

1 **Capped nascent RNA sequencing reveals novel therapy-responsive enhancers in prostate
2 cancer**

3 Kellie A. Cotter^{1, #}, Sagar R. Shah^{2,3, #}, Mauricio I. Paramo^{2,3, #}, Shaoke Lou^{4, #}, Li Yao^{3,5}, Philip D.
4 Rubin¹, You Chen^{2,3}, Mark Gerstein^{4,*}, Mark A. Rubin^{1,6*}, Haiyuan Yu^{3,5,*}

5 ¹Department of Biomedical Research, University of Bern, Bern, 3008, CH

6 ²Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, US

7 ³Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, US

8 ⁴Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520,
9 US

10 ⁵Department of Computational Biology, Cornell University, Ithaca, NY 14853, US

11 ⁶Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, 3008, CH

12 [#]Contributed equally

13 *Correspondence to: mark.gerstein@yale.edu (M.G), mark.rubin@dbmr.unibe.ch (M.A.R) and
14 haiyuan.yu@cornell.edu (H.Y)

15 **Abstract**

16 Mounting evidence suggests that enhancer RNA (eRNA) transcription start sites (TSSs) provide
17 higher sensitivity and specificity for enhancer identification than histone modifications and
18 chromatin accessibility. The extent to which changes in eRNA transcription correspond to
19 changes in enhancer activity, however, remains unclear. Here, we used precision run-on and
20 capped RNA sequencing (PRO-cap) to assess changes in enhancer activity in response to
21 treatment with the androgen receptor signaling inhibitor, enzalutamide (ENZ). We identified 6,189
22 high-confidence candidate enhancers in the human prostate cancer cell line, LNCaP; 853 of which
23 demonstrated significant changes in activity in response to drug treatment. Notably, we found that
24 67% and 54% of drug-responsive enhancers did not show similar changes in activity in previous
25 studies that utilized ChIP-seq and ATAC-seq, respectively. Strikingly, 79% of regions with
26 increased eRNA transcription showed no other biochemical alterations, implying that PRO-cap
27 can capture a set of precise changes in enhancer activity that classical approaches lack the
28 sensitivity to detect. We performed *in vivo* functional validations of candidate enhancers and found
29 that CRISPRi targeting of PRO-cap-specific drug-responsive enhancers impaired ENZ regulation
30 of downstream target genes, suggesting that changes in eRNA TSSs mark true biological
31 changes in enhancer activity with high sensitivity. Our study highlights the utility of using PRO-
32 cap as a complementary approach to canonical biochemical methods for detecting precise
33 changes in enhancer activity and, in particular, for better understanding disease progression and
34 responses to treatment.

35 **Main**

36 First-line treatment for advanced metastatic prostate cancer (PCa) generally involves androgen
37 deprivation therapy (ADT) to reduce the activity of androgen receptor (AR)(Heinlein and Chang,
38 2004). Of particular clinical concern is metastases of castration-resistant PCa (CRPC), where the
39 disease has developed resistance to both first-line and second-generation AR signaling inhibitors
40 (ARSi, e.g., enzalutamide)(Scher and Sawyers, 2005). Thus, determining both the mechanisms
41 behind ADT resistance and the distinct signaling pathways activated in CRPC are essential to
42 improving existing therapies and finding new potential drug targets.

43 Given the enrichment of genomic alterations in metastatic PCa(Armenia et al., 2018),
44 there are increased efforts to understand the complexity of the PCa genome. Recent studies using
45 whole genome sequencing have revealed several examples of alterations in gene regulatory
46 regions. For example, upwards of 80% of samples were found to have a duplication of a region
47 upstream of *AR*, which was then shown to be a previously unidentified enhancer(Quigley et al.,
48 2018; Takeda et al., 2018; Viswanathan et al., 2018). This enhancer duplication was shown to
49 increase the expression of *AR* and in doing so decrease sensitivity to ARSi. Therefore, it is
50 important to precisely identify and characterize enhancer dynamics in response to therapeutic
51 intervention in PCa. However, despite the exhaustive amount of sequencing information captured
52 by WGS, our interpretation and understanding of the data is limited due to the incomplete
53 annotation of the non-coding genome, including transcriptional regulatory elements such as
54 enhancers.

55 In general, enhancer regions are currently defined by biochemical features such as
56 chromatin accessibility (DNase I hypersensitivity or transposase accessibility) and histone
57 modification marks (H3K27ac and H3K4me1) along with transcription factor binding profiles as
58 determined by ChIP-seq(Gasperini et al., 2020). Large-scale reporter assays (e.g., STARR-seq
59 or MPRA) have also been used to evaluate the enhancer potential of candidate DNA
60 regions(Arnold et al., 2013; Kheradpour et al., 2013). However, these reporter assays have

61 consistently shown that less than 50% of regions with these biochemical annotations exert
62 enhancer activity(Kwasnieski et al., 2014; Vanhille et al., 2015). Likewise, similar techniques have
63 been used to identify thousands of potential enhancer regions in PCa by combining ChIP-seq and
64 whole genome STARR-seq(Kron et al., 2017; Liu et al., 2017; Sharma et al., 2013; Stelloo et al.,
65 2018). In addition, chromosome capture has been used to elucidate chromatin interactions
66 genome-wide and those loci specifically associated with AR and RNA Polymerase II using ChIA-
67 PET(Ramanand et al., 2020; Rhie et al., 2019; Taberlay et al., 2016; Zhang et al., 2019).
68 Interestingly, a recent study demonstrated that the majority of AR binding sites are not active
69 enhancers(Huang et al., 2021). Moreover, despite increased recruitment of AR to these regions,
70 dihydrotestosterone (DHT) stimulation did not increase enhancer activity in over half of the AR-
71 bound active enhancers. Perhaps most intriguing, however, CRISPR interference of some
72 “inactive” enhancers altered the expression of the enhancer-regulated gene, at times at a similar
73 level of interference to nearby “active” enhancers. Overall, this highlights the limitations of the
74 datasets produced thus far and the need for alternative methods for enhancer identification given
75 that epigenomic-mark-based approaches identify enhancers with a high false-positive rate, while
76 reporter assays cannot fully reproduce much of the biological complexity of large enhancers
77 regions in their native genomic context, in particular with regards to multiple enhancers acting on
78 a single gene.

79 More recently, widespread RNA polymerase II-mediated bidirectional transcription has
80 been observed in enhancer regions, which produce biochemically unstable transcripts known as
81 enhancer RNAs (eRNAs)(Core et al., 2014; Kim et al., 2010; Tippens et al., 2018). Although the
82 functional significance of eRNAs remains unclear, evidence suggests that enhancer transcription
83 corresponds with activation(Chen et al., 2018; Chen and Liang, 2020), with close to 50% of short
84 capped nascent RNAs that map to previously unannotated TSSs overlapping with episomal
85 reporter-validated enhancers(Henriques et al., 2018). Moreover, it has been found that ~95% of
86 putative active enhancers found within accessible chromatin drive local transcription and do so

87 using factors and mechanisms overwhelmingly similar to those of promoters(Core et al., 2014).
88 Recently, we performed systematic interrogation of enhancer elements and showed that active
89 enhancer units are precisely marked by divergent eRNA TSSs genome-wide. Moreover, although
90 eRNA transcription is closely correlated with histone marks, we saw that these epigenomic marks
91 offer lower resolution and specificity for enhancer activation than transcription initiation(Tippens
92 et al., 2020). Thus, these data support a model whereby transcription is required for distal
93 enhancer function, challenging classical methods that rely on chromatin accessibility and histone
94 modifications to identify active enhancers.

95 On average, enhancers transcribe at 5% the level of promoters(Core et al., 2014;
96 Henriques et al., 2018). Thus, due to their low abundance and instability, eRNA detection requires
97 highly sensitive alternative methods to standard RNA sequencing approaches. Recently, we
98 performed systematic comparisons of genome-wide RNA sequencing assays suitable for the
99 identification of active enhancers and found that the nuclear run-on followed by cap-selection
100 assays (namely, Global/Precision Run-On and capped RNA sequencing GRO/PRO-cap) provide
101 the highest sensitivity and specificity for eRNA detection and active enhancer identification across
102 the whole genome(Yao et al., 2022). Importantly, PRO-cap libraries undergo a series of cap state
103 selection reactions to modify the 5' ends of transcripts and allow for the accurate identification of
104 transcription initiation sites (Figure 1A). As a result, PRO-cap is highly sensitive for capturing
105 eRNA transcription and therefore, a powerful tool for enhancer identification.

106 Here, we utilized changes in eRNA expression to assess changes in enhancer activity in
107 response to short-term treatment with the ARSi enzalutamide (ENZ). We applied PRO-cap to
108 enrich and sequence only nascent RNAs associated with engaged RNA polymerase and to
109 identify divergent transcription start sites marking active enhancers at base pair-resolution(Mahat
110 et al., 2016; Tippens et al., 2020). We identified over 6,000 candidate enhancers in LNCaP cells;
111 853 of which demonstrated significant changes in enhancer activity in response to ENZ treatment.
112 Importantly, these results identified a large percentage of therapy-responsive enhancers, which

113 were not previously shown to be responsive in studies utilizing other biochemical marks
114 (H3K27ac-ChIP-seq/ATAC-seq) or reporter assays (i.e., STARR-seq). Our study highlights the
115 utility of using eRNA transcription, in particular PRO-cap, as a generalizable and complementary
116 approach to canonical biochemical methods for detecting precise changes in enhancer activity,
117 specifically for applications in disease prognosis, progression, and treatment.

118 **Results**

119 **Identification of active enhancers in a prostate cancer cell line model using PRO-cap**

120 To measure enhancer activity in their native genomic and cellular context, we utilized PRO-cap
121 to preferentially sequence nascent transcriptional start sites including those generating eRNAs
122 (Figure 1A). Overall, this analysis in LNCaP cells identified 91,705 statistically significant peaks
123 ($n = 2$ replicates), 68.4% of which were in gene distal regions. 6,189 of these gene distal regions
124 contained divergent significant peaks on both the plus and minus strands and were extended by
125 200 bp in both directions and called as high confidence enhancer regions (Data S1). As expected,
126 the majority of these regions contained canonical biochemical marks delineating enhancers
127 including open chromatin (DNase I hypersensitivity, ATAC-seq), H3K27 acetylation, and H3K4
128 monomethylation, and are bound by prostate-enriched transcription factors (AR and FOXA1)
129 (Figure 1B-C). However, 11% ($n = 674$) of these regions did not exhibit those classical
130 biochemical features (at least two of the three: DNase I HS, H3K27ac, or H3K4me1),
131 demonstrating that PRO-cap identifies a novel set of enhancer regions that would otherwise be
132 missed (Figure 1C).

133 Using publicly available H3K27ac HiChIP data, we estimated the number of chromatin
134 connections of each candidate enhancer with other genomic regions(Giambartolomei et al.,
135 2021). We found that the regions delineated by PRO-cap have a significantly greater number of
136 loops ($P < 0.0001$, Kolmogorov-Smirnov test) than H3K27ac or DNase I peaks (Figure 1D). Next,
137 we inquired whether these enhancers identified in LNCaP cells were expressed in patient-derived
138 PCa samples. To that end, we analyzed published ChIP-seq data from clinical specimens of non-

139 neoplastic prostate, primary PCa, and metastatic PCa(Pomerantz et al., 2020). As seen in Figure
140 1E, these tissues recapitulate H3K27ac and the binding pattern of prostate-enriched transcription
141 factors (AR, FOXA1, and HOXB13) in enhancers seen in LNCaP cells. Furthermore, given that
142 LNCaP cells are derived from an androgen-responsive metastatic lymph node
143 lesion(Horoszewicz et al., 1983), the enhancer expression profiles are indeed strongest in
144 metastatic PCa tissues. Overall, these results demonstrate that, unlike traditional epigenomic-
145 based methods, PRO-cap can uncover previously unknown enhancer loci with hallmarks of PCa-
146 relevant TF-binding patterns observed in primary and metastatic lesions.

