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Abstract

Background: Many cancer genomes have been known to contain more than one
subclone inside one tumor, the phenomenon of which is called intra-tumor
heterogeneity (ITH). Characterizing ITH is essential in designing treatment plans,
prognosis as well as the study of cancer progression. Single-cell DNA sequencing
(scDNAseq) has been proven effective in deciphering ITH. Cells corresponding to
each subclone are supposed to carry a unique set of mutations such as single
nucleotide variations (SNV). While there have been many studies on the cancer
evolutionary tree reconstruction, not many have been proposed that simply
characterize the subclonality without tree reconstruction. While tree
reconstruction is important in the study of cancer evolutionary history, typically
they are computationally expensive in terms of running time and memory
consumption due to the huge search space of the tree structure. On the other
hand, subclonality characterization of single cells can be converted into a cell
clustering problem, the dimension of which is much smaller, and the turnaround
time is much shorter. Despite the existence of a few state-of-the-art cell
clustering computational tools for scDNAseq, there lacks a comprehensive and
objective comparison under different settings.

Results: In this paper, we benchmarked three state-of-the-art cell clustering
tools–SCG, BnpC and SCClone–on simulated datasets given a variety of
parameter settings and a real dataset. We designed a simulator specifically for
cell clustering, and compared the three methods’ performances in terms of their
clustering accuracy, genotyping accuracy and running time.

Conclusion: From the benchmark study, we conclude that BnpC’s clustering
accuracy is the highest of all three methods. SCG’s accuracy is very close to
BnpC’s, but it is much faster than the other two methods especially when the cell
number is within 1000. When there are a large number of single cells (> 1500),
BnpC is highly recommended due to its scalability while not sacrificing the
clustering accuracy. Of the three methods, SCClone has the highest accuracy in
estimating the number of clusters especially when the underlying number of
cluster is high. When the variance of the cluster sizes is high, all three methods’
clustering accuracy drops. To improve the clustering accuracy while cluster sizes’
variance is high is potentially a future work in scDNAseq cell clustering.

Keywords: Single-cell DNA sequencing; Cell clustering; Single nucleotide
variation; Benchmarking; Intra-tumor heterogeneity

Background
Cancer progresses with acquired mutations [1–3]. During this process, different can-

cer cells inside the same tumor may acquire different set of mutations, leading to a

notoriously difficult-to-solve problem, the intra-tumor heterogeneity (ITH) [4–14].
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In particular, the co-existence of multiple subclones of cancer cells leads to the ma-

lignancy of cancer, and even metastasis, which is responsible for 90% of the death

of cancer [15]. ITH also is a confounding factor in treatment and prognosis due to

the lack of a comprehensive knowledge of the clonality in the tumor. Therefore,

it is important to fully characterize the clonality in a cancer genome to guide the

prescription of drug or chemotherapy, to obtain an accurate prognosis, as well as to

gain a better understanding of the mechanism of cancer progression.

Single-cell DNA sequencing (scDNAseq) data, due to its sequencing each cell

separately, makes it a unique type of data advantageous in understanding the clon-

ality and ITH [16, 17]. Technical challenges of scDNAseq lie in the whole genome

amplification (WGA) of the tiny amount of the DNA (6pg) in the cell by 3 to

9 orders of magnitude [18] for sequencing library construction [19]. Particularly,

multiple displacement amplification (MDA)-based approach [20–22] generates scD-

NAseq data that have high depth of the sequencing, facilitating the detection of

single nucleotide variants (SNVs) [19, 23, 24]. However, MDA-based WGA suffers

from high allele dropout (ADO) rate. ADO is a technical failure to provide mea-

surement of both alleles, and is the leading cause of false negatives (FNs) in SNV

detection [19,25]. On the other hand, the infidelity of polymerase enzymes may lead

to false positive (FPs) SNVs in SNV detection [23]. Such false positive SNVs are

extremely excessive in C:G>T:A transitions [26]. Finally, MDA-based WGA tech-

nologies render low amplification breadth over the genome [26], leading to severe

missing calls in SNV detection. Technically, FNs are generated due to the lack of

variant-supporting reads whereas missing calls are due to the lack of reads, both

variant- and reference-supporting, covering the mutation site.

In the past decade, a myriad of bioinformatics tools have been developed to

tackle the ITH problem specifically designed for scDNAseq data while consider-

ing its unique error profile. These bioinformatics tools mainly have three functions,

inferring the evolutionary history of cancer cells, characterizing the clonal compo-

sition of the cells, and inferring the genotype of all the mutation sites for each cell.

Some of the tools infer all of the three, whereas some only aim at the latter two. In

general, if a tool infers the evolutionary history of cancer cells, it can also charac-

terize the clonality of the cells and infer the genotype of the mutation sites. Those

tools that can jointly infer the evolutionary history and characterize the clonality

of cancer cells include but are not limited to SCITE [27], OncoNEM [28], Sifit [29],

SiCloneFit [30], SASC [31], SPhyR [32], and GRMT [33].

The output of these tools typically consist of an evolutionary tree delineating

the cancer evolution history. The class of the tree varies among phylogenetic trees

in which each node represents a single cell, mutation trees in which each node

represents a new mutation, and clonal lineage trees in which each node represents a

subclone of single cells [34]. No matter which class of the tree is used, the single cells

can always be placed on the tree. Some tools, like SCITE [27], added an additional

step to attach them to the leaf nodes.

A post-processing step is then required to convert the placement of the cells on the

tree to the clustering of the cells. In particular, on a clonal lineage tree or a mutation

tree, the cells attached to the same node are assigned to the same cluster. On a

phylogenetic tree in which each leaf node represents a sequenced cell, clustering of
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the cells has to be done by cutting the branches at a certain level on the tree so

that the cells attached to the same branch can be assigned to the same cluster.

To obtain the consensus genotype of the mutations for each cluster, one can

traverse the path on the tree from the root to the corresponding leaf node (or the

node below which a branch is cut) that the cells of the same cluster are attached

to. This consensus genotype profile also serves as the corrected genotype profile for

all the cells assigned to the same cluster.

