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Abstract

The rising incidence of pancreatic cancer is largely driven by the skyrocketing prevalence of obesity
and type 2 diabetes (T2D). Hyperinsulinemia is a cardinal feature of both conditions, and is
independently associated with increased cancer incidence and mortality. Our previous studies
demonstrated that genetically reducing insulin production suppressed formation of pancreatic
intraepithelial neoplasia (PanIN) pre-cancerous lesions in mice with mutant Kras. However, we found
that hyperinsulinemia affected many cell types in the pancreatic microenvironment. Thus, it remained
unclear whether hyperinsulinemia exerted its effects directly on the cells that give rise to PanINs or
indirectly on the tumor microenvironment, and molecular mechanisms involved were unknown. Here,

G12D

we tested whether insulin receptors (Insr) in Kras™“~-expressing pancreatic acinar cells are necessary

for the effects of hyperinsulinemia on obesity-associated pancreatic cancer development. Loss of Insr

G12D

in Kras™ “"-expressing acinar cells did not prevent hyperinsulinemia or weight gain associated with

high fat diet (HFD) consumption in mice. However, solely reducing Insr in Kras®*?°

-expressing acinar
cells significantly reduced formation of PanIN and tumors, in a gene dose-dependent manner.
Mechanistically, proteomic analyses showed that hyperinsulinemia acts through Insr to drive the
excess production of digestive enzymes in acinar cells by modulating the activity of the spliceosome,
ribosome, and secretory machinery. This resulted in increased inflammation, which was abrogated by
acinar-specific Insr knockout. We confirmed that insulin increased the conversion of wild-type acinar
cells into acinar-to-ductal metaplasia (ADM) in a trypsin-dependent manner. Collectively, these data
demonstrate that hyperinsulinemia acting via acinar cells insulin receptors promotes inflammatory

conditions that cooperate with Kras signaling to increase the risk of developing pancreatic cancer,

mechanistically linking obesity and pancreatic cancer.

Introduction
The 5-year survival rate of pancreatic ductal adenocarcinoma (PDAC) is less than 10% and it is
projected to become the 2" leading cause of cancer death by 2030 (Rahib et al., 2014). Chronic

pancreatitis, family history, smoking, obesity, and T2D are risk factors for pancreatic cancer (llic and
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llic, 2016). Obesity and T2D are usually accompanied by hyperinsulinemia, hyperglycemia, increased
inflammation, and dyslipidemia, which have all been proposed as underlying factors that drive the
increased PDAC morbidity and mortality in this patient population (Gallagher and LeRoith, 2020;
Zhang et al., 2021). Epidemiological studies consistently show that hyperinsulinemia is associated
with increased risk of developing PDAC and poorer survival (Pisani, 2008; Stolzenberg-Solomon et al.,
2005). Complementing clinical observations, our in vivo animal experiments demonstrated that
endogenous hyperinsulinemia causally contributes to PDAC development, independently of
hyperglycemia (Zhang et al., 2022; Zhang et al., 2019). Single-cell analysis revealed that
hyperinsulinemia altered gene expression in multiple cell types in the PanIN microenvironment (Zhang
et al., 2022), leaving open the question of whether the protective effects of reduced insulin production
are direct on the tumor precursor cells or whether they are mediated indirectly by local immune cells,
local fibroblasts, and/or via distant effects on adiposity (Mehran et al., 2012; Templeman et al., 2015;
Templeman et al., 2017). Consistent with a direct effect on the epithelium, insulin stimulates
proliferation in the PANC-1 and HPDE cell lines in vitro (Chan et al., 2014a), but this does not provide
information on the initiation of PDAC in vivo.

Insulin/IGF signaling, which includes KRAS/MAPK/ERK or PI3BK/AKT/mTOR cascades, is
prominent in human and animal pancreatic cancer. Activating mutations in KRAS are detected in
~95% of PDAC clinical cases and induce PanIN pre-cancerous lesions and rare tumours in mice
(Waters and Der, 2018). Activating mutations in PIK3CA are also found in 3-5% of PDAC patients
(Heestand and Kurzrock, 2015; Janku et al., 2013) and can initiate PDAC in mice (Payne et al., 2015).

Additionally, Pik3ca silencing was protective in Pdx1-Cre;Kras">-¢?°: Trp53-S--R172H

mice (Sivaram et
al., 2019). Strategies that systemically reduce signaling downstream of Insr/Igflr can suppress PDAC
(Hopkins et al., 2018; Payne et al., 2015), but they do not distinguish between the roles for insulin,
IGFs, or other upstream growth factors. Despite indirect evidence for an important role of insulin/IGF

signaling in this and other cancers, a direct and causal role for the insulin receptor alone has not been

demonstrated for any cancer. Insulin receptor protein is increased in some breast, prostate, and liver
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113  cancers (Aljada et al., 2015; Belfiore et al., 2017; Law et al., 2008), but its role in the pancreas

114  remains enigmatic.

115 In this study, we tested the hypothesis that hyperinsulinemia-induced enhancement of PDAC

116 initiation is mediated through direct insulin receptor signaling in pancreatic acinar cells. We found mice
117 that consumed a high fat diet had a significant reduction in PanIN and tumor development when they

118 lacked Insr specifically in Kras®*?°

-expressing acinar cells. These findings indicate that

119  hyperinsulinemia directly contributes to pancreatic cancer initiation through Insr in acinar cells via a
120  mechanism that involves increased production of digestive enzymes and subsequent pancreatic
121  inflammation.

122

123  Results

124  Effects of acinar cell-specific Insr loss on body weight and glucose homeostasis

125 We first generated Ptf1a®=R:Inst"":nTnG or Ptf1a“"=R;Insr™:nTnG mice to assess the baseline
126 roles of Insr in acinar cells (Figure 1A). All mice were fed with HFD after 3 weeks of age to sustain
127  hyperinsulinemia. Tamoxifen was injected at 4 weeks of age to induce recombination of the Insr"™
128 alleles and a Cre-dependent nTnG allele (Muzumdar et al., 2007), specifically in acinar cells (Figure
129 1B). As expected, mice consuming HFD gained weight over time. We did not find a significant

130 difference in body weight between male Ptf1a“"*=%;Insr":nTnG mice and Ptf1a“"*=%;Insr"";nTnG mice
131  but observed a significant and consistent reduction in body weight in female Ptf1a®tR;Insr™:nTnG

CER Insr*;nTnG mice (Figures 1C-D), perhaps as a result of a minor

132  mice compared to Ptfla
133  pancreatic insufficiency (see below). Fasting glucose was not different between genotypes (Figures
134  1E-F). HFD induced similar levels of hyperinsulinemia in both genotypes (Figures 1G-H) and males,
135 as previously reported (Zhang et al., 2022; Zhang et al., 2019), had higher overall levels of insulin

136 compared to females on HFD (Figures 1G-H). These insulin levels are well above the expected fasting
137 insulin levels of C57BI6J mice on a chow diet (138 +/- 24 pM) (Berglund et al., 2008) and higher than

138 we have previously reported in mice with reduced insulin gene dosage (Zhang et al., 2022; Zhang et

139  al., 2019). Pancreas weight of Ptf1a®=R;Insr";nTnG and Ptf1a“"=%;Insr":nTnG mice were not
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different at 12 weeks of age (Figure 11). These data demonstrate that mice with acinar-specific Insr

deletion having wild type-like pancreata.

