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ABSTRACT

Chromosomal instability is a common characteristic of many cancers. Chromosomally instable
tumour cells exhibit frequent copy number aberrations (CNAs) and a wide variation in the amount of
DNA in cancer cells, referred to as cell ploidy. High levels of ploidy, in particular, are associated
with whole genome doubling (WGD), a widespread macro-evolutionary event in tumour history.
Individual cells’ genomes are also undergoing replication as part of the cell cycle, and this constitutes
an important covariate for single-cell genome analysis. Accurate and unbiased measurement of single-
cell ploidy and replication status, including WGDs, based on DNA sequencing data is important
for many downstream applications, such as detecting genomic variants, quantifying intratumour
heterogeneity, and reconstructing tumour evolutionary phylogenies.

Here we present scAbsolute, an approach to measure ploidy and replication status in single cells
using scalable stochastic variational inference with a constrained Dirichlet Process Gaussian Mixture
Model.

We demonstrate its accuracy across three sequencing technologies (10X, DLP, ACT) and different
cell lines and tumour samples. We address the problem of identifying cells with double the amount
of DNA, but otherwise identical copy number profiles as is the case after WGD, solely based on
sequencing information. Finally, we provide a robust and general method for identifying cells
undergoing DNA replication.

scAbsolute provides a scalable and unbiased way of ascertaining single-cell ploidy and replication
status, paving the way for accurate detection of CNAs and WGDs in single-cell DNA sequencing
data.
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Introduction

Many common cancers are characterised by chromosomal instability (CIN) and as a result, extensive copy number
aberrations (CNAs)1,2. CNAs alter the number of copies of genomic regions in a cell, thus creating a background of
genomic variation on which evolution can act3. CNAs can act as drivers of cancer evolution4–6 and be used to infer
phylogenies7,8. Importantly, CNAs have been shown to play a crucial role in cancer treatment and prognosis9–11, and
they correlate with markers of immune evasion and increased activity in proliferation pathways6,12,13. As a consequence
of CIN, tumour cells, unlike normal cells, vary in ploidy, i.e. they contain varying amounts of DNA.

Large amounts of DNA in a cell or high levels of ploidy, respectively, are often associated with whole genome doubling
(WGD)14. Previous research has shown how WGD can fuel CIN through abnormal mitosis15–18. Cells that have
undergone WGD can be genomically unstable and tend to accumulate CNAs more quickly, partly because they appear
to be able to better cope with the negative effects of deleterious mutations and ongoing CIN.14,19–22. WGD is a common
event across cancers1,23,24 and is associated with poor prognosis25. At the same time, fundamental questions are
still unanswered, for example mechanisms of WGD, and the interplay between WGD and CIN in the early stages
of tumourigenesis16. Because of their importance, WGD and CIN are central topics in cancer genomics, but further
progress is held back by the lack of accurate methods to identify the ploidy of single cells, which is a crucial prerequisite
for many downstream applications, such as quantifying intratumour heterogeneity and phylogenetic reconstruction of
tumour evolution, and also heavily impacts single-nucleotide variation (SNV) detection26–28.

Here, we introduce scAbsolute - a computational method specifically targeted at inferring individual cells’ ploidy
and replication status based on shallow single-cell DNA sequencing data alone. We demonstrate the feasibility of
distinguishing cells in different, previously unidentifiable ploidy states, including cells directly after undergoing WGD.
Our research improves on existing models for ploidy estimation across different data types.

Ploidy estimation in bulk data The problem of estimating tumour purity and ploidy, as a precursor to further CNA
analysis, has been extensively explored in the bulk sequencing setting. The challenge in this setting is estimating
the mixing ratio of normal and tumour cells, and the heterogeneity of the tumour cell populations and subclonal
populations29. Many tools aim to estimate tumour purity and ploidy, and identify subclonal copy-number status23,27,30–36,
but the problem is challenging, because it is underdetermined with multiple mathematically equivalent solutions
existing23. Some partial improvement can be achieved by using multi-sample bulk sequencing29. Importantly, mistakes
at the level of ploidy and purity estimation have considerably negative effects on downstream analysis, such as subclonal
reconstruction and SNV detection26.

Single cell technologies Recent advances in single-cell sequencing technologies37–43 make it possible to measure
CNAs in individual cancer cells. An early platform, called Chromium Single Cell CNV44 and developed by 10X
Genomics, relied on whole-genome amplification and a commercial microdroplet platform. Several publicly available
data sets were produced by this technology which is no longer commercially available. It has been replaced by protocols
developed for shallow WGS single-cell DNA sequencing, including Direct Library Preparation39,40 (DLP) and Acoustic
Cell Tagmentation43 (ACT). These two technologies rely on amplification-free, single-molecule indexing via direct
tagmentation. By using a direct tagmentation step to incorporate index barcodes and sequencing adaptors before
subsequent PCR cycles, it is possible to link all original reads to the original single-cell molecules and computationally
filter PCR duplicates39.

Ploidy estimation for single cell data While single cell technologies directly address the purity issue, it is still
necessary to estimate an individual cell’s ploidy. Existing approaches for single-cell sequencing data either rely on
computational steps originally developed for the bulk sequencing setting, or additional experimental information. Most
approaches are unable to distinguish between different ploidy solutions in the absence of odd or intermediate copy
number states in the data45. It is easiest to demonstrate this challenge with a completely normal cell without any CNAs.
In the absence of any additional knowledge, there is no possibility to distinguish a normal cell that has just undergone a
WGD, or is in G2 phase with a tetraploid genome, from a cell in G1 phase with a diploid genome.This is equally the
case in a tumour cell with a more complex genome (Figs. 1 and S1).

Existing computational methods are unable to distinguish these cases. In practice, tools such as HMMCopy46 are
commonly used39,41,47,48 and serve as the basis for some novel copy number callers49,50. Gingko51 shows improved
performance for calling of accurate ploidy on a single cell level52. In a further advance, CHISEL53 estimates haplotype-
specific copy numbers based on B-allele frequency (BAF) estimated across 100s and 1000s of cells. Limitations of
CHISEL are the requirement to pool a large number of reads together, either by increased sequencing depth or by
number of cells, and the need for a matched normal sample or a sufficient number of normal single cells sequenced.
Finally, as a BAF-based approach, CHISEL cannot detect recent WGD.
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Alternatively, ploidy information can be inferred from experimental information, such as DAPI fluorescence staining
and subsequent Fluorescence-activated Cell Sorting (FACS)43. However, this approach requires a ploidy control and
a sufficient number of cells as input material, and might introduce a bias in the a-priori selection of cells based on
their ploidy profile. Laks et al. [40] suggest that there is a relationship between ploidy and cell size, as observed via
microscopy. However, it is unclear to what extent this can be reliably used to determine absolute cell ploidy.

The challenges of ploidy calling in single-cell data are further aggravated by the fact that different cell cycle phases lead
to different overall DNA content and introduce spurious copy number changes. As a result, separating cells undergoing
DNA replication in S phase from cells in G1/G2 phase is important to reliably measure copy number status across cells.
While this is relatively easy to achieve in a homogeneous sample40,54, we introduce an approach that generalises to
novel cell populations without requiring new training data, and improves on existing experimental evidence based on
FACS sorting of DAPI stained cell populations.

Results

The scAbsolute algorithm for calling absolute copy number

The basic idea of scAbsolute is to find a transform to convert the values from a scale of read counts per bin to a scale of
absolute copy number.