147 **Measurement of changes in enhancer activity in response to androgen deprivation therapy**

148 Given our confidence in detecting enhancers by PRO-cap, we investigated whether this method
149 could be utilized to assess changes in enhancer activity in response to treatment. To do so, we
150 treated LNCaP cells with the ARSi enzalutamide (ENZ) for 4 or 24 hours. Using the same analysis
151 as described above, we identified 6769 and 8513 high confidence enhancers using PRO-cap in
152 the 4- and 24-hour time point conditions, respectively (Data S2-3). Approximately 4,479 of these
153 enhancers were identified in both ENZ timepoints and 2,922 were identified irrespective of
154 treatment (Figure S1A).

155 In addition to detecting enhancers that are expressed at only a single treatment time point,
156 we were interested in identifying those which were active at more than one time point, but with
157 differential levels of expression. Thus, we compiled the total list of enhancers found in any of the
158 two treatment timepoints and vehicle and assessed their differential expression upon treatment
159 (versus vehicle) on at least one strand. This analysis identified 853 enhancers that were
160 significantly activated or repressed after 24 hours of ENZ treatment (Figure 2A, Figure S1B-D,
161 Data S4-5). Furthermore, 73 of these regions were significantly activated or repressed on both
162 the plus and minus strands.

163 To predict putative transcription factors (TF) regulating these enhancer regions, we utilized

164 GIGGLE(Layer et al., 2018) analysis (Figure 2B) to probe the CISTROME(Mei et al., 2017) ChIP-
165 seq database containing published datasets with overlapping genomic regions. Of the TFs
166 predicted to bind to the ENZ repressed elements, AR was the top candidate with the highest
167 GIGGLE score. Interestingly, other significant TF predicted to bind the ENZ repressed enhancers
168 included glucocorticoid receptor (*NR3C1*), HNF4G (a TF which drives ARSi resistance(Shukla et
169 al., 2017)), and the co-activator EP300, the SWI/SNF family chromatin remodeler SMARCA4, and
170 the pioneering factor FOXA1. In addition to AR, FOXA1, and *NR3C1*, other TF predicted to bind
171 the ENZ-activated enhancers included the histone methyltransferase ASHL2, the AR co-
172 regulators GRHL2 and HOXB13, the AR-regulated TF NKX3-1, the pioneering factor GATA2,
173 ARID1A another SWI/SNF family member, and the histone deacetylase HDAC3. Motif analysis
174 further supported these predictions. Motifs for FOXA1, AR, and MAFA were significantly enriched
175 in ENZ-repressed enhancers, while FOXA1, HOXB13, and HOXA13 motifs were significantly
176 enriched in the ENZ-activated enhancers (Figure 2C).

177 We further mined published ChIP-seq data from LNCaP cells to determine how the binding
178 of the identified enhancer-associated TF is changing in response to ENZ treatment or androgen
179 stimulation with dihydrotestosterone (DHT) or the synthetic androgen, R1881 (Figure 2D). Both
180 ENZ-activated and -repressed enhancers lose AR binding in response to ENZ (AR inhibition) or
181 the absence of hormones (charcoal-stripped, CS FCS), and binding is regained with androgen
182 stimulation. Strikingly, FOXA1 binding at the ENZ repressed enhancers is lost with ENZ or CS
183 FCS treatments and regained with androgen stimulation, while the binding is unaffected at ENZ
184 activated enhancers. Similar patterns were seen with NKX3.1 and ASH2L with dynamic changes
185 in binding seen at the ENZ repressed enhancers with trivial changes at the activated ones. In
186 contrast, both GRHL2 and HOXB13 show minimal binding at the ENZ repressed enhancers as
187 compared to the activated enhancers irrespective of treatment. Similar patterns were seen
188 between the activated and repressed groups with ChIP-seq analysis of metastatic patient
189 samples(Pomerantz et al., 2020) (Figure S1E).

190 Using a previously described method(Wang et al., 2018), we predicted which genes are
191 regulated by each ENZ-responsive enhancer. We generated predictions for 690 of the 853
192 regions with an average of 6.3 genes per candidate enhancer (Figure S1F, Data S6-7). GO
193 analysis of these gene lists demonstrated that the majority of genes are related to steroid hormone
194 signaling (in particular androgen response) or the cell cycle (Figure 2E).

195 Altogether, these findings demonstrate that PRO-cap can detect a large set of precise
196 changes in enhancer activity that other approaches lack the sensitivity to capture.

197 **Non-coding mutation analysis in PRO-cap-detected ENZ-responsive candidate enhancers**

198 We next queried if PRO-cap-detected enhancer regions could help prioritize somatic genomic
199 variation in non-coding regions. To that end, using 286 PCa whole genomes available through
200 ICGC, we searched for single nucleotide variants (SNVs) in the identified 853 ENZ-regulated
201 enhancers. In total 137 variants were discovered in these regions; 20 of which were recurrent in
202 more than one patient (Figure S2A). Interestingly, eight of these enhancers also had more than
203 one SNV within the enhancer region. An example of this is shown in Figure S2B in which two
204 patients have a recurrent SNV which disrupts an ESRRA motif within the enhancer, and two
205 different patients have a recurrent SNV which creates an HNF4 motif within the enhancer.

206 Next, we investigated whether the PRO-cap-identified enhancers may harbor potential
207 PCa-associated germline single nucleotide polymorphisms (SNPs) (Conti et al., 2021). Of the 269
208 known PCa risk variants, none overlap with our 853 ENZ-regulated enhancers. However, 10
209 SNPs did overlap with our larger list of 6,189 total high confidence PCa enhancers ($P < 0.001$). A
210 representative example of a significantly enriched SNP at a PCa enhancer is shown in Figure
211 S2C. It is noteworthy that none of these SNPs have been previously identified as residing in gene
212 regulatory regions. Thus, these results highlight the power of PRO-cap in identifying and
213 delimiting the non-coding regulatory genome to prioritize enhancer-associated mutations.

214 ***in vivo* functional validation of PRO-cap-detected ENZ-responsive candidate enhancers**

215 Next, we sought to determine how PRO-cap compares with other methods at measuring enhancer
216 activity changes. We first surveyed published H3K27ac ChIP-seq and ATAC-seq data from
217 LNCaP cells treated with ENZ. Many of the regions with altered enhancer activity as measured
218 by PRO-cap could also be detected by changes in the ChIP- or ATAC-seq data (Figure 4A).
219 Surprisingly, however, 67% and 54% of the regions did not show a similar change in the ChIP- or
220 ATAC-seq data, respectively (highlighted in navy and burgundy). Particularly striking was that 78-
221 79% of the regions with an increase in eRNA transcription with ENZ showed no biochemical
222 alterations.

223 Given our observations, we sought to validate the enhancer activity of our candidates
224 identified by PRO-cap using an *in vivo* approach via CRISPR interference (CRISPRi) of these
225 enhancers. To that end, we genetically targeted two of the previously tested candidates (#1 and
226 #3) that were repressed by ENZ (Figure 4B). Enhancer candidate #1 is located within in intronic
227 region of CACNG4, while enhancer candidate #3 is found within the intron of KCNMA1, (Figures
228 S3-4). Both of these genes are known to be repressed by ENZ treatment. We designed 3 sgRNAs
229 each against these regions centered around the TSS of the eRNAs. We then transfected dCas9-
230 KRAB-stably expressing LNCaP cells with these sgRNAs. CRISPRi-mediated repression of the
231 two candidate enhancers reduced the expression of both the eRNA and the predicted target
232 genes (Figure 3C-D).

233 We next sought to determine whether targeting the TSS altered the ability of the candidate
234 enhancer to regulate gene expression in response to ENZ treatment. To do so we again
235 transfected dCas9-KRAB-expressing LNCaP cells with the chosen sgRNAs followed by 24-hour
236 treatment with ENZ. Again, for both genes we demonstrated significant downregulation with ENZ
237 (*KCNMA1*, $P < 0.0001$; *CACNG4*, $P < 0.0001$), with the sgRNA (*KCNMA1*, $P < 0.0001$; *CACNG4*,
238 $P < 0.0001$), and a significant reduction in the ENZ downregulation in combination with the sgRNA
239 (*KCNMA1*, $P = \text{n.s.}$, 1.42 vs 2.05-fold change; *CACNG4*, $P = 0.0007$, 2.35 vs 4.48-fold change)
240 (Figure 4A-B).

241 Next, we functionally validated the ability of PRO-cap to identify changes in enhancer
242 activity that are not detected by ATAC-seq or H3K27ac ChIP-seq assays (Figure 3A). Given that
243 the two above candidates both show concomitant changes in both of those biochemical marks
244 (Figure S3-4), we pursued enhancer candidates which: (1) show significant changes in PRO-cap
245 upon ENZ treatment, (2) show no changes in ATAC-seq or H3K27ac ChIP-seq after ENZ
246 treatment, and (3) are predicted to regulate known ENZ-responsive genes.

247 The first enhancer candidate (#8) selected resides within an intronic region of *DENND1B*
248 (Figure S5A), a gene that has been shown to be upregulated with ENZ (Figure S5B). While
249 *DENND1B* was not significantly upregulated upon ENZ treatment in control sgRNA-expressing
250 cells, a dramatic increase in its expression was seen in cells expressing sgRNAs against the
251 candidate target #8 with ENZ treatment ($P < 0.0001$, 2.06 vs 0.946-fold change) (Figure S5C).
252 The next enhancer candidate selected (#9) is ~80 kb upstream of *RASD1* (Figure 4C, Figure
253 S6A), which is a known ENZ-repressed gene (Figure S6B). *RASD1* was significantly
254 downregulated with ENZ treatment in control sgRNA-expressing cells ($P = 0.0084$). Likewise, a
255 significant decrease in *RASD1* expression was observed in cells transfected with the candidate
256 #9 targeting sgRNAs than in control sgRNA-expressing cells ($P = 0.0214$). and there was a
257 significant reduction of ENZ downregulation in combination with the sgRNA ($P = \text{n.s.}$, 1.15 vs
258 1.44-fold change) (Figure 5D).

259 Altogether, these *in vivo* functional results confirm the utility of our PRO-cap assay as a
260 highly-sensitive approach to identify putative enhancers and detect changes in their activities
261 genome-wide.

262 **Discussion**

263 This study highlights the generalizable utility of using eRNA transcription patterns obtained from
264 PRO-cap to detect precise changes in enhancer activity, which has broad applications in human
265 genetics spanning development and disease. Despite previous efforts in generating chromatin
266 accessibility and histone modification landscapes to indirectly map transcriptional regulatory

267 networks, our knowledge of the key regulatory mechanisms that orchestrate the complexity of
268 cellular differentiation, human development, and disease pathogenesis is still limited by our
269 incomplete understanding and characterization of the non-coding genome, in particular with the
270 annotation of cell-state specific transcriptional regulatory elements. Thus, the ability to delineate
271 more precise maps of enhancer activity dynamics will facilitate the systematic examination of the
272 transcriptional programs of developing cells across cell transition states and different
273 differentiation lineages, including disease progression. With a significant fraction of disease-
274 associated risk variants harbored within non-coding regions of the genome, detailed
275 characterization of these regulatory networks that coordinate cell- and tissue-type specificity could
276 provide insights into the molecular mechanisms that underlie dysregulation in numerous disorders
277 and assist in the mapping of variants functional only at specific cellular states. Similarly, precise
278 mapping of enhancer dynamics genome-wide in clinical specimens by PRO-cap can also help
279 better understand disease mechanisms and heterogeneity across patients as well as response
280 and resistance to treatment.