Body weight and glucose homeostasis in mice with acinar-specific Insr loss and Kras mutation
To test our primary hypothesis, that hyperinsulinemia drives pancreatic cancer development via

Insr cell autonomously, we generated mouse models in which Kras®*?°

expression (Kopp et al., 2012)
and loss of Insr were both induced in acinar cells. Our cohorts contained mice with full Insr gene
dosage, Ptf1a“"5R;Kras">“¢*2%;Inst*™:nTnG (PK-Insr*™): mice with reduced Insr , Ptf1a“&R:Kras"S"
G120 ns:nTnG (PK-Insr™™): or mice without Insr, Ptf1a“&R;Kras">=*2%;Insr™:nTnG (PK-Insr™) in

G12D

Kras™ " -expressing acinar cells (Figure 2A). In this model, tamoxifen induced simultaneous acinar-

G12D flox

specific recombination to express mutant Kras”*~, a nTnG, and deletion of Insr™™" alleles. Multiple
studies have shown that HFD accelerates PanIN and PDAC development (Chang et al., 2017;
Dawson et al., 2013). Insr loss in acinar cells did not significantly affect the weight gain of male or
female mice in the context of mutant Kras (Figures 2B-C). Fasting glucose and insulin levels were also
similar between groups (Figures 2D-G). Thus, our model enabled us to test the role of acinar cell Insr
in the context of intact hyperinsulinemia and normoglycemia, which normally occurs in the obese
state.

G12D

Loss of Insr in Kras”“-expressing acinar cells reduced PanIN development

To test whether Insr loss affected Kras®'?P

-mediated PDAC formation from acinar cells, we
examined a cohort of 9-12 PK-Insr*", PK-Insr", and PK-Insr” mice for each sex and genotype and
planned to assess lesions at ~1 year of age based on our previous work (Zhang et al., 2022; Zhang et
al., 2019). However, half the male PK-Insr'"™ mice and a few female PK-Insr*" mice reached humane
endpoint earlier than we had expected (Figure 3A). This suggested that HFD promoted tumor
development in mice with full insulin gene dosage earlier than in mice with reduced insulin (Zhang et

al., 2022; Zhang et al., 2019). Through necropsy we noted that macroscopic tumors were present in

male PK-Insr*™ mice reaching humane endpoint (Figure 3A). Additionally, the remaining male PK-
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167  Ins™™ mice had PDAC or the parenchyma was almost completely replaced by ductal metaplasia

168  comprising cysts, PanIN, and ADM at 43.5 weeks of age (Figure 3A-B). Three male PK-Insr"" mice
169 also reached human endpoint prior to 43.5 weeks, but tumors were not observed at necropsy (Figure
170  3A). Finally, no male PK-Insr” mice reached humane endpoint by 43.5 weeks of age (Figure 3A).

171  PDAC was noted by histology in 40-50% of PK-Insr*" mice and PK-Insr"" mice (Figures 3A-C). In sum,
172 male PK-Insr™ mice lived longer than PK-Insr*" mice and PK-Insr*™ mice and had more normal

173  parenchyma left at 40.5 weeks of age suggesting that loss of Insr in Kras®?°

-expressing acinar cells
174  limits HFD-mediated promotion of acinar cell transformation.

175 As noted above, a few female PK-Insr*" mice, as well as a few PK-Insr*" mice also reached

176 humane endpoint prior to 43.5 weeks, but no macroscopic tumors were noted at necropsy (Figure 3A).
177  No female PK-Insr" mice reached humane endpoint by 43.5 weeks of age. Histologically, we found
178 that the incidence of PDAC in females was Insr dosage-dependent (Figures 3A-C). The majority of
179 female mice from every genotype, retained some normal parenchyma (Figures 3B-C). This suggested
180 that the extent of disease in females at 10 months of age was different than males and that female
181 mice had not yet maximally disrupted normal parenchyma function. This is consistent with previous
182  reports suggesting that the timing and/or extent of lesion formation between male and female mice in
183 the context of HFD may differ (Chang et al., 2017). Altogether, these data strongly suggested that

184 limiting or eliminating insulin/Insr activity specifically in acinar cells in male and female mice reduced
185 the propensity of HFD and Kras activation to transform the pancreas.

186 We next quantified the extent of the tissue disruption and lesion formation at 43.5 weeks of age to
187 assess the extent of disease present in the presence or absence of Insr. In parallel with PanIN

188 quantification between groups, we stained for nuclear GFP from the nTnG lineage reporter allele

189  (Muzumdar et al., 2007) in all pancreata. As expected, most acinar cells and PanIN lesions were GFP
190 positive (Figures S1A-B) confirming that the lesions arose from Ptfla” acinar cells. Rare mice with a
191 GFP labeling efficiency of acinar cells below 20% were excluded from further analysis. Pancreata from

192  Ptf1a®®®R:Insr"™:nTnG and Ptf1a“"*=%;Insr";nTnG mice were similarly comprised of acinar cells and

193 endocrine islets and by IHC had GFP expression widely present in acinar cells (Figures S1C-F),
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consistent with their Kras wild-type genotype. In contrast, pancreata from male and female PK-Insr*"*,
PK-Insr™, and PK-Insr”" mice all contained ductal lesions with histological characteristics of
metaplastic ducts, including ADM, low-grade and high-grade PanIN, and sometimes PDAC (see
above) (Figures 3B-C). When we quantified the PanIN and/or tumor area, we found that reducing Insr

in Kras®?P

-expressing acinar cells reduced the area of PanINs plus tumors, PanIN alone, or tumor
area in a dose dependent manner in males and females (Figures 3D-F). Consistent with this
histological-based quantification, measuring the pancreatic area containing ductal metaplasia (ducts,
ADM, PanIN and PDAC) or mucinous lesions (PanIN and some tumors) with Ck19 or Alcian blue
staining, respectively, similarly showed that female PK-Insr"™ mice formed significantly more lesions
than female PK-Insr” mice (Figures S2A-D). Notably, male PK-Insr*™ mice had a higher Ck19", but a
similar amount of Alcian blue” area compared to other genotypes. This latter observation is likely
explained by the presence of Alcian blue negative high-grade PanlIN lesions and large cysts with
predominantly normal ductal epithelium which were more prevalent in male than female, PK-Insr""
pancreata (Figure 3B and Figures S2A, S2C, S2E-F). Indeed, most male PK-Insr'"" and some female
PK-Insr*™ pancreata were comprised of almost all Ck19" area with little acinar cell area left, while
larger areas of normal acinar cells correlated with lower Ck19" areas in PK-Insr*" and PK-Insr” mice
(Figures 3B-C, Figure 3G and Figures S2G-H). Therefore, our data strongly suggested that acinar cell
Insr dose-dependently regulates oncogenic Kras-induced PanlIN initiation in the context of diet-
induced hyperinsulinemia.

Loss of Insr in Kras®'?®

-expressing acinar cells reduced PanIN initiation

To examine whether PanIN initiation was specifically affected by loss of Insr in acinar cells, we
examined 12-week-old male and female mice of each genotype. At 8 weeks post-tamoxifen injection,
acinar cells and PanIN lesions were also GFP positive indicating good recombination efficiency
(Figures S3A-B). There were no significant differences in pancreas weight between PK-Insr*", PK-
Insr”, and PK-Insr™ mice in either sex (Figure 4A). This is consistent with previous data showing that

CreER. LSL-G12D
:Kras

the pancreas was largely normal in young Ptfla mice (Kopp et al., 2012). Pancreata
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from PK-Insr’ mice were predominantly normal with a small number of ductal lesions having
characteristics of ADM or low-grade PanIN (Figures 4B-D). In contrast, significantly more of the
pancreas was occupied by PanIN in PK-Insr*" mice (Figures 4B-D). The significant inhibition of PanIN
formation solely through reducing Insr in acinar cells strongly supports a model in which the primary
mechanism by which diet-induced hyperinsulinemia promotes tumor initiation is through insulin

receptors on acinar cells.

