

1 **Title: SARS-CoV-2 spike protein induces TLR-4-mediated long-term cognitive dysfunction**
2 **recapitulating post-COVID syndrome**

3
4 **Authors:** Fabricia L. Fontes-Dantas^{1,2†}, Gabriel G. Fernandes^{1†}, Elisa G. Gutman^{3,4†}, Emanuelle
5 V. De Lima¹, Leticia S. Antonio¹, Mariana B. Hammerle⁴, Hannah P. Mota-Araujo¹, Lilian C.
6 Colodeti¹, Suzana M. B. Araújo¹, Talita N. da Silva¹, Larissa A. Duarte^{3,4}, Andreza L. Salvio³,
7 Karina L. Pires⁵, Luciane A. A. Leon⁶, Claudia Cristina F. Vasconcelos⁵, Luciana Romão⁷, Luiz
8 Eduardo B. Savio⁸, Jerson L. Silva⁹, Robson da Costa¹, Julia R. Clarke⁷, Andrea T. Da Poian^{9*},
9 Soniza V. Alves-Leon^{3,10*}, Giselle F. Passos^{1*}, Claudia P. Figueiredo^{1*}

10 **Affiliations:**

11 ¹ School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

12 ² Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de
13 Janeiro, RJ, Brazil

14 ³ Translational Neuroscience Laboratory (LabNet), Post-Graduate Program in Neurology, Federal
15 University of Rio de Janeiro State, RJ, Brazil.

16 ⁴ Clinical Medicine post-graduation program, Federal University of Rio de Janeiro, Rio de Janeiro,
17 RJ, Brazil

18 ⁵ Neurology Department of Federal University of the State of Rio de Janeiro (UNIRIO), Rio de
19 Janeiro, Brazil.

20 ⁶ Laboratório de Desenvolvimento Tecnológico em Virologia. IOC/FIOCRUZ, Rio de Janeiro,
21 Brasil.

22 ⁷ Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

23 ⁸ Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro,
24 Brazil.

25 ⁹ Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio
26 de Janeiro, Brazil.

27 ¹⁰ Division of Neurology, Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro,
28 Rio de Janeiro, RJ, Brazil

29
30 [†]These authors contributed equally: Fabricia L. Fontes-Dantas, Gabriel Gripp Fernandes; Elisa
31 G. Gutman.

32
33 * Corresponding author: A.T.D.P. (email: dapoian@bioqmed.ufrj.br), S.V.A.L (email:
34 sonizavieiraalvesleon@gmail.com), G.P.F. (email: gfazzioni@yahoo.com.br) or to C.P.F. (email:
35 claudia@pharma.ufrj.br).

36

37

38

39

40

41

42

43

44

45

46

47 **One Sentence Summary:** TLR4 mediates long-term cognitive impairment in mice and its genetic
48 variant increases the risk of poor cognitive outcome in post-COVID patients.
49

50 **Abstract:** Cognitive dysfunction is often reported in post-COVID patients, but its underlying
51 mechanisms remain unknown. While some evidence indicate that SARS-CoV-2 can reach and
52 directly impact the brain, others suggest viral neuroinvasion as a rare event. Independently of brain
53 viral infection, the ability of SARS-CoV-2 spike (S) protein to cross the BBB and reach memory-
54 related brain regions has already been shown. Here, we demonstrate that brain infusion of S protein
55 in mice induces late cognitive impairment and increases serum levels of neurofilament light chain
56 (NFL), which recapitulates post-COVID features. Neuroinflammation, hippocampal microgliosis
57 and synapse loss are induced by S protein. Increased engulfment of hippocampal presynaptic
58 terminals late after S protein brain infusion were found to temporally correlate with cognitive
59 deficit in mice. Blockage of TLR4 signaling prevented S-associated detrimental effects on synapse
60 and memory loss. In a cohort of 86 patients recovered from mild COVID-19, genotype GG TLR4
61 -2604G>A (rs10759931) was associated with poor cognitive outcome. Collectively, these findings
62 indicate that S protein directly impacts the brain and suggest that TLR4 is a potential target to
63 prevent post-COVID cognitive dysfunction.
64

65
66 **Main Text:**
67 **INTRODUCTION**

68 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a
69 respiratory pathogen, but the impact of the infection on extrapulmonary tissues is of high concern.
70 Coronavirus disease 2019 (COVID-19) is associated with unpredictable and variable outcomes,
71 and while most patients show a positive recovery after the acute stages, others experience a myriad
72 of acute and long term neurological dysfunctions(1). Cognitive impairment is a well-characterized
73 feature of the post-COVID syndrome, referred to as “long COVID” or brain fog(2). Mounting
74 evidence suggests that COVID-induced neurological symptoms are mediated by multiple
75 mechanisms, including brain hypoxia and systemic inflammation even in patients with mild
76 symptoms(3, 4). Despite some findings indicating that SARS-CoV-2 can reach and directly impact
77 the brain, others indicate that the virus can rarely cross the blood-brain-barrier (BBB)(5, 6).
78 Nevertheless, whether brain presence of SARS-CoV-2 viral particles and/or its products is a
79 crucial event for the development of cognitive impairment in post-COVID patients remains
80 unknown.

81 SARS-CoV-2 spike (S) protein plays a pivotal role in COVID-19 pathogenesis and is the
82 main target for vaccine development. This viral surface protein is a homotrimer composed of two
83 functional domains, also known as subunits (S1 and S2), as they are generated by proteolytic
84 cleavage of S protein after virus binding to enzyme 2 angiotensin-converting (ACE2), which
85 mediates cell entry(7). During SARS-CoV-2 infection, cells produce and release variable amounts
86 of viral particles and proteins, including the S protein(7, 8). The S1 was shown to cross the BBB,
87 reaching different memory-related regions of the brain in a mouse model of SARS-CoV-2
88 infection(9). Inflammation and increased BBB permeability were also shown in *in vitro* models of
89 S1 exposure(10). Likewise, the protein was detected in the central nervous system (CNS) of
90 COVID-19 patients, irrespective of viral RNA detection(11, 12). In addition, increased levels of
91 proinflammatory cytokines and brain gliosis have been reported in severe COVID-19 patients(13,

92 14). Nonetheless, proof concerning the acute and chronic impact of S protein on COVID-19 brain
93 dysfunction and its underlying mechanisms are still lacking.

94 Most experimental studies investigating the effects of SARS-CoV-2 have focused on acute
95 infection, especially on peripheral tissues. Few studies have used experimental models to evaluate
96 the possible mechanism of post-COVID syndrome. Here, we developed a mouse model of
97 intracerebroventricular (icv) of S exposure to understand the role of this protein in late cognitive
98 impairment after viral infection. Here, we infused S protein in the brains of mice and performed a
99 long-term (45 days) follow-up of the behavioral, neuropathological, and molecular consequences.
100 We report late cognitive impairment, synapse loss, and microglial engulfment of presynaptic
101 terminals after icv infusion of S protein. Early TLR4 blockage prevented S-associated detrimental
102 effects on synapse and memory. We also demonstrated that the single nucleotide polymorphism
103 (SNP) rs10759931, linked with increased TLR4 expression is associated with long-term cognitive
104 impairment in mild COVID-19-recovered patients. Collectively, these findings show that S protein
105 impacts the mouse CNS, independent of virus infection, and identify TLR4 as a key mediator and
106 interesting target to investigate the long-term cognitive dysfunction both in humans and rodents.
107

108 RESULTS

109 SARS-CoV-2 spike protein induces long-term cognitive impairment and synapse loss in mice

110 COVID-19 is associated with long-term cognitive dysfunction(2). To evaluate whether
111 SARS-CoV-2 spike protein induces behavioral changes, we infused the protein into mouse brains
112 through icv route. The experiments were performed in two different timeframes: “early and “late”
113 phases, corresponding to assessments performed within the first 7 days and between 30 and 45
114 days after S protein infusion, respectively (Fig. 1A). Animals were submitted to behavioral tests
115 or culled to collect brain or blood samples at different time points after infusion (Fig. 1A). To
116 evaluate the effect of S protein infusion on declarative memory, mice were evaluated using the
117 novel object recognition (NOR) test(15). Vehicle-infused mice (Veh) were able to perform the
118 NOR task as demonstrated by a longer exploration of the novel object over the familiar one (Fig.
119 1B-D, white bars). The S protein had no impact on memory function in the early phase after brain
120 infusion (Fig. 1B, gray bars), while in later time points infused mice failed to recognize the novel
121 object (Fig. 1C-D, black bars). In order to rule out the possibility that changes in motivation, motor
122 function and/or anxiety levels eventually induced by S protein infusion were influencing NOR
123 interpretation, mice were submitted to the rotarod and open field tests. Both S protein- and Veh-
124 infused groups showed similar innate preferences for the objects in the NOR memory test
125 (Supplementary Fig. 1A-C), similar motivation towards object exploration in the NOR sessions
126 (Supplementary Fig. 1D-F) and performed similarly in the rotarod (Fig. 1E) and open field tests
127 (Fig. 1F-G).

128 Late cognitive dysfunction induced by S protein infusion was confirmed by the Morris
129 Water Maze (MWM) test, a task widely used to assess spatial memory in rodents(16). Mice infused
130 with S protein showed higher latency time to find the submerged platform in sessions 3 and 4 of
131 MWM training, when compared to control mice (Fig. 1H). Also, S protein-infused mice showed
132 reduced memory retention, as indicated by the decreased time spent by these animals in the target
133 quadrant during the probe trial (Fig. 1I). No difference in the swimming speed (Supplementary
134 Fig. 1G) or distance traveled (Supplementary Fig. 1H) were found between groups during the test
135 session.

136 Synapse loss is strongly correlated to the cognitive decline observed in neurodegenerative
137 diseases(17). Thus, we next investigated whether S protein induces synapse damage in the mouse

138 hippocampus, a brain region critical for memory consolidation. S protein-infused mice did not
139 show changes in synaptic density at the early stages, as demonstrated by the similar
140 immunostaining for synaptophysin (SYP) and Homer-1 (pre- and postsynaptic markers,
141 respectively) compared with the control group (Fig. 1J-M). Equivalent results were also found for
142 the colocalization of these synaptic markers, which indicates no changes in synaptic density (Fig.
143 1J-K, N). In contrast, decreased SYP immunostaining and synaptic puncta were observed longer
144 periods after S protein infusion (Fig. 1O-S), indicating that spike-induced cognitive dysfunction
145 (shown in Figs. 1D, H, I) displays temporal correlation with hippocampal synapse damage (Fig.
146 1O-S). Collectively, these data suggest that a single brain infusion of S protein induces late
147 synaptic loss and cognitive dysfunction, mimicking the post-COVID syndrome (2, 3).
148

149 **SARS-CoV-2 spike protein triggers late neuroinflammation in mice**

150 Neurodegeneration associated with viral brain infections can be mediated either by direct
151 neuronal injury or by neuroinflammation(18). To advance in the understanding of the genuine
152 impact of SP on neurons, cultured primary cortical neurons were incubated with S protein for 24
153 h. Neuron exposure to S protein did not affect neuron morphology (Supplementary Fig. 2A-E),
154 once the percent of pyknotic nuclei (Supplementary Fig. 2C), number of primary neurites
155 (Supplementary Fig. 2D) and intensity of β 3-tubulin immunostaining (Supplementary Fig. 2E)
156 were similar for vehicle- and S protein-incubated neurons. Also, S protein incubation also had no
157 effect on the neuronal synaptic density and puncta (Supplementary Fig. 2F-J), suggesting that
158 neurons are not directly affected by S protein.

