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Abstract

Biomarker selection is a critical step in research and diagnostics: here we present the
newly developed “combiroc” R package, for fast and reproducible identification of
diagnostic and/or research biomarkers. The package introduces new features for
automatic assessment of signal thresholds, as well as functions for identification of
unlabeled samples. We also show how combiroc leverages better and unambiguous cell
type assignment in single cell RNA sequencing experiments through the combinatorial

selection of highly specific gene sub-signatures.

Context and results

In diagnostic medicine, a biomarker is often used to identify subjects with a disease, or at high
risk of developing it. Moreover, it can be used to foresee the disease’s outcome, monitor its
progression and predict the response to a given therapy. Obtaining a reliable result with the
lowest number of markers is important, since a smaller number of biological markers translates
in easier applicability and lower cost per testing. Omics methods generate big data sets and
long lists of biomarkers (signatures) that do not always fit practical or clinical purposes. We
recently described the CombiROC method '? which can be used to select subsets of biomarkers

from relatively small signatures using ROC curves from combinations of predictors ranked by
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specificity (SP), sensitivity (SE) and AUC *®. This first approach was based on Shiny °: though
easy to use for non-coders but it cannot be customized and it is computationally limited. We
then decided to develop a versatile, new open source R package to allow full customization of
protocols and the analyses of much bigger marker signatures. We also implemented completely
new functions for the identification of highly efficient signature subsets and we applied them on
well characterized single cell RNA sequencing datasets: we showed that combinations of as few
as three or four individual markers selected from much bigger, traditional gene signatures
greatly improve the ability to discriminate between different cell type clusters.

The combiroc package is freely available from CRAN’; its input data are matrices of markers
measurements (i.e. biochem assay, or gene expression values) per samples belonging to two
different classes (e.g. healthy/disease, treated/untreated). The package allows for extensive
re-formatting of data, and we implemented functions to transform the data in tidy format & for
easier ggplot2 visualizations ° and for further combinatorial analysis. In the context of omics
methods, marker signatures (i.e. lists of markers/genes characteristically expressed in a specific
cell, tissue or condition) are usually made of tens, if not hundreds, of features. Combiroc is
agnostic to omics methods, as long as the input is a signal intensity value generated by
markers, and it is meant to act as a signature reducer by identifying a subset of markers from
the original full signature without impairing its discriminatory power (or having even a higher
one). Finding such subsets is not a trivial task, in fact, even from a few tens of genes there is a
huge number of combinations (Fig. 1a). Moreover, a critical step of this process is the choice of
a specific signal threshold which is strictly dependent on the nature of the measurement
method. If data are produced in house and the detection system is known, the user may be able
to choose a threshold with knowledge, thus defining the positivity for markers whose signal is
above it. The same procedure can be challenging, or even impossible, when handling third party
data generated elsewhere. We solved this problem implementing and testing a function for the
automatic evaluation of the signals’ distributions from the two labelled sample classes: when
knowledge of signal properties cannot be explicitly set, combiroc automatically evaluates and
proposes a threshold value to be used in subsequent computations. This method automates a
previously manual and somewhat arbitrary process, and it showed to be consistent with
previously reported results on AIH datasets '. The density distributions of signals from both
classes can be computed and plotted and their overlap visually inspected, along with the
suggested signal threshold value (Fig. 1b). Once the signal threshold and the stringency (i.e.
the minimum number of positive markers making the sample positive, defaulting at 1) are

chosen, all marker combinations are computed with their accuracy values, rankings, as well as
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the ROC curves of single markers and/or their combinations. The steps of the whole workflow
are detailed in the package’s accompanying vignette (Suppl. Material 1) and can be found in
our GitHub repository (ingmbioinfo.github.io/combiroc/). The prediction of the signal threshold
and the possibility to classify unlabeled samples are new important features of the new package
workflow (Fig.1c): the linear models obtained for each selected marker/combination with the
linear regression method (glm) embedded in the combiroc’s roc_reports() function were used to
predict the labels of unlabeled samples. The unlabeled test dataset (a dataset in which samples
are not labeled, i.e. without the “Class” column) must be of the same nature and with the same
set of markers of the dataset used to obtain the model with the combinatorial analysis (training
dataset) (Fig. 1d).