Proteomic and phospho-proteomic analyses of pancreata from mice lacking acinar Insr
To investigate the underlying molecular mechanisms of Insr action in PanIN initiation, we
conducted unbiased total and phospho-proteomic analyses using the head of the pancreas from the

12-week-old female mice (Figure 4) with and without Kras®*®

and/or Insr. For the total proteome
dataset, we obtained reliable, quantitative data on 2889 proteins across all the samples. Consistent
with our histological analyses identifying a change in PanIN, we found that the inflammation- and
PanIN-associated proteins, Reg3a, Reg3b, Reg2, Tff1, Gknl, and Gkn2 (Chen et al., 2019; Li et al.,
2016; Steiner et al., 2022), were among the 124 proteins significantly enriched in PK-Insr*" compared
to Ptf1a“"*=%;Insr"™;nTnG pancreata (Figure 5A and Table S1). We also found that some proteins
associated with acinar cell function, such as Ctrc, Dbi, Pla2glb, and Clps, were among the 122

proteins significantly down-regulated as a consequence of Kras®?°

expression in acinar cells (Figure
5A). However, the majority of proteins associated with acinar cell function, like Cpal, Spinkl, and
Celal, remain unchanged between the PK-Insr*" and Ptf1a“tR;Insr**:nTnG genotypes (Table S1).
Importantly, we compared the differentially expressed pathways between PK-Insr** and
Ptf1a“"*=R:Insr"*:nTnG mice to differentially expressed pathways between human PDAC and normal
pancreas tissues adjacent to human PDAC (Cao et al., 2021) (Figures S4A-B). We found that most of
the pathways were significantly enriched in both mouse and human datasets, which suggested our
proteomic and phospho-proteomic results were relevant to human samples. Interestingly, we also

found 92 proteins increased in abundance and 155 proteins had decreased abundance solely due to

loss of Insr in Kras wild-type acinar cells (Figure 5B), with the caveat that we analyzed a low sample
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248 number. Nevertheless, reductions in Ctrc, Clps, Pla2glb suggested that Insr may have a role in

249  regulating the function of wild-type acinar cells in mice fed HFD (Figure 5C).

250 To define the molecular mechanisms associated with Insr deletion in the context of mutant Kras, we
251 focused further analyses on comparing the PK-Insr” pancreata to the PK-Insr'""" pancreata. We found
252  that 135 proteins were enriched and 117 were depleted in PK-Insr” mice compared to PK-Insr*"

253  controls (Figure 5C). We then used these differentially expressed genes to perform a K-means

254  clustering analysis with the differentially abundant genes between PK-Insr*" and PK-Insr” mice using
255 the protein abundance values in all genotypes to groups of proteins that varied by Insr status, Kras
256  mutation, or both (Figure 5D). As expected from our histological analyses, proteins associated with
257  PanlN initiation or formation in PK-Insr*™ compared to Ptf1a“";Ins'*™:nTnG pancreata, such as
258 Reg3a, Reg3b, Reg2, Tff1, Gknl, and Gkn2, (Figure 5A and 5D, cluster 1), were reduced in PK-Insr”
259  mice (Figure 5C, Figure 5D, cluster 1 and Table S4). In order to investigate potential functional

260 enrichment of protein groups based on cell signaling, intracellular localization, and biological process,
261  we used the differentially abundant proteins between PK-Insr*" and PK-Insr” mice (Adj. p<0.05) to
262  build protein-protein interaction networks using STRING (Szklarczyk et al., 2021) and assigned these
263  proteins to their intracellular organelle locations in a diagram using the COMPARTMENTS section of
264  GeneCards and/or existing knowledge of their function (Binder et al., 2014) (Figure 6A). This data
265  depiction (Figure 5D, cluster 2 and 3) highlighted the striking downregulation of the majority of the
266  proteins packaged into zymogen granules for secretion in PK-Insr” compared to

267  Ptf1a“"cR;Ins™™:nTnG and PK-Insr"" mice (Figure 6A-B). Acinar cells produce a large amount of
268  protein every day, and in Ptf1a“=R;Insr"*™:nTnG mice fed HFD, 18.7% of the peptides detected in our
269 analyses were associated with the zymogen granules and this was similar in PK-Insr** pancreata
270  (18.7%) (Figure 6C). However, this percentage was reduced significantly to 12.2% in PK-Insr”

271 pancreata, as well as to 16% in Ptf1a“"*=%;Insr”;nTnG pancreata (Figure 6C). This reduction in

272  zymogen proteins is likely an underestimate of the effect on the total proteome, as our differential

273 abundance analyses were normalized to total protein content. Thus, loss of Insr in acinar cells results


https://doi.org/10.1101/2022.05.06.490845
http://creativecommons.org/licenses/by-nc/4.0/

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.490845; this version posted July 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

in a coordinated decrease in the amount of digestive enzyme produced by acinar cells in the context
of HFD.

Pancreatic acinar cells represent the cellular majority in our bulk tissue proteome. With the caveat
that our bulk tissue includes multiple cell types, our STRING network analysis nevertheless highlighted
potential mechanisms downstream of Insr loss that could underlie this dramatic reduction in zymogen
granule content in acinar cells. This included increases in proteins with key roles in suppressing
protein synthesis at the ribosome (eEF2K) and suppressing insulin signaling (Ptpn1), as well as
increases in the first enzyme of the fatty acid beta oxidation pathway (Acox1), a protein regulating
lysosome function (Grn), and protein processing machinery at the ER and Golgi (llvbl, Ssr3, Ssr4,
Irag2). Many components of mitochondrial electron transport complexes were changed, as well as
endosomal and cytoskeletal proteins, many of which are involved in moving organelles within the cells
or in exocytosis, such as Snx5, Vps35I, Sycn (Figure 6A). Finally, we also found decreases in critical
parts of the spliceosome (Snrpa), the signal recognition particle complex receptor (Srprb), and
components of the large ribosome (Rpl29, Rpl36, Rpl37a). Altogether, these observations suggested
that loss of Insr in acinar cells and a reduction in PanIN formation is associated with a reduction in
synthesis of digestive enzymes.

Parallel phosphoproteomic analysis on the same samples confirmed and extended the findings
from our total proteomic analysis (Figure 7A-D). We identified 225 downregulated phospho-peptides
and 177 upregulated phospho-peptides by comparing the PK-Insr” pancreas to PK-Insr*™ controls
(Figure 7A). In general, statistically significant phospho-peptide differences were not due to underlying
differences in total protein abundance (Figure 7B). Using a similar strategy as above, we mapped the
function of the proteins to compartments and processes in the cell (Figure 7D). We found significant
decreases in phosphorylation in PK-Insr™ compared PK-Insr*" pancreata for proteins involved in
transcription elongation (Eloa, Top2a, Supt5h), mRNA splicing and nuclear speckle formation (Srpk1,
many Srsf proteins, Cherp, Srrml and Srrm2), as well as protein translation initiation (Eif4b, Eif5b, and
elF3 complex proteins) and elongation (Eeflb, Eefld, and many ribosomal subunits). There were also

decreases in phospho-peptides for Cavin3, which has been implicated in Akt-Erk signaling bias
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(Haoning Howard Cen, 2022; Hernandez et al., 2013), and PP1 inhibitor Ppplr2, at sites known to be
influenced by insulin signaling (Figure 7D). Finally, there was reduced phosphorylation of Larpl at
sites known to be regulated by Raptor and Rictor. Larpl is an RNA-binding protein that links mTorcl
to the regulation of terminal oligopyrimidine tract (TOP) mRNA that encodes for ribosomal proteins
and elongation factors (Hong et al., 2017). Altogether, our proteomics data suggested that Insulin/Insr
promotes the production of proteins in acinar cells in part through its modulation of Larpl and many
other components controlling transcription, translation, and secretion of digestive enzymes.
Interestingly, multiple sites on the cholecystokinin (Cck) receptor (Cckar) also showed altered
phosphorylation (Figure 7C-D), including sites in the main intracellular loop that are indicative of
ligand-induced desensitization (Rao et al., 2000) and phospho-sites in the C-terminal tail that have not
been previously reported. Collectively, these unbiased total and phospho-proteomic studies delineate
the possible molecular mechanisms by which hyperinsulinemia, acting via the Insr, may promote Kras-
driven pancreatic cancer initiation.

