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Abstract  

Prior research indicates substantial refinements of regional cortical morphology in the transition 

period from childhood to adolescence. However, whether and how the spatial pattern of cortical 

maturation is shaped by underlying white matter connectome architecture remains largely 

unknown. Here, we address this issue by leveraging 521 longitudinal structural and diffusion 

magnetic resonance imaging scans from 314 typically developing individuals during childhood 

and adolescence (aged 6-14 years). We demonstrate widespread cortical thinning from childhood 

to adolescence predominantly distributed in bilateral frontoparietal heteromodal nodes, and this 

maturation pattern is structurally constrained by the white matter connectome architecture of the 

brain. Specifically, this constraint is first observed as a direct association of the cortical 

maturation extents between nodes and their anatomically connected neighbors. Using a network-

level diffusion computational model, we further demonstrate that the spatial maturation of 

cortical thickness can be significantly predicted by using multiscale diffusion profiles of network 

links. Furthermore, these connectome-based constraints are primarily dominated by several core 

nodes located in bilateral frontoparietal regions, which exhibit differential gene expression 

profiles in microstructural neurodevelopment processes compared to non-dominant brain nodes. 

These findings are highly reproducible when using another independent neuroimaging dataset 

from the Lifespan Human Connectome Project in Development (aged 5-14 years). Our results 

highlight the importance of white matter network structure in shaping the coordinated maturation 

of regional cortical morphology and demonstrate the feasibility of using a network-based 

diffusion model to reveal the maturational principle of cortical morphology from childhood to 

adolescence. 
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Significance Statement 

Cortical thinning is an important hallmark of the maturation of brain morphology during 

childhood and adolescence. However, the connectome-based wiring mechanism that underlies 

cortical maturation remains unclear. Using neuroimaging, connectome, transcriptome, and 

computational modeling, we mapped cortical thinning patterns primarily located in lateral frontal 

and parietal heteromodal nodes during childhood and adolescence, which is structurally 

constrained by white matter network architecture and is particularly represented using a network-

based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, 

with the largest constraints residing in frontoparietal nodes, and are associated with gene 

expression signatures of microstructural neurodevelopmental events. These findings advance our 

understanding of network-level mechanisms and the associated genetic basis that underlie the 

maturational process of cortical morphology during childhood and adolescence. 
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Introduction 

The transition period from childhood to adolescence is characterized by prominent 

reorganization in cortical morphology (1, 2), which provides critical support for cognitive growth 

(3, 4). With progress in modern in vivo structural brain imaging, researchers have documented 

widespread spatial refinements of cortical morphology throughout childhood to adolescence (5, 

6). A typical cortical maturation sequence is marked by hierarchical cortical thinning from the 

primary to association cortex (1, 7, 8) and is thought to be mediated by cellular mechanisms, 

genetic regulation, and biomechanical factors (9, 10). In the present study, we present a 

mechanistic approach to model how the maturational pattern of cortical morphology from 

childhood to adolescence is shaped by white matter (WM) connectome architecture. 

At the microscale level, a large quantity of histological studies has suggested that the brain’s 

WM pathways are involved in the developmental process of cortical gray matter. During neural 

circuit formation, axons express guidance receptors to integrate attractive and repulsive 

environmental information for navigation to their target neurons (11, 12). After axons arrive, 

synaptic maintenance and plasticity rely on active axonal transport through axonal cytoskeletons, 

which offers essential delivery of neurotrophic factors, energy requirements, and synthesized or 

degraded proteins for long distanced cortical neurons (13-15). Such early-established neuronal 

pathways could lead to preferences in attracting or removing new links during the formation of 

cortical hubs (16). Physical simulation studies suggest that there may be a tension-induced 

relationship between fiber growth and cortical fold morphology (17, 18). At a macroscale level, 

several prior studies using structural and diffusion magnetic resonance imaging (MRI) have also 

shown that focal cortical thickness (CT) decreases in the frontal cortex are associated with 

increased microstructural integrity in adjacent WM (19) and that homologous cortical regions, 

which are rich in WM fibers, exhibit higher maturational couplings of CT than nonhomologous 

regions (20). Notably, all these previous studies are limited to local cortical regions or certain 

fiber tracts. The human brain is a highly interacting network in nature in which connections 

promote interregional communications, raising the possibility that the maturation of focal 

cortical morphology is shaped by the overall architecture of the WM connectome. However, 

whether and how the maturation pattern of cortical morphology from childhood to adolescence is 

constrained by physical network structures, and specifically, whether this constraint works 

following a network-based diffusion model, remains largely unknown. We anticipate that models 

of regional cortical maturation would yield mechanistic insights into network structure that 

govern the coordinated development of cortical morphology among regions. 

If the connectome structure shapes regional cortical maturation, it is necessary to further clarify 

whether this constraint is associated with genetic factors. Converging evidence indicates that 

genetic modulations may exist on the potential constraint of WM maturation on cortical 

morphology. Studies on the rodent nervous system (21, 22) have shown that the wiring diagram 

of brains is tracked by genes that are involved in axon guidance and neuronal development 

processes. Such genetic cues are also related to molecules responsible for cytoskeletal 

rearrangements that induce cortical refinement processes, including synaptic pruning and neuron 

cell death (12). In humans, recent emerging transcriptome imaging analyses pave a new way to 

link brain macroscale structural maturation to microscale biological processes by seeking 

associations between MRI-based brain measurements and genetic samples of postmortem brains. 

Such studies have shown that cortical thinning during maturation is related to genes involved in 
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the structure and function of synapses, dendrites, and myelin (23, 24). These precisely 

programmed microstructural alterations constitute major neurodevelopmental events that 

promote the establishment of more mature brain architecture and anatomical connectivity from 

childhood to adolescence (25, 26). Therefore, we further hypothesize that the constraint between 

the maturation of cortical morphology and WM network structure is associated with gene 

expression profiles that are involved in neurodevelopment. 

To fill these gaps, in the present study, we integrated neuroimaging, connectome, and 

transcriptome analyses as well as computational modeling to investigate network-level 

associations with regional maturation of cortical morphology and to further explore their 

potential genetic underpinnings. Specifically, we test three hypotheses: (i) that the maturation of 

CT of brain nodes is associated with that of structurally connected neighbors, (ii) that the 

network-level diffusion model, which represents the direct and high-order information exchange 

preferences among neighbors, captures the principle of connectome constraint on the maturation 

of CT, and (iii) that the connectome constraints on cortical maturation are associated with gene 

expression levels of neurodevelopment processes. 

Results 

Data Samples 

To investigate the relationship between cortical morphology maturation and the WM connectome 

from childhood to adolescence, we leveraged structural and diffusion MRI data from a 

longitudinal MRI dataset (“Discovery dataset”) with 521 scans (314 participants, aged 6-14 

years) in the Children School Functions and Brain Development Project in China (Beijing 

Cohort). According to the criteria from a previous public health investigation (27) and the World 

Health Organization (WHO) (28), we divided all participants into the child group (218 

participants, 299 scans, 6.08-9.98 y) and the adolescent group (162 participants, 222 scans, 

10.00-13.99 y) using age 10 years as a cutoff. To assess the reproducibility of our results, we also 

included an independent dataset (“Replication dataset”) that contains structural and diffusion 

MRI data of 301 typically developing participants, which were divided into the child group (98 

participants, 5.58-9.92 y) and in the adolescent group (203 participants, 10.00-14.00 y) from the 

Lifespan Human Connectome Project in Development (HCP-D) (29). Details of the demographic 

information for all participants, data acquisition, and data analysis are provided in the SI 

Appendix, Section 1.1-1.3. 

The Typical Spatial Refinement of Brain CT from Childhood to Adolescence 

For each individual, we first parcellated the brain cortex into 1000 nodes of interest with 

approximately equal size (219 and 448 nodes parcellations as a validation (30)) according to the 

modified Desikan-Kiliany atlas (31, 32). Then, we computed the average CT for each brain node 

based on structural MR images. To delineate the spatial maturation map of brain morphology, we 

estimated the statistical differences in CT between the child and adolescent groups to represent 

the CT maturation extent by a mixed linear analysis (33) with sex included as the covariate (SI 

Appendix, Section 1.4). Brain nodes showed significant cortical thinning, mainly concentrated in 

dorsolateral prefrontal regions and lateral temporal and lateral parietal regions (Fig. 1A, t-

values > 4.10, P < 0.05, Bonferroni corrected). To test whether this maturation pattern is 

anchored to specific brain systems, we classified all cortical nodes into seven well-validated 
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brain communities (34) and performed a spherical projection null test (“spin test”) to correct for 

spatial autocorrelations by permuting seven communities positions 1000 times (35, 36). The 

class-specific mean t-values were expressed as z scores relative to this null model. We found that 

all brain systems showed decreased CT with development on average. The frontoparietal (FP) 

system and default mode (DM) system showed higher cortical thinning than expected by chance 

(FP: pspin = 0.029; DM: pspin = 0.068, Fig. 1B). The somatomotor (SM) system displayed lower 

cortical thinning than expected by chance (pspin = 0.004). We also repeated this analysis by 

classifying cortical nodes into four laminar differentiation levels (37). We found that 

heteromodal areas displayed cortical thinning (pspin < 0.001), while idiotypic areas showed lower 

cortical thinning than expected by chance (pspin = 0.001, Fig. 1C). Consistent results were found 

at the other two parcellation resolutions (SI Appendix, Figs. S1-S2). These results are largely 

compatible with previous studies (1, 8), demonstrating that CT exhibits the most pronounced 

thinning in high-order association areas and is relatively preserved in primary areas from 

childhood to adolescence. 

Direct WM Connections Constrain the Spatial Maturation of CT 

Next, we tested whether the regional maturation of CT was constrained by its direct WM 

connections. To this end, we first reconstructed individual structural connectomes with 1000 

nodes (219 and 448 nodes as a validation) based on diffusion MR images of the child group by 

performing deterministic tractography between cortical regions (38, 39). We then generated a 

binary, group-level connectome by using a consensus approach that preserves the connection 

length distributions of individual networks (40) (Fig. 2A, SI Appendix, Section 2.1).  

Next, we estimated the across-node relationship of the CT maturation extent (t-value between 

child and adolescent groups) between a node and its directly connected neighbor nodes in the 

backbone (Fig. 2B) (SI Appendix, Section 2.2). We found a significant spatial correlation 

between the nodal CT maturation extent and the mean of its directly connected neighbors (Fig. 