While it is desirable to have both the cancer evolutionary history and the clonal

composition inside a tumor, it is computationally expensive to infer the cancer evo-

lutionary tree due to the vast number of trees that the algorithms have to search and

evaluate. The ever-increasing number of cells in single-cell sequencing field makes it

even more challenging to infer an evolutionary tree in terms of the cost of compu-

tational resources as well as the turn-around time [25]. Clinically, what a medical

provider needs is mainly the number of clones in the tumor for the prognosis pur-

pose, not necessarily the whole evolutionary tree, although the cancer evolutionary

tree is helpful in understanding how cancer cells evolve. In such sense, clustering

the cells without inferring the evolutionary tree becomes essential due to its less

demanding of the computational resources and fast turn-around time [25]. As a

matter of fact, in the case when the evolutionary history of the cancer development

is of interest, separating the clustering of the cells into subclones and the inference

of the cancer evolutionary history is becoming a future trend, considering the in-

creasing number of single cells sequenced in each sample [25, 35]. In this way, not

only can the genotype errors be corrected during the cell clustering stage, but also

the lineage tree is searched based on the subclones (clusters of the cells) instead of

the individual cells. In all, a separate cell clustering step provides a tremendously

more precise and smaller search space for the search of lineage tree.

The problem of clustering, the procedure of identifying similar groups given a

set of data, has been addressed by many machine learning tools. Some of them

require the knowledge of the number of clusters (in our context, it is the number of

clones of cells), for example, K-means [36], mixture model using EM algorithm [37],

hierarchical clustering [38], etc. Others do not require the knowledge of the number

of the clusters, for example, mean-shift [39], Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) [40], and more advanced ones such as shared

nearest neighbor (SNN) [41] algorithm. In recent years clustering has also been

related with the problem of community detection where each data point (in our

case, cell) represents a node in a graph, and the similarity between every pair of

data points represents an edge between two nodes. Community detection algorithms,

such as Infomap [42] and Louvain [43] method, can be re-purposed for the detection

of clusters given the distance or similarity between each pair of the cells in terms

of their mutation profiles.

Despite the plethora of clustering method in the realm of machine learning, only

a few clustering methods are available that are specifically designed for scDNAseq

data. Yet the conventional clustering method cannot be directly applied to scD-

NAseq data because of scDNAseq’s unique error profile. Specifically, the false neg-

ative, false positive and missing rates shall be incorporated in the design of the
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clustering algorithm. The few scDNAseq-based tools that aim at only the cell clus-

tering, not the lineage tree inference, are SCG [44], BnpC [25], SCClone [45], Robust-

Clone [46] and ARCANE-ROG [47]. Here we skip discussing RobustClone because

it does not have a friendly user interface and is not as popular. ARCANE-ROG is

also omitted in our benchmark due to that it is not open-source. Of SCG, BnpC

and SCClone, SCG is the first tool published to cluster scDNAseq data. It uses

mean-field variational inference to infer the probabilities of cell assignment and the

corrected genotype. SCG is unique in that it was designed for multiple data types,

including binary genotypes, where the mutation is either existent or absent; ternary

genotypes, where the mutation could be homozygous variant, heterozygous variant

and homozygous reference; as well as the data with doublets. When SCG is run in

the doublet mode, it is called D-SCG. BnpC [25] is a fully non-parametric Bayesian

method that can handle noisy data in a large quantity. BnpC is scalable to han-

dle a large number of clusters as well as thousands of cells. SCClone [45] uses a

probability mixture model to cluster single cells into distinct clusters and uses an

Expectation Maximization (EM) algorithm to infer the model parameters. Since

mixture model requires the prior knowledge of the number of clusters, SCClone

performs the EM algorithm for each possible cluster number and searches for the

optimal cluster number. SCClone’s results depend heavily on the initial values of

the model parameters such as false positive and false negative rates. It is worth

noting that celluloid [48] and AMC [49] are two mutation clustering methods for

scDNAseq data. Since this study focuses on clustering cells instead of clustering

mutations, we do not include them in the benchmark and discussion.

Despite the importance of cell clustering based on scDNAseq, there has not been a

comprehensive benchmark on the existing cell clustering methods. Therefore their

performance is unclear under different settings. Moreover, despite the fact that

SCClone benchmarked the above-mentioned methods on their simulated data, we

found that the parameters of the methods could have been better tuned to improve

the performance of the tools, with the help of the correspondences with the authors.

Thus the conclusion SCClone made regarding the comparison of the three methods

is not necessarily reliable. On the other hand, although SCClone’s simulation cov-

ered a few important parameters, the simulation is still not comprehensive. What is

especially interesting but missing is the effect of the contrast of the cluster sizes on

the clustering results. This is relevant because small subclones are more challenging

to characterize due to the lack of representative cells.

In this context, we developed a simulator which allowed us to comprehensively

benchmark the three state-of-the-art scDNAseq cell clustering methods, SCG, BnpC

and SCClone, in terms of their accuracy of clustering, accuracy of the inference

of the genotypes, and the consumption of computational resources. The various

parameters allowed us to discuss the advantages and disadvantages of the three

methods under different settings. In particular, what is new but essential in this

benchmark study is the simulation of varying variance of cluster sizes. We modified

the tree construction algorithm, the Beta splitting model used in SimSCSnTree [50,

51], so that we can tune a parameter in the simulator to increase or decrease the

variance of the cluster sizes. The benchmark of the resulting simulated dataset

is indicative of the robustness of the clustering method for the cases when the
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contrast of the cluster sizes is big or small. In the following sections, we describe

our simulator in detail, followed by the design of the simulation experiments, i.e.,

the list of datasets generated from varying parameters in the simulator. We briefly

describe the comparison metrics that will be applied to measure the results of all

three methods, SCG, BnpC and SCClone, as well as the parameter setting of these

three methods. We then discuss the simulation results for each dataset, followed by

the discussion of the results of a real dataset CRC2 [52]. We summarize the study by

making recommendation of which tool to use under which setting in our discussion

and conclusion.