Our histological analyses, as well as our total proteomics and phosphoproteomics suggested that
loss of the Insr in acinar cells prevented the formation of PanIN and prevented the induction of genes
associated with pancreatic injury, such as Reg3a, Reg3b, and Reg2. To examine whether loss of Insr

612D jctivation and

in acinar cells prevented the injury and/or fibrosis typically associated with Kras
PanIN formation, we performed Sirius Red staining on 12-week-old pancreata (Figures 8A-B). In PK-
Insr"™ control pancreata, Sirius Red staining surrounded the metaplastic ducts, containing ADM and
PanlIN, as well as the surrounding acini in nearby lobules (Figures 8A-B). In contrast, in the PK-Insr™
pancreata, the metaplasia that did form tended to be associated with less Sirius Red staining and less
staining in the neighboring lobules (Figures 8A-C). In male PK-Insr"" pancreata, the extent of Sirius
Red staining significantly correlated with the amount of PanINs formed (Figure S5A). In female PK-
Insr* pancreata, there were higher than expected amounts of Sirius Red given the amount of PanIN

observed, but the relationship between the values was still strong (Figure S5B). However, in the

absence of Insr very few PanIN formed in both sexes and this was associated with a lower amount of


https://doi.org/10.1101/2022.05.06.490845
http://creativecommons.org/licenses/by-nc/4.0/

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

345
346
347
348
349
350
351
352
353

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.490845; this version posted July 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Sirius Red staining, especially in females. This supported our hypothesis that inflammation was

G12D

reduced in the absence of Insr in Kras™ " -expressing acinar cells.

Our proteomics data suggested that fewer digestive enzymes were present in the absence of Insr

in acinar cells when Kras®*?°

expression was also present (Figure 6). Given that autoactivation of
trypsinogen in acinar cells or in the pancreatic parenchyma contributes, at least in part, to the
induction of pancreatitis (Smith and Solomon, 2014), we reasoned that the reduced presence of
enzymes in the absence of Insr could result in less tissue damage spreading into other lobules. This
would result in decreased ADM and PanIN formation, as in the PK-Insr” pancreata. To test this
hypothesis, we utilized an 3D ex vivo model of ADM formation from wild-type acinar cells (Figure 8D)
(Fleming Martinez and Storz, 2019; Means et al., 2005a). Wild-type acinar clusters grown in collagen
for 5 days maintained their acinus morphology, as previously shown (Means et al., 2005a). In addition,
treatment with TGF-a induced these clusters to form a duct-like lumen structure (Figure 8E) (Means et
al., 2005b). Addition of increasing concentrations of insulin alone had only a modest effect on acini
clusters (Figure 8E-F). However, increasing concentrations of insulin in combination with TGF-a
induced ring formation significantly (Figure 8E-F). Remarkably, the synergism between insulin and
TGF-a was significantly reduced by the presence of trypsin inhibitor in the culture media (Figure 8F).
Because acinar cells are the source of trypsinogen and this pro-enzyme is prone to autoactivation, our
data suggested that hyperinsulinemia-mediated promotion of enzyme production in acinar cells can
result in increased inflammation and promote initiation of PanIN lesions from acinar cells sustaining

activating mutations in Kras (Figure 8G).

Discussion

The purpose of this study was to test the hypothesis that hyperinsulinemia in the obese state acts
directly on acinar cells to promote pancreatic cancer initiation. Our data clearly support a model where
Insr in acinar cells plays a causal role in supporting cancer initiation in the context of diet-induced
obesity and mutant Kras. The contribution of direct insulin action on acinar cells during initiation from

normal cells explains a large portion of the effects of HFD, but our results do not preclude roles for Insr
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in other local or distant cell types (Zhang et al., 2022) and at other times during the progression of the
initial precursor lesions to PDAC. Our unbiased proteomic and phospho-proteomic analyses led us to
propose a model in which HFD and hyperinsulinemia through Insr in acinar cells promote the
physiological function of acinar cells to supply digestive enzymes to breakdown lipid rich food in the
duodenum. However, the increased presence of enzymes increases the risk of autoactivated trypsin,
as well. This increased propensity for trypsin-induced injury would result in sub-clinical levels of
inflammation and acinar-to-ductal metaplasia. Thus, the physiological response of pancreas to a diet
rich in fat results in increased insulin production from beta cells, which further promotes an increased
enzyme production capacity in acinar cells. However, in the context of Kras mutations, this increased

G12D

production can lead to increased chances of inflammation that enhance Kras signaling and

promote an irreversible transformation in Kras®*?°

-expressing acinar cells. Thus, our studies provide a
key missing link explaining the connection between obesity and hyperinsulinemia and increased
pancreatic inflammation and PanlIN initiation.

Diet-induced obesity induces insulin hypersecretion, increases beta cell mass and impairs insulin
clearance, resulting in sustained hyperinsulinemia (Mehran et al., 2012; Zhang et al., 2021). Mice
used in this study, which had the full complement of all 4 insulin alleles (Ins1 and Ins2), exhibited
higher fasting insulin levels (males 1000-1500 pmol/L; females 500 pmol/L) than our previous models
with insulin gene dosage reduced to 1 or 2 copies (males, 400-800 pmol/L; females 100-200 pmol/L)
(Zhang et al., 2022; Zhang et al., 2019). Consistent with our working model that endogenous
hyperinsulinemia contributes to pancreatic cancer development, more than 90% of the normal
pancreatic area in the PK-Insr™™ mice in this study was replaced by ductal metaplasia, PanIN, and
tumors at 10 months of age. Notably, 1-year-old PK-Ins1**;Ins2”" control mice had just ~25% of the
pancreas replaced by PaniINs, while PK-Ins1”;Ins2"* mice were at ~1-4% by 1 year of age (Zhang et
al., 2022; Zhang et al., 2019). If only considering PDAC, ~70% of female PK-Insr*™ mice developed
PDAC in this study at 10 months of age, while only 1 female PK-Ins1**;Ins2” mouse developed PDAC
after a year (Zhang et al., 2022; Zhang et al., 2019). Together, these findings suggest that simply

reducing insulin production limits PanIN initiation in the context of obesity.


https://doi.org/10.1101/2022.05.06.490845
http://creativecommons.org/licenses/by-nc/4.0/

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.490845; this version posted July 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

All cells in the body have insulin receptors and require insulin signaling for key functions, including
nutrient uptake for storage and anabolism. While the roles of Insr in hepatocytes, myocytes, and
adipocytes are well studied (Cen et al., 2022; Cherrington, 2005; Haeusler et al., 2018), the
consequences of Insr loss in pancreatic acinar cells remain understudied. In this study, we specifically

deleted the Insr gene from acinar cells using the Ptf1a“"®

allele and showed that insulin insensitivity
in acinar cells had no obvious effects on systemic glucose homeostasis or serum insulin levels
regardless of the Kras gene status. This suggests that the systemic regulation of glucose and insulin
homeostasis are similarly perturbed in our mice fed HFD. Our data, combined with our previous
studies (Zhang et al., 2022; Zhang et al., 2019), effectively rule out an essential role for hyperglycemia
in PanIN and PDAC formation, but do not preclude potentially important roles for hyperglycemia in the
later stages of disease (Sato et al., 2020; Vaziri-Gohar et al., 2022).

Insulin receptor signaling activates PISK/AKT/mTOR and MAPK/ERK signaling cascades, both of
which have mitogenic effects. Effector proteins in these two pathways are frequently mutated during
tumorigenesis (Guo et al., 2020; Samuels et al., 2004; Yang et al., 2019), including in pancreatic
cancer. Indeed, activating mutations in Kras, a key mediator of insulin and insulin-like growth factor
signaling, drive the vast majority of pancreatic cancers (Waters and Der, 2018). Previous in vitro
evidence supported the concept that hyperinsulinemia could promote cancer cell growth through over-
activating the signaling cascades downstream of Insr protein (Chan et al., 2014b; Gallagher and
LeRoith, 2020; Godsland, 2009; Zhang et al., 2021). Our findings are the first in vivo studies in any
cancer type to demonstrate a direct causal role for hyperinsulinemia in the cancer cell of origin.

