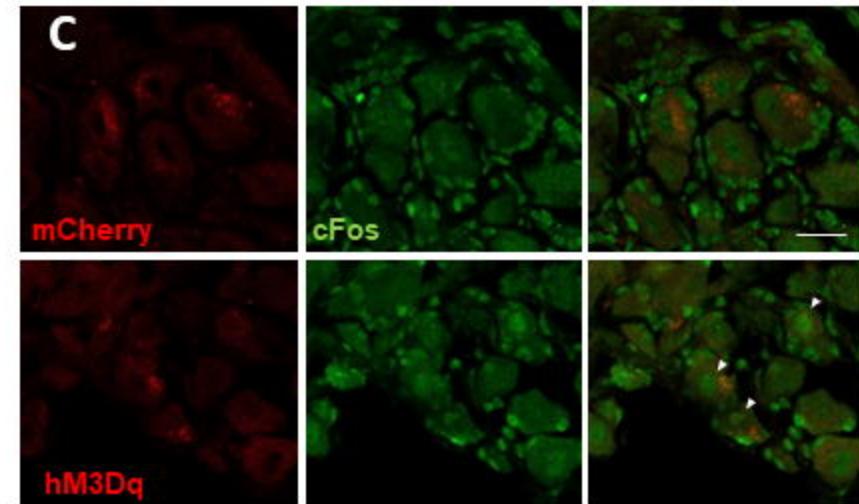
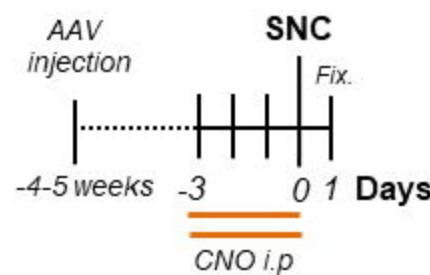
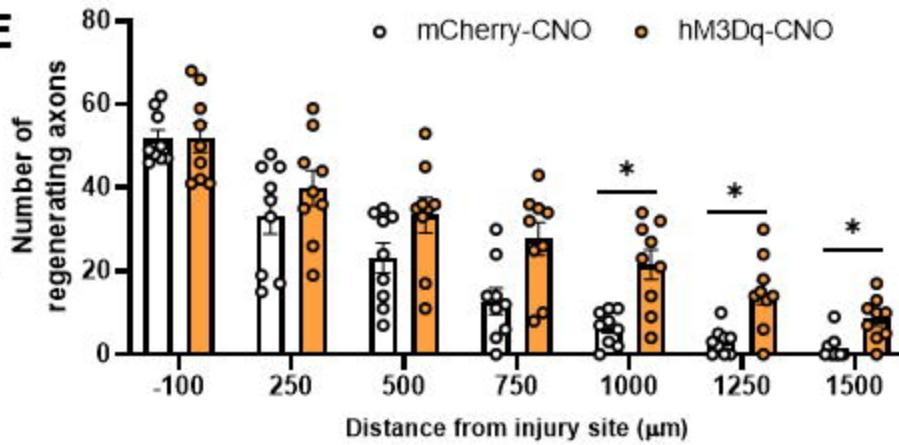
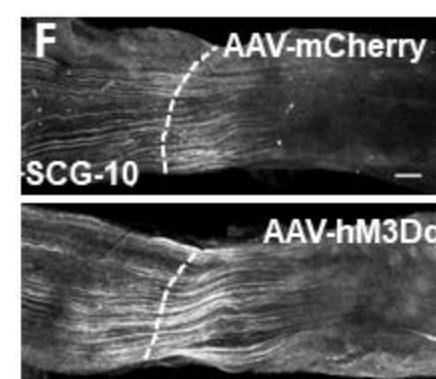
754 **Figure 3. Optogenetic stimulation of cortical neurons after axotomy.** A. Cortical neurons (Tuj-1)
755 express ChR2-eYFP after LV-ChR2 infection. White arrows in the high magnification image indicate
756 neuritic expression of ChR2. Scale bar: 250 μ m. B. Optogenetic stimulation increased the expression
757 of c-Fos in cortical neurons. Representative images of c-Fos (red) and ChR2 (green) immunostaining.
758 Scale bar: 20 μ m. C-D. Optogenetic stimulation of cortical neurons 30min after axotomy (B) resulted
759 in reduced axon regeneration, while delivering the stimulation 6h after axotomy (C) increased axon
760 regeneration. Individual ChR2⁺ axon lengths were quantified (B: n=16 images; C: n=37-43 images).
761 Data are expressed as mean \pm s.e.m. ***p < 0.001 denotes significant differences in Student's t-Test;
762 **p < 0.01 denotes significant differences in Mann Whitney test. E. Optogenetic stimulation (Light)
763 of WT cortical neurons did not induce any changes in axonal regeneration. Total growth