Description of Our Simulator
To fully examine the performance of SCG, BnpC and SCClone, we designed a set

of simulated data. For each simulated data set, we first simulated a clonal tree on

which each leaf node represented a subclone of cells. Thus the number of leaves

was the true number of clusters in cell clustering. The branches on the clonal tree

were simulated such that each branch followed an exponential distribution with λ

equaled to 1. The simulator distributed a given total number of mutations, M , to

all the branches according to their lengths. The tree structure was simulated in the

following way. Starting from the root node that was free from any mutations, we

split a leaf node in the tree. When there was only a root node, it had to be selected

to split. Once a node was split, it became the parent node of the two newly formed

leaf nodes and itself was no longer a leaf node. Each node was given an interval

whose start and end were within 0 and 1, and whose length was ≤ 1. Root node’s

interval was [0, 1]. The union of the two leaf nodes’ intervals was the same as that of

the parent node’s interval, i.e., the child nodes split the parent node’s interval. The

ratio of the interval length of the two child nodes was decided by a sampling from

the Beta distribution whose α value was fixed as 0.5 and β value was a variable that

we varied in a set of simulated data. This variable was referred to as “Beta splitting

variable”. The chance of a leaf node being selected to split was in proportion to

one minus its interval length instead of the interval length. This is a subtle but key

difference between our approach and SimSCSnTree [50] whose leaf node’s chance

to be selected to split is in proportion to its interval length. Our “reverse splitting”

strategy was intentionally designed in such a way so that nodes with big intervals

had less chance to split and thus remained big clones, whereas nodes with small

intervals continued to split and became even smaller clones. This procedure helped

us to effectively use the Beta splitting variable to control the contrast of the sizes of

the clusters and further allowed us to examine the three methods’ accuracy in cases

when cluster sizes differed to different degrees. The whole process stopped once the

number of leaf nodes reached the desired number.

After generating the tree structure, we assigned a given number of cells, N , to all

the leaf nodes in proportion to their interval lengths.

Once the cells were assigned to leaf nodes, for each leaf node x, we walked the

path from the root node to x and assigned the SNVs on the branches along the

path to the cells assigned to x. We then formed the genotype matrix G which was a

cell locus matrix with the cells on the rows and SNV loci on the columns. Gi,j = 1

if SNV j was present in cell i. Gi,j = 0 if SNV j was absent in cell i. We used a
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False positive rate 0.001, 0.01 (d), 0.05
False negative rate 0.1, 0.2 (d), 0.3, 0.4

Missing rate 0.2 (d), 0.3
# of cells 100, 500 (d), 1000, 1500

# of mutations 50, 200 (d), 500
Cluster number 4, 8 (d), 16, 32
Doublet rate 0 (d), 0.01, 0.05, 0.1

Beta splitting variable 0.05, 0.2 (d), 0.5
Table 1 Simulated datasets. Each line has a varying variable (first column) with the values in the
second column. The default value is denoted by ”(d)” on its right.

binary genotype matrix instead of a ternary one so that all of the three methods

can be fairly compared. Notice that G matrix was the underlying true genotype

matrix without any error or missing data. For a cell i, Gi was in fact the same as

the true underlying consensus genotype for the leaf node (or cluster, as each leaf

node represents a cluster) that cell i was assigned to. We then imputed the missing

data, false positives and false negatives on the G matrix. We called the resulting

noisy data matrix the D matrix. In the real scenario, D matrix is what can be

observed from the sequencing data, whereas G matrix is the desired matrix to be

inferred from the computational tools. In imputing the missing data, since we used

the number “3” to represent the missing data, we randomly turned an entry, no

matter whether its value was a 0 or 1, to be 3, according to a pre-set missing data

probability. In imputing the false positives and false negatives, of all the entries that

were 0 and 1, respectively, we flipped it to be 1 and 0 according to a pre-set false

positive rate and false negative rate, respectively. The resulting matrix was the D

matrix which was the input to the three tools as the cell locus matrix.

The Design of Simulation Experiments
We designed the simulation experiments in a comprehensive way in order to test

the three methods from a variety of perspectives. Particularly, we tested the three

methods by varying false positive rates, false negative rates, missing rates, number

of cells, number of mutations, cluster number (or leaf node number), doublet rate

and the Beta splitting variable that controlled the variance of cluster sizes. Beta

splitting variable has never been investigated in the previous study and thus is

unique in this study.

For each variable, we set up a default value. For each dataset, we varied only one

variable while setting all other variables to be the default value, as seen in Table

1. We selected the ranges for each variable mainly according to the discussion in

[19]. For example, since the doublet rate varies mainly up to 10%, we set up the

maximum of doublet rate to be 10%. Notice that since BnpC and SCClone do not

explicitly model doublets, we set the default doublet rate to be zero. To further

examine how the existence of doublet cells may affect the accuracy of clustering,

we varied doublet rates between 1% and 10%.

In terms of varying cell numbers, we set up a big range (100 to 1500) to test the

algorithms since BnpC claimed to be scalable to a large number of cells. Similar

to the number of cells, we set up a big range (50 to 500) of mutations to test the

accuracy as well as the running time of all three methods.

For each such combination of variables, we repeatedly created the tree structure,

assigned the mutations and cells, imputed the errors on the G matrix and created

the D matrix for five times to overcome the random extremity.
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Comparison Metrics
To compare the clustering results, we used four different metrics, and they are

V-measure, running time, sensitivity and specificity. V-measure measures the clus-

tering results given the ground truth, whereas sensitivity and specificity measure

the consensus genotype inference. We also measured the genotyping accuracy of

all three methods, but decided not to include it in this manuscript because of its

redundancy with the sensitivity and specificity. In addition to these four metrics,

we also evaluated the accuracy of the estimated number of clusters for two datasets,

the varying number of clusters and the varying Beta splitting variable. Whether the

three methods can correctly estimate the number of clusters on these two datasets

is interesting because at a large number of underlying clusters or a large variance

of cluster sizes, the estimation of the cluster number is extremely challenging.

Usage of SCG, BnpC and SCClone
The parameter setting to run each of the methods is described as follows.

• For SCG, we set the maximum number of clusters to be N/4 where N is the

number of cells. The number of maximum iteration was set to be 106, and the

gamma prior was set as “[9.99, 0.01, 1.0e-15][2.5, 7.5, 1.0e-15][1.0e-15, 1.0e-

15, 1]”. We used “[1, 1, 1.0e-15]” for the state prior and set the number of

restart to be 20 with a random seed value selected from 0 to 10000. After

running SCG for 20 restarts we chose the best seed value depending on the

lower bound value, as suggested in [44]. We then used this best seed value

and the above-mentioned parameters for a final run for SCG, whose results

were taken as the final result.

• We ran BnpC by the default setting in all our simulated data sets. In the real

data, we set pp value to be “0.75 0.75” as suggested by the authors since our

real data set has less than 40 mutations.

• For SCClone, we used default parameters in which α was initialized to be 0.01

and β was selected from the grid search.