Mechanistically, our proteomic data demonstrated that Insr loss in acinar cells results in the
coordinated reduction in digestive enzymes, with or without mutant Kras. This indicates that insulin
signaling normally supports exocrine function. The reduced body weight in mice lacking acinar-cell
Insr is also consistent with sub-clinical pancreatic insufficiency and a relative reduction in the ability to
utilize ingested nutrients. Our observations are consistent with previous studies, including the
observation that amylase production is diminished by B-cell ablation using streptozotocin and restored

with insulin injection (Frier et al., 1976; Henderson et al., 1981; Soling and Unger, 1972). Mutations
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that result in increased trypsin activity in the pancreas (Chang et al., 2017), as well as animal studies
using the Cck analog, caerulein, to stimulate enzyme secretion at supraphysiological levels (Guerra et
al., 2007), have demonstrated that tight control of digestive enzyme function reduces the risk of
forming PDAC. Interestingly, our phospho-proteomic data identified hyper-phosphorylation of the Ccka
receptor in Insr-knockout pancreas, linking local insulin signaling to Cck, a key endogenous regulator
of acinar cell function and pancreatic weight. Cck secretion from I-cells is stimulated by the presence
of amino acids and fat, which induces the highest I-cell secretion responses, in the small intestine
(Otsuki, 2000). Cck affects pancreatic secretions predominately through local action on nerve fibres in
the gut to induce a vago-vagal reflex circuit, resulting in acetylcholine secretion from nerves in the
pancreas. Alternatively, it also can act directly on murine acinar cells through the Ccka receptor. In
addition to mediating digestive enzyme release from acinar cells, previous studies have also shown
that injecting low levels of Cck into mice results in increased pancreatic size over time (Dembinski and
Johnson, 1980; Varga et al., 1988). This suggests that Cck helps regulate the enzyme production
capacity of the pancreas. Finally, it has been reported that HFD-associated inflammation can also
promote islet Cck expression, which was proposed to play a role in obesity-associated PanIN
formation (Incio et al., 2016). However, our data indicate that hyperinsulinemia, acting through Insr, is
the upstream driver of diet-induced inflammation via hyperactive digestive enzyme production. This
supports a working model whereby hyperinsulinemia promotes PanlIN initiation via increased local
inflammation associated with elevated digestive enzyme production and/or release (Figure 8G). Insr
loss in acinar cells counters the increased signal for acinar cell enzyme production or cell proliferation
induced by HFD. Further studies are needed to fully understand the impact of dietary content on

612D_mediated transformation.

acinar cells and their susceptibility to Kras
Our proteomic analyses revealed other key mechanisms associated with suppressed pancreatic

cancer initiation from acinar cells lacking Insr. For example, mRNA splicing and translation factors,

known targets of insulin signaling (Haeusler et al., 2018), are differentially abundant in the pancreas

G12D

after Insr loss in Kras™ “~-expressing acinar cells, suggesting possible mechanisms by which insulin

might regulate the production of digestive enzymes. We also found evidence that reduced insulin
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signaling affected cellular metabolism. Previous studies have suggested that insulin can promote

glycolysis in wildtype acinar cells to protect them during pancreatitis (Bruce et al., 2021), however,
detailed analyses of cell-type-specific mechanisms await single-cell cell proteomic and single-cell

metabolomic characterization of this model.

We acknowledge the limitations of our study. One limitation of our study, and the field, is that
existing antibody reagents are not specific enough to perform accurate anti-Insr staining that would
allow us to determine whether acinar cells with normal morphology had escaped recombination at the
Insr floxed allele. Another limitation is that, while our proteomic analysis provided quantification of
2889 protein abundances and 8787 phospho-sites, coverage of the proteome was not complete and
biased against membrane proteins. For example, analysis of the abundance and phosphorylation of
Igflr, a protein that could compensate in Insr knockout cells, will require targeted assays and/or
membrane fractionation. Insulin can bind to homodimeric Igfl receptors and heterodimeric Insr/Igflr
hybrids, although at a lower affinity (Belfiore et al., 2009; Belfiore et al., 2017), to mediate its pro-
tumourigenic effects. Nevertheless, it is clear that simply reducing Insr gene dosage was sufficient to
reduce the effects of hyperinsulinemia on PanlIN initiation. While we were unable to assess the role of
Igflr, future studies examining acinar cell-specific Igflr loss in the presence or absence of concomitant
Insr loss would be necessary to delineate any contribution to PanIN formation.

In summary, our data strongly suggest that insulin receptor signaling in acinar cells contributes to
the PanIN and PDAC development. Our data illustrate the complex and interconnected molecular
mechanisms by which hyperinsulinemia, acting directly through acinar cell Insr, promotes pancreatic
tumourigenesis. We can infer that targeting insulin receptor signaling pathways, or hyperinsulinemia

itself, may be beneficial in treating and preventing pancreatic cancer.
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Methods
Mice

All animal experiments were conducted at the University of British Columbia with approval of the
University of British Columbia Animal Care Committee in accordance with Canadian Council for
Animal Care guidelines. All alleles have been described previously (Bruning et al., 1998; Kopp et al.,
2012; Pan et al., 2013; Prigge et al., 2013; Sgs Skovsg, 2021; Tuveson et al., 2004). Kras-S-c12PM
(#008179), Insr™ (#006955), and nuclear TdTomato-to-nuclear EGFP (NTnG) mice (#023035) were
purchased from Jackson Labs (Bar Harbour, USA). Ptf1a®*" mice (C57BL/6) were a gift from Chris
Wright (Vanderbilt, USA). Mice were maintained on C57BL/6 genetic background and housed at the
University of British Columbia Modified Barrier Facility which was temperature-controlled and specific
pathogen-free. They were kept on a 12:12 hr light: dark cycle with food and drinking water ad libitum.
To generate genetic background-matched Ptf1a“Ef":Kras-S-C12PW: |ngt"™:nTnG, Ptf1a®Ef™:Kras-St
G120 |nsr*nTnG, and Ptf1a®® ™ Kras " ¢?°M: Insi”:nTnG mice, Ptf1a“**":Kras">""
GL2DM-|nsnTnG mice were bred with Insr* mice. After weaning (3 weeks), the resulting litters were
fed with high fat diet (HFD), and at 4 weeks of age, recombination was induced over three consecutive
days by subcutaneous injections of tamoxifen in corn oil (20 mg/mL) of 5 mg tamoxifen/40 g body
mass. One cohort of mice was euthanized at 10 months of age for histopathology analyses and the
whole pancreas was used for histopathology analyses. Another cohort of mice was euthanized at 12
weeks of age. For mice euthanized at 12 weeks, each pancreas was cut into three pieces roughly
based on the pancreas anatomical structure: head, body, and tail. The body piece was used for
histopathological analyses, while the other pieces were snap frozen in liquid nitrogen and kept at -

80°C. The head piece was processed for proteomics and phospho-proteomics analyses (see below).

Assessment of glucose homeostasis
Mouse body weight and fasting blood glucose levels were measured every 4 weeks and fasting
insulin were measured every 3 months. Before the measurements, mice were fasted for 4 hours in

clean and fresh cages during the light period. One drop of blood was collected from each mouse’s
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saphenous vein and a Lifescan OneTouch Ultra Mini glucometer was used to measure the fasting
blood glucose levels. About 30 ul of blood was collected with a heparinized microhematocrit capillary
tube (Fisher Scientific, 22-362566, Waltham, MA, USA) for measuring fasting insulin levels. The
collected blood was centrifuged at 10,000 rpm for 10 minutes to collect the blood serum. Then the
blood serum was kept at -20°C until used to measure the fasting insulin levels with insulin ELISA (80-

INSMSU-E10; ALPCO Diagnostics, Salem, NH).