2C, adjusted r = 0.74, P = 5.56×10-176). Next, we tested this spatial correlation against two 

baseline null models (SI Appendix, Section 2.3). The first model evaluated whether the observed 

correlation was determined by the wiring topology rather than the basic spatial embedding of the 

WM network (41). Specifically, we generated 1000 surrogate networks by randomly rewiring 

edges while preserving the nodal degree and approximate edge length distribution of the 

empirical WM network (“rewired”). The second model evaluated whether the observed 

correlation was induced by the regional correspondence rather than the spatial autocorrelation of 

CT maturation (35, 36). Specifically, we generated 1000 surrogate maps by rotating region-level 

cortical t-values (“spin test”). After recalculating the correlation coefficient, we found that the 

observed correlation was significantly higher than the correlations in both null models, and these 

results were highly consistent for all three nodal resolutions (all prewired < 0.001 and all pspin < 

0.001, Fig. 2D). Interestingly, when estimating the spatial constraints at the system level, we 

found that direct WM connections within the heteromodal area, especially within and between 

FP and DM networks, showed strong constraints on the maturation of CT (Fig. 2E). 

Considering that spatially adjacent nodes may intrinsically exhibit similar cortical development 

trends, we further performed another two confounding analyses to demonstrate that the observed 

correlation is not determined by the spatial proximity effect. In the first analysis, we excluded all 

spatially adjoining neighbors and recalculated the mean CT maturation extent of the remaining 
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structurally connected neighbors for each brain region (“excluded”). In the second analysis, we 

regressed out the effect of nodal mean Euclidean distance to its connected neighbors from the 

mean CT maturation extent (“regressed”). After re-estimating the empirical correlation 

coefficient (1000-node: adjusted rexcluded = 0.60 and adjusted rregressed = 0.74), we repeated two 

null model tests and found consistent results at all three nodal resolutions (all prewired < 0.001, 

pspin < 0.001, SI Appendix, Fig. S3).  

Collectively, these results provided strong evidence from a network level that the spatial pattern 

of nodal CT maturation is structurally constrained by the underlying WM network topology.  

The Diffusion Model of the WM Connectome Predicts the Spatial Maturation of CT 

To further understand the mechanisms of how the maturation process of cortical morphology is 

constrained by the WM connectome, we proposed a graph-based diffusion model to simulate the 

network-level axonal interactions during cortical development. The nodal diffusion processes 

through multiscale WM edge paths are used to predict the maturation of cortical CT (SI 

Appendix, Section 2.4). Specifically, we first calculated the diffusive probabilities of a given 

node to other nodes during a random walk modeling with nth moving steps (for a toy, see Fig. 

3A) to represent the nodal diffusion profile at nth neighboring scales (n = 1, 2, 3, …N; the 

maximum neighboring scales N was set as the network diameter, which is the max shortest path 

length). Increasing moving steps present expansion scales of the probed neighborhood, which 

indicates local to distributed preferences of information exchange during the diffusion process. 

The diffusion profiles of all brain nodes form a diffusive probability matrix that represents the 

distribution of information propagation throughout the whole network. To further characterize 

the spatial layout of each diffusive matrix, we classified all cortical nodes into seven brain 

communities (34) and calculated the average diffusive probabilities within the same system and 

between different systems separately across brain nodes. Of note, we observed that the diffusion 

probabilities within the same cortical system were greater than 0.5 at the 1st scale and then 

decreasing with the expanding of neighboring scales (Fig. 3B). This indicates that a lower scale 

is mainly involved in more community segregation during propagation. Then, we trained a 

support vector regression (SVR) model with nodal diffusive profiles at each neighboring scale 

separately as input features to predict the CT maturation extent in a 10-fold cross-validation 

strategy (42). To evaluate the significance of prediction accuracy, we compared the empirical 

accuracy with two null model tests, including a spin test and a rewiring test. We found that the 

diffusive profiles of a given node could significantly predict its CT maturation extent at multiple 

neighboring scales (r1-9 scale: ranged from 0.65 to 0.75, all pspin <= 0.001, all prewired < 0.001, Fig. 

3C and SI Appendix, Table S1). The prediction accuracies are higher at lower neighboring scales. 

Additionally, features with high contribution of these predictions are mainly involved in the 

diffusion of frontal and parietal nodes (SI Appendix, Fig. S4). These results are highly consistent 

across all three nodal resolutions (SI Appendix, Fig. S5 and Tables S2-S3). Overall, our analysis 

of computational models indicates that the diffusive characteristics of WM connectome at the 

local to distance scales largely determine the spatial maturation map of CT from childhood to 

adolescence, with a relatively high effect among nodes within the same cortical system. 

We next try to measure the dominant likelihood map for the spatial constraint between nodal CT 

maturation and WM connections and screen out brain nodes that lead the whole brain constraint 

(SI Appendix, Section 2.5). For each node, we calculated the cosine similarity between its 

diffusive profiles at the nth (n = 1, 2, 3, …, N) scale and the CT maturation map (Fig. 3D). High 
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similarity of a node indicates that its neighboring diffusion preference largely resembled its 

neighboring distribution of CT maturation. We observed that the dominant likelihood maps are 

highly similar across all nine neighboring scales (Fig. 3E, top panel, SI Appendix, Fig. S6A) with 

high values in the bilateral prefrontal, parietal, and temporal regions. These regions were further 

identified as dominant nodes by higher similarity than expected by chance (pspin < 0.05) (Fig. 3E, 

bottom panel, SI Appendix, Fig. S6B). The conjunction map of dominant nodes across all 

neighboring scales is shown in Fig. 3F, where the robust dominant nodes are mainly located in 

the bilateral prefrontal cortex and inferior parietal cortex. This indicates the leading roles of these 

regions in shaping the spatial maturation of whole brain CT. Similar results were found in other 

parcellation resolutions (SI Appendix, Fig. S7). To further verify these dominant nodes, we also 

used a different identification approach (43), which defines dominators as brain regions showing 

high maturation extents in both themselves and their directly connected neighbors (SI Appendix, 

Fig. S8A). Using this approach, we ranked nodes based on their CT maturation extents and their 

neighbors’ mean CT maturation extents separately in ascending order and then calculated the 

mean rank of each node across both lists. Regions with significantly higher mean ranks (pspin < 

0.05) were identified as the dominant nodes. We found that this dominant likelihood map was 

significantly correlated with our network-based diffusion analysis (Spearman’s r = 0.81, pspin < 

0.001, SI Appendix, Fig. S8B-C), with highly consistent dominant regions (SI Appendix, Fig. 

S8D). 

To further exemplify the diffusion processes of the dominant nodes at each neighboring scale, we 

illustrated the diffusive profiles of the two most robust dominant nodes in the prefrontal (Fig. 

3G, top panels) and inferior parietal (Fig. 3G, bottom panels) region, respectively. As the 

neighborhood scale expands, the diffusion of prefrontal dominators mainly spreads to neighbors 

within FP and DM systems, while the diffusion of parietal dominators mainly spreads to 

neighbors within DM, DA, and SM systems (Fig.S6C). These diffusion processes were mainly 

involved in nodes within the same system at low neighboring scales and in nodes between 

systems at high neighboring scales. 

Regional Heterogeneous Constraints between CT Maturation and the Connectome Are 

Associated with Gene Expression Profiles 

Next, we sought to explore the genetic associations of the nodal constraints between the spatial 

maturation of the CT and WM connectomes during development. We adopted the BrainSpan 

dataset (44) (SI Appendix, Section 3.1), which contains gene expression samples of brain tissues 

from 8 post-conception weeks to 40 years, to evaluate the regional genetic relevance. We 

selected four gene sets according to Kang and colleagues (26), which cover typical maturation 

procedures involved in both CT and WM, including axon development, myelination, dendrite 

development, and synapse development. We hypothesized that there should be differentiated 

transcriptomic characteristics between the identified dominant and non-dominant brain nodes. To 

this end, we first divided the cortical tissue samples into two categories according to whether 

they were dominant nodes in the conjunction map. Then, we calculated the first principal 

component score of each gene set’s transcription level and estimated the category differences. 

The statistical significance was calculated by comparing the empirical difference against null 

differences generated by randomly resampling the same number of genes 1000 times from the 

remaining genes. We found divergent transcriptomic trajectories between dominant and non-

dominant regions in all four maturation processes from childhood to adolescence (Fig. 4A), and 
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the transcription level in dominant regions was significantly higher than that in nondominant 

regions for dendrite (P = 0.014) and synapse development (P = 0.002) but significantly lower for 

axon development (P < 0.001) and myelination (P < 0.001) (Fig. 4B). This result indicates that 

gene expression could support the microstructural differences in neurodevelopment between 

dominant and non-dominant regions, resulting in a non-uniform degree of constraints between 

CT maturation and WM pathways. 

Considering that the BrainSpan dataset only contains 11 sampling neocortex areas, we also 

validated the regional gene expression relevance by using Allen Human Brain Atlas datasets (45) 

SI Appendix, Section 3.2). After preprocessing with the abagen toolbox (46, 47), a matrix of gene 

expression profiles was generated (111 left brain regions × 8631 gene expression levels). Then, 

we identified the association between the dominant likelihood map and each gene expression 

map using Pearson’s correlation and spin tests (1000 times). A total of 457 genes showed a 

positive correlation, and 619 genes showed a negative correlation (pspin < 0.05, FDR corrected, 

SI Appendix, Table S6). Next, we performed Gene Ontology enrichment analysis (SI Appendix, 

Section 3.3) on these two gene sets using the ToppGene Suite (48). We found a significantly 

correlated gene list with positive correlations mainly enriched in learning or memory and 

synapse organization (biological process) as well as glutamatergic synapse, neuron spine, and 

somatodendritic compartment (cellular component) (all P < 0.05, FDR corrected, Fig. 4C, Fig. 

4D) and negative correlations enriched in the generation of precursor metabolites and energy 

process (biological process) and myelin sheath components (cellular component) (all P < 0.05, 

FDR corrected, SI Appendix, Fig. S9). The detailed enrichment analysis results are shown in SI 

Appendix, Tables S7-S8. 

Sensitivity and Replication Analyses 

To validate the effectiveness of the WM connectome backbone, we used another diffusion 

imaging dataset with multishell diffusion gradients from HCP-D (29) to reconstruct the 

individual WM network and regenerate the group backbone. Using this new backbone, we found 

highly consistent results with our main findings. Specifically, nodal CT maturation extents are 

significantly correlated with their directly connected neighbors (adjusted r = 0.76, pspin < 0.001, 

prewired < 0.001, SI Appendix, Fig. S10A). Using the network-based diffusion model, the spatial 

maturation of CT was also predicted by the diffusion properties of the WM network (r1-8 scale: 

ranged from 0.69 to 0.78, all pspin < 0.001, prewired < 0.001, SI Appendix, Fig. S10B and SI 

Appendix, Table S4). 