Since SCG does not directly output the cluster assignment for each cell but pro-

vides the posterior probability of each cell belonging to each cluster, we obtained

the cluster assignment as follows. For each cell, we selected the cluster that the cell

had the highest posterior probability with. If there were two clusters that had the

tied highest probability for a cell, we randomly selected one of the clusters. Like-

wise, since SCG does not directly output the consensus genotype for each cluster

but provides the posterior probability of a mutation being a certain genotype in a

cluster, we binarized such a probability into the consensus genotype in the follow-

ing way. For each inferred cluster and each mutation, we obtained the genotype by

choosing the one with the highest posterior probability. If there were two genotypes

that had the tied highest probability, we used the genotype that was supported by

the most cells assigned to this cluster.

We intended to run D-SCG on our simulated data sets since D-SCG is doublet-

aware. However, it takes extremely long time (longer than one day) to finish the

jobs. We reasoned this is because D-SCG’s computational complexity is O(NK2M),

in which K is the number of clusters and M is the number of mutations. Thus D-

SCG is quadratic with the number of clusters. We then switched back to SCG
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and measured the clustering accuracy only for the non-doublet cells. Thus all three

methods are not doublet-aware and the measurements do not include doublet cells

throughout the entire benchmark study. However, the accuracy of clustering non-

doublet cells in the presence of different levels of doublet cells is still of interest and

we included this study in one of our simulation experiment.

Benchmark of Simulation Experiments

Figure 1 Performance of SCG (red), SCClone (blue) and BnpC (green) for varying false positive
rate, the values of which are shown on the x-axes. The upper left, upper right, bottom left and
bottom right panels are the V-measure, running time in seconds, genotyping sensitivity and
genotyping specificity, respectively.

First, we varied the false positive rates in the simulated data while keeping all

other parameters at their default values. As expected, all three methods’ perfor-

mance dropped when false positive rate increases (Fig. 1). Among the three meth-

ods, BnpC was the most stable method whose performance only slightly dropped

with the increase of false positive rates. Specifically, BnpC’s median of V-measure

dropped from 0.994 to 0.991, compared with 0.985 to 0.873 for SCClone and 0.988 to

0.975 for SCG. BnpC’s median of sensitivity did not drop, compared with 99.909%

to 99.055% for SCClone and 99.375% to 99.153% for SCG. BnpC’s median of speci-

ficity dropped from 99.995% to 99.911% , compared with 99.992% to 99.165% for
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SCClone and 99.99% to 99.87% for SCG. Of all three methods, SCClone’s perfor-

mance was the worst when the false positive rate was high (0.05), whose V-measure’s

median was only 0.873, whereas both SCG and BnpC’s V-measure were > 0.975 at

the same false positive rate. SCG’s V-measure was comparable to that of BnpC’s

for all three false positive rates, but its sensitivity and specificity were generally

lower than that of BnpC’s. All three methods’ running time increased when false

positive rate increased (Fig. 1). SCG’s median running time increased from 447s to

783s, and it remained the lowest of all three methods for all false positive rates. SC-

Clone and BnpC’s median running time increased from 1170s to 4213s, and 3461s

to 4215s, respectively. Thus SCClone’s running time increased the most of all three

methods with the increase of false positive rate.

Figure 2 Performance of SCG (red), SCClone (blue) and BnpC (green) for varying false negative
rates, the values of which are shown on the x-axes. The upper left, upper right, bottom left and
bottom right panels are the V-measure, running time in seconds, genotyping sensitivity and
genotyping specificity, respectively.

We further varied the false negative rate from 0.1 to 0.4. We found that the median

of V-measure for SCG and BnpC both slightly dropped (0.994 to 0.969 for SCG

and 1 to 0.962 for BnpC), seen in Fig. 2. Although the median of V-measure for

SCClone also dropped slightly (from 0.996 to 0.978), its variance increased greatly

(from 5.6E-05 for 0.1 to 0.0145 for 0.4), to be compared with that of SCG (from 2.5E-
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04 for 0.1 to 7.08E-05 for 0.4) and BnpC (from 1.9E-04 for 0.1 to 2.8E-04 for 0.4).

In terms of sensitivity, we noticed an obvious drop for BnpC (the median dropped

from 99.976% for 0.1 to 99.561% for 0.4). Similarly, SCG’s median sensitivity also

dropped from 99.929% for 0.1 to 99.235% for 0.4. SCClone’s median sensitivity

did not drop as much as SCG and BnpC (from 99.985% for 0.1 to 99.803% for

0.4), but it showed an obvious pattern of increasing variance (from 0.001 for 0.1

to 0.59 for 0.4). Of all false negative rates, SCClone’s median sensitivity stayed

the highest compared with SCG and BnpC. All three methods were comparable

in terms of specificity in the increasing false negative rates, although for all three

methods the overall specificity decreased when false negative rate increased. Of

all three methods, SCClone’s specificity dropped the most with the increase of

false negative rate. Its median specificity dropped from 99.989% to 99.848%, to

be compared BnpC whose median specificity dropped dropped from 99.989% to

99.936%, and SCG whose median specificity dropped from 99.942% to 99.897%.

SCClone’s high sensitivity and dropping specificity indicated that SCClone tends

to over-estimate the false negative rate when the false negative rate is high, thus

it over-corrects the false negative entries. From the aspect of running time, it was

interesting to observe that SCClone’s running time dramatically increased with the

increase of false negative rate. Its median running time increased from 1281s to

5246s as shown in Fig. 2. SCG’s running time increased negligibly slightly whereas

BnpC’s did not show an increasing pattern. Of all three methods, SCG’s running

time stayed the least, within 654s for all false negative rates. When false negative

rate was at 0.1, SCClone’s running time (median at 1281s) was less than that of

BnpC’s (median at 4142s). When false negative rate was at 0.4, SCClone’s running

time (median at 5246s) surpassed that of BnpC’s (median at 4389s) and became

the slowest of the three methods.

In terms of missing rate, SCG and BnpC’s V-measure decreased slightly with

the increase of the missing rate (Fig. 3), whereas SCClone’s V-measure increased

with the increasing missing rate. In fact, SCClone also showed a reverse trend of

the running time when the missing rate increased, i.e., its median running time

decreased from 2787s to 1122s when the missing rate increased from 0.2 to 0.3.

