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Abstract: When neurophysiologists record neural activity from the brain, they often conclude that 
neural tuning to task variables indicates a functional role of the brain area studied in task 
performance. However, it remains unknown how reliably such correlations indicate a functional 
role. To answer this question, we chronically recorded neural activity in the prefrontal cortex of 15 
monkeys during the performance of four cognitive tasks. Previous studies had demonstrated that 
only one of those tasks causally depends on the recorded area; the other three tasks are not impaired 
by lesions of this area. We found that the prevalence and strength of single neuron and ensemble 
tuning were equivalently high across all four tasks. This suggests that non-necessary cognitive 
signals are prevalent in the cerebral cortex of primates during task performance, challenging one 20 
of the fundamental assumptions of cognitive neurophysiology. 

One-Sentence Summary: Tremblay, Testard and colleagues show that inferring a brain area’s 
function from neural recordings during task performance is problematic. 
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Recording neural activity from awake behaving animals is a common approach to study 
the role of different brain areas in cognitive processing1–3. For example, neural activity correlating 
with decision variables during a task (e.g. value) may indicate that the recorded neurons play a key 
role in those decisions4. Using this inferential logic, various roles have been assigned to areas of 
the cerebral cortex of mammals, including humans5–7. This method, however, can only provide 5 
correlational evidence of the involvement of a brain area in a given cognitive process8. How 
reliable those correlations are at revealing a given brain area’s functional role remains uncertain. 
The inferential power of the neurophysiological approach is limited by the potential presence of 
“non-necessary” neural activity in the brain, that is, neural activity correlated with certain task 
variables that play no necessary role in the performance of that task (i.e. abolishing this activity 10 
does not impair task performance)9. The presence of such neural activity can mislead investigators 
when hypothesizing about the functional role of a brain area in health and disease10,11. Models 
based on such correlational evidence can lead to contradictory theories of brain function12,13 and 
could identify ineffective therapeutic targets. Moreover, the number of proposed roles for each 
brain area inflates over time as more of these correlations are uncovered14. 15 

In the present study, we sought to investigate the prevalence of non-necessary signals in one 
intensely studied part of the primate brain: the prefrontal cortex (PFC). We focused on a brain area 
within the PFC with a defined role based on double dissociation studies in human and non-human 
primates. Area 8A of the primate PFC is known to be necessary for the conditional selection of 
visual stimuli based on instruction cues, as shown by a severe deficit following bilateral lesions to 20 
this area15,16. The same area plays no necessary role in other processes, such as visual 
discrimination and working memory, as shown by unaltered performance following complete, 
bilateral 8A lesions, but impaired performance following lesions to other neighboring cortical 
areas (i.e. double dissociation)16–18. 

Using chronic neural implants, we recorded simultaneously from neural populations in area 8A of 25 
the same monkeys during the performance of four different cognitive tasks (Figure 1A, B). 
Critically, based on earlier lesion studies, only one of the selected tasks causally depends on area 
8A as shown by impaired performance after lesions to this area; performance on the other three 
tasks does not depend on area 8A (Figure 1C). We compared single neuron spiking activity across 
the four tasks using standard metrics widely used in the field to uncover the neural basis of 30 
cognition: single neuron tuning19, persistent firing activity20, and neural ensemble single-trial 
decoding21. We tested whether differential neural activity between tasks would reliably reflect the 
known functional involvement of this brain area. 
Two macaque monkeys were trained on the following four tasks before the beginning of neural 
recording sessions: a conditional associative task (CAT), a visual discrimination task (VDT), a 35 
delayed match-to-sample task (DMS), and a spatial version of the delayed match-to-sample task 
(DMS-s). Only the CAT task is known to depend critically on brain area 8A; the other three tasks 
do not (Figure 1C). Behavioral performance was high across all four tasks and monkeys (>80%) 
and comparable across tasks (Figure 2A). Custom Utah arrays were used that fitted optimally 
within area 8A based on individual anatomy and vasculature (Figure 1D). We recorded 40 
simultaneously from an average of 166 single and multi-units in monkey K and 134 in monkey L 
in each session (40 sessions, 5 per monkey per task, total of 3335 units and 2688 units for monkey 
K and L, respectively). The number of recorded neural units was comparable across tasks for each 
monkey (Figure 2B). 
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We focused the analyses on a key epoch that is comparable across tasks: the delay epoch (see 
Methods). During that epoch, there are no stimuli on the screen and the monkey cannot prepare a 
motor response because of the randomization of target locations in the following epoch (except in 
the case of the DMS-s where motor responses can be planned). For these reasons, in the delay 
epoch the “cognitive” representations are dissociated from direct sensory and/or motor 5 
representations. In the cognitive neurophysiology field, functional roles of brain areas are typically 
inferred from the presence of cognitive representations during the delay22. 