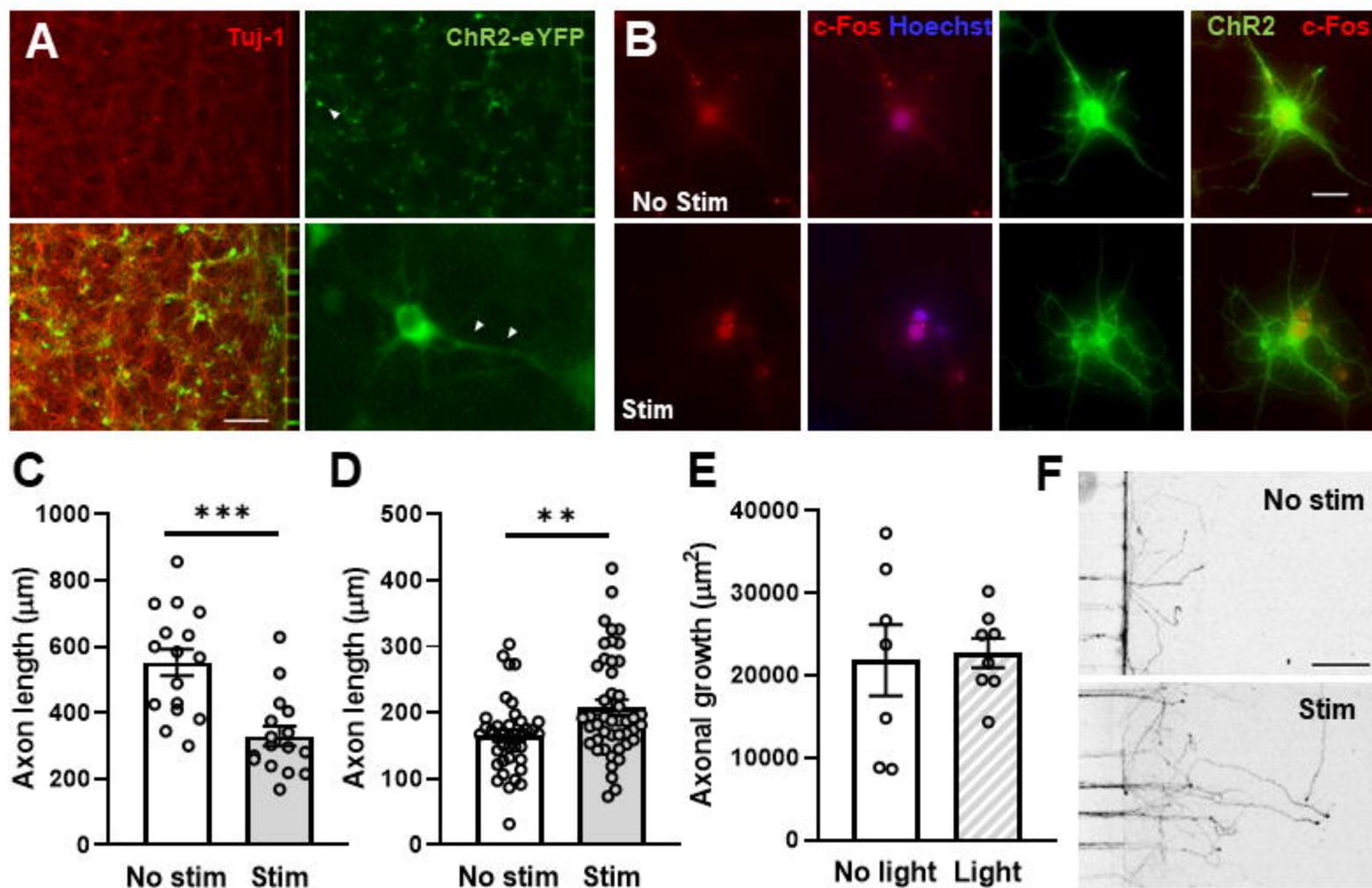
764 area/microchannel was computed (n=7-8 images). Data are expressed as mean \pm s.e.m. F.
765 Representative images of GFP/YFP staining used to analyze axon regeneration when stimulation is
766 applied 6h after axotomy. Scale bar: 200 μ m.