159 Microglia is the primary innate immune cell of the brain and plays a critical role in
160 neuroinflammation-induced cognitive dysfunction(19). To further understand the impact of spike
161 protein on microglial activation, mouse microglia BV-2 cell lineages were incubated with S protein
162 for 24h. We found that S protein stimulation increased Iba-1 immunoreactivity (Supplementary
163 Fig. 2K-M) and upregulated TNF, INF- β and IL-6 expression (Supplementary Fig. 2N-P), without
164 affecting IL-1 β and IFNAR2 (Supplementary Fig. 2Q-R). To evaluate the time course of the in
165 vivo activation of microglia, we analyzed cellular features and cytokine production in our mouse
166 model. We found that at the early stage after icv. injection of S protein neither changed the number
167 and morphology of microglia (Fig. 2A-D) nor increased the levels of TNF- α , IL-1 β , IL-6, INF- β
168 and IFNAR1 (Fig. 2E-I). In contrast, the levels of IFNAR2 mRNA decreased significantly at the
169 same time point after S protein infusion (Fig. 2J). Notably, assessments performed late after
170 revealed an increased number of Iba-1-positive cells (Fig. 2K-M) and a predominance of cells with
171 ameboid morphology in the hippocampus (Fig. 2K, L, N), suggestive of microglial cells in a
172 reactive state. However, no differences in GFAP immunoreactivity were detected in S protein-
173 infused mice when compared to the control group (Supplementary Fig. 3A-C). The level and/or
174 expression of the proinflammatory cytokines TNF, IL-1 β , IFN α and IFN β (Fig. 2O-S) and the
175 receptor IFNAR2 (Fig. 2T) were higher in the hippocampus of S protein brain infused mice at this
176 time point. Hippocampal expression of IL-6 and IFN- γ cytokines and the receptor IFNAR1 were
177 unaffected by S protein infusion (Supplementary Fig. 3D-F). Altogether, our results indicate that
178 the cognitive impairment induced by S protein is accompanied by microglial activation and
179 neuroinflammation.
180

181
182

183 **SARS-CoV-2 spike protein induces C1q-mediated synaptic phagocytosis by microglia in**
184 **mice**

185 Synaptic phagocytosis (or synaptic pruning) by microglia was shown to underlie cognitive
186 dysfunction in dementia and in viral encephalitis(17, 20). We therefore evaluated whether synaptic
187 phagocytosis by microglia mediates S protein-induced synapse damage. Hippocampal three-
188 dimensional image reconstructions of Iba-1-positive cells from S protein-infused mice showed
189 increased SYP-positive terminals inside phagocytic cells (Fig. 3A-D). The complement
190 component 1q (C1q) protein is known to be involved in the initial tagging of synapses, preceding
191 synaptic engulfment by microglial cells(21). Accordingly, we found that C1q was significantly
192 upregulated in the brains of mice late (but not early) after S protein infusion (Fig. 3E, F). This
193 finding led us to investigate whether or not the blockage of soluble C1q, using a neutralizing
194 antibody, could restore cognitive function in S protein-infused mice. For this, the animals were
195 treated by icv. route with a neutralizing C1q antibody immediately after S protein infusion and
196 twice a week for 30 days (Fig. 3G). Remarkably, C1q blockage rescued memory impairment in S
197 protein-infused mice (Fig. 3H), without any effect on locomotion (Fig. 3I) or exploration
198 (Supplementary Fig. 4A, B). As seen for many viral encephalitis, these data suggest that C1q-
199 mediated microglial phagocytosis underlie long-term cognitive dysfunction induced by S protein.
200

201 **TLR-4 mediates cognitive dysfunction induced by SARS-CoV-2 spike protein**

202 Recent findings have described that S protein induces toll-like receptor 4 (TLR4) activation
203 in cultured immune cells(22). Additionally, TLR4 has been implicated in microglial activation and
204 cognitive dysfunction in degenerative chronic disease of CNS like Alzheimer's disease(23). In
205 agreement with these observations, despite no changes found in TLR4 expression levels at the
206 early time point after S protein infusion (Fig. 4A), we found a late upregulation of TLR4 gene
207 (Fig. 4B) in the hippocampus of infused mice that matches the late cognitive dysfunction (shown
208 in Figs. 1C-D, H-I). To evaluate the role of TLR4 in spike-induced cognitive impairment we used
209 either a pharmacological approach or a TLR4 knockout mouse model (TLR4^{-/-}). First, to
210 investigate whether activation of TLR4 is an early event that could impact cognition later on, mice
211 were treated with the TLR4 inhibitor TAK242 1h before S protein brain infusion and once a day
212 for 7 days (Fig. 4C). Remarkably, early inhibition of TLR4 greatly prevented late memory
213 dysfunction induced by S protein infusion in mice (Fig. 4D). Recent evidence has shown that high
214 plasmatic levels of Neurofilament-light chain (NFL) are correlated with poor outcome in and
215 COVID-19 patients(6, 14, 24). Then, we evaluated the NFL levels in plasma samples of control
216 and S protein-infused mice, treated or not with TAK242 (Fig. 4E). Using transgenic mice, in the
217 early phase after infusion, both WT and TLR4^{-/-} mice learned the NOR task (Supplementary Fig.
218 4C). On the other hand, when evaluated at a late time point after protein infusion, WT mice had a
219 poor performance in NOR test, while TLR4^{-/-} animals were able to execute the task (Fig. 4F). Also,
220 the absence of TLR4-mediated response in the TLR4^{-/-} mice prevented the reduction of SYP-
221 positive terminals inside phagocytic cells later after S protein infusion in comparison to WT mice
222 (Fig. 4G-K). Consistent with the previous results, control experiments showed that genetic
223 (Supplementary Fig. 4D-I) or pharmacological (Supplementary Fig. 4J-L) inhibition of TLR4 had
224 no effect on locomotion or exploratory behavior. Finally, we also found reduced microgliosis (Fig.
225 4L-O) and less microglia-engulfed synapses in the hippocampus of TLR4^{-/-} mice later after S
226 protein brain infusion (Fig. 4P-S). Together, these data suggest that TLR4 activation mediates
227 cognitive deficit and synaptic pruning induced by S protein in mice.

228 Importantly, the early treatment with TLR4 inhibitor prevented the late neuronal damage,
229 indicating that the TLR4 pathway is central to induce neurodegeneration and long-term cognitive
230 impairment in the present model.

231

232 **Single nucleotide polymorphism within TLR4 gene is associated with increased risk of** 233 **cognitive dysfunction after COVID-19**

234 Several lines of evidence have suggested that polymorphisms in TLR4 is a risk factor for
235 developing inflammatory diseases, including sporadic Alzheimer's disease(23, 25). Thus, we
236 sought to extend our findings by investigating whether there is an association between TLR4 gene
237 variants and cognitive outcomes in COVID-19 patients. For this, 86 individuals with confirmed
238 COVID-19 diagnosis, mostly with mild disease, were included in the study sample (Fig. 4L).
239 Characteristics of the sample are displayed in Supplementary Table 1. Cognition was assessed
240 using the Symbol Digit Modalities Test (SDMT) from 1 to 16 months after the onset of COVID-
241 19 acute symptoms (Mean: 6.85 months). Of interest, nearly half of the patients evaluated (40;
242 46.51%) presented an important degree of post-COVID-19 cognitive impairment (Table 1).
243 Genotyping analysis for two different SNPs (rs10759931 and rs2737190) was performed in all
244 studied subjects. Individuals carrying the *TLR4*-2604G>A (rs10759931) GG homozygous
245 genotype demonstrated a significantly higher risk for developing cognitive impairment following
246 SARS-CoV-2 infection (p -value = 0.0234; OR= 1.91), while the GA genotype was associated with
247 a decreased risk (p -value = 0.0209; OR= 0.50) (Fig. 4M and Table 1). Conversely, none of the
248 *TLR4*-2272A>G (rs2737190) genotype variations were associated with increased susceptibility to
249 post-COVID-19 cognitive impairments (Fig.4N and Table 1). We then hypothesized that
250 polymorphisms in TLR4 gene are probably associated with altered spike-induced host immune
251 responses, increasing the risk to develop long-term cognitive deficit in genetically susceptible
252 individuals.

253

254 **DISCUSSION**

255 Long COVID comprises a myriad of symptoms that emerge after the acute phase of
256 infection, including psychiatric symptoms, and dementia-like cognitive dysfunction (1, 3, 4, 26–
257 28). Clinical studies have largely mapped the spectrum of neurological symptoms in post-COVID
258 patients, but do not provide significant advance in describing the molecular mechanisms that
259 trigger this condition or targets for preventive/therapeutic interventions. In contrast, studies
260 involving COVID-19 preclinical models have entirely focused on the acute impacts of viral
261 infection. Therefore, it is mandatory to develop novel tools to dissect the mechanisms underlying
262 the neurological deficits in long COVID, especially the direct effect of the virus and/or viral
263 products on the brain.

264 It has been suggested that the S protein can be released from virions(29, 30), suggesting
265 that it could directly trigger brain damage. Thus, we speculated that S plays a central role in
266 neurological dysfunctions associated with COVID-19, independently of SARS-CoV-2 replication
267 in the brain. Previous studies demonstrated that the hippocampus is particularly vulnerable to viral
268 infections(15, 20, 31). Accordingly, brain scans of COVID-19-recovered patients showed
269 significant changes in hippocampal volume(32), an important predictor of cognitive dysfunction
270 in both normal aging and Alzheimer's disease (33, 34). Here, we developed a rodent model that
271 mimics key neurological features of long COVID through brain icv infusion of S. Using two
272 hippocampal-dependent behavioral paradigms, we found that brain exposure to S disrupts long-

273 term mouse memory, with no early behavioral impact. To our knowledge, this animal model is the
274 first to recapitulate the late cognitive impact of COVID-19.