Histopathological, morphological, and immunohistochemical analyses

Pancreata were fixed in 4% paraformaldehyde for 24 hours followed by paraffin embedding. Mouse
pancreata were sectioned then stained with hematoxylin and eosin (H&E), and Alcian blue as
previously described (Lee et al., 2018; Zhang et al., 2022; Zhang et al., 2019). The stained slides were
scanned with a 20x objective using a 3DHISTECH Panoramic MIDI (Quorum Technologies Inc.
Guelph, Canada) slide scanner. Histopathological analyses were conducted in a de-identified manner
and verified separately by J.L.K and D.F.S. All histopathological analyses were performed on one of
the stained sections that displayed the maximal pancreatic cross-sectional area unless otherwise
stated. Every gland with a lumen was categorized as normal, ADM, PanIN, or neoplasia, and glands
representing more than one of these categories were scored based on their highest-grade feature.
The total pancreatic area, PanIN plus tumor area, PanIN area, and normal acinar cell area were
measured as previously described (Zhang et al., 2022; Zhang et al., 2019). Briefly, the total pancreatic
area, PanIN plus tumor area, PanIN area, normal acinar cell area was determined by masking all
pancreatic tissue, selective masking of the PanIN plus tumor area, selective masking of the only
PanIN area, and selective masking of the normal acinar cell area by Adobe Photoshop. Pixels for the
total pancreatic area or each histological feature were measured by ImageJ and this was used to
calculate the percentage area occupied by each histological feature. For Alcian blue positive area,
Adobe Photoshop 2020 Black & White function was used to highlight the blue area (red filter). The

total pixels for pancreas or Alcian blue positive area were counted using ImageJ.
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Immunohistochemical (IHC) staining was performed according to published standard protocols (Lee
et al., 2018; Zhang et al., 2022). Primary antibodies were rabbit anti-cytokeratin 19 (Ck19) (Abcam,
ab133496, 1:1000) and goat anti-GFP (Abcam, ab6673, 1:200). Secondary antibodies were biotin-
conjugated donkey anti-rabbit (Jackson ImmunoResearch Laboratories, Inc., 711-065-152, 1:500) and
biotin-conjugated rat anti-goat (Vector Laboratories, MP-7404, 1:2). IHC slides were scanned with a
20x objective using a 3ADHISTECH Panoramic MIDI slide scanner. Ck19 positive area was measured
with Adobe Photoshop 2020 using the Black & White function to filter and highlight the brown area

(blue filter), which was then taken as a percent of pixels in the pancreatic section.

Proteomics analyses

The whole head of pancreata collected from female mice at 12 weeks of age (Ptf1a“"**%;Kras">"
G120 ns"™:nTnG (n=3), Ptf1a®ER:Kras"S- % Insr":nTnG (n=6), Ptf1la®®R:Kras"S-¢*?P:Insr":nTnG
(n=6), Ptf1a“"*=:Insr"™:nTnG (n=3), and Ptf1a®“R:Insr™:nTnG (n=2) mice) were frozen and used for
(phospho)proteomic analyses. The frozen sample was ground into powder in a liquid nitrogen-cooled
mortar and pestle and kept on dry ice until mass-spec analysis. Proteins were extracted from
cryopulverized tumors in a buffer containing 5% sodium dodecyl sulfate (SDS) and 100 mM TRIS pH
7.8 supplemented with PhosStop phosphatase inhibitor cocktail (Roche). The protein concentration of
the lysate was determined using bicinchoninic acid assay (BCA) (Thermo Fisher Scientific), and
protein disulfide bonds were reduced and free Cysteines alkylated with 20 mM tris(2-
carboxyethyl)phosphine (TCEP) and 30 mM iodoacetamide, respectively. 250 ug of total protein was
used for proteolytic digestion using S-TRAP Mini columns (Protifi LLC, Huntington NY) (HaileMariam
et al., 2018). Resultant tryptic peptides were then vacuum concentrated and desalted using Oasis HLB
SPE cartridges (Waters). Peptides were vacuum concentrated and reconstituted in 0.1% trifluoro
acetic acid (TFA), and 10% of the total sample was reserved for measurement of the total proteome.
The remaining 90% of the sample was diluted in 80% acetonitrile with 0.1% TFA for automated

phosphopeptide enrichment using AssayMap Fe-NTA (lll) immobilized metal affinity chromatography
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(IMAC) cartridges and a Bravo liquid handling system using the phosphopeptide enrichment v 2.1

application (Agilent).

LC-MS/MS acquisition and data analysis

Samples for both total proteomics and phosphoproteomics were analyzed by data dependent
acquisition (DDA) using an Easy-nLC 1200 and Q Exactive Plus (both Thermo Fisher Scientific).
Samples were first loaded onto a precolumn (Acclaim PepMap 100 C18, 3 um particle size, 75 um
inner diameter x 2 cm) in 0.1% formic acid (buffer A), and gradient elution was performed using a 100-
min method from 3 to 40% buffer B (84% acetonitrile, 0.1% formic acid) on the analytical column
(Acclaim PepMap 100 C18, 2 um patrticle size, 75 um inner diameter x 25 cm) at a flow rate of 300
nL/min. MS scans were acquired between 350-1,500 m/z at a resolution of 70,000, with an automatic
gain control (AGC) target of 1 x 10e610E6 ions and a maximum injection time of 50 ms. The top 15
precursor ions with charge states +2, +, +3, and +4 were isolated with a window of 1.2 m/z, an AGC
target of 2 x 10e410E4 and a maximum injection time of 64 ms and fragmented using a normalized
collision energy (NCE) of 28. MS/MS were acquired at a resolution of 17,500 and the dynamic
exclusion was set to 30 s. DDA MS raw data was processed with Proteome Discoverer 2.5 (Thermo
Scientific) and searched using Sequest HT against the mouse reference proteome FASTA database
from Uniprot (downloaded October 1% 2021; 17,054 forward sequences). The enzyme specificity was
set to trypsin with a maximum of 2 missed cleavages. Carbamidomethylation of cysteine was set as a
fixed modification and oxidation of methionine, as well as phosphorylation of serine, threonine, and
tyrosine as variable modifications. The precursor ion mass tolerance was set to 10 parts per million,
and the product ion mass tolerance was set to 0.02 Da. Percolator was used to assess posterior error
probabilities and the data was filtered using a false discovery rate (FDR) of <1% on peptide and
protein level. The Minora node of Proteome Discoverer was used for label free quantitation. For the
new human comparison, Pathway enrichment was performed our mouse data and PDAC human data
(Cao et al., 2021) using Reactome (v80) (Gillespie et al., 2022). We performed differential abundance

analysis on the human data using the R package limma (Ritchie et al., 2015). For our data, we used a
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cutoff of Adj. p<0.05. For the human data, we used Adj. p<le-19 and 1e-12 for the total proteins and

phospho-proteins respectively to ensure a comparable proportion of the total number detected.

Primary mouse acinar cell isolation and three-dimensional culture

Primary pancreatic acinar cells were isolated from pancreata of wild-type female mice at the age of
6-8 weeks. The acinar cell isolation procedure was adapted from the protocol described by Martinez
and Storz (Fleming Martinez and Storz, 2019). Briefly, the mouse pancreas was harvested and
washed three times in 1x HBSS, which were then minced into 1-5mm pieces. The fragmented tissue
was then digested with 5mL (0.4mg/mL) collagenase P in 37 °C with gentle shaking for 18 minutes.
HBSS (10mL) with 5% FBS was added to terminate the digestion reaction, followed by 3 washes with
10mL HBSS (5% FBS) to remove the residual collagenase P. After each wash, the tissue was pelleted
(450g RCF, 2 min at room temperature) and the supernatant was removed. The digested tissue was
resuspended in 10mL HBSS (5% FBS) and filtered through a 100 pM cell strainer, followed by a wash
with 10mL HBSS (5% FBS). The filtrate was gently added to 20mL HBSS 30% FBS cushion to form
layers of cells. The cell mixture was centrifuged at 180g RCF at room temperature for 2 minutes to
pellet acinar cells. Appropriate number of acinar cells were then resuspended in premade collagen
solution (I1mg/ml rat tail typel collagen, 10x Waymouth’s media, RPMI1640 complete media (1% FBS,
1x penicillin/streptomycin, 1ug/mL dexamethasone), adjusted to pH = ~7.8 with 1M NaOH) and plated
(50uL per well) in collagen pre-coated 96-well plates. After solidification, 100 yL of the RPMI1640
complete media with insulin (0.1nM-100nM), TGF-a (50ng/mL) or combined treatments, with or
without 0.1mg/mL soybean trypsin inhibitor was added. Media was replaced on day 1 and 3, and the
numbers of ADM events in each well were quantified on day 5. Isolated cells were maintained at 37 °C

in a humidified incubator with 5% CO,.