These data showed that SCClone’s V-measure and running time were robust in

the event of increasingly uncertain data. On the other hand, we did not observe a

dramatic increase of running time for SCG and BnpC in terms of the increasing

missing rate (Fig. 3).

All three methods’ V-measure, sensitivity and specificity increased when the num-

ber of cells increased whereas BnpC’s V-measure, sensitivity and specificity re-

mained the highest for all the number of cells among the three methods (Fig. 4).

All three methods’ running time increased dramatically (Fig. 4), and SCClone’s rate

of increased running time in terms of the increasing cell number was the highest,

from 108s to 12418s when the cell number increased from 100 to 1500. Specifically,

when cell number was 100, SCClone, whose median running time was 108s, was

just slightly slower than SCG’s whose median running time was 65s. Both were

much faster than BnpC, whose median running time was 2793s. When cell number

was 500, SCClone’s median running time (2787s) surpassed that of SCG’s (522s)

and was comparable to BnpC (4046s). When the number of cells increased to 1000,
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Figure 3 Performance of SCG (red), SCClone (blue) and BnpC (green) for varying number of
missing rates, the values of which are shown on the x-axes. The upper left, upper right, bottom
left and bottom right panels are the V-measure, running time in seconds, genotyping sensitivity
and genotyping specificity, respectively.

SCClone’s median running time increased to 8620s, much higher than that of SCG

(2703s) and BnpC (3747s). Such situation worsened when the number of cells fur-

ther increased to 1500, when SCClone’s median running time reached 12418s, to

be compared with 5712s and 7178s for BnpC and SCG, respectively. For cell num-

bers at 100, 500 and 1000, SCG’s running time was always the lowest of the three

methods. This was not the case when cell number further increased to 1500, at

which SCG’s running time surpassed that of BnpC’s, resulting in BnpC being the

fastest among the three methods. To summarize, the increase of running time in

terms of the increasing cell number was almost linear for BnpC (p-value ≈ 0.03),

and quadratic for SCClone and SCG (p-value ≈ 0.01 and ≈ 0.005, respectively).

Similar to the case of increasing number of cells, the V-measure, sensitivity, and

specificity of all three methods increased with the increasing number of mutations

(Fig. 5). Again we observed that BnpC’s V-measure, sensitivity, and specificity re-

mained the highest of all three different numbers of mutations among the three

methods. As expected, the running time increased for all three methods with the

increasing number of mutations (Fig. 5). Specifically, medians of SCG and BnpC’s
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Figure 4 Performance of SCG (red), SCClone (blue) and BnpC (green) for varying number of
cells, the values of which are shown on the x-axes. The upper left, upper right, bottom left and
bottom right panels are the V-measure, running time in seconds, genotyping sensitivity and
genotyping specificity, respectively.

running time increased from 386s to 963s, and from 1199s to 8196s, respectively.

Unlike the case of increasing number of cells, SCClone’s median running time did

not increase as much as that of BnpC’s for the increasing number of mutations, from

974s to 2258s. However, the variance of SCClone’s median running time increased

dramatically when the number of mutation was 500.To summarize, BnpC was af-

fected the most in terms of the running time in the increasing number of mutations.

When the number of mutations was as high as 500, it became the slowest of the

three methods.

We observed decreasing V-measure, sensitivity and specificity when the number

of clusters increased for all three methods (Fig. 6). The drop of BnpC’s perfor-

mance was the smallest, showing that BnpC was the most stable of the three in

the face of growing cluster size. Specifically, BnpC’s median V-measure dropped

from 1 to 0.919 when clone size increased from 4 to 32, to be compared with from

0.975 to 0.868 for SCG, and from 1 to 0.914 for SCClone. Moreover, we also ob-

served that BnpC’s V-measure remained the highest on almost all the cluster sizes

among the three methods. Comparing SCClone and SCG, the drop of V-measure
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Figure 5 Performance of SCG (red), SCClone (blue) and BnpC (green) for varying number of
mutations, the values of which are shown on the x-axes. The upper left, upper right, bottom left
and bottom right panels are the V-measure, running time in seconds, genotyping sensitivity and
genotyping specificity, respectively.

for SCClone was not as much as that of SCG’s in the increasing cluster size. The

drop of both sensitivity and specificity was lower for BnpC than SCG and SCClone.

In detail, BnpC’s sensitivity dropped from 100% to 98.478%, to be compared with

SCClone’s dropping from 100% to 97.835% and SCG’s dropping from 99.771% to

97.55%. BnpC’s specificity dropped from 100% to 99.816%, to be compared with

SCClone’s dropping from 100% to 99.697% and SCG’s dropping from 99.99% to

99.306%. This showed that BnpC was the most accurate and stable method among

the three when there were a lot of subclones in the data. In terms of running time,

SCClone’s running time increased the most when the number of underlying clusters

increased (Fig. 6). Specifically, its median running time increased from 654s when

cluster number was 4 to 23036s when cluster number was 32, and the increase is

almost exponential (p-value ≈ 0.13). SCG and BnpC’s running time with respect to

the increase of the number of clusters was relatively stable compared with that of

SCClone’s, median from 482s to 662s for SCG and from 3321s to 4636s for BnpC.

In addition to the accuracy and speed, in this experiment we were also interested

in the accuracy of the estimated number of clusters for all three methods. We ob-
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Figure 6 Performance of SCG (red), SCClone (blue) and BnpC (green) for varying number of
clones, the values of which are shown on the x-axes. The upper left, upper right, bottom left and
bottom right panels are the V-measure, running time in seconds, genotyping sensitivity and
genotyping specificity, respectively.

served that of all three methods, SCClone was the most accurate in estimating the

number of clusters (Fig. 7). Specifically, SCClone correctly estimated the number

of clusters when the number of clusters was 4 and 8. When the number of clusters

was 16, SCClone’s estimated median number of clusters was estimated to be 15,

thus very close to the true value. When the number of clusters was 32, SCClone’s

estimated median number of clusters was 28, to be compared with 11 for SCG and

14 for BnpC. Of all three methods, SCG’s estimation of the number of clusters was

the most inaccurate. When the number of clusters was small (4 or 8), SCG tended

to over-estimate the number of clusters, whereas when the number of clusters was

large (16 or 32), SCG tended to under-estimate the number of clusters. In fact,

while both SCClone and BnpC estimated an increasing number of clusters when

the underlying number of clusters increased from 4 to 32, SCG’s estimated num-

ber of clusters plateaued when the true number of clusters increased from 16 to

32. While BnpC showed a trend of increasing estimated number of clusters and its

estimation number of clusters was accurate when the underlying number of clusters

was small (4 and 8), it under-estimated the number of clusters when the underly-
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Figure 7 Estimated number of clusters (y-axis) for varying underlying number of clusters (x-axis).

ing number of clusters was large (16 and 32). Considering both the estimation of

the number of clusters and the running time, we observed that although all three

algorithms were agnostic of the number of clusters, SCClone’s running time was

sensitive to the underlying number of clusters and it rendered the most accurate

estimated number of clusters especially when the underlying number of clusters was

high. We thus concluded that SCClone had a trade-off of the running time for a

more accurate estimation of the number of clusters.