275 Synapse damage is a common denominator in a number of memory-related diseases(35),
276 often preceding neurodegeneration. It has been shown that neuroinvasive viruses, such as West
277 Nile virus (WNV), Borna disease virus (BDV) and Zika virus (ZIKV), are also associated with
278 synapse impairment(15, 20, 36). Likewise, we found that the late cognitive dysfunction induced
279 by S was accompanied by prominent synapse loss in mice hippocampus. Recent data have revealed
280 the upregulation of genes linked to synapse elimination in SARS-CoV-2-infected human brain
281 organoids and in post-mortem samples from COVID-19 patients(11, 37). In line, we found that
282 infusion of S into mouse brain induces a late elevation in plasma levels of NFL, an axonal
283 cytoskeleton protein recently identified as a component of pre- and postsynaptic terminals(38).
284 Plasma NFL increase can be employed as a marker of synapse loss and disease progression in
285 neurodegenerative diseases, including Alzheimer's disease(39). Remarkably, recent data showed
286 that plasma NFL levels are higher in patients with severe COVID-19 compared to healthy age-
287 matched individuals, as well as inversely correlated to the cognitive performance in COVID-19
288 patients(40, 41), reinforcing the translational potential of our model. Collectively, these findings
289 suggest that brain exposure to S induces the synapse loss and behavioral alterations typical of viral
290 encephalitis, leading to a prolonged neurological dysfunction that can persist long after recovery
291 from the infectious event.

292 Microglia are the most abundant immune cell type within the CNS and play a critical role
293 in most of the neuroinflammatory diseases (42). In viral encephalitis, microglial cells have both
294 protective and detrimental activities depending on the phase of infection(19). Previous studies
295 showed that human coronaviruses can reach the CNS and induce gliosis both in mature and
296 immature brain tissues (12, 31, 43). Here we found that microglial cell lineage BV-2 was impacted
297 by S protein, corroborating recent data showing an increase in proinflammatory mediators in S1-
298 stimulated microglia(44). Since cultured primary cortical neurons were not directly affected by S
299 stimulation, our *in vitro* results indicate that microglia could be seen as the main cell type affected
300 by exposure to SARS-CoV-2 S protein.

301 It is well known that viral infections are often associated with excessive activation of
302 inflammatory and immune responses, which may in turn elicit and/or accelerate brain
303 neurodegeneration(45). Here, we found that S-infused mice presented late microglial activation,
304 but not astrocyte reactivity, similar to observed in other animal models of viral encephalitis(15,
305 20). Hippocampal increased levels of proinflammatory mediators were found only at late time
306 points after S infusion, showing a temporal correlation with synaptic loss and cognitive
307 dysfunctions. Conversely, we found that the downregulation of *IFNAR2* gene occurred shortly
308 after S injection, similar to what is observed in neuronal cells of post-mortem COVID-19
309 patients(11). This finding corroborates recent evidence demonstrating that SARS-CoV-2 may
310 evade innate immune through modulation of type-I IFN responses (46). Altogether, our results
311 show that brain exposure to S induces an early negative modulation of the main receptor involved
312 in type-I IFN response followed by a late proinflammatory process in the hippocampus.

313 A complement-microglial axis has emerged as one of the key triggers of synapse loss in
314 memory-related diseases(17, 21). The classical complement cascade, a central player of innate
315 immune pathogen defense, orchestrates synaptic pruning by microglia during physiological and
316 pathological conditions(47, 48). We have previously reported that hippocampal synapses are
317 phagocytosed by microglia during ZIKV brain infection, in a process dependent on C1q and
318 C3(15). Moreover, Vasek and colleagues (2016) showed hippocampal synapse loss in post-mortem

319 samples of patients with WNV neuroinvasive disease, as well as complement-dependent
320 microglial synapse engulfment in both WNV-infected and -recovered mice(20). Accordingly, we
321 demonstrated that cognitive impairment induced by S protein is associated with hippocampal C1q
322 upregulation and microglial engulfment of presynaptic terminals. Additionally, chronic C1q
323 neutralization preserved memory function in S-infused mice, supporting the role of C1q-mediated
324 synaptic pruning as an important mediator of long COVID cognitive impairment.

325 The pattern recognition receptor TLR4 has been implicated in the neuropathology of viral
326 encephalitis classically associated with memory impairment, including those caused by WNV,
327 Japanese encephalitis virus (JEV) and BDV, as well as age-related neurodegenerative diseases(49–
328 52). Notably, *in silico* simulations predicted that the S protein could be recognized by the TLR4(53,
329 54), with this interaction activating the inflammatory signaling, independently of ACE2(22, 44,
330 55, 56). Accordingly, here we found that a single brain infusion of S protein induced hippocampal
331 TLR4 upregulation. To gain further insight into the role played by TLR4 in COVID-19-induced
332 brain dysfunction, we first performed the pharmacological blockage of TLR4 signal transduction
333 early after S protein brain infusion. This strategy significantly prevented the long-term cognitive
334 impairment observed in our model. Likewise, late cognitive impairment induced by S protein was
335 absent in TLR4-deficient mice, in accordance with previous findings in animal models of
336 dementia(57, 58). Remarkably, we also found that S-induced plasma NFL increase was dependent
337 on TLR4 activation, as early TLR4 inhibition mitigated changes in NFL levels. Together, our
338 findings strongly suggest that brain dysfunction in post-COVID is associated to S-induced TLR4
339 signaling in microglial cells(59, 60).

340 The engagement of complement and TLRs in signaling crosstalk has been proposed to
341 regulate immune and inflammatory responses in neurodegenerative diseases(61). Indeed, it was
342 shown that TLR4 activation induces the upregulation of complement components in the mouse
343 hippocampus (62, 63). Given the role of complement activation in synaptic pruning, we
344 hypothesized that TLR4 is the molecular switch that regulates microglial synaptic engulfment. Our
345 data showed that absence of TLR4 confers protection against S-induced microglial mediated
346 synaptic pruning, reinforcing the notion that aberrant immunity activation disrupts synaptic
347 integrity and leads to cognitive dysfunction following pathogenic insult.

348 Finally, and relevantly, we validated our preclinical findings by examining whether TLR4
349 genetic variants could be associated with poor cognitive outcome in COVID-19 patients with mild
350 disease. In a cohort of mild COVID-19 patients carrying the GG genotype of *TLR4* -2604G>A
351 (rs10759931) variant, we identified a significant association between this genotype and the risk
352 for cognitive impairment after SARS-CoV-2 infection. The G allele has already been associated
353 with increased risk for different disorders with immunological basis, including cardiovascular
354 diseases(64), diabetes-associated retinopathy(65), cancer(66), and asthma(67). On the other hand,
355 the A allele can affect the binding affinity of the TLR4 promoter to transcription factors,
356 culminating in lower expression of this gene in the allele carriers(68). Taken together, our findings
357 suggest that the complex crosstalk between TLR4, complement system and neuroinflammation are
358 important events that determines the development of neurological symptoms in long COVID
359 patients.

360 There are some limitations to this study. First, despite experimental evidence
361 demonstrating that spike crosses the BBB, there is no available data on the amount of spike that
362 reaches the CNS in the course of SARS-CoV-2 infection, and additional studies are needed to
363 establish the dose-dependent effects of spike administration. This study would benefit from
364 additional approaches to set up new animal models of long COVID. Second, although our study

365 holds translational potential, our findings are limited by the number of patients and SNPs
366 evaluated, and the absence of longitudinal assessments. Extending these investigations to a larger
367 group of patients, with varying degree of cognitive impairment, would allow to precise these first
368 findings.

369 The impact of long COVID emerges as a major public health concern, due to the high
370 prevalence of prolonged neurological symptoms among survivors. Therefore, strategies designed
371 to prevent or treat neurological long COVID symptoms constitute an unmet clinical need. Our
372 study described a new animal model that recapitulates the long-term impact of the exposure to
373 SARS-CoV-2 S protein on cognitive function. We found that S-induced cognitive impairment
374 triggers innate immunity activation through TLR4, culminating with microgliosis,
375 neuroinflammation and synaptic pruning. The translational value of our model is supported by the
376 correlation between increased plasma NFL and behavioral deficits, as well as by the association
377 between TLR4 genetic status and SARS-CoV-2 cognitive outcomes of recovered COVID-19
378 patients. Altogether, our findings open new avenues for the establishment of interventional
379 strategies towards prevention and/or treatment of the long-term brain outcomes of COVID-19.

380
381 **MATERIALS AND METHODS**
382

383 **Study Design**

384 The objective of this study was to assess the direct impact of SARS-CoV-2 S protein on
385 cognitive function, and to gain insight into the mechanisms underlying COVID-19 long-term brain
386 effects, thereby identifying new avenues for therapeutic intervention. Dissection of the underlying
387 mechanisms was performed using qPCR, ELISA, SIMOA, behavioral, and immunohistochemical
388 approaches in mice subjected to pharmacological inhibition of C1q or TLR4, with the role of TLR4
389 being confirmed using a knockout mouse line. Additionally, the direct impact of spike in different
390 brain cell types was assessed using murine BV-2, and primary neuronal cortical cell cultures.
391 Finally, to support the translational relevance of our results, we investigated two *TLR4* SNPs in a
392 cohort of recovered COVID-19 patients with cognitive impairment(15, 69–71). Further details of
393 the study are provided in the corresponding sections of the Supplementary Materials.

394
395 **Data analysis**

396 The software Prism v8 (GraphPad) was used for all statistical tests, and values of $p \leq 0.05$
397 were considered statistically significant. Student's *t*-test was applied to analyze qPCR, ELISA, and
398 immunohistochemical data. For NOR experiments, data were analyzed using a one-sample
399 Student's *t*-test compared to a fixed value of 50%. MWM and NFL measurements were analyzed
400 using repeated measures or one-way ANOVA followed by Tukey's test, respectively. Allelic
401 frequencies were determined by direct count of the alleles. Genotypic distributions in Hardy–
402 Weinberg equilibrium were evaluated by two-tailed χ^2 -test. The significant differences in allelic
403 and genotypic frequencies were evaluated by Fisher's exact test and two-tailed χ^2 -test.

