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Abstract1

Large regions of suppressed recombination having extended over time occur in many organisms around genes2

involved in mating compatibility (sex-determining or mating-type genes). The sheltering of deleterious alleles has3

been proposed to be involved in such expansions. However, the dynamics of deleterious mutations partially linked to4

genes involved in mating compatibility are not well understood, especially in finite populations. In particular, under5

what conditions deleterious mutations are likely to be maintained for long enough near mating-compatibility genes6

remains to be evaluated, especially under selfing, which generally increases the purging rate of deleterious mutations.7

Using a branching process approximation, we studied the fate of a new deleterious or overdominant mutation in a8

diploid population, considering a locus carrying two permanently heterozygous mating-type alleles, and a partially9

linked locus at which the mutation appears. We obtained analytical and numerical results on the probability and10

purging time of the new mutation. We investigated the impact of recombination between the two loci and of the11

mating system (outcrossing, intra and inter-tetrad selfing) on the maintenance of the mutation. We found that the12

presence of a fungal-like mating-type locus (i.e. not preventing diploid selfing) always sheltered the mutation under13

selfing, i.e. it decreased the purging probability and increased the purging time of the mutations. The sheltering14

effect was higher in case of automixis (intra-tetrad selfing). This may contribute to explain why evolutionary strata15

of recombination suppression near the mating-type locus are found mostly in automictic (pseudo-homothallic) fungi.16

We also showed that rare events of deleterious mutation maintenance during strikingly long evolutionary times could17

occur, suggesting that deleterious mutations can indeed accumulate near the mating-type locus over evolutionary18

time scales. In conclusion, our results show that, although selfing purges deleterious mutations, these mutations19

can be maintained for very long times near a mating-type locus, which may contribute to promote the evolution of20

recombination suppression in sex-related chromosomes.21
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1 Introduction25

The evolution of sex chromosomes, and more generally of genomic regions lacking recombination, is widely studied26

in evolutionary biology as it raises multiple, unresolved questions (Ironside, 2010, Yan et al., 2020, Hartmann,27

Ament-Velásquez, et al., 2021, Kratochvíl and Stöck, 2021, Jay et al., 2022). A striking feature of many sex28

and mating-type chromosomes is the absence of recombination in large regions around the sex-determining genes.29

Recombination suppression indeed evolved in various groups of plants and animals in several steps beyond the30

sex-determining genes, generating evolutionary strata of differentiation between sex chromosomes (Nicolas et al.,31

2004, Bergero and Charlesworth, 2009, Hartmann, Duhamel, et al., 2021, Kratochvíl and Stöck, 2021). The reasons32

for the gradual expansion of recombination cessation beyond sex-determining genes remain debated (Ironside, 2010,33

Wright et al., 2016, Ponnikas et al., 2018, Hartmann, Duhamel, et al., 2021). Recombination suppression has34

extended progressively with time not only on many sex chromosomes but also on mating-type chromosomes in fungi35

(Hartmann, Duhamel, et al., 2021) and other supergenes (Yan et al., 2020, Jay et al., 2021).36

The main hypothesis to explain such stepwise extension of recombination cessation on sex chromosomes has37

long been sexual antagonism (Charlesworth et al., 2005, Bergero and Charlesworth, 2009). Theoretical studies have38

indeed shown that the suppression of recombination may evolve to link alleles that are beneficial in only one sex to39

the sex-determining genes (Rice, 1987, Charlesworth et al., 2005, Ruzicka et al., 2020). However, this hypothesis40

has received little evidence from empirical studies despite decades of research (Ironside, 2010, Dagilis et al., 2022).41

Moreover, the sexual antagonism hypothesis cannot explain the evolutionary strata found on fungal mating-type42

chromosomes. Indeed, in many fungi, two gametes can form a new individual only if they carry different mating43

types, but there is no sexual antagonism or other form of antagonistic selection between cells of opposite mating44

types; the cells of different mating types do not show contrasted phenotypes or footprints of diversifying selection45

(Bazzicalupo et al., 2019). Yet, evolutionary strata have been documented on the mating-type chromosomes of46

multiple fungi, with recombination suppression extending stepwise beyond mating-type determining genes (Fraser47

et al., 2004, Menkis et al., 2008, Branco et al., 2017, Branco et al., 2018, Hartmann, Duhamel, et al., 2021, Hartmann,48

Ament-Velásquez, et al., 2021, Vittorelli et al., 2022). Evolutionary strata have also been reported around other49

supergenes, i.e., large genomic regions encompassing multiple genes linked by recombination suppression, such as50

in ants and butterflies (Yan et al., 2020, Jay et al., 2021). Several hypotheses alternative to sexual antagonism51

have been proposed and explored to explain the stepwise extension of recombination suppression on sex-related52

chromosomes (Ironside, 2010, Hartmann, Duhamel, et al., 2021). Theoretical models suggested that recombination53

suppression could be induced by a divergence increase in regions in linkage disequilibrium with a sex-determining54

locus (Jeffries et al., 2021) or that inversions could be stabilized by dosage compensation on asymmetric XY-like55

sex chromosomes (Lenormand and Roze, 2022).56

A promising, widely applicable hypothesis is the sheltering of deleterious alleles by inversions carrying a lower57

load than average in the population (Charlesworth and Wall, 1999, Antonovics and Abrams, 2004, Hartmann,58

Duhamel, et al., 2021, Jay et al., 2022). Inversions (or any suppressor of recombination in cis) can indeed behave as59
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overdominant: inversions with fewer recessive deleterious mutations than average are initially beneficial and increase60

in frequency, but can then occur in a homozygous state where they express their load, unless they are linked to a61

permanently heterozygous allele. In this case, they remain advantageous, and can reach fixation in the sex-related62

chromosome on which they appeared (Jay et al., 2022). The suppression of recombination is thereby selected63

for, and recessive deleterious mutations are permanently sheltered. The process can occur repeatedly, leading to64

evolutionary strata. Importantly, this is one of the few hypotheses able to explain the existence of evolutionary65

strata on fungal mating-type chromosomes and it can apply to any supergene with a permanently heterozygous66

allele (Llaurens et al., 2017, Jay et al., 2022).67

A key point for the recombination suppressor to invade is that it must appear in populations where recessive68

deleterious mutations segregate near the mating-compatibility genes (Olito et al., 2022, Jay et al., 2022). We69

therefore need to understand whether such mutations can persist in the vicinity of permanently heterozygous alleles70