A major limitation in most scRNA-seq analyses is the manual annotation step which is
performed looking at expression of marker genes and remains the gold standard procedure to
determine cell populations identities. This step is highly time-demanding as it involves the
manual inspection of a considerable amount of cluster-specific genes. Many methods for the
automatic classification of cells exist'®, but the power of clustering-based methods in standard
scRNA-seq differential expression analysis can be complemented by the search for the best
performing combinations of markers among wider gene signatures. To this aim, it's not correct to
just take the top few genes, since signatures are specific only if taken as a whole. Since
scRNA-seq gene signatures are de-facto lists of biological markers, we believe that
combinations of markers discriminating between phenotypes can be applied to this problem.
This is why we decided to apply the combiroc procedure to a well-known scRNA-seq dataset,
the human 68K peripheral blood mononuclear cell (Fresh PBMC-68K) datasets from 10X
Genomics™: this dataset is FACS-sorted, labelled and belongs to a series of datasets from
different healthy donors'? (Fig. 2a, Suppl. Material 2). The sparsity of single cell RNAseq data
renders many established marker genes individually unreliable for cell classification', and rare
cell types often do not have any unique established marker that can be used to discriminate
among cell populations. This is the case for NKG7 which is well known as specific to NK cells,
but also highly expressed in CD8 T cells. CCL5, conversely, is specific for CD8 T cells and
highly expressed in NK cells too, leading to an often overlapping classification of these two cell
types '>'* (Fig. 2b). We used as a training dataset the reduced PBMC-68K dataset consisting of
700 labelled cells classified in 10 different clusters and expression values of the original NK cell
scRNA-seq signature made of 30 genes. Using combiroc in three increasing stringency
modalities (called default, hi-performance, and sniper, see Methods) we screened the 174,436

combinations of up to 5 genes belonging to the 30 genes signature and we found combinations
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describing the NK cell populations with very high SE and SP values, with particularly high SPs
for those found with the sniper analysis mode: Fig. 2c shows the top four gene combinations
according to their AUC, SE and SP values for each stringency modality. To validate the models
associated with the top combinations first we processed in the same way two other independent
PBMC datasets, the frozen PBMC-3K'® and the blood PBMCs from COVID-19 patients’® (all cell
classification labels were removed from these test datasets, only to be used later as ground
truth to assess performance of combiroc-driven cell labelling); then we calculated the
probabilities predicted by the trained models (see Methods). We refer to such probabilities as
“‘combi-scores” as a thorough metric to assess discriminatory power given by each combination.
The combi-score, which here measures the predicted probability of being identified as NK cells
given by a specific combination, unequivocally identified NK cells in the PBMC-3K dataset (Fig.
2d) and all three types of NK cells (16hi, 56hi, prolif) annotated in PBMC-Covid19 dataset (Fig.
2e). Similarly, high combi-scores were also observed for cells labelled as Innate Lymphoid Cells
(ILC1_3 and ILC2), which is not surprising since NKs belong to ILCs family'’ (Fig. 2e) further
supporting the value of our approach in identifying relevant cell types since even if ILCs were
not annotated in the coarse-grained training dataset, they were indeed picked as NK-like in the
test dataset. A residual identification of CD8+ cells occurred in the PBMC-Covid19 dataset (not
in the PBMC-3K dataset), but at a significantly lower level. The whole score distributions for
individual combinations such as #470 and #5018 showed that the residual CD8+ signal is well
below those from NK cells (Fig. 2f,g and Suppl. Fig. 2). Interestingly, the combi-score was
highly efficient in identifying cell types, both delivering higher specificity and a strong
background reduction when compared to a recently published gene expression score' (Fig.
2f,g and Suppl. Fig. 3a). Remarkably, calculating the gene expression score on the combiroc
combinations, as opposed to the whole 30 genes signature, confirmed that the sniper
combinations were as accurate as the whole signature in indicating the NK clusters and that the
values were even less noisy, suggesting that these combination can be used as a refined

version of the NK signature (Suppl. Fig. 3b-d).