For a cell with its genome split into M fixed-size genomic bins (by default 500 kilobases), we refer to the (unknown)
copy number as cj and the observed per-bin read count as xj for each bin j. We aim to estimate a scaling factor ρ, so
that we can directly measure the ploidy p of a cell:

p =
1

M

M∑
j=1

cj =
1

M

M∑
j=1

xj
ρ

(1)

Equally, we can think of the ρ value as ρ = 1
M

∑M
j=1 xj/cj . The factor ρ denotes the average reads per copy and per

bin and is a measure of per-cell read coverage that we find very useful to compare different cells. The value of ρ is a
direct measure of the difference in expected mean read counts between neighbouring copy number states. Note, that our
definition of ploidy is directly proportional to the amount of DNA in a cell, and is not referring to the mode of the copy
number state distribution in a cell.

scAbsolute directly works on aligned bam files and produces absolute copy number calls across genomic bins. Ploidy
and cell-cycle inference takes about 3-10 min per cell (at 500 kilobases bin resolution), and can be naively parallelized
across cells. scAbsolute proceeds in a series of steps summarised here (Fig. 1); further details can the found in Methods.

Step 1: We use a dynamic programming approach based on the PELT algorithm for change point detection55 with a
negative binomial likelihood to find an initial segmentation of our read counts. It is possible to use other segmentation
algorithms at this stage, as long as the quality of the segmentation is reasonably good. Note that our focus here is not on
obtaining a highly accurate segmentation, but rather in identifying an accurate ploidy estimate.

Step 2: We then consider the marginal distribution of the segmented read counts. We use a constrained Dirichlet
Process Gaussian Mixture Model to fit a mixture of Gaussians to the marginal distributions. The constraint is in forcing
the distance between the means of the Gaussians to be constant, analogous to a 1-D grid. The width of the grid then
corresponds to a multiple of the scaling factor ρ, since we identify the peaks with the discrete copy number states that
are scaled by the per-cell read depth. Because we are working with a single cell, we know that all copy number states
occur at integer levels, only.

Step 3: We further constrain the per-cell ploidy solution, i.e. make the solution identifiable, by choosing a multiple of
the scaling factor as the correct solution, based on the resulting cell ploidy. Here, we use the solution with minimum L2
error among all solutions within the given ploidy window (by default 1.1-8.0) to select one fit among the limited set of
ploidies within the ploidy window.

Step 4: In order to correctly identify cells in which step 3 leads to an incorrect ploidy assignment - such as G2 or WGD
cells, or other outliers - we use a reference set of cells for which we compute the genomic read density given an inferred
ploidy in a post-processing step. Deviations from the expected read density at the estimated ploidy indicate an incorrect
ploidy solution. If any outliers have been detected in this step, they can be refitted by re-applying steps 1-3, with an
updated ploidy window.

In the following we present the scAbsolute method with three applications: determining per-cell ploidy, identifying
previously unidentifiable ploidy cases, and identifying cells undergoing DNA replication.
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Figure 1: Schematic overview of scAbsolute approach. Initially, raw read counts are binned and segmented. The
marginal distribution of the segmented read counts is fitted with a constrained Dirichlet Process Gaussian Mixture
Model (DPGMM) using stochastic variational inference in order to identify a limited set of plausible solutions. We
do this by identifying a constant ρ, that converts the scale from a read count to an absolute copy number scale. There
exist a set of values of ρ that lead to equally possible ploidy solutions (in this case triploid or hexaploid solutions). We
select the solution with minimum ploidy value subject to per-cell ploidy constraints. Post-hoc analysis of ploidy allows
to distinguish previously indistinguishable cell populations based on read density, overcoming the limitation of the
above approach. The example shows two (exemplary) copy number profiles for cells in different ploidy states, that
have previously been indistinguishable based on copy number profiles alone. We demonstrate that cell ploidy can be
determined in the absence of differentiating copy number states and other experimental information, based on per-cell
read density alone.
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Determining per-cell ploidy

We assessed the performance of scAbsolute and three competing computational approaches (HMMCopy, Ginkgo,
CHISEL) by comparing computationally predicted ploidy with ploidy estimates derived from experimental sample
annotations (Fig. 2). In the case of the 10X cell lines, we have karyotype estimates available, and the mean ploidy
estimate based on karyotype analysis provides a good fit with the computational estimate. In the case of the DLP cell
lines, we do not have direct evidence (except for the T-47D sample, which we will discuss below), but we find that the
estimates are reasonably consistent and in line with the known ploidy of the cell lines. The best experimental evidence
is available for the ACT data sets. Here, we have DAPI staining based FACS and selection, and it is reasonable to
assume that cells falling outside of the experimentally measured ploidy window are largely ascribed false ploidy. This
is not necessarily true for 10X and DLP data, where we only have estimates on the mean of the population, but no
information about the ploidy spread of the population and individual cells’ ploidies, and so it is difficult to compare
methods based on these data.

Consequently, we use the ACT data to compare performance of different computational tools, assuming that ploidy
outliers are indeed due to erroneous ploidy prediction. We compare scAbsolute to Ginkgo51, HMMCopy46 and
CHISEL53 (Fig. 2). Table 1 gives a detailed overview over the prediction results. We compare performance in two
ways: First, as the percentage of cells outside an experimental ploidy window of ±0.5 around the peak of the DAPI
distribution, which includes uncertainty from segmentation and FACS sorting, but excludes true ploidy changes. Second,
as the mean absolute distance across all cells in a sample from the experimental ploidy estimate. For both metrics, we
find that scAbsolute consistently predicts the correct ploidy solution for the large majority of cells. In only one case
(TN5), it performs considerably worse than Ginkgo with an error rate of 17.8% compared to Ginkgo’s 10%. This case,
and a similar scenario in the TN4 sample, are due to the unidentifiability of the problem, and are discussed in detail
below. The three samples with the highest percentage of wrongly assigned ploidies are 40% and 34%, and 31% in the
case of HMMCopy (TN5, MB-231, and MB-157), 69%, 66%, and 59% for Ginkgo (TN8, MB-453, and TN6), and 66%,
61% and 44% (TN4, TN8, TN5) for CHISEL, compared with 18%, (TN5) 17% (TN4), and 4% (TN3) for scAbsolute.

The use of CHISEL is limited by the requirement to provide phased germline SNPs. Consequently, we can only run
the CHISEL analysis on the ACT tumour samples, for which we have bulk exome sequencing of normal tissue as
control, but not for the cell line data. CHISEL performs comparably to HMMCopy and Ginkgo, despite using additional
information from SNPs. In addition, we run our algorithm on one of the samples originally published with CHISEL that
includes raw sequencing data for about 10 000 cells. In general, we find good overlap between the two predictions, in
the form of identical predictions (predictions on the diagonal, see Fig. S2). For this sample, we do not have experimental

Table 1: Comparison of ploidy prediction for ACT samples. Ploidy prediction based on scAbsolute, Ginkgo,
HMMCopy, and CHISEL callers. Ploidy estimate is based on DAPI staining based FACS sorting. We consider an
estimate to be an outlier if it falls outside of a ±0.5 window around the experimental ploidy point estimate. We also
give the mean of the absolute distance in ploidy between the experimental point estimate and the computational estimate
across all cells in parenthesis.