To evaluate the reproducibility of our findings, we replicated all main analyses using the 

Replication dataset from HCP-D. The results are highly consistent with those obtained using the 

Discovery dataset: (i) several heteromodal areas exhibited the most pronounced cortical thinning 

(SI Appendix, Fig. S11A ); (ii) CT maturation extent of a node shows a positive correlation with 

the mean maturation extent of its directly connected neighbors (adjusted r = 0.62, adjusted 

rexcluded = 0.46, and adjusted rregressed = 0.62), and the empirical correlation exceeded the values in 

null models (all pspin < 0.001 and all prewired < 0.001, SI Appendix, Fig. S11B-D); (iii) the 

diffusion profiles of the WM network at multiple neighboring scales also predicted the spatial 

maturation of CT (r1-4 scale: ranged from 0.60 to 0.66, all pspin < 0.05, prewired < 0.001, SI Appendix, 

Fig. S11E and SI Appendix, Table S5); and (iv) dominant nodes mainly reside in the lateral 

parietal regions (SI Appendix, Fig. S11F). Taken together, these findings provide replicable 

evidence that the WM network constrains the spatial maturation of CT from childhood to 
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adolescence. 

Discussion 

The present study shows for the first time the constraints of WM network architecture on the 

coordinated maturation of regional CT from childhood to adolescence and their associations with 

gene expression signatures. Specifically, we proposed a network-based diffusion model to predict 

regional cortical maturation from WM connectome architecture. These constraints are regionally 

heterogeneous and regulated by the gene expression of microstructural developmental processes. 

These results are largely consistent across three cortical parcellations and are highly reproducible 

across two independent datasets. Taken together, these findings provide insights into the 

understanding of network-level mechanisms that support the maturational process of cortical 

morphology. 

Numerous previous studies have documented that the human brain undergoes remarkable 

refinements during childhood and adolescence, such as cortical thinning, area expansion, and 

WM myelination (2, 4, 7, 49, 50). These multifaced gray matter and WM changes have been 

proven to be intrinsically linked with each other at the regional level. For example, in early 

childhood, the spatial pattern of cortical surface area expansion during development is highly 

similar to the myelination of underlying cortico-cortical tracts (51). In children and adolescents, 

Jeon et al. (19) reported a significant correlation between the rate of CT decrease and the rate of 

FA increase in WM tracts at local gyri of the frontal lobe. In addition, tractography-based studies 

show that homologous cortical regions tightly connected by rich WM tracts show high CT 

maturation couplings (20). At the microscale level, cortical morphology changes during 

maturation are thought to have various biological origins, including synaptic pruning, increased 

axon diameter, and myelination (49, 52). Seeking a unified original model for the whole-brain 

cortical changes is difficult since even within the ventral temporal cortex, thinning of different 

brain regions seems to be due to distinguished factors (52). Here, we address this issue with a 

new perspective on brain network modeling. We showed that the morphology maturation of 

cortical nodes is well represented by that of their WM-connected neighbors during the transition 

from childhood to adolescence (Fig. 2B), and this association remained when we excluded the 

spatial proximity effect and validated it in an independent dataset (SI Appendix, Fig. S9). This 

network-level association is an important extension of previous developmental theories that 

support cortical thinning across brain development. 

The WM network-based cortical maturation could be explained by several factors as follows. 

First, animal studies revealed that cortical regions that are structurally connected by axon 

projections are more likely sharing similar cytoarchitectures, such as neuronal density and 

laminar differentiation (53, 54). Moreover, higher cytoarchitectural similarity among regions 

tend to higher cortical coordinated maturations (55, 56) among neighboring nodes in the brain 

WM network. Second, a recent study using 19 different neurotransmitter receptors/transporters, 

such as dopamine and glutamate, found that structurally connected cortical regions usually show 

greater neurotransmitter receptor similarity (57). Therefore, these regions may be more inclined 

to be coregulated by similar physiological processes during development (58, 59). Third, direct 

WM connections facilitate ongoing interregional communication, enabling these regions to 

exhibit strong spontaneous neuronal activity couplings (60), which indicates the natural 

preference for the regional coordination of functional development. This also coincides with 
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Hebbian learning rule, where neurons that fire synchronously tend to form or consolidate 

connections between them (61, 62). Additionally, WM network-based constraints on cortical 

morphology exist extensively in adult brains. For instance, Gong et al. suggested that 

approximately 40% of edges in the adult CT covariance network show matched WM connections 

(63). In degenerative brain diseases, including schizophrenia, dementia, and Parkinson’s disease, 

studies also found that the disease-related cortical deformation pattern across brain regions is 

conditioned by the WM network (43, 64, 65). 

Notably, in this study, we proposed a network-based diffusive model for the constraint of WM on 

CT maturation. We highlight that nodal diffusion profiles of the WM connectome could 

accurately predict the maturation pattern of regional CT (Fig. 3B). From a physical transport 

perspective, the axonal microenvironment can be regarded as a porous medium that makes 

diffusion processes within brain tissues extremely critical for delivering oxygen and glucose 

during neuron metabolism (66). Meanwhile, diffusion of chemical neurotransmitters at synaptic 

clefts along axons is essential for forming postsynaptic responses during intercellular 

communications (67). At the macroscopic scale, network-based models have been proposed to 

simulate the consequences of interregional diffusive spread in latent topological space 

throughout the brain connectome. In neurodegenerative diseases (e.g., Alzheimer’s disease), 

these models showed excellent prediction abilities for the spatial atrophy pattern of the cortex by 

capturing disrupted transport of trophic factors or accumulated spread of toxic misfolded proteins 

(68, 69). Based on brain images of nine very prematurely born infants, Friedrichs-Maeder et al. 

employed a diffusion model to explore the relationship between WM connectivities and cerebral 

MR measurements such as T1 relaxation time (70). They reported that early maturation in the 

primary sensory cortex serves as a source to gradually propagate into the higher-order cortex. In 

our study, considering the intricate biological relevance between brain WM and cortical 

morphology (49, 52), we used a simple random walk model to depict the complex network 

diffusive processes of brain nodes. This model can concisely present the local to distributed 

supports of the structural connectome on cortical maturation from childhood to adolescence. 

These nodal diffusive features are effectively integrated by a multivariable machine learning 

model to represent nodal cortical maturation. Of note, this model first showed the significance of 

indirectly WM-connected neighbors for constraining nodal morphology maturation, which 

strongly emphasizes the necessity of employing a network-level model to capture this 

relationship. The contribution from indirect neighboring scales is reasonable because cortical 

communications between brain regions inherently contain high-order components to support 

information exchanges between topologically distant nodes (71, 72). Meanwhile, these indirect 

WM neighbors are shown majorly located within nearby cortical communities (Fig.3B-C) that 

share common maturation processes to support morphological integration during cortical 

development (73, 74). 

Our results also showed that the constraints of the WM network on CT maturation are spatially 

heterogeneous (Fig. 3B and Fig. 3D). Regionally, dominant nodes in the heteromodal area, 

especially within and between FP and DM networks, show the strongest spatial constraints. 

Previous neuroimaging studies have revealed that FP and DM networks display dramatic cortical 

thinning from childhood to adolescence (1, 8). During the same period, brain WM integrity 

(measured by fractional anisotropy) and functional connectivity also show prominently increased 

tendencies within these networks (75, 76). Our results imply that the strong WM constraints on 

the cortical maturation of the heteromodal area may determine the major pattern of whole-brain 
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cortical thinning. Compatible with our findings of connectome-morphology constraints, 

structure‒function association studies also show age-related increases in heteromodal area during 

youth, which are associated with individual executive performance (77). These multifaced 

heteromodal refinements could support the rapid enhancement of high-order cognitive and social 

capabilities such as working memory and reasoning (76, 78). 

By employing transcriptome imaging analyses in a developmental gene expression dataset, we 

found that those dominant nodes in the heteromodal area show different transcriptional patterns 

compared with non-dominant brain nodes. Specifically, dominant regions exhibit higher gene 

expression levels involved in the maturation of gray matter morphology, including synaptic and 

dendritic development, and lower expression levels associated with WM maturation, such as 

axon and myelin development. This coincides with the findings from histological samples and 

MR images studies, demonstrating that heteromodal regions have higher synaptic density and 

lighter myelination than other regions in childhood and adolescence. This brings prolonged 

maturation of high-order cortex during adolescence to support the optimization and consolidation 

of synaptic and axonal connectivity compatible with cognitive growth and the environment (1, 

23, 25, 50). Likewise, we conducted GO enrichment analysis with the AHBA dataset, which is 

the most complete gene expression dataset available on the human brain to date, and found that 

the nonuniform degree of constraints is mainly related to the biological processes and cellular 

components involved in learning or memory, synapse organization, glutamatergic synapse, and 

neuron spine. These gene-related processes are involved in the spatial thinning of CT during 

childhood and adolescence (23, 24). As the most abundant synapse type in the neocortex, 

glutamatergic synapses are primarily responsible for the transport of excitatory transmitters, 

which are crucial for regulating the transmission and processing of information among brain 

regions (67). Meanwhile, neuron spines on dendrites serve to receive various kinds of excitatory 

inputs from axons and are considered crucial for brain circuit wiring distribution and circuit 

plasticity (79, 80). Disruptions of these synapses structures are important substrates of 

pathogenesis in multiple neurodevelopment diseases, especially those with deficits in 

information processing, such as autism (79, 81). In summary, our findings provide evidence that 

genetic factors associated with the microstructure development contribute to these connectome-

based constraints on cortical maturation. 

Several issues need further consideration. First, diffusive processes during axonal transport are 

proven directional (13). However, in vivo inference for the direction of WM fibers is still 

extremely difficult with tractography-based methods. Future investigations combining diffusion 

models with animal connectome by molecular tracers would reveal a directed network constraint 

mechanism. Second, the developmental gene data from BrainSpan only contain 11 areas of the 

neocortex (44), which can only provide a rough exploration of the differences in gene expression 

between dominant and non-dominant nodes. We further validated this result using the AHBA 

datasets (45), but it was sampled from only six postmortem adult brains. Future studies with gene 

expression data of widespread cortical regions from a large sample of children and adolescents 

would be important for connectome-transcriptome association analysis. Finally, we showed the 

constraints of the WM network on cortical morphology maturation in typical development. 

Previous studies have documented both abnormal cortical maturation and WM connectome 

structure in neurodevelopmental disorders such as autism (82) and attention-deficit/hyperactivity 

disorder (83). In the future, it would be desirable to examine how the WM connectome shapes 

cortical morphology in these atypical populations. 
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Materials and Methods 

Participants and Data Acquisition 

We performed analyses in two independent datasets. The Discovery Dataset included a 

longitudinal cohort of 314 participants (aged 6-14 years) with 299 scans in the child group (mean 

(± SD) age 8.68 ± 0.94 y, 157 females) and 222 scans in the adolescent group (mean age 11.19 ± 

0.94 y, 108 females) from the Beijing Cohort in Children Brain Development (CBD) project 

(84). Structural and high angular resolution diffusion imaging (HARDI) diffusion MR brain 

images for each subject were scanned at Peking University using a 3T Siemens Prisma scanner. 

Informed written consent was obtained from all participants and at least one parent/guardian, 

consistent with the guidelines of the Ethics Committee of Beijing Normal University. The 

Replication Dataset included a cross-sectional cohort of 301 participants (aged 5-14 years) with 

98 scans in the child group (mean age 8.72 ± 0.99 y, 32 females) and 203 scans in the adolescent 

group (mean age 12.17 ± 1.28 y, 86 females) selected from the Lifespan Human Connectome 

Project in Development (HCP-D) (29). Participants were recruited across four imaging sites, and 

details on imaging protocols can be found in (85). 