767

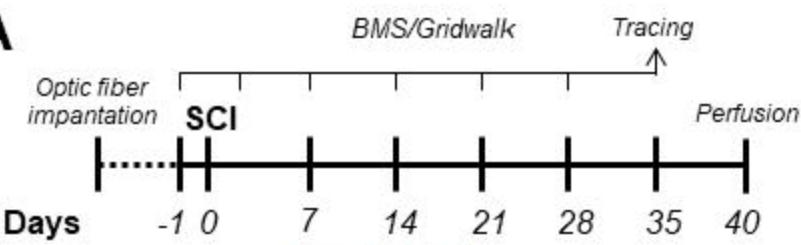
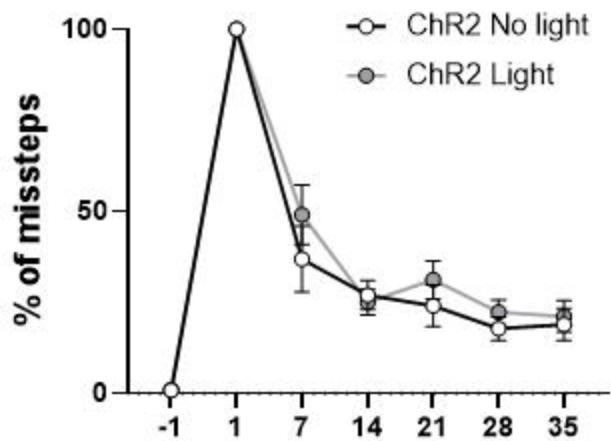
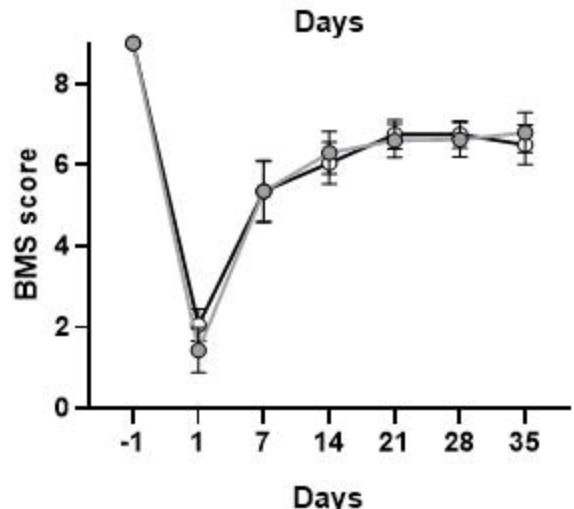
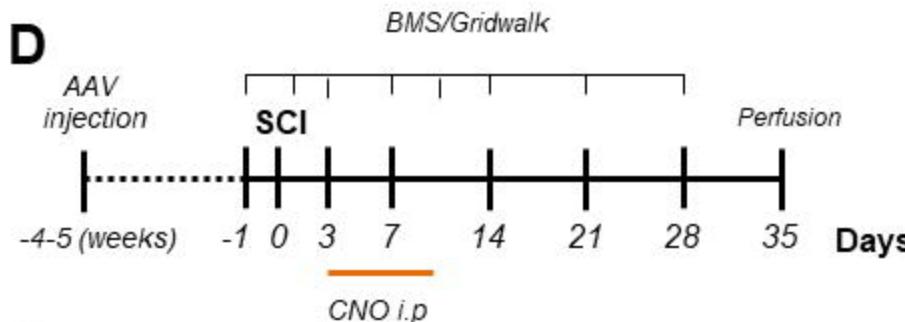
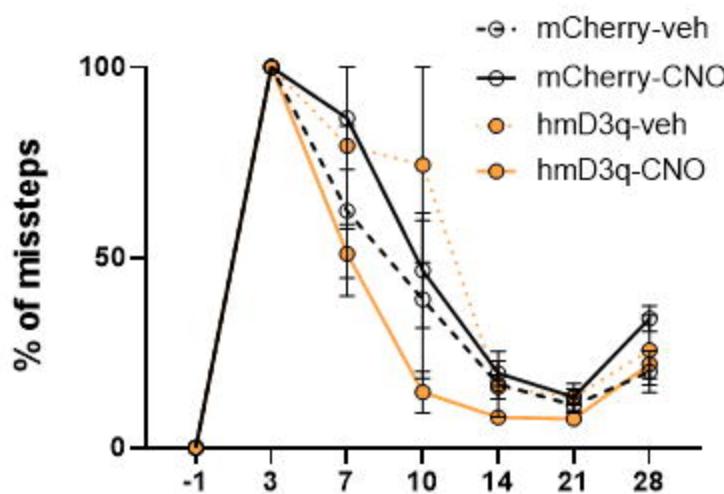
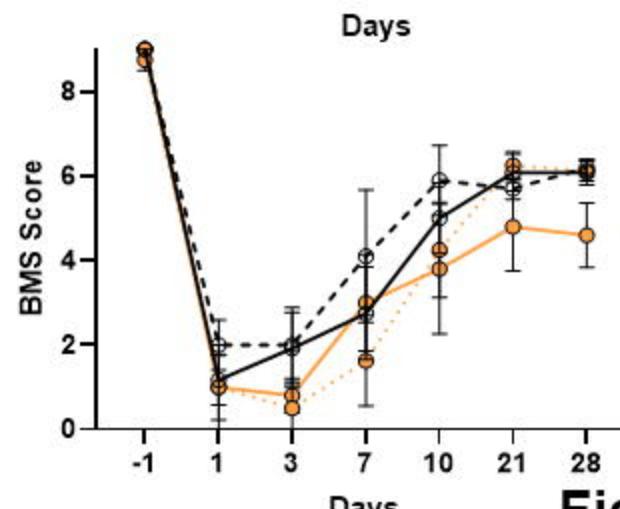