Fig. 1. Behavioral tasks, dissociation of function, and neural recordings. (A) Monkeys performed four 
different cognitive tasks on a touchscreen while neural activity was recorded through the same chronic 
implants. Each task had the same format and included a cue, delay, and response epoch. The CAT task 
required selecting the correct target based on the conditional relation of the visual cue to the targets. The VDT 
task required selecting the same target on every trial, regardless of the visual cue presented. The DMS task 
required selecting the target that was identical to the previously presented cue. The DMS-s task required 
selecting the target based on the position of the previously presented cue. In DMS-s, the delay was initiated 
after pushing a red circle at the center of the screen. This was to prevent the monkeys from leaving their hands 
at the cued position. (B) Depiction of the experimental setup. Monkeys were not head-restrained and were 
monitored through video cameras. (C) Results from previous lesion studies from our group showing that only 
CAT performance is affected by bilateral lesions to area 8A. Performance of VDT, DMS, and DMS-s is not. 
(D) Position of chronic Utah array implants within area 8A of both monkeys. Brain and vasculature 
reconstructed from MRI. 
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Because each task taps into a dissociable cognitive process (i.e. conditional visual selection, 
unconditional visual selection, working memory for object, and working memory for space in 
CAT, VDT, DMS and DMS-s, respectively; see Methods), neurons must encode different 

Fig. 2. Comparisons of behavioral performance and neural activity across the four tasks. (A) Behavioral 
performance of both monkeys on each of the four tasks. Average performance was comparable across tasks 
(all means fall within a 10% interval). Red dots indicate individual sessions. 5 sessions per task. (B) Number 
of neural units (single and multi-units) recorded simultaneously during each task. The average number of units 
recorded was similar across tasks for each monkey. (C) Example single neuron spiking activity during the 
performance of each task, averaged over trials, for monkey K. Trials are separated based on whether target 1 or 
target 2 needed to be selected on this trial. This selection depended on the cognitive task. Shaded area shows 
significant tuning during the delay epoch of each task, when no stimuli are on the screen. Error bars are SEM. 
(D) Proportion of neurons showing significant tuning during the delay, relative to CAT (CAT = 0), for each 
task. P values represent one way ANOVA comparing means of the four tasks, corrected for uninstructed 
movements (see Methods and Supp. Fig 2). (E) Proportion of persistent firing units, relative to CAT, for each 
task. P values as in (D). (F) Single-trial decoding accuracy of a support vector machine predicting target 
selection during the delay epoch, relative to CAT. P values as in (D). Box plots in (D-F) represent median and 
the 25th and 75th percentiles. P-values are FDR-corrected. 
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cognitive representations to support behavioral performance. We tested whether neurons in area 
8A encoded the representation required for CAT performance only, or whether they also encoded 
the ones required by the other tasks (which do not depend on area 8A). Surprisingly, we found 
evidence of single neuron tuning to the cognitive representation required by all four tasks in both 
monkeys (Figure 2C & Figure S1).  5 