Sample Ploidy # of cells HMMCopy Ginkgo CHISEL scAbsolute
% outlier (mean distance)

BT-20 2.70 1228 13.4 (0.51) 1.1 (0.28) - 0.5 (0.19)
MB-157 2.55 1210 31.2 (0.91) 0.5 (0.18) - 0.9 (0.16)
MB-231 2.41 897 34.4 (0.92) 7.1 (0.36) - 0.7 (0.03)
MB-453 4.17 1260 8.1 (0.26) 65.6 (1.06) - 2.8 (0.13)

TN1 3.45 1100 1.7 (0.22) 1.8 (0.18) 27.3 (0.44) 0.5 (0.06)
TN2 3.03 1024 3.8 (0.24) 0.8 (0.15) 24.0 (0.38) 1.0 (0.09)
TN3 3.44 1101 27.2 (0.92) 2.4 (0.20) 23.3 (0.35) 4.1 (0.18)
TN4 3.76 1307 19.8 (0.59) 53.9 (1.18) 65.9 (1.14) 16.8 (0.46)
TN5 2.65 1238 40.1 (1.01) 10.9 (0.34) 43.6 (0.57) 17.8 (0.48)
TN6 3.17 1060 2.9 (0.33) 58.6 (0.84) 11.9 (0.19) 1.2 (0.14)
TN7 3.15 605 4.3 (0.30) 49.3 (1.30) 21.2 (0.32) 3.5 (0.17)
TN8 3.95 1224 2.4 (0.33) 69.4 (0.88) 60.7 (0.73) 2.9 (0.18)
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Figure 2: Computational ploidy prediction for cell lines and tumour samples with experimental ploidy annota-
tion. Automatic, per-cell ploidy inference via scAbsolute identifies ploidy distribution in accordance with sample
annotations across three different sequencing technologies (10X, DLP, ACT). Note that the data has not been quality
controlled apart from removal of replicating cells. The annotation for the 10X data is based on karyotype information,
the ploidy annotation for ACT data is based on DAPI staining based FACS sorting. We indicate in gray ranges of ±0.5
around the experimental point estimate of the sample ploidy (indicated by the red cross). Blue asterisks indicate ploidy
levels of 1/2 or 2 times the experimental ploidy estimate. In the case of DLP, no experimental annotation is available,
but estimates are in accordance with ploidy estimates for the respective cell lines. In the case of T-47D, no method can
initially distinguish between different ploidy subpopulations (cells in G1 and G2 phase, respectively), and all cells are
matched to the same copy number state (corresponding to G1 phase, see Fig. 3). In the case of ACT, we can compare
performance of scAbsolute (orange) with HMMCopy (blue) and Ginkgo (green) predictions of per-cell ploidy, and with
CHISEL (yellow) in the case of tumour samples, only.
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ploidy estimates available, however, we conduct a comparison of outliers to identify differences between the methods.
First, we randomly select cells that are predicted to be nearly diploid by scAbsolute, and have a ploidy predicted to be
greater than 2.5 by CHISEL. We observe CHISEL selects higher ploidy solutions, that are not necessarily supported
by copy number levels in some of these instances (Fig. S3). Second, we compare cells that are predicted to be nearly
diploid by CHISEL, and have a ploidy predicted to be greater than 2.5 by scAbsolute (see Fig. S4). Here, we observe a
few cases of highly uneven cell coverage (possibly indicating failed sequencing runs). A second set of cells is classified
differently based on additional information from the X chromosome, that is not included in the CHISEL predictions.
We also compare the overall copy number profiles for section E of patient S0, as presented in Zaccaria & Raphael [53]
and find very similar copy number predictions (Fig. S5).

An additional benefit of scAbsolute is its ability to measure ploidy even in some replicating cells. In the case of T-47D
cells, about 64% of replicating cells are assigned the same ploidy as the G1 cells (see Fig. S7). This shows that the
algorithm is to some extent robust to the noise observed in replicating cells, as can also be seen in example ploidy fits
(Fig. S6).

Identifying previously unidentifiable ploidy cases

The main source of outliers, apart from cell quality issues, can be attributed to misclassification of ploidy by a factor of
two (Fig. S1). This can be observed by small clusters of cells either at half or twice the ploidy of the cell observed,
e.g. in case of the MB-453 cell line or the tumour samples TN4 and TN5 in Fig. 3. Equally, the algorithm (up to step
3) is not capable of distinguishing cells that have undergone WGD or are in G2 phase from their pre-WGD or G1
counterparts, as can be seen from the failure to detect the sizeable G2 subpopulation in the T-47D sample. The T-47D
sample has been enriched for cells in different cell cycle states (G1, G2, S phase) using DAPI staining based FACS.
Figs. 2 and S8 show consistent and identical, but ultimately wrong, ploidy predictions for the G2 cells in the T-47D
sample based on steps 1-3 of scAbsolute.

Here, we introduce a novel approach to overcome this limitation, based on the density of reads along the genome (this
approach is implemented as step 4 of the algorithm). The approach is applicable to all single-cell DNA sequencing
technologies, that do not use pre-amplification and have a sufficient per cell read coverage of about ρ = 75 at 500
kilobases resolution with paired-end reads (corresponding to a coverage of about 0.01-0.02 for a normal, human cell). It
might potentially be possible to extend this approach to single-end reads, however, we believe that this would require a
substantial increase in read depth and there is currently no public data available to test this hypothesis. In particular,
we could not include the ACT data discussed previously because it is either single-end read based or does not have
sufficient read depth to apply step 4 of the algorithm. Without pre-amplification we can directly reference reads to
physical copies of the genome, and this provides the necessary constraint to uniquely identify a ploidy solution. We use
the start and end position of a given read, and measure how many other reads overlap with it. Using the fact, that in
the absence of pre-amplification, we expect the number of overlapping reads to be limited by the number of physical
copies of the molecules, we can use this to build a model of how many overlapping reads there are on average in
any genomic bin. To make this approach sufficiently robust, we use a genome-wide measure of read density, i.e. the
number of overlapping reads per region of the genome, to create a reference distribution of the expected mean number
of overlapping reads. Importantly, this measure of read density depends on two variables, only. An individual cell’s
ploidy and the sequencing reads per cell as captured by ρ.

First, we obtain a ploidy-normalized per-cell value of read density, by regressing the observed read density across copy
number states and chromosomes, and predicting an expected value for a copy number state of 2 (see Fig. 1, bottom
panel). This allows us to make a prediction independently of varying copy number states in different cells and even
in the absence of a copy number state of 2. Lastly, we need to account for varying per-cell read depths (as measured
by the ρ value). We normalize the per-cell value, by fitting a simple quadratic function to the observed read densities
(Fig. 3(a)). This makes it possible to directly compare a new cell to the predicted value of read density and observe any
strong deviations. Note that the model is currently strongest in the range of 75− 150 ρ, as we do have substantially
more data points in this range. We provide a model fitted to all publicly available DLP data, that can be freely used to
determine if a cell subpopulation is deviating from the expected read density. Here, we make the assumption that the
majority of cells are in G1 phase, and we correctly identify the individual per-cell ploidies for the majority of these
cells, thus leading to a correct ploidy fit for the majority of cells in the reference set.

To show that this approach generalizes across data sets, we fit a model to a series of high-depth DLP data sets, holding
out three single cell libraries: One library based on the T-47D sample with 194 cells in G1, and 151 cells in G2
phase respectively, and two libraries from SA928 (normal cell line) with 522 cells in G1, and 243 cells in G2 phase,
respectively. We observe a clear difference in read densities between cells in G1 and G2 phase of the cell cycle, with
S phase cells taking a somewhat intermediate position, with some cells more closely aligned to G2 cells possibly
corresponding to late-replicating S phase cells, and others to early-replicating cells in S phase. Using the hold-out set,
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Figure 3: Ploidy estimation for previously unidentifiable ploidy states. A) Model of relationship between read
density and read coverage per cell trained on DLP data. We observe a strong relationship that is robust across different
sequencing libraries and copy number profiles. We provide a pre-trained model for the DLP technology, trained on a
large cohort of cells with sufficient read depth to determine expected read density for a given ρ value. The underlying
assumption is that cell fits based on scAbsolute are mostly accurate and the majority of cells is in G1-phase. B) We
evaluate the model (built while holding out the test libraries) by predicting cells in G1 and G2 state of the cell cycle,
corresponding to different ploidy states. Cell populations are clearly separated at sufficient read depth (at about 75ρ
values). We observe S phase cells among both ploidy populations, possibly indicating early and late replicating cells.

we accurately classify 93% of cells in T-47D, and about 84% of cells in SA928 when looking at cells with a read depth
of 75 ρ or higher. Note that in the later case, we can see evidence for potential outlier cells, indicating that this might be
an underestimate of actual predictive performance. However, we also note that prediction in the case of normal, diploid
cells is somewhat more difficult, as the per-cell regression in these cases is impacted more strongly by outliers.
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Identifying cells undergoing DNA replication.