(such as those occurring at mating-type loci) and under what conditions. In particular, it is usually considered that71

selfing purges deleterious mutations (Glémin, 2007, Abu Awad and Billiard, 2017), while most evolutionary strata72

on fungal mating-type chromosomes have been reported in selfing (automictic) fungi (Branco et al., 2017, Branco73

et al., 2018, Hartmann, Ament-Velásquez, et al., 2021, Vittorelli et al., 2022). Indeed, because mating types are74

determined at the haploid stage in fungi, mating types do not prevent selfing when considering diploid individuals75

(Billiard et al., 2012). Some particular forms of selfing associated with a permanently heterozygous mating-type76

locus such as intra-tetrad mating (i.e. automixis, mating among gametes from the same meiosis) can however77

favor the maintenance of heterozygosity (Hood and Antonovics, 2000). Indeed, mating can only occur between78

haploid cells carrying different mating-type alleles, which maintains heterozygosity at the mating-type locus, and to79

some extent at flanking regions, thereby possibly sheltering deleterious alleles. We therefore need to study whether80

deleterious or overdominant mutations can be maintained near mating-type compatibility loci, even under selfing, to81

assess whether the mechanism of sheltering deleterious mutations can drive extensions of recombination suppression.82

The dynamics of deleterious mutation frequencies in genomes have been extensively studied independently of the83

presence of a permanently heterozygous locus. Deterministic models and diffusion approximations have been used84

to study the dynamics of deleterious mutations in a one locus-two allele setup (Kimura, 1980, Ewens, 2004, Rice,85

2004), with the addition of sexual reproduction and in particular selfing (Ohta and Cockerham, 1974, Caballero86

and Hill, 1992, Abu Awad and Roze, 2018). Extensions of these models exist to cover the two locus-two allele87

case (Karlin, 1975) and multilocus systems (reviewed in Bürger, 2020), or to take stochastic fluctuations into88

account (Coron et al., 2013, Coron, 2014). However, the dynamics of deleterious mutations in genomic regions89

near a permanently heterozygous allele have been little studied. A deterministic model showed that a lethal allele90

can be sheltered in an outcrossing population only when it is completely linked to a self-incompatibility locus91

(Leach et al., 1986). Another deterministic model introduced selfing and showed with simulations that a lethal92

allele can be sheltered when it is completely linked to a mating-type allele, favored in a heterozygote state, and if93

there is intra-tetrad selfing (Antonovics et al., 1998). Assuming a variable recombination rate between the two loci,94

Antonovics and Abrams, 2004 showed that an overdominant allele lethal in a homozygous state could be maintained95

if recombination was twice as low as the selection for heterozygotes and mating occurred via intra-tetrad selfing.96

Stochastic simulations additionnally showed that a recessive deleterious allele could be maintained completely linked97

to a self-incompatibility allele, especially when it is highly recessive, and when the number of self-incompatibility98
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alleles in the population is large (Llaurens et al., 2009), and that codominant weakly deleterious alleles could be99

maintained near loci under balancing selection in the major histocompatibility complex (MHC) in humans (Lenz100

et al., 2016).101

Here, building on the work of Antonovics and Abrams, 2004, we use a similar though simplified two locus-two102

allele framework, taking into account the non-negligible reproductive stochasticity during the early stage of the103

dynamics of the mutant subpopulation, until it becomes extinct or reaches some appreciable fraction of the total104

population. More precisely, we consider a permanently heterozygous mating-type locus and a genetic load locus,105

and we assume that the recombination rate between the two loci is a fixed parameter. Individuals can reproduce106

via outcrossing, or via either one of two types of selfing, intra-tetrad mating or inter-tetrad mating. The two types107

of selfing depend on whether a given gamete mates with another gamete produced during the same meiosis event108

(within a tetrad) or with a gamete from a different meiosis (from another tetrad, App. 6). The distinction is109

important because intra-tetrad mating maintains more heterozygosity in some genomic regions than inter-tetrad110

mating (Hood and Antonovics, 2000). Starting with a continuous-time Moran process, we derive the rates at111

which individuals of each genotype are produced. Then, as a new mutation is carried by very few individuals at112

the beginning of its evolution, a branching process naturally arises. Indeed, in this initial phase two individuals113

carrying the mutant allele have an extremely low probability to mate with each other. Mutant-carrier individuals114

can thus be assumed to reproduce independently of each other, leading to an approximation of the dynamics of the115

subpopulation of mutant carriers by a branching process.116

The use of branching processes has shown its utility to account for the dynamics of a newly arised mutant allele117

in a population. Many estimates of the fixation or purging time of mutants in stochastic models (Champagnat118

and Méléard, 2011, Collet et al., 2013) relied on the use of branching processes to approximate the dynamics of119

a newly appeared mutant allele and of a nearly-fixed one. A branching-process approximation was used to study120

a two locus-two allele model, with individual fitness depending on the allelic state at both loci (Ewens, 1967,121

Ewens, 1968). For the diploid case, the framework of a seven-type branching process that can be used to study the122

fate of a deleterious mutation has been described, without deriving any analytical result (Pollard, 1966, Pollard,123

1968). A similar branching process approximation was used to study the fate of a beneficial mutation with selfing124

(Pollak, 1987, Pollak and Sabran, 1992). Here, we use a similar framework but consider deleterious mutations125

and a permanently heterozygous locus. Modeling multiple loci suggests the use of multitype branching processes,126

which have been widely studied (Harris, 1964, Kesten and Stigum, 1966 , Mode, 1971, Athreya and Ney, 1972,127