Estimation of Regional CT and WM Networks  

Each participant’s cortex was parcellated into 1000 regional nodes with approximately equally 

sized based on the modified Desikan-Kiliany atlas (31, 32) and verified at 219-node and 448-

node parcellations. The CT of each brain node was estimated by using FreeSurfer v6.0 software 

(https://surfer.nmr.mgh.harvard.edu/). Then, we reconstructed anatomical streamlines between 

each two cortical nodes based on diffusion MR images using generalized q-sampling imaging 

(GQI)-based deterministic streamline tractography (39, 86) and combined a consensus approach 

to generate the binary group-level WM connectome (40). 

Data Analysis 

We explored the relationship between cortical morphology maturation and WM networks by the 

following analysis. (i) To estimate the maturation of CT from childhood to adolescence, we 

applied a mixed linear analysis with the sex term included as the covariate and the group term as 

the main effect for each brain node. The T statistics from the group term were used to represent 

the maturation extent of brain nodes. (ii) To test whether the regional maturation of CT was 

constrained by its direct WM connections, we calculated the spatial correlation between the 

maturation extent of nodal CT and the mean t value of its directly WM-connected neighbors. (iii) 

We proposed a diffusion model by combining nth-order random walk processes with a support 

vector regression method to determine whether the diffusion properties of the WM network 

could predict the maturation pattern of CT. To further identify the dominant regions, which play 

more important roles in leading cortical development, we calculated the cosine similarity 

between the CT maturation map and the nodal diffusion profiles. (iv) We used developmental 

gene expression data from BrainSpan (44) to evaluate whether there are distinctions in the 

expression levels of genes associated with several neural development events between dominant 

and non-dominant regions. Four typical maturation gene sets (26) were selected covering axon 

development, myelination, dendrite development, and synapse development. To further validate 

the relationship between spatial heterogeneous constraints and cortical gene expression levels at 

the whole-brain level, we performed a Pearson’s correlation analysis with Allen Human Brain 
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Atlas datasets (45) combined with Gene Ontology enrichment analysis. 

Detailed information about participants, image acquisition, data preprocessing, and data analyses 

are further described in SI Appendix. 

Data Availability 

The Replication Dataset used here is from the Lifespan Human Connectome Project in 

Development (29), which is available for download through https://nda.nih.gov/. The BrainSpan 

Atlas dataset is available at http://brainspan.org/static/download.html (44). The AHBA dataset is 

available at https://human.brain-map.org/static/download (45). The study data and codes are 

available at https://github.com/Xinyuan-Liang/SC-shapes-the-maturation-of-cortical-

morphology.   
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Figure Legends 

 
 

Figure 1. CT maturation from childhood to adolescence. (A) Spatial maturation map of CT 

from childhood to adolescence. A greater positive t-value denotes more pronounced cortical 

thinning with development. The maps were corrected using a Bonferroni correction method for 

multiple comparisons (pbonf < 0.05). (B) The mean CT maturation extent (estimated by t-value) 

within each brain community was defined by Yeo et al. (34), and the laminar differentiation level 

was defined by Mesulam et al. (37) (C). Spin tests (35, 36) were performed by spherical 

projection and rotation class positions 1000 times for correcting spatial autocorrelations, and the 

class-specific mean t-values were expressed as z scores relative to this null model. A positive z 

score indicated higher cortical thinning than expected by chance. Asterisks denote statistical 

significance (pspin < 0.05). VIS, visual; SM, somatomotor; LIM, limbic; DA, dorsal attention; 

VA, ventral attention; FP, frontoparietal; DM, default mode; IT, idiotypic; PL, paralimbic; UM, 

unimodal and HM, heteromodal. Values of a brain map were visualized using BrainNet Viewer 

(87). 
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Figure 2. WM network-based CT maturation. (A) Group-level connectome backbone at 1000-

node resolution. (B) Schematic diagram of WM network-constrained CT maturation. The CT 

maturation extent of a given node (orange) was correlated with the mean maturation extent of its 

directly connected neighbors (blue) to test whether the maturation of CT is shaped by the 

underlying WM network architecture. (C) A significant correlation was observed between the 

nodal CT maturation extent and the mean of its directly connected neighbors (radj = 0.74, P = 

5.56 × 10 -176). The scatter plot shows the result at 1000-node resolution. See SI Appendix, Fig. 

S3 for results at other resolutions. (D) The observed correlations across 3 resolutions (shown as 

red circles) were compared against two baseline null models. (1) To determine whether these 

correlations were driven by the basic spatial embedding of the WM network, we randomly 

rewired edges while preserving the nodal degree and edge length distribution of the empirical 

WM network (“rewired”, 1000 times, shown as light blue boxes). (2) To determine whether these 

correlations were driven by spatial autocorrelation, we generated 1000 surrogate maps by 

rotating region-level cortical t values (“spin test”, shown as deep blue boxes). Asterisks denote 

statistical significance (p < 0.001). (E) The spatial correlation at the system level. The whole-

brain cortical nodes were classified into seven classic communities (34) (left) and four laminar 

differentiation levels (37) (right), and the statistically significant (pspin < 0.05, FDR corrected) 

correlations are shown in color. VIS, visual; SM, somatomotor; LIM, limbic; DA, dorsal 

attention; VA, ventral attention; FP, frontoparietal; DM, default mode; IT, idiotypic; PL, 

paralimbic; UM, unimodal and HM, heteromodal. 
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Figure 3. Network-based diffusion model. (A) Schematic diagram of nodal diffusion processes 

through multiscale WM edge paths. The orange color represents the edges and nodes at the nth 

neighboring scale of a given node i (red). For the first neighboring scale, the diffusion 

probabilities of node i to its neighbors during one random walk step are 1 𝑑𝑖⁄ , where 𝑑𝑖 is the 

node degree of i. As the moving steps increase, the scale of the probed neighbor nodes also 

expands and the diffusion probabilities to each neighbor are recalculated iteratively. The 

diffusive profiles of all nodes form the diffusive probability matrix at each neighboring scale. (B) 

The curve of the average diffusive probability of whole-brain nodes within the same cortical 

system and between systems. It illustrates that the diffusion probability within the same cortical 

system was greater than 0.5 at the first scale and then decreases with the expansion of 

neighboring scales. (C) Significant correlations between the predicted CT maturation and the 

observed CT maturation. The observed correlations (red dots) were compared to the correlations 

obtained from 1000 rewired tests (light blue boxes) and 1000 spin tests (deep blue boxes). 

Asterisks denote statistical significance (p <= 0.001). The box plot shows the result at 1000-node 

resolution. See SI Appendix, Fig. S5 for results at other resolutions. The scatter plot on the right 

depicts the correlation between actual and predicted CT maturation at the 3rd neighboring scale, 

which exhibited the highest prediction accuracy, as an example. (D) Schematic of dominant brain 

region identification. Dominators are regions whose diffusion profiles show significant cosine 

similarity with the CT maturation map. Spin tests (1000 times) were used to evaluate the 

statistical significance. (E) Regional distributions of dominant likelihood (cosine similarity) 

between nodal diffusion profiles and CT maturation map at 1-9 neighboring scales (top panels) 

and the spatial distributions of dominant regions (pspin < 0.05, bottom panels). SI Appendix, Fig. 

S6A-B and Fig.S7 depict the results in other view directions and in other parcellation resolutions. 

(F) The conjunction map of dominant nodes across all nine neighboring scales shows the 
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probability of each node being identified as a dominant node across scales. (G) The diffusive 

probability distribution of two representative dominant nodes separately in the prefrontal cortex 

(PFC, top panels) and inferior parietal cortex (IPC, bottom panels) at each 1-9 neighboring scale. 

A node with a brighter color represents a greater diffusive probability between that node and the 

dominant node. The right panels show the diffusive probability of both dominant nodes within 

the same cortical system and between systems. As the neighborhood scale expands, the diffusion 

of these two nodes spreads from local communities to nearby and distributed communities across 

whole brain. These diffusion processes were mainly involved in nodes within system at low 

neighboring scales while in nodes between systems at high scales. 
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Figure 4. Association between regional heterogeneous constraints and gene expression 

profiles. (A) Transcriptomic trajectories between dominant regions (solid line) and non-dominant 

regions (dashed line) in four maturation processes. Here, we calculated the first principal 

component score of each gene set’s transcription level. (B) Transcriptomic differences between 

dominant and non-dominant regions from childhood to adolescence. For each maturation process, 

the statistical significance was calculated by comparing the empirical difference (red dots) against 

null differences generated by randomly resampling the same number of genes 1000 times from the 

remaining genes. Asterisks denote statistical significance (p < 0.05). (C) Volcano plot depicts Gene 

Ontology (GO) results for Biological Processes and Cellular Components (D). The dots represent 

the GO terms corrected for multiple comparisons (FDR-corrected, P < 0.05). The size of the dot 

indicates the number of genes belonging to the corresponding GO term, and the transparency of 

the dot represents the significance of the corresponding GO term. 
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SI-1. Participants and MRI Data Analyses 

1.1 Participants 

We performed analyses in two independent datasets. The Discovery Dataset included a 

longitudinal cohort of 358 typically developing participants (aged 6-14 years, 651 scans from 

195 males and 163 females) from the Beijing Cohort in Children Brain Development (CBD) 

project. All the individuals were recruited from primary schools in Beijing. The exclusion 

criteria included cognitive anomalies (1), significant physical illness or history of 

neurological/psychiatric disorders, significant head injuries, abuse of illegal drugs and alcohol, or 

contraindications for MRI. Some of these participants were invited to take part in up to three 

repeated MRI scans, with an interval of approximately one year between each scan. Informed 

written consent was obtained from all participants and at least one parent/guardian, consistent 

with the guidelines of the Ethics Committee of Beijing Normal University. 

After strict quality control, a total of 130 scans were excluded. Specifically, 76 scans were 

excluded due to artifacts in T1-weighted (T1w) images, 39 and 15 scans were excluded due to 

high in-scanner motion (maximum head motion > 3 mm) and serious signal dropout, respectively 

in diffusion MRI (dMRI) images. Finally, 521 scans from 314 participants (aged 6-14 years, 153 

females) were included in the study. Among these included participants, 158 participants had one 

scan, 105 participants had two scans, and 51 participants had three scans. According to the 

criteria from a previous public health investigation (2) and the WHO (3), these participants were 

then divided into two sex-balanced groups: 299 scans in the child group (6-10 years, mean (± 

SD) age 8.68 ± 0.94 years, 157 females) and 222 scans in the adolescent group (10-14 years, 

mean age 11.19 ± 0.94 years, 108 females). 