404
405 **List of Supplementary Materials**

406 Materials and Methods

407 Fig. S1 Controls of behavioral tests and serological analyses.

408 Fig. S2 Microglial and neuronal culture.

409 Fig. S3 GFAP immunohistochemistry and qPCR analysis.

410 Fig. S4 Controls of behavioral tests.

411 Table S1. Participant demographics of the study sample.

412 Table S2: List of primers used in qPCR analyses.

413

414 **References and Notes**

- 415 1. O. Abdel-Mannan, M. Eyre, U. Löbel, A. Bamford, C. Eltze, B. Hameed, C. Hemingway, Y. Hacohen, Neurologic and Radiographic Findings Associated With COVID-19 Infection in Children. *JAMA Neurol.* **77**, 1440–1445 (2020).
- 416 2. B. Blomberg, K. G.-I. Mohn, K. A. Brokstad, F. Zhou, D. W. Linchausen, B.-A. Hansen, S. Lartey, T. B. Onyango, K. Kuwelker, M. Sævik, H. Bartsch, C. Tøndel, B. R. Kittang, R. J. Cox, N. Langeland, Long COVID in a prospective cohort of home-isolated patients. *Nat. Med.* **27**, 1607–1613 (2021).
- 417 3. M. Almeria, J. C. Cejudo, J. Sotoca, J. Deus, J. Krupinski, Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. *Brain, Behav. Immun. - Heal.* **9**, 100163 (2020).
- 418 4. S. Alonso-Lana, M. Marquié, A. Ruiz, M. Boada, Cognitive and Neuropsychiatric Manifestations of COVID-19 and Effects on Elderly Individuals With Dementia. *Front. Aging Neurosci.* **12**, 588872 (2020).
- 419 5. S. Farhadian, L. R. Glick, C. B. F. Vogels, J. Thomas, J. Chiarella, A. Casanovas-Massana, J. Zhou, C. Odio, P. Vijayakumar, B. Geng, J. Fournier, S. Bermejo, J. R. Fauver, T. Alpert, A. L. Wyllie, C. Turcotte, M. Steinle, P. Paczkowski, C. Dela Cruz, C. Wilen, A. I. Ko, S. MacKay, N. D. Grubaugh, S. Spudich, L. A. Barakat, Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19. *BMC Neurol.* **20**, 248 (2020).
- 420 6. A. Edén, N. Kanberg, J. Gostner, D. Fuchs, L. Hagberg, L.-M. Andersson, M. Lindh, R. W. Price, H. Zetterberg, M. Gisslén, CSF Biomarkers in Patients With COVID-19 and Neurologic Symptoms: A Case Series. *Neurology* **96**, e294–e300 (2021).
- 421 7. A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, D. Veesler, Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell* **181**, 281-292.e6 (2020).
- 422 8. Q. Wang, M. S. Nair, S. Anang, S. Zhang, H. Nguyen, Y. Huang, L. Liu, D. D. Ho, J. G. Sodroski, Functional differences among the spike glycoproteins of multiple emerging severe acute respiratory syndrome coronavirus 2 variants of concern. *iScience* **24**, 103393 (2021).
- 423 9. E. M. Rhea, A. F. Logsdon, K. M. Hansen, L. M. Williams, M. J. Reed, K. K. Baumann, S. J. Holden, J. Raber, W. A. Banks, M. A. Erickson, The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. *Nat. Neurosci.* (2020), doi:10.1038/s41593-020-00771-8.
- 424 10. T. P. Buzhdyan, B. J. DeOre, A. Baldwin-Leclair, T. A. Bullock, H. M. McGary, J. A. Khan, R. Razmpour, J. F. Hale, P. A. Galie, R. Potula, A. M. Andrews, S. H. Ramirez, The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. *Neurobiol. Dis.* **146**, 105131 (2020).
- 425 11. A. C. Yang, F. Kern, P. M. Losada, M. R. Agam, C. A. Maat, G. P. Schmartz, T. Fehlmann, J. A. Stein, N. Schaum, D. P. Lee, K. Calcuttawala, R. T. Vest, D. Berdnik, N. Lu, O. Hahn, D. Gate, M. W. McNerney, D. Channappa, I. Cobos, N. Ludwig, W. J. Schulz-Schaeffer, A. Keller, T. Wyss-Coray, Dysregulation of brain and choroid plexus cell types in severe COVID-19. *Nature* **595**, 565–571 (2021).
- 426 12. J. Matschke, M. Lütgehetmann, C. Hagel, J. P. Sperhake, A. S. Schröder, C. Edler, H. Mushumba, A. Fitzek, L. Allweiss, M. Dandri, M. Dottermusch, A. Heinemann, S. Pfefferle, M. Schwabenland, D. Sumner Magruder, S. Bonn, M. Prinz, C. Gerloff, K. Püschel, S. Krasemann,

457 M. Aepfelbacher, M. Glatzel, Neuropathology of patients with COVID-19 in Germany: a post-
458 mortem case series. *Lancet. Neurol.* **19**, 919–929 (2020).

459 13. M. da G. M. Martin, V. R. Paes, E. F. Cardoso, C. E. B. P. Neto, C. T. Kanamura, C. da C.
460 Leite, M. C. G. Otaduy, R. A. de A. Monteiro, T. Mauad, L. F. F. da Silva, L. H. M. Castro, P.
461 H. N. Saldiva, M. Dolhnikoff, A. N. Duarte-Neto, Postmortem brain 7T MRI with minimally
462 invasive pathological correlation in deceased COVID-19 subjects. *Insights Imaging* **13**, 7
463 (2022).

464 14. A. Pilotto, S. Masciocchi, I. Volonghi, V. De Giuli, F. Caprioli, S. Mariotto, S. Ferrari, S.
465 Bozzetti, A. Imarisio, B. Risi, E. Premi, A. Benussi, E. Focà, F. Castelli, G. Zanusso, S. Monaco,
466 P. Stefanelli, R. Gasparotti, A. Zekeridou, A. McKeon, N. J. Ashton, K. BlennoW, H. Zetterberg,
467 A. Padovani, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Encephalitis Is
468 a Cytokine Release Syndrome: Evidences From Cerebrospinal Fluid Analyses. *Clin. Infect. Dis.*
469 *an Off. Publ. Infect. Dis. Soc. Am.* **73**, e3019–e3026 (2021).

470 15. C. P. Figueiredo, F. G. Q. Barros-Aragão, R. L. S. Neris, P. S. Frost, C. Soares, I. N. O.
471 Souza, J. D. Zeidler, D. C. Zamberlan, V. L. de Sousa, A. S. Souza, A. L. A. Guimarães, M.
472 Bellio, J. Marcondes de Souza, S. V. Alves-Leon, G. A. Neves, H. A. Paula-Neto, N. G. Castro,
473 F. G. De Felice, I. Assunção-Miranda, J. R. Clarke, A. T. Da Poian, S. T. Ferreira, Zika virus
474 replicates in adult human brain tissue and impairs synapses and memory in mice. *Nat. Commun.*
475 **10** (2019), doi:10.1038/s41467-019-11866-7.

476 16. C. V Vorhees, M. T. Williams, Morris water maze: procedures for assessing spatial and
477 related forms of learning and memory. *Nat. Protoc.* **1**, 848–858 (2006).

478 17. S. Hong, V. F. Beja-Glasser, B. M. Nfonoyim, A. Frouin, S. Li, S. Ramakrishnan, K. M.
479 Merry, Q. Shi, A. Rosenthal, B. A. Barres, C. A. Lemere, D. J. Selkoe, B. Stevens, Complement
480 and microglia mediate early synapse loss in Alzheimer mouse models. *Science* **352**, 712–716
481 (2016).

482 18. K. D. Shives, K. L. Tyler, J. D. Beckham, Molecular mechanisms of neuroinflammation and
483 injury during acute viral encephalitis. *J. Neuroimmunol.* **308**, 102–111 (2017).

484 19. Z. Chen, D. Zhong, G. Li, The role of microglia in viral encephalitis: a review. *J.*
485 *Neuroinflammation* **16**, 76 (2019).

486 20. M. J. Vasek, C. Garber, D. Dorsey, D. M. Durrant, B. Bollman, A. Soung, J. Yu, C. Perez-
487 Torres, A. Frouin, D. K. Wilton, K. Funk, B. K. DeMasters, X. Jiang, J. R. Bowen, S.
488 Mennerick, J. K. Robinson, J. R. Garbow, K. L. Tyler, M. S. Suthar, R. E. Schmidt, B. Stevens,
489 R. S. Klein, A complement-microglial axis drives synapse loss during virus-induced memory
490 impairment. *Nature* **534**, 538–543 (2016).

491 21. B. Stevens, N. J. Allen, L. E. Vazquez, G. R. Howell, K. S. Christopherson, N. Nouri, K. D.
492 Micheva, A. K. Mehalow, A. D. Huberman, B. Stafford, A. Sher, A. M. Litke, J. D. Lambris, S.
493 J. Smith, S. W. M. John, B. A. Barres, The classical complement cascade mediates CNS synapse
494 elimination. *Cell* **131**, 1164–1178 (2007).

495 22. Y. Zhao, M. Kuang, J. Li, L. Zhu, Z. Jia, X. Guo, Y. Hu, J. Kong, H. Yin, X. Wang, F. You,
496 SARS-CoV-2 spike protein interacts with and activates TLR41. *Cell Res.* , 1–3 (2021).

497 23. J. Miron, C. Picard, M.-É. Lafaille-Magnan, M. Savard, A. Labonté, J. Breitner, P. Rosa-
498 Neto, D. Auld, J. Poirier, Association of TLR4 with Alzheimer's disease risk and
499 presymptomatic biomarkers of inflammation. *Alzheimers. Dement.* **15**, 951–960 (2019).

500 24. B. Sun, N. Tang, M. J. Peluso, N. S. Iyer, L. Torres, J. L. Donatelli, S. E. Munter, C. C.
501 Nixon, R. L. Rutishauser, I. Rodriguez-Barraquer, B. Greenhouse, J. D. Kelly, J. N. Martin, S. G.
502 Deeks, T. J. Henrich, L. Pulliam, Characterization and Biomarker Analyses of Post-COVID-19

503 Complications and Neurological Manifestations. *Cells* **10** (2021), doi:10.3390/cells10020386.

504 25. J.-T. Yu, D. Miao, W.-Z. Cui, J.-R. Ou, Y. Tian, Z.-C. Wu, W. Zhang, L. Tan, Common
505 variants in toll-like receptor 4 confer susceptibility to Alzheimer's disease in a Han Chinese
506 population. *Curr. Alzheimer Res.* **9**, 458–466 (2012).

507 26. J. Helms, S. Kremer, H. Merdji, R. Clere-Jehl, M. Schenck, C. Kummerlen, O. Collange, C.
508 Boulay, S. Fafi-Kremer, M. Ohana, M. Anheim, F. Meziani, Neurologic Features in Severe
509 SARS-CoV-2 Infection. *N. Engl. J. Med.* **382**, 2268–2270 (2020).

510 27. Y. Zhou, J. Xu, Y. Hou, J. B. Leverenz, A. Kallianpur, R. Mehra, Y. Liu, H. Yu, A. A.
511 Pieper, L. Jehi, F. Cheng, Network medicine links SARS-CoV-2/COVID-19 infection to brain
512 microvascular injury and neuroinflammation in dementia-like cognitive impairment. *Alzheimers.
513 Res. Ther.* **13**, 110 (2021).

514 28. M. S. Woo, J. Malsy, J. Pöttgen, S. Seddiq Zai, F. Ufer, A. Hadjilaou, S. Schmiedel, M. M.
515 Addo, C. Gerloff, C. Heesen, J. Schulze Zur Wiesch, M. A. Friese, Frequent neurocognitive
516 deficits after recovery from mild COVID-19. *Brain Commun.* **2**, fcaa205 (2020).

517 29. L. Zhang, C. B. Jackson, H. Mou, A. Ojha, H. Peng, B. D. Quinlan, E. S. Rangarajan, A. Pan,
518 A. Vanderheiden, M. S. Suthar, W. Li, T. Izard, C. Rader, M. Farzan, H. Choe, SARS-CoV-2
519 spike-protein D614G mutation increases virion spike density and infectivity. *Nat. Commun.* **11**,
520 6013 (2020).

521 30. A. V Letarov, V. V Babenko, E. E. Kulikov, Free SARS-CoV-2 Spike Protein S1 Particles
522 May Play a Role in the Pathogenesis of COVID-19 Infection. *Biochemistry. (Mosc.)* **86**, 257–
523 261 (2021).