281 Hence, our study underscores the clinical value of identifying and delineating aberrant
282 distal regulatory elements in cancer to identify potential therapeutic vulnerabilities.

283 **Materials and Methods**

284 **Cell lines**

285 LNCaP cells (male, ATCC, RRID: CVCL_1379) were maintained in RPMI medium (Gibco,
286 A1049101), supplemented with 10% FBS (Gibco, 10270106), and 1% penicillin-streptomycin
287 (Gibco, 11548876) on poly-L-lysine coated plates. All cell lines were grown at 37 °C with 5% CO₂.
288 All cell lines were authenticated by STR analysis and regularly tested for mycoplasma.

289 **ChIP-seq data analysis**

290 For Figure 1B, previously aligned and normalized bigwig files were downloaded from the
291 Cistrome Data Browser allowing for consistent and standardized analysis of data from multiple

292 studies. For other plots previously aligned and normalized bigwig files were downloaded and
293 analyzed in their published format from GEO. Heatmaps and summary plots were generated
294 using the deepTools suite(Ramirez et al., 2016).

295 **PRO-cap**

296 LNCaP cells were treated with 10 μ M enzalutamide or DMSO for 4 or 24 hrs. For PRO-cap,
297 approximately 10 to 30 million cells were processed per sample. Library preparations for two
298 biological replicates each consisting of two technical replicates per condition were processed
299 separately. Cells were permeabilized and run-on reactions were carried out as previously
300 described(Mahat et al., 2016). Following RNA isolation, two adaptor ligations using T4 RNA
301 Ligase 1 (catalog no. M0204; NEB) and reverse transcription using SuperScript III Reverse
302 Transcriptase (catalog no. 18080044; Invitrogen) were performed, with custom adaptors
303 detailed in Table S1. Between adaptor ligations, cap state selection reactions were performed
304 by treating the samples with CIP (catalog no. M0290; NEB) to reduce uncapped RNAs to 5'
305 hydroxyls and make them incapable of ligating to 5' adaptor and Cap-Clip (catalog no. C-
306 CC15011H; Cambio) to remove the 5' cap of transcripts that had undergone guanylation and
307 allow them to be incorporated into the library through 5' adapter ligation. RNA washes,
308 phenol:chloroform extractions and ethanol precipitations were carried out between reactions.
309 All steps were performed under RNase-free conditions and following manufacturer protocols.
310 Libraries were sequenced on an Illumina HiSeq 3000 following PCR amplification and library
311 clean-up.

312 **ChIA-PET and Hi-C data processing for downstream gene predictions**

313 Similar to a previously described method(Wang et al., 2018), LNCaP RNA Pol II ChIA-PET
314 interactions(Ramanand et al., 2020) (GSM3423998) were lifted over from GRCh37 to GRCh38.
315 LNCaP Hi-C data (ENCFF676WJO) was downloaded from ENCODE and interactions were lifted

316 over from GRCh37 to GRCh38. ChIA-PET and Hi-C interactions were merged and filtered to
317 remove duplicate interactions. The merged dataset was used as the final 3D interaction set.

318 Active enhancers and active promoters were inferred based on a merged set of
319 unidirectional and bidirectional PRO-cap peaks from LNCaP treated with either ENZ or DMSO
320 for 4 or 24 hrs. PRO-cap peak regions were intersected with GENCODE (V28) annotated
321 promoters to get a list of active promoter regions. Active enhancers and promoters were
322 overlapped with the final 3D interaction set to identify potential enhancer-gene pairs. A maximum
323 of 1 Mb distance was allowed.

324 **Analysis of whole genome patient data**

325 Prostate adenocarcinoma whole genome variants were downloaded from TCGA. This included
326 SNV data from 286 samples and indel data from 200 samples after filtering and overlapping with
327 enhancer regions. The effects of these variants were predicted using Funseq2(Fu et al., 2014)
328 (V2.1.4). The motif break and gain events of the variants were extracted from Funseq2
329 annotations.

330 **Analysis of PRO-cap data**

331 Differential transcription at eRNA peaks was quantified using EdgeR(Robinson et al., 2010)
332 analysis of the total read counts in the core promoter (-35 to 60 bp from the peak TSS)(Tippens
333 et al., 2020) of the plus and minus strands separately. Induced enhancers were defined as FDR
334 adj p-value < 0.05 in at least one peak direction.

335 **CRISPRi**

336 Lenti-dCas9-KRAB-blast was a gift from Gary Hon (Addgene plasmid # 89567). Lentivirus was
337 produced in HEK293T cells, and subsequent virus-containing media was used to transduce
338 LNCaP cells, followed by blasticidin selection.

339 gRNAs against the candidate enhancer regions were designed using CRISPRick.
340 (<https://portals.broadinstitute.org/gppx/crispick/public>)(Doench et al., 2016; Sanson et al., 2018)
341 (Table S1). Custom crRNAs were ordered from IDT and were annealed with Alt-R® CRISPR-
342 Cas9 tracrRNA (IDT, 1072532) to generate sgRNAs according to the manufacturer's instructions.
343 For each experiment LNCaP-dCas9-KRAB cells were transfected with 30 nM sgRNA complex
344 using Lipofectamine RNAiMAX (Invitrogen, 13778030). 48 hours post-transfection cells were
345 treated with media containing 10 µM enzalutamide or DMSO for a further 24 hours.

346 **qPCR**

347 RNA was extracted directly from cells using the RNeasy Mini Kit (Qiagen, 74106), and genomic
348 DNA was removed using the DNA-free kit (Ambion, AM1906). RNA was reverse transcribed using
349 random primers and SuperScript IV Reverse Transcriptase (Invitrogen, 18090010). Quantitative
350 real-time PCR was performed on the ViiA 7 system (Applied Biosystems) using HOT FIREPol
351 EvaGreen qPCR mix (Solis Biodyne, 08-24-00020) following the manufacturer's instruction.
352 Primer sequences are listed in Table S1. All quantitative real-time PCR assays were carried out
353 using three technical replicates using HMBS as the housekeeping gene.

354 **Data availability**

355 PRO-cap enhancer calls are available in Data S1-7. Raw PRO-cap data and bigWig files are
356 available through GEO under accession no. GSE198268. Other datasets used in this study are
357 publicly available under the following accession nos. LNCaP ATAC-seq (accession no.
358 GSE105116). LNCaP DNase-seq (accession no. GSM816637). LNCaP H3K27ac ChIP-seq
359 (accession no. GSE107780). LNCaP H3K4me1 ChIP-seq (accession no. GSE73783). LNCaP
360 RNA Pol II ChIA-PET (accession no. GSM3423998). LNCaP Hi-C (accession no.
361 ENCFF676WJO). LNCaP AR ChIP-seq, LNCaP FOXA1 ChIP-seq, and LNCaP H3K27ac ChIP-
362 seq (accession no. GSE85558). ATAC-seq, AR ChIP-seq, FOXA1 ChIP-seq, and H3K27ac
363 ChIP-seq (accession no. GSE137775) of LNCaP treated with ENZ. ASH2L ChIP-seq (accession
364 no. GSE60841) of VCaP treated with R1881 or cultured in media containing CS FCS. ChIP-seq
365 (accession nos. GSE137775, GSE125245, GSE94682, GSE70079, GSE40269, GSE28264, and
366 GSE80256) of LNCaP treated with ENZ, R1881, DHT, or cultured in media containing CS FCS.
367 ChIP-seq (accession no. GSE130408) of normal prostate tissue, primary prostate cancer, and
368 metastatic prostate cancer. LNCaP STARR-seq (GSE151064) of AR binding regions treated with
369 DHT or EtOH.

370 **Code availability**

371 PRO-cap enhancers were called using Peak Identifier for Nascent Transcript Starts (PINTS)(Yao
372 et al., 2022). All analysis was performed using common publicly available tools.

373 **Competing interests**

374 The authors declare that there are no competing interests.

375 **References**

Armenia, J., Wankowicz, S.A.M., Liu, D., Gao, J., Kundra, R., Reznik, E., Chatila, W.K., Chakravarty, D., Han, G.C., Coleman, I., *et al.* (2018). The long tail of oncogenic drivers in prostate cancer. *Nat Genet* 50, 645-651.

Arnold, C.D., Gerlach, D., Stelzer, C., Boryn, L.M., Rath, M., and Stark, A. (2013). Genome-wide quantitative enhancer activity maps identified by STARR-seq. *Science* 339, 1074-1077.

Chen, H., Li, C., Peng, X., Zhou, Z., Weinstein, J.N., Cancer Genome Atlas Research, N., and Liang, H. (2018). A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. *Cell* 173, 386-399 e312.

Chen, H., and Liang, H. (2020). A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in Cancer. *Cancer Cell* 38, 701-715 e705.

Conti, D.V., Darst, B.F., Moss, L.C., Saunders, E.J., Sheng, X., Chou, A., Schumacher, F.R., Olama, A.A.A., Benlloch, S., Dadaev, T., *et al.* (2021). Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. *Nat Genet* 53, 65-75.

Core, L.J., Martins, A.L., Danko, C.G., Waters, C.T., Siepel, A., and Lis, J.T. (2014). Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. *Nat Genet* 46, 1311-1320.

Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., *et al.* (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat Biotechnol* 34, 184-191.

Fu, Y., Liu, Z., Lou, S., Bedford, J., Mu, X.J., Yip, K.Y., Khurana, E., and Gerstein, M. (2014). FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. *Genome Biol* 15, 480.

Gasperini, M., Tome, J.M., and Shendure, J. (2020). Towards a comprehensive catalogue of validated and target-linked human enhancers. *Nat Rev Genet* 21, 292-310.

Ge, S.X., Jung, D., and Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. *Bioinformatics* 36, 2628-2629.

Giambartolomei, C., Seo, J.H., Schwarz, T., Freund, M.K., Johnson, R.D., Spisak, S., Baca, S.C., Gusev, A., Mancuso, N., Pasaniuc, B., *et al.* (2021). H3K27ac ChIP in prostate cell lines identifies risk genes for prostate cancer susceptibility. *Am J Hum Genet* 108, 2284-2300.

Heinlein, C.A., and Chang, C. (2004). Androgen receptor in prostate cancer. *Endocr Rev* 25, 276-308.

Henriques, T., Scruggs, B.S., Inouye, M.O., Muse, G.W., Williams, L.H., Burkholder, A.B., Lavender, C.A., Fargo, D.C., and Adelman, K. (2018). Widespread transcriptional pausing and elongation control at enhancers. *Genes Dev* 32, 26-41.

Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P. (1983). LNCaP model of human prostatic carcinoma. *Cancer Res* 43, 1809-1818.

Huang, C.F., Lingadahalli, S., Morova, T., Ozturan, D., Hu, E., Yu, I.P.L., Linder, S., Hoogstraat, M., Steloo, S., Sar, F., *et al.* (2021). Functional mapping of androgen receptor enhancer activity. *Genome Biol* 22, 149.