For reproducibility analyses, we also included a cross-sectional Replication Dataset from the 

Lifespan Human Connectome Project in Development (HCP-D) (4). Participants were recruited 

across four imaging sites: (1) Harvard University, (2) University of California-Los Angeles, (3) 

University of Minnesota, and (4) Washington University in St. Louis (WUSTL). Details on the 

inclusion and exclusion criteria can be found in (4). All procedures were approved by a central 

Institutional Review Board administered at Washington University in St. Louis (IRB 

#201603135). 

In this Replication Dataset, we initially included 301 typically developing participants aged 5 to 

14 (192 females). First, we excluded 3 participants with anatomical anomalies and 17 

participants with notable myelin map quality issues according to each subject’s quality control 

report of structural MR images (4). After these, T1w images of 98 children (5-10 years, mean 

age 8.72 ± 0.99 years, 32 females) and 203 adolescents (10-14 years, mean age 12.17 ± 1.28 

years, 86 females) were eventually included. Next, for dMRI images, we excluded 30 

participants due to serious signal dropout (based on eddy-corrected dMRI images) and 4 

participants due to high in-scanner motion (maximum head motion > 3 mm) in the child group. 

After these, diffusion images from 64 children were included in this study. 

1.2 Image Acquisition 

For the Discovery Dataset, high-resolution T1w images for each subject were scanned at Peking 

University using a 3T Siemens Prisma scanner. T1w images were acquired using the following 
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parameters: repetition time (TR) = 2530 ms, echo time (TE) = 2.98 ms, inversion time (TI) = 

1100 ms, flip angle (FA) =7 ◦, acquisition matrix = 256×224, field of view (FOV) = 256×224 

mm2, slice number = 192, slice thickness = 1 mm, bandwidth (BW) = 240 Hz/Px. Diffusion-

weighted images were acquired using the high angular resolution diffusion imaging (HARDI) 

sequence with a 64-channel head coil with parameters as follows: TR = 7500 ms, TE = 64 ms, 

acquisition matrix = 112×112, FOV = 224×224 mm2, slices = 70, slice thickness = 2 mm, BW = 

2030 Hz/Px, 64 diffusion weighted directions (b-value = 1000 s/mm2) with 10 non-diffusion 

weighted b0 (0 s/mm2). 

For the Replication Dataset, high-resolution T1w images were scanned on a 3T Siemens Prisma 

using the following parameters (5): TR = 2500 ms, TE = 1.8/3.6/5.4/7.2 ms, TI = 1000 ms, FA = 

8°, slice thickness = 0.8 mm, and in-plane acceleration factor = 2. Parameters for diffusion MRI 

were as follows: TR = 3230 ms, TE = 89 ms, slice thickness = 1.5 mm, multiband acceleration 

factor = 4, 92-93 directions per shell (b = 1500/3000 mm2). There are 28 b0 volumes equally 

interspersed across four consecutive dMRI runs. Therefore, each individual acquired two images 

with 199 volumes in the opposite phase encoding direction (AP and PA). 

1.3 MRI Data Preprocessing 

For the Discovery Dataset, cortical reconstruction was performed using FreeSurfer v6.0 image 

analysis suite (https://surfer.nmr.mgh.harvard.edu/). This processing includes intensity 

normalization, nonbrain tissue removal, tissue segmentation, automated cortical reconstruction, 

and surface parcellation (6-10). To improve the quality of nonbrain tissue removal, we used HD-

BET (11), an artificial neural network-based tool, to automatically extract brain tissue images 

that were further used to replace the brainmask.mgz files in FreeSurfer for subsequent 

processing. To reconstruct the individual cortical surface, all images were first processed cross-

sectionally and then processed through the longitudinal stream (12, 13) in FreeSurfer to obtain 

more sensitive and reliable measurements of cortical morphology. Specifically, an unbiased 

within-subject template based on all available time points was created for each individual with 

longitudinal scans. This template was used to provide initial information for segmentation and 

cortical reconstruction to reduce random variation during nonlinear optimization within each 

subject. Next, we constructed a custom registration template by averaging all available subjects' 

cortical surfaces. The atlas in the standard fsaverage space was registered to the new custom 

template and then registered to each subject’s surface space to be used to obtain regional cortical 

thickness (CT) measurements. All images were visually inspected and manually edited and 

corrected where needed by a trained researcher (X.Y.L.) to ensure the correctness of gray matter 

(GM) and white matter (WM) boundaries and improve the quality of the output. Diffusion data 

were first denoised, and Gibbs ringing artifacts (14) were removed using MRtrix 3.0 (15). Next, 

we corrected eddy current-induced distortions, head movements, and signal dropout using the 

FSL eddy tool (16-18). Then, we fed the eddy-corrected DW images and corresponding fieldmap 

images into the FSL epi_reg script (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide# 

epi_reg) to remove EPI susceptibility artifacts. Finally, B1 field inhomogeneity was corrected for 

the dMRI images with the N4 algorithm available in ANTS (19). 

For the Replication Dataset, the T1w data went through the HCP preprocessing pipeline (20). We 

obtained the individual CT in a common 32k_fs_LR space from the publicly available dataset. 

Diffusion data were first denoised, and Gibbs ringing artifacts were removed. Then, we used 

topup/eddy (16-18, 21) to correct the EPI distortions, eddy currents, subject movement 
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distortions, and signal dropout. Finally, B1 field inhomogeneity was corrected for the dMRI 

images. 

1.4 Analysis of CT from Childhood to Adolescence 

First, we employed an anatomical brain atlas with multi-scale regional parcels (22) based on the 

classical Desikan-Kiliany parcellation (10, 23) to divide each participant’s cortical surface into 

1000 approximately equally sized regions of interest (ROIs). To evaluate the impact of nodal 

resolution, we also parcellated the cortical surface into 219 and 448 nodes, respectively. The CT 

of each brain node was estimated by calculating the average thickness of all vertices in that nodal 

ROI. 

To estimate the nodal maturation map of whole brain CT from childhood to adolescence in the 

Discovery Dataset, we applied a mixed linear model analysis for each brain node (24). The linear 

model included the group as the fixed variable of interest, sex as the fixed effect covariates, and 

the subject-specific intercept as the random effect and was defined as follows: 

𝐶𝑇𝑖𝑗 =  𝛽0 + 𝑏𝑖 + （𝛽𝑔𝑟𝑜𝑢𝑝 + 𝑏𝑔𝑟𝑜𝑢𝑝,𝑖） ·  𝑔𝑟𝑜𝑢𝑝𝑖𝑗 + 𝛽𝑠𝑒𝑥 · 𝑠𝑒𝑥𝑖  +  ε𝑖𝑗 

Specifically, 𝐶𝑇𝑖𝑗 is the CT of participant 𝑖 at the 𝑗𝑡ℎ scan, 𝛽𝑔𝑟𝑜𝑢𝑝 represents the fixed 

group effect of participant i, 𝑏𝑔𝑟𝑜𝑢𝑝,𝑖 is the random effect, and ε𝑖𝑗 is the residual. The T 

statistics obtained from the group term were used to represent the maturation extent of CT from 

childhood to adolescence. Greater positive values of T indicated more significant cortical 

thinning. 

For the multicentric cross-sectional Replication Dataset, the maturation extent of CT was 

modeled as follows: 

𝐶𝑇𝑖𝑠 =  𝛽0 + 𝑏𝑖 + （𝛽𝑔𝑟𝑜𝑢𝑝 + 𝑏𝑔𝑟𝑜𝑢𝑝,𝑖） ·  𝑔𝑟𝑜𝑢𝑝𝑖𝑠 + 𝛽𝑠𝑒𝑥 · 𝑠𝑒𝑥𝑖  +  ε𝑖𝑠 

where 𝐶𝑇𝑖𝑠 is the cortical thickness of participant 𝑖 at the 𝑠𝑡ℎ site. 

SI-2. Estimating the Maturation Pattern of CT and Its Associations with WM 

Connectome Structure from Childhood to Adolescence 

2.1 WM Connectome Construction 

We reconstructed anatomical streamlines between each two cortical regions based on diffusion 

MR images to generate the cortical WM network. This procedure was constructed using DSI 

Studio software (https://www. nitrc.org/projects/dsistudio). First, an SRC file was generated 

from the dMRI image for each child. Then, we generated spin distribution function (SDF) maps 

using the generalized q-sampling imaging (GQI) algorithm (25) with a diffusion sampling length 

ratio of 1.25. The GQI is a model-free method to estimate the anisotropy of diffusing water, 

which is suitable for reconstructing crossing fibers (26). Deterministic fiber tracking (27) was 

performed in the individual native dMRI space according to the following steps. We first 

generated the gray-white boundary mask by dilating the GM atlas 2 voxels toward the inner 

boundaries and taking the intersection of the WM mask. Then, we merged the original GM atlas 

and the GM-WM boundary to obtain a seed mask. Next, we defined the terminative mask as 
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cerebrospinal fluid (CSF) and subcortical regions. All these masks were transformed from the 

native T1w space into the native dMRI space using the individual mean b0 image as the co-

registered target in ANTS (19). Last, ten million streamlines were generated with a step size of 

0.625 mm. The anisotropy threshold was set as default, and the turning angle threshold was 45°. 

Streamlines smaller than 6 mm or larger than 250 mm were further removed. For each child, the 

connectivity matrices weighted by fiber density (defined as the fiber number normalized by the 

mean surface area of the two brain regions) were generated using the same parcellations as 

described above. Finally, the binary group-level WM backbones were created using a consensus 

approach that preserves the connection length distributions of individual children (28). 

2.2 Association between CT Maturation and WM Connectome Structure 

We first estimated the constraints of the whole brain WM network on the maturation of nodal CT 

followed by the method introduced by Shafiei et al. (29). Specifically, we used the group-level 

binary WM network to define the WM-connected neighbors of each cortical node. Next, we 

assessed the across-node relationship between the CT maturation extent (t-value between child 

and adolescent groups) of a node and its directly connected neighbor nodes by a model as 

follows: 

𝑇̂𝑖 =  
1

𝑁𝑖
∑ 𝑇𝑗

𝑁𝑖

𝑗≠𝑖,𝑗=1

 

In this model, 𝑇̂𝑖 represents the predicted CT maturation extent of node 𝑖 according to its 

directly connected neighbors. 𝑇𝑗 represents the CT maturation extent (t values as mentioned 

above) of the jth neighbor, and 𝑁𝑖 is the number of directly connected neighbors of node 𝑖. 
Then, we calculated the spatial correlation between the empirical CT maturation extent (nodal t-

value) and the predicted values (𝑇̂𝑖). The correlation coefficient was used to represent the 

constraint degree between the WM edges and the nodal maturation pattern of CT. To further 

estimate the spatial constraints at the system level, we classified the whole-brain cortical nodes 

into 7 classic communities (30). Next, we calculated the constraint degree across nodes in each 

sub-network within system and between systems (only when there are more than 10 connections 

between any two systems). We also repeated the analyses by classifying the brain nodes into 4 

laminar differentiation levels (31). 