Although single neuron examples can be revealing, the field typically considers the proportion of 
all neurons recorded that exhibit similar tuning to support claims about function23. We thus 
compared the proportion of tuned neurons across all tasks relative to the CAT task. After correcting 
for task-aligned uninstructed movements that bias tuning24,25 (see Methods), we found no 
difference in the proportion of tuned neurons across tasks in either monkey (Figure 2D & Fig S2, 10 
S3, S4). In all tasks, about 30% of neurons recorded during a session exhibited statistically 
significant tuning during the delay epoch (ANOVA, P = .67 and P = .43 for monkey K and L, 
respectively).  
Another neural activity metric widely thought to represent cognitive processing is persistent firing 
activity during the delay26 (although debated, see27). Thus, we tested whether differences would 15 
arise between tasks when the temporal persistence of neural tuning is compared. We used a 
conservative criterion for defining persistent activity: significant selectivity during at least 5 
consecutive 100 msec bins during the delay (P < .01; minimal delay length = 500msec). Example 
neurons that would satisfy this criterion are displayed in Figure 2C. When quantifying the 
proportion of all neurons satisfying this criterion across the four tasks, we found no significant 20 
differences across tasks relative to CAT (Figure 2E, ANOVA, P = .50 and P = .67 for monkey K 
and L, respectively). Around 5% of neurons exhibited persistent activity during the delay, 
regardless of whether the task depends on area 8A (CAT), or not (VDT, DMS, & DMS-s). 
Single neuron tuning and persistent selectivity metrics are based on average firing rates over trials. 
Although these metrics are informative, they ignore some important neural dynamics unfolding at 25 
the population level on a moment-by-moment basis28. As the field is developing an appreciation 
for those dynamic features, more investigators are focusing on single-trial analyses from 
simultaneously recorded neural ensembles29. A popular approach is to use decoding algorithms, 
such as support vector machines, to decode representations from ensemble activity on single 
trials30,31. Using this approach, we compared the decoding accuracy of cognitive representations 30 
across the four tasks using simultaneously recorded neural ensembles from area 8A. Again, our 
analyses revealed no difference in the single-trial decoding accuracy across tasks (Figure 2F, 
ANOVA, P = .43 and P = .37 for monkey K and L, respectively). All four cognitive representations 
were decoded with an average of 90% accuracy (SVM, k-fold = 5, see Methods). 

Neural recordings are powerful approaches to investigate the neural correlates of cognitive 35 
processing. However, how reliable these correlates are at revealing the functional role of specific 
brain areas in the context of complex interacting neural circuits remains uncertain. Our results 
demonstrate that strong neural tuning was present during the delay epoch both at the single and 
neural ensemble levels, even in cases where this neural activity is known to not be necessary for 
task performance (i.e. lesion of these neurons do not affect task performance). This was true both 40 
when tuning is calculated using traditional ‘average-over-trials’ metrics and when using newer 
single-trial decoding methods. Taken in isolation, results from a single task could have led us to 
suggest incorrectly that area 8A “plays a role” in visual discrimination, or working memory. 
It remains possible that differences in neural tuning across tasks occur at a different task epoch or 
require more sophisticated analytical approaches to be detected. We intentionally limited our 45 
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analyses to standard ones used in the field of cognitive neurophysiology: single neuron tuning and 
decoding of the upcoming choice during the delay epoch. Conclusions about the contribution of a 
brain area in a given cognitive process are typically based on those analyses32,33. However, our 
results suggest that such correlations between neural activity and task variables are not reliable 
indicators of function. We believe this is especially problematic for higher associative brain areas 5 
where functional roles are still unclear and undergoing intense investigation.  

Why do we find neural signals that do not contribute to task performance (i.e. that are not 
necessary)? One potential explanation is that neurons are representing inputs the area needs to 
perform its specialized computation (e.g. visual or memory signals) even when the area is not 
necessary for current task demands. Another explanation is that these signals are simply feedback 10 
from other connected areas where the critical processing happens. In any case, without clear causal 
evidence establishing a framework within which these correlations can be interpreted, it is likely 
that investigators capture neural signals that may misrepresent the functional role of the brain area 
studied. This can fuel contradictions in the literature and slow progress in cognitive neuroscience. 
Based on the reported results, we recommend conducting neuro-correlational studies in primates 15 
only once the general function of a brain area has been elucidated through causal studies. 
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Supplementary Materials and Methods 5 