Hwang, J.H., Seo, J.H., Beshiri, M.L., Wankowicz, S., Liu, D., Cheung, A., Li, J., Qiu, X., Hong, A.L., Botta, G., *et al.* (2019). CREB5 Promotes Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in Prostate Cancer. *Cell Rep* 29, 2355-2370 e2356.

Kheradpour, P., Ernst, J., Melnikov, A., Rogov, P., Wang, L., Zhang, X., Alston, J., Mikkelsen, T.S., and Kellis, M. (2013). Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. *Genome Res* 23, 800-811.

Kim, J., Lee, Y., Lu, X., Song, B., Fong, K.W., Cao, Q., Licht, J.D., Zhao, J.C., and Yu, J. (2018). Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. *Cell Rep* 25, 2808-2820 e2804.

Kim, T.K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin, D.A., Laptevich, M., Barbara-Haley, K., Kuersten, S., *et al.* (2010). Widespread transcription at neuronal activity-regulated enhancers. *Nature* 465, 182-187.

Kron, K.J., Murison, A., Zhou, S., Huang, V., Yamaguchi, T.N., Shiah, Y.J., Fraser, M., van der Kwast, T., Boutros, P.C., Bristow, R.G., *et al.* (2017). TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. *Nat Genet* 49, 1336-1345.

Kwasnieski, J.C., Fiore, C., Chaudhari, H.G., and Cohen, B.A. (2014). High-throughput functional testing of ENCODE segmentation predictions. *Genome Res* 24, 1595-1602.

Layer, R.M., Pedersen, B.S., DiSera, T., Marth, G.T., Gertz, J., and Quinlan, A.R. (2018). GIGGLE: a search engine for large-scale integrated genome analysis. *Nat Methods* 15, 123-126.

Liu, Y., Yu, S., Dhiman, V.K., Brunetti, T., Eckart, H., and White, K.P. (2017). Functional assessment of human enhancer activities using whole-genome STARR-sequencing. *Genome Biol* 18, 219.

Mahat, D.B., Kwak, H., Booth, G.T., Jonkers, I.H., Danko, C.G., Patel, R.K., Waters, C.T., Munson, K., Core, L.J., and Lis, J.T. (2016). Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). *Nat Protoc* 11, 1455-1476.

Malik, R., Khan, A.P., Asangani, I.A., Cieslik, M., Prensner, J.R., Wang, X., Iyer, M.K., Jiang, X., Borkin, D., Escara-Wilke, J., *et al.* (2015). Targeting the MLL complex in castration-resistant prostate cancer. *Nat Med* 21, 344-352.

McNair, C., Xu, K., Mandigo, A.C., Benelli, M., Leiby, B., Rodrigues, D., Lindberg, J., Gronberg, H., Crespo, M., De Laere, B., *et al.* (2018). Differential impact of RB status on E2F1 reprogramming in human cancer. *J Clin Invest* 128, 341-358.

Mei, S., Qin, Q., Wu, Q., Sun, H., Zheng, R., Zang, C., Zhu, M., Wu, J., Shi, X., Taing, L., *et al.* (2017). Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. *Nucleic Acids Res* 45, D658-D662.

Meuleman, W., Muratov, A., Rynes, E., Halow, J., Lee, K., Bates, D., Diegel, M., Dunn, D., Neri, F., Teodosiadis, A., *et al.* (2020). Index and biological spectrum of human DNase I hypersensitive sites. *Nature* 584, 244-251.

Palit, S.A., Vis, D., Steloo, S., Liefink, C., Prekovic, S., Bekers, E., Hofland, I., Sustic, T., Wolters, L., Beijersbergen, R., *et al.* (2019). TLE3 loss confers AR inhibitor resistance by facilitating GR-mediated human prostate cancer cell growth. *Elife* 8.

Paltoglou, S., Das, R., Townley, S.L., Hickey, T.E., Tarulli, G.A., Coutinho, I., Fernandes, R., Hanson, A.R., Denis, I., Carroll, J.S., *et al.* (2017). Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer. *Cancer Res* 77, 3417-3430.

Pomerantz, M.M., Li, F., Takeda, D.Y., Lenci, R., Chonkar, A., Chabot, M., Cejas, P., Vazquez, F., Cook, J., Shviddasani, R.A., *et al.* (2015). The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. *Nat Genet* 47, 1346-1351.

Pomerantz, M.M., Qiu, X., Zhu, Y., Takeda, D.Y., Pan, W., Baca, S.C., Gusev, A., Korthauer, K.D., Severson, T.M., Ha, G., *et al.* (2020). Prostate cancer reactivates developmental epigenomic programs during metastatic progression. *Nat Genet* 52, 790-799.

Quigley, D.A., Dang, H.X., Zhao, S.G., Lloyd, P., Aggarwal, R., Alumkal, J.J., Foye, A., Kothari, V., Perry, M.D., Bailey, A.M., *et al.* (2018). Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. *Cell* 174, 758-769 e759.

Ramanand, S.G., Chen, Y., Yuan, J., Daescu, K., Lambros, M.B., Houlahan, K.E., Carreira, S., Yuan, W., Baek, G., Sharp, A., *et al.* (2020). The landscape of RNA polymerase II-associated chromatin interactions in prostate cancer. *J Clin Invest* 130, 3987-4005.

Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F., and Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res* 44, W160-165.

Rasool, R.U., Natesan, R., Deng, Q., Aras, S., Lal, P., Sander Effron, S., Mitchell-Velasquez, E., Posimo, J.M., Carskadon, S., Baca, S.C., *et al.* (2019). CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation. *Cancer Discov* 9, 1538-1555.

Rhie, S.K., Perez, A.A., Lay, F.D., Schreiner, S., Shi, J., Polin, J., and Farnham, P.J. (2019). A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. *Nat Commun* 10, 4154.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139-140.

Sanson, K.R., Hanna, R.E., Hegde, M., Donovan, K.F., Strand, C., Sullender, M.E., Vaimberg, E.W., Goodale, A., Root, D.E., Piccioni, F., *et al.* (2018). Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. *Nat Commun* 9, 5416.

Scher, H.I., and Sawyers, C.L. (2005). Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. *J Clin Oncol* 23, 8253-8261.

Sharma, N.L., Massie, C.E., Ramos-Montoya, A., Zecchini, V., Scott, H.E., Lamb, A.D., MacArthur, S., Stark, R., Warren, A.Y., Mills, I.G., *et al.* (2013). The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. *Cancer Cell* 23, 35-47.

Shukla, S., Cyrt, J., Murphy, D.A., Walczak, E.G., Ran, L., Agrawal, P., Xie, Y., Chen, Y., Wang, S., Zhan, Y., *et al.* (2017). Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance. *Cancer Cell* 32, 792-806 e797.

Stelloo, S., Nevedomskaya, E., Kim, Y., Schuurman, K., Valle-Encinas, E., Lobo, J., Krijgsman, O., Peepoer, D.S., Chang, S.L., Feng, F.Y., *et al.* (2018). Integrative epigenetic taxonomy of primary prostate cancer. *Nat Commun* 9, 4900.

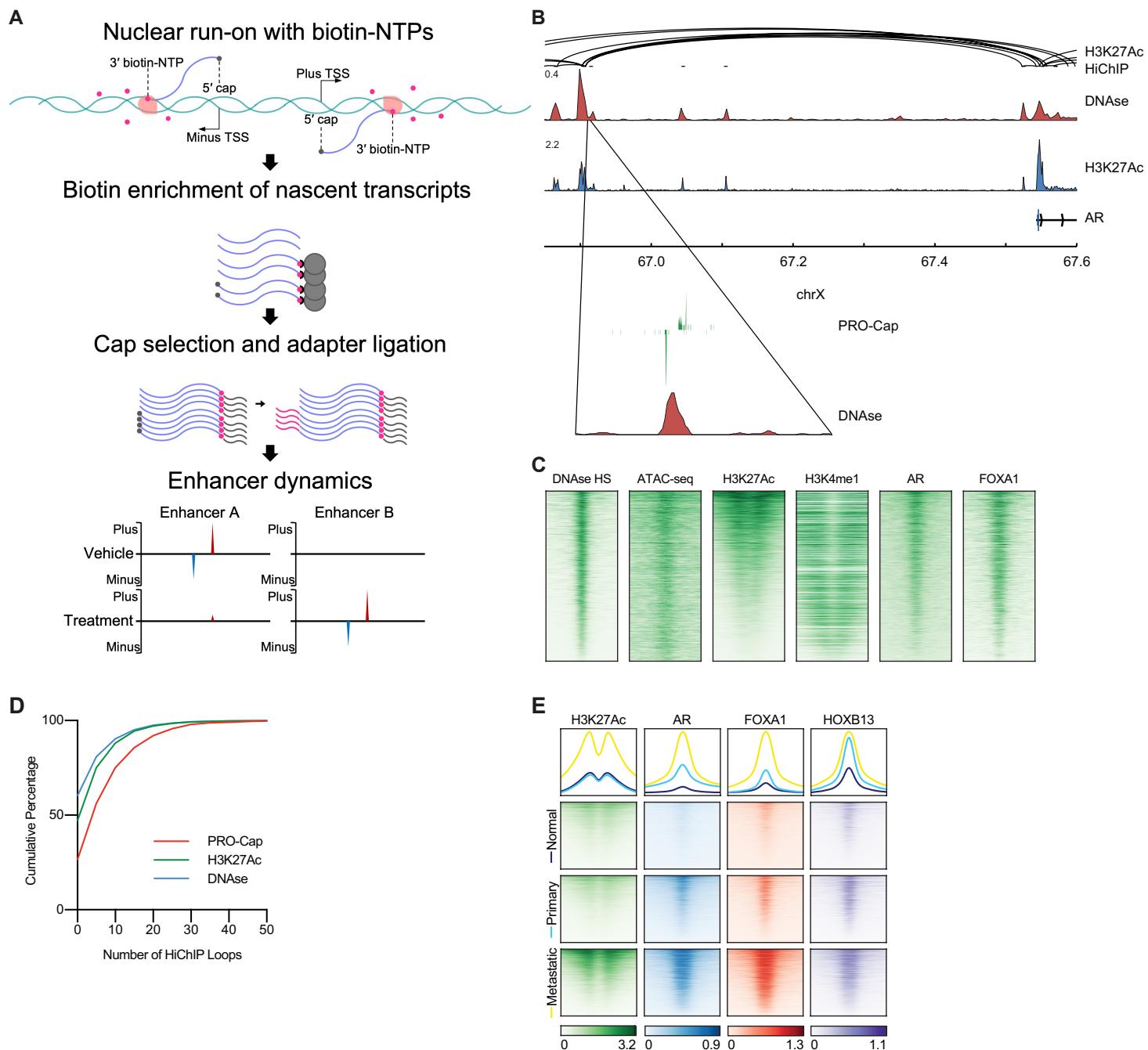
Taberlay, P.C., Achinger-Kawecka, J., Lun, A.T., Buske, F.A., Sabir, K., Gould, C.M., Zotenko, E., Bert, S.A., Giles, K.A., Bauer, D.C., *et al.* (2016). Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. *Genome Res* 26, 719-731.

Takeda, D.Y., Spisak, S., Seo, J.H., Bell, C., O'Connor, E., Korthauer, K., Ribli, D., Csabai, I., Solymosi, N., Szallasi, Z., *et al.* (2018). A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. *Cell* 174, 422-432 e413.