2.3 Null Models of Spatial Correlations 

We further tested the observed spatial correlation against two baseline null models. In the first 

null model, we used a spatial permutation test (“spin test”) to explore whether the observed 

correlation is specific to the actual CT maturation pattern rather than the spatial autocorrelation 

of CT maturation (32, 33). Specifically, we first record the spherical coordinates of centroids for 

each parcel in the Cammoun atlas (23). Then, we randomly rotated the parcels while maintaining 

spatial autocorrelation and reassigned node values to the nearest parcels. This procedure was 

repeated 1000 times to create surrogate t-maps. The p-value was calculated as the fraction of 

correlations in null models exceeding the observed correlation. 

In the second null model, we evaluate whether the observed correlation is determined by the 
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empirical WM network topology rather than the basic spatial embedding of the WM network 

(such as the distribution of node degree and edge length), we used a rewired null model 

(“rewired”) (34). Specifically, we first divided edges into different bins according to their 

Euclidean distance. To preserve the degree sequence and approximate edge length distribution of 

the empirical WM network, edge pairs were randomly swapped within each bin. Finally, 1000 

surrogate networks were generated by repeating this procedure. The p-value was calculated as 

the fraction of correlations in null models exceeding the observed correlation. 

2.4 Network-based Diffusion Model of WM Connectome to Predict Nodal Morphology 

Maturation 

To further understand the mechanisms of how the maturation process of cortical morphology is 

constrained by the structural connectome, we present a network-based diffusion model in which 

the cortical diffusion processes through multiscale WM edge paths could simulate the maturation 

of nodal CT. Specifically, we combined the random walk model and support vector regression 

(SVR) to predict CT maturation by employing nodal diffusive profiles at multiple neighboring 

scales as features. To characterize the multiscale diffusion properties of the WM network at the 

nodal level, we used the random walk (35) model to simulate the diffusion process between any 

two brain regions. Specifically, for an adjacency matrix 𝐴, if its element 𝐴𝑖𝑗 is 1, it indicates 

that there are edges (anatomical connections) between node 𝑖 and node 𝑗, and it is 0 when there 

is no edge. The probability of node 𝑖 transferring to its neighbor 𝑗 during one step is 𝐴𝑖𝑗 𝑑𝑖⁄  

(modeled by a random walker moving one step along the edges of the WM network), where 𝑑𝑖 

is the structurally connected neighbor number (node degree) of node 𝑖. Thus, the transition 

probabilities of the WM network were represented by the transition matrix P. P was defined as: 

𝐏 = 𝑫−1𝐀  

where 𝑫 is the node degree diagonal matrix. The initial distribution of random walkers is 

represented in 𝒑0, where the diagonal elements are 1 and the other values are equal to 0. 

Therefore, when these random walkers move n steps (n = 1, 2, 3, …), their distribution can be 

described as: 

𝐏(n) = 𝒑0𝑷𝑛 

The sum of elements in each row of the distribution matrix is 1, reflecting the diffusion 

preference of each node with its nth-order neighborhoods. The maximum number of steps N was 

set as the diameter of the WM network (the max shortest path length between any pair of nodes). 

Finally, we averaged the outgoing and incoming random walker distribution matrix as a 

symmetrical diffusion connectivity matrix at each step to represent the bidirectional diffusion 

properties between any two nodes. Each row of this matrix represents the diffusive profile at the 

nth neighboring scale of each cortical node. Increasing moving steps present expansion scales of 

the probed neighborhood, which indicates local to distributed preferences of information 

exchange during diffusion propagation. 

Next, we trained a support vector regression (SVR) model with diffusive profiles at all 

neighboring scales of a brain node as input features to predict its nodal CT maturation extent. 

This model was trained in a tenfold cross-validation strategy with a linear kernel. The coefficient 

of training error, that is, the C parameter, was selected from among 16 values [2-5,2-4, …,29, 210] 
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as in a previous study (36). The Pearson correlation coefficient between the empirical and 

predicted CT maturation extents was calculated as the prediction accuracy. To evaluate the 

contribution of each scale, we also use the diffusive profiles at each neighboring scale as the 

input features to further verify the results. Two null models were used to evaluate the 

significance of prediction accuracy. In the first model, we created 1000 surrogate CT maps by 

randomly permuting cortical labels while preserving spatial autocorrelation to retrain the SVR 

models (“spin test”). In the second model, we generated 1000 degree- and edge length-

preserving surrogate networks and recalculated diffusion connectivity matrices to retain the SVR 

models (“rewired”, see Null Models). These analyses were performed using the LIBSVM 

toolbox (https://www.csie.ntu.edu.tw/~cjlin/ libsvm/). 

2.5 Identifying the Dominant Regions during Development 

Dominant regions during development were identified by calculating the cosine similarity 

between the CT maturation map and the diffusion profiles at each random walk step. The high 

similarity of a node indicates that its neighboring diffusion preference more spatially resembled 

its neighboring distribution of CT maturation, suggesting a more important role in leading 

cortical development. The statistical significance of the spatial similarity for each brain region 

was assessed by using a spatial permutation test (1000 times, see Null Models). Regions with 

significantly greater spatial similarity (p spin < 0.05) were identified as the dominant regions 

during development. 

We further replicated our results using the other method introduced by (29), which aims to find 

some brain regions that show high maturation extents in both themselves and their directly 

connected neighbors. To identify such regions, we ranked the nodes’ CT maturation extents and 

their neighbors’ mean CT maturation extents in ascending order. For each node, we calculated 

the mean rank across both lists. The significance of rankings was evaluated using the spin test 

(1000 times, see Null Models). Regions with significantly higher ranks (p spin < 0.05) were 

identified as the dominant regions. 

SI-3. Relationship between Heterogeneous Connectome Constraints on 

Cortical Maturation and Gene Expression Profiles 

3.1 BrainSpan Atlas 

The BrainSpan data (37) provided developmental gene expression in brain tissue samples from 8 

postconception weeks to 40 years. The 42 donors were divided into five groups based on their 

age, including fetal (8-37 postconception weeks), infant (4 months-1 year), child (2-8 years), 

adolescent (11-19 years), and adult (21-40 years). Only neocortical regions were included in our 

study. There were four tissue samples excluded (primary motor-sensory cortex (samples), 

occipital neocortex, parietal neocortex, temporal neocortex) with gene expression values only in 

the early fetal period (38). Genes with 0 expression values in all tissue samples were removed. 

Then, we divided these samples into dominant and non-dominant categories according to their 

anatomical location (from 11 areas of the neocortex) and arranged them in ascending order based 

on age to explore the temporal characteristics of gene expression. Next, we selected four gene 

sets (39) that cover typical maturation procedures involved in both CT and WM, including axon 

development, myelination, dendrite development, and synapse development, to evaluate whether 
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there are differences in transcription levels between dominant and non-dominant regions. For 

each gene set, we performed principal component analysis (PCA) on the gene expression matrix 

to calculate the first principal component score of each gene set’s transcription level in dominant 

and non-dominant regions. The transcriptomic trajectories were characterized by using locally 

weighted regression to fit the first principal component score with the postconceptional days 

(log2) as in a previous study (39). For visualization, we scaled the first principal component 

score to the range 0-1 across all tissue samples using min-max normalization. 

To assess the significance of the difference for each gene set, we calculated the difference 

between the means of the first principal component scores of the two categories of brain regions. 

Please note that we only include tissue samples within the age range of individuals included in 

the CBD dataset (6 to 14 years) here. Specifically, there were 16 sample tissues (mean age 10 ± 

2.19 years) in dominant regions and 25 sample tissues (mean age 10.24 ± 2.17 years) in non-

dominant regions. Of note, these two groups of samples were matched in age distribution (t value 

= -0.34, P value = 0.73). Next, we randomly sampled an equal number of genes with each gene 

set from the remaining genes in BrainSpan datasets and recalculated the difference and compared 

the observed transcription level differences against the null distributions generated by repeating 

1000 permutation tests. 

3.2 Allen Human Brain Atlas 

The regional gene expression data were obtained from Allen Human Brain Atlas datasets 

(http://human.brain-map.org) (40). Since only two of the six donors (mean age: 42.50 ± 13.38 

years; 1 female) contained whole-brain data, we only considered the left hemisphere here. To 

obtain the gene transcriptional profile of each brain region, the regional microarray expression 

data were preprocessed using a recommended pipeline with the abagen toolbox (41, 42). First, 

probe reannotation was performed according to the information provided by (41). Second, we 

used the intensity-based method to remove the probes that did not exceed background noise in at 

least 50% of tissue samples across all donors. When multiple probes can represent the expression 

of the same gene, we retained the probe with the highest differential stability across donors. The 

differential stability was defined as: 

DS (p) =  
1

(𝑁
2

)
∑ ∑ 𝑟[𝐵𝑖(𝑝), 𝐵𝑗(𝑝)]

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

where N is the number of donors, p is a single probe, and r is the Spearman correlation of 

microarray expression values across brain regions in donor 𝐵𝑖 and donor 𝐵𝑗. Next, the MNI 

coordinates of the samples were updated to those generated by using nonlinear registration. 

Under the guidance of MNI coordinates, tissue samples were assigned to the brain regions 

according to the given atlas by searching the nearest brain region within 2 mm. In this process, 

hemisphere and gross structural information were also used to reduce the assigning bias. All 

samples not assigned to a brain region were discarded. 

To mitigate the differences in microarray expression between donors, we used a scaled robust 

sigmoid function to normalize each sample across all genes (43). 
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𝑥𝑛𝑜𝑟𝑚 =  
1

1 + exp (
−(𝑥𝑖 − ⟨𝑥⟩)

𝐼𝑄𝑅𝑥
)
 

where ⟨𝑥⟩ represents the median and IQR is the interquartile range. Then, we rescaled the 

normalized expression values to the unit interval using the min-max function: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥𝑛𝑜𝑟𝑚 − min (𝑥𝑛𝑜𝑟𝑚)

max(𝑥𝑛𝑜𝑟𝑚) − min (𝑥𝑛𝑜𝑟𝑚)
 

Each gene expression value was normalized across all samples by using the same method. Tissue 

samples assigned to the same parcel were averaged separately for each donor and then averaged 

across six donors. Finally, stable genes with differential stability greater than 0.1 were retained 

for our analysis (38). Genes with greater differential stability are more consistent across donors 

and more biologically relevant, such as disease, drug targets, and literature citations (40). After 

preprocessing, a gene expression matrix (111 brain regions × 8631 gene expression levels) was 

generated. Then, we identified the association between the dominant likelihood map at the 3rd 

neighboring scale (which exhibited the highest prediction accuracy) and each gene expression 

map using Pearson’s correlation and spin tests (1000 times). 