We introduce a basic measure of cycling activity based on fixed-width genomic bin counts and their respective replication
time. We measure for each copy number segment in a cell whether we can observe a statistically significant trend in the
observed counts as a function of replication time, correcting for the joint effect of GC content and mappability using the
partial Mann-Kendall Trend Test. We aggregate over all segments by computing the median of the Mann-Kendall test
statistics across all segments weighted by the respective segment length and use this single value as a per-cell measure
of cycling activity. The advantages of this measure are: i) applicability across sequencing technologies ii) robustness
across a range and mix of copy number profiles (as expected in a complex tumour sample) iii) unsupervised method (no
training data required)

Laks et al. [40] describe a complex cell-feature based classifier that is able to detect S phase cells with about 90%
accuracy. Using only four features (per-cell read depth, measure of overdispersion, cycling activity, and the third
quantile of the cycling activity distribution), we achieve a very similar performance (91% accuracy) on the same data
using a random forest classifier. Using only the cycling activity measure, in an unsupervised manner, we achieve 88%
accuracy. Performance using only this single feature classifier is very different between normal cells (DLP-SA928)

Figure 4: Detection of replicating cells across different sequencing technologies and cell lines. A) Cycling activity
for normal, diploid cells (DLP A73044A and DLP A90553C), and a cancer cell line (DLP T-T47D) sequenced with
DLP technology. The cellcycle annotation is based on DAPI staining and subsequent FACS sorting of cells. Uniform
and varying CN state indicates whether the copy number calls indicate a mostly diploid genome (as in G1/G2), or
cycling cells (non-uniform CN state), respectively. This measure can only be reliable estimated for normal, diploid cells,
and is not applicable in other samples. B) Distribution of cycling activity for G1 (solid line) and S phase cells (dashed
line). The mode of the distribution (blue line) is estimated and the left side of the distribution is used to determine a
standard deviation that covers the majority of cells in G1 phase (red lines) and to determine an appropriate cutoff value
to identify cells in S phase. C) Distribution of cycling activity samples covering three different sequencing technologies:
10X, DLP, ACT. While the mode of the distribution differs between samples and sequencing technologies, we observe
the same characteristic asymmetric distribution in all cases, except for the 10X Fibroblast sample. In this case, the cells
have been cell cycle arrested, and so we do not expect to see any cells in S phase.
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at 91% accuracy and T-47D human breast cancer cell line (T-47D) at 82% accuracy. However, we believe this is an
underestimate of real performance, due to leakage between cell cycle stages in the FACS step. A closer look at the
underlying classification of S phase cells, indicates that there are two distinct populations classified as S phase based on
FACS (Fig. S9) Looking at the copy number profiles, we see that the cells classified as S phase according to FACS,
but G1 phase according to our classifier appear to be closer to the G1 phase cells based on the UMAP representation
of the copy number profiles. Similarly, looking at the raw copy number profiles, there appear to be two different
subpopulations among the cells lumped together as S phase cells using FACS. We can replicate the leaking of cells
in different phases of the cell cycle when using DAPI staining based FACS. We use Geminin staining to control for
cell cycle (Geminin is not expressed in G1 phase, but expressed from the transition from G1 to S phase on), and
demonstrate that DAPI staining based selection leads to the inclusion of a relatively large proportion of cells in S phase
(see Fig. S10), if the gating is not conducted very carefully.

In order to further validate the approach, we examine two other examples. First, we consider normal diploid cells. In
this case, we can assume that the vast majority of CNAs are due to cells undergoing DNA replication. We can observe
that the majority of normal cells with CNAs score high on the cycling activity measure (Fig. 4). Similarly, across
cell lines and libraries, we observe the typical asymmetric distribution of cycling activity. The only exception (10X
Fibroblast cells) have been cell cycle arrested, and so we don’t expect to observe any cycling cells in this set.

Secondly, looking at a set of 10 cell lines sequenced with the 10X technology54, we identify a robust relationship
between estimates of number of cycling cells based on scRNAseq and scDNAseq (r = 0.76, p = 0.048) of the same cell
lines after a similar number of passages. Similarly, we observe a robust negative relationship between doubling time of
a cell line, and our estimate of proportion of cycling cells (r = -0.81, p = 0.008, see Fig. S11).

Discussion

The increasing availability of low-coverage whole-genome sequencing of thousands of individual cells offers an
opportunity to study tumour heterogeneity and evolution at an unprecedented resolution. With increasing size of
single-cell DNA sequencing data sets and new high-throughput droplet-based protocols under development, we expect
scalability to become increasingly relevant. scAbsolute is by-design a scalable tool to investigate cell ploidy and
replication status at the single-cell level. Single-cell DNA sequencing technologies are still being improved upon, and
there exist a number of different sequencing technologies. We demonstrate the general applicability of scAbsolute
across three recently released protocols, and show an advantage of pre-amplification free approaches in detecting WGD
events.

To our knowledge, scAbsolute is the first computational approach to overcome the unidentifiability problem associated
with WGD events in copy number calling of single cells. This appears to be particularly relevant for the study of early
tumourigenesis, by making it possible to study WGD and other ploidy changes in small lesions with very limited
numbers of cells. We hope that this will help to further elucidate the role of WGD in cancer, and its contribution to CIN.

The approach is fundamentally different from other approaches originally developed in bulk sequencing settings and
recently extended to the single-cell domain53 that use B-allele frequency (BAF) in order to help identify ploidy solutions.
However, by using cell specific haplotype counts, and the high quality total copy number predictions provided by
scAbsolute, it is possible to estimate allele and haplotype specific copy number states, as recently demonstrated48,53. In
particular, it is straightforward to estimate the allele specific copy numbers using the BAF as estimator, once the total
copy number is known. One limitation of the computational approach is the inability to distinguish cases of cells in G2
phase of the cellcycle from WGD cells. However, it is possible to address this either via recourse to estimates of the
relative number of cells in G2 state, or via integration with experimental evidence.

The identification of per-cell ploidy and with it per-cell read depth lies at the basis of many downstream applications,
such as copy-number segmentation, estimation of allele- and haplotype-specific copy number states, and the building of
tumour phylogenies based on copy-number profiles. By solving the ploidy problem, further progress in developing
more accurate and reliable CNAs calling methods seems feasible.

By offering an alternative to the use of FACS with DAPI staining to identify cell populations at different ploidy levels,
we open the way for a more unbiased investigation of intratumour heterogeneity. In particular, the choice of cutoffs for
FACS might lead to a bias in selecting more homogeneous cell populations and lead to an underestimation of the true
level of heterogeneity in tumours. FACS might still be useful in order to reduce the amount of non-informative normal
cells sequenced, thus reducing overall costs, and as an experimental validation, however.

Identifying cycling cells is a crucial issue in single cell based approaches. It is necessary in order to get a correct
understanding of what constitutes actual tumour heterogeneity at the copy number level, and what are just ephemeral
CNAs as a consequence of replication activity. Identifying cycling cells is also an opportunity as a crude measure of

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.14.516440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516440
http://creativecommons.org/licenses/by-nc-nd/4.0/


clonal fitness and for the identification of cell populations that are highly proliferative. Here, we present a simple, but
robust measure of cycling activity and we demonstrate its applicability across a range of cell lines and sequencing
technologies. Importantly, we demonstrate some limitations of using DAPI staining based measures of cell cycle status
and how this can bias the training of cell cycle classifiers.

Methods

Bin-level quality control Prior to any analysis, we create a set of high quality genomic regions extending existing
bin-annotations and specifically targeted at single cell DNA-sequencing (scDNA-seq) data. We use these novel bin
annotations across all further experiments. The primary purpose of this step is to only include genomic bins for which
the assumption of a linear relationship between copy number status and observed read counts holds.

The set is created by combining data from three different sequencing technologies (10X, DLP, and JBL - an in-house
protocol), comprising more than 7000 diploid cells (We do not have access to diploid cells sequenced with the ACT
protocol). In order to create a single, unified set of bin annotations, we conduct below analysis separately for the three
sequencing technologies, and exclude all bins that fail the quality criterion in any single sequencing technology (see
Fig. S12).