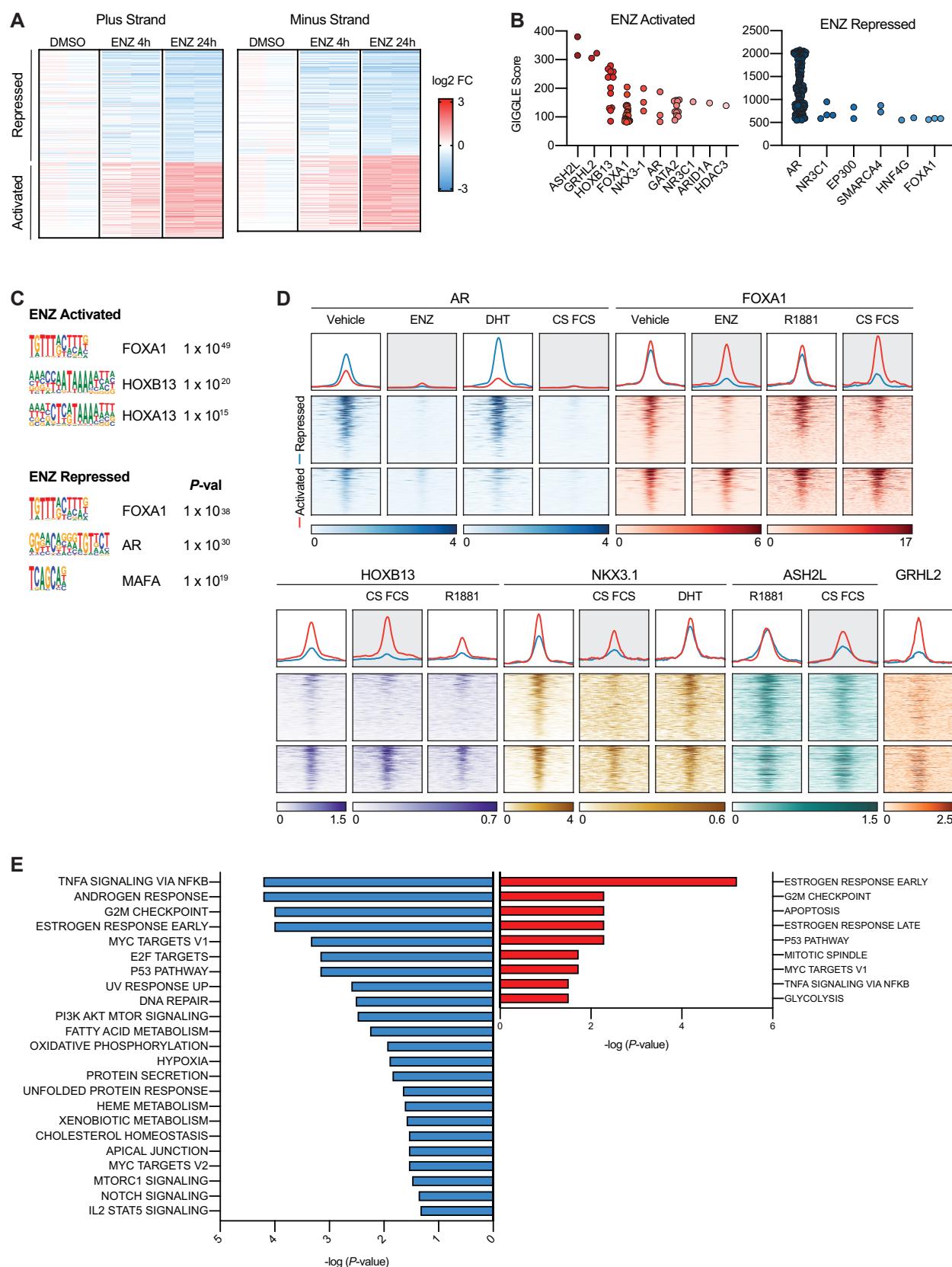
Tan, P.Y., Chang, C.W., Chng, K.R., Wansa, K.D., Sung, W.K., and Cheung, E. (2012). Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. *Mol Cell Biol* 32, 399-414.

Tippens, N.D., Liang, J., Leung, A.K., Wierbowski, S.D., Ozer, A., Booth, J.G., Lis, J.T., and Yu, H. (2020). Transcription imparts architecture, function and logic to enhancer units. *Nat Genet* 52, 1067-1075.

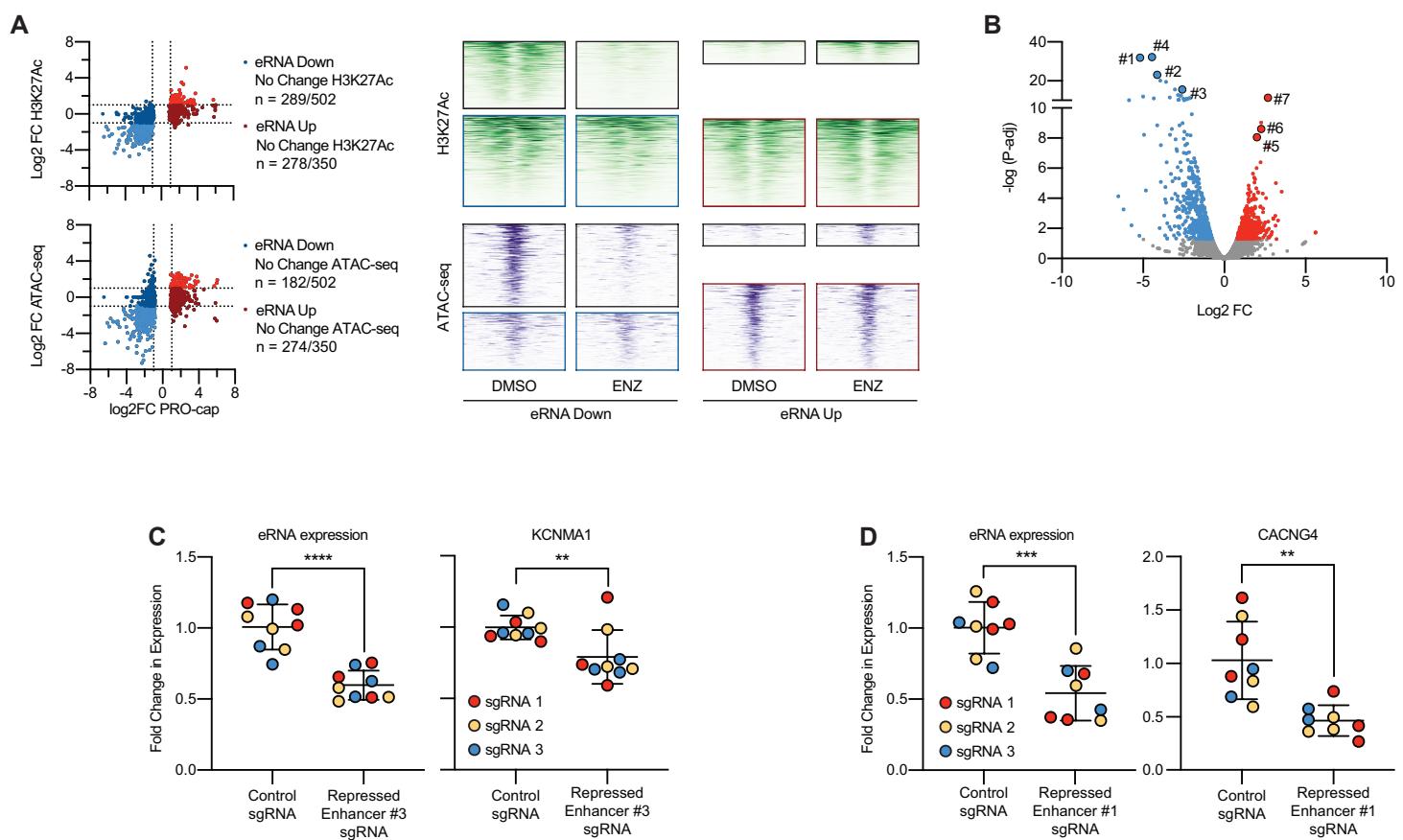
Tippens, N.D., Vihervaara, A., and Lis, J.T. (2018). Enhancer transcription: what, where, when, and why? *Genes Dev* 32, 1-3.

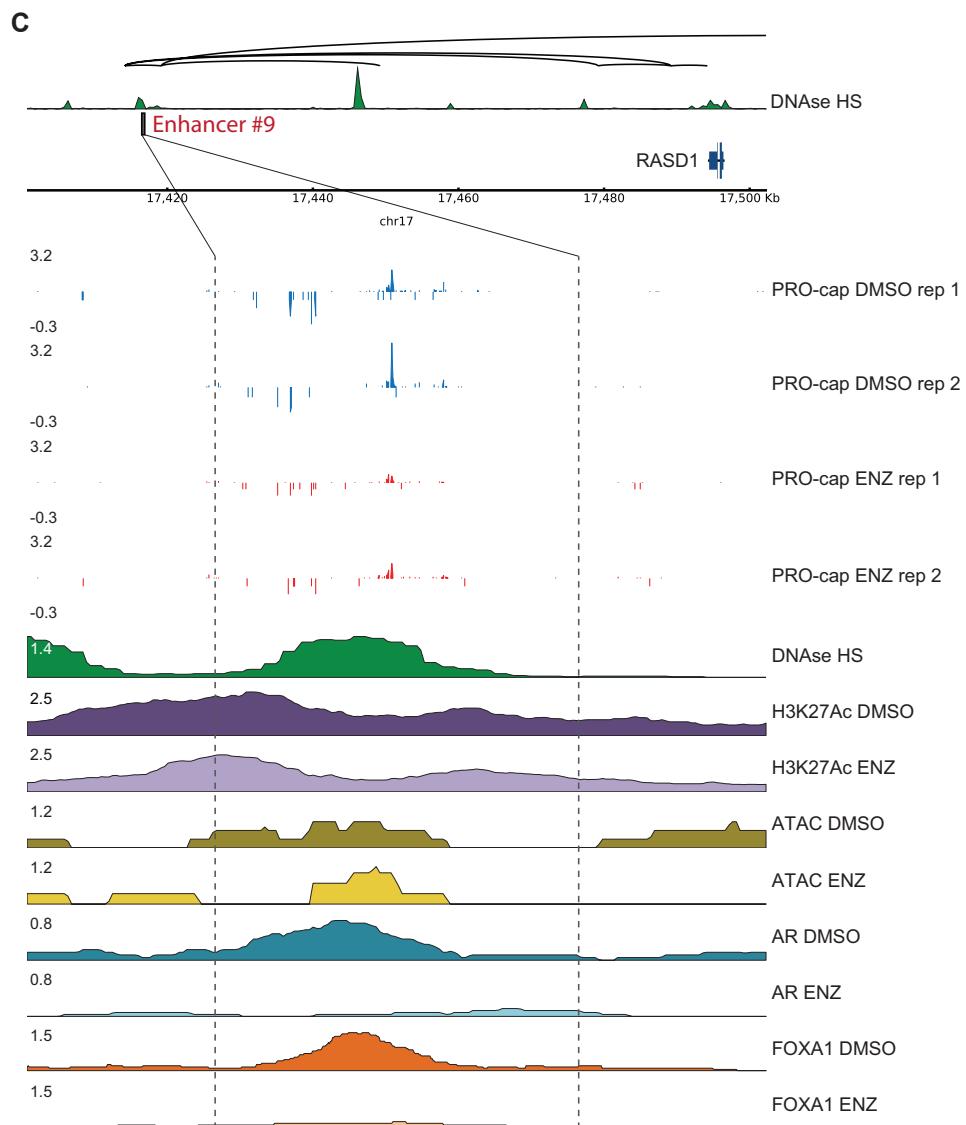
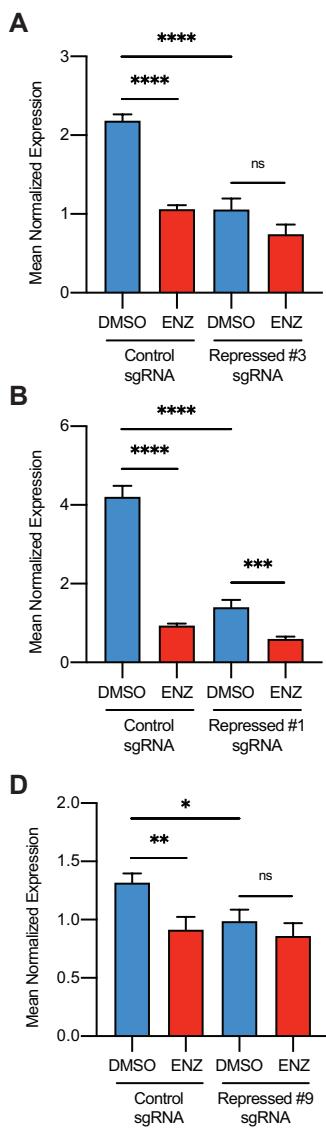

Vanhille, L., Griffon, A., Maqbool, M.A., Zacarias-Cabeza, J., Dao, L.T., Fernandez, N., Ballester, B., Andrau, J.C., and Spicuglia, S. (2015). High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. *Nat Commun* 6, 6905.