Sewastjanow, 1975, Pénisson, 2010). However, the multiplicity of types renders the derivation of analytical results128

on probabilities of extinction and on extinction times difficult (Heinzmann, 2009). We therefore use an analytical129

approach to study the probability that a new mutation is purged from the population, and a numerical approach to130

study the purging time (when purging occurs) to assess how long a deleterious or overdominant mutation remains in131

a population. We study in particular the impact of the mating system and of the level of linkage to a permanently132

heterozygous locus on the long-term maintenance of deleterious mutations near a fungal-like mating-type locus (i.e.133

not preventing diploid selfing).134

2 Methods and Models135

All parameters which will be needed below are listed in App. 5.136
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2.1 Population and stochastic dynamics137

We consider diploid (or dikaryotic) individuals, represented by their mating-type chromosomes, that harbor two138

biallelic loci: one mating-type locus, with alleles A and a, and one load locus, with a wild allele B and a mutant allele139

b. We model a fungal-like mating-type locus, so that mating is only possible between haploid cells carrying different140

alleles at the mating-type locus (this does not prevent diploid selfing as each diploid individual is heterozygous at141

the mating-type locus). Consequently, only four genotypes are admissible, denoted by G1, . . . , G4 in Figure 1. We142

follow the evolution of
(
g(t)

)
t≥0 =

(
g1(t), . . . , g4(t)

)
t≥0, where gi(t) is the number of individuals of genotype Gi in143

the population at time t. We suppose that the reproduction dynamics is given by a biparental Moran model with144

selection. In this continous-time model, a single individual is replaced successively and the total population size,145

denoted by N, remains constant. A change in the population state g occurs in three steps.146

The first step is the production of an offspring. After a random time following an exponential law of parameter147

N , an individual is chosen uniformly at random to reproduce. This means in particular that all individuals have148

the same probability to reproduce. Mathematically speaking, this formulation is equivalent to saying that each149

individual reproduces at rate 1. The chosen diploid individual produces haploid gametes, via meiosis, during which150

recombination takes place between the two loci with probability r (see Figure 1 (a)). The product of a meiosis151

is a tetrad that contains four haploid gametes (Figure 1 (b)). Mating can then occur through three modalities,152

illustrated in App. 6 (recall that two gametes can fuse only if they carry different mating-type alleles): (i) Intra-153

tetrad selfing, with probability fpin: the two gametes are picked from the same tetrad, only one parent is involved;154

(ii) Inter-tetrad selfing, with probability f(1−pin): the two gametes are picked from two different tetrads produced155

by the same individual, only one parent is involved; (iii) Outcrossing, with probability 1 − f : the two gametes156

are picked from tetrads produced by two different parents. In this case, the second parent is chosen uniformly at157

random in the remaining population, and produces haploid gametes via meiosis with the same recombination rate158

r. An offspring is produced following the chosen mating system, its genotype thus depending on the genotypes of159

the parents involved and on the occurrence of a recombination event in the tetrads.160

The second step is the offspring survival. We assume that the fitness of a genotype Gi is the probability that an161

offspring with that genotype survives, and we denote it by Si. We consider two selection scenarii (Figure 1, left):162

(i) The partial dominance case, where the mutant allele b is always deleterious and recessive. Homozygotes bb and163

heterozygotes Bb at the load locus have fitness values (i.e. a probability of survival) of 1−s and 1−hs, respectively.164

Homozygotes BB have fitness 1; (ii) The overdominance case, where heterozygotes Bb are favored over BB and bb165

individuals. In this case, the fitness of Bb, bb and BB juveniles are respectively 1, 1− s3 and 1− s4, with s3 > s4166

so that the fitness of bb individuals is lower than the fitness of wild-type individuals BB. The mating-type locus is167

considered neutral regarding survival.168

The third step occurs if the offspring survives, in which case an individual chosen uniformly at random in169

the extant population is chosen to die and to be replaced by the offspring. If the offspring does not survive, the170

population state
(
g1, g2, g3, g4

)
does not change.171

A jump in the stochastic process is thus an increase by one of the number of genotype Gi individuals in the172

population, when an offspring of genotype Gi is produced and survives, and a concomitant decrease by one of the173

number of genotype Gj individuals in the population, when an adult of genotype Gj dies. If i = j, i.e. if the174

surviving offspring and the individual chosen to die have the same genotype, the composition of the population175
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does not change. We denote the jump rate from g to g + ei − ej by Qi,j(g), where ei is the vector with a 1 in176

position i and zeros everywhere else. Qi,j(g) is equal to the product of the rate at which an offspring of genotype177

Gi is produced (first step), which we denote by Tg(+Gi), of the probability that it survives (Si, second step), and178

of the probability that the adult chosen to die is of genotype Gj (third step). Thus, we have179

Qi,j(g) = Tg(+Gi)× Si ×
gj
N
.

The total rates at which individuals of different genotypes are produced are given in App. 7.1. For example, the180

rate at which an offspring of genotype G1 is produced when the current state of the population is g = (g1, g2, g3, g4)181

is given by182

Tg(+G1) = fg1

(
1− r

(
1− 1

4
pin

)
+

1

4
(1− pin) r2

)
+ fg2

r

4
(pin + r (1− pin))

+
1− f
N − 1

[
g1

(
1− r

2

)(
(g1 − 1)

(
1− r

2

)
+ g3 + g4

)
+ g2r

(
g2
r

4
+

1

2
(g3 + g4)

)
+ g1g2r

(
1− r

2

)
+ g3g4

]
.