524 31. H. Jacomy, G. Fragoso, G. Almazan, W. E. Mushynski, P. J. Talbot, Human coronavirus
525 OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. *Virology*
526 **349**, 335–346 (2006).

527 32. Y. Lu, X. Li, D. Geng, N. Mei, P.-Y. Wu, C.-C. Huang, T. Jia, Y. Zhao, D. Wang, A. Xiao,
528 B. Yin, Cerebral Micro-Structural Changes in COVID-19 Patients - An MRI-based 3-month
529 Follow-up Study. *EClinicalMedicine* **25**, 100484 (2020).

530 33. M. A. Ystad, A. J. Lundervold, E. Wehling, T. Espeseth, H. Rootwelt, L. T. Westlye, M.
531 Andersson, S. Adolfsdottir, J. T. Geitung, A. M. Fjell, I. Reinvang, A. Lundervold, Hippocampal
532 volumes are important predictors for memory function in elderly women. *BMC Med. Imaging* **9**,
533 17 (2009).

534 34. G.-P. Peng, Z. Feng, F.-P. He, Z.-Q. Chen, X.-Y. Liu, P. Liu, B.-Y. Luo, Correlation of
535 hippocampal volume and cognitive performances in patients with either mild cognitive
536 impairment or Alzheimer's disease. *CNS Neurosci. Ther.* **21**, 15–22 (2015).

537 35. E. Bossy-Wetzel, R. Schwarzenbacher, S. A. Lipton, Molecular pathways to
538 neurodegeneration. *Nat. Med.* **10 Suppl**, S2–9 (2004).

539 36. D. Gonzalez-Dunia, M. Watanabe, S. Syan, M. Mallory, E. Maslia, J. C. De La Torre,
540 Synaptic pathology in Borna disease virus persistent infection. *J. Virol.* **74**, 3441–3448 (2000).

541 37. Samudyata, A. O. Oliveira, S. Malwade, N. R. de Sousa, S. K. Goparaju, J. G. Lekander, F.
542 Orhan, L. Steponaviciute, M. Schalling, S. D. Sheridan, R. H. Perlis, A. Rothfuchs, C. M.
543 Sellgren, SARS-CoV-2 promotes microglial synapse elimination in human brain organoids.
544 *bioRxiv*, 2021.07.07.451463 (2022).

545 38. A. Yuan, H. Sershen, Veeranna, B. S. Basavarajappa, A. Kumar, A. Hashim, M. Berg, J.-H.
546 Lee, Y. Sato, M. V Rao, P. S. Mohan, V. Dyakin, J.-P. Julien, V. M.-Y. Lee, R. A. Nixon,
547 Neurofilament subunits are integral components of synapses and modulate neurotransmission
548 and behavior in vivo. *Mol. Psychiatry* **20**, 986–994 (2015).

549 39. C. Bridel, W. N. van Wieringen, H. Zetterberg, B. M. Tijms, C. E. Teunissen, J. C. Alvarez-
550 Cermeño, U. Andreasson, M. Axelsson, D. C. Bäckström, A. Bartos, M. Bjerke, K. Blennow, A.
551 Boxer, L. Brundin, J. Burman, T. Christensen, L. Fialová, L. Forsgren, J. L. Frederiksen, M.
552 Gisslén, E. Gray, M. Gunnarsson, S. Hall, O. Hansson, M. K. Herbert, J. Jakobsson, J. Jessen-
553 Krut, S. Janelidze, G. Johannsson, M. Jonsson, L. Kappos, M. Khademi, M. Khalil, J. Kuhle, M.
554 Landén, V. Leinonen, G. Logroscino, C.-H. Lu, J. Lycke, N. K. Magdalinos, A. Malaspina, N.
555 Mattsson, L. H. Meeter, S. R. Mehta, S. Modvig, T. Olsson, R. W. Paterson, J. Pérez-Santiago,
556 F. Piehl, Y. A. L. Pijnenburg, O. T. Pyykkö, O. Ragnarsson, J. C. Rojas, J. Romme Christensen,
557 L. Sandberg, C. S. Scherling, J. M. Schott, F. T. Sellebjerg, I. L. Simone, T. Skillbäck, M.
558 Stilund, P. Sundström, A. Svenningsson, R. Tortelli, C. Tortorella, A. Trentini, M. Troiano, M.
559 R. Turner, J. C. van Swieten, M. Vågberg, M. M. Verbeek, L. M. Villar, P. J. Visser, A. Wallin,
560 A. Weiss, C. Wikkelsø, E. J. Wild, Diagnostic Value of Cerebrospinal Fluid Neurofilament Light
561 Protein in Neurology: A Systematic Review and Meta-analysis. *JAMA Neurol.* **76**, 1035–1048
562 (2019).

563 40. N. Kanberg, N. J. Ashton, L.-M. Andersson, A. Yilmaz, M. Lindh, S. Nilsson, R. W. Price,
564 K. Blennow, H. Zetterberg, M. Gisslén, Neurochemical evidence of astrocytic and neuronal
565 injury commonly found in COVID-19. *Neurology* **95**, e1754–e1759 (2020).

566 41. R. De Lorenzo, N. I. Loré, A. Finardi, A. Mandelli, D. M. Cirillo, C. Tresoldi, F. Benedetti,
567 F. Ciceri, P. Rovere-Querini, G. Comi, M. Filippi, A. A. Manfredi, R. Furlan, Blood
568 neurofilament light chain and total tau levels at admission predict death in COVID-19 patients.
569 *J. Neurol.* **268**, 4436–4442 (2021).

570 42. S. T. Dheen, C. Kaur, E.-A. Ling, Microglial activation and its implications in the brain
571 diseases. *Curr. Med. Chem.* **14**, 1189–1197 (2007).

572 43. A. J. Vivanti, C. Vauloup-Fellous, S. Prevot, V. Zupan, C. Suffee, J. Do Cao, A. Benachi, D.
573 De Luca, Transplacental transmission of SARS-CoV-2 infection. *Nat. Commun.* **11**, 3572
574 (2020).

575 44. O. A. Olajide, V. U. Iwuanyanwu, O. D. Adegbola, A. A. Al-Hindawi, SARS-CoV-2 Spike
576 Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia. *Mol. Neurobiol.* **59**, 445–458
577 (2022).

578 45. L. Zhou, M. Miranda-Saksena, N. K. Saksena, *Viruses and neurodegeneration* (2013;
579 <https://doi.org/10.1186/1743-422X-10-172>).

580 46. L. G. Thorne, M. Bouhaddou, A.-K. Reuschl, L. Zuliani-Alvarez, B. Polacco, A. Pelin, J.
581 Batra, M. V. X. Whelan, M. Hosmillo, A. Fossati, R. Ragazzini, I. Jungreis, M. Ummadi, A.
582 Rojc, J. Turner, M. L. Bischof, K. Obernier, H. Braberg, M. Soucheray, A. Richards, K.-H.
583 Chen, B. Harjai, D. Memon, J. Hiatt, R. Rosales, B. L. McGovern, A. Jahun, J. M. Fabius, K.
584 White, I. G. Goodfellow, Y. Takeuchi, P. Bonfanti, K. Shokat, N. Jura, K. Verba, M.
585 Noursadeghi, P. Beltrao, M. Kellis, D. L. Swaney, A. García-Sastre, C. Jolly, G. J. Towers, N. J.
586 Krogan, Evolution of enhanced innate immune evasion by SARS-CoV-2. *Nature* **602**, 487–495
587 (2022).

588 47. E. G. Severance, K. L. Gressitt, S. L. Buka, T. D. Cannon, R. H. Yolken, Maternal
589 complement C1q and increased odds for psychosis in adult offspring. *Schizophr. Res.* **159**, 14–19
590 (2014).

591 48. D. P. Schafer, E. K. Lehrman, A. G. Kautzman, R. Koyama, A. R. Mardinly, R. Yamasaki,
592 R. M. Ransohoff, M. E. Greenberg, B. A. Barres, B. Stevens, Microglia sculpt postnatal neural
593 circuits in an activity and complement-dependent manner. *Neuron* **74**, 691–705 (2012).

594 49. W. Cui, C. Sun, Y. Ma, S. Wang, X. Wang, Y. Zhang, Inhibition of TLR4 Induces M2

595 Microglial Polarization and Provides Neuroprotection via the NLRP3 Inflammasome in
596 Alzheimer's Disease. *Front. Neurosci.* **14**, 444 (2020).

597 50. Y. W. Han, J. Y. Choi, E. Uyangaa, S. B. Kim, J. H. Kim, B. S. Kim, K. Kim, S. K. Eo,
598 Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via
599 triggering TLR3 and TLR4 signal pathways. *PLoS Pathog.* **10**, e1004319 (2014).

600 51. T. Tang, Y. Guo, X. Xu, L. Zhao, X. Shen, L. Sun, P. Xie, BoDV-1 infection induces
601 neuroinflammation by activating the TLR4/MyD88/IRF5 signaling pathway, leading to learning
602 and memory impairment in rats. *J. Med. Virol.* **93**, 6163–6171 (2021).

603 52. A. H. Sabouri, M. C. G. Marcondes, C. Flynn, M. Berger, N. Xiao, H. S. Fox, N. E.
604 Sarvetnick, TLR signaling controls lethal encephalitis in WNV-infected brain. *Brain Res.* **1574**,
605 84–95 (2014).

606 53. A. Choudhury, S. Mukherjee, In silico studies on the comparative characterization of the
607 interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human
608 TLRs. *J. Med. Virol.* **92**, 2105–2113 (2020).

609 54. M. Bhattacharya, A. R. Sharma, B. Mallick, G. Sharma, S.-S. Lee, C. Chakraborty,
610 Immunoinformatics approach to understand molecular interaction between multi-epitopic
611 regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex. *Infect. Genet. Evol. J. Mol.*
612 *Epidemiol. Evol. Genet. Infect. Dis.* **85**, 104587 (2020).

613 55. M. G. Frank, K. H. Nguyen, J. B. Ball, S. Hopkins, T. Kelley, M. V Baratta, M. Fleshner, S.
614 F. Maier, SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral
615 sickness responses: Evidence of PAMP-like properties. *Brain. Behav. Immun.* **100**, 267–277
616 (2022).

617 56. K. Shirato, T. Kizaki, SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory
618 responses via toll-like receptor 4 signaling in murine and human macrophages. *Heliyon* **7**,
619 e06187–e06187 (2021).

620 57. C. Balducci, A. Frasca, M. Zotti, P. La Vitola, E. Mhillaj, E. Grigoli, M. Iacobellis, F.
621 Grandi, M. Messa, L. Colombo, M. Molteni, L. Trabace, C. Rossetti, M. Salmona, G. Forloni,
622 Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory
623 establishment induced by β -amyloid oligomers in an acute mouse model of Alzheimer's disease.
624 *Brain. Behav. Immun.* **60**, 188–197 (2017).