Conclusions

In summary, a combination made of only three or four genes selected with combiroc from a
much bigger (one order magnitude) original signature is able to discriminate NK cells with very
high specificity and can be used to unambiguously identify cell clusters among diverse or even

very heterogeneous cell populations (Suppl. Fig. 4). The ability of combiroc to efficiently select
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highly specific sub signatures, combined with the flexibility of open source code, has the
potential to impact diagnostics markers applications and to widen the applicability of sScRNAseq

signatures for cell type discrimination.

Figure legends

Fig.1 a, Number of possible combinations (blue curve) with k distinct elements chosen from n
markers and their cumulative sum (C,,, red curve). For a signature of n= 30 markers there are
more than a billion combinations. b, Signal intensity distributions for both classes of labelled
input data (classes A and B) processed with combiroc_long() and markers_distribution()
functions; these functions allow to estimate the optimal signal intensity threshold which is
displayed on the plot with a vertical dashed line and whose value can be used as argument for
further computations. ¢, Analytical workflow of the combiroc package: red boxes highlight new
features introduced with this package. If the signal threshold of input data is unknown, it can be
predicted by inspecting the signal's distributions. d, Labels (classification) of an unlabelled test
dataset (left, data without “class” column) can be inferred (right, data with green “class” column)
using regression models and metrics obtained with roc_reports() function on a labeled training

dataset (bottom, “class” column in yellow).

Fig. 2 a, PBMC-68K dataset from 10X Genomics in the reduced version clustered with UMAP:
cell labeling from these clusters was used to train the models distinguishing NK cells (CD56+
NK) from all other cell types. b, Expression levels across the different clusters of the top three
CD56+ NK markers (GNLY, NKG7, CD7) and the CD8+ Cytotoxic T cells marker CCL5; all these
genes are significantly expressed in both NK and CD8+ T cells. ¢, Screening of all combinations
of up to 5 markers belonging to the 30-genes signature of CD56+ NK cell cluster from the
training dataset allowed us to select the top four gene combinations for each type of analysis
(default, hi-perf and sniper) according to their AUC, SE and SP values. d, Heatmap of the
combi-score (predicted probability of belonging to NK cell population) in the PBMC-3K test data
using the top four combinations obtained from the training dataset. The plotted values are
median combi-scores. e, Heatmap as in the previous panel for cells identified as NK cells in the
PBMC-Covid19 dataset. f, NK-Combi-scores computed with combination #5018, i.e.
probabilities of being a NK cell according to combination #5018 across the different clusters of
PBMC-3K test dataset. g, NK-Combi-scores by combination #5018 for cell clusters of
PBMC-Covid19 test dataset.


https://doi.org/10.1101/2022.01.17.476603
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476603; this version posted January 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methods

Extracting the NK markers

The datasets.pbmc68k_reduced object was downloaded from the Scanpy APl webpage

(https://scanpy.readthedocs.io/en/stable/api.html#module-scanpy.datasets): then the

differentially expressed genes (AnnData.uns[‘ranked_genes_groups’]) were saved as .csv file

and the top 30 genes of the column ‘CD56..NK’ were selected.

Building the single-cell training dataset

To build the combiroc training dataset we started from the raw matrix of PMBC-68K dataset
12 (http://pklab.med.harvard.edu/peterk/review2020/examples/zhang_pbmc/). This matrix was
then transposed and rescaled in order to have non-centred values ranging from 0 to 10. The
matrix was then subset by selecting the 700 cells present in PBMC-68K reduced version (also
available as datasets.pbmc68k_reduced from the Scanpy API, see above), and the 30 NK
markers (in alphabetical order) in order to obtain a 700 x 30 matrix. Finally, two additional
columns were added, one as ID using the barcodes (cells) in the rownames and the second as

the “Class” for each cell, specifying if each one is a NK cell (‘NK’) or not (‘Other’).