To determine bin quality, we only look at diploid cells, so we can disregard the issue of copy number status and
segmentation. The set contains no cells in S phase or in G2/M phase (based on FACS sorting, and cell cycle arrest in
the case of the 10X cells). In order to have sufficient reads per bin to reliably detect any deviations, and at the same
time to have as high as possible a genomic resolution, we conduct this analysis on reads binned at 100kB resolution.

First, we normalise the per-cell reads by dividing the number of reads in each bin by the expected number of reads per
bin across a cell, creating a normalised read per bin value. Subsequently, we use the median of the normalised reads per
bin across all cells sequenced with the same sequencing technology as a per-bin quality metric. Initially, we remove all
bins that have a median value of more than 4 or less than 0.10 per bin, and a mappability value smaller than 70 (11% of
bins). Note, that the expected value would be 1, so a value of 4 corresponds to a median number of reads falling into a
bin four times higher than would be expected on average.

In a second stage, we look at the relationship between GC content and median normalised read counts for each of
the sequencing technologies. Separately for each technology, we fit a Generalised Additive Model to characterise the
relationship between GC content and normalised read counts, and remove all data points that deviate more than 2
standard deviations (3 standard deviations for the much smaller JBL data set, see Fig. S12). In addition, we use a kernel
density estimate to select regions of high density, and remove all cells outside the high-density regions. By using these
two criteria, we aim to select only high quality bins that have minimal read count deviation that is not explained by GC
content and mappability. Lastly, we use maps of centromere and telomere regions to specifically filter parts of these
regions that have not been filtered in the previous steps.

Overall, we remove about 16% of the bins, containing about 9% percent of total reads on the autosomes. For the X
and Y chromosomes, we use the existing QDNAseq annotations and run a simplified version of the above pipeline to
remove outliers on the X chromosome (only based on density estimates). In the case of the Y chromosome, we remove
bins solely based on deviations in the total number of reads observed (Fig. S13).

Initial Segmentation with unknown ploidy We use a dynamic programming approach based on the PELT algo-
rithm55 to find an initial segmentation of our read counts. We model the read counts with a Negative Binomial
distribution56.

Pr(Y = y|m,α) =
Γ(y + α−1)

y!Γ(α−1)

(
αm

1 + αm

)y (
1

1 + αm

)α−1

(2)

Here, α denotes a measure of increasing overdispersion; for values of α→ 0, the distribution converges to that for the
Poisson57.

There exists no analytical solution to the Negative Binomial Maximum Likelihood estimate of the overdispersion
parameter. We therefore choose a Methods-of-Moments estimator for the parameter α in the cost function58. We use
this initial segmentation as a stepping-stone in identifying a cell’s correct ploidy, and are not interested in an optimal
segmentation at this early stage, but rather a robust and reasonably fast approach that achieves reasonable accuracy.
We note that optimal segmentation is not the focus of this manuscript, and it is possible to replace the segmentation
algorithm with one of the user’s choice.

The cost function for a segment yj , ..., yj+k of length k is defined as
C(yj,j+k) = − logL(µ̂, α̂) (3)
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where µ̂ and α̂ are the parameters of the Negative binomial likelihood estimated from the data and L denotes the
negative binomial likelihood function.

The mean is estimated via m̂ = 1
n

∑n
i=1 yi, and the overdispersion is estimated as

α̂MM =
s2 − m̄
m̄2

(4)

where m̄ and s2 are defined as sample mean and variance, respectively [58].

Ploidy estimation Ploidy estimation describes the identification of copy number segments with underlying copy
number states. This is equivalent to finding a scaling factor ρ, so that we can directly measure the ploidy p of a cell:

p =
1

M

M∑
j=1

cj =
1

M

M∑
j=1

xj
ρ

(5)

Note that we assume that observed reads scale linearly with copy number state, e.g. we expect to observe on average
twice as many reads for copy number state 2 than for copy number state 1, and so on. In our approach, given an initial
- not-necessarily exact - segmentation, we consider the marginal distribution of the segmented copy number states,
i.e. the spatial correlation of neighbouring bins has been accounted for through the initial segmentation. Since we are
dealing with individual cells, in theory all copy number states should appear at integer values (with the exception of
bins that contain two or more different copy number states), with some states possibly not observed in a cell (see Fig. 1
for an example for the marginal distribution of segmented counts). In a normal diploid cell which has no CNAs, we
would expect to observe a single value scaled by a scalar value 1

ρ denoting the read depth of the cell (assuming the cell
has two X chromosomes). However, given the inherent measurement noise and imperfect segmentation, in fact one
observes a distribution of values around the integer states.

Here, we assume the errors are normally distributed and approximate the marginal distribution of the segmented
counts with a (constrained) Gaussian Mixture Model. The constraint on the Gaussians is based on the fact that
instead of estimating K means µ1, . . . , µK , we restrict the location of the means to µ1 = 1 · ξ, . . . , µK = K · ξ.
Consequently, we estimate a single parameter ξ and a set of K standard deviations σk for the K Gaussians in the
model. We might not observe all possible states and we don’t know how many states we will observe in any given cell.
Consequently, we model the appearance of individual clusters with a Dirichlet Process. The variational distribution
of the Dirichlet Process is truncated at T components [59]. In order to further speed up the computation, we use
stochastic variational inference [60] and implement the algorithm in TensorFlow [61]. Overall, we estimate the posterior
probability p(θ|X) =

∏K
k=1 πk N (µk,Λk|X). Details and the mathematical derivation of the model updates can be

found in the appendix.

A major challenge with estimating absolute copy number states is the unidentifiability of a unique solution. There
exist many potential solutions for each copy number profile, as it is always possible to shift or scale the solution. For
example, consider the case of a perfectly diploid and tetraploid genome. Both are biologically plausible, e.g. in case
of a Fibroblast cell in G1/G2 phase, but indistinguishable without any additional mathematical constraints. From a
mathematical point, even a biologically implausible triploid solution is equally possible. This problem is less relevant
in cancers with a high number of CNAs, as one tends to observe many of the copy number states in a single cell, thus
making it easier to identify the correct solution. This makes the problem considerably easier, however, it would still not
be possible to detect evolutionary recent whole-genome duplication events or distinguish between cells in G1/G2 phase.
As a consequence, the design of our model does not enforce any particular solution. Instead it returns one possible
solution, with the constraint, that the means of the Gaussians, i.e. the observed copy number states, occur at a distance
that is an integer-multiple of an arbitrary unit distance and the set of solutions lies within a biologically reasonable, user
defined ploidy range.

In order to select a biological plausible solution ρ out of the discrete set of possible values ξ̂ within the given ploidy
range, by default, we select the solution that has a minimal least squared error. In practice, this tends to be the solution
with the lowest ploidy within the given ploidy range. For a biologically plausible ploidy range, we chose a minimum
ploidy of 1.1. The assumption here is that cells with more copy number loses are probably not viable. As an upper
bound, we chose a ploidy of 8 by default. However, this can be flexibly adjusted given other sources of information.

Addressing the unidentifiability problem Up to this point, the approach cannot distinguish between cells in G1 and
G2 phase of the cell cycle, or cells directly after WGD. Here, we demonstrate that we can in fact reliably differentiate
between these cells, given we have a i) sufficiently high read coverage ii) we use a sequencing technology without
pre-amplification step and iii) paired-end read sequencing. Read coverage depends both on the ploidy of the sample,
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and on the size of the genomic regions that is covered (and mappable to) sequencing reads. It might be possible to avoid
the need for paired-end read sequencing, if the coverage is substantially higher. However, we do not have access to any
data to test this scenario.

The basic idea behind the approach is to analyse the number of overlapping reads across the genome. For this purpose,
we compute a measure of how densely reads are located on the genome, and how many reads physically overlap.
Because the genome is not amplified, we then can assume that the number of overlapping, unique reads is directly
proportional to and limited by the number of physical copies of the genome at the given location. The only other two
parameters we expect to influence the observed read density are the cell ploidy and the per-cell read depth (as measured
by the ρ value).