625 58. Q. Zhong, Y. Zou, H. Liu, T. Chen, F. Zheng, Y. Huang, C. Chen, Z. Zhang, Toll-like
626 receptor 4 deficiency ameliorates β 2-microglobulin induced age-related cognition decline due to
627 neuroinflammation in mice. *Mol. Brain* **13**, 20 (2020).

628 59. K. M. Sohn, S. G. Lee, H. J. Kim, S. Cheon, H. Jeong, J. Lee, I. S. Kim, P. Silwal, Y. J. Kim,
629 S. Paik, C. Chung, C. Park, Y. S. Kim, E. K. Jo, COVID-19 Patients Upregulate Toll-like
630 Receptor 4-mediated Inflammatory Signaling That Mimics Bacterial Sepsis. *J. Korean Med. Sci.*
631 **35**, e343 (2020).

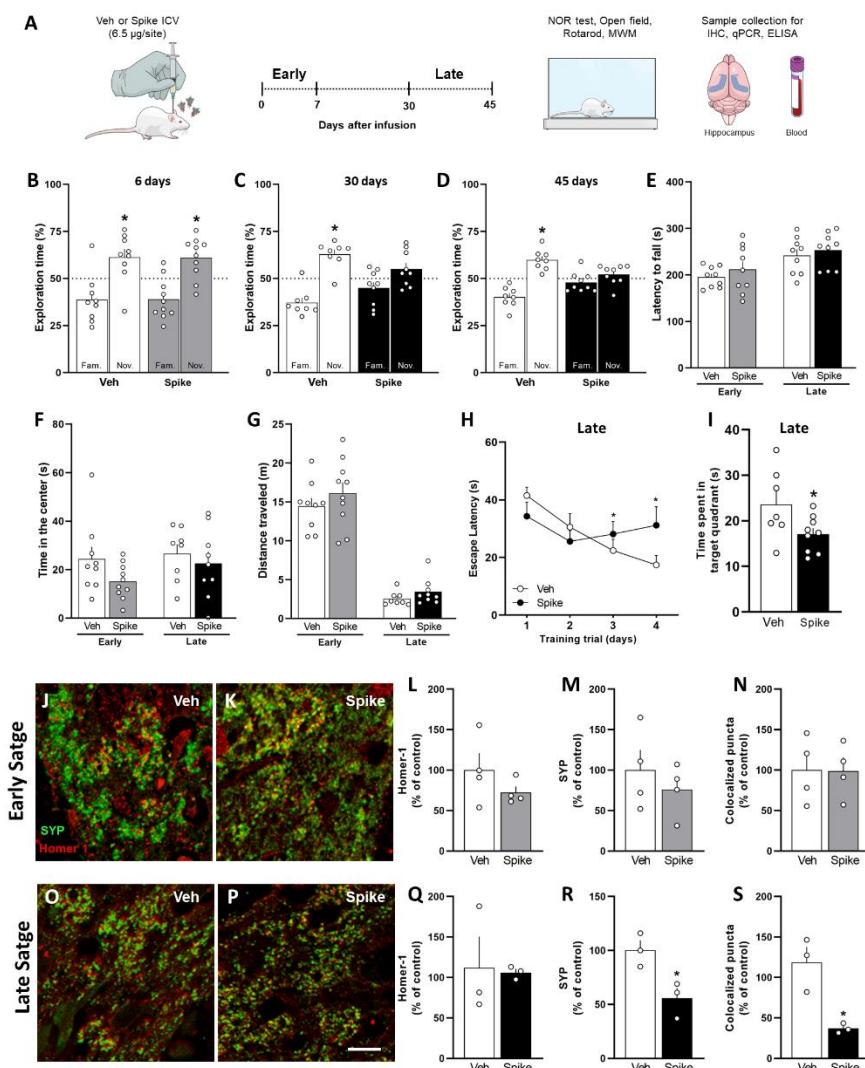
632 60. S. R. Paludan, T. H. Mogensen, Innate immunological pathways in COVID-19 pathogenesis.
633 *Sci. Immunol.* **7**, eabm5505 (2022).

634 61. J. Yang, L. Wise, K.-I. Fukuchi, TLR4 Cross-Talk With NLRP3 Inflammasome and
635 Complement Signaling Pathways in Alzheimer's Disease. *Front. Immunol.* **11**, 724 (2020).

636 62. Y.-R. Xin, J.-X. Jiang, Y. Hu, J.-P. Pan, X.-N. Mi, Q. Gao, F. Xiao, W. Zhang, H.-M. Luo,
637 The Immune System Drives Synapse Loss During Lipopolysaccharide-Induced Learning and
638 Memory Impairment in Mice. *Front. Aging Neurosci.* **11**, 279 (2019).

639 63. G. Hajishengallis, J. D. Lambris, More than complementing Tolls: complement-Toll-like
640 receptor synergy and crosstalk in innate immunity and inflammation. *Immunol. Rev.* **274**, 233–

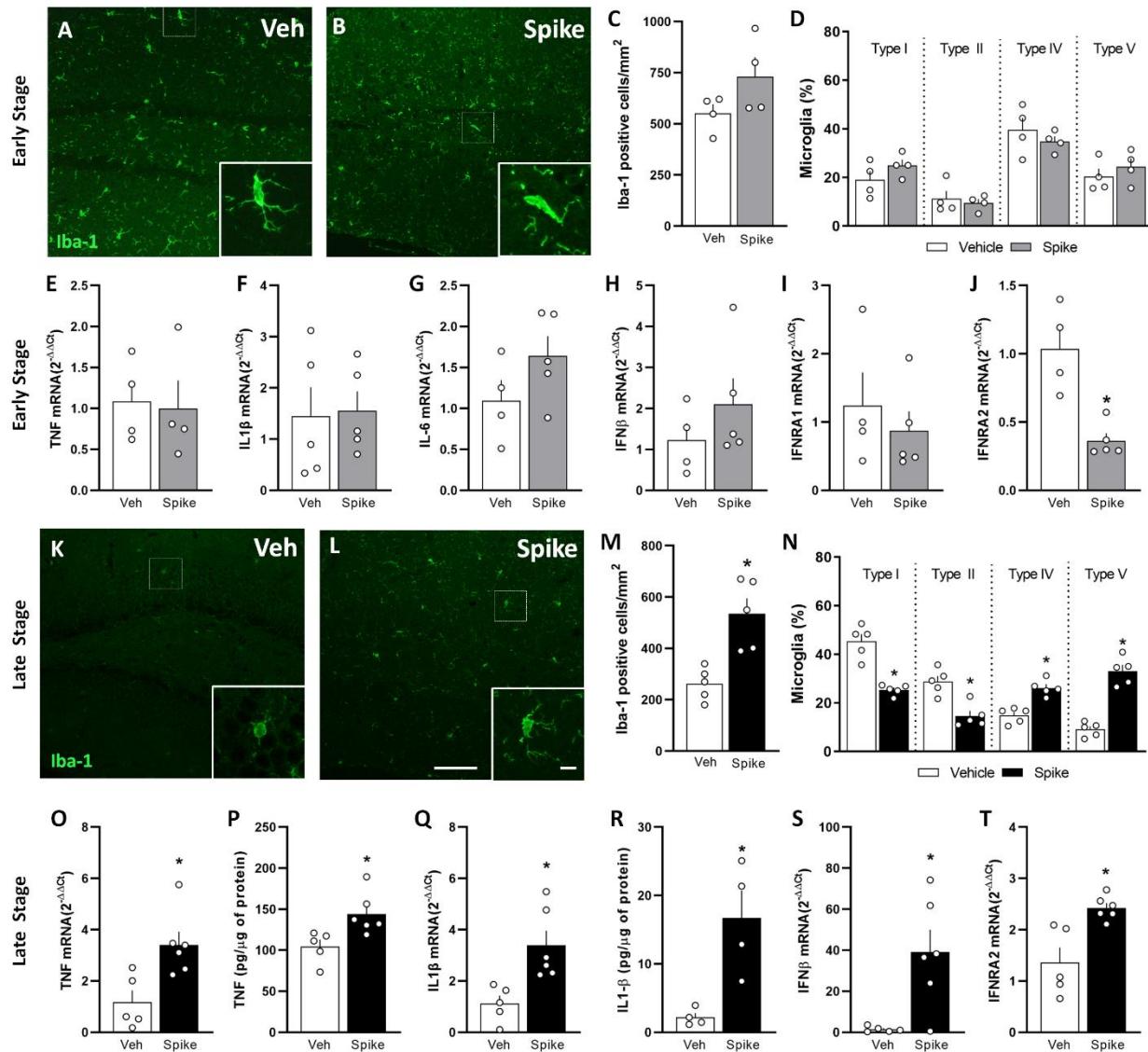
641 244 (2016).
642 64. A. Semlali, M. Al Mutairi, I. Oqla Alanazi, H. Awad Aljohi, N. Reddy Parine, A. Alhadheq,
643 A. A. Al-Jafari, A. F. Mobeirek, A. Al Amri, J. P. Shaik, F.-Z. Filali, M. Alanazi, Toll-like
644 receptor 4 polymorphisms in Saudi population with cardiovascular diseases. *Mol. Genet.*
645 *genomic Med.* **7**, e852 (2019).
646 65. K. Singh, S. Kant, V. K. Singh, N. K. Agrawal, S. K. Gupta, K. Singh, Toll-like receptor 4
647 polymorphisms and their haplotypes modulate the risk of developing diabetic retinopathy in
648 type 2 diabetes patients. *Mol. Vis.* **20**, 704–713 (2014).
649 66. J. Song, D. Y. Kim, C. S. Kim, H. J. Kim, D. H. Lee, H. M. Lee, W. Ko, G. Lee, The
650 association between Toll-like receptor 4 (TLR4) polymorphisms and the risk of prostate cancer
651 in Korean men. *Cancer Genet. Cytogenet.* **190**, 88–92 (2009).
652 67. M. Kerkhof, D. S. Postma, B. Brunekreef, N. E. Reijmerink, A. H. Wijga, J. C. de Jongste,
653 U. Gehring, G. H. Koppelman, Toll-like receptor 2 and 4 genes influence susceptibility to
654 adverse effects of traffic-related air pollution on childhood asthma. *Thorax* **65**, 690–697 (2010).
655 68. S. Ferronato, M. Gomez-Lira, M. Menegazzi, E. Diani, S. Olivato, M. Sartori, A. Scuro, G.
656 Malerba, P. F. Pignatti, M. G. Romanelli, S. Mazzucco, Polymorphism -2604G>A variants in
657 TLR4 promoter are associated with different gene expression level in peripheral blood of
658 atherosclerotic patients. *J. Hum. Genet.* **58**, 812–814 (2013).
659 69. L. E. R. Cunha, A. A. Stolet, M. A. Strauch, V. A. R. Pereira, C. H. Dumard, A. M. O.
660 Gomes, F. L. Monteiro, L. M. Higa, P. N. C. Souza, J. G. Fonseca, F. E. Pontes, L. G. R.
661 Meirelles, J. W. M. Albuquerque, C. Q. Sacramento, N. Fintelman-Rodrigues, T. M. Lima, R. G.
662 F. Alvim, F. F. Marsili, M. M. Caldeira, R. B. Zingali, G. A. P. de Oliveira, T. M. L. Souza, A.
663 S. Silva, R. Muller, D. D. R. F. Rodrigues, L. Jesus da Costa, A. D. R. Alves, M. A. Pinto, A. C.
664 Oliveira, H. L. M. Guedes, A. Tanuri, L. R. Castilho, J. L. Silva, Polyclonal F(ab')(2) fragments
665 of equine antibodies raised against the spike protein neutralize SARS-CoV-2 variants with high
666 potency. *iScience* **24**, 103315 (2021).
667 70. L. P. Diniz, J. C. Almeida, V. Tortelli, C. Vargas Lopes, P. Setti-Perdigão, J. Stipursky, S. A.
668 Kahn, L. F. Romão, J. de Miranda, S. V. Alves-Leon, J. M. de Souza, N. G. Castro, R.
669 Panizzutti, F. C. A. Gomes, Astrocyte-induced synaptogenesis is mediated by transforming
670 growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. *J.*
671 *Biol. Chem.* **287**, 41432–41445 (2012).
672 71. C. Giménez-Garzó, A. Fiorillo, M.-P. Ballester-Ferré, J.-J. Gallego, F. Casanova-Ferrer, A.
673 Urios, S. Benlloch, D. Martí-Aguado, T. San-Miguel, J. Tosca, M.-P. Ríos, C. Montón, L.
674 Durbán, D. Escudero-García, L. Aparicio, V. Felipo, C. Montoliu, A New Score Unveils a High
675 Prevalence of Mild Cognitive Impairment in Patients with Nonalcoholic Fatty Liver Disease. *J.*
676 *Clin. Med.* **10** (2021), doi:10.3390/jcm10132806.
677