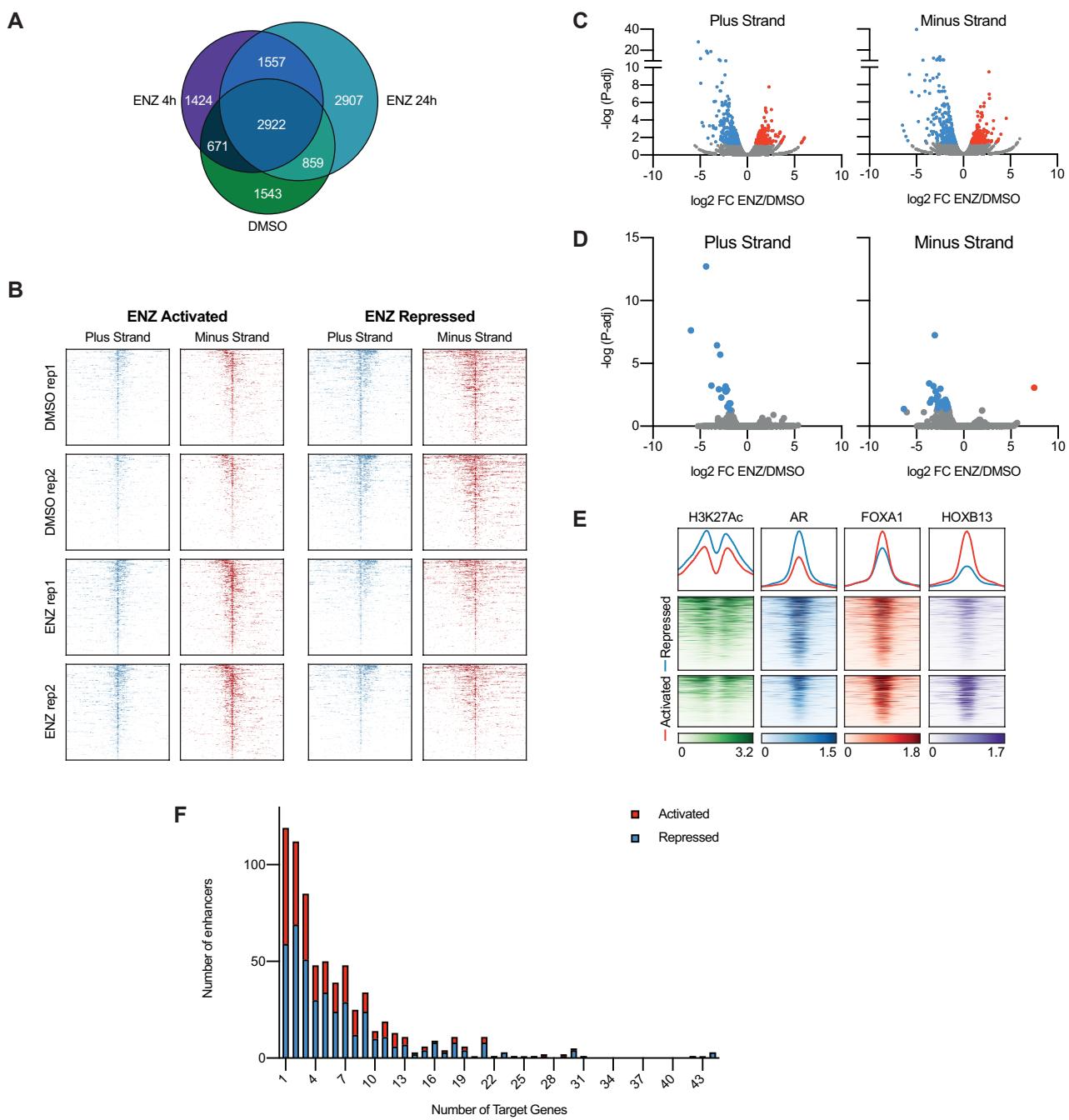
Viswanathan, S.R., Ha, G., Hoff, A.M., Wala, J.A., Carrot-Zhang, J., Whelan, C.W., Haradhvala, N.J., Freeman, S.S., Reed, S.C., Rhoades, J., *et al.* (2018). Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. *Cell* 174, 433-447 e419.


Wang, D., Liu, S., Warrell, J., Won, H., Shi, X., Navarro, F.C.P., Clarke, D., Gu, M., Emani, P., Yang, Y.T., *et al.* (2018). Comprehensive functional genomic resource and integrative model for the human brain. *Science* 362.

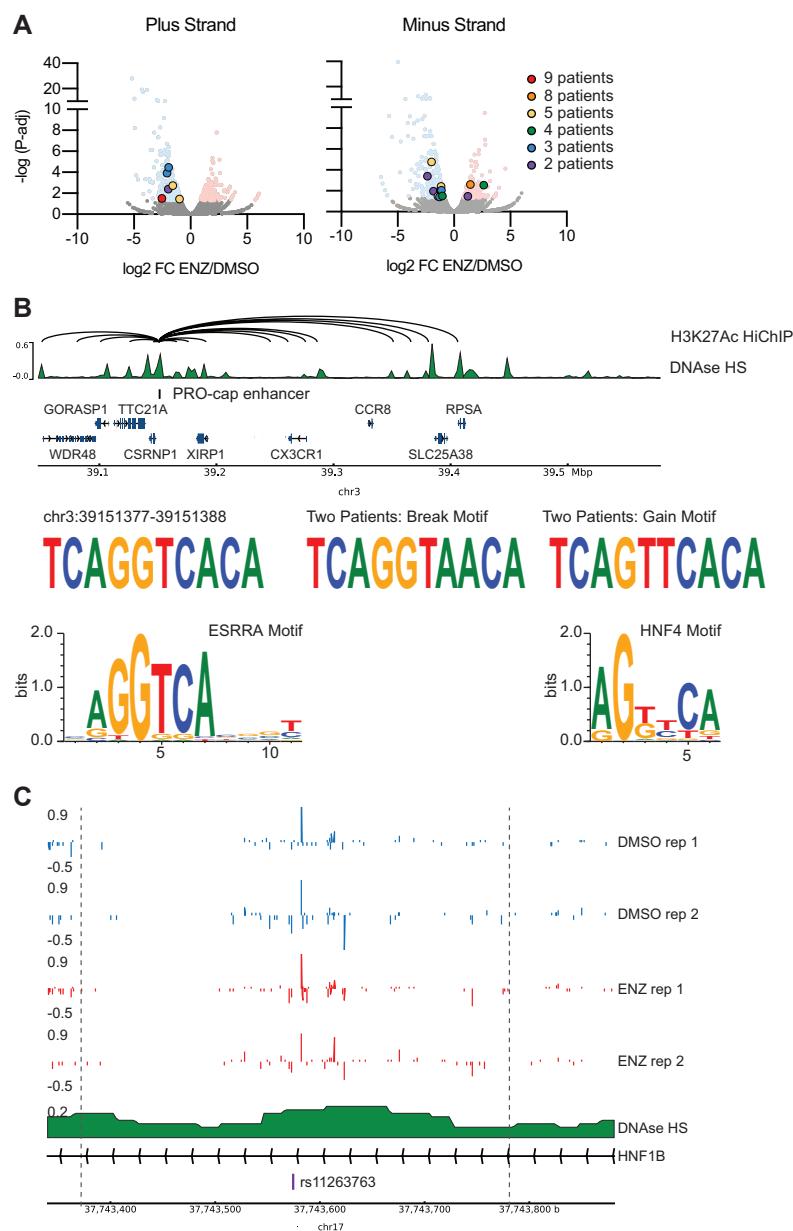
Yao, L., Liang, J., Ozer, A., Leung, A.K., Lis, J.T., and Yu, H. (2022). A comparison of experimental assays and analytical methods for genome-wide identification of active enhancers. *Nat Biotechnol*.


Zhang, Z., Chng, K.R., Lingadahalli, S., Chen, Z., Liu, M.H., Do, H.H., Cai, S., Rinaldi, N., Poh, H.M., Li, G., *et al.* (2019). An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. *Genome Res* 29, 223-235.