The first two terms on the right-hand side, with a factor f , correspond to reproduction events by selfing.183

The third term, with a factor 1 − f , corresponds to reproduction events by outcrossing. Each subterm then184

encompasses the rate at which each genotype is involved in the reproduction event, and the probability that the185

offspring produced is of genotype G1, taking into account possible recombinations. For example, the subterm186

(1− f)/(N − 1)× g1(g1 − 1)(1− r/2)2 is the product of the total rate g1 × 1 at which an individual of genotype 1187

reproduces, of the probability 1− f that reproduction happens by outcrossing, of the probability (g1 − 1)/(N − 1)188

that the second parent is chosen among the other individuals of genotype G1, and of the probability (1− r/2)2 that189

their offspring has genotype G1.190

2.2 Branching-Process approximation191

Let us now consider that the population size N is very large. When a mutation appears at the load locus, it is carried192

by a single individual. Hence, during the initial phase of the dynamics of the mutation b, the number of individuals193

who carry the mutation remains small compared to the number of wild-type individuals. The number of wild-type194

individuals is of the same order of magnitude as the total population size N , and the number of mutation-carrier195

individuals is negligible. More precisely, we assume that, when N is large,196

g4 ≈ N, and gi � N for i = 1, 2, 3. (1)

Under this assumption, the jump rates Qi,j(g) of the process can be approximated by neglecting the terms of197

the form 1/(N − 1)× gi× gj , with i, j ∈ {1, 2, 3}, as they are of order 1/N . This means that mating by outcrossing198

between individuals carrying the mutation b can be neglected. As a consequence, the birth rates of the different199

genotypes are linear in gi, and a reproduction law for each genotype that is independent of the number of individuals200

of all other mutant-carrier genotypes can be derived. The Moran process can then be approximated by a branching201
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Genotype A

B

a

b

G1

A

b

a

B

G2

A

b

a

b

G3

A

B

a

B

G4

Fitness Si
under
Partial

Dominance

1− hs 1− hs 1− s 1

Fitness Si
under

Overdomi-
nance

1 1 1− s3 1− s4

(a)

A

B

a

b

Rec.

(b)
A

B

a

b
Parent G1

A

B

A

b

a

B

a

b

Tetrad with rec.

Figure 1: Schematic drawings of the genotypes considered and their parameters. (Left) Description of the possible genotypes
in the population and their fitness Si for the two selection scenarii considered (partial dominance and overdomi-
nance). (Right) (a) Position of a putative event of recombination between the mating-type locus and the load locus.
(b) Example of a tetrad that can be obtained after a meiosis of an individual of genotype G1, with recombination.
Four gametes are produced, two of each mating type. In the second and third gamete from the left, combinations
of alleles that did not exist in the parent are observed (A with b and a with B).

process that follows the change in genotype counts for the mutation-carrier genotypes only.202

We denote this branching process by (Zt)t≥0, where for each t ≥ 0, we have Zt = (Zt,1, Zt,2, Zt,3), with Zt,i the203

number of individuals of genotype Gi in the population at time t. To each genotype is associated a reproduction law,204

that is, a probability distribution on N3 (vectors with three integer-valued coordinates) that gives the probability205

for an individual of that genotype to produce a given number of descendants of each genotype when it reproduces.206

Note that the rationale behind the branching process is different from the one for the Moran process. Indeed,207

each replacement event in the Moran model that involves an individual carrying the mutant allele b will be seen208

in the branching process as a reproduction event, in which the offspring is the mutant individual that is possibly209

produced during the first step of the Moran jump, and the parent is another mutant individual that is either one210

of the two actual parents in the replacement event, or the individual chosen to be replaced by the offspring in the211

Moran replacement event. A reproduction event of the branching process consists in the replacement of the parent212

by its descendants, which will be made of the mutant offspring when there is one, and of the mutant parent when213

it remains in the population. More precisely, we will encode three situations as follows: (i) when the replacement214

event in the Moran model corresponds to the reproduction of an individual of genotype Gi, i ∈ {1, 2, 3} (via selfing215

or outcrossing with an individual of genotype G4), that this reproduction event generates a mutant offspring of216

genotype Gj , j ∈ {1, 2, 3}, and the mutant parent is not chosen to die, we will see the reproduction event of the217

branching process as being an individual of genotype Gi having descendance vector ei + ej ; (ii) When the Moran218

replacement event leads to the reproduction of an individual of genotype Gi, i ∈ {1, 2, 3} (via selfing or outcrossing219

with an individual of genotype G4), that this reproduction event generates an offspring of genotype G4, and the220

mutant parent is not chosen to die, we will see the reproduction event as being an individual of genotype Gi having221
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descendance vector ei (as non-mutant individuals are not accounted for in the branching process approximation).222

Note that this reproduction event will imply no change in the population state, but for the sake of completeness223

we indicate here all Moran replacement events that have non-vanishing rates as N tends to infinity; (iii) When224

the Moran replacement event only involves non-mutant parents and an individual of genotype Gi, i ∈ {1, 2, 3}, is225

chosen to die, we will see the reproduction event as being an individual of genotype Gi having descendance vector 0226

(corresponding to the parent being removed from the branching process and no mutant offspring being produced).227

Other possible Moran replacement events occur at rates that vanish as N tends to infinity, and therefore do not228

contribute to the reproduction events of the branching process. The rates at which reproduction events described229

above occur are directly derived from the rates Qi,j(g) of the Moran model, under the approximation stated in230

Eq.(1). They are summarized in the matrices A, T , and D defined as follows:231

A =


(fa(r) + (1− f)d(r))S1

(
fc(r) + (1− f) r2

)
S1 (1− f)S1(

fc(r) + (1− f) r2
)
S2 (fa(r) + (1− f)d(r))S2 (1− f)S2

fb(r)S3 fb(r)S3 fS3

 ,

T =


(
fb(r) + 1−f

2

)
S4 0 0

0
(
fb(r) + 1−f

2

)
S4 0

0 0 0

 ,

D =


S4 0 0

0 S4 0

0 0 S4

 ,

with232

a(r) = 1− r +
r

4

(
1− (1− pin)(1− r)

)
, b(r) =

r

4

(
1 + (1− pin)(1− r)

)
, (2)

233

c(r) =
r

4

(
1− (1− pin)(1− r)

)
, and d(r) = 1− r

2
. (3)

The entries Aij of matrix A, Tij of matrix T and Djj of matrix D give the rates at which each individual of234

genotype j reproduces and gives rise to a descendance vector respectively equal to ei+ej (situation (i)), ei (situation235

(ii)), and 0 (situation (iii)). An example of derivation of the matrix coefficients is given in App. 7.2.236