678 **Acknowledgments:** The authors thank Luis F. Fragoso and Ana Claudia Rangel for their technical
679 support; Prof. Leda R. Castilho and her team at Cell Culture Engineering Laboratory
680 (LECC) of COPPE/UFRJ for providing the trimeric spike protein in the prefusion
681 conformation; and Prof. João B. Calixto (Centro de Inovação e Ensaios Pré-clínicos-
682 CIENP), Prof. João B. Teixeira da Rocha (Federal University of Santa Maria) and Prof.
683 Andreza F. De Bem (Brazilian Federal University) for thoughtful discussion and
684 manuscript critical reading.
685

686 **Funding:** This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio de
687 Janeiro - FAPERJ (F.L.F.D., G.G.F., L.S.A., L.C.C., S.B.A., L.E.B.S., J.L.S., R.C., J.R.C.,
688 A.T.P., S.V.A.L., G.F.P., C.P.F.), Instituto Nacional de Ciência e Tecnologia (INCT)
689 Inovação em Medicamentos e Identificação de Novos Alvos Terapêuticos - INCT-
690 INOVAMED 465430/2014-7 (R.C., G.F.P., C.P.F.), INCT de Biologia Estrutural e
691 Bioimagem - INBEB (J.L.S., A.T.P.). Conselho Nacional de Desenvolvimento Científico e
692 Tecnológico - CNPq (G.G.F., H.M.A., L.E.B.S., J.L.S., J.R.C., R.C., A.T.P., S.V.A.L.,
693 G.F.P., C.P.F.), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES
694 (E.V.L., T.N.S.), and Programa de Pesquisa Para o SUS (PPSUS) E-26/210.456/2021.
695

696 **Author contributions:** C.P.F., G.F.P., S.V.A.L., A.T.P., J.R.C., R.C., and F.L.F.D. conceived the
697 study. C.P.F., G.F.P., S.V.A.L., A.T.P., F.L.F.D., J.R.C., R.C., J.L.S., and L.E.B.S.,
698 contributed to experimental design. F.L.F.D., G.G.F., E.V.L., L.S.A., H.P.M.A., L.C.C.,
699 S.M.B.A., and T.N.S. performed experiments in mice and analyzed the data. Molecular
700 experiments and ELISA were performed and analyzed by F.L.F.D., L.C.C., S.M.B.A., and
701 A.T.P. Histological and immunohisto/cytochemistry analyses were performed by G.G.F.,
702 C.P.F., and E.V.L. L.E.B.S., L.R., and G.G.F. performed experiments in cell culture. L.A.D.
703 and A.L.S. performed Simoa experiments. E.G.G., M.B.H., K.L.P., C.C.F.V., and S.V.A.L.
704 recruited patients, collected clinical information and performed neuropsychological
705 evaluations. L.A.A.L. performed molecular and serological diagnosis of COVID-19.
706 F.L.F.D. and E.G.G. carried out genotype analyses. F.L.F.D., G.G.F., E.G.G., C.P.F.,
707 G.F.P., S.V.A.L., A.T.P., J.R.C., R.C., and L.E.B.S. contributed to critical analysis of the
708 data. F.L.F.D., C.P.F., and G.F.P. wrote the manuscript. All authors read and approved the
709 final version.
710

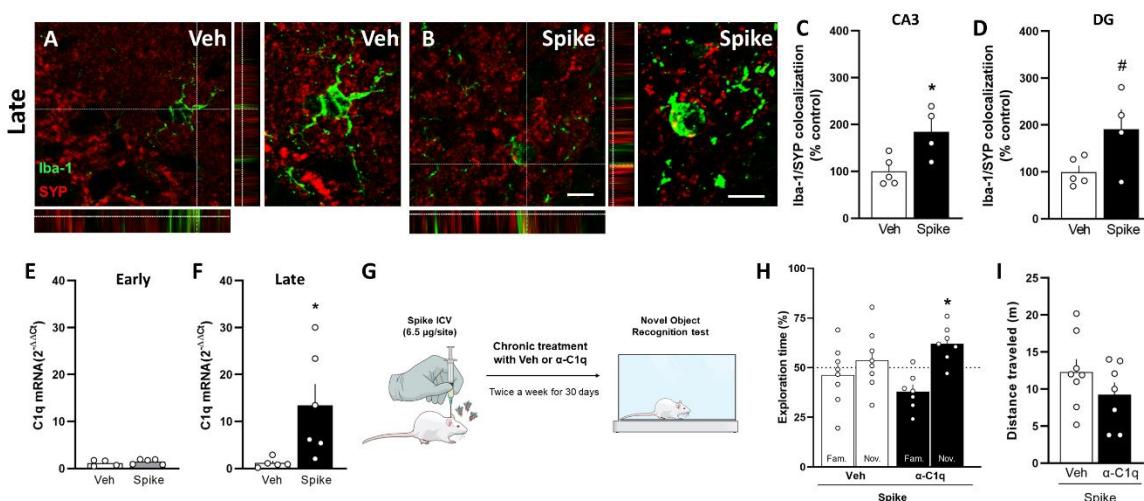
711 **Competing interests:** Authors declare that they have no competing interests.
712 **Data and materials availability:** All data are available in the main text or the supplementary
713 materials.
714


715 **Figures**

716
717

718 **Figure 1. Spike protein causes synapse damage and memory impairment in mice.** (A) Mice
719 received an i.c.v. infusion of 6.5 µg of SARS-CoV-2 spike protein (Spike), or vehicle (Veh), and
720 were evaluated at early (up to 7 days) or late time points (from 30 to 45 days) after the infusion
721 using behavioral and molecular approaches. (B to D) Mice were tested in the novel object
722 recognition (NOR) test at 6 days (B $t=2.626$, $*p=0.0304$ for Veh; and $t=3.218$, $*p=0.0104$, for
723 Spike), 30 days (C $t=5.099$, $*p=0.0014$ for Veh), and 45 days after protein infusion (D $t=5.122$,
724 $*p=0.0014$, for Veh); one-sample Student's t -test compared to the chance level of 50% ($N=8-10$
725 mice per group). (E) Mice were tested in the Rotarod task at early and late ($N=9$ mice per group).
726 (F) Time spent at the center of the open field arena at early or late stages of the model ($N=8-10$
727 mice per group). (G) Total distance traveled of the open field arena at early or late ($N=8-10$ mice
728 per group). (H to I) Escape latencies across 4 consecutive training trials (H) and time spent in the
729 target quadrant during the probe trial (I) of the MWM test performed at the late stage (H $F_{(3, 45)}=2.857$,
730 $*p=0.0475$, repeated measures ANOVA followed by Tukey's test; I $t=2.211$, $*p=0.0442$,
731 Student's t -test; $N=7-9$ mice per group). Representative images of the DG hippocampal region of

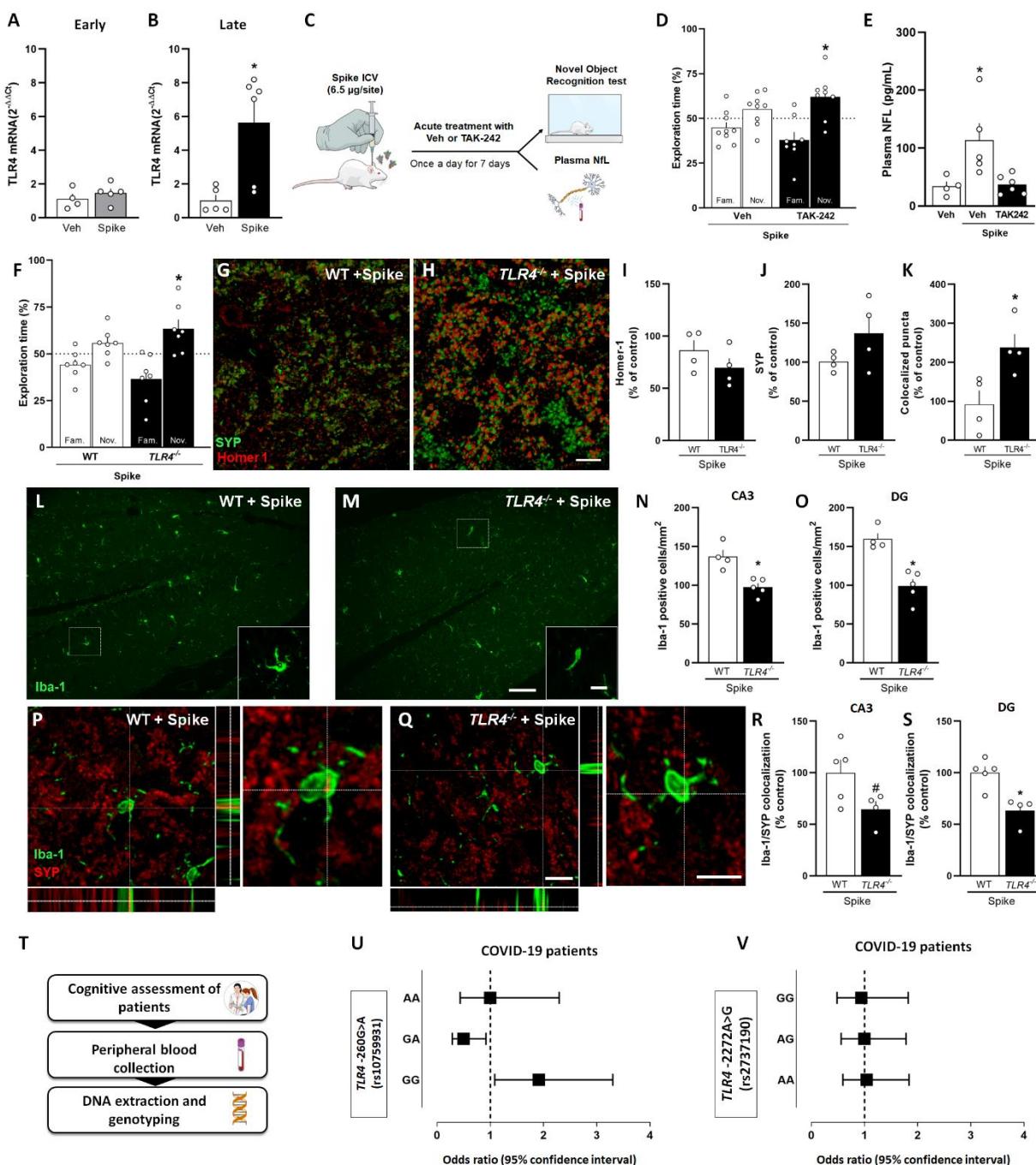
732 Veh- (**J,O**) or Spike-infused mice (**K, P**) in the early (**J, K**) and late (**O, P**) stages of the model,
 733 immunolabeled for Homer1 (red) and synaptophysin (SYP; green). (**L to N, G to S**) Number of
 734 puncta for Homer-1 (**L, Q**), SYP (**M, R**), and colocalized Homer-1/SYP puncta (**N, S**) in the early
 735 (**L to N**) and late (**Q to S**) stages of the model. (**R** $t = 3.400$, $*p = 0.0273$; **s** $t = 4.204$, $*p = 0.0137$,
 736 Student's *t*-test; $N = 3-4$ mice per group). Scale bar = 20 μ m. Symbols represent individual mice.
 737 Bars (**B to G; I; L to N; Q to S**) or points (**H**) represent means \pm SEM. OD: optical density; IHC:
 738 immunohistochemistry; NOR: Novel object recognition.