3.3 Gene Ontology Enrichment Analysis 

We performed the Gene Ontology enrichment analysis on gene sets using the ToppGene Suite 

(44) according to the following thresholds: (1) P value cutoff was 10-5 in the advanced parameter 

settings, (2) q-value < 0.05 in Benjamini‒Hochberg false discovery rate (FDR) corrections. The 

significant enrichment terms for both positively correlated and negatively correlated gene sets 

are shown in S7-S8. We used the online tool REViGO (http://revigo.irb.hr) to select the most 

meaningful GO terms and highlight them. 
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Table S1 Accuracy to predict the spatial maturation of CT by using multiscale diffusion 

profiles of network links as features (1000-node resolution). 

Neighboring scale Accuracy prewired pspin 

1 0.74 <0.001 <0.001 

2 0.74 <0.001 <0.001 

3 0.75 <0.001 <0.001 

4 0.73 <0.001 <0.001 

5 0.71 <0.001 <0.001 

6 0.69 <0.001 0.001 

7 0.67 <0.001 0.001 

8 0.66 <0.001 0.001 

9 0.65 <0.001 0.001 

Note: The table above gives the prediction accuracies and p-values (calculated as the fraction of 

null values exceeding the observed accuracy in the “rewired” test and “spin” test) by using an SVR 

model with multiscale diffusion profiles of WM network links as features to predict the spatial 

maturation of CT. Spatial maturation of CT and diffusion profiles of WM network links were 

obtained from CBD dataset. 
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Table S2 Accuracy to predict the spatial maturation of CT by using multiscale diffusion 

profiles of network links as features (219-node resolution). 

Neighboring scale Accuracy prewired pspin 

1 0.64 <0.001 0.001 

2 0.64 <0.001 0.001 

3 0.65 <0.001 <0.001 

4 0.61 <0.001 0.001 

5 0.60 <0.001 <0.001 

6 0.56 <0.001 0.001 

Note: The table above gives the prediction accuracies and p-values (calculated as the fraction of 

null values exceeding the observed accuracy in the “rewired” test and “spin” test) by using an SVR 

model with multiscale diffusion profiles of WM network links as features to predict the spatial 

maturation of CT. Spatial maturation of CT and diffusion profiles of WM network links were 

obtained from CBD dataset. 
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Table S3 Accuracy to predict the spatial maturation of CT by using multiscale diffusion 

profiles of network links as features (448-node resolution). 

Neighboring scale Accuracy prewired pspin 

1 0.72 <0.001 <0.001 

2 0.73 <0.001 <0.001 

3 0.73 <0.001 <0.001 

4 0.72 <0.001 <0.001 

5 0.69 <0.001 <0.001 

6 0.68 <0.001 <0.001 

7 0.68 <0.001 <0.001 

Note: The table above gives the prediction accuracies and p-values (calculated as the fraction of 

null values exceeding the observed accuracy in the “rewired” test and “spin” test) by using an SVR 

model with multiscale diffusion profiles of WM network links as features to predict the spatial 

maturation of CT. Spatial maturation of CT and diffusion profiles of WM network links were 

obtained from CBD dataset. 
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Table S4 Accuracy to predict the spatial maturation of CT by using multiscale diffusion 

profiles of network links from HCP-D dataset as features (1000-node resolution). 

Neighboring scale Accuracy prewired pspin 

1 0.78 <0.001 <0.001 

2 0.77 <0.001 <0.001 

3 0.77 <0.001 <0.001 

4 0.75 <0.001 <0.001 

5 0.73 <0.001 <0.001 

6 0.71 <0.001 <0.001 

7 0.70 <0.001 <0.001 

8 0.69 <0.001 <0.001 

Note: The table above gives the prediction accuracies and p-values (calculated as the fraction of 

null values exceeding the observed accuracy in the “rewired” test and “spin” test) by using an SVR 

model with multiscale diffusion profiles of WM network links as features to predict the spatial 

maturation of CT. The spatial maturation of CT was obtained from CBD dataset. Diffusion profiles 

of WM network links were obtained from HCP-D dataset. 
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Table S5 Accuracy to predict the spatial maturation of CT by using multiscale diffusion 

profiles of network links as features (1000-node resolution, independent tests in HCP-D 

dataset). 

Neighboring scale Accuracy prewired pspin 

1 0.66 <0.001 <0.001 

2 0.65 <0.001 <0.001 

3 0.65 <0.001 <0.001 

4 0.60 <0.001 0.015 

5 0.57 <0.001 0.152 

6 0.55 <0.001 0.206 

7 0.53 <0.001 0.313 

8 0.51 <0.001 0.439 

Note: The table above gives the prediction accuracies and p-values (calculated as the fraction of 

null values exceeding the observed accuracy in the “rewired” test and “spin” test) by using an SVR 

model with multiscale diffusion profiles of WM network links as features to predict the spatial 

maturation of CT. Spatial maturation of CT and diffusion profiles of WM network links were both 

obtained from HCP-D dataset. 
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Table S6 List of genes showing the highest positive and negative correlations with the 

dominant likelihood map in the main analysis. 

 Genes Correlation pspin 

Positive 

NPHP1 0.66 < 0.001 

FAM133A 0.64 < 0.001 

PPFIA2 0.63 < 0.001 

FAM185A 0.63 < 0.001 

BCL2 0.63 < 0.001 

EID2B 0.62 < 0.001 

CHSY3 0.62 < 0.001 

GRM5 0.62 < 0.001 

CCDC120 0.62 < 0.001 

MLIP 0.62 < 0.001 

Negative 

SNX24 -0.65 < 0.001 

GNA14 -0.64 < 0.001 

NEFL -0.64 < 0.001 

SLC7A1 -0.62 < 0.001 

DLC1 -0.61 < 0.001 

GBE1 -0.61 < 0.001 

FAM189B -0.60 < 0.001 

KANK4 -0.60 < 0.001 

TRADD -0.60 < 0.001 

DPY19L1 -0.60 0.003 

Note: The table above gives the top 10 genes most positively and negatively associated with the 

dominant likelihood map, respectively. The detailed analysis results for all genes are available at 

https://github.com/Xinyuan-Liang/SC-shapes-the-maturation-of-cortical-

morphology/tree/main/data/gene/AHBA_results.xlsx.  
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Table S7 Enrichment analysis (GO terms of biological processes and cellular component) 

reveals significant positive correlations with the dominant likelihood map in the main 

analysis. 

 GO term ID GO term Raw p-value q_value FDR 

Biological 

Processes 

GO:0007611 learning or memory 4.38E-06 1.16E-02 

GO:0050808 synapse organization 6.77E-06 1.16E-02 

GO:0048666 neuron development 9.14E-06 1.16E-02 

GO:0050890 cognition 9.62E-06 1.16E-02 

Cellular 

Component 

GO:0098978 glutamatergic synapse 1.22E-08 7.34E-06 
GO:0097060 synaptic membrane 3.55E-08 1.07E-05 
GO:0098794 postsynapse 1.29E-07 2.57E-05 
GO:0045211 postsynaptic membrane 1.71E-07 2.57E-05 

GO:0099240 
intrinsic component of synaptic 

membrane 
3.40E-07 4.10E-05 

GO:0043197 dendritic spine 4.80E-07 4.83E-05 
GO:0044309 neuron spine 6.20E-07 5.34E-05 

GO:0098936 
intrinsic component of postsynaptic 

membrane 
1.67E-06 1.24E-04 

GO:0099699 
integral component of synaptic 

membrane 
1.86E-06 1.24E-04 

GO:0030425 dendrite 2.23E-06 1.29E-04 
GO:0097447 dendritic tree 2.36E-06 1.29E-04 
GO:0032279 asymmetric synapse 5.76E-06 2.90E-04 
GO:0043005 neuron projection 6.72E-06 3.12E-04 
GO:0045202 synapse 7.90E-06 3.40E-04 
GO:0036477 somatodendritic compartment 9.77E-06 3.93E-04 

Note: The table above gives the significant enrichment terms for genes that show significant 

positive correlations with the dominant likelihood map. We used the online tool REViGO 

(http://revigo.irb.hr) to select the most meaningful GO terms and highlight them. The detailed 

enrichment analysis results for all genes are available at https://github.com/Xinyuan-Liang/SC-

shapes-the-maturation-of-cortical-morphology/tree/main/data/gene/AHBA_results.xlsx. 
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Table S8 Enrichment analysis (GO terms of biological processes and cellular component) 

reveals significant negative correlations with the dominant likelihood map in the main 

analysis. 

 GO term ID GO term Raw p-value q_value FDR 

Biological 

Processes 

GO:0019752 carboxylic acid metabolic process 5.39E-10 3.19E-06 
GO:0043436 oxoacid metabolic process 1.56E-09 4.44E-06 
GO:0006082 organic acid metabolic process 2.25E-09 4.44E-06 

GO:0006091 
generation of precursor metabolites 

and energy 
3.49E-09 5.16E-06 

GO:0019637 organophosphate metabolic process 5.12E-09 6.05E-06 
GO:0006163 purine nucleotide metabolic process 2.00E-08 1.97E-05 
GO:0009117 nucleotide metabolic process 2.61E-08 2.21E-05 

GO:0006753 
nucleoside phosphate metabolic 

process 
3.55E-08 2.62E-05 

GO:0072521 
purine-containing compound 

metabolic process 
4.57E-08 3.00E-05 

GO:0045333 cellular respiration 6.86E-08 4.06E-05 

GO:0015980 
energy derivation by oxidation of 

organic compounds 
1.24E-07 6.69E-05 

GO:0072522 
purine-containing compound 

biosynthetic process 
2.78E-07 1.37E-04 

GO:0009144 
purine nucleoside triphosphate 

metabolic process 
5.38E-07 2.36E-04 

GO:0006164 
purine nucleotide biosynthetic 

process 
5.57E-07 2.36E-04 

GO:0055086 
nucleobase-containing small 

molecule metabolic process 
8.55E-07 3.05E-04 

GO:0009060 aerobic respiration 9.08E-07 3.05E-04 

GO:0009150 
purine ribonucleotide metabolic 

process 
9.12E-07 3.05E-04 

GO:1902600 proton transmembrane transport 9.27E-07 3.05E-04 
GO:0006811 ion transport 1.25E-06 3.66E-04 

GO:0009205 
purine ribonucleoside triphosphate 

metabolic process 
1.29E-06 3.66E-04 

GO:0019693 ribose phosphate metabolic process 1.30E-06 3.66E-04 

GO:0009152 
purine ribonucleotide biosynthetic 

process 
1.60E-06 4.30E-04 

GO:0009141 
nucleoside triphosphate metabolic 

process 
1.94E-06 4.72E-04 

GO:0009199 
ribonucleoside triphosphate 

metabolic process 
1.99E-06 4.72E-04 

GO:0046390 
ribose phosphate biosynthetic 

process 
1.99E-06 4.72E-04 

GO:0009259 ribonucleotide metabolic process 2.37E-06 5.38E-04 
GO:0046034 ATP metabolic process 2.70E-06 5.78E-04 
GO:0006812 cation transport 2.74E-06 5.78E-04 