2.3 Probability of purge and purging time237

Under the assumption that the mutation is initially rare (after a mutation or migration event for example), we can238

use the branching process approximation described in Section 2.2 to derive the probability and purging time of the239

mutation from the population. In particular, our goal is to analyze the effect of the presence of a mating-type locus240

near the load locus on the purge of the deleterious mutant b, i.e. on the extinction of the mutant-carrier population241

described by the branching process.242

Extinction Probability243
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The probability of extinction of the branching process can be determined by looking at the eigenvalues of the244

matrix C such that E[Zt|Z0 = z0] = z0e
Ct for t ≥ 0, where z0 ∈ N3 is the initial state of the branching process245

(Zt)t≥0 (Sewastjanow, 1975 in German, and Pénisson, 2010 for a statement of these results in English). Under the246

assumption of irreducibility of the matrix C, results relying on the theory of Perron-Froebenius (see for example247

Athreya and Ney, 1972) state that the process almost surely dies out (i.e. the mutation is purged with probability248

1) if and only if ρ, the maximum eigenvalue of C, satisfies ρ ≤ 0. When C is not irreducible, which occurs for249

example if f = 0 or f = 1, the result still holds but requires the use of the theory of final classes (Sewastjanow,250

1975, cited in Pénisson, 2010). Details are given in App. 7.4.251

We follow a method described in Bacaër, 2018, to compute the matrix C mentioned above and obtain252

Cij =


Aij + Tij if i 6= j,

Ajj −
∑
k 6=j

Tkj −Djj if i = j.

This gives253

C =


(fa(r) + (1− f)d(r))S1 − S4

(
fc(r) + (1− f) r2

)
S1 (1− f)S1(

fc(r) + (1− f) r2
)
S2 (fa(r) + (1− f)d(r))S2 − S4 (1− f)S2

fb(r)S3 fb(r)S3 fS3 − S4

 ,

where the functions a, b, c, d were defined in Eqs. 2 and 3 (see details in App. 7.3).254

We derived the dominant eigenvalue using Mathematica (Wolfram Research, 2015) and study its sign analytically255

when possible, or numerically otherwise.256

Comparison with previous results257

Our results can be compared to the work of Ewens, 1967, who used a similar framework to study a random-mating258

population with two biallelic loci under selection, one of which carried a new allele. Assuming that the frequency259

of the gametes that carried a new allele was negligible compared to the frequencies of wild-type gametes, he used260

a branching process approximation to study the probability that the new allele was purged from the population.261

He considered a recombination rate R between the two loci, and fitnesses wij for each genotype (where i and j262

take the value 1 or 3 when loci are homozygous, and the value 2 when heterozygous). Setting wi1 = wi3 = 0 for263

i = 1, 2, 3 allows to force heterozygosity at the locus that does not carry the new allele in his model, and to compare264

his findings with our results on the fate of a new allele appearing near a permanently heterozygous locus. The265

dominant eigenvalue of the matrix driving the dynamics of the new allele in Ewens, 1967, is266

λ1 =
w22

w32
(4)

with w22 being the fitness of individuals heterozygous for the new allele, and w32 the fitness of homozygous wild-267

type individuals. As Ewens, 1967, considered a discrete-time branching process, this dominant eigenvalue must be268

compared to one to deduce information on the new allele survival probability.269
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Sheltering effect of the mating-type locus270

We investigate now to the potential effect of the presence of a mating-type locus on the maintenance of a mutant271

allele in a population: as mating-type alleles are always heterozygous, any mutation appearing completely linked272

to one mating-type allele is maintained in a heterozygous state as well. The load of the mutant allele is then less273

expressed when the mutation is recessive, and the mutation is said to be "sheltered".274

This potential sheltering effect can be explored by looking at the variation of the dominant eigenvalue ρ when275

the recombination rate r is close to 0.5. Indeed, the quantity |ρ| can be seen as the rate of decay of the deleterious276

mutant subpopulation (see the results on the probability of survival of a multitype branching process, Th. 3.1277

of Heinzmann, 2009), and its value gives a rough approximation of the inverse of the mean time to extinction of278

this subpopulation, i.e. of the mean purging time of the mutant allele b. Moreover, setting the recombination279

rate to r = 0.5 in our model allows us to consider a load locus completely unlinked to the mating-type locus, while280

decreasing the value of r introduces some loose linkage between the two loci. We thus look at the derivative ∂ρ
∂r |r=0.5281

to obtain the variation of the dominant eigenvalue of C when departing from this unlinked state.282

The sign of the derivative gives information on the existence of a sheltering effect due to the mating-type locus:283

if ∂ρ
∂r |r=0.5< 0, then when r decreases from 0.5 to lower values, i.e. when linkage between the two loci appears,284

the (negative) value of ρ increases, which means that the purging of the mutation becomes slower. In this case, the285

mating-type locus has a sheltering effect. Otherwise, if ∂ρ∂r |r=0.5> 0, the presence of a mating-type locus accelerates286

the purging of a deleterious allele.287

The absolute value of the derivative also gives information on the strength of the sheltering effect of the mating-288

type locus. The closer to 0 the derivative is, the smaller the impact of the mating-type locus. We compute the289

derivative and study its sign analytically. We then study the values of the derivative numerically in order to identify290

the impact of each parameter on the sheltering effect of the mating-type locus.291

We also look at the strength of the sheltering effect on mutations close to the mating-type locus, by studying292

the eigenvalue variation around r = 0. Setting the recombination rate to r = 0 models a situation where the load293

locus is completely linked to the mating-type locus. Hence, the mutation is completely linked to one mating-type294

allele, and maintained in a heterozygous state. Looking at the derivative ∂ρ
∂r |r=0 allows us to quantify the impact295

of departing from this situation by loosening the linkage between the two loci. We study the difference between the296

derivative at r = 0.5 and the derivative at r = 0 to compare the effect of adding a small amount of linkage between297

completely unlinked loci (r = 0.5) and the effect of adding a small amount of recombination between completely298

linked loci (r = 0).299

Extinction time300

The mean time to extinction in a multitype branching process is finite for a subcritical process (that is, when301

the principal eigenvalue ρ of C is less than 0), and infinite for a critical process (i.e. when ρ = 0, see Pötscher, 1985,302

for the proof of existence and finiteness of extinction time moments). Previous work, in particular Theorem 4.2 in303