Statistical analyses and data visualization
Animals were excluded from the histopathological analyses if they were found dead or if NTnG

recombination efficiency (% acinar cells or PanIN cells labeled with GFP) was lower than 20%.
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Statistical analyses were conducted with GraphPad Prism 9.3.0. The Shapiro-Wilk test was used to
assess data normality. One-way ANOVA was performed unless otherwise stated. Mixed-effect
analyses were run for glucose homeostasis data (mouse body weight, fasting glucose level, and
fasting insulin level). When comparing the histopathological measurements between male and female
mice from the same genotype, a two-tailed student’s t-test was run for normally distributed data and a
Mann-Whitney test was performed for non-normally distributed data. Statistical parameters, including
the exact value of sample size n (animal number), precision measures and dispersion (mean + SEM),
and statistical significance levels, are reported in the Figures and Figure legends. A p-value <0.05 was
considered significant. In Figures, asterisks denote statistical significance (*p<0.05, **p<0.01,
***n<0.001, and ****p<0.0001).

For total proteomics data, normalization, imputation, and differential expression analyses were
performed on the protein abundances using Proteome Discoverer. Differential expression analysis
used background-based t-tests with p-values adjusted using Benjamini-Hochberg correction. The
proteins were filtered for significant comparisons (Adj. p<0.05), and heatmaps were created with
resultant protein lists. We also applied k-means clustering and extracted clusters with patterns of
interest (Gu et al., 2016). From this heatmap, a class of specific secreted proteins were identified and
values for all samples were plotted in a heatmap and sorted with hierarchical clustering. We used
STRING (v11) to generate an edge table with differentially expressed total proteins (Adj. p<0.05) with
an absolute log,(Fold Change) cut-off of 2.5 in Ptf1a®®tR:Kras"S=¢'?P:|nsi"*:nTnG compared to
Ptf1a"tR:Kras"S-®1?2:1nsi”:nTnG. Protein-protein relationships were only included if they involved
experimental evidence or interactions annotated in other databases (Szklarczyk et al., 2021).
Cytoscape (v3.9.1) was used to visualize the network (Shannon et al., 2003), with background images
created with BioRender.com.

Phospho-proteomics data were analyzed two ways. In the first approach, we only used phospho-
peptides with measurements made in a minimum of 2/3 of all the samples and at least one sample per
group. We imputed missing phospho-protein values in samples before normalization and statistical

analysis using the same process as the total proteomics, allowing a broader assessment of the
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phospho-protein landscape. These were plotted using volcano plots and against the corresponding
proteins in the total protein data set with calculated log,(Fold Change) of the median. In the second
approach, we aggregated the abundances of each sample for each phospho-site detected, and
normalized each of the detected phospho-sites to the total abundance of the corresponding protein.
We only included phospho-sites where every sample had an experimentally measured total protein
value. The second method used differential expression analysis performed using the R package limma
on the Ptf1a“®&R:Kras"S"" 2% Insr"™:nTnG vs Ptfla®*=;Kras">~%*?";Insi":nTnG comparison (Ritchie et
al., 2015). The top differentially abundant phospho-sites (sorted by Adj. p-value) were plotted as a
heatmap and sorted with hierarchical clustering (Gu et al., 2016). Phosphosite (www.phosphaosite.org)
was used to determine upstream activators, cellular location, and function of each protein, as well as
the specific kinases of the detected phospho-sites (if known). STRING was used to identify proteins

that physically interact with each other (Szklarczyk et al., 2021).
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Figure Legends

Fig. 1. Loss of Insr in pancreatic acinar cells had no effect on glucose homeostasis and
pancreas size.

A, Schematic describing mouse models designed to test the role of insulin receptor signaling in

CreER

pancreatic acinar cells. On the background of the Ptfla mice, we generated mice having two wild-

) or two Insr floxed alleles (Insr™

Wiw

type Insr alleles (Insr ). B, Three-week-old mice were weaned and
provided high fat diet (HFD) for the duration of the study. At 4-weeks-old, they were injected with
tamoxifen (TM) on 3 consecutive days. Physiological measures were taken every 3 months for 10
months, mice were euthanized at 12 or 43.5 weeks of age for histopathological, proteomics, and
phospho-proteomics analyses. C-H, Body weight (C-D), fasting blood glucose (E-F), and fasting
insulin (G-H) measurements in male (C, E, G) and female (D, F, H) Ptf1a““®R-Insr"" and Ptf1a“"™"-
Insr™ mice measured over >1 year (n= 10-17). |, The ratio of pancreatic weight to mouse body weight

for male (M) and female (F) Ptf1a“"*=R-Insr*" and Ptf1a“"R-Insr" mice (n= 3-6). Values shown as

mean = SEM.

Fig. 2. Loss of Insr in pancreatic acinar cells had no effect on glucose homeostasis in
Ptf1a“"***-induced Kras®**® pancreatic cancer model.

A, Schematic describing a mouse model designed to test the role of insulin receptor signaling on HFD-
accelerated PDAC initiation. On the background of the Ptfla““®R-induced Kras®*?° pancreatic cancer

Wiw

model (PK), we generated mice having two wild-type Insr alleles (Insr™), one Insr floxed allele

wif

(Insr™™), or two Insr floxed alleles (Insr™). B-G, Body weight (B-C), fasting blood glucose (D-F), or
fasting insulin (F-G) measurements for PK-Insr*", PK-Insr"", and PK-Insr” male (B, D, F) and female

(C, E, G) mice (h= 13-33). Values shown as mean + SEM. *p<0.05.

Fig. 3. Loss of Insr in acinar cells reduced PanIN and PDAC formation.
A, Percentage of mice of the indicated genotype that were found dead or reached humane endpoint

throughout the study. The star symbol indicates whether a macroscopic mass was observed in the
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pancreas at necropsy, when possible. There were 8 PK-Insr**, 20 PK-Insr*", and 7 PK-Insr"" male
mice and 9 PK-Insr"™ 17 PK-Insr", and 12 PK-Insr” female mice in the cohort. At 43.5 weeks, the
remaining mice were euthanized and assessed for presence of tumors. B-C, Representative whole
section (top) and high-magnification (bottom) H&E images of pancreatic slides from 43.5-week-old
male (B) and female (C) PK-Insr'"", PK-Insr™", and PK-Insr™ mice. D-G, Quantification of PanIN plus
tumor area (D), PanIN only area (E), tumor area (F), or acinar cell area (G) in pancreata from each
genotype and sex (male or female) (n= 5-16). Filled dots and triangles denoted mice that developed
tumors in D. Scale bars: 2 mm (top) and 0.1mm (bottom). Values are shown as mean + SEM. *p<0.05,

**p<0.01, ***p<0.001, ****p<0.0001.

Fig. 4. Loss of Insr in acinar cells reduced PanIN lesions initiation.

A, The ratio of pancreatic weight to mouse body weight for male (M) and female (F) PK-Insr*™, PK-
Insr” and PK-Insr™ mice (n= 3-15). B, Quantification of PanIN area in pancreata from each genotype
and sex (male or female) (n= 3-14). C-D, Representative whole section (top) and high-magnification
(bottom) H&E images of pancreatic slides from 12-week-old male (C) and female (D) PK-Insr*", PK-
Insr”, and PK-Insr™ mice. Scale bars: 2 mm (top) and 0.1mm (bottom). Values are shown as mean +

SEM. *p<0.05, **p<0.01.