Initially, for each properly mapped read, we count the number of overlapping reads across the genome, using the start
and end position of paired-end reads as genomic start and end position, respectively. The size of the regions used is
then determined by the fragment size. We compute the average number of overlapping reads across genomic bins,
referring to it as read density. In order to account for varying copy number status, to make the estimation process more
robust and to enable the comparison across cells with different copy number profiles, we fit a robust linear regression
model to approximate the relationship between copy number state and read density (Fig. 1). We also split the data by
chromosome, weighting each data point by the number of the bins covered. In order to directly compare cells, we use
the predicted value of read density for a copy number state of 2 as per-cell measure of read density. Note that we can
even predict this value in the absence of any observed copy number state 2. In the case of normal, diploid cells, we
resolve to using the median read density, as the linear regression would otherwise by underdetermined with only a
single data point at a copy number state of 2.

In a second step, we use a reference data set of cells to create a model of expected read density for a given read depth.
Here, we combine all cells sequenced with the DLP technology in order to create a reference model of expected read
density for a given value of ρ. We can then compare the residual read density, measured as the deviation between
observed and expected read density at a given value of ρ in order to distinguish cells that have been assigned a wrong
ploidy (see Fig. 3).

Detection of replicating cells We devise a simple test statistic to examine if a cell is in the S phase of the cell cycle.
The test is based on differences in replication timing for different parts of the genome. In order to quantify replication
timing per genomic bin, we use an existing annotation from the Repli-chip from ENCODE/FSU project62,63, and
average the replication times determined in these experiments across multiple cell lines and across genomic regions
contained in a bin. This allows us to obtain a single measure of replication time per genomic bin.

Considering the segmented copy number profile Sl, we perform a partial correlation trend test using the Spearman
rank correlation statistic [64, p. 882]. The test is performed on the raw count data within a given segment, sorted by
increasing replication time, while controlling for the per bin GC-content and mappability value. Subsequently, the
median of the partial correlation test statistic τ across all segments weighted by segment length is computed. We
refer to this single measure as cycling activity. In general, we observe positive values as indicative of cells in S phase,
undergoing replication. The distribution is symmetric around its mode with an additional long tail, that we identify with
the replicating cells (see Fig. 4).

It is known that GC-content and mappability lead to a bias in the read counts observed across different genomic
locations [51, 65]. Here, we fit a Generalised Additive Model (GAM) to estimate and correct for the bias individually
per cell. The advantage of this approach is that it gives us a direct estimate for the impact of the covariates on the mean
of the read counts observed in each bin. We model the observed read counts x for every bin j as xj ∼ NegBin(µj , α),
with log(µj) = β0 + β1ν + s(gcj ,mapj), where ν denotes the segmentation value of a bin, i.e. the median value
of read counts across multiple neighbouring bins and gcj and mapj the GC content and mappability values in bin j,
respectively. We model the impact of varying GC and mappability content jointly with thin plate regression splines.
We obtain coefficients of the impact of GC content and mappability variation on the mean expression for every cell
and every bin, in the form of the coefficients s(gcj ,mapj) that directly relate to the mean-expression and we use these
values as covariates in the trend test.

We make use of the characteristic shape of the distribution to classify a cell’s replication status across different
sequencing technologies and libraries. We chose the threshold dynamically by identifying the mode of the distribution
and determining the standard deviation using only the left (negative) part of the cycling activity distribution. By default,
we use a cutoff corresponding to two standard deviations from the mode of the distribution as threshold for classifying a
cell as being in S phase (Fig. 4(b)). This makes the approach easily applicable to new single cell data without cell cycle
annotation, without potentially having to adapt the cell cycle classifier to a new feature distribution.
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Code and Data availability

We include three separate datasets, covering three different single-cell sequencing technologies: 10X data54 and a
normal diploid cell line published online as part of the 10X Single Cell DNA sequencing technology demonstration
(https://www.10xgenomics.com/), DLP data described in40 and ACT data43. We exclude samples for which the
majority of data is below the 25 ρ threshold at 500kb resolution to restrict the influence of segmentation on the ploidy
calling.

For HMMCopy, we ran version 0.8.15 of the single cell pipeline to determine ploidy directly from the aligned
bam files with default parameters. We ran the latest version of the Ginkgo platform (https://github.com/
robertaboukhalil/ginkgo, version:71da01d9b24b1fcd0deb299b416a0fde676b18f7). For CHISEL53, we directly
use the published results in the case of the 10X Breast tumour dataset. For the ACT tumour samples, we ran CHISEL
(v1.1.3) in the nonormal mode, with germline SNPs imputed and phased using the Sanger Imputation Service based on
the normal bulk exome samples available for the ACT tumour samples. We found imputation slightly improved ploidy
prediction performance compared with phasing only. Phasing and imputation weere performed using EAGLE266 and
PBWT67, respectively.

The source code for scAbsolute, and scripts to reproduce all figures and analyses is available at https://github.
com/markowetzlab/scAbsolute.git. scAbsolute uses the package environment and genome annotations provided
by the QDNAseq package65.
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Supplementary Materials