Heinzmann, 2009, showed that a Gumbel law gives a good approximation of the law of the extinction time, provided304

that the initial number of individuals in the branching process and the absolute value of the dominant eigenvalue are305

both large. In our case, however, the mutation appears in a single individual, and the dominant eigenvalue is close306
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to zero, which prevents the use of the Gumbel law approximation. Therefore, we performed computer simulations307

to study the empirical distribution of the time to extinction of the process, i.e. the purging time of the b mutant308

allele.309

The branching process was simulated with a Gillespie algorithm to obtain an empirical distribution for the time310

to extinction. More precisely, the Gillespie algorithm produces realizations of the stochastic process by iteratively311

updating the number of individuals of each genotype within the multitype branching process (Gillespie, 1976). To312

circumvent the problem of exponential increase of the population size in the supercritical case, the parameters were313

chosen so that the branching process was subcritical. The probability of extinction was thus equal to 1 and the314

mean time to extinction was finite. For each scenario, we looked at different values of the recombination rate r,315

in order to study the impact of linkage between the load locus and the mating-type locus on the purging time of316

the mutant allele. We also chose different values for the selfing rate f in order to assess the impact of the mating317

system on the purging time of the mutant allele. For each set of parameters, 100,000 independent simulation runs318

were performed with the same initial condition (a single individual heterozygous at the load locus was introduced).319

Probability of a new mutation apparition before the first one is purged320

As a first step towards the study of the accumulation of deleterious mutations near a mating-type locus, we321

studied the probability that the deleterious mutation can be maintained long enough in the population so that a322

second mutation can appear before the first one is purged. We considered that a second mutation could appear323

during a reproduction event occurring in the population of mutation carriers (described by the branching process),324

on a region of a given length d = 106 base pairs, at a rate of µ = 10−8 mutations per base pairs per reproduction325

event. The mean number of reproduction events needed for a new mutation to appear in a region of length d, n̄ev,326

is the inverse of the mutation rate µ multiplied by the length d:327

n̄ev =
1

µ× d
= 102.

We then estimated the probability that a new mutation appears in such a genomic region before the first one is328

purged by counting the number of independent simulations in which the number of reproduction events exceeded329

n̄ev before the branching process went extinct (i.e. before the purging of the first mutation), over 100,000 simulation330

runs. Note that we did not take into account the genotype of the individual on which the second mutation appears,331

and therefore we did not distinguish whether the second mutation appears on a chromosome that carries the first one332

or not. Our estimate thus does not exactly equals the probability to have two mutations on the same chromosome,333

but this gives an order of magnitude of the probability of deleterious mutation accumulation and of the impact of the334

mating system. The length of the genomic region on which a second mutation can appear was chosen arbitrarily, and335

changing it can also change the probability. However, the important point for the deleterious-mutation mechanism336

to work is that there exists a size for regions flanking mating-type loci that allows both inversions to appear and337

mutations to accumulate, so that inversions can trap several deleterious mutations when suppressing recombination.338

The value d = 106 chosen here allows to cover such flanking regions.339

We computed our estimate of the probability of deleterious mutations accumulation for r = 0.001 (the two loci340

are close, strongly linked), r = 0.01, r = 0.1, and r = 0.5 (the two loci are distant, unlinked). We considered several341
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values of selfing and intra-tetrad mating rates f and pin in order to assess the impact of the mating system on the342

probability of deleterious mutation accumulation near a mating-type locus.343

3 Results344

3.1 Deleterious mutations are almost surely purged in the partial dominance case,345

and can escape purge in the overdominance case346

Partial Dominance scenario347

Under partial dominance, we find that the dominant eigenvalue ρ of the matrix C is always negative or null (see348

App. 8.2.1 and 8.2.2 for more details on the proof and computations). Previous theoretical results on branching349

processes state that, when ρ < 0, the probability that the deleterious mutation is purged from the population350

before it reaches a substantial frequency is one, and the mean time of purging is finite (see the Methods section).351

In particular, the probability of purging does not depend on the mating system (ρ < 0 for any value of intratetrad,352

intertetrad and outcrossing rates), nor on the recombination probability, selection and dominance coefficients. The353

only exceptions are when the deleterious mutation is neutral (s = 0) or behaves as neutral (h = 0 and r = 0,354

the mutation is neutral when heterozygous and completely linked to one mating-type allele), in which case the355

dominant eigenvalue is 0. The mutation is still purged from the population but previous theoretical results on356

branching processes state that this can take a much longer time compared to the case where ρ < 0, as the mean357

purging time would be infinite (see the Methods section).358

Taking w22 = 1 − hs and w32 = 1 in the model of Ewens, 1967, to mirror our partial dominance scenario, the359

dominant eigenvalue becomes 1 − hs. It is always smaller than one, except when h = 0 or s = 0, i.e. when the360

mutation is neutral in the heterozygous state. Except in those cases, the mutation is purged from the population361

with probability one. We therefore find the same results as Ewens, 1967, and we extend these results in the case362

where mating is not random among gametes. In particular, the mutation being neutral in the heterozygous case363

(h = 0) is not sufficient to prevent the purging probability to be one when mating is not random: the mutation has364

to be completely linked to a permanently heterozygous locus (h = 0 and r = 0).365

Overdominance scenario366

Under overdominance, the dominant eigenvalue ρ can take positive or negative values. When ρ is positive, the367

probability that the mutation escapes purging and that the number of mutation-carriers increases exponentially368

fast is strictly positive. The general conditions on the parameters for ρ to be positive in our model are given in369

App. 8.3.2, but they are difficult to interpret. Below, we describe a few simple cases in order to elucidate the role370

of each parameter, and then we complement the analysis with a numerical approach.371