Subjects 

Two adult male monkeys (cynomolgus monkeys, monkey K: 7 kg, monkey L: 7 kg) participated 
in the experiments. All procedures complied with the Canadian Council of Animal Care and the 
Montreal Neurological Institute animal care committee. Over the course of a testing session (once 
a day), the monkeys would receive their daily amount of fluids consisting of water-diluted fruit 10 
juice for correctly performing the task. In addition, the monkeys would receive daily fresh fruits 
and vegetables at the end of each recording session. Each session lasted on average one hour, and 
no more than 1.5 hour. The physical and mental health of the monkeys was assessed daily by 
veterinary and laboratory staff throughout the course of the experiment. No animals were 
sacrificed for the purpose of this study. 15 

 

Surgical procedures 
Surgical plans were prepared with the help of brain MR images obtained on a Siemens 3T scanner 
(TIM TRIO, Montreal Neurological Institute). T1-weighted images (MP-RAGE) with and without 
gadolinium enhancement (Gadovist®, Bayer, Germany) were obtained to reconstruct the 3D 20 
cortical surface and cerebral vasculature of the brains (Brainsight Vet 2.4, Rogue Research, 
Canada; see Fig. 1D). Custom Utah arrays (Blackrock Microsystems, UT) were designed on the 
basis of each monkey’s neuroanatomy in order to cover optimally the region of interest while 
avoiding major blood vessels. All surgical operations were carried out under isoflurane general 
anesthesia and under strict sterile conditions with the help of experienced veterinary staff 25 
continuously monitoring vital signs. The animals’ head was positioned in a stereotaxic frame 
(Kopf Instruments, CA) and a midline skin incision was made to expose the dorsal aspect of the 
skull. The temporalis muscles were retracted ventrally and a square-shaped craniotomy (1.5 x 
1.5cm) was made in the fronto-lateral bone based on MRI coordinates using a dental drill equipped 
with a diamond round-cutting burr (Horico, Germany). The dura-mater was exposed and a dural 30 
flap was performed extending ventrally. Direct visualization of cortical landmarks (i.e. the arcuate 
and principalis sulci) enabled identification of the pre-arcuate convexity where cytoarchitectonic 
area 8A of the prefrontal cortex lies in the macaque brain34. The array(s) were positioned over the 
region of interest and implanted using a pneumatic inserter held by a flexible surgical arm. The 
dural flap was closed with 5-0 Vycril sutures and a layer of dura regeneration matrix (Durepair, 35 
Medtronic, MN) was laid over the reconstructed flap. The bone flap was thinned with a drill and 
replaced over the craniotomy and secured to the skull with low-profile titanium plates and screws 
(DePuy Synthes, IN). The Cereport connector was secured caudally to the skull opening using 
eight 1.5mm diameter titanium screws with a length determined by the skull thickness as measured 
by pre-operative MRI. The two reference wires were inserted in between the dura and the cortex 40 
and the exposed portion of those wires and of the array wire bundle were coated with a thin layer 
of Quick-Sil (WPI, FL) or Geristore (Denmat, CA). The muscle, fascia and skin were closed in 
anatomical layers with absorbable 3-0 Vycril sutures and the Cereport connector was allowed to 
protrude through a small opening in the skin. The monkeys were allowed to recover for two weeks 
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before the first recording session. No headposts were implanted in this study and no acrylic or 
dental cement was used in surgeries. 

 
Behavioral tasks 

In the current study, the monkeys were trained to sit in primate chairs that did not restrict their 5 
head or arm movements. The front panel of the chair was removed allowing the monkeys to reach 
outside the chair with their arms. The primate chair did not impose head movement restrictions, 
allowing the monkeys to turn around in the chair and look in any direction (360°). The monkeys 
were positioned in front of a 19-inch touchscreen (ELO touch 1937l, Accutouch, CA) connected 
to a behavioral control computer running MonkeyLogic 2.0 (version 47, NIMH, Hwang et al. 10 
2019) on a Windows 7 PC. The chair was positioned 7 inches from the touchscreen, such that the 
monkeys could reach easily at all locations on the screen. At this distance, the screen occupied 
86.4 degrees of visual angle horizontally and 73.7 degrees of visual angle vertically. The two 
monkeys were trained on four different computerized cognitive tasks: 1) conditional association 
task (CAT), 2) visual discrimination task (VDT), 3) delayed match-to-sample task (DMS), and 4) 15 
spatial DMS task (DMS-s). The four tasks were performed while recording from the same neural 
implants over a timespan of 4 months for monkey K, and 3 months for monkey L.  
 

CAT 
The CAT task is a computerized adaptation of the conditional association task used in Petrides et 20 
al.15,16. This task taps into the ability of subjects to select visual objects in their environment based 
on instruction cues that change from trial to trial. In this earlier study, monkeys with bilateral 
lesions of prefrontal area 8A (the area targeted in the current study) exhibited severe impairments 
on this task, while sparring cognitive performance on other equally difficult tasks, such as working 
memory tasks. A trial was initiated by touching a white square appearing at the center of the 25 
touchscreen. Following the touch, one out of four possible visual instruction cues appeared on the 
screen for 1 second. After cue presentation, a delay period of random duration (0.5-1.5 sec) 
followed. After the delay, two targets appeared randomly at 8 possible locations (stimuli always 
opposite to each other). The monkeys received a reward if they touched the correct target 
associated with the cue presented earlier in the trial. Upon selection of the correct target, the 30 
untouched target disappeared to give feedback on what target was selected, and a squirt of juice 
was delivered through a metal straw (Crist Instrument, MD). Before the beginning of this 
experiment and over the course of multiple training sessions, the monkeys had learned 36 arbitrary 
cue-target associations, always using the same two targets (a blue circle and a green star), until a 
threshold of 80% accuracy was reached. In any given recording session (one session per day), 4 35 
cues were selected (2 associated with the circle, 2 associated with the star) and were interleaved in 
a block design, whereby a first pair of cues (1 associated with each target) was presented for half 
the session, and a second pair for the other half of the session. Having two cues associated with 
each target option permitted dissociation of tuning for the cue vs tuning for the association. 
Behavioral performance at the task was calculated using a hit rate (correct trials / (correct trials + 40 
error trials)).  
 

VDT 
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The VDT task is a computerized version of the visual discrimination task used in Petrides et al.15,16. 
This task taps into a subject’s ability to select consistently a visual object in the environment 
regardless of contextual cues. Bilateral lesions to area 8A had no effect on VDT performance. In 
this task, the trial structure is the same as in the CAT task (1 sec cue, 500:1500 msec delay). The 
only difference is that the cues presented were not associated with the targets. Thus, the monkeys 5 
did not need to select a particular visual target based on the instructional cues presented to perform 
accurately, but rather had to choose the same target on every trial, regardless of the cue presented. 
On every trial, a cue was randomly selected from a bank of 35 cues. This large number of cues 
prevented monkeys from forming false associations between cues and targets, as was previously 
observed with a smaller set of 4 random cues (data not shown). To ensure the monkeys selected 10 
each target (circle and star) an equal number of times, each session had a block design, whereby 
the first half of the trials required selection of the circle target, and the second half required 
selection of the star target. This order was interleaved across sessions. Monkeys quickly learned 
which target to select in each block through trial and error. 

 15 

DMS 

The DMS task is a computerized version of the standard delayed match-to-sample task used in 
various lesion studies. This task taps into a subject’s ability to remember an object item over time 
in order to guide a decision after a delay. It is typically considered a “working memory” task in 
the neurophysiology literature26. The DMS task had the same trials structure as the CAT and VDT 20 
task. A trial was initiated by pressing a white square at the center of the screen. After the touch, 
one out of two visual stimuli (circle or star stimuli) were presented at the center of the screen for 
1 sec. Following a delay period of 500:1500 msec, two targets (star and circle) appeared randomly 
at 8 possible locations. The monkey was rewarded for selecting the target that was identical to the 
cue presented earlier. 25 

 

DMS-s 
The spatial DMS task is a spatial version of the delayed match-to-sample task. This task taps into 
a subject’s ability to remember a spatial location in the environment in order to guide a decision 
after a delay. It is typically considered a “working memory” task in the neurophysiology literature. 30 
This task has the same trial structure as the CAT, VDT, and DMS tasks. First, a visual stimulus 
appears at one out of 4 possible locations on the screen for 1 sec. Following a delay period of 
500:1500 msec, four targets appeared at each one of the four possible cue locations. The monkey 
was rewarded for selecting the target at the location that was cued earlier in the trial. To prevent 
the monkeys from simply leaving their hand at the cued location during the delay epoch (which 35 
would remove the memory component of this task), they had to place their hand back on a red dot 
at the center of the screen after cue offset to start the delay epoch. 
 

Behavioral and video monitoring 
Movements explain a large portion of the neural variance in this brain area and uninstructed 40 
movements aligned with task variables can bias estimates of neural tuning24,25. To account for this 
potential confound, we tracked head, eyes and body movements during task performance (Fig. S2, 
S3). All behavioral monitoring devices were synchronized to the master clock of the neural 
recording system. All touchscreen touches by the monkeys were recorded by MonkeyLogic and 
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marked as discrete events. In addition, we used a head-free eye tracking system to monitor eye 
position, pupil size, and head position (in 3D) with a 500 Hz temporal resolution (Eyelink 1000, 
Remote version, SR Research, Canada). This was achieved with the help a small sticker put on the 
monkeys’ right cheek at the beginning of each session (see Fig. S2a). This eye tracking signal was 
lost when the monkeys made very large head movements (e.g. turning 180° in the chair) bringing 5 
the sticker out of the sight of the camera. Additionally, we video-recorded the body movements of 
the monkeys using a video camera installed on top of the primate chair (IDS UI-3240ML-C-HQ, 
30 fps, Germany; Fig. S2a).  

Using video data, we measured potential biases in eyes, head or body movements that correlated 
with the animals’ decision on every trial (i.e. selecting the star or the circle target). We calculated 10 
the trial-averaged positions during the delay epoch, separating trials per target selected (e.g. star 
or circle). The distance between the average positions for star-selected and circle-selected trials is 
referred to as “bias” and indicate the difference in uninstructed movements made as a function of 
the decision taken during the delay (see Fig. S2c,d). Those movement biases correlated strongly 
with neural tuning, persistent activity and decoding accuracy in monkey K (see Fig. S3) We 15 
regressed out those spatial biases from our neural metrics comparisons across tasks to control for 
the effect of those task-aligned movements on tuning estimates (see details below). 
 

Video tracking analyses 
Using the data from the video camera attached to the primate chair, we computed the motion 20 
energy for the arms and head during performance of the task. The arms and head were parsed 
using manually drawn regions of interests (ROI) in the Motion Energy Analysis software (MEA 
v4.10, F. Ramseyer 2019, https://osf.io/gkzs3/). Motion energy was computed as the number of 
pixels that “change” value within the ROI on a frame-by-frame basis. A “change” was defined 
based on a threshold crossing operation on the pixel color change to eliminate video noise 25 
(threshold = 14 a.u.).  

For body movements tracking we used DeepLabCut (version 2.2)35,36. Specifically, we 
labeled 200 frames taken from 3 videos/animals (then 95% was used for training) for the following 
key points: right hand, left hand, eyebrow, nose, tail. The tail and left hand were visible only for 
monkey L and K, respectively. We used a ResNet-50-based neural network with default 30 
parameters for 150,000 training iterations. We validated with 10 number of shuffles, and found 
the test error was: 6 pixels, train: 307,200 pixels (image size was 640 by 480). We then used a p-
cutoff of 0.8 to condition the X,Y coordinates for future analysis. This network was then used to 
analyze videos from similar experimental settings and identify coordinates of all key points on a 
frame-by-frame basis (30 frames per second).  35 

 

Neural recordings and spike detection 
The neural data from the chronically implanted Utah arrays were recorded using a Cereplex Direct 
96-channel neural recording system (Blackrock Microsystems, UT). The raw signal was bandpass 
filtered (0.3Hz to 7.5KHz) and digitized (16 bits) at 30,000 samples per second by a Cereplex E 40 
digital headstage installed on the Cereport connector of the Utah array. The digitized signal was 
routed from the headstage to the recording computer (PC, Windows 7) using a long, flexible micro-
HDMI cable that did not impede the movements of the monkeys. For each channel, neural action 
potentials (or “spikes”) were detected online based on a channel-specific voltage threshold equal 
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to 4 times the root mean square of the noise amplitude (Central Suite software, Blackrock 
Microsystems). The waveforms and timestamps of each spikes were saved to disk and transferred 
to Offline Sorter (version 2.8.8, Plexon Inc., TX) for manual sorting of spike waveforms. Well-
isolated single units as well as multi-unit clusters were classified on each channel and saved for 
later analyses in Matlab (MathWorks, MA). On average, we recorded from 166 (SD 13.1) units 5 
(including single and multiunits) from Monkey K on each session and 134 (SD 8.5) from monkey 
L, or a total of 3335 units in K and 2688 units in L. We made no assumptions as to whether 
recorded units were the same or different ones from session to session. The number of recorded 
neurons was similar across tasks (Figure 2B). 
 10 

Single neuron selectivity 
Each task taps into a dissociable cognitive process, as detailed above. The firing rate of neurons 
can exhibit tuning/selectivity for the cognitive representation required by each task (i.e. conditional 
visual selection, unconditional visual selection, working memory for object, and working memory 
for space for CAT, VDT, DMS and DMS-s, respectively). The selectivity of each neural unit 15 
(single or multi-unit) was assessed during the delay period using a 500msec time interval [delay 
start +100msec: delay start +600msec]. During this time interval, the number of action potentials 
was counted for each trial. Trials were separated based on whether the option 1 (e.g. star) or the 
option 2 (e.g. circle) was the correct answer. For the DMS-s task, there were initially four options 
(i.e., positions) rather than two. We therefore pooled trials into two categories: right hemifield vs 20 
left hemifield to have comparable number of trials per category with other tasks. Average firing 
rates over trials for each option was compared using an ANOVA with P < .01, uncorrected. 
Because the number of trials can influence the probability of a statistically significant result (larger 
N leads to lower P values), we randomly subsampled trials for each session to the minimum 
number of trials obtained in all session (87 trials per condition for monkey K, 133 for monkey L). 25 
This approach ensured that the number of neurons crossing the statistical threshold could be 
compared across tasks without statistical power biases. 
 

Common epoch across tasks: the delay epoch 
Our analyses are focused on the delay epoch where no visual stimuli are on the screen and the 30 
monkeys cannot prepare a motor action (targets’ locations are randomly selected during the target 
epoch, see Figure 1). Our reasons for focusing on this task epoch are two-fold. First, the delay 
epoch is the most common epoch analyzed by cognitive neurophysiologists in order to dissociate 
sensorimotor representations from “cognitive” representations. Second, it is the only epoch that is 
truly comparable across the four tasks. The cue epoch has different number and types of cues 35 
across tasks, making it impossible to compare tuning on equal grounds (CAT: 4 cues; VDT: 32 
cues; DMS: 2 cues; DMS-s: 4 cues). It is also impossible to dissociate cue encoding from target 
encoding in a comparable manner, since the association between cues and targets is varied across 
tasks (1:1 in DMS, 4:2 in CAT, 32:0 in VDT).  
 40 

Correction for movement biases 
As demonstrated previously, a large part of the neural variance is explained by uninstructed 
movements in task-performing mice24 and monkeys25. Since the amount of uninstructed 
movements varied across tasks (Fig. S3), to compare neural tuning, persistent activity, and 
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ensemble decoding accuracy consistently, we needed to remove the neural variance explained by 
movements. To do so, we ran a multilinear regression with either % tuned units, % persistent 
activity units, or % decoding accuracy as the dependent variable (one value per session). The 
independent variables were the trial-averaged uninstructed movements biases from the eyes, the 
cheek, the right hand, the left hand, the tail, the nose, the eyebrow, as well as the mean motion 5 
energy from the head and arms. A movement bias was defined as the mean difference between the 
motor effector’s position (or energy) across the two target conditions during the delay epoch. The 
movement-controlled residuals from this multilinear regression were then used to compare tuning, 
persistent activity, or decoding accuracy across tasks using ANOVAs. 
 10 

Proportion of tuned neurons 
We computed the proportion of tuned neurons for each session as: (N tuned neurons / N neurons 
recorded). Because the proportion of tuned neurons is correlated with the presence of uninstructed 
movements aligned with task variables, we regressed out movement biases. This approach allows 
us to compare proportions of tuned neurons across tasks controlling for varying amounts of task-15 
aligned uninstructed movements. Because the absolute value of these residuals is undefined, we 
presented values as relative to the CAT task, which we aligned with 0 on the Y-axis in Fig 2. 
Results in Fig. 2D-F are therefore presented relative to the reference task, CAT. Uncorrected 
estimates are presented in Fig. S4.  
 20 

Persistent firing activity 
Persistent firing activity was defined as statistically significant selectivity for at least 5 consecutive 
100 msec time bins during the delay epoch (P < .01). Single unit selectivity as defined above. This 
allowed to detect units that had a relatively persistent firing rate in favor of one of the two options 
during the delay. The proportion of “persistent units” was compared across tasks using an 25 
ANOVA, following the same correction for uninstructed movements detailed above. 

 
Decoding analyses 

We ran decoding analyses using a machine-learning algorithm to estimate the amount of 
information contained in the neural firing code during the delay [delay start +100 msec : delay 30 
start +600msec]. In those analyses, we used a support vector machine (SVM) with an RBF kernel 
and 5-fold cross-validation. For each SVM, we only included simultaneously recorded units, 
hereby named “neural ensembles”, to get a more realistic estimate of information content on a 
msec time resolution and to better account for confounding factors that can affect coding, such as 
noise correlations. For each cross-validation fold, a non-overlapping training and testing sets of 35 
trials were defined, and the accuracy of the trained model was calculated based on the number of 
correct predictions on the testing set (correct predictions / all predictions). The number of trials 
per class (2 classes, one for each target option) was balanced using random sampling so each class 
had the same number of observations as the smallest class. To account for the random sampling 
process, we ran 30 iterations of each SVM and computed the mean decoding accuracy across those 40 
iterations. Chance performance of the decoder was obtained by randomly permuting the labels 
(shuffled control) before training and following the same analysis procedure. The decoding 
accuracy for each session was compared across tasks using an ANOVA, following the same 
correction for uninstructed movements detailed above. 
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Supplementary Figures 

 

 

 

Supp. Fig. 1. Single neuron examples for monkey L. Example single neuron spiking activity during 
the performance of each task, averaged over trials, for monkey L. Trials are separated based on whether 
target 1 or target 2 needed to be selected on this trial. This selection depended on the cognitive task. 
Shaded area shows significant tuning during the delay epoch of each task, when no stimuli is on the 
screen. Error bars are SEM. 
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Supp. Fig. 2. Capturing uninstructed movements. (A) View of the experimental setup with a 
head-free monkey performing a task on the touchscreen. The position of a video camera and a head-
free eye-tracker are indicated. (B) Video tracking of macaque body movements during task 
performance. Various cameras and analyses techniques were used to quantify movements of 9 body 
parts.  (C) Average eye (top) and head (bottom) traces during the delay of an example session in 
monkey K. Traces are separated based on decision to later select the star or the target. The difference 
between these two traces indicates uninstructed movements aligned with a critical task variable (i.e. 
the decision). The size of those spatial biases, calculated in degrees of visual angle for the eyes and 
in cm for the head, was used in the regression model to control for those movements. (D) Same as 
in (C), but for monkey L. Monkey L had much fewer uninstructed movements aligned to task 
variables. 
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Supp. Fig. 3. Task-aligned uninstructed movements correlating with neural metrics. Correlations between 
eye  bias or head bias estimates, as detailed in Supp Fig. 2, and the three neural metrics reported: % of tuned 
neurons (left column), % of persistent neurons (middle), and decoding accuracy (right). Note the strong biases 
in monkey K that vary across tasks (color legend), and correlate with neural metrics. Monkey L, in comparison, 
didn’t exhibit such biases or correlations with neural metrics. 
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Supp. Fig. 4. Uncorrected comparisons across tasks. Proportion of tuned neurons (top), of persistent firing 
neurons (middle), and decoding accuracy (bottom) when uncorrected for uninstructed movements aligned to task 
variables. Monkey K presented a large amount of uninstructed movements that biased tuning estimates across 
tasks (see Supp. Fig. 2, 3). Conventions as in Figure 2D-F.  
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