We observed a trend of dropping V-measure in the increasing doublet rate for

SCG (Fig. 8). Its median decreased from 0.981 when there was no doublet to 0.957

when the doublet rate was 0.1. Notice that we measured the V-measure only for the

non-doublet cells, thus the measurement focused on how non-doublet cells can be

clustered when there were doublet cells in the same pool. BnpC showed a similar

trend, whose median dropped from 0.991 when there was no doublet to 0.98 when

the doublet rate was 0.1. SCClone’s median of V-measure did not show a clear trend

with the increasing doublet rate, although when doublet rate was the highest (0.1),

its median V-measure was the lowest (0.959). Among the three methods, BnpC’s V-

measure was the highest when the doublet rate was above 0.05. Interestingly, none

of the three methods showed a clear trend of dropping sensitivity in the increasing

doublet rate. Moreover, BnpC’s did not show a trend of dropping specificity when

the doublet rate increased. However, SCG and SCClone showed a slight decrease of

median specificity (from 99.92% to 99.791% for SCG and from 99.969% to 99.717%

for SCClone). In terms of running time, BnpC’s increased the most of all with the

increase of doublet rate, whose median running time increased from 4046s to 6535s,

and remained the slowest of all three methods for all doublet rates (Fig. 8). SCG’s

running time was not affected by the increase of the doublet rate. Similarly, there
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Figure 8 Performance of SCG (red), SCClone (blue) and BnpC (green) for varying doublet rate,
the values of which are shown on the x-axes. The upper left, upper right, bottom left and bottom
right panels are the V-measure, running time in seconds, genotyping sensitivity and genotyping
specificity, respectively.

was not a clear trend of SCClone’s running time when the doublet rate increased,

although SCClone was slower than SCG for all doublet rates.

Lastly, we applied the three methods to the dataset with varying Beta splitting

variable. The Beta splitting variable was used to control the variance of the clus-

ter sizes so that the smaller the Beta splitting variable, the bigger the variance.

Specifically, in this dataset, corresponding to the Beta splitting variable at 0.05,

0.2, and 0.5, the average standard deviation of the cluster sizes are 102, 71.1 and

60.32, respectively. We found that all three methods’ performance dropped with the

decreasing Beta splitting variable and the increasing variance of the cluster sizes

(Fig. 9). We notice that when the Beta splitting variable was the smallest (0.05),

both SCClone and BnpC’s performance was not stable. The lowest V-measure of

SCClone and BnpC dropped as low as 0.709 and 0.458, respectively, compared

with that of SCG’s whose lowest V-measure was 0.88. All three methods had high

V-measure when the Beta splitting variable was the highest (0.5), all above 0.95.

The same pattern can be observed in the three measurements in terms of geno-

type sensitivity and specificity. Specifically, when the Beta splitting variable was
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Figure 9 Performance of SCG (red), SCClone (blue) and BnpC (green) for varying Beta splitting
variable, the values of which are shown on the x-axes. The upper left, upper right, bottom left and
bottom right panels are the V-measure, running time in seconds, genotyping sensitivity and
genotyping specificity, respectively.

the smallest (0.05), the lowest sensitivity was worse for SCG and SCClone than

that of BnpC’s (96.78% for SCG, 97.01% for SCClone and 98.959% for BnpC).

But almost all three methods’ V-measure were above 0.99 when the Beta splitting

variable was 0.5. This showed that when the clone sizes did not differ from each

other greatly, all three methods achieved good results and their performance was

comparable. However, when there are both both big and small clones in a tumor,

it should be expected that the clustering accuracy drops for all three methods. In

terms of running time, both SCG and SCClone’s median running time increased

with the decrease of the Beta splitting variable (Fig. 8). Nevertheless, SCClone’s

running time increased much more dramatically than that of SCG’s (p-value ≈ 0.14

for the exponential significance test). Specifically, its median running time increased

from 2249s to 9674s, to be compared to SCG’s that increased from 486s to 598s.

BnpC’s running time showed an opposite trend, however, whose median running

time decreased from 4304s to 3179s when the Beta splitting variable decreased from

0.5 to 0.05. In all, all three methods showed that it is easier to cluster the cells when

the variance of the cluster sizes is smaller. When the variance of the cluster sizes
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is large, neither SCClone nor BnpC’s performance is reliable. Moreover, SCClone’s

running time increased exponentially when the variance of cluster sizes increased.

We further looked into the accuracy of the estimation of the number of clusters

for the three methods for the varying Beta splitting variable. This is an interesting

study because when Beta splitting variable is small, the variance of cluster sizes is

large, and it is expected to be more challenging to correctly estimate the number of

clusters. Specifically, small clusters with only a few cells are especially difficult to

single out since these clusters have weak signals and together with the noises in the

data, the signal-to-noise ratio is low. We found that all three methods correctly es-

timated the underlying number of clusters for all Beta splitting variables, i.e., their

medians equal to eight, except SCClone which over-estimated the number of clus-

ters when Beta splitting variable was as low as 0.05. This indicates that SCClone

tends to over-segment the clusters when there are both small and large clusters in

the pool.

Figure 10 Estimated number of clusters for varying Beta splitting variable. The underlying
number of clusters is 8 for all Beta splitting variables.

Real Data Analysis
We applied the three methods to a human colorectal cancer sample CRC2 [52].