Finding the best marker combinations and models

To find the best combinations we used the combi() function. This function works on the training
dataset by computing the marker combinations and counting their corresponding positive
samples for each class (once thresholds are set). A sample, to be considered positive for a
given combination, must have a value higher than a given signal threshold (signalthr) for at least
a given number of markers composing that combination (combithr).

As described in the combiroc’s vignette for the standard workflow (Suppl. Material 1 and

GitHub at https://ingmbioinfo.qithub.io/combiroc/articles/combiroc_standard.html), the

argument signalthr of  the combi() function should be set according to the guidelines and
characteristics of the methodology used for the analysis or by an accurate inspection of signal
intensity distribution. If specific guidelines or knowledge are missing, one should set the value
signalthr as suggested by the distr$Density plot feature.

The screening of combinations was limited to those composed by no more than five markers
(setting the max_length = 5 in the combi() function). While this choice is arbitrary, the reason for

this was double: first, it allows a decrease of the number of combinations to compute, making
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the analysis more manageable; second and more important, it fulfills the original aim of the
package which is to trigger easier research and clinical applications, looking for combinations
significantly shorter than the original gene expression signature. We chose not to set a default
for this number since it can vary depending on the field of application and the experimental

and/or clinical context.

Optimal signal threshold prediction

To predict the optimal signal threshold we used the markers_distributions() function, setting the
argument signalthr_prediction = TRUE. In this way distr$§Density plot (see combiroc’s vignette
for the standard workflow, Suppl. Material 1) will compute the threshold and show it besides the
distribution of the signal intensity values for both classes; the threshold is computed as the
median of the signal threshold values in distr$Coord at which SE and SP are greater or equal to
their set minimal values (min_SE and min_SP). The optimal threshold is added to the
“Density_plot” object as a dashed black line and a number, which is being used as signalthr

value for combi() function.

Three modalities of combi() calculation

Combinatorial analyses on the training dataset were performed with 3 degrees of stringency,

thus defining three modalities (i.e. three sets of arguments) of the function marker_distribution()

in order to obtain an optimal signalthr. These three modalities are characterized by increasing
severity of SE and SP cutoffs and increasing minimum number of markers that need to be
above such cutoffs. Specifically:

e Default mode: firstly we performed the combiroc analysis steps with default parameters to
assess the performance of classification without fine tuning: setting (suggested default
values) min_SE = 40 and min_SP = 80 in markers_distributions() as well as combithr =
1in combi(), which is the default value),

e Hi performance mode: we then increased min_SE at its maximum given the data at hand
by maintaining min_SP at 80 (min_SE = 62, min_SP = 80, combithr = 1).

e Sniper mode: finally, to further increase stringency we increase also combithr to 2. (min_SE
=62, min_SP = 80, combithr = 2, the stringest mode with highest SP at the cost of SE)

For each modality, we selected the training models generated with the top four combinations

ranked with ranked _combs() and we proceeded with test datasets classification. Picking only

the top four combinations to be carried on in the analysis was an arbitrary choice, still sufficient
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to demonstrate the package usage and utility: the user can explore more combinations

according to the obtained SE and SP values.