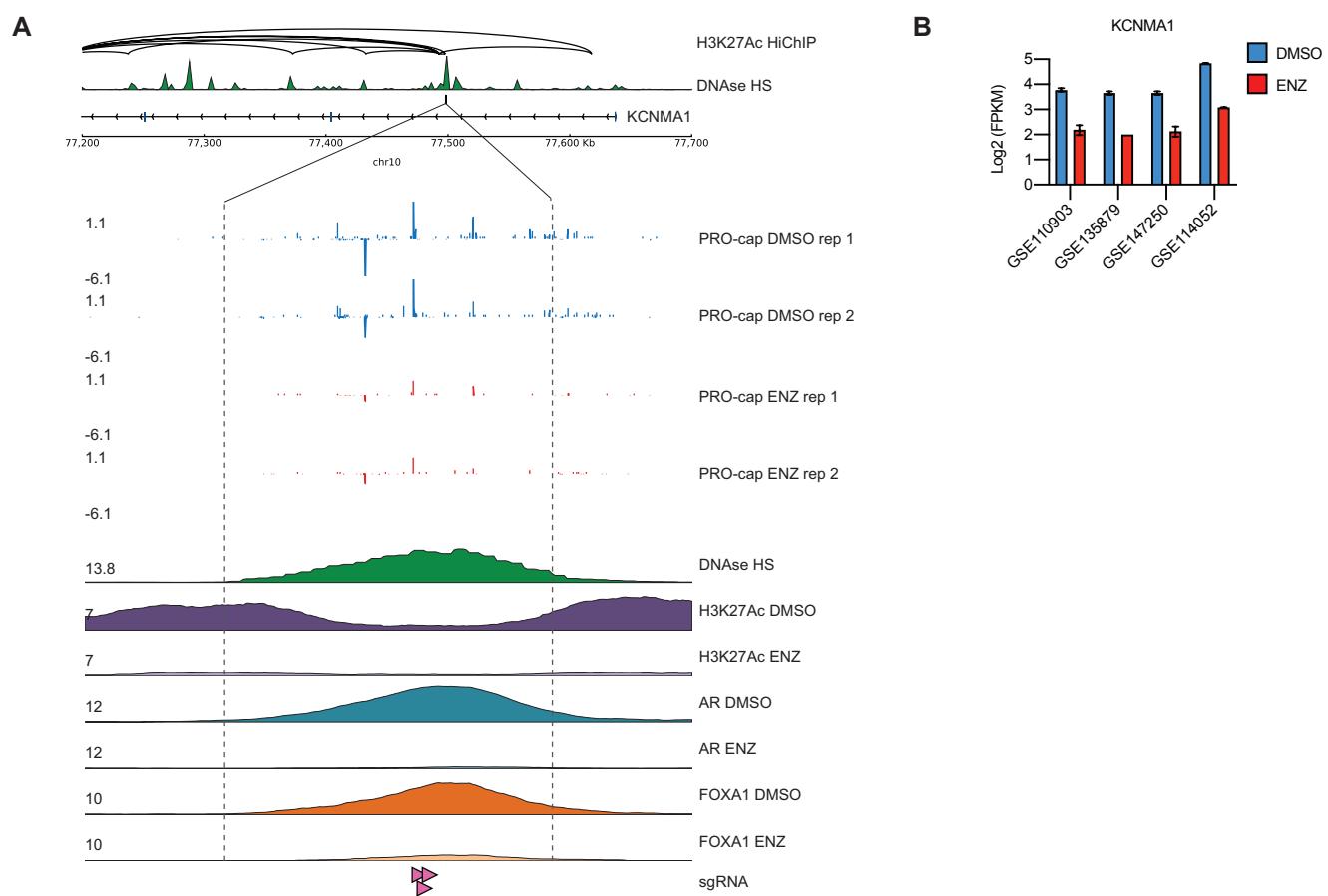


377 **Figure 1. PRO-cap sequencing of eRNAs to map active enhancers in prostate cancer. A)**
378 Overview of experimental pipeline implemented in this study. **B)** Enhancer candidates
379 demonstrate divergent transcription of eRNAs. Shown is the upstream enhancer for androgen
380 receptor (AR) along with published H3K27Ac HiChIP loops(Giambartolomei et al., 2021) and read
381 tracks for DNase (GSM816637) and H3K27Ac (GSE85558) ChIP-seq(Meuleman et al., 2020;
382 Shukla et al., 2017) of LNCaP cells. **C)** Putative enhancers identified by PRO-cap (n = 6,189) are
383 bound by canonical biochemical marks and known important prostate transcription factors in
384 LNCaP cells. Heatmaps show read density from publicly available ChIP-seq data(Kim et al., 2018;
385 McNair et al., 2018; Meuleman et al., 2020; Shukla et al., 2017; Taberlay et al., 2016) (DNase:
386 GSM816637, AR/FOXA1: GSE85558, ATAC-seq: GSE105116, H3K4me1: GSE73783, and
387 H3K27Ac: GSE107780) 1kb up- and downstream of the center of the enhancer. **D)** H3K27Ac loop
388 anchors(Giambartolomei et al., 2021) are significantly more likely ($P < 0.0001$, Kolmogorov-
389 Smirnov test) to overlap with PRO-cap peaks versus H3K27Ac or DNase I peaks. **E)** Putative
390 enhancers identified by PRO-cap are also bound by biochemical marks and prostate transcription
391 factors in patient samples. Heatmaps show average read density from publicly available ChIP-
392 seq(Pomerantz et al., 2020) data (GSE130408) from normal prostate tissue, primary PCa, and
393 metastatic PCa (n = 8 samples for each).


394 **Figure 2. PRO-cap sequencing of eRNAs identifies enhancers affected by enzalutamide. A)**
395 PRO-cap analysis of LNCaP cells treated with 10 μ M enzalutamide (ENZ) for 24 hours identified
396 853 putative enhancers which demonstrated significant differential activation or repression on the
397 plus or minus strands as determined by edgeR analysis (FDR < 0.05). Data is displayed as a
398 heatmap of the fold-change in mapped reads with 4 or 24 hour ENZ treatments. For each
399 treatment condition two independent biological replicates are shown. **B)** GIGGLE(Layer et al.,
400 2018) analysis demonstrates overlap of the ENZ regulated enhancers with regions identified in
401 published ChIP-seq datasets. Each dot represents a single study, and the GIGGLE score
402 incorporates both enrichment and significance. **C)** Overrepresented TF motifs as determined by
403 Cistrome MDSeqPos(Mei et al., 2017) for the ENZ regulated enhancers. **D)** Heatmaps and
404 summary plots show read density 1kb up- and downstream of the center of the ENZ regulated
405 enhancers. Data is from publicly available ChIP-seq data(Hwang et al., 2019; Palit et al., 2019;
406 Paltoglou et al., 2017; Pomerantz et al., 2015; Rasool et al., 2019; Tan et al., 2012) (GSE137775,
407 GSE125245, GSE94682, GSE70079, GSE40269, GSE28264, and GSE80256) for LNCaP cells
408 treated with ENZ, R1881, DHT or cultured in media containing charcoal stripped (CS) FCS.
409 ASH2L data(Malik et al., 2015) (GSE60841) is from VCaP cells treated with R1881 or cultured in
410 media containing CS FCS. **E)** Gene ontology analysis of the genes predicted to be regulated by
411 these enhancers generated using ShinyGO(Ge et al., 2020).

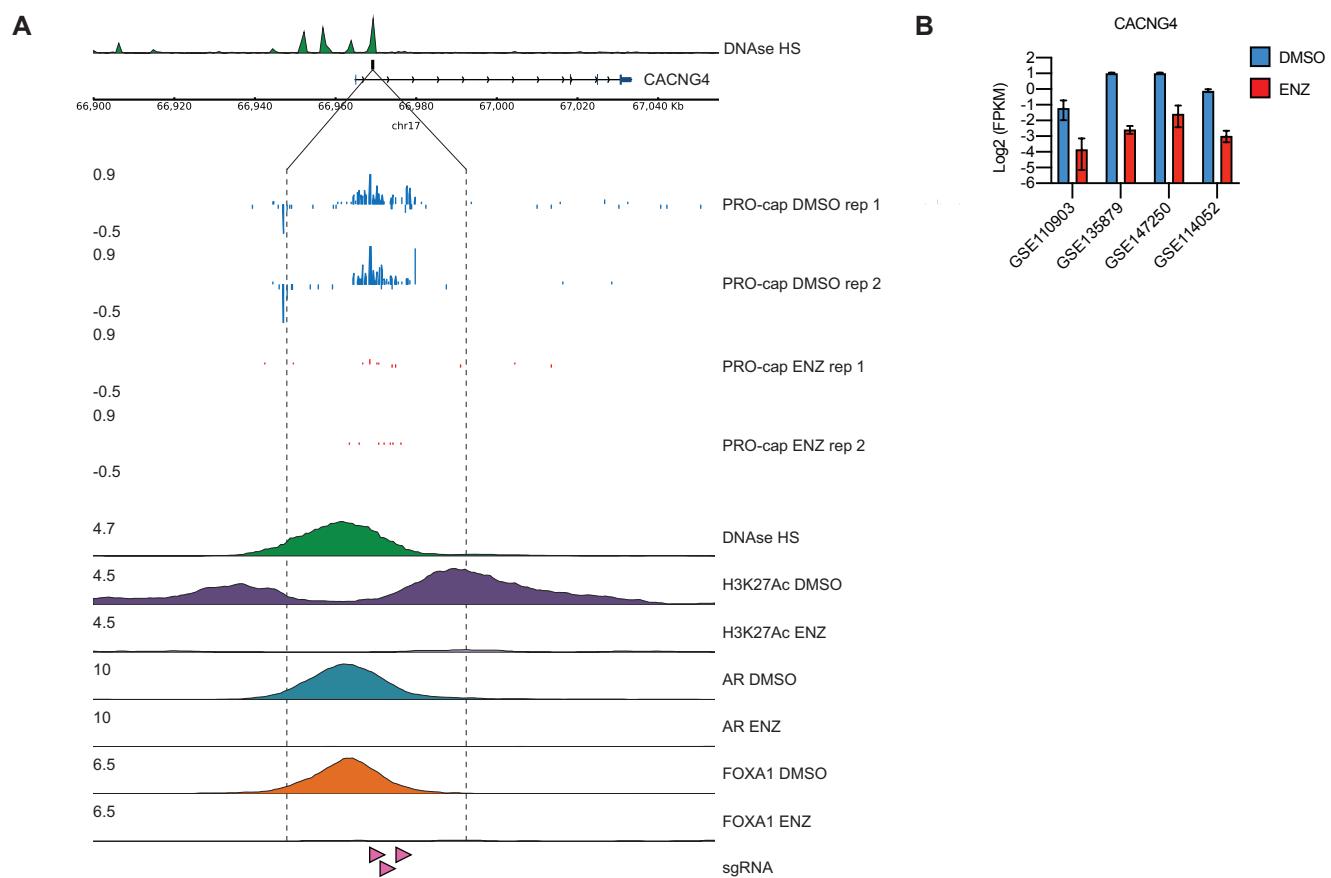
412 **Figure 3. Functional validation of PRO-cap enhancers. A)** Comparing changes in eRNA
413 expression with ENZ treatment as detected by PRO-cap with changes in H3K27Ac ChIP-seq and
414 ATAC-seq. XY charts and heatmaps show read density 1kb up- and downstream of the center of
415 the ENZ regulated enhancers. Data is from publicly available data(Hwang et al., 2019)
416 (GSE137775). **B)** Selected candidate enhancers for functional analysis. **C)** CRISPRi targeting
417 PRO-cap candidate enhancer #3 with three different sgRNAs significantly reduces expression of
418 the eRNA itself ($P < 0.0001$), and of the downstream target gene *KCNMA1* ($P = 0.0083$). **D)**
419 CRISPRi targeting PRO-cap candidate enhancer #1 with three different sgRNAs significantly
420 reduces expression of the eRNA itself ($P = 0.0002$), and of the downstream target gene *CACNG4*
421 ($P = 0.0011$).