768 **Figure 4 Increasing neuronal activity does not induce recovery after CNS injury.** A. Timeline
769 of the CST injury and stimulation experiments. B-C. % of missteps in the gridwalk test (B) (n=8-9
770 mice per group for each timepoint) and BMS score (C) (n=10 mice per group for each timepoint)
771 show no differences in sensorimotor recovery in stimulated Thy1-ChR2 (ChR2 Light) mice when
772 compared to non-stimulated (ChR2 No light) after CST injury. D. Timeline of the DCA and
773 stimulation experiments. E-F. Chemogenetically stimulated animals (hM3Dq-CNO) show similar
774 sensorimotor function recovery to non-stimulated ones (mCherry-CNO, mCherry-veh , hM3Dq-veh)
775 after DCA as seen by the gridwalk (E) (n=3-5 mice per group for each timepoint) and BMS (F) (n=5-
776 6 mice per group for each timepoint) tests. Represented data correspond to the BMS score and % of
777 missteps in the gridwalk. Data are expressed as mean \pm s.e.m. ANOVA followed by Bonferroni post-
778 hoc test.

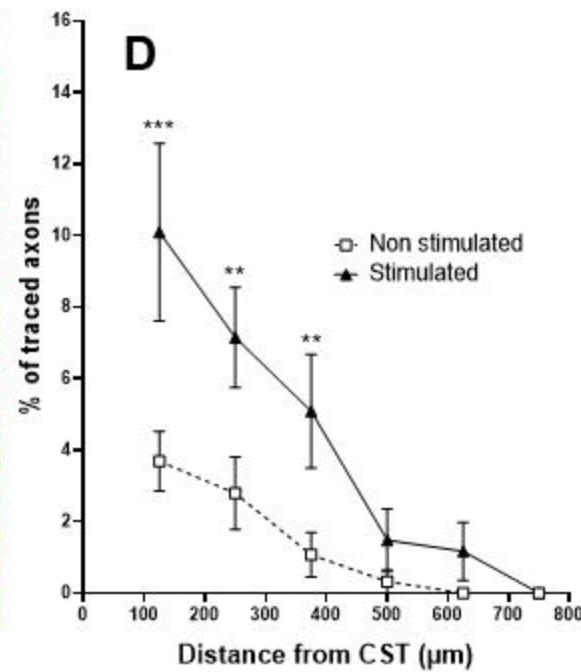
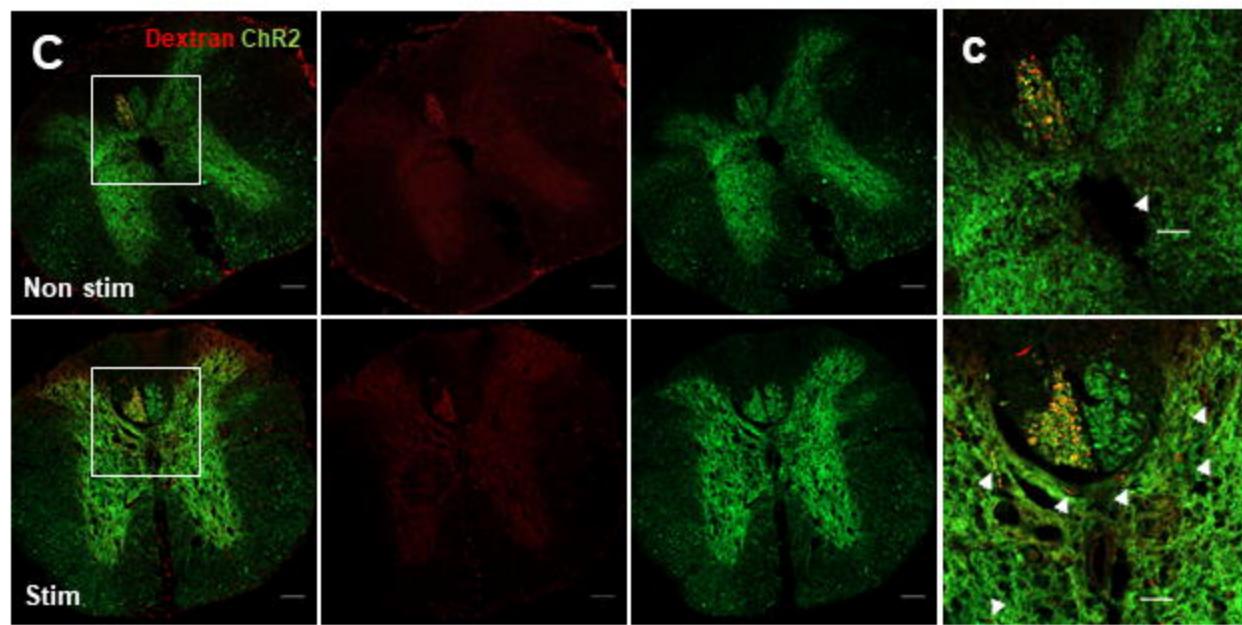
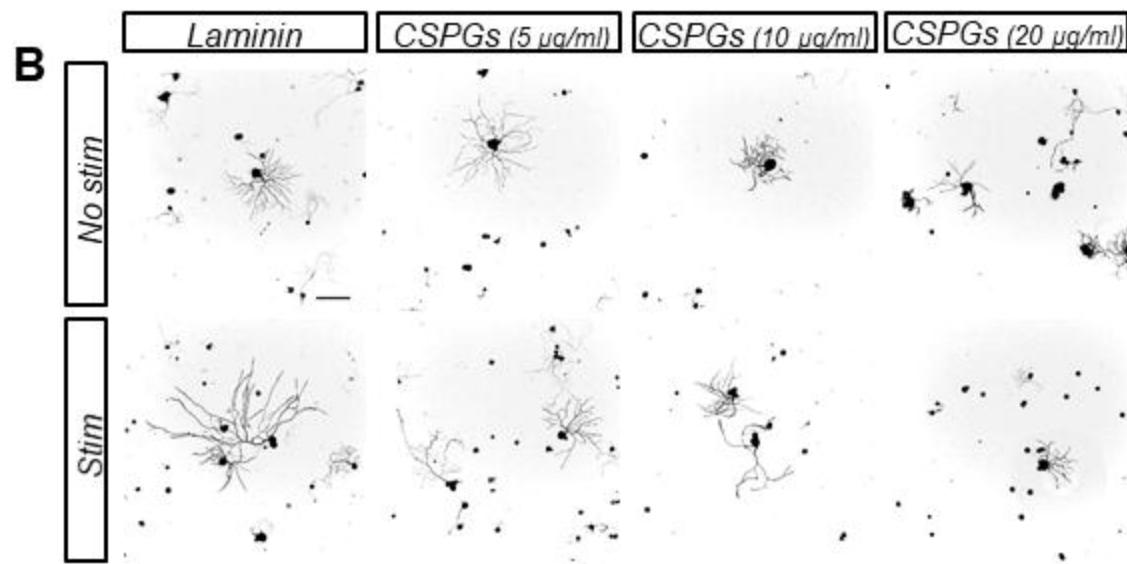
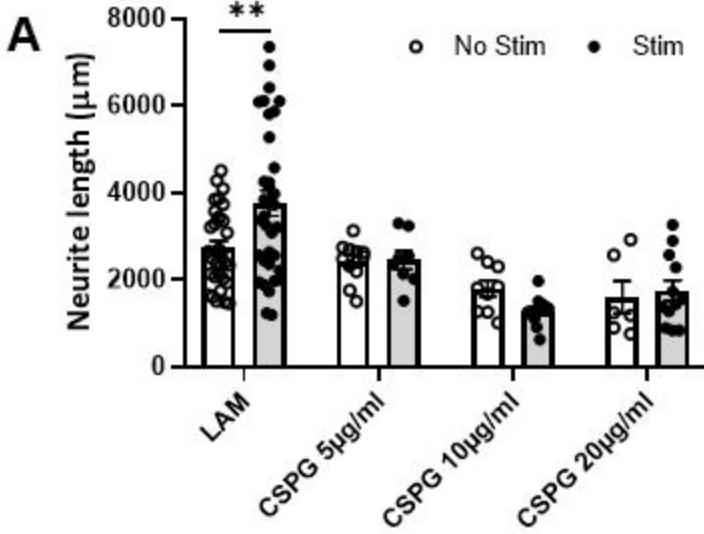
779 **Figure 5. Neuronal activity induces growth but is not sufficient to overcome inhibitory**
780 **environments.** A. Neurite outgrowth was significantly increased in optogenetically stimulated DRG
781 neurons over growth-permissive substrates (LAM: laminin), but not over different concentrations (5,
782 10, 20 μ g/ml) of non-permissive substrates (CSPGs). Average neurite length per neuron was
783 determined at 24h *in vitro*. Data are expressed as mean neurite length per cell \pm s.e.m (n=6-23 images).
784 **p < 0.01 denotes significant differences in ANOVA followed by Bonferroni test. B. Representative
785 images of Tuj-1 staining used to analyze neurite length. Scale bar: 200 μ m. C. Representative images
786 of traced (Dextran-Alexa594) CST and ChR2-YFP in stimulated and non-stimulated Thy1-ChR2