Thirty-four primary cells (denoted as PA cells) and thirty-three metastatic cells

(denoted as MA cells) had been sequenced by scDNAseq in [52] and used in this

study. According to [52], thirty-six mutations were genotyped and shown in the

cell locus matrix, out of which 137 entries were missing. [52] used SCITE [27] to

infer the mutation tree and the underlying genotype of the cells. SCITE inferred

the existence of two metastatic clones, categorizing 15 of the 33 metastatic cells to

the first metastasis (M1) and 13 to the second metastasis (M2). For the rest of the 5

MA cells, SCITE categorized them as primary cells. According to both SCITE and
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the original resection position from the patient, it is clear that in total there are

three underlying clusters in this dataset. SCITE also estimated the false positive

and negative rates for this sample to be 0.0174 and 0.1256, respectively.

To examine the clustering performance of SCG, BnpC and SCClone on the real

datasets, we applied these methods on CRC2. We kept the parameter settings for

the three methods the same as the setting for simulated datasets except increasing

the “-pp” value for BnpC to 0.75 0.75 as suggested by the authors due to the

decreased number of mutation sites.

All PA

9 M2 + 
2 M1

4 M2 + 
2 M1

2 M17 M1

1 M1 1 M1
5 PA + 
1 M1 

28 PA

2 M1 + 
6 M2

1 PA + 
8 M2 + 
11 M1 

All PA

13 M2 
+ 4 M1

9 M1

2 M1

Figure 11 Illustration of the clustering results from SCG (red background), SCClone (blue
background) and BnpC (green background).

We found that five MA cells (MA39, MA41, MA42, MA44 and MA9) that were

categorized as primary cells by SCITE were clustered with other metastatic cells

instead of primary cells by all the three clustering methods being investigated

(Fig. 11). This indicates that clustering methods, due to its simplicity and smaller

search dimension, may lead to a higher clustering accuracy than the methods that

consider the tumor lineage and clonality simultaneously. Among the three methods,

we observed that BnpC’s clustering result was the most consistent with the tumor

cells’ original location and SCITE’s inference. In specific, we observed that BnpC

and SCG clustered all the PA cells together in one cluster whereas SCClone broke

the PA cells into two clusters, one of which was also mixed with a M1 cell. BnpC

clustered all the M2 cells together, but mixed four M1 cells (MA27, MA48, MA88

and MA94) with this M2 cluster. SCG separated M2 cells into two clusters and also

mixed the four M1 cells mentioned above, two for each, with these two M2 clusters.

BnpC clustered the remaining M1 cells into two clusters, whereas SCG broke

these M1 cells into four clusters, two of which were composed of only one cell. This

is consistent with the observation we found from the simulation study, where SCG

over-segmented clusters when the underlying cluster number was small. Interest-

ingly, both SCG and BnpC contained the same cluster that was composed of only

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503719
http://creativecommons.org/licenses/by/4.0/


Khan and Mallory Page 20 of 23

two M1 cells, MA29 and MA90, showing the challenge of clustering these two cells

together with other MA cells. Different from SCG and BnpC which clearly separated

M1 and M2 cells, SCClone mixed up M1 and M2 cells together into two cocktail

clusters. Based on these observations, we conclude that SCG tended to break large

clusters into smaller ones and does not cluster all the cells together according to

their original tumor location. BnpC captured the clonality of the cells according

to their original tumor location. Even though SCClone’s estimation of the cluster

number is the most accurate, it’s clustering result is not as accurate as BnpC. These

conclusions are consistent with what we observed in the simulation study.

Discussion
We examined three scDNAseq clustering methods, SCG, SCClone and BnpC in

terms of their clustering and genotyping accuracy, running time and the accuracy

of estimating the number of clusters from a benchmark study and a real data sample.

In the benchmark study, we varied eight variables to comprehensively examine the

performance of the three methods. We summarize our observation and make our

recommendation under different settings in the following text.

In the face of high false positive rate, SCClone’s performance in terms of both

clustering accuracy and running time is the worst. Of the rest two methods, BnpC is

slightly more accurate than SCG. However, SCG’s running time is the least among

the three for all false positive rates and is one order of magnitude faster than the

other two methods. We thus recommend SCG in terms of high false positive rate.

When false negative rate is low, all three methods are comparable in their accuracy

in clustering and genotyping. Since SCG’s running time is the lowest, we recommend

using SCG when the data has a relatively low false negative rate (≤ 0.2). When

false negative rate is high (≥ 0.3), we recommend using SCClone due to its high V-

measure and sensitivity. However, since SCClone takes one order of magnitude more

time than SCG, and its running time increases with the increase of false negative

rate, we recommend using SCG as well for a faster turnaround time at the cost of

some genotyping accuracy (< 0.05 for V-measure and < 0.6% for sensitivity).

For different missing rates, we recommend using SCG due to its high clustering

accuracy and speed.

The three methods’ performance vary mostly on their speed in terms of different

number of cells. We recommend using SCG when the cell number is smaller than

1000, and BnpC when the cell number is greater than 1000. When cell number is

around 100, SCClone is also a good choice since its turnaround time is comparable

to that of SCG’s.

Since SCG remains the fastest for all numbers of mutations with a slightly lower

clustering accuracy compared with BnpC in the face of large number of mutations,

we recommend using SCG in terms of extremely large number of mutations.

We recommend both SCG and SCClone for small number of clusters (≤ 4) due

to their speed and accuracy. However, when the number of clusters increases, we

recommend BnpC due to its high clustering and genotyping accuracy and slightly

increasing running time. However, should it be the case when a fast turnaround

time is desired, we recommend SCG in the face of large underlying cluster number

at the cost of some clustering accuracy. If an accurate estimation of the cluster
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number is desired, we recommend SCClone throughout all the underlying number

of clusters due to that SCClone is much more accurate in estimating the number of

clusters than the other two methods.

In the face of high doublet rate, we recommend SCG for its speed. However, when

accuracy is more desired than speed, we recommend BnpC due to its high clustering

and genotyping accuracy.

Lastly, we recommend SCG when the variance of cluster sizes is either big or

small due to that SCG is robust in terms of both the clustering and genotyping

accuracy and the speed. Specifically, when the variance of cluster sizes is large, we

do not recommend SCClone and BnpC due to their poor clustering accuracy in

response to the data with both large and small clusters. In addition, SCClone tends

to over-segment the clusters when there are both large and small clusters in the

pool.

To summarize, although BnpC’s clustering accuracy stays the highest for most

cases, its running speed is less advantageous than SCG except when the number of

cells is as high as 1500. SCG’s clustering accuracy is next to BnpC’s and there is

only a small difference between the two methods’ V-measures for most cases. When

there are a large number of clusters (≥ 32), BnpC is advantageous in clustering and

genotyping accuracy over SCG despite the cost of running time.