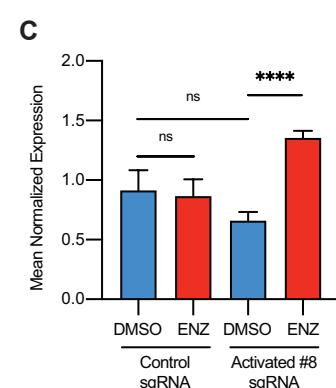
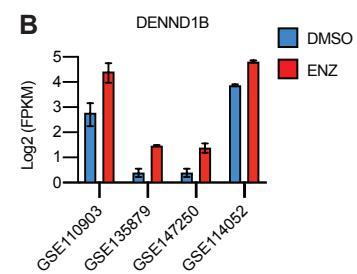
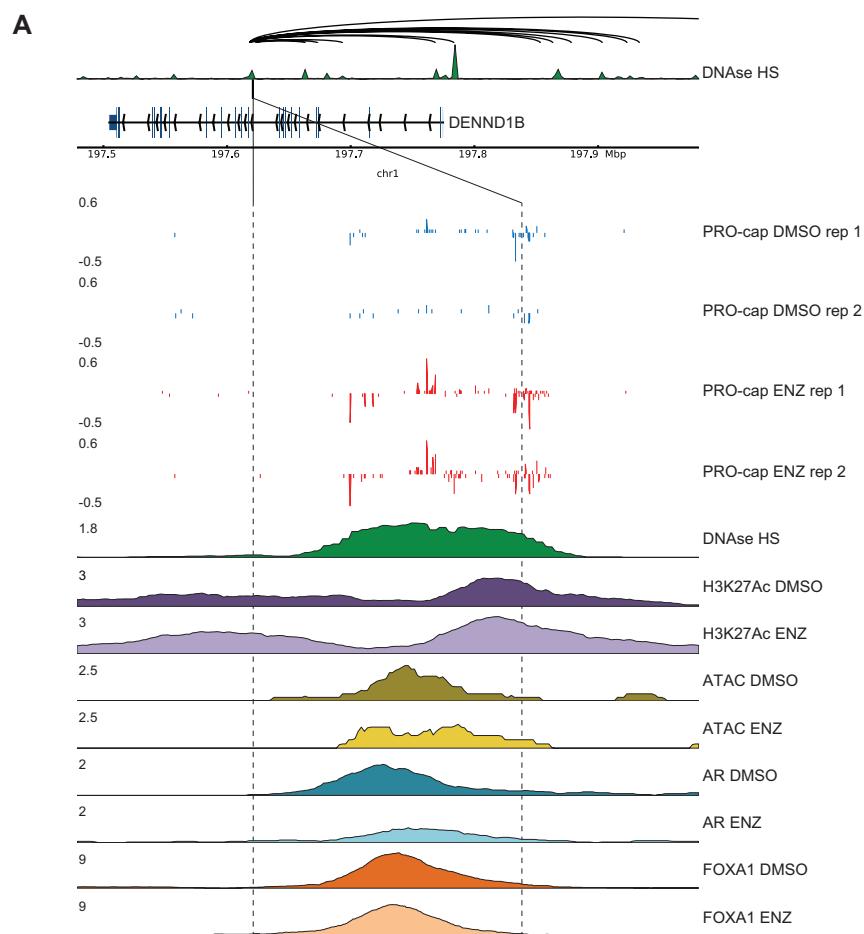


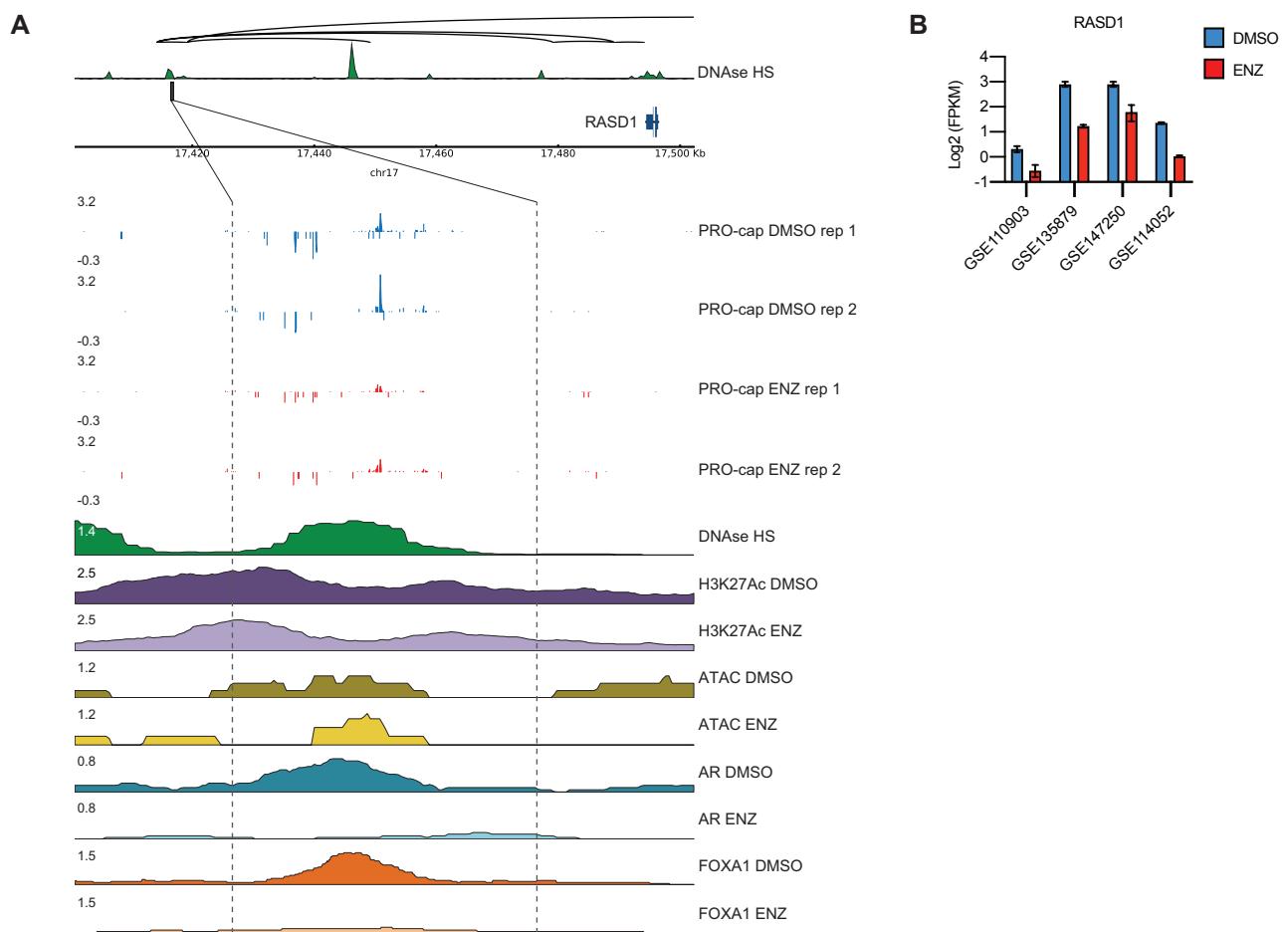
422 **Figure 4. CRISPRi interrogation of PRO-cap enhancer candidates. A)** CRISPRi targeting
423 PRO-cap candidate enhancer #3 with three different sgRNAs impairs the ENZ-regulation of the
424 downstream target gene *KCNMA1* (2.05-fold change, $P < 0.0001$ vs. 1.42-fold change). **B)**
425 CRISPRi targeting PRO-cap candidate enhancer #1 with three different sgRNAs impairs the ENZ-
426 regulation of the downstream target gene *CACNG4* (4.48-fold change, $P < 0.0001$ vs. 2.35-fold
427 change, $P = 0.0007$). **C)** Shown is the candidate enhancer PRO-cap signal along with published
428 H3K27Ac HiChIP loops(Giambartolomei et al., 2021) and read tracks for DNase (GSM816637),
429 ATAC-seq, and ChIP-seq with and without ENZ for H3K27Ac, AR, and FOXA1
430 (GSE137775)(Hwang et al., 2019). **D)** CRISPRi targeting PRO-cap candidate enhancer #9 with
431 two different sgRNAs impairs the ENZ-regulation of the downstream target gene *RASD1* (1.44-
432 fold change, $P = 0.0084$ vs. 1.15-fold change).



433 **Figure S1. PRO-cap sequencing of eRNAs identifies enhancers affected by enzalutamide.**


434 **A)** Venn diagram of the overlap of enhancer regions between the three treatments paradigms **B)**
435 Heatmap of the PRO-cap signal 250 bp up- and downstream of ENZ activated or repressed peaks
436 from two replicates of LNCaP cells treated with DMSO or 10 μ M ENZ for 24 hours. **C)** PRO-cap
437 analysis of LNCaP cells treated with 10 μ M enzalutamide (ENZ) for 24 hours identified 853
438 putative enhancers which demonstrated significant differential activation or repression on the plus
439 or minus strands as determined by edgeR analysis (FDR < 0.05). **D)** PRO-cap analysis of LNCaP
440 cells treated with 10 μ M enzalutamide (ENZ) for 4 hours identified 44 putative enhancers which
441 demonstrated significant differential activation or repression on the plus or minus strands as
442 determined by edgeR analysis (FDR < 0.05). **E)** Heatmaps and summary plots show read density
443 1kb up- and downstream of the center of the ENZ regulated enhancers in metastatic PCa. Data
444 is from publicly available ChIP-seq data(Pomerantz et al., 2020) (GSE130408) and is displayed
445 as the mean signal from n = 8 metastatic PCa samples. **F)** Histogram demonstrating the number
446 of downstream target gene predictions for the 853 ENZ-regulated enhancers identified with PRO-
447 cap.




448 **Figure S2. PRO-cap helps prioritize candidate enhancer regions to search for cancer-**
449 **associated germline and somatic variants. A)** Analysis of 286 PCa whole genomes identified
450 137 single nucleotide variants (SNV) in the ENZ-regulated enhancers identified via PRO-cap, 20
451 of which were recurrent in more than one patient. **B)** Example of an enhancer downregulated by
452 ENZ which demonstrates two separate recurrent SNVs, one in two patients that breaks an
453 ESRRA motif, and another in two different patients that creates an HNF4 motif. **C)** Example of a
454 PCa risk variant(Conti et al., 2021) which overlaps with an enhancer identified via PRO-cap


455 **Figure S3. Candidate Enhancer #3. A)** Shown is the candidate enhancer PRO-cap signal along
456 with published H3K27Ac HiChIP loops(Giambartolomei et al., 2021) and read tracks for DNase
457 (GSM816637), and ChIP-seq with and without ENZ for H3K27Ac, AR, and FOXA1
458 (GSE137775)(Hwang et al., 2019). **B)** Expression of the candidate downstream target gene
459 *KCNMA1* in response to ENZ from multiple published RNA-seq data sets, accession number as
460 indicated.

461 **Figure S4. Candidate Enhancer #1. A)** Shown is the candidate enhancer PRO-cap signal along
462 with published H3K27Ac HiChIP loops(Giambartolomei et al., 2021) and read tracks for DNase
463 (GSM816637), and ChIP-seq with and without ENZ for H3K27Ac, AR, and FOXA1
464 (GSE137775)(Hwang et al., 2019). **B)** Expression of the candidate downstream target gene
465 CACNG4 in response to ENZ from multiple published RNA-seq data sets, accession number as
466 indicated.

467 **Figure S5. Candidate Enhancer #8. A)** Shown is the candidate enhancer PRO-cap signal along
468 with published H3K27Ac HiChIP loops(Giambartolomei et al., 2021) and read tracks for DNase
469 (GSM816637), ATAC-seq, and ChIP-seq with and without ENZ for H3K27Ac, AR, and FOXA1
470 (GSE137775)(Hwang et al., 2019). **B)** Expression of the candidate downstream target gene
471 *DENND1B* in response to ENZ from multiple published RNA-seq data sets, accession number as
472 indicated. **C)** CRISPRi targeting PRO-cap candidate enhancer #8 with three different sgRNAs
473 impairs the ENZ-regulation of the downstream target gene *DENND1B* (0.946-fold change vs.
474 2.06-fold change P < 0.0001).

475 **Figure S6. Candidate Enhancer #9. A)** Shown is the candidate enhancer PRO-cap signal along
476 with published H3K27Ac HiChIP loops(Giambartolomei et al., 2021) and read tracks for DNase
477 (GSM816637), ATAC-seq, and ChIP-seq with and without ENZ for H3K27Ac, AR, and FOXA1
478 (GSE137775)(Hwang et al., 2019). **B)** Expression of the candidate downstream target gene
479 *RASD1* in response to ENZ from multiple published RNA-seq data sets, accession number as
480 indicated.