Training models on selected combination

Regression models on the selected combinations were trained using the function roc_reports(),
which applies the Generalised Linear Model (stats::gim() with argument family= binomial) on

each one. The equation used to compute the prediction is the following:

f(z) = By + Bixy + Baxa + Bazs+. .. +8pTn

Where Bn are the coefficients (being 3, the intercept) determined by the model and x, the
variables (signal values associated to markers). The predicted probabilities have been
calculated with the sigmoid function:

1

M= e

The performance of each model is internally evaluated in function of the cutoff (p(x) value above
which an observation is positively classified) and an optimal cutoff is finally returned (cutoff at

which occurs the least possible error of classification on the training dataset observations)

Preprocessing the test datasets

As independent validation to test the selected combination and models we are going to use two
different single-cell RNA sequencing datasets to see if the obtained models are able to correctly
identify NK cells, without having to rely on the original 30-genes NK-signature.

As already mentioned in the introduction, these datasets are:

e PBMC-3K from Satija et al. 2015 (')

e COVID-19 PBMC Ncl-Cambridge-UCL from Stephenson et al. 2021. ('°)

The PBMC-3K test dataset was directly installed and loaded from the SeuratData library. The
dataset is immediately available as a Seurat object named pbmc3k.final. The PBMC-Covid19
dataset from Haniffa’s lab was downloaded from the COVID-19 cell atlas in the .h5ad format
(see “COVID-19 PBMC Ncl-Cambridge-UCL” section, then the “haniffa21.processed.h5ad” file
among the available downloads). Both test datasets underwent the very same steps of the
training dataset preparation (transposition, scaling values from 0 to 10, genes subsetting to the

alphabetically ordered 30 marker genes and addition of ‘ID’ column) with the exception of the
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addition of ‘Class’ column which, obviously, was subsequently inferred in the end of the analysis

by fitting the previously mentioned models.

Validation tests on unclassified data

Test datasets were classified by fitting each computed model with classify() function following

this logic:

, 1 p(z) > opt. cutof f
C(z)
0 p(zx) < opt. cutof f
e Cells with p(x) higher than the optimal cutoff are classified as “NK” (= 1).
e Cells with p(x) lower or equal to the optimal cutoff are classified as “Other” (= 0)
The performances of classification of each combination model were obtained by comparing the

inferred labels with the original cluster labels.

Combi-score

For each cell of the test dataset was computed a “combi-score” value (basically p(x)) using the
standard stats::predict() method, specifying type="response’. The combi score is, for each
combination, the probability of the prediction of GLM fits on the scale of the response variable.
This score was then used to assess the presence of cells classified as ‘NK’ in NK cells clusters:
in this context, the combi-score is the probability of being a NK-cell given by a specific marker

combination.

Gene expression signature score

For each cell of the test dataset was also computed a “gene signature score” to check the effect
of using selected combinations on a different published score developed for whole genes
signatures. The gene signature score is described in Della Chiara et al 2021 ('®). It takes into
account both the expression level and co-expression of genes within each single cell. Given a
geneset, the increase of gene-signature-score is directly proportional to the number of
expressed genes in the signature and to the sum of their level of expression. We internally
reproduced the score computation with the R function signature_score.R available in the GitHub
combiroc package repository.

(https://github.com/ingmbioinfo/combiroc/blob/master/inst/external_code/signature_score.R)
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Code Availability

The complete code base for the combiroc package is available from CRAN at the url
https://cloud.r-project.org/web/packages/combiroc/index.html.

The development version of combiroc package, as well as workflows, demo data and
precomputed R objects for both the standard procedure and the application to single-cell

datasets are available on GitHub at https://ingmbiocinfo.github.io/combiroc/.

Data Availability
PBMC-68K reduced (training dataset): downloaded from the datasets.pbmc68k_reduced

Scanpy object: https://scanpy.readthedocs.io/en/stable/api.html#module-scanpy.datasets, and

from the Kharchenko Lab website at the Department of Biomedical Informatics of the Harvard
Medical  School:  http://pklab.med.harvard.edu/peterk/review2020/examples/zhang_pbmc/.
PBMC3K (test dataset): installed from the SeuratData library:
https://github.com/satijalab/seurat-data.

COVID-19 PBMC Ncl-Cambridge-UCL from Haniffa lab (test dataset):

https://www.covid19cellatlas.org/index.patient.html.
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