Although SCClone’s accuracy is slightly worse than that of SCG and BnpC on

most of the datasets, SCClone is much more accurate in estimating the number of

clusters especially when the underlying number of clusters is high.

Conclusion
We developed a simulator that has eight varying parameters to benchmark three

state-of-the-art scDNAseq cell clustering methods, which are SCG, BnpC and SC-

Clone. We conclude that BnpC has the highest clustering accuracy of the three.

SCG is the fastest and its clustering accuracy is very close to BnpC’s for most of

the datasets. However, we recommend BnpC when the cell number is high due to

its scalability to the increasing cell numbers. SCClone is the most accurate in esti-

mating the number of clusters in both small and large numbers of clusters, but its

clustering and genotyping accuracy is slightly worse than SCG and BnpC. More-

over, its accuracy and running time are sensitive to many variables such as false

negative rate, the number of cells, number of clusters and the variance of the cluster

sizes.

All three methods are sensitive to the variance of cluster sizes. The bigger the

variance, the worse the performance. To develop a method that is robust to high

variance of cluster sizes is potentially a future work in scDNAseq cell clustering.

Acknowledgement
R.K. and X.M. were supported by the startup funding from Florida State University.

Data and Code Availability
The simulator described in this study, as well as the instructions to run the

three methods along with the post-processing scripts are publicly available at

https://github.com/compbiofan/clusteringBenchmark.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503719
http://creativecommons.org/licenses/by/4.0/


Khan and Mallory Page 22 of 23

References
1. Feuk, L., Carson, A.R., Scherer, S.W.: Structural variation in the human genome. Nature Reviews Genetics

7(2), 85 (2006)

2. Sharp, A.J., Cheng, Z., Eichler, E.E.: Structural variation of the human genome. Annu. Rev. Genomics Hum.

Genet. 7, 407–442 (2006)

3. Lupski, J.R., et al.: Structural variation in the human genome. New England Journal of Medicine 356(11), 1169
(2007)

4. Aparicio, S., Mardis, E.: Tumor heterogeneity: next-generation sequencing enhances the view from the

pathologist’s microscope. Springer (2014)

5. El-Deiry, W.S., Taylor, B., Neal, J.W.: Tumor evolution, heterogeneity, and therapy for our patients with

advanced cancer: How far have we come? American Society of Clinical Oncology Educational Book 37, 8–15
(2017)

6. McGranahan, N., Swanton, C.: Clonal heterogeneity and tumor evolution: past, present, and the future. Cell

168(4), 613–628 (2017)

7. Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Sivachenko, A., Carter, S.L., Stewart, C.,

Mermel, C.H., Roberts, S.A., et al.: Mutational heterogeneity in cancer and the search for new

cancer-associated genes. Nature 499(7457), 214–218 (2013)

8. Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity

in cancer evolution. Nature 501(7467), 338–345 (2013)

9. Yap, T.A., Gerlinger, M., Futreal, P.A., Pusztai, L., Swanton, C.: Intratumor heterogeneity: seeing the wood for

the trees. Science translational medicine 4(127), 127–1012710 (2012)

10. Turajlic, S., Sottoriva, A., Graham, T., Swanton, C.: Resolving genetic heterogeneity in cancer. Nature Reviews

Genetics 20(7), 404–416 (2019)

11. Alizadeh, A.A., Aranda, V., Bardelli, A., Blanpain, C., Bock, C., Borowski, C., Caldas, C., Califano, A.,

Doherty, M., Elsner, M., et al.: Toward understanding and exploiting tumor heterogeneity. Nature medicine

21(8), 846 (2015)

12. Oesper, L., Mahmoody, A., Raphael, B.J.: Theta: inferring intra-tumor heterogeneity from high-throughput dna

sequencing data. Genome biology 14(7), 80 (2013)

13. McGranahan, N., Swanton, C.: Clonal heterogeneity and tumor evolution: past, present, and the future. Cell

168(4), 613–628 (2017)

14. Dagogo-Jack, I., Shaw, A.T.: Tumour heterogeneity and resistance to cancer therapies. Nature reviews Clinical

oncology 15(2), 81 (2018)

15. Dillek̊as, H., Rogers, M.S., Straume, O.: Are 90% of deaths from cancer caused by metastases? Cancer

medicine 8(12), 5574–5576 (2019)

16. Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K., Stepansky, A., Levy, D.,

Esposito, D., et al.: Tumour evolution inferred by single-cell sequencing. Nature 472(7341), 90–94 (2011)

17. Wang, Y., Navin, N.E.: Advances and applications of single-cell sequencing technologies. Molecular cell 58(4),
598–609 (2015)

18. De Bourcy, C.F., De Vlaminck, I., Kanbar, J.N., Wang, J., Gawad, C., Quake, S.R.: A quantitative comparison

of single-cell whole genome amplification methods. PloS one 9(8), 105585 (2014)

19. Zafar, H., Navin, N., Nakhleh, L., Chen, K.: Computational approaches for inferring tumor evolution from

single-cell genomic data. Current Opinion in Systems Biology 7, 16–25 (2018)

20. Dean, F.B., Hosono, S., Fang, L., Wu, X., Faruqi, A.F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., et

al.: Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the

National Academy of Sciences 99(8), 5261–5266 (2002)

21. Wang, Y., Waters, J., Leung, M.L., Unruh, A., Roh, W., Shi, X., Chen, K., Scheet, P., Vattathil, S., Liang, H.,

et al.: Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512(7513), 155
(2014)

22. Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., et al.: Single-cell

exome sequencing and monoclonal evolution of a jak2-negative myeloproliferative neoplasm. Cell 148(5),
873–885 (2012)

23. Navin, N.E.: Cancer genomics: one cell at a time. Genome biology 15(8), 1–13 (2014)

24. Mallory, X.F., Edrisi, M., Navin, N., Nakhleh, L.: Methods for copy number aberration detection from

single-cell dna-sequencing data. Genome biology 21(1), 1–22 (2020)

25. Borgsmüller, N., Bonet, J., Marass, F., Gonzalez-Perez, A., Lopez-Bigas, N., Beerenwinkel, N.: Bnpc: Bayesian

non-parametric clustering of single-cell mutation profiles. Bioinformatics 36(19), 4854–4859 (2020)
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