Figure S1: Example cells in G1 and G2 phase of cell cycle (A) Example tumour cell (T-47D) in G1 phase (top panel)
and G2 phase (bottom panel) of cell cycle. (B) Example normal cell (SA928) in G1 phase (top panel) and G2 phase
(bottom panel) of cell cycle. In all cases, cell cycle stage has been verified by DAPI staining based FACS and by
subsequent computational analysis. Note, that in case of G2 phase, the initial ploidy solution is off by a multiplicative
factor of 2.
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Figure S2: Ploidy predictions for scAbsolute and CHISEL on 10X Breast tumour sample. Example cells, shown
in Figs. S3 and S4 are marked with black circles. Density areas are indicated on the diagonal, showing a relatively large
overlap of predictions in this particular tumour sample.
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Figure S3: Randomly selected copy number profiles (based on scAbsolute segmentation) for diploid CHISEL
ploidy predictions that contradict scAbsolute predictions. scAbsolute predictions are shown in orange, and CHISEL
in blue.
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Figure S4: Randomly selected copy number profiles (based on scAbsolute segmentation) for diploid scAbsolute
ploidy predictions that contradict CHISEL predictions. scAbsolute predictions are shown in orange, and CHISEL
in blue.
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Figure S5: Copy number prediction for Patient S0 (section E) using scAbsolute. The prediction reflects the general
copy number landscape for the sample as presented in Zaccaria & Raphael [53]. Note that the cells have not been
quality controlled, and this explains the small number of ploidy outliers at high and low ploidies. Overall it appears
relatively easy to detect higher ploidy states in this dataset, given the number of copy number segments at varying
ploidy levels. This might be indicative of a relatively early WGD event leading to the observed copy number profiles.
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Figure S6: Examples for cells in S phase (A) Normal, diploid cell in G1 phase of cell cycle (top panel) and two
examples of cycling cells. (B) G1 phase cell (top-left panel) and five examples of cycling cells at various levels of
cycling activity measure. In all cases, cell cycle stage has been verified by DAPI staining based FACS and by subsequent
computational analysis.
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Figure S7: Ploidy prediction for G1 and S phase cells using scAbsolute. In this dataset of T-47D cells, scAbsolute
recovers ploidy for about 63% of S phase annotated cells. Cell cycle was annotated using DAPI staining based FACS
sorting.
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Figure S8: Initial copy number profiles as predicted by scAbsolute for DLP T-47D sample for chromosomes 2
and 3. Overall, the vast majority of cells is independently called with the same ploidy. We see that there is a small
subset of cells with the wrong ploidy solution and an even smaller group of cells that is otherwise classified wrongly.
The algorithm cannot distinguish between G1/G2 cells. We observe some noise, characteristic of S phase cells that are
also mentioned in the original publication among the G2 cell population. One can observe a clear difference in copy
number profiles between S phase cells predicted to be in G1 phase of the cell cycle, and S phase cells that are predicted
to be in S phase based on cycling activity. This might indicate an issue with the underlying ground truth data.
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Figure S9: scAbsolute predictions for T-47D sample. Top panel shows cycling activity predictions for cells from the
T-47D cell line, with DAPI staining based FACS cell cycle annotation on the x-axis. Both for the S phase, and for the
G2 phase annotated cells, we observe subgroups that are classified differently by the cycling activity predictor. Looking
at copy number profiles in a UMAP representation, we can see that the groups cluster differently based on the cycling
activity predictions. Cells that are annotated to be in S phase, but predicted to be in G1 phase (orange), appear to cluster
closer with the G1 cells. Similarly, cells in G2 phase that have been predicted to be undergoing replication are clustering
more similarly to the cells in S phase. The same pattern can be observed in the raw copy number profiles in Fig. S8.
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Figure S10: Flow Cytometry Images of normal cells (NA12878) stained with Geminin-AF488 and DAPI for
improved G1 cell cycle sorting. Geminin Positive populations – blue; Geminin Negative populations – green. (A)
Geminin Negative Control - NA12878 stained with DAPI and AF488 secondary antibody. (B) NA12878 stained with
Geminin/AF488 and DAPI. Manual gating of Geminin positive and Geminin negative populations. (C) Cell Cycle
curve of Geminin Negative Control using DAPI intensity, with overlay of Geminin gating. DAPI-G1, DAPI-S and
DAPI-G2 gating represents original flow cytometry sorting gates using DAPI alone for cell cycle analysis. (D) Cell
Cycle curve of Geminin stained NA12878 using DAPI intensity. Overlay of Geminin gating reveals Early S phase cells
leaking into G1 sorting using DAPI only.
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Figure S11: Validation measures for scDNAseq estimates of number of cycling cells in gastric cancer cell lines.
(A) The number of cycling cells as estimated in scDNAseq data corresponds to estimates of cycling cells based on
scRNAseq data. (B) Doubling time of cell lines correlates negatively with number of cycling cells as estimated in
scDNAseq data.
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Figure S12: Bin level quality control for autosomes across sequencing technologies. A) Generative additive model
smoothing (blue line) and kernel density estimation (red contours) to identify genomic bins that have below or above
average median expected read counts. B) Number of genomic bins identified as outliers by sequencing technology.
We remove the union of all outliers. C+D) Genomic bins identified as outliers (in red) across different sequencing
technologies as a function of GC content (C), and mappability (D).
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Figure S13: Bin level quality control for sex chromosomes across sequencing technologies. A) a) Generative
additive model smoothing (blue line) and kernel density estimation (red contours) to identify genomic bins that have
below or above average median expected read counts for the X chromosome. b) Outlier bins are marked in red. B)
Total (absolute) reads per bin observed on the Y chromosome. Outlier bins (based on deviation from median number of
total reads) are marked in red.
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1 Appendix

1.1 Derivation of Dirichlet Process Gaussian Mixture Model for scAbsolute algorithm

We implement a DPGMM model, following [59]. We assume throughout the document, that the dimensionality of
our problem is 1. We use the mean-field approximation to estimate p(θ|X) =

∏K
k=1 πk N (µk,Λk|X). The model is

depicted below. Note that we restrict the means µk = ξ · k.

xn

zn vk

µk

Λk

α

ξk

β0,k

b0,k

a0,k

N

T

1.1.1 Model and priors

Mean-field approximation

Q(V, µ,Λ, Z) =
T∏
k

q(vk)q(µk)q(Λk)
N∏
n=1

q(zn) (6)

Prior distributions.

vk ∼ Beta(1, α) (7)
µk ∼ Normal(m0,k, I) (8)
Λk ∼ Gamma(1, 1) (9)
zn ∼ SBP(V ) (10)
xn ∼ Normal(µzn ,Λzn) (11)

Variational distributions.

vk ∼ Beta(γk,1, γk,2) (12)
µk ∼ Normal(ξk, I) (13)
Λk ∼ Gamma(ak, bk) (14)
zn ∼ Discrete(ρn) (15)
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1.1.2 Variational bound

log p(X) ≥
T∑
k=1

Eq[log p(vk)]− Eq[log q(vk)] (16)

+
T∑
k=1

Eq[log p(µk)− log q(µk)] (17)

+
T∑
k=1

Eq[log p(Λk)− log q(Λk)] (18)

+
N∑
n=1

Eq[log p(zn|V )− log q(zn)] (19)

+
N∑
n=1

Eq[log p(xn|µzi ,Λzi)] (20)

In the following, we derive the terms in the variational bound.

vk terms

Eq[log p(V |1, α)] = Eq[log
T∏
i=1

Vi] (21)

= Eq[
T∑
i=1

lnVi] = (22)

= Eq[
T∑
i=1

ln
Γ(1 + α)

Γ(1)Γ(α)
V 0
i (1− Vi)(α−1)] = (23)

= Eq[
T∑
i=1

ln Γ(1 + α)−
T∑
i=1

ln Γ(α) +
T∑
i=1

(α− 1) ln(1− Vi)] (24)

= Eq[T (ln Γ(1 + α)− ln Γ(α)) + (α− 1)
T∑
i=1

ln(1− Vi)] (25)

= T (ln Γ(1 + α)− ln Γ(α)) + (α− 1)
T∑
i=1

Eq[ln(1− Vi)] (26)

= T (ln Γ(1 + α)− ln Γ(α)) (27)

+ (α− 1)
T∑
i=1

[Ψ(γi,2)−Ψ(γi,1 + γi,2)] (28)
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Eq[log q(V |γ1, γ2)] = Eq[log
T∏
i=1

Vi] (29)

= Eq[
T∑
i=1

lnVi] (30)

= Eq[
T∑
i=1

ln
Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)
V γ1−1
i (1− Vi)(γ2−1)] (31)

= Eq[
T∑
i=1

ln Γ(γ1 + γ2)− ln Γ(γ1)− ln Γ(γ2) (32)

+ (γ1 − 1) ln(Vi) + (γ2 − 1) ln(1− Vi)] (33)

=
T∑
i=1

ln Γ(γ1 + γ2)− ln Γ(γ1)− ln Γ(γ2) (34)

+ (γ1 − 1)Eq[ln(Vi)] + (γ2 − 1)Eq[ln(1− Vi)] (35)

=
T∑
i=1

ln Γ(γ1 + γ2)− ln Γ(γ1)− ln Γ(γ2) (36)

+ (γ1 − 1)(Ψ(γi,1)−Ψ(γi,1 + γi,2)) (37)
+ (γ2 − 1)(Ψ(γi,2)−Ψ(γi,1 + γi,2)) (38)

(39)

T∑
k=1

Eq[log p(vk)]− Eq[log q(vk)] = T (ln Γ(1 + α)− ln Γ(α)) (40)

+ (α− 1)
T∑
k=1

[Ψ(γk,2)−Ψ(γk,1 + γk,2)] (41)

−
T∑
k=1

ln Γ(γk,1 + γk,2) + ln Γ(γk,1) + ln Γ(γk,2) (42)

−
T∑
k=1

(γk,1 − 1)(Ψ(γk,1)−Ψ(γk,1 + γk,2)) (43)

−
T∑
k=1

(γk,2 − 1)(Ψ(γk,2)−Ψ(γk,1 + γk,2)) (44)

µk terms

Eq[log p(µk)− log q(µk)] = −KL(Qµk
||Pµk

) (45)

= −1

2
||ξk −mo,k||2 = −1

2
(ξk −mo,k)2 (46)

Λk terms We use the inverse scale parameter characterization of the Gamma distribution, with Λk ∼ G(Λk|ak,0, bk,0),
for ak,0, bk,0 = 1, and Eq[Λk] = ak

bk
.
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Eq[log p(Λ)] = Eq[log
T∏
k=1

G(Λk|ak,0, bk,0) (47)

= Eq[
T∑
k=1

(
ak,0 log(bk,0 + (ak,0 − 1) log(Λk)− bk,0Λk − log(Γ(ak,0))

)
] (48)

=
T∑
k=1

(
ak,0 log(bk,0) + (ak,0 − 1)Eq log(Λk)− bk,0EqΛk − log Γ(ak,0)

)
(49)

=
T∑
k=1

(
ak,0 log(bk,0) + (ak,0 − 1)(Ψ(ak)− log(bk))− bk,0

ak
bk
− log(Γ(ak,0))

)
(50)

a0,k=b0,k=1
=

T∑
k=1

ak
bk

(51)

Eq[log q(Λk)]
neg. Entropy

= −ak + log bk − log Γak − (1− ak)Ψ(ak) (52)

Eq[log p(Λk)− log q(Λk)] = ak − log bk + log Γak + (1− ak)Ψ(ak)− ak
bk

(53)

zn terms Here, we use the equations as presented by [59, p. 129].