Fig. 5. The proteomic analysis of insulin receptors’ effects on PanlIN initiation
A, Volcano plot for proteins that were significantly up- or down-regulated in PK-Insr*™ mice (n=3)

CreER_Iner/W

compared to Ptfla mice (n=3). B, Volcano plot for proteins that were significantly up- or

down-regulated in Ptf1a“"*=*-Insr™ mice (n=2) compared to Ptf1a“=R-Insr"™

mice (n=3). C, Volcano
plot showing proteins that were significantly up- or down-regulated in PK-Insr” mice compared to PK-
Ins*™ mice. D, Proteins that were differentially abundant between PK-Insr*™ and PK-Insr™ mice were
selected and their abundance across all genotypes was used for k-means clustering. The clusters

were visualized by heatmap to show their variance across all genotypes. The proteins in clusters 1, 2,

3, and 7 are listed in the order shown in the heatmap from top to bottom.
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Fig. 6. Loss of Insr in acinar cells reduced digestive enzymes production in pancreas.

A, Differentially abundant proteins between PK-Insr** and PK-Insr'” pancreata were connected using
STRING and diagrammatically presented here in the context of Insr signaling and cellular organelles
and functions. The color in each oval reflects the fold change, while the thickness of the line around
the oval represents the Adj. p-value. Proteins depicted in white ovals were added to show the potential
relationship of the differentially abundant proteins to insulin signaling. B, Heatmap showing the change
of protein abundance between genotypes for proteins involved in pancreatic digestive enzymes
secretion. C, The percentage of summed digestive enzyme abundances in total measured proteins for

each genotype. Values are shown as mean + SEM. *p<0.05, **p<0.01.

Fig. 7. The phospho-proteomic analysis of insulin receptors’ effects on PanlIN initiation

A, Volcano plots for phospho-peptides that were significantly up or down regulated in PK-Insr™ mice
compared to PK-Ins*™ mice. B, Change in phospho-peptide abundance (Adj. p-values indicated in
red) compared to the change in corresponding protein’s abundance between PK-Insr™ mice and PK-
Insr™ mice. C, TOP: Schematic of phosphorylation sites on Cckar that were differentially abundant in
any comparison. BOTTOM: The relative phospho-peptide abundance (arbitrary units) for each
detected phospho-peptide for all samples (white dots) and genotypes. D, Intracellular locations and
functions of differentially abundant phospho-sites and their corresponding protein. The color in each
attached phospho-site reflects the fold change, while the thickness of the border represents the Adj. p-

value. Values are shown as mean = SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Fig. 8. Insulin receptor signaling promotes PanIN initiation via increased inflammation
associated with hyperactive digestive enzyme production.

A-B, Representative whole section (top) and high-magnification (bottom) images of pancreatic slides
from 12-week-old male (A) and female (B) mice PK-Insr*™, PK-Insr*", and PK-Insr" stained with Sirius
red. C, Quantification of Sirius red positive area for mice from each genotype and sex (male (M) or

female (F)) (n= 3-4). D, Schematic of the experimental design of the ADM formation assay using 3D
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912 acinar cell explant system. E, Representative bright field images of acinar cell clusters and duct

913 formation (ring structures) on day 5 of treatment with or without 50ng/mL TGF-a or 100nM insulin in
914 the absence of trypsin inhibitor. ADM structures are indicated by red arrows. F, Quantification of the
915 fold change in ADM events in primary mouse acinar cell 3D explants after 5 days of treatment with a
916 combination of + TGF-a and * insulin and * trypsin inhibitor. (n = 4 separate experiments, two-way
917 ANOVA). Fold change values were calculated as treatment/negative control (no insulin or TGF-a or
918 trypsin inhibitor) for each experiment. G. Schematic demonstrating obesity or diet-induced

919 hyperinsulinemia, via Insr, promoted PanIN formation through increasing digestive enzymes

920 production/release and its associated inflammation. Scale bars: 2 mm (A, B; top), 0.1 mm (A, B;

921  bottom), and 100um (E). Values are shown as mean * SEM. *Adj. p<0.05, **Ad]. p<0.01, ***Adj.
922  p<0.001.

923

924  Figure S1. The Ptf1a®® allele labeled acinar cells and PanINs in 43.5-week-old mice.

925 A-B, Representative whole section (top) and high-magnification (bottom) images of

926  immunohistochemical staining for GFP expressed from nTnG lineage tracing allele in 43.5-week-old
927 male (A) and female (B) PK-Insr**, PK-Insr*”, and PK-Insr™ mice. C-D, Representative whole section
928 (top) and high-magnification (bottom) images for immunohistochemical staining for GFP expressed
929 from nTnG lineage tracing allele in 43.5-week-old male (C) and female (D) Ptf1a“"**R-Insr"™ and
930 Ptf1a“"FR-Insr” mice. E-F, Representative whole section (top) and high-magnification (bottom) H&E
931 images of pancreatic slides from 43.5-week-old male (E) and female (F) Ptf1a“**-Insr"™ and

932  Ptf1a“"®R-Insr” mice. Scale bars: 2 mm (top) and 0.1mm (bottom).

933

934  Figure S2. Loss of Insr in acinar cells reduced ductal metaplasia and Alcian blue® PanIN

935 lesions.

936 A-B, Representative whole section (top) and high-magnification (bottom) images of

937  immunohistochemical staining of Ck19 for male (A) and female (B) PK-Insr*™, PK-Insr"", and PK-Insr™

938 mice. C-D, Representative whole section (top) and high-magnification (bottom) images of pancreatic
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slides from male (C) and female (D) PK-Insr*", PK-Insr*”, and PK-Insr™ mice stained with Alcian blue.
E, Quantification of Ck19" area for mice from each genotype and sex (M or F) (n= 5-15). F,
Quantification of Alcian blue positive area for mice from each genotype and sex (M or F) (n= 5-16). G-
H, The correlation of acinar cell area and Ck19" area for male (G) and female (H) mice. The maximum
value for Ck19" area was ~20-30% due to stromal expansion in the parenchyma around the Ck19*
area. Scale bars: 2 mm (top) and 0.1 mm (bottom). Values are shown as mean + SEM. *p<0.05,

*p<0.01, **p<0.001, ***p<0.0001.

Figure S3. The Ptf1a“"*R allele labeled acinar cells and PanINs in 12-week-old mice.

A-B, Representative whole section (top) and high-magnification (bottom) images of
immunohistochemical staining for GFP expressed from the nTnG lineage tracing allele in 12-week-old
male (A) and female (B) PK-Insr*™, PK-Insr", and PK-Insr™ pancreata. Scale bars: 1mm (top) and 0.1

mm (bottom).

Figure S4. Kras®*??

mutant mice had similar proteomics and phospho-proteomics changes as
human PDAC tumor samples.

A, Plot of the top 20 mouse pathways from Reactome pathway enrichment for proteins that were
significantly up-or down-regulated (Adj. p<0.05) in PK-Insr"" mice (n=3) compared to Ptf1a“"*="-
Insr*™ mice (n=3). The FDR for the same pathways from pathway enrichment with proteins from
human data that were significantly up- or down-regulated (Adj. p<10™°) in normal (n=75)
compared to tumor samples (n=140) are also shown. The size of each dot represents the
proportion of genes inputted in all the genes found in each pathway. B, Plot of the top 20 mouse
pathways from Reactome pathway enrichment for proteins from corresponding phospho-sites that
were significantly up- or down-regulated (Adj. p<0.05) in PK-Insr* mice (n=3) compared to

Ptf1a“"*=R-Insr"" mice (n=3). The FDR for the same pathways from pathway enrichment with

proteins from corresponding phospho-sites from human data that were significantly up- or down-
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965 regulated (Adj. p<10'12) in normal (n=75) compared to tumor samples (n=140) are also shown.
966 The size of each dot represents the proportion of genes inputted in all the genes found in each
967 pathway.

968

969 Figure S5. Loss of Insr in acinar cells reduced desmoplasia.

970 A-B, The correlation of PanIN area and Sirius red” area for male (A) and female (B) mice. *p<0.05.

971
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