Similarly to the partial dominance case, the dominant eigenvalue is 0 when the mutation is neutral (s3 = 0,372

which implies s4 = 0 as well). The dynamics of the b-subpopulation (i.e. mutation-carriers) is then critical, which373

means that the mutant is purged with probability 1 but the mean purging time can be arbitrarily long (as the374

average extinction time of a critical branching process is infinite, see the Methods section).375
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When the mutation is not neutral (s3 6= 0) but with no disadvantage to BB homozygotes (s4 = 0), we prove376

that ρ < 0 (see App. 8.3.2), which means that the dynamics of the b subpopulation is subcritical and that the377

mutant allele is purged with probability 1. This shows that the overdominant mutant allele is not maintained in378

the population when wild-type homozygotes are not disfavored compared to heterozygotes at the load locus. This379

corresponds to a completely recessive mutation, and is in agreement with the results for the partial dominance case380

with h = 0.381

When the mutant allele is completely linked to a mating-type allele (r = 0), or under complete outcrossing382

(f = 0), the dominant eigenvalue is equal to s4, the selection coefficient for the fitness reduction of the BB wild-383

type homozygotes. The dynamics of the b subpopulation is then supercritical, which means that there is a non-zero384

probability that the mutant allele is not purged and, instead, reaches a significant number of carriers. Moreover,385

the mutant allele is more favored in this case when selection against BB homozygotes is stronger as it induces a386

stronger advantage of the Bb heterozygotes. A similar result can be derived from the work of Ewens, 1967. Taking387

w22 = 1 and w32 = 1 − s4 in his model to mirror our overdominance scenario, the dominant eigenvalue of Eq. 4388

becomes 1/(1 − s4). As long as s4 > 0, this eigenvalue is always greater than one, and its value increases as the389

selection against wild-type homozygotes increases. This shows that the dynamics of an overdominant allele under390

random gamete mating is similar as under complete outcrossing.391

In the case of complete intra-tetrad selfing (f = 1, pin = 1), we find that ρ ≥ 0 if r ≤ 2s4, in agreement with the392

results of Antonovics and Abrams, 2004. These results mean that the overdominant mutation can be maintained393

under complete selfing if it is tightly linked to the mating-type locus (r small) or if the heterozygote advantage over394

wild-type homozygotes is strong (s4 large).395

In the case of complete selfing (f = 1), we find that ρ = s4 − s3 ≤ 0 when r(2 − r − pin(1 − r)) − 2s3 ≥ 0.396

This shows that the dominant eigenvalue depends only on the selection coefficients when the recombination rate r397

exceeds a certain threshold (visible on the bottom panels of Figure 2). This means that, if the recombination rate is398

larger than the strength of the selection against deleterious homozygotes, the mutation is purged with probability399

one. Moreover, the purging time is shorter when the difference in fitness between the two homozygotes is larger.400

The threshold on recombination increases as pin increases, which means that the strength of the linkage between401

the mating-type locus and the mutation has the highest effect under intra-tetrad selfing.402

Figure 2 shows more generally that the mating system affects the purging of deleterious mutations. On Figure 2,403

the probability of purging is one in blue areas (the dominant eigenvalue is negative), and positive but smaller than404

one in red areas (the dominant eigenvalue is positive). The lines below which the mutation has a non-zero survival405

probability under the framework of Antonovics and Abrams, 2004, i.e. r = 2s4 under complete intra-tetrad selfing,406

are displayed as well. Comparing the panels for different values of intratetrad mating rate (pin) and selfing rate (f)407

shows that selfing favors the purging of the mutant allele (the blue area becomes larger as f increases), whereas408

intratetrad mating favors the maintenance of the deleterious allele (the blue area become smaller as pin increases).409

Indeed, selfing favors the creation of homozygous individuals, which are disfavored, and intra-tetrad selfing favors410

the creation of heterozygous individuals, which are favored, compared to inter-tetrad selfing: the probability that411

a heterozygous individual Bb produces a heterozygous offspring Bb is higher under intra-tetrad selfing (probability412

1− r/2) than under inter-tetrad selfing (probability 1− r + r2/2).413
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Figure 2: Dominant eigenvalue ρ for the overdominance scenario. When ρ ≤ 0 (blue areas), the mutation is purged with
probability 1. When ρ > 0 (red areas), the mutation has a non-zero probability to escape purging. The mutation is
maintained longer in the population as ρ increases. All panels have the same axes. x-axis: s4, selection coefficient
for wild-type BB homozygotes. y-axis: r, recombination rate between the two loci. Each column corresponds
to a value of pin (intra-tetrad rate, 0, 0.5, 1), and each row to a value of f (selfing rate, 0, 0.5, 1). The selection
coefficient for bb homozygotes is set to s3 = 0.1. The line r = 2s4 is displayed for comparison with the findings in
Antonovics and Abrams, 2004.

3.2 The presence of a mating-type locus has a sheltering effect under partial selfing414

Looking at the derivative of the dominant eigenvalue at r = 0.5, we find that the presence of a mating-type locus415

near the mutation has a sheltering effect on the deleterious mutation, under partial selfing and in both selection416

scenarii. Indeed, the derivative ∂ρ
∂r |r=0.5 is always negative, except when the mutation is neutral (s = 0 under417

partial dominance or s3 = 0 under overdominance), when it is lethal (s = 1) or dominant (h = 1) under partial418

dominance, or under complete outcrossing (f = 0) in both scenarii, in which cases the derivative is zero and there419

is no sheltering effect. Under complete selfing (f = 1), the derivative is also null when the intratetrad coefficient420

pin is below a certain threshold (see App 8.2.3 and 8.3.3 for the proof). As explained in the Methods section, this421

analysis shows that, in a wide range of situations, the rate of decay of the mutant subpopulation is lower when422

the mutation is linked to a mating-type locus, even loosely (i.e. as soon as r < 0.5), than when recombination is423

free between the two loci. Hence, except for the particular cases cited above, the mating-type locus always has a424

sheltering effect on the deleterious mutation maintenance under partial selfing, independently of the mating system425

coefficients (f and pin) and of the selection and dominance coefficients (s and h, or s3 and s4).426

Figure 3 shows that, under both partial dominance or overdominance, the variation of the derivative at r = 0.5427

is stronger when the selfing rate f (x-axis) or the intratetrad selfing probability pin (y-axis) are high. This means428

that the sheltering effect of the mating-type locus is stronger under high selfing or high intratetrad mating. Two429
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forces oppose here: increasing selfing induces a greater production of homozygotes, which are disfavored, whereas430

increasing intra-tetrad selfing rate or increasing the linkage with a mating-type locus favors the production of431

heterozygotes, which are favored. The sheltering effect of the mating-type locus that counters the purging effect of432

selfing is higher when selfing is higher, and this countering effect is reinforced by a high intra-tetrad mating rate.433

Moreover, when approaching f = 1, the derivative decreases to 0. Indeed, the selection and dominance coefficients434

s, s3 and h are here sufficiently small for the condition to have ∂ρ
∂r

∣∣∣
r=0.5

= 0 when f = 1 to be met, for both435

selection scenarii (see App. 8.2.3 and 8.3.3 for the derivation of this condition). This means that the dynamics of436

the deleterious mutation is independent of the presence of a mating-type locus under complete selfing and weak437

selection.438

We explore the impact of other parameters in the Supplementary materials. Figure S1 shows that, under partial439

dominance, the sheltering effect of a mating-type locus is stronger when the dominance coefficient h is lower (Bb440

heterozygotes, which are more prone to be created in the presence of a mating-type locus, are more favored) or441

when the selection coefficient s is high (the differential in fitness between Bb heterozygotes and bb homozygotes442

is higher). Similarly, Figure S2 shows that, under overdominance, the sheltering effect of the mating-type locus443

is stronger when the selection against bb homozygotes is higher (s3 coefficient), whereas the selection against BB444

homozygotes does not impact the strength of the sheltering effect, suggesting that the dynamics of the deleterious445

allele is mostly driven by the difference in fitness between the favored heterozygotes and the disfavored deleterious446

homozygotes.447

Looking at the derivative at r = 0, we show in App. 8.2.3 and App. 8.3.3 that it is also negative in both selection448

scenarii. This means that the eigenvalue decreases, i.e. that the mutation is less maintained in the population as soon449

as the two loci are no longer completely linked. Figure S3 shows that the difference ∆
(
∂ρ
∂r

)
= ∂ρ

∂r |r=0.5 −∂ρ∂r |r=0450

is always positive, which means that the absolute value of the derivative at r = 0 is larger than the absolute value451

of the derivative at r = 0.5. This shows that the sheltering effect is stronger on mutations closely linked to the452

mating-type locus : adding a small chance of recombination on previously completely linked loci (r = 0) has a453

greater impact on the maintenance of deleterious mutations than adding a small amount of linkage between two454

previously completely unliked loci (r = 0.5). The largest difference between the two derivatives occurs for selfing455

rates close to one, the derivative being then zero at r = 0.5, while the derivative at r = 0 approaches −1. This456

shows that the linkage to the mating-type locus particularly impacts the strength of its sheltering effect under high457

selfing.458
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Figure 3: Relative variation of the derivative of the dominant eigenvalue in the partial dominance case (left) and the over-
dominance case (right). For each panel, the values of ∂ρ

∂r
|r=0.5 range from a minimal value, which is negative, to

zero. We divided each value of the derivative by this minimum in order to plot values between 0 and 1 for every
panel. This enables us to compare the effect of the presence of a mating-type locus on the same scale for both
selection scenarii. x-axis: selfing rate f . y-axis: intratetrad selfing rate pin. The darker the color, the more the
mating-type locus shelters the mutation, thus promoting its maintenance.

3.3 Rare events of maintenance of the deleterious mutation occur in both selection459

scenarii, paving the way for an accumulation of mutations460

The empirical distribution of the purging time of the deleterious mutation in the partial dominance case is shown461

on Figure 4: for ca. 75% of the independent runs, the mutation was rapidly purged, while in some rare cases (ca.462

1%), the purge took very long (several orders of magnitude longer than the 75% percentile empirically obtained463

from the 100,000 runs). Note that the approximation of the distribution of the time to extinction by a Gumbel464

law (Th. 4.1 of Heinzmann, 2009) falls short here, because the initial number of individuals (one) and the absolute465

value of ρ (given in the caption) are too small.466

Consistently with our results that ∂ρ
∂r < 0, the sheltering effect of the mating-type locus implies that the purging467

time increases when the recombination rate decreases (Figure 4, and Figure S5 for the overdominant case). We also468

consistently find that increasing selfing decreases the purging time (Figures S4 and S6). In each case, the closer469

ρ is to zero, the more extreme the rare events are : the distribution of the 1% longest purging times is stretched470

towards higher values when ρ gets closer to zero, while the distributions of the 75% shortest remain similar.471

Figure 5 displays the probability that the mutation can be maintained long enough in the population for another472

mutation to appear in a region of 106 bp near the mating-type locus. This probability is nonnegligible (of the order473

of 1% to 10%), which shows that accumulation events are rare but still occur near mating-type loci. This is true even474

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2022. ; https://doi.org/10.1101/2022.10.07.511119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511119
http://creativecommons.org/licenses/by-nc-nd/4.0/


under selfing as the sheltering effect of the mating-type locus can counter the purging effect of selfing. Indeed, when475

the recombination rate between the first mutation and the mating-type locus is high (r = 0.5 or r = 0.1), modeling476

a situation where the distance between the two loci is large, the probability that a second mutation appears before477

the first one is purged decreases with increasing selfing, even with high intra-tetrad selfing rates. However, when the478

first mutation is closer to the mating-type locus (lower recombination rates), the probability that a second mutation479

appears before the first one is purged under selfing is similar to the probability under complete outcrossing. The480

presence of a mating-type locus can thus facilitate the accumulation of deleterious mutations in its flanking regions,481

especially in highly selfing populations.482

Figure 4: Empirical distribution of the deleterious allele purging time for the partial dominance scenario. A total of 100,000
simulations were run, with s = 0.1, h = 0.1, f = 0.5, pin = 0.5, starting from one heterozygous individual
(X0 = (1, 0, 0)), and for three values of the recombination rate (r = 0.001 in blue, r = 0.1 in