739
 740 **Figure 2 Spike protein induces cytokine upregulation in cultured microglia and triggers**
 741 **delayed brain inflammation and microgliosis in mice. a-t**, Mice received an i.c.v. infusion of
 742 6,5 μ g of Spike or vehicle (Veh), and were evaluated at early (**a-j**, 3 days) or late time points (**k-t**,
 743 45 days). Representative images of Iba-1 immunostaining in the DG hippocampal region of Veh-
 744 (**a, k**) or Spike-infused mice (**b, l**) in the early (**a, b**) and late (**k, l**) stages of the model. Scale bar
 745 = 25 μ m, inset scale bar = 10 μ m. **c, m**, Iba-1 positive cells in the hippocampi of Veh- or Spike-
 746 infused mice in the early (**c**) and late (**m** $t = 4.086$; $*p = 0.0035$, Student's *t*-test) stages of the
 747 model ($N = 4-5$ mice per group). **d, n**, Quantifications of the proportion of each Iba-1-positive cells

748 morphological type in Veh- or Spike-infused mice evaluated in the in the early and late (n t =
749 6.388; *p= 0.0002 for Type I; t = 4.458; *p = 0.0021 for Type II; t =5.513; *p =0.0006 for Type
750 IV; t = 8.384; *p < 0.0001 for Type V, Student's *t*-test) stages of the model (N = 4-5 mice per
751 group). **e-j**, qPCR analysis of indicated mRNA isolated from the hippocampus in the early stage
752 of the model. IFNRA2 (j t=4.413, *p = 0.0031) (N = 4-5 mice per group). **o-t**, Hippocampal
753 proinflammatory mediators in Veh- or Spike-infused mice in the late stage of the model. TNF
754 mRNA (o t=3.189; *p = 0.0110) and protein (p t=2.885; *p =0.0180) levels. IL-1 β mRNA (q
755 t=3.322; *p = 0.0089) and protein (r t=3.583; *p =0.0116) levels. **s-t** mRNA levels of IFN- β (s
756 t=3.713, *p=0.013) and IFNAR2 (t t=3.743; *p = 0.0046). Student's *t*-test (N = 4-6 mice per
757 group). Symbols represent individual mice, and bars represent means \pm SEM.

758


759

760

Figure 3: C1q neutralization prevents spike-induced memory impairment in mice. Mice received an i.c.v. infusion of 6,5 μ g of SARS-CoV-2 spike protein (Spike), or vehicle (Veh), and were evaluated at early (3 days) or late time points (45 days). **(A to B)** Representative images of microglia (Iba-1 $^{+}$, green) engulfing pre-synaptic terminals immunolabeled for synaptophysin (SYP, red) in the DG hippocampal region of Veh- **(A)** or Spike-infused mice **(B)** in the late stage of the model. Scale bar = 25 μ m, inset scale bar = 10 μ m. **(C to D)** Quantification of microglia-SYP colocalization in CA3 **(C** t = 2.949, *p = 0.0214), and DG **(D** t = 2.271, #p = 0.0574) hippocampal regions. Student's *t*-test; (N = 4-5 mice per group). **(E to F)** C1q mRNA expression in hippocampi of Veh- or Spike-infused mice at early **(E)** or late time points **(F** t = 2.425, *p = 0.0383, Student's *t*-test; (N = 4-6 mice per group). **(G)** Mice received an i.c.v. infusion of 6,5 μ g of Spike, were treated with Veh or 0.3 μ g anti-C1q antibody (α -C1q; i.c.v., twice a week, for 30 days), followed by novel object recognition (NOR) testing **(H** t=3.438, *p = 0.0138 for Spike/ α -C1q; one-sample Student's *t*-test compared to the chance level of 50%). **(I)** Total distance traveled of the open field arena at late (N = 7-8 mice per group).

775

Figure 4: TLR4 mediates spike-induced memory impairment in mice and is associated with post-COVID cognitive impairment in a human cohort. **a, b**, Mice received an i.c.v. infusion of 6,5 μ g of SARS-CoV-2 spike protein (Spike), or vehicle (Veh), and TLR4 mRNA levels in the hippocampi of Veh- or Spike-infused mice were evaluated at early (**a**; 3 days) or late (**b**, 45 days, $t = 3.229$, $*p = 0.0103$, Student's t -test) time points ($N = 4-6$ mice per group). **c**, Swiss mice received an i.c.v. infusion of 6,5 μ g of Spike and were treated with Veh or the TLR4 antagonist TAK-242 (2 mg/kg, once daily for 7 days, i.p.), and were tested in the late stage of the model in the novel object recognition (NOR) test (**d** $t = 2.713$, $*p = 0.0301$ for Spike/TAK-242; one-sample Student's t -test compared to the chance level of 50%, $N = 8-9$ mice per group). **e** Plasma NfL levels

776

777

778

779

780

781

782

783

784

785

evaluated in the late stage of the Spike infusion model ($F = 6.329$, $*p = 0.0133$, one-way ANOVA test, followed by Tukey's test ($N = 4-6$ mice per group). **f**, Wild-type (WT) and TLR4 knockout ($TLR4^{-/-}$) mice received an icv infusion of 6,5 μ g of SARS-CoV-2 spike protein (Spike) and were tested in the novel object recognition (NOR) test in the late stage of the model ($t = 2.744$, $*p = 0.0336$). One-sample Student's *t*-test compared to the chance level of 50%, $N = 7$ mice per group). **g, h**, Representative images of the DG hippocampal region of WT/Spike (**g**) or $TLR4^{-/-}$ /Spike (**h**) mice immunolabeled for Homer1 (red) and synaptophysin (SYP; green). Scale bar = 20 μ m. Number of puncta for Homer-1 (**i**), SYP (**j**), and colocalized Homer-1/SYP puncta (**k**) ($t = 2.945$, $*p = 0.0258$; Student's *t*-test; $N = 4$ mice per group). **l, m**, Representative images of Iba-1 immunolabeling in the DG hippocampal region of WT (**l**) or $TLR4^{-/-}$ (**m**) mice infused with Spike. Scale bar = 25 μ m, inset scale bar = 10 μ m. Iba-1 positive cells in the CA3 (**n**) ($t = 4.242$; $*p = 0.0038$) and DG (**o**) ($t = 5.088$; $*p = 0.0014$) hippocampal regions of WT or $TLR4^{-/-}$ mice infused with Spike. **p, q**, Representative images of microglia (Iba-1 $^{+}$, green) engulfing pre-synaptic terminals immunolabeled for synaptophysin (SYP, red) in the DG hippocampal region of WT (**p**) or $TLR4^{-/-}$ (**q**) mice infused with Spike. Scale bar = 50 μ m, inset scale bar = 10 μ m. **r, s**, Quantification of microglia-SYP colocalization in CA3 (**r**) ($t = 2.200$, $^{#}p = 0.0637$), and DG (**s**) ($t = 4.012$, $*p = 0.0051$) hippocampal regions. Student's *t*-test; ($N = 4-5$ mice per group). Symbols represent individual mice, and bars represent means \pm SEM. **t**, Pipeline to analyze the impact of *TLR4* variants in cognitive status of Post-COVID patients. **u, v**, Forest plots showing odds ratio and 95% confidence interval for risk of cognitive impairment post-COVID-19 by genotype for SNPs *TLR4* - 2604G>A (rs10759931; **u**) and *TLR4* - 2272A>G (rs2737190; **v**). Each square represents the odds ratio for each genotype, and each horizontal line shows the 95% confidence interval.

809
810
811

812 Tables

813 **Table 1. *TLR4* rs10759931 and rs2737190 genotype distribution in patients with or without**

814 cognitive deficit following COVID-19.

815

<i>TLR4</i> - 2604G>A (rs10759931)	N (86)	Cognitiv e Deficit (%)	No Cognitive Deficit (%)	P- value	OR (95% CI)
GG	40	22(55)	18(39)	0.0234 *	1.91 (1.083 to 3.301)
GA	35	13(32)	22(48)	0.0209 *	0.50 (0.287 to 0.920)
AA	11	5(13)	6(13)	>0.999 9	1.00 (0.435 to 2.294)
MAF (A)	0.33				
<i>TLR4</i> -2272 A>G (rs2737190)	N (83)	Cognitive Deficit (%)	No Cognitive Deficit (%)	P- value	OR (95% CI)

AA	30	14(37)	16(36)	0.8832	1.04 (0.594 to 1.836)
AG	35	16(42)	19(42)	>0,999 ⁹	1.0 (0.561 to 1.781)
GG	18	8(21)	10(22)	0.8633	0.94 (0.483 to 1.823)
MAF (G)	0.43				

816

817 MAF= minor allele frequency; OR = odds ratio; CI = confidence interval. Data analyzed by χ^2 -
818 test (two-tailed). *Statistical significance ($P<0.05$). The reference group in each of the analyses
819 was the most prevalent genotype.

820

821