787 mice in spinal cord sections 500 μ m rostral to the lesion core. Scale bar: 100 μ m. c. Higher
788 magnification images. White arrows indicate double-positive Dextran-Alexa 594/ChR2-YFP
789 sprouted axons. Scale bar: 50 μ m. D. The number of double-positive Dextran-Alexa 594/ChR2-YFP
790 sprouted axons in the grey matter as a normalized ratio of Dextran-Alexa 594-traced CST axons
791 shows a significantly higher percentage of sprouted axons in stimulated animals at distances up to
792 400 μ m laterally and ventrally from CST. Data are expressed as mean \pm s.e.m. at each distance from
793 the CST (n=4 mice) ***p < 0.001; **p < 0.01 denote significant differences in ANOVA followed by
794 Bonferroni test.


795 **Supplementary Figure 1. AAV-mCherry and AAV-hM3Dq infection of DRG neurons.** A.
796 Images of mCherry expression in AAV-mCherry and AAV-hM3Dq infected DRG neurons 4-5
797 weeks after viral injection. Scale bar: 100 μ m. B. Large-diameter DRG neurons are preferentially
798 infected. % of large-diameter (diameter >35 μ m) infected neurons was analyzed (n=7-9 DRGs). Data
799 are expressed as mean \pm s.e.m. C. Both AAVs infect NFH⁺ cells. Scale bar: 30 μ m.

800 **Supplementary Figure 2. ChR2 expression and growth after CST axotomy in Thy1-ChR2 mice.**
801 A. While some layer II-III neurons express ChR2, expression is concentrated in layer V neurons.
802 Scale bar: 100 μ m. B. Schematic representation of the quantification in C. The spinal cord was
803 divided in grey matter and white matter for analysis. C. Tracer intensity quantification of injured
804 stimulated and non-stimulated Thy1-ChR2 mice at 0,5mm pre-injury and post-injury. Optogenetic
805 stimulation of the CST resulted in increased sprouting in the grey matter pre-injury, but not post-
806 injury. a.u.: arbitrary units. Data are expressed as mean tracer intensity \pm s.e.m (n=5 spinal cords). **p
807 < 0.01 denotes significant differences in Student's t-Test.





Figure 1

A**C****D****E****F****Figure 2**

Figure 3

A**B****C****D****E****F****Figure 4**

Figure 5