GO:1901135 
carbohydrate derivative metabolic 

process 
3.07E-06 6.25E-04 

GO:0046434 organophosphate catabolic process 3.88E-06 7.65E-04 
GO:0009260 ribonucleotide biosynthetic process 4.46E-06 8.52E-04 
GO:0090407 organophosphate biosynthetic 6.74E-06 1.21E-03 
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process 
GO:0034220 ion transmembrane transport 6.76E-06 1.21E-03 
GO:0022900 electron transport chain 7.56E-06 1.32E-03 
GO:0009165 nucleotide biosynthetic process 8.44E-06 1.43E-03 

GO:1901293 
nucleoside phosphate biosynthetic 

process 
8.88E-06 1.46E-03 

GO:0015986 
proton motive force-driven ATP 

synthesis 
9.25E-06 1.48E-03 

Cellular 

Component 

GO:0043209 myelin sheath 4.29E-16 3.20E-13 
GO:0005743 mitochondrial inner membrane 3.35E-11 1.05E-08 
GO:0019866 organelle inner membrane 4.24E-11 1.05E-08 
GO:0031966 mitochondrial membrane 5.64E-10 1.05E-07 
GO:0005740 mitochondrial envelope 2.07E-09 3.08E-07 

GO:0098798 
mitochondrial protein-containing 

complex 
3.16E-09 3.92E-07 

GO:1990204 oxidoreductase complex 3.15E-08 3.35E-06 
GO:0005759 mitochondrial matrix 1.24E-07 1.16E-05 
GO:0031967 organelle envelope 1.60E-07 1.19E-05 
GO:0031975 envelope 1.60E-07 1.19E-05 

GO:0098800 
inner mitochondrial membrane 

protein complex 
3.12E-06 2.12E-04 

Note: The table above gives the significant enrichment terms for genes that show significant 

negative correlations with the dominant likelihood map. We used the online tool REViGO 

(http://revigo.irb.hr) to select the most meaningful GO terms and highlight them. The detailed 

enrichment analysis results for all genes are available at https://github.com/Xinyuan-Liang/SC-

shapes-the-maturation-of-cortical-morphology/tree/main/data/gene/AHBA_results.xlsx. 
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Figure S1. CT maturation from childhood to adolescence at 219-node resolution. (A) Spatial 

maturation map of CT from childhood to adolescence. A greater positive t value denotes more 

pronounced cortical thinning with development. The maps were corrected using a Bonferroni 

correction method for multiple comparisons (pbonf < 0.05). (B) The mean CT maturation extent 

(estimated by t value) within each brain community was defined by Yeo et al. (30), and the 

laminar differentiation level was defined by Mesulam et al. (31) (C). Spin tests (32, 33) were 

performed by spherical projection and rotation class positions 1000 times for correcting spatial 

autocorrelations, and the class-specific mean t values were expressed as z scores relative to this 

null model. A positive z score indicated higher cortical thinning than expected by chance. 

Asterisks denote statistical significance (pspin < 0.05). VIS, visual; SM, somatomotor; LIM, 

limbic; DA, dorsal attention; VA, ventral attention; FP, frontoparietal; DM, default mode; IT, 

idiotypic; PL, paralimbic; UM, unimodal and HM, heteromodal. 
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Figure S2. CT maturation from childhood to adolescence at 448-node resolution. (A) Spatial 

maturation map of CT from childhood to adolescence. A greater positive t value denotes more 

pronounced cortical thinning with development. The maps were corrected using a Bonferroni 

correction method for multiple comparisons (pbonf < 0.05). (B) The mean CT maturation extent 

(estimated by t value) within each brain community was defined by Yeo et al. (30), and the 

laminar differentiation level was defined by Mesulam et al. (31) (C). Spin tests (32, 33) were 

performed by spherical projection and rotation class positions 1000 times for correcting spatial 

autocorrelations, and the class-specific mean t values were expressed as z scores relative to this 

null model. A positive z score indicated higher cortical thinning than expected by chance. 

Asterisks denote statistical significance (pspin < 0.05). VIS, visual; SM, somatomotor; LIM, 

limbic; DA, dorsal attention; VA, ventral attention; FP, frontoparietal; DM, default mode; IT, 

idiotypic; PL, paralimbic; UM, unimodal and HM, heteromodal. 
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Figure S3. WM network-based CT maturation. (A) Significant correlations were observed 

between the nodal CT maturation extent and the mean of its directly connected neighbors at all 

three nodal resolutions. To obtain comparable correlation values under different number of 

observation samples, we calculated the adjusted r. (B) To determine whether these correlations 

were driven by the spatial proximity effect, we excluded all spatially adjoining neighbors and 

recalculated the mean CT maturation extent of the remaining structurally connected neighbors 

for each brain region (“excluded”), significant correlations were observed after re-estimating at 
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all three nodal resolutions. (C) We regressed out the effect of nodal mean Euclidean distance to 

its connected neighbors from the mean CT maturation extent (“regressed”), significant 

correlations were observed after re-estimating at all three nodal resolutions. (D) The observed 

correlations across 3 resolutions (shown as red circles) for “excluded” (left panel) and 

“regressed” (right panel) analyses were compared against two baseline null models. (1) To 

determine whether these correlations were driven by the basic spatial embedding of the WM 

network, we randomly rewired edges while preserving the nodal degree and edge length 

distribution of the empirical WM network (“rewired”, 1000 times, shown as light blue boxes). 

(2) To determine whether these correlations were driven by spatial autocorrelation, we generated 

1000 surrogate maps by rotating region-level cortical t values (“spin test”, shown as deep blue 

boxes). Asterisks denote statistical significance (p < 0.001). 
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Figure S4. Feature weights for SVR models. (A) The feature weights distributions for the SVR 

model at 1-9 neighboring scales. (B) The mean weights of the nine neighboring scales, where 

nodes with high positive feature weights are mainly located in the frontal and parietal regions. 
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Figure S5. Network-based diffusion model. Significant correlations between the predicted CT 

maturation and the observed CT maturation at 219-node resolution (left panel) and 448-node 

resolution (right panel) by using nodal diffusive profiles at multiple neighboring scales as 

features in SVR model. The observed correlations (red dots) were compared to the correlations 

obtained from 1000 rewired tests (light blue boxes) and 1000 spin tests (deep blue boxes). 

Asterisks denote statistical significance (p <= 0.001). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.15.520527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.15.520527
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 
 

Figure S6. Dominant region results at 1000-node resolution. (A) Dominant likelihood 

distribution maps across multiple neighboring scales at 1000-node resolution. (B) Dominant 

region maps (pspin < 0.05) across multiple neighboring scales at 1000-node resolution. (C) 

Probability of the dominant node located in the prefrontal (left panel) and inferior parietal (right 

panel) cortex diffusing to each system in the 7 brain communities (30). VIS, visual; SM, 

somatomotor; LIM, limbic; DA, dorsal attention; VA, ventral attention; FP, frontoparietal; DM, 

default mode; PFC, prefrontal cortex; IPC, inferior parietal cortex 
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Figure S7. Dominant region results at 219- and 448-node resolution. (A) Dominant  

likelihood distribution maps and dominant region maps (pspin < 0.05) across multiple neighboring 

scales at 219-node resolution. (B) Dominant likelihood distribution maps and dominant region 

maps (pspin < 0.05) across multiple neighboring scales at 448-node resolution. 
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Figure S8. Dominant node identification. (A) Dominant likelihood distribution map was 

obtained by a different identification approach introduced by Shafiei et al. (29), which calculated 

the mean maturation extents in both themselves and their directly connected neighbors. Regions 

with significantly higher mean ranks (pspin < 0.05) were identified as the dominant nodes. (B) 

Dominant likelihood distribution map at 1000-node resolution. (C) The dominant likelihood 

maps obtained using the approach introduced by Shafiei et al. spatially correlated with the map 

in our main results (Spearman’s r = 0.81, p spin < 0.001). (D) Dominant region map (pspin < 0.05, 

left panel) shows a high similarity to the map (at the 1st neighboring scale) in our main analysis 

(right panel). 
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Figure S9. Gene Ontology enrichment results for negatively correlated gene sets. The dots 

represent the GO terms corrected for multiple comparisons (FDR-corrected, P < 0.05). The size 

of the dot indicates the number of genes belonging to the corresponding GO term, and the 

transparency of the dot represents the significance of the corresponding GO term. 
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Figure S10. Validation of the WM connectome backbone effectiveness. Diffusion images 

with multishell diffusion gradients from Replication Dataset (HCP-D) were used to validate the 

effectiveness of the WM connectome backbone. (A) A significant correlation was observed 

between the nodal CT maturation extent and the mean of its directly connected neighbors at 

1000-node resolution (left panel, radj = 0.76, P = 1.11 × 10 -189). This observed correlation (red 

dots) was compared against two baseline null models (right panel). (1) To determine whether 

these correlations were driven by the basic spatial embedding of the WM network, we randomly 

rewired edges while preserving the nodal degree and edge length distribution of the empirical 

WM network (“rewired”, 1000 times, shown as light blue boxes). (2) To determine whether these 

correlations were driven by spatial autocorrelation, we generated 1000 surrogate maps by 

rotating region-level cortical t values (“spin test”, shown as deep blue boxes). (B) Significant 

correlations between the predicted CT maturation and the observed CT maturation by using 

nodal diffusive profiles at multiple neighboring scales as features in the SVR model. These 

observed correlations (red dots) were compared to the correlations obtained from 1000 rewired 

tests (light blue boxes) and 1000 spin tests (deep blue boxes). Asterisks denote statistical 

significance (p < 0.001). 
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Figure S11. WM network-based CT maturation in Replication Dataset. (A) Spatial 

maturation map of CT from childhood to adolescence at 1000-node resolution (P < 0.01). A 

greater positive t value denotes more pronounced cortical thinning with development. (B) 

Significant correlations were observed between the nodal CT maturation extent and the mean of 

its directly connected neighbors. The observed correlations were compared against two baseline 

null models. (1) To determine whether these correlations were driven by the basic spatial 

embedding of the WM network, we randomly rewired edges while preserving the nodal degree 

and edge length distribution of the empirical WM network (“rewired”, 1000 times, shown as 

light blue boxes). (2) To determine whether these correlations were driven by spatial 

autocorrelation, we generated 1000 surrogate maps by rotating region-level cortical t values 

(“spin test”, shown as deep blue boxes). Asterisks denote statistical significance (p < 0.001). 

Significant correlations were also observed after excluding the spatially adjoining neighbors (C) 

and regressing out the inter-node Euclidean distance (D). (E) Significant correlations between 

the predicted CT maturation obtained from the SVR model using nodal diffusive profiles at 

multiple neighboring scales as features and the observed CT maturation. The observed 

correlations (red dots) were compared to the correlations obtained from 1000 rewired tests (light 

blue boxes) and 1000 spin tests (deep blue boxes). Asterisks denote statistical significance (p < 

0.05). (F) Dominant likelihood distribution maps and dominant region maps (pspin < 0.05) at 1-4 

neighboring scales. 
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