Eq[log p(zn|V )] =
T∑
k=1

f(zn > k) Eq[log(1− vk)] + f(zn = k) Eq[log vk] (54)

=
T∑
k=1

T∑
j=k+1

φn,j

(
Ψ(γk,2)−Ψ(γk,1 + γk,2)

)
+ (55)

φn,k

(
Ψ(γk,1)−Ψ(γk,1 + γk,2)

)
(56)

with the following definitions
f(zn = k) = φn,k (57)

f(zn > k) =
T∑

j=k+1

φn,j (58)

Eq[log vk] = Ψ(γk,1)−Ψ(γk,1 + γk,2) (59)
Eq[log(1− vk)] = Ψ(γk,2)−Ψ(γk,1 + γk,2) (60)

Eq[log q(zn)] =
N∑
n=1

φn,k log(φn,k) (61)

Eq[log p(zn)− log q(zn)] = (62)

=
T∑
k=1

(
− φn,k log(φn,k)

)
(63)

+

T∑
k=1

φn,k

(
Ψ(γk,1)−Ψ(γk,1 + γk,2)

)
(64)

+
T∑

j=k+1

φn,j

(
Ψ(γk,2)−Ψ(γk,1 + γk,2)

)
(65)
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Derivation: (note this leads to a slightly different result than presented in Blei.)

P (zn = k) = vk

k−1∏
j=1

1− vj (66)

We use the following identities of the Beta distribution: for B ∼ Beta(b1, b2)

E[logB] = Ψ(b1)−Ψ(b1 + b2) (67)
1−B ∼ Beta(b2, b1) (68)

Eq[log(p(zn|V )− log(q(zn)] = Ez
[
Ev[log Vzn +

zn−1∑
j=1

log(1− vj)− log(ρn)]
]

(69)

= Ez
[
Ev[log Vzn ] +

zn−1∑
j=1

Ev[log(1− vj)]− log(ρn)
]

(70)

= Ez
[
Ψ(γzn,1)−Ψ(γzn,1 + γzn,2) +

zn−1∑
j=1

Ev[log(1− vj)]− log(ρn)
]

(71)

xn terms
Eq[log p(xn|µzn ,Λzn)] (72)

=
T∑
k=1

φn,kEΛk
[Eµk

[logP (xn|µk,Λk)] (73)

=
T∑
k=1

φn,kEΛk
[Eµk

[logN(xn;µk,Λ
−1
k )] (74)

=
T∑
k=1

φn,kEΛk

[∫
µk

N(µk; ξ, I) logN(xn;µk,Λ
−1
k )dµk

]
(75)

=

T∑
k=1

φn,kEΛk

[∫
µk

(2π)−
1
2 exp(−1

2
(µk − ξk)2) (76)

(
− 1

2
log(

2π

Λk
)− Λk

2
(xn − µk)2

)
dµk

]
(77)

=
T∑
k=1

φn,kEΛk

[
− 1

2
log(2π) +

1

2
log(Λk)+ (78)(

1

2

∫
µk

(2π)−
1
2 exp(−1

2
(µk − ξ ∗ k)2)(−Λk(x2

n − 2µkxn + µ2
k)dµk

)]
(79)

=
T∑
k=1

φn,kEΛk

[
− 1

2
log(2π) +

1

2
log(Λk)+ (80)

− 1

2
Λk((xn − ξk)2 + 1)

]
(81)

=
T∑
k=1

φn,k

[
− 1

2
log(2π) +

1

2
Ψ(ak)− 1

2
log(bk)+ (82)

− 1

2

ak
bk

((xn − ξk)2 + 1)

]
(83)

(84)
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We will refer to the following term later on

ηx = −1

2
log(2π) +

1

2
Ψ(ak)− 1

2
log(bk)+ (85)

− 1

2

ak
bk

((xn − ξk)2 + 1) (86)

1.1.3 Variational updates

Updates for vk These update equations are given in [59, p. 129].

γk,1 = 1 +
N∑
n=1

φn,k (87)

γk,2 = α+
N∑
n=1

T∑
j=k+1

φn,j (88)

Updates for ξ

δL

δξ
=

T∑
k=1

−k(ξk −m0,k) +
N∑
n=1

T∑
k=1

φn,k
kak
bk

(xn − ξk) (89)

= −
T∑
k=1

k2ξ +

T∑
k=1

km0,k +

N∑
n=1

T∑
k=1

φn,k
kak
bk

xn −
N∑
n=1

T∑
k=1

φn,k
k2ak
bk

ξ
!
= 0 (90)

⇒ ξ =

∑T
k=1 km0,k +

∑N
n=1

∑T
k=1 φn,k

kak
bk
xn∑T

k=1 k
2 +

∑N
n=1

∑T
k=1 φn,k

k2ak
bk

(91)

Updates for ak and bk

δL

δak
= 1 + Ψ(ak) + (1− ak)Ψ′(ak)−Ψ(ak) (92)

− 1

bk
+

1

2
sumN

n=1φn,kΨ′(ak)− 1

2

N∑
n=1

φn,k
1

bk
((ξk − xn)2 + 1) (93)

= 1 + Ψ′(ak)(1− ak +
1

2

N∑
n=1

φn,k)− 1

bk
(1 +

1

2

N∑
n=1

φn,k((ξk − xn) + 1) (94)

using the fact that Ψ is a monotonous function (95)

⇒ ak = 1 +
1

2

N∑
n=1

φn,k (96)

⇒ bk = 1 +
1

2

N∑
n=1

φn,k((ξk − xn)2 + 1) (97)

Computing the partial derivative δL
δbk

and setting the values of ak and bk to the above results satisfies the condition.

δL

δbk
= − 1

bk
+
ak
b2k
− 1

2

N∑
n=1

φn,k
1

bk
+
ak
b2k

N∑
n=1

((ξk − xn)2 + 1)
!
= 0 (98)

Updates for ρn Here, we need to take into account the constraint
∑T
k=1 φn,k = 1 We do this by using Lagrange

multipliers.
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L(ρn, λ) =
T∑
k=1

(
− φn,k log(φn,k) +

T∑
j=k+1

φn,j(Ψ(γk,2)−Ψ(γk,1 + γk,2)) (99)

+ φn,k(Ψ(γk,1)−Ψ(γk,1 + γk,2)) + φn,kηx
)
− λ(

T∑
k=1

φn,k − 1) (100)

δL
δφn,k

= −1− log(φn,k +
T∑

j=k+1

φn,j(Ψ(γk,2)−Ψ(γk,1 + γk,2)) (101)

+ (Ψ(γk,1)−Ψ(γk,1 + γk,2)) + ηx − λ (102)

δL
δλ

= 1−
T∑
k=1

φn,k (103)

⇒ φn,k =
exp(ηzn,k

+ ηxn,k
− 1)∑T

k=1 exp(ηzn,k
+ ηxn,k

− 1)
(104)
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