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Abstract

Regulation of gene activity during the cell cycle is fundamental to bacterial replication but is
challenging to study in unperturbed, asynchronous bacterial populations. Using single cell
RNA-sequencing of heterogeneous Staphylococcus aureus populations, we uncovered a global
gene expression pattern dominated by chromosomal position. We show that this pattern results
from the effect of DNA replication on gene expression, and in Escherichia coli, changes under
different growth rates and modes of replication. By constructing a quantitative model in each
species that links replication to cell cycle gene expression, we identified divergent genes that
may be instead subject to distinct regulation, and applied this cell cycle framework to
characterize heterogeneity in responses to antibiotic stress. Our approach reveals a highly
dynamic cell cycle transcriptional landscape and may be broadly applicable across species.

Introduction

Growth and division in bacteria requires coordinated regulation of gene function at the level of
cytoplasm synthesis, cell wall production and division, and genome replication and segregation.
Understanding how these processes are controlled and intersect with other cellular functions will
yield fundamental insights into the physiology of these organisms. While control of transcript
abundance is a fundamental regulatory mechanism, analysis of cell cycle transcript dynamics
for most bacteria has not been possible. A central reason for this has been the difficulty of
synchronizing inherently noisy bacterial cell cycles to enable measurement of cell cycle
processes as a function of time. Hence global analysis of cell cycle gene expression has been
limited to organisms such as Caulobacter crescentus (1-3) where natural biological features
facilitate synchronization, or to populations synchronized by bulk treatments such as starvation
(4) or temperature shift (5), although the efficacy of such batch synchronization methods has
been called into question (6).

Single-cell RNA sequencing (scRNA-seq) has transformed the analysis of heterogeneous
populations of eukaryotic cells by identifying a diversity of hitherto unanticipated cell types and
states (7—-9). The recent development of methods for scRNA-seq in prokaryotes (10—12)
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represents a major technological advance, but the analysis of the resulting data is challenged by
the low mRNA content of bacteria that leads to very few transcripts detected per cell. Here we
apply one method, PETRI-seq (710), to acquire the transcriptomes of large numbers of individual
bacteria and develop a new analysis approach to reveal a global pattern of gene covariance
dependent on genes’ chromosomal position. We show that this pattern is driven by the effect of
DNA replication on gene expression and that modeling this effect allows, for the first time,
resolution of the cell cycle transcriptome from unsynchronized bacterial populations. Applying
this approach to two highly medically important but unrelated bacterial pathogens, the
Gram-negative rod Eschericha coli (E. coli) and the Gram-positive coccus Staphylococcus
aureus (S. aureus), we identify genes with expression patterns that diverge from this
replication-driven effect, with roles from core bacterial physiological processes to stress
responses. We further show how our framework can be used to understand cell cycle variation
and proliferation state as a source of heterogeneity in responses to antibiotic treatment.

This study provides a powerful new analysis approach to apply methods such as PETRI-seq to
interrogate bacterial expression dynamics. The global replication-driven expression dynamics
that we uncover may not only act as a regulatory mechanism in some cases, but also form a
useful framework and an essential consideration for interpretation of studies of bacterial gene
expression heterogeneity. Moreover, our work raises questions about the regulatory function of
these transcriptional dynamics, as well as their contribution to population heterogeneity in key
phenotypes from stress tolerance to virulence.

Results

Global gene expression in bacterial populations is shaped by chromosome position.

To investigate transcriptional heterogeneity in proliferating bacterial populations, we applied
PETRI-seq (70) to 73,053 S. aureus cells in exponential phase (Fig. 1A). By including further
methodological optimizations (see Materials & Methods), we detected on average 135
transcripts per cell (measured as unique molecular identifiers (UMI)) (Fig. 1B). To denoise the
data, we applied the scVI method, an unsupervised deep learning approach (73). This allowed
us to recover previously reported gene-gene correlations, including a general covariance of
genes within operons (Fig. 1C). When we expanded this analysis to chromosome-wide
gene-gene correlations, we discovered a striking ‘X-shaped’ pattern of gene expression
covariance (Fig. 1D). Beyond the expected diagonal reflecting coordinated gene expression at
the level of operons, the anti-diagonal reflected correlations between genes at a similar distance
from the origin of replication, between the “arms” of the circular chromosome, as well as a
correlation between genes at the origin and terminus (Fig. 1E). This pattern was strengthened
by averaging expression into 50 kb bins by chromosome position (Fig. 1F), and was
reproducible in a second independent dataset under the same conditions of 21,257 cells (Figure
S1, Table S1, Dataset D4), and also detectable without scVI, although the signal was
substantially noisier (Fig. 1G). Interestingly, the pattern was abolished when we applied this
analysis to 55,894 cells in stationary phase, suggesting that this pattern is a property of actively
proliferating cells (Fig. 1H).
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Figure 1: scRNA-seq of proliferating S. aureus reveals a global pattern of gene expression
covariance. A) PETRI-seq workflow. S. aureus cells were fixed and permeabilized, then subjected to
three rounds of cDNA barcoding to give transcripts of each cell a unique barcode combination. B)
Histogram of total UMI per cell barcode in exponential S. aureus. The dotted line indicates the minimum
threshold of 20 UMl/cell. C) Local operon structure is captured by gene-gene correlations (Spearman’s r).
Operons are indicated by shared colors of genes. Gray genes indicate those removed by low-count
filtering. Names of SAUSA300_RS04760 and SAUSA300_RS04765 are truncated. D) Global gene-gene
correlations reflect chromosomal position. Spearman correlations were calculated based on scVI-modeled
expression. Genes are ordered by chromosomal position, with the replication origin at zero. E) Schematic
of positive correlation patterns in (D). Correlations are between 1) neighboring genes, 2) genes
equidistant from the origin of replication, and 3) direct origin-terminus correlations. F) Correlations as in
(D) but with scVI-modeled expression scaled to z-scores then averaged in 50 kb bins. G) Correlations as
in (D) but without modeling with scVI and averaging expression in 200 kb bins. H) Correlations as in (F)
but in stationary phase S. aureus.

The rate of replication initiation determines transcript heterogeneity patterns.

As we observed correlations among genes that are equidistant from the origin of replication and
cells in stationary phase did not show such correlations, we hypothesized that the ‘X-shaped
pattern’ is related to DNA replication. To test this, we developed a simulation of gene copy
number effects resulting from DNA replication patterns at different growth rates, to investigate
their influence on gene-gene correlations (Fig. S2, Materials & Methods). First, we simulated a
scenario in which the time between replication initiation events (i.e. the doubling time t,) is on
average equal to the time to replicate the whole chromosome (known as the “C-period”) (Fig.
2A). This closely recapitulated the X-shaped pattern, supporting a role for replication.
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A replication-driven pattern could in theory arise from a contaminating effect of genomic DNA
contributing to the expression matrix. However, samples are DNase-treated and barcodes are
introduced using reverse transcriptase. Furthermore, we observed that 1) gene expression
varied over ~5 orders of magnitude, inconsistent with genomic DNA (Fig. S3A); 2) the X-shaped
pattern is stronger with more highly expressed genes (Fig. S3B & C, the opposite of what would
be predicted with background genomic DNA contamination); 3) we also identified the X-shaped
pattern in a previously published dataset of bulk-measured, synchronized C. crescentus (2) (Fig.
S3D). Together, this evidence demonstrates that it is very unlikely that the pattern could result
purely from genomic DNA contamination.

Since DNA replication patterns are sensitive to replication rate, we predicted that gene-gene
correlations will vary with population growth rate. In E. coli, it has long been established that
overlapping cycles of replication occur simultaneously at high rates of proliferation, whereas at
slower proliferation rates one round of replication finishes before the next one starts (74). We
therefore measured the doubling times (t,) of E. coli grown in three medium conditions (Fig. 2B):
LB (26.0 min), M9 minimal medium with 0.4% glucose and 0.2% amino acids (M9 + Glc + AA,
39.4 min), and M9 medium with 0.4% glucose only (M9 + Glc, 69.1 min). A C-period of 42
minutes has also been reported for the K-12 MG1655 strain used here (715, 16). These
parameters allowed us to simulate each growth rate and predict the effect on gene-gene
correlations (Fig. 2C). At an intermediate rate of growth (f, = 39.4 min), we predicted a
correlation pattern similar to that observed for S. aureus (Fig. 1D). However, simulating faster
growth produced a nested “multi-X” pattern resulting from overlapping cycles of replication, and
slower growth greatly reduced origin-terminus correlations (Fig. 2C).

When we compared these predictions to the observed data for E. coli grown under the three
conditions, we observed a strikingly close correspondence between simulated and observed
expression patterns (Fig. 2D). Correlations became less defined at slower growth rates,
although this may reflect noise due to lower transcript counts (Fig. S1C), reflecting lower RNA
content at slower growth rates (77). The M9 + Glc condition further resembled bulk RNA-seq of
synchronized C. crescentus (Fig. S3D) (2), which undergoes a single round of replication prior
to asymmetric division (7), similar to the situation for slower-growing E. coli. Finally, if this
pattern is indeed driven by the effect of gene copy number on expression levels (as assumed in
our simulation), this should create a relationship between origin distance and expression levels.
Despite high variation in intrinsic promoter activity, we found that on average expression
decreased with distance from the origin, and this effect was stronger at faster growth rates (Fig.
S4).

To further test our ability to predict global correlations from expected replication patterns, we
examined strains in which normal replication is perturbed. We compared wild-type E. coli in LB
to two strains that had ectopic origins of replication at either 9 o’clock (oriX) or 3 o’clock (oriZ)
positions in addition to oriC (18—20). In these strains, replication initiates simultaneously at both
origins, and uses the same terminus, ter (78). Our simulation predicted highly perturbed
correlation patterns that mirrored each other, as the ectopic origins were nearly equidistant from
oriC on each side of the chromosome (Fig. 2E). Again, observed patterns matched closely with
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our predictions (Fig. 2E). These results support the notion that DNA replication produces
complex effects on transcriptional heterogeneity and these effects are sensitive to proliferation
rate and other perturbations.

A B
Chromosome position Chromosome posmon 25 LB
———
_ ,7,—Iz o S oo
—————— 3
= n 9 < s
P == - t - — _é 05 g 8’) . Mg + Glc
T R w & 2 50
e —— 4 = 8 L
=————— |7 mg :
=— =] .
= =—— — I 5 I*”S 100 200 300 400 500
Origin ~ Terminus  Origin Origin  Terminus  Origin Time (min)
orIC orlC

Simulated
uofje|ai0)

C ty = 26.0 min ty = 39.4 min t; =69.1 min ]

M9 + GIC +AA

Simulated

onje[a.1109)
uoneaLo)

Observed

Observed

Figure 2: Global gene expression patterns are determined by doubling time-dependent DNA
replication patterns. A) Simulation of DNA copy number effects predicts the global gene covariance
pattern. For 1,000 simulated, unsynchronized cells where the doubling time ¢, is equal to the C-period, the
normalized, scaled gene expression matrix (leff) is used to calculate gene-gene correlations (right). B)
Growth of E. coli in three conditions. Doubling times were calculated based on the linear portions of
growth (marked as fitted lines). C) Simulated correlation patterns in unsynchronized cells at three different
growth rates. D) Spearman correlations between scaled data averaged into 50 kb bins, as for Fig. 1F but
for E. coli grown at three growth rates. E) Introducing ectopic origins of replication leads to predictable
perturbations in gene expression heterogeneity. Top: schematic of predicted replication patterns based on
previous studies (718—20). Middle: Predicted correlation patterns based on the copy number simulation
model. Botfom: Real correlation patterns in oriX and oriZ mutant strains, as in Fig. 2D.

Quantitative modeling of the replication effect reveals the dynamics of gene expression
throughout the E. coli cell cycle.

Since DNA replication exerts a strong influence over gene expression, we hypothesized that this
effect can be used to resolve a cell’s position within the replication cycle given only its
transcriptome. To study the distribution of cellular states in a population of cells, we projected
LB-grown E. coli cells in two dimensions by uniform manifold approximation and projection
(UMAP). When we performed UMAP on expression averaged by chromosomal position (which
we saw strengthened global correlation patterns, Fig. 1F), cells arranged into a “wheel” shape
(Fig. 3A). To determine the order of cells along this wheel, we calculated cells’ angle 6, between
UMAP coordinates (Fig. 3A). Examining gene expression as a function of 6, we observed
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waves of gene expression progressing from the origin to the terminus (Fig. 3B), suggesting that
cells’ positions on this wheel reveal their replication state.

As we observed that expression for most genes is strongly influenced by a cell’s replication
state, we reasoned that we should also be able to order genes by their cell cycle expression and
that this would generally reflect their order of replication. To do this, we projected the genes
themselves into two dimensions to derive a gene angle, 6, (Fig. 3C). Ordering genes by 6,, we
observed a close relationship of this metric and the distance from the origin of replication (Fig.
3D), suggesting that 8, does indeed capture the order of replication. However, we also detected
“wrapping” such that 6, started back again at zero after passing through a full cycle. While E.
coli under all growth rates exhibited an origin-angle relationship, the gradient of change of 6,
with respect to origin distance decreased with increasing doubling time (Fig. 3D). This gradient
is convertible to an “overlap fraction”, the fraction of one round of replication happening before
the previous one has finished. These overlapping rounds mean that distant genes are
simultaneously co-replicated, resulting in the observed gene-gene correlation patterns.

The two parameters — the cell angle 6, and the gene angle 6, — led us to construct a predictive
model for expression of a given gene (by 6,) at a given point in the cell cycle (by 6;) (Fig. 3F).
Within this simplified model, as cell state rotates around 6., the genes maximally expressed
simultaneously rotate by 8, (Fig. 3G). Thus based on a given pattern of gene expression, the
model infers the state of the cell along the cell cycle; conversely, for a particular cell cycle state,
the model infers an expected gene expression pattern.
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Figure 3: Ordering expression by cell angle and gene angle establishes a quantitative model of
cell cycle gene expression. A) UMAP of LB-grown E. coli with expression averaged in 100 kb bins by
chromosome position. Cell angle 6, is the angle between UMAP dimensions relative to the center. For
UMAP without averaging, see Fig. S5A. B) Heatmap of scaled gene expression averaged in 100 bins by
6.. C) Derivation of gene angle 8,. Principal component analysis was performed on the transpose of the
matrix in (B), and 6, was defined as the angle between principal components (PCs) 1 and 2. Genes form
a wheel in UMAP (Fig. S5B). D) The relationship between 6, and origin distance for each E. coli growth
condition. The gradient (see Materials & Methods) is indicated. E) Predicted replication patterns. Slower
growth leads to a reduced fraction of overlapping expression. Each bar represents a single round of
replication. Overlapping rounds lead to shared 6, in simultaneously-replicated chromosomal regions. F)
Expression in LB-grown E. coli is averaged in 100 bins first by 8, then by 8,. G) A model of cell cycle
dynamics parameterized by cycling of cells by 8, with concurrent cycling of gene expression by 6,.

Correcting for replication patterns reveals evidence of cell cycle gene regulation in E.
coli.

While most genes appear to follow a predictable pattern of cell cycle gene expression,
identifying genes that display divergent behavior could reveal cell cycle regulation by other
factors. We achieved this by developing a model to predict gene expression dynamics resulting
from DNA replication alone based on a gene’s distance from the replication origin and the
relationship between cell angle 6., gene angle 6,, and gene expression (Fig. 4A, see Materials &
Methods). Overall, we found a moderately strong correlation of this prediction with the observed
data (Pearson’s r = 0.59, Fig. S5C). Crucially, this prediction allows us to “correct” for the effect
of replication on gene expression by subtracting replication-predicted expression from the
observed expression, largely eradicating the global chromosome position-dependent correlation
pattern (Fig. 4B). Next, we computed the divergence of expression dynamics from our global
model as the standard deviation of residual cell cycle expression after correcting for
replication-predicted expression (O..eceq)- ThisS value is highly concordant across replicates for
highly variable genes (Pearson’s r = 0.80, Fig. 4C, Fig. S5E). For genes with low O, ecteq
values, the observed expression closely tracked the replication-predicted expression (Fig. S5F).
On the other hand, 70 genes that showed reproducible high 0.,....«q Values were classified as
“replication-divergent”.

To understand the dynamics of the replication-divergent genes, we compared the observed cell
cycle expression pattern to that expected based on replication alone (Fig. 4D). Overall, genes in
the same operon showed highly similar dynamics (black lines in Fig. 4D). To aid interpretation,
we shifted 6, so that the zero angle was the most likely point for a replication initiation event
(see Materials & Methods). Several replication-related and origin-proximal genes show a
decrease in transcript abundance early in the cycle. Among these, the key regulator of
replication initiation dnaA, and several other of these genes, have been shown to transiently
drop in transcript abundance around the time of initiation (27—24). In contrast, the DNA
polymerase subunit DnaE is required for replication elongation (25), explaining its increase
concurrent with the dnaA drop. Similarly, initiation of a new replication cycle increases the DNA
synthesis rate, leading to increased demand and transcription of the ribonucleotide reductase
(nrd) genes to produce dNTP monomers, as described previously (22, 23, 26). We also
observed a transient drop in B (rpoB) and B’ (rpoC) subunits of RNA polymerase. Previously, it
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was reported that the a (rpoA) subunit was not cell cycle-regulated (27). In keeping with this,
rpoA, which is in a separate operon from rpoB-rpoC, was not in our replication-divergent gene
list and its expression closely tracks the pattern expected from replication.

Besides genes involved in replication and transcription, two major functional groups dominated
the replication-divergent gene list: those involved in cell surface synthesis and division (23
genes, Fig. 4E) and energy production and conversion (22 genes). The large operon of cell wall
biosynthesis and division genes including ftsZ increased early and dropped towards the end of
the cycle. Cell cycle fluctuation of the chromosome partition protein mukB has been reported
previously (23). However, we also saw dynamic regulation of numerous operons involved in
lipopolysaccharide biosynthesis and outer membrane function (skp-lpxD, pqiB,
ugd-wbbK-wbbJ-wbbl-wbbH-glf, waaU-waaY-waadJ). Unexpectedly, we observed dynamic
transcription of numerous genes involved in energy metabolism, particularly pyruvate
dehydrogenase (aceE-aceF-Ipd), a-ketoglutarate dehydrogenase (sucB), and succinyl-CoA
synthetase (sucC-sucD) in the tricarboxylic acid cycle and electron transport chain complexes
cytochrome bo; oxidase (cyo), NADH:ubiquinone oxidoreductase (nuo), and the F,F1-ATP
synthase (afp). We also identified large, replication-divergent fluctuations in the nemRA operon,
encoding an electrophile-regulated transcriptional repressor, NemR, and a reactive
electrophile-detoxifying enzyme, NemA (27-29). Typically, cell cycle variation in expression of
these divergent genes amounted to around 3-4-fold changes in expression (Fig. S5G), although
some genes such as dnaA showed particularly strong silencing at specific points. These
dynamics were in general highly reproducible in a second dataset (Fig. S6, Dataset D2).
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Figure 4: Modeling the replication effect allows identification of replication-divergent genes. A)
Pipeline for predicting replication-only transcriptional dynamics. A regression model predicts gene angle
6,..c Dased on origin distance alone (left) and this is converted into expression by cell angle 6, using a
second regression model (middle). Ordering genes by chromosome position (right) shows a smoothed
version of the expression pattern in Fig. 3B. B) Gene-gene correlations across 6,-binned expression data
(100 bins) for the full scVI model (/eft), the replication-only model (middle), and the corrected model that is
the difference of the two expression matrices (right). C) Comparison of 0,,....q b€tWeen LB-grown E. coli
in Datasets D1 & D2 of genes classed as highly variable in both datasets (287 genes). Red indicates
replication-divergent genes (O eceq > 0.6). D) Expression across 100 bins averaged by 6. Expression is
z-scores derived from scVI (Full model, black) or predicted as a replication effect (Replication model, red).
The zero value for 6, is set as described in Materials & Methods. Genes that are adjacent and tandemly
arrayed are plotted together (usually genes in the same operon).

Cell cycle analysis reveals novel replication-divergent operons in S. aureus.

Having established our approach for the analysis of cell cycle transcriptional dynamics in E. coli,
we then applied this approach to the Gram-positive pathogen S. aureus. To ensure that cells
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were in balanced growth, we sampled S. aureus at a lower growth density than the previous
experiment (see Materials & Methods), and achieved a faster doubling time (f; = 24.4 min vs
30.1 min in the previous experiment, Fig. S7A & B).

As before, UMAP of position-averaged gene expression arranged cells into a wheel (Fig. 5B),
and progression around this wheel as indicated by 8, reflected movement of gene expression
from the origin to the terminus (Fig. 5C). Ordering genes by gene angle 8, (Fig. S7C) also
captured a relationship between 6, and distance from the origin (Fig. 5D). The gradient of this
relationship indicated overlap in rounds of replication (Fig. 5E), although less than E. coli with a
similar doubling time (LB, Fig. 3E), presumably because the much smaller genome (2.9 Mb
compared to 4.6 Mb in E. coli K-12) reduces the need for overlap in replication. In contrast,
another Gram-positive pathogen with an even smaller genome (2.1 Mb), Streptococcus
pneumoniae, did not exhibit multiple-fork replication under normal conditions (30). Thus, overall,
despite the large evolutionary distance between E. coli and S. aureus, our cell cycle analysis
revealed a global chromosome position-dependent pattern in both species suggesting that
these replication effects are widely conserved.

Correcting for the effects of replication to eliminate global chromosome position-dependent
correlations as we introduced for E. coli (Fig. S7D & E), we identified replication-divergent
genes. First, we examined the dnaA-containing operon, as well as the ribonucleotide reductase
(nrd) genes (Fig. 5F, reproduced in a second replicate in Fig. S8). Both showed similar
dynamics to E. coli, reflecting the shared demands of DNA replication. The nucleoid occlusion
factor noc, which in S. aureus regulates replication initiation (37), showed similar dynamics to
dnaA. In comparison to E. coli, however, fewer genes diverged from the replication pattern, with
only 23 identified as replication-divergent across two replicates (Fig. S7F). These included the
chaperone genes, groL and groES, and a series of genes within the regulon of the transcription
factor GbaA (37-34). GbaA is a transcriptional repressor responsive to reactive electrophilic
species that regulates two divergent operons that include itself, as well as several enzymes
involved in electrophile detoxification (Fig. 5G) (33, 34). Since the GbaA regulon is responsive
to similar electrophilic species to the nemRA operon identified as divergent in E. coli (Fig. 4D),
and genes within this regulon showed relatively large fluctuations in expression over the cell
cycle (5.2-fold peak-to-trough ratio, compared to a median 1.9-fold across all genes) (Fig. 5H,
Fig. S71), we further investigated whether this was driven by fluctuations in GbaA activity.

Performing PETRI-seq on a gbaA transposon insertion mutant, gbaA", we found that removal of
GbaA repression increased the expression of the left-directed operon (GbaA-L) 137-fold
compared to the wild-type JE2 strain (Fig. 51). No increase was seen in the right-directed operon
(GbaA-R), which contains gbaA itself, presumably due to disruption by the insertion. However,
GbaA-L genes fluctuated less in gbaA™ than the wild-type JE2 strain (1.6-fold compared to
3.2-fold on average), and followed the replication-expected pattern much more closely (Fig. 5J)
(mean 0,..qeq Values 0.68 and 0.33 for JE2 and gbaA-, respectively). In contrast, deletion of the
stress-responsive sigma factor sigB decreased absolute expression but did not impact the
divergent pattern (Fig. S7J & K). This suggests that GbaA activity fluctuates throughout the cell
cycle.
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Figure 5: Cell cycle analysis reveals distinct regulatory dynamics of replication, stress, and
virulence genes in S. aureus. A) Spearman correlations between scaled data averaged into 50 kb bins,
as for Fig. 1F but with cells at lower density. B) UMAP of S. aureus with gene expression averaged in 50
kb bins by chromosome position. Cells are colored by the cell angle 6, between UMAP dimensions
relative to the center of the projection. C) Heatmap of expression after averaging by 6. D) The
relationship between gene angle 6, (Fig. S7B) and origin distance in S. aureus. E) The expected pattern
of replication in S. aureus, as in Fig. 3E. F) Expression across 100 bins averaged by 6. comparing
observed and replication-predicted expression as in Fig. 4D. G) Structure of the GbaA regulon containing
divergent left and right operons. H) Percentage of total mRNA transcripts derived from UMI counts,
averaged in 20 bins by 6, for the left (GbaA-L) and right (GbaA-R) operons of the GbaA regulon. 1)
Percent transcripts for operon Gba-L displayed as in (H) but comparing JE2 and gbaA" strains. J)
Observed and replication-predicted expression for Gba-L as in (K) but comparing JE2 and gbaA- strains.
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Cell cycle analysis provides insight into response heterogeneity and growth rate
changes during antibiotic treatment.

The cell cycle fluctuation in transcript abundance described above creates population
heterogeneity among exponentially growing cells. This heterogeneity is a concern if it influences
bacterial responses to antibiotics (35, 36). To determine whether the cell cycle influences
antibiotic response, we treated exponentially-growing S. aureus (Fig. 6A) with a high dose (10
ug/ml) of vancomycin, inhibitor of cell wall synthesis (37). Vancomycin treatment produced a
rapid response, with 137 genes induced at least twofold after six minutes (Fig. 6B). As
expected, some of the most strongly-induced genes were in the vraR operon, which encodes
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the VraSR two-component system that is part of the cell wall damage response (38). However,
we also observed the strong induction of a group of contiguous genes involved in pyrimidine
biosynthesis (labeled pyr genes). We considered two possible scenarios of cell cycle
heterogeneity in treatment response: firstly, variation could be produced because higher gene
copy numbers allow greater induction; secondly, cell cycle state could influence the regulatory
response. Therefore, we examined the correlation between cell cycle expression dynamics
before and after treatment. In general, there was a positive correlation in cell cycle expression
pattern before and after treatment, suggesting that baseline cell cycle expression state informs
the magnitude of post-treatment expression (Fig. 6C & D). This may be because when a gene is
in a two-copy state, it can reach higher expression levels faster. In contrast, a few induced
genes, including argH, exhibited a negative correlation in cell cycle dynamics before and after
treatment (Fig. 6D). These perturbations may imply that the regulatory response is cell
cycle-dependent in this case. The argG-argH operon also showed particularly high cell cycle
variation after treatment, with a 4.6-fold peak-to-trough ratio, further suggesting differential
induction by cell cycle state (Fig. S9A).

Examining the vancomycin response over time, principal component analysis (PCA) recovered
the time order along principal component 1 (PC-1) (Fig. 6E). Gene set enrichment analysis
(GSEA) (39, 40) indicated that higher PC-1 scores were associated with induction of amino acid
biosynthesis genes and reduced oxidative phosphorylation, transcription, and translation genes
(Fig. S9F). This is consistent with induction of the stringent response, a growth-arrest response
associated with vancomycin tolerance in S. aureus and other Gram-positive pathogens (41—44).
To test whether PC-1 was correlated with slowed proliferation state, as expected from a
stringent response, we grouped cells into eight equally sized bins by PC-1 (Fig. 6F, Fig. S9C)
and calculated our “overlap fraction” metric of cell replication state (Fig. 3E) on each bin. There
was a gradual decline in this metric followed by a rapid shift in the final PC-1 bin (Fig. 6G).
Consistent with this, at the level of individual samples there was little perturbation in global gene
covariance patterns until 25 min (Fig. S9D & E), and at a population level growth rate
transitioned at ~15 min post treatment (Fig. 6A). During this response, pyr genes were strongly
induced at 6 min (Fig. 6B) before rapidly declining by 25 min (Fig. 6H). However, in a subset of
25 min-treated cells, PC-1 remained lower and pyr gene expression remained high (Fig. 6H),
indicating reduced responsiveness. Strikingly, these cells also displayed a reduced ratio of
mMRNA to rRNA (Fig. 61) than the more responsive cells at this time point or cells at earlier time
points. While most rRNA is packaged in ribosomes and relatively stable, mMRNA is unstable and
hence the mRNA to rRNA ratio serves as a metric for global transcriptional activity while
controlling for variation in the efficiency of cell permeabilization (which should affect all RNA
equally). Therefore, reduced progression into stringent responses-related growth arrest is
associated with reduced transcriptional activity. Overall, these results demonstrate that our
analysis framework can reveal both cell cycle heterogeneity in initial vancomycin responses, but
also analyze heterogeneity in growth arrest responses that may determine antibiotic survival.
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Figure 6: The S. aureus response to vancomycin exhibits initial cell cycle dependence and
heterogeneous shifts in proliferation state. A) Growth response to vancomycin. Sampling points for
PETRI-seq are indicated by arrows. B) Volcano plot of log, fold change against -log,, P-values
(Mann-Whitney-U test with Benjamini-Hochberg adjustment) of 6 min vancomycin compared to untreated
cells. P-values >300 are set to 300. C) Comparing log, fold change and correlation of cell cycle
expression before and after 6 min vancomycin treatment. Dashed lines indicate genes with positive
correlations and >threefold induction. D) Expression before and after 6 min vancomycin, comparing
observed and replication-predicted expression as in Fig. 4D. E) PCA on cells at all time points. Annotated
arrows indicate significant KEGG pathways (45, 46) by GSEA based on the sign of normalized
enrichment score (Fig. S9F). F) Sample distribution across eight bins by PC-1. Colors are as in (E). G)
Overlap fraction for each PC-1 bin. H & 1) PCA split by sample showing log-expression of the pyr genes
(H) and the ratio between total mMRNA and rRNA counts (I). mRNA/rRNA ratios are higher than expected
but may reflect greater accessibility of mMRNA to in situ reverse transcription in fixed cells (70).

Discussion

Transcriptome technologies have greatly contributed to our understanding of bacterial gene
regulation (47, 48), but measurement averaged across bulk populations has obscured their true
transcriptional dynamics. Here, we demonstrate that DNA replication is a major driver of
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expression heterogeneity in bacteria at the level of individual cells. While gene copy number
effects on expression have been noted for individual genes (49-52) and have been theorized to
influence global expression heterogeneity (563), we demonstrate for the first time a global
influence of replication on gene expression. Our scRNA-seq analysis not only allowed us to
model cell cycle expression in unsynchronized populations, but also to consider the cell cycle
as a continuous process, revealing transcriptional dynamics in unprecedented resolution. The
view that emerges from the model is that replication leads to a continually shifting transcriptome.
In part, this results from the generally short half-life of bacterial mMRNAs (54), which render RNA
abundance highly sensitive to transcription rate due to copy number changes. However, there
are likely myriad other factors influencing these dynamics, including competition for RNA
polymerase (565) and the direct influence of DNA replication on local promoter environments (56,
57). Building on our modeling approach may vyield great insights into the factors influencing
these processes.

How does the global replication effect on the transcriptome influence cell physiology?
Conservation of position on the origin-terminus axis has been noted for some genes (58), but
the precise replication pattern depends on growth rate (59) so the relationship between cell
cycle function and evolutionary selection pressures on chromosomal position is unclear.
Nevertheless, specific instances of phenotypic effects of copy number-mediated expression
regulation have been noted, with relevance to sporulation, competence, and virulence (30,
60-62). These considerations suggest that further exploration of the relationship between
chromosomal function and cell cycle function will lead to more insight into bacterial cell

physiology.

In contrast, only a minority of genes show strong evidence of dynamics that diverge from the
replication effect. While bulk studies have reported ~15-20% of genes exhibiting cell cycle
variation (1, 3, 22), our work suggests that many of these genes may fluctuate due to DNA
replication effects, or in the case of C. crescentus (1, 3), reflect unique requirements of its
asymmetric division process. Our observations support the notion that cell cycle regulation of
most cytoplasmic processes (e.g. translation, metabolism) is unnecessary if the cytoplasm is
synthesized at a constant, exponential rate (59). DNA replication, however, undergoes discrete
changes of rate (74). Timing of replication initiation is influenced by accumulation of DnaA,
which is autoregulated at the level of transcription in E. coli (63—65). Similarly, the concentration
of dNTPs in the cell must be carefully controlled by regulation of ribonucleotide reductase
activity, with lack or excess resulting in disrupted replication or increased mutation, respectively
(66, 67). Increased demand due to initiation of a new round of replication induces nrd gene
transcription, through regulators including NrdR (68—70). The striking conservation of dnaA and
nrd dynamics in E. coli and S. aureus reflect the shared physiological demands of replication.

E. coli, a Gram negative rod-shaped bacterium, regulates the transcription of cell wall and outer
membrane synthesis and cell division genes (such as ftsZ, reported previously (71, 72)). The
rate of lipid synthesis is discontinuous during elongation and septation in the E. coli cell cycle
(73) and cell membrane and wall biosynthesis must be tightly coordinated (74). Our data
suggest that transcriptional regulation could play a role in this process in E. coli. By contrast, S.
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aureus, which lacks an outer membrane, shows less evidence of regulation of cell surface
biogenesis genes. E. coli (but not S. aureus) also dynamically regulates several energy
biogenesis and electron transport chain transcripts. Membrane potential is important for cell
division protein localization (75), while changes in metabolic flux could place changing demands
on cellular bioenergetic processes. In line with this, in both E. coli and S. aureus, we observed
large fluctuations in reactive electrophile-responsive regulons (NemR and GbaA regulons,
respectively). In the case of S. aureus, this was driven by fluctuating GbaA activity since
deletion of this repressor caused genes to revert to the replication-expected pattern, while
deletion of other regulators did not. The physiological ligands to which GbaA is responding are
not clear but may include reactive electrophiles such as aldehydes and quinones that emerge
during metabolic stress (33, 34). Treatment of cells with N-acetylcysteine, which scavenges
some reactive electrophilic species (76), was not able to perturb the pattern (Fig. S7L).
However, endogenous levels of methylglyoxal (an inducer of the GbaA regulon (33, 34)) can
influence cell length in B. subtilis (77), while in C. crescentus cell cycle changes in metabolism
and redox potential influence cell division and chromosome segregation (78, 79). Therefore,
further investigation into the fluctuations driving GbaA and NemR activity may illuminate new
ways in which bacterial metabolism connects to cell cycle progression.

While the cell cycle is fundamental to microbial physiology, it is also a source of heterogeneity
that may influence how bacteria respond to external threats. Hence we applied our analysis
framework to cells treated with vancomycin, the antibiotic of choice for methicillin-resistant S.
aureus. We observed rapid transcriptional changes within six minutes, including a specific cell
wall damage response. In general, cell cycle expression patterns of induced genes were
correlated before and after treatment, implying that the mode of induction of these genes is cell
cycle-independent but that cells with higher baseline expression reach higher levels of induction
faster. For other genes, such as argH, induction led to a different cell cycle expression pattern,
implying that cell cycle state (e.g. whether a cell is undergoing septum formation or division)
influenced response signaling. Over time, a stringent-like response emerged that correlated with
a shift to a reduced growth state, as inferred from the replication pattern. Strikingly, not all cells
undergo this transition, and failure to do so was associated with reduced total mMRNA content.
While future work is required, this may imply that cells that do not reduce their growth in time
undergo dysfunction that disrupts transcriptional activity. Since vancomycin tolerance in clinical
isolates is prevalent and associated with treatment failure (37, 80), understanding what drives
these response kinetics is crucial. Overall, our framework provides multiple new ways of
understanding heterogeneity in antibiotic responses.

Our work raises new questions about the regulators of cell cycle dynamics and their potential
consequences for cell cycle function and heterogeneity. Moreover, while our modeling approach
assumes a “steady state” of growth at a constant rate in a homogeneous environment, we
believe that this approach can be generalized to many bacterial species and may be extended
to more complex scenarios, such as changing environmental conditions (as in the case of
vancomycin treatment here), as well as to identify and separate populations with mixed
replication rates (with potential consequences for antibiotic tolerance (87)). Finally, scRNA-seq
in bacteria has not yet widely been applied. While it may seem to be impeded by the extremely
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low mRNA content per cell, our work conclusively demonstrates that underlying this noise are
biological processes that can be quantitatively modeled and understood. Therefore, while new
approaches may be required, we believe that the emergence of scRNA-seq for bacteria will
illuminate bacterial physiology in unprecedented detail.

Materials and Methods

Bacterial strains and growth conditions

Strains used are listed in Table S1. All E. coli strains (a gift from Dr. Christian Rudolph) were
routinely grown in modified Luria Broth (LB) (1% tryptone (Sigma-Aldrich), 0.5% yeast extract
(Sigma-Aldrich), 0.05% NaCl, pH adjusted to 7.4 (19)). For growth in minimal media, an M9
base (1X M9 minimal salts (Gibco), 2 mM MgSQO,, 0.2 mM CacCl,) was supplemented with 0.4%
glucose (M9 + Glucose) or with both 0.4% glucose and 0.2% acid casein peptone (Acros
Organics) (M9 + Glucose + AA). All S. aureus strains were routinely grown in Bacto tryptic soy
broth (TSB) (BD Biosciences). The gbaA transposon mutant was provided by the Network on
Antimicrobial Resistance in Staphylococcus aureus (cat. # NR-46898) and the AsigB mutant
was a gift from Dr. Alexander Horswill).

Growth curves

Strains were grown overnight in LB (E. coli) or TSB (S. aureus) at 37°C, shaking at 225 rpm. For
initial experiments with S. aureus (Datasets D3 & D4), strains were diluted to an Agy, value of
0.05 in prewarmed TSB, after which Agy, was measured at the times specified. Agy, Was
measured on a BioMate 3S spectrophotometer (Thermo Scientific). For experiments with S.
aureus in balanced growth (Datasets D5-D7), overnight cultures were diluted in TSB first to
0.005, then after 3 hr diluted again to 0.005 before measuring Agq at the time intervals
specified. For E. coli growth curves, strains were incubated for 2 hr in the desired medium then
diluted again in the same prewarmed medium to an Ag value of 0.005, after which Agy was
measured at the time intervals specified. Where E. coli cells were diluted into a different
medium, cells were washed once with PBS prior to dilution. To measure growth rate, a linear
model log,(Agw0) ~ MT + ¢ was calculated for the linear portion of this relationship (where T is the
time in minutes) using the LINEST function in Microsoft Excel and the doubling time in minutes
t, was calculated as 1/m.

Vancomycin treatment

For experiments measuring responses to vancomycin, cells were brought into balanced growth
as above by diluting overnight cultures to 0.005, diluting again to 0.005 after 3 hrs, and then
incubating for a further 90 min (for an Ay, of ~0.1). Cells were then exposed to 10 pg/ml
vancomycin (~5-10X minimum inhibitory concentration (82, 83)). For growth curves, Agy, was
measured every 5 min for 50 min. For PETRI-seq, cells were taken at 6, 12, and 25 min post
treatment and rapidly chilled with a dry ice-ethanol bath to <10°C before transferring to a new,
pre-chilled tube on ice and centrifugation at 3,220 x g, 5 min, 4°C. This was to ensure that the
transcriptome at these fast time points did not continue to change during harvesting.

PETRI-seq analysis
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Cells were grown as described for the growth curves except that after specific time intervals (for
S. aureus, 2 hr 20 min in initial experiments, 1 hr 30 min in balanced growth experiments; for E.
coli, 2 hr, 3 hr, and 7 hr in LB, M9 + Glucose + AA, and M9 + Glucose, respectively, when
growth rates appeared constant (Fig. 2C, Fig. S3A)) cells were harvested by centrifugation and
resuspension in 4% formaldehyde in PBS. For S. aureus initial experiments, centrifugation was
at 10,000 x g, 1 min at room temperature and for E. coli and balanced growth S. aureus
experiments, centrifugation was at 3,220 x g, 5 min, 4°C. PETRI-seq was carried out as
described previously (710) with the following modifications. Initial fixing, permeabilization, and
DNase treatment were carried out as described but with cell wall permeabilization using 100
Mg/ml lysostaphin (Sigma-Aldrich) for S. aureus and 100 pg/ml lysozyme (Thermo Scientific) for
E. coli. For Dataset D4, samples were split into processing with or without DNase treatment and
subsequent wash steps, to test whether this would affect correlation patterns (suggesting
contaminating genomic DNA could play a role). However, no difference was observed in the
presence or absence of DNase treatment, although UMI/barcode was slightly higher after
DNase treatment (Table S1). For barcoding, the number of cells included was reduced from 3 x
107 to a maximum of 1 x 107, since preliminary experiments indicated lower input at this stage
was associated with a higher UMI/barcode for S. aureus. Tagmentation was performed using
the EZ-Tn5 transposase (Lucigen) as described in the latest version of the PETRI-seq protocol

; .c2b2.columbia, PETRI- tes April2021/PETRI_Seq_Protocol.pdf)
. Briefly, the transposase was loaded by incubating EZ-Tn5 with pre-annealed oligonucleotides
(/5Phos/CTGTCTCTTATACACATCT and GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG)
at 4 uM and 40% glycerol at room temperature for 30 min. Tagmentation was then performed
incubating samples with loaded EZ-Tn5 (at a final further dilution of 400x) and 2x Tagment DNA
buffer (either using the Nextera 2x Tagment DNA (TD) buffer or 20 mM
Tris(hydroxymethyl)aminomethane; 10 mM MgCl,; 20% (vol/vol) dimethylformamide, pH
adjusted to 7.6 with acetic acid (84)). After incubating for 5 min at 55°C and decreasing the
temperature to 10°C, either Nextera NT buffer (lllumina) or 0.2% sodium dodecyl sulfate was
added, allowing neutralization to proceed for 5 min. Final amplification was performed with Q5
polymerase (New England Biolabs) using the NEBNext Universal i5 primer (New England
Biolabs) and the N7 indices from the Nextera XT Index Kit v2 Set A (lllumina) as also described
in the updated PETRI-seq protocol. Sequencing was performed on an lllumina NextSeq 500 to
obtain 58 x 26 base paired-end reads. For each barcoding experiment, multiple libraries of
~20,000 cells were prepared and sequenced, and no batch effects were noted across libraries.

Pre-processing and scVI analysis

Initial demultiplexing of barcodes, alignment, and feature quantification was performed using the
analysis pipeline described in (10) except that feature quantification was performed at the gene
level rather than operon level. Reference sequences and annotations were obtained from
Genbank (https://www.ncbi.nlm.nih.gov/genbank/). E. coli reads were aligned to the K-12
MG1655 reference assembly (GCA_000005845.2) and S. aureus to the USA300_FPR3757
reference assembly (GCF_000013465.1). To quantify rRNA, all rRNA genes were treated as a
single feature (since high sequence similarity impedes unique assignment of rRNA reads to
individual genes). After initial processing, counts by cell barcode were pooled across different
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libraries and initial filtering was performed using Scanpy v1.7.1 (85). Barcodes with fewer than
15 UMI (20 for Dataset D3, D5-7) were removed, as well as any genes with fewer than 50 UMI
across all included barcodes (100 for Dataset D3). To generate the denoised representation of
the data, scVI v0.9.0 (13) was applied with the following hyperparameters, chosen through grid
search to distinguish between closely related S. aureus strains in a pilot dataset: two hidden
layers, 64 nodes per layer, five latent variables, a dropout rate of 0.1, and with a zero-inflated
negative binomial gene likelihood (other hyperparameters maintained as defaults). Denoised
expression values based on the scVI model were obtained using the scVI function
“get_normalized_expression”.

Cell cycle analysis

Cells were assigned to cell cycle phases by calculating the angle 6, relative to the origin
between x and y coordinates in a two-dimensional UMAP embedding of the data as tan™(x / y),
similar to the ZAVIT method our lab has described previously (86, 87). Embeddings were
computed by averaging z-scores derived from denoised expression values within bins according
to chromosomal location (50-400 kb bins, depending on the dataset), and then performing
two-dimensional UMAP analysis using the umap-learn v0.5.1 library in Python
(https://umap-learn.readthedocs.io/en/latest/) with the ‘correlation’ distance metric. These
embeddings were then mean-centered (Fig. 3A & 5A). To get the expression by cell angle
matrix used in Fig. 3B, gene expression was then averaged within 100 equally spaced bins of 6,
to produce a cell angle-binned expression matrix. To order genes based on their cell cycle
expression, gene angle, 6,, was calculated as follows. PCA was performed on the transpose of
the cell angle-binned expression matrix and 6, was calculated as the angle between PCs 1 and
2 relative to the origin. Together, 6, and 6, are metrics for ordering of cells and genes,
respectively, within the model of cell cycle gene expression described here.

Modeling the gene angle-origin distance relationship

While there was a strong relationship between origin distance D and gene angle 6,, modeling
this relationship is challenged by the fact that the relationship is “wrapped” with an unknown
periodicity with respect to D (Fig. 3D & 5C) (i.e. after a period of increased 6, with D, 6, starts
again at zero). To fit this relationship, a custom Bayesian regression analysis was developed
according to the following model partially adapted from (88), with both 6, and D standardized to
the range -1 to Tm:

6, ~ von Mises(4, x)
cos(A) = Blcos(yD) — stin(yD)
sin(4) = Bzcos(yD) + Blsin(yD)

Where:
log(x) ~ Gaussian(0, 1)
[31 ~ Gaussian(0, 0.5)

BZ ~ Gaussian(0, 0.5)
log(y) ~ Gaussian(0, 0.5)
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The von Mises probability distribution is a circular probability distribution here parameterized by
A, the predicted mean angle, and k, the concentration parameter (higher k implies greater
concentration of the distribution around A). The parameter y can be interpreted as the gradient
of D with respect to 8, after standardizing both variables to to the range -1 to 1. To give the
gradient in °/Mb (as in Fig. 3D), this value is multiplied by 360 divided by origin-terminus
distance in Mb. The inverse of y, 1/y, is the gradient of 6, with respect to D (after range
standardization) and therefore is the fraction of the origin-terminus distance covered within a
single span of 6,. Therefore, 1 - 1/y is the fraction of D during which the next round of replication
has already initiated, referred to as the “overlap fraction” in Fig. 3E & 5D. Here, y is constrained
to be positive by the lognormal prior distribution (Fig. S10), which is appropriate since the
ordering of angles 6, are reversed (i.e. 360 - 6, when 6, is in degrees) if during analysis this
relationship shows a negative trend. This can occur because the directionality of PCs used to
calculate 6, is arbitrary. Posterior distributions for the parameters were obtained by Hamiltonian
Monte-Carlo sampling using Rstan v2.21.3 (89). Fitted values for 6, based on D (6,.,.,) Were
calculated by determining 6, for all sampled parameter values and then calculating the mean
value of 6,4 as tan™'(mean(sin(6;.es)) / Mean(cos(6y.preq)))-

Modeling the cell angle-gene angle relationship

To predict expression based on cell angle 6, and gene angle 6,, a polynomial regression model
was constructed using scikit-learn v0.24.1(90). Specifically, both angles were converted to
radians and then transformed into cos(6,), sin(6,), cos(8,), and sin(8,). All combinations and
interactions up to a fourth degree polynomial were constructed using the scikit-learn
PolynomialFeatures function. These features were then used to fit a Ridge regression model (a
= 10). The model was trained on scVI expression z scores averaged first in 100 bins by 6, then
in 100 bins by 6, (i.e. the expression matrix used for Fig. 3F). An alternative approach
considered was a non-linear approach using the scikit-learn implementation of kernel ridge
regression with kernel “rbf’. However, the fourth degree polynomial model performed similarly
and was computationally far more efficient so was chosen (increasing the polynomial degree
further made little difference to performance).

Predicting expression dynamics based on DNA replication alone

To derive a prediction of cell cycle gene expression dynamics based on the expected effect of
replication alone, the two regression models above were combined to yield the pipeline in Fig.
4A. Firstly, the gene angle-origin distance model was used to predict the expected value 8,4
from origin distance D. Next, cell cycle expression was predicted using the cell angle-gene
angle regression model using 6,.,., values. For cell angle 6., values used were the average 6,
values of cells binned into 100 equally spaced bins by 6,. This gives a replication-predicted
gene expression matrix of 100 bins x number of genes. The success of this model fit was
evaluated based on the correlation with the 6,-binned expression z-scores derived from scVI
(Fig. S5C & S7D), as well as the loss of global chromosome position-dependent gene-gene
correlations upon correction of scVI expression with replication-predicted expression (Fig. 4B,
Fig. S7E). Additionally, we used this modeling approach to set the zero angle for gene
expression plots. Using this approach, we predicted the gene expression profile by 6, for an
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imaginary gene at D = 0 (i.e. at the origin of replication). We then determined the value of 6,
giving the minimum predicted expression, reasoning that if increased expression in this model is
responsive to a doubling of copy number, the doubling event should occur at the expression
minimum. Therefore, we determined this angle, 6, to be the most likely value of 6, at which
replication initiation occurs, rotating the angles by the operation (6, - 6,) mod 360 to set this
point as 0°. While we have not experimentally verified that 6, represents the true point of
replication initiation, nevertheless it is a useful and theoretically principled point by which to
standardize and compare different datasets, where otherwise the point of 0° is arbitrary.

Identifying replication-divergent genes

We identified replication-divergent genes based on two criteria: absolute variability by cell angle
6, and divergence from the replication model. First, we identified highly variable genes as
follows (based on the method implemented in Seurat v3 (97)). We normalized raw counts for
library size (so that the total sum of UMI for each barcode was the median UMI/barcode), then
to reduce sparsity while retaining cycle information, we averaged counts across 20 bins by 6.,.
Next, we log2-transformed the data (eliminating any genes with zero values after binning to
allow log-transformation). We observed a negative overall relationship between the mean and
variance of genes in log-transformed data (Fig. S5D), to which we fitted a regression line with
locally weighted scatterplot smoothing (LOWESS) using the Python package statsmodels
v0.12.2 (92). We used this fit to develop a mean-dependent variance threshold. In all cases,
genes were considered highly variable if they had a ratio of observed to LOWESS-predicted
variance > 1.3 as well as a log, mean normalized expression > -10. These thresholds typically
classified ~25% of genes as highly variable. Next, to quantify divergence from the replication
model, we subtracted the replication-predicted expression from the scVI-derived expression
z-scores (both averaged in 100 bins by 6,) to “correct” for the effect of replication, and then
calculated the standard deviation of this replication-corrected value, Oy ectea- A high Ocorrecied
indicates that the dynamics behave differently from that expected based on replication alone.
Thresholds for 0,4 (0.6 for E. coli, 0.5 for S. aureus) were determined manually based on
inspection of the relationship between 0,,,...cq across two datasets and choosing a value above
which the correlation between datasets was stronger (Fig. S5E & Fig. S7G) (below the
threshold, lack of reproducibility of 0,...eq SUggests divergences are small and dominated by
noise). To calculate peak/trough fold changes in expression, normalized gene expression
derived from scVI was averaged into 100 bins by 6, and then the ratio between the fourth
highest and fourth lowest values were calculated (this was chosen instead of
maximum/minimum values to increase robustness to noise).

Simulating the effect of DNA replication on gene expression

We predicted the effect of DNA copy number on gene-gene correlations using a simulation
written in Python (see Fig. S2) as follows. Cells were represented by genomes with 200 genes,
each represented as a single integer and divided into individual replication units. In the simplest
case, genomes were divided into two units of 100 genes (i.e. the two “arms” of the
chromosome). In each cell, replication initiation events were simulated at intervals determined
by a Poisson distribution with expected value u. After an initiation event, replication proceeds in
stepwise fashion along the length of each replication unit, doubling the copy number at each
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point until the end of that replication unit has been reached. We also simulate “cell division”
events in which all copy numbers are halved. These are timed independently from replication
initiation but in the same way (at Poisson-distributed intervals with rate p), with an additional
offset from the first replication initiation event. In practice, we found that this offset did not affect
correlations, since all genes are scaled equally. We used an initial offset of 150 steps (i.e. 1.5x
the time to replicate a 100 gene replication unit, equivalent to the 40 min C-period + 20 min
D-period originally proposed for E. coli B/r (14)). For each simulation, we generated 1,000 cells.
Cells were initiated one at a time to yield an unsynchronized population, then the simulation was
run for a further 1,000 steps with the whole population. We then normalized expression by total
counts and calculated Spearman correlations across all genes. In order to simulate specific
doubling times, the rate p was calculated as p = (n X td) /t, where n is the number of genes

in the longest replication unit (here, 100 genes), t, is the doubling time, and {, is the C-period
(here a value of 42 min was chosen for E. coli MG1655 based on (15)). The {,/t, ratio represents
the fraction of one round of chromosomal replication that can take place in one cell cycle.
Finally, for simulation of cells with additional origins of replication, genes were split into
replication units according to the following assumptions: a) all origins initiate replication
simultaneously; b) replication stops at the termination site ter, which is halfway along the
chromosome; c) genes are replicated by the nearest origin (unless the replication fork must
pass through ter to reach that gene).

Bulk RNA-seq analysis

For the analysis of bulk RNA-seq from (2) (Fig. S3D), we accessed data from the Gene
Expression Omnibus (GEO, https://www.ncbi.nIm.nih.gov/geo/) under accession ID GSE46915.
Counts were size factor-normalized with DESeqg2 v1.32.0 (93), then data were standardized to
z-scores and averaged into 100 kb bins by chromosomal position. Spearman correlations of
binned values across all time points and replicates are shown.

Acknowledgements

We thank Yitzhak Pilpel, Jonas Schluter, Ido Golding, and Timothée Lionnet for critical
discussions on the project and the manuscript, and Saeed Tavazoie, Sydney Blattman, and
Wenyan Jiang for initial advice on implementing PETRI-seq. We thank Christian Rudolph and
his lab for providing the E. coli strains. We also further thank members of the Yanai lab for
advice and suggestions. This work was funded by grants R21AI1169350 (1Y) R0O1AI1143290 (IY),
RO1AI137336 (BS, VJT, and 1Y) from the NIH.

References

1. M. T. Laub, H. H. McAdams, T. Feldblyum, C. M. Fraser, L. Shapiro, Global analysis of the
genetic network controlling a bacterial cell cycle. Science. 290, 2144—-2148 (2000).

2. G. Fang, K. D. Passalacqua, J. Hocking, P. M. Llopis, M. Gerstein, N. H. Bergman, C.
Jacobs-Wagner, Transcriptomic and phylogenetic analysis of a bacterial cell cycle reveals
strong associations between gene co-expression and evolution. BMC Genomics. 14, 450
(2013).

21


https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3. B. Zhou, J. M. Schrader, V. S. Kalogeraki, E. Abeliuk, C. B. Dinh, J. Q. Pham, Z. Z. Cui, D.
L. Dill, H. H. McAdams, L. Shapiro, The global regulatory architecture of transcription during
the Caulobacter cell cycle. PLoS Genet. 11, e1004831 (2015).

4. N.J.De Nisco, R. P. Abo, C. M. Wu, J. Penterman, G. C. Walker, Global analysis of cell
cycle gene expression of the legume symbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci.
U. S. A 111, 3217-3224 (2014).

5. A. C.Bandekar, S. Subedi, T. R. loerger, C. M. Sassetti, Cell-Cycle-Associated Expression
Patterns Predict Gene Function in Mycobacteria. Curr. Biol. 30, 3961-3971.e6 (2020).

6. S. Cooper, The synchronization manifesto: a critique of whole-culture synchronization.
FEBS J. 286, 4650—4656 (2019).

7. B. Xia, . Yanai, A periodic table of cell types. Development. 146 (2019),
doi:10.1242/dev.169854.

8. R. Nayak, Y. Hasija, A hitchhiker’s guide to single-cell transcriptomics and data analysis
pipelines. Genomics. 113, 606—619 (2021).

9. E. Papalexi, R. Satija, Single-cell RNA sequencing to explore immune cell heterogeneity.
Nat. Rev. Immunol. 18, 35—45 (2018).

10. S. B. Blattman, W. Jiang, P. Oikonomou, S. Tavazoie, Prokaryotic single-cell RNA
sequencing by in situ combinatorial indexing. Nat Microbiol. 5, 1192—-1201 (2020).

11. A. Kuchina, L. M. Brettner, L. Paleologu, C. M. Roco, A. B. Rosenberg, A. Carignano, R.
Kibler, M. Hirano, R. W. DePaolo, G. Seelig, Microbial single-cell RNA sequencing by
split-pool barcoding. Science. 371 (2021), doi:10.1126/science.aba5257.

12. F. Imdahl, E. Vafadarnejad, C. Homberger, A.-E. Saliba, J. Vogel, Single-cell
RNA-sequencing reports growth-condition-specific global transcriptomes of individual
bacteria. Nat Microbiol. 5, 1202—-1206 (2020).

13. R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, N. Yosef, Deep generative modeling for
single-cell transcriptomics. Nat. Methods. 15, 1053—-1058 (2018).

14. S. Cooper, C. E. Helmstetter, Chromosome replication and the division cycle of Escherichia
coli B/r. J. Mol. Biol. 31, 519-540 (1968).

15. O. Michelsen, M. J. Teixeira de Mattos, P. R. Jensen, F. G. Hansen, Precise determinations
of C and D periods by flow cytometry in Escherichia coli K-12 and B/r. Microbiology. 149,
1001-1010 (2003).

16. R. Allman, T. Schjerven, E. Boye, Cell cycle parameters of Escherichia coli K-12. J.
Bacteriol. 173, 7970-7974 (1991).

17. M. Schaechter, O. Maaloe, N. O. Kjeldgaard, Dependency on medium and temperature of
cell size and chemical composition during balanced grown of Salmonella typhimurium. J.
Gen. Microbiol. 19, 592606 (1958).

18. X. Wang, C. Lesterlin, R. Reyes-Lamothe, G. Ball, D. J. Sherratt, Replication and
segregation of an Escherichia coli chromosome with two replication origins. Proc. Natl.

22


http://dx.doi.org/10.1242/dev.169854
http://dx.doi.org/10.1126/science.aba5257
https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Acad. Sci. U. S. A. 108, E243-50 (2011).

19. J. U. Dimude, M. Stein, E. E. Andrzejewska, M. S. Khalifa, A. Gajdosova, R. Retkute, O.
Skovgaard, C. J. Rudolph, Origins Left, Right, and Centre: Increasing the Number of
Initiation Sites in the Chromosome. Genes . 9 (2018), doi:10.3390/genes9080376.

20. D. Ivanova, T. Taylor, S. L. Smith, J. U. Dimude, A. L. Upton, M. M. Mehrjouy, O.
Skovgaard, D. J. Sherratt, R. Retkute, C. J. Rudolph, Shaping the landscape of the
Escherichia coli chromosome: replication-transcription encounters in cells with an ectopic
replication origin. Nucleic Acids Res. 43, 78657877 (2015).

21. P. W. Theisen, J. E. Grimwade, A. C. Leonard, J. A. Bogan, C. E. Helmstetter, Correlation
of gene transcription with the time of initiation of chromosome replication in Escherichia coli.
Mol. Microbiol. 10, 575-584 (1993).

22. P. L. Echtenkamp, D. B. Wilson, M. L. Shuler, Cell cycle progression in Escherichia coli B/r
affects transcription of certain genes: Implications for synthetic genome design. Biotechnol.
Bioeng. 102, 902-909 (2009).

23. P. Zhou, J. A. Bogan, K. Welch, S. R. Pickett, H. J. Wang, A. Zaritsky, C. E. Helmstetter,
Gene transcription and chromosome replication in Escherichia coli. J. Bacteriol. 179,
163—-169 (1997).

24. Y. Hirota, A. Ryter, F. Jacob, Thermosensitive mutants of E. coli affected in the processes of
DNA synthesis and cellular division. Cold Spring Harb. Symp. Quant. Biol. 33, 677-693
(1968).

25. M. L. Gefter, Y. Hirota, T. Kornberg, J. A. Wechsler, C. Barnoux, Analysis of DNA
polymerases Il and 3 in mutants of Escherichia coli thermosensitive for DNA synthesis.
Proc. Natl. Acad. Sci. U. S. A. 68, 3150-3153 (1971).

26. L. Sun, J. A. Fuchs, Escherichia coli ribonucleotide reductase expression is cell cycle
regulated. Mol. Biol. Cell. 3, 1095-1105 (1992).

27. E. Ozyamak, C. de Alimeida, A. P. S. de Moura, S. Miller, I. R. Booth, Integrated stress
response of Escherichia coli to methylglyoxal: transcriptional readthrough from the nemRA
operon enhances protection through increased expression of glyoxalase |. Mol. Microbiol.
88, 936-950 (2013).

28. M. J. Gray, W.-Y. Wholey, B. W. Parker, M. Kim, U. Jakob, NemR is a bleach-sensing
transcription factor. J. Biol. Chem. 288, 13789-13798 (2013).

29. C. Lee, J. Shin, C. Park, Novel regulatory system nemRA-gloA for electrophile reduction in
Escherichia coli K-12. Mol. Microbiol. 88, 395-412 (2013).

30. J. Slager, M. Kjos, L. Attaiech, J.-W. Veening, Antibiotic-induced replication stress triggers
bacterial competence by increasing gene dosage near the origin. Cell. 157, 395-406
(2014).

31. T. Pang, X. Wang, H. C. Lim, T. G. Bernhardt, D. Z. Rudner, The nucleoid occlusion factor

Noc controls DNA replication initiation in Staphylococcus aureus. PLoS Genet. 13,
€1006908 (2017).

23


http://dx.doi.org/10.3390/genes9080376
https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

32. Y. You, T. Xue, L. Cao, L. Zhao, H. Sun, B. Sun, Staphylococcus aureus glucose-induced
biofilm accessory proteins, GbaAB, influence biofilm formation in a PIA-dependent manner.
Int. J. Med. Microbiol. 304, 603—-612 (2014).

33. A. Ray, K. A. Edmonds, L. D. Palmer, E. P. Skaar, D. P. Giedroc, Glucose-Induced Biofilm
Accessory Protein A (GbaA) Is a Monothiol-Dependent Electrophile Sensor. Biochemistry.
59, 2882-2895 (2020).

34. V. Van Loi, T. Busche, V. N. Fritsch, C. Weise, M. C. H. Gruhlke, A. J. Slusarenko, J.
Kalinowski, H. Antelmann, The two-Cys-type TetR repressor GbaA confers resistance
under disulfide and electrophile stress in Staphylococcus aureus. Free Radic. Biol. Med.
177, 120-131 (2021).

35. W. A. Weigel, P. Dersch, Phenotypic heterogeneity: a bacterial virulence strategy. Microbes
Infect. 20, 570-577 (2018).

36. M. Huemer, S. Mairpady Shambat, J. Bergada-Pijuan, S. Séderholm, M. Boumasmoud, C.
Vulin, A. Gomez-Mejia, M. Antelo Varela, V. Tripathi, S. Gotschi, E. Marques Maggio, B.
Hasse, S. D. Brugger, D. Bumann, R. A. Schuepbach, A. S. Zinkernagel, Molecular
reprogramming and phenotype switching in lead to high antibiotic persistence and affect
therapy success. Proc. Natl. Acad. Sci. U. S. A. 118 (2021), doi:10.1073/pnas.2014920118.

37. J. C. Barna, D. H. Williams, The structure and mode of action of glycopeptide antibiotics of
the vancomycin group. Annu. Rev. Microbiol. 38, 339-357 (1984).

38. A. Belcheva, D. Golemi-Kotra, A close-up view of the VraSR two-component system. A
mediator of Staphylococcus aureus response to cell wall damage. J. Biol. Chem. 283,
12354—12364 (2008).

39. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A.
Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. U. S. A. 102, 15545-15550 (2005).

40. V. K. Mootha, C. M. Lindgren, K.-F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P.
Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M. J. Daly, N. Patterson, J.
P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D.
Altshuler, L. C. Groop, PGC-1alpha-responsive genes involved in oxidative phosphorylation
are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273 (2003).

41. M. Moscoso, M. Domenech, E. Garcia, Vancomycin tolerance in Gram-positive cocci.
Environ. Microbiol. Rep. 3, 640-650 (2011).

42. T. Geiger, B. Kastle, F. L. Gratani, C. Goerke, C. Wolz, Two small (p)ppGpp synthases in
Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J.
Bacteriol. 196, 894-902 (2014).

43. M. Singh, M. Matsuo, T. Sasaki, T. Hishinuma, N. Yamamoto, Y. Morimoto, T. Kirikae, K.
Hiramatsu, RNA Sequencing Identifies a Common Physiology in Vancomycin- and
Ciprofloxacin-Tolerant Staphylococcus aureus Induced by Mutations. Antimicrob. Agents
Chemother. 64 (2020), doi:10.1128/AAC.00827-20.

24


http://dx.doi.org/10.1073/pnas.2014920118
http://dx.doi.org/10.1128/AAC.00827-20
https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

44. J. Abranches, A. R. Martinez, J. K. Kajfasz, V. Chavez, D. A. Garsin, J. A. Lemos, The
molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and
virulence in Enterococcus faecalis. J. Bacteriol. 191, 2248-2256 (2009).

45. M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
Res. 28, 27-30 (2000).

46. M. Kanehisa, M. Furumichi, Y. Sato, M. Ishiguro-Watanabe, M. Tanabe, KEGG: integrating
viruses and cellular organisms. Nucleic Acids Res. 49, D545-D551 (2021).

47. R. Sorek, P. Cossart, Prokaryotic transcriptomics: a new view on regulation, physiology and
pathogenicity. Nat. Rev. Genet. 11, 9-16 (2010).

48. M. J. Filiatrault, Progress in prokaryotic transcriptomics. Curr. Opin. Microbiol. 14, 579-586
(2011).

49. M. G. Chandler, R. H. Pritchard, The effect of gene concentration and relative gene dosage
on gene output in Escherichia coli. Mol. Gen. Genet. 138, 127-141 (1975).

50. M. B. Schmid, J. R. Roth, Gene location affects expression level in Salmonella
typhimurium. J. Bacteriol. 169, 28722875 (1987).

51. C. Sousa, V. de Lorenzo, A. Cebolla, Modulation of gene expression through chromosomal
positioning in Escherichia coli. Microbiology. 143 ( Pt 6), 2071-2078 (1997).

52. E. N. Trip, J.-W. Veening, E. J. Stewart, J. Errington, D.-J. Scheffers, Balanced transcription
of cell division genes in Bacillus subtilis as revealed by single cell analysis. Environ.
Microbiol. 15, 3196-3209 (2013).

53. J. R. Peterson, J. A. Cole, J. Fei, T. Ha, Z. A. Luthey-Schulten, Effects of DNA replication
on mRNA noise. Proc. Natl. Acad. Sci. U. S. A. 112, 15886—-15891 (2015).

54. D. W. Selinger, R. M. Saxena, K. J. Cheung, G. M. Church, C. Rosenow, Global RNA
half-life analysis in Escherichia coli reveals positional patterns of transcript degradation.
Genome Res. 13, 216-223 (2003).

55. D. J. Jin, C. Cagliero, Y. N. Zhou, Growth rate regulation in Escherichia coli. FEMS
Microbiol. Rev. 36, 269-287 (2012).

56. C. J. Dorman, M. J. Dorman, DNA supercoiling is a fundamental regulatory principle in the
control of bacterial gene expression. Biophys. Rev. 8, 89—-100 (2016).

57. C. St Germain, H. Zhao, J. H. Barlow, Transcription-Replication Collisions-A Series of
Unfortunate Events. Biomolecules. 11 (2021), doi:10.3390/biom11081249.

58. P. Sobetzko, A. Travers, G. Muskhelishvili, Gene order and chromosome dynamics
coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc. Natl.
Acad. Sci. U. S. A. 109, E42-50 (2012).

59. S. Cooper, "4 - Cytoplasm Synthesis during the Division Cycle" in Bacterial Growth and
Division, S. Cooper, Ed. (Academic Press, San Diego, 1991), pp. 63-93.

60. J. Slager, J.-W. Veening, Hard-Wired Control of Bacterial Processes by Chromosomal Gene

25


http://dx.doi.org/10.3390/biom11081249
https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

available under aCC-BY-NC-ND 4.0 International license.

Location. Trends Microbiol. 24, 788—800 (2016).

J. Narula, A. Kuchina, D.-Y. D. Lee, M. Fuijita, G. M. Suel, O. A. Igoshin, Chromosomal
Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication. Cell. 162,
328-337 (2015).

A. Soler-Bistué, J. A. Mondotte, M. J. Bland, M.-E. Val, M.-C. Saleh, D. Mazel, Genomic
location of the major ribosomal protein gene locus determines Vibrio cholerae global growth
and infectivity. PLoS Genet. 11, e1005156 (2015).

T. Atlung, E. S. Clausen, F. G. Hansen, Autoregulation of the dnaA gene of Escherichia coli
K12. Mol. Gen. Genet. 200, 442—450 (1985).

R. E. Braun, K. O’'Day, A. Wright, Autoregulation of the DNA replication gene dnaA in E. coli
K-12. Cell. 40, 159-169 (1985).

I. P. Menikpurage, K. Woo, P. E. Mera, Transcriptional Activity of the Bacterial Replication
Initiator DnaA. Front. Microbiol. 12, 662317 (2021).

E. Torrents, Ribonucleotide reductases: essential enzymes for bacterial life. Front. Cell.
Infect. Microbiol. 4, 52 (2014).

L. J. Wheeler, I. Rajagopal, C. K. Mathews, Stimulation of mutagenesis by proportional
deoxyribonucleoside triphosphate accumulation in Escherichia coli. DNA Repair . 4,
1450-1456 (2005).

I. Grinberg, T. Shteinberg, B. Gorovitz, Y. Aharonowitz, G. Cohen, |. Borovok, The
Streptomyces NrdR transcriptional regulator is a Zn ribbon/ATP cone protein that binds to
the promoter regions of class la and class |l ribonucleotide reductase operons. J. Bacteriol.
188, 7635-7644 (2006).

E. Torrents, I. Grinberg, B. Gorovitz-Harris, H. Lundstrédm, |. Borovok, Y. Aharonowitz, B.-M.
Sjoberg, G. Cohen, NrdR controls differential expression of the Escherichia coli
ribonucleotide reductase genes. J. Bacteriol. 189, 5012-5021 (2007).

B. L. McKethan, S. Spiro, Cooperative and allosterically controlled nucleotide binding
regulates the DNA binding activity of NrdR. Mol. Microbiol. 90, 278-289 (2013).

P. Zhou, C. E. Helmstetter, Relationship between ftsZ gene expression and chromosome
replication in Escherichia coli. J. Bacteriol. 176, 6100—-6106 (1994).

T. Garrido, M. Sanchez, P. Palacios, M. Aldea, M. Vicente, Transcription of ftsZ oscillates
during the cell cycle of Escherichia coli. EMBO J. 12, 3957-3965 (1993).

C. E. Carty, L. O. Ingram, Lipid synthesis during the Escherichia coli cell cycle. J. Bacteriol.
145, 472-478 (1981).

A.N. Gray, A. J. F. Egan, I. L. Van’t Veer, J. Verheul, A. Colavin, A. Koumoutsi, J. Biboy, A.
F. M. Altelaar, M. J. Damen, K. C. Huang, J.-P. Simorre, E. Breukink, T. den Blaauwen, A.
Typas, C. A. Gross, W. Vollmer, Coordination of peptidoglycan synthesis and outer
membrane constriction during Escherichia coli cell division. Elife. 4 (2015),
doi:10.7554/eLife.07118.

26


http://dx.doi.org/10.7554/eLife.07118
https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

75. H. Strahl, L. W. Hamoen, Membrane potential is important for bacterial cell division. Proc.
Natl. Acad. Sci. U. S. A. 107, 12281-12286 (2010).

76. P. Moldéus, I. A. Cotgreave, M. Berggren, Lung protection by a thiol-containing antioxidant:
N-acetylcysteine. Respiration. 50 Suppl 1, 31-42 (1986).

77. S.-M. Shin, S.-H. Song, J.-W. Lee, M.-K. Kwak, S.-O. Kang, Methylglyoxal synthase
regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in
Bacillus subitilis. Int. J. Biochem. Cell Biol. 91, 14—-28 (2017).

78. J. Hartl, P. Kiefer, A. Kaczmarczyk, M. Mittelviethaus, F. Meyer, T. Vonderach, B.
Hattendorf, U. Jenal, J. A. Vorholt, Untargeted metabolomics links glutathione to bacterial
cell cycle progression. Nat Metab. 2, 153—166 (2020).

79. S. Narayanan, B. Janakiraman, L. Kumar, S. K. Radhakrishnan, A cell cycle-controlled
redox switch regulates the topoisomerase IV activity. Genes Dev. 29, 1175-1187 (2015).

80. N. S. Britt, N. Patel, T. I. Shireman, W. I. El Atrouni, R. T. Horvat, M. E. Steed, Relationship
between vancomycin tolerance and clinical outcomes in Staphylococcus aureus
bacteraemia. J. Antimicrob. Chemother. 72, 535-542 (2017).

81. M. R. Brown, P. J. Collier, P. Gilbert, Influence of growth rate on susceptibility to
antimicrobial agents: modification of the cell envelope and batch and continuous culture
studies. Antimicrob. Agents Chemother. 34, 1623—-1628 (1990).

82. W. Abdelhady, A. S. Bayer, K. Seidl, D. E. Moormeier, K. W. Bayles, A. Cheung, M. R.
Yeaman, Y. Q. Xiong, Impact of vancomycin on sarA-mediated biofilm formation: role in
persistent endovascular infections due to methicillin-resistant Staphylococcus aureus. J.
Infect. Dis. 209, 1231-1240 (2014).

83. H. Kaneko, H. Nakaminami, K. Ozawa, T. Wajima, N. Noguchi, In vitro anti-biofilm effect of
anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) agents against the USA300
clone. J Glob Antimicrob Resist. 24, 63—71 (2021).

84. Q. Wang, L. Gu, A. Adey, B. Radlwimmer, W. Wang, V. Hovestadt, M. Bahr, S. Wolf, J.
Shendure, R. Eils, C. Plass, D. Weichenhan, Tagmentation-based whole-genome bisulfite
sequencing. Nat. Protoc. 8, 2022—-2032 (2013).

85. F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: large-scale single-cell gene expression data
analysis. Genome Biol. 19, 15 (2018).

86. M. Levin, L. Anavy, A. G. Cole, E. Winter, N. Mostov, S. Khair, N. Senderovich, E. Kovaley,
D. H. Silver, M. Feder, S. L. Fernandez-Valverde, N. Nakanishi, D. Simmons, O. Simakov, T.
Larsson, S.-Y. Liu, A. Jerafi-Vider, K. Yaniv, J. F. Ryan, M. Q. Martindale, J. C. Rink, D.
Arendt, S. M. Degnan, B. M. Degnan, T. Hashimshony, I. Yanai, The mid-developmental
transition and the evolution of animal body plans. Nature. 531, 637—641 (2016).

87. H. Zalts, I. Yanai, Developmental constraints shape the evolution of the nematode
mid-developmental transition. Nat Ecol Evol. 1, 113 (2017).

88. S. R. Jammalamadaka, S. Rao Jammalamadaka, A. SenGupta, Topics in Circular
Statistics. Series on Multivariate Analysis (2001), , doi:10.1142/4031.

27


http://dx.doi.org/10.1142/4031
https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

89. Stan Development Team, RStan: the R interface to Stan (2021; https://mc-stan.org/).

90. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P.
Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Vanderplas, A. Joly, B. Holt, G.
Varoquaux, API design for machine learning software: experiences from the scikit-learn
project. arXiv [cs.LG] (2013), , doi:10.48550/ARXIV.1309.0238.

91. T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck 3rd, Y. Hao, M.
Stoeckius, P. Smibert, R. Satija, Comprehensive Integration of Single-Cell Data. Cell. 177,
1888-1902.€21 (2019).

92. S. Seabold, J. Perktold, "Statsmodels: Econometric and statistical modeling with python" in
Proceedings of the 9th Python in Science Conference (SciPy, 2010;
https://conference.scipy.org/proceedings/scipy2010/seabold.html).

93. M. . Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

94. M. R. Kiedrowski, J. S. Kavanaugh, C. L. Malone, J. M. Mootz, J. M. Voyich, M. S.
Smeltzer, K. W. Bayles, A. R. Horswill, Nuclease modulates biofilm formation in
community-associated methicillin-resistant Staphylococcus aureus. PLoS One. 6, €26714
(2011).

95. M. A. Benson, S. Lilo, T. Nygaard, J. M. Voyich, V. J. Torres, Rot and SaeRS cooperate to
activate expression of the staphylococcal superantigen-like exoproteins. J. Bacteriol. 194,
4355-4365 (2012).

96. T. Bae, E. M. Glass, O. Schneewind, D. Missiakas, Generating a collection of insertion
mutations in the Staphylococcus aureus genome using bursa aurealis. Methods Mol. Biol.
416, 103—116 (2008).

97. P.D. Fey, J. L. Endres, V. K. Yajjala, T. J. Widhelm, R. J. Boissy, J. L. Bose, K. W. Bayles, A

genetic resource for rapid and comprehensive phenotype screening of nonessential
Staphylococcus aureus genes. MBio. 4, e00537-12 (2013).

28


https://mc-stan.org/
http://dx.doi.org/10.48550/ARXIV.1309.0238
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

S. aureus stationary

B s aureus exponential 2

E. coli M9 + Glc

e 8
uone|elo)

5
2

E. coliLB 2 E. coli oriX E. coli oriZ

C 40

5500 /T LB
3000 1 M9+ Gle + AA

> +

3 2500 /1 M9 +Gle

o

S 2000

o

L%’ 1500

1000
500

100 200 300 400 500 600
UMI/barcode

Figure S1: Global Spearman correlation patterns in PETRI-seq datasets. A) Gene-gene correlations
in exponential S. aureus data from Dataset D4, averaged in 50 kb bins, as for Dataset D3 in Fig. 1F. B)
Initial correlations from unbinned, scVI-predicted gene expression data. Sample “S. aureus exponential 2"
is from Dataset D4, whereas E. coli LB replicates 1 and 2 are from Dataset D1 and Dataset D2,
respectively. C) Histogram of total UMI/barcode under each growth condition. Median UMI/barcode was
152 (LB), 56 (M9 + Glc + AA), and 40 (M9 + Glc) after filtering barcodes with less than 15 or greater than
2,000 UMIL. This loss of UMI may explain the weaker correlation signals in slower-growing cell
populations.
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Figure S2: Schematic figure for the simulation of the effect of DNA replication on gene-gene
correlations. Each “arm” of the circular chromosome is represented as an array of integers (initially
ones), representing each gene. Replication proceeds stepwise from origin to terminus, doubling copy
number as it does (steps 1 to 2). At high replication rates, a second round of replication will initiate before
the first has finished (step 3). When one round of replication reaches the terminus, that round finishes and

after a given time interval copy numbers are globally halved, reflecting cell division (steps 4 to 5). Figures
on the right indicate the represented states on the circular chromosome.
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Figure S4: The relationship between origin distance and expression levels. A) For each E. coli
growth condition, the average fraction of total mMRNA UMI from each gene was calculated and
log,-transformed. A linear regression model (black line) was fitted between log-fraction counts and origin
distance. B) The gradient of the linear model fits in (A). Note that in each case, there is a negative
relationship, with a steeper gradient for faster growth rates. This is expected given that at fast growth
rates, genes near the origin may attain higher copy number states (>2) than at slow growth rates.
Spearman correlations are -0.13 (LB, P = 3.8 x 10'%), -0.09 (MGA, P =2.2 x 10%), and -0.07 (MG, P=6.0
x 104).

32


https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 360 C
300 5 00
@
240 © s
o S 00 O
180 3 s 9
e 5 2,
120 2 2 w00 &
©
o =~ S
¢ 60 s 0
= 4
= 0
UMAP-1 e o 1 0
P scVI expression
D ‘g 200 G p
3 recF-dnaN-dnaA nrdA-nrdB-yfaE
O 175 0.15
3 ' 0.3
g 150
N 0.10 0.2
g 125 .
§ 1.00 0.05 0.1
o5 0.00 0.0
2 0 120 240 360 0 120 240 360
- 050
[0}
o
c 025 A . .
g o - . murF-mraY-murD-ftsW-murG-
T °° 55 75 40 25 oo 25 02 04 as 08 10 12 murC-ddIB-ftsQ-ftsA-ftsZ  ugd-wbbK-wbbJ-wbbl-wbbH-glf
> : g, (Rep 1) 4
Mean log,(normalized counts) corrected (REP 0.50 4 .
F IpIT ampH zntR 0_254/\\, 0.2 /\—/\/
0.5 ! 0.5
0.0 04 0.0 0.004 0.0
-05 ~054 0 120 240 360 0 120 240 360
0 120 240 360 0 120 240 360 0 120 240 360 waaU-waaY-waaJ aceE-aceF-Ipd
metN rho rbsR 0.08 34
1 14 N
0 o] 0 0.04 |
-1 1 - 000t — ol
0 120 240 360 0 120 240 360 0 120 240 360 0 120 240 360 0 120 240 360
, hisM ) fimA oxyR nuoN-nuoM-nuoL-nuoK-
ol nuoJ-nuol-nuoH-nuoG-nuoF nemR-nemA
0 0 0.8 0.02
- . . -1 . . . 0.6
0 120 240 360 0 120 240 360 0 120 240 360 0.4 0.01
cspA 0.2

0.0 0.00 -+—m—————
0 E . Eull del 0 120 240 360 0 120 240 360
xpressuonl — Full mode
— Replication model Fraction UMI
-1 Cell angle (6;) o )

Figure S5: Cycle analysis of LB-grown E. coli. A) UMAP analysis of cells based on scVI-predicted
expression. B) UMAP of genes, performed on the same data as the PCA in Fig. 3C. Gene angles shown
are those derived from PCA. C) Two-dimensional histogram showing the relationship between observed
expression from scVI and replication-predicted expression. Expression is averaged in 100 bins by cell
angle 6, and both matrices are flattened to one-dimensional vectors. The red line indicates x = y i.e. the
case where expression in both matrices is identical. D) The mean-variance relationship of log-transformed
normalized counts. The black line indicates the locally weighted scatterplot smoothing
(LOWESS)-fitted values and red points are genes classed as highly variable. See Materials &
Methods for further details. E) Comparison of 0,.ceq (Standard deviation of divergence from the
replication model) between LB-grown E. coli in Dataset D1 and Dataset D2 of all genes present in both
datasets. Red indicates 0,0 > 0.6 in both datasets, meaning that they are considered
replication-divergent. The Pearson correlation between replicates is 0.38. F) Cycle gene expression plots
as in Fig. 4D of the ten highly variable genes with the lowest 0,,,..q- G) Percent transcripts (calculated as
the fraction of total MRNA UMI of a given transcript multiplied by 100) averaged across 20 bins by cell
angle 6. Operons are selected from those displayed in Fig. 4D.
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Figure S6: Cell cycle plots of divergent E. coli genes from another replicate. Plots are as in Fig. 4D,
but taken from a second independent replicate (Dataset D2).
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Figure S7: Cycle analysis of Staphylococcus aureus. A) Growth of S. aureus under standard growth
conditions. The time and log,(Agy) values when exponential and stationary phase samples were taken
are marked with dotted lines. The line is fitted to the mean at each time point, with the gray area
representing standard deviation. Data are from five biological replicates. Doubling times for exponentially
growing cells are estimated for the linear portion of the curve (~60-150 min). B) Growth of S. aureus
under balanced growth conditions (see Materials & Methods). The black line indicates the linear portion
from which doubling time was estimated. Data are from three biological replicates. C) Derivation of gene
angle 8,. Principal component analysis was performed on the transpose of the matrix in Fig. 5C to project
genes into two dimensions by expression. Genes are colored by the angle 6, between principal
components 1 and 2 relative to the center of the projection. D) Two-dimensional histogram showing the
relationship between observed expression from scVI and replication-predicted expression (Pearson’s r =
0.67). Expression is averaged in 100 bins by cell angle 6, and both matrices are flattened to
one-dimensional vectors. The red line indicates x = y i.e. the case where expression in both matrices is
identical. E) Gene-gene correlations across 6,-binned expression data (100 bins) for the full scVI model

35


https://doi.org/10.1101/2022.10.22.513359
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513359; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(left), the replication-only model (middle), and the corrected model that is the difference of the two
expression matrices (right). Note that correction largely eliminates the global correlation pattern. F & G)
Comparison of 0.,..cq (Standard deviation of divergence from the replication model) between S. aureus in
Dataset D5 and Dataset D6 for highly variable genes in both datasets (F) (Pearson’s r = 0.66) and all
genes (G) (Pearson’s r = 0.48). Red indicates 0,,...eq > 0.5 in both datasets, meaning that they are
considered replication-divergent. H) Percent transcripts (calculated as the fraction of total mMRNA UMI of a
given transcript multiplied by 100) averaged across 20 bins by cell angle 6., shown for select
replication-divergent genes. 1) Distribution of peak-trough fold changes calculated as described in
Materials & Methods. The dotted black line indicates the position of the median (1.9-fold, shown here on a
log, scale). J) Cycle gene expression plots of left and right GbaA-responsive operons as in Fig. 5E, but
shown for S. aureus strains with deletions of the sigB and saeQRS regulators. K) Percent transcripts for
GbaA-L and GbaA-R operons displayed as in Fig. 5 but comparing wild-type USA300 to sigB- and
saeQRS mutants. Note that the pattern is the same but the sigB- mutant shows slightly lower overall
expression. L) Cycle gene expression plots of left and right GbaA-responsive operons as in (I) but in
wild-type cells treated with 10 mM N-acetylcysteine.
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Figure S8: Cell cycle plots of divergent S. aureus genes from another replicate. Plots are as in Fig.
5F, but taken from a second independent replicate (Dataset D6).
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Figure S9: Analysis of S. aureus responses to vancomycin treatment. A) Comparison of cell cycle
gene expression in untreated and 6 minute-treated cells for the genes in Fig. 6D. Expression is shown as
percent transcripts (calculated as the fraction of total mMRNA UMI of a given transcript multiplied by100)
averaged across 50 bins by cell angle 6. B) Full PCA plot for time-dependent changes in vancomycin
expression. For Fig. 6E, outlier cells are not shown and the orientation of PC-1 is reversed (so that PC-1
corresponds positively with time, since PC directions are arbitrary). C) PCA as in Fig. 6E colored by the
eight PC1 bins as in Fig. 6F. D) Global gene-gene correlation plots as in Fig. 1F but for each time point of
vancomycin treatment. E) Gene angle-origin distance plots as in Fig. 3D but for each time point. Note that
the gradient at 25 min is substantially reduced compared to other time points. F) Results of GSEA (39,
40) with KEGG pathways (74, 75) on PC-1 loadings (reversed as in Fig. 6E). Normalized enrichment
scores (39) are shown for all pathways significantly enriched (false discovery rate = 0.1). GSEA was
performed using the “gseapy” Python package v0.10.8.
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Figure S10: Sampling from the prior of the gene angle-origin distance regression model. Based on
the model and priors specified in Materials & Methods, values were randomly sampled from the prior and
used to predict either the expected gene angle A (A) or the predicted value of gene angle 6, after von
Mises sampling (B). For each sampled set of parameters in (B) the gradient y and concentration
parameter k are shown. Both 6, and origin distance D are standardized to the range -1 to 1 as per the
model requirements. Overall, the prior assumptions of the model are that there is a positive, linear
relationship between 6, and D, but there is considerable flexibility regarding the gradient (and hence
degree of wrapping), value of 6, at D = 0, and noise.
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Table S1: Information about datasets and samples used. Ag, refers to the optical density at
the time of harvesting. *Growth E. coli MG1655 in LB was measured in a separate series of
experiments for each dataset.

Dataset [Sample Strain Medium |Agg, Doubling time [# cells [Median
(min) mRNA
UMl/barcode

D1 eco_Ib_1 E. coli MG1655 LB 0.15 [26.0+ 1.3 (n=4)"|57,627 (152

eco_mga_1 E. coli MG1655 M9 + GIc [0.185 [39.4+2.3 (n=4) |50,920 |56
+AA
eco_mg_1 E. coliMG1655 M9 + Glc [0.062 169.1 £9.8 (n=3) |45,898 [40

D2 eco |b 2 E. coli MG1655 LB 0.152 [27.0+1.6 (n =4)*|69,396 |93

eco_orix_1 E. coli MG1655 LB 0.127 |27.2+2.4 (n=4) [25,967 |97
AlaclZYA oriX-<> (18,
20)

eco_oriz_1 E. coli MG1655 LB 0.14 [26.6+2.1(n=4) |32,151 [100
AlaclZYA oriZ-<> (19)
D3 sau_tsb_1 S. aureus USA300 LAC [TSB 0.97 [30.1+0.8(n=5) |73,053 |135
D4 sau_exp_plus |[S. aureus USA300 LAC [TSB 1.12 [30.1+0.8(n=5) (13,075 |87
sau_exp_minus|S. aureus USA300 LAC [TSB 1.12 [30.1+08(n=5) 8,182 |57
sau_stat plus |[S. aureus USA300 LAC [TSB 576 |NA 40,772 |27
sau_stat_minus|S. aureus USA300 LAC |TSB 576 |NA 15,122 |24
D5 sau_wt_1 S. aureus USA300 LAC [TSB 0.088 [24.9+0.6 (n=3) |49,307 |159
sau_sigb_1 S. aureus USA300 LAC |TSB 0.092 [254+0.4 (n=3) |55,936 (147
(Erm®) AsigB (94)

sau_saeqrs_1 |[S. aureus USA300 LAC [TSB 0.076 [25.8+2.1(n=3) |39,662 (174
(Erm®) saeQRS::spec
(95)

D6 sau_wt_2 S. aureus USA300 LAC [TSB 0.112 [24.9+0.6 (n=3) |38,426 (136
sau_je2_1 S. aureus JE2 TSB 0.107 [NA 46,719 107
sau_gbaa_1 |[S. aureus JE2 TSB 0.103 |NA 37,985 |109

SAUSA300_2515::
Tn(Erm) (Nebraska
library # NE355) (96, 97)
sau_nac_1 S. aureus USA300 LAC [TSB 0.105 |NA 52,071 117

D7 sau_wt_3 S. aureus USA300 LAC |TSB NA 249+ 0.6 (n=3) (31,852 |152
sau_vanc6_1 |[S. aureus USA300 LAC [TSB NA NA 22,344 (145
sau_vanc12_1 |S. aureus USA300 LAC [TSB NA NA 24,064 |94
sau_vanc25_1 [S. aureus USA300 LAC [TSB NA NA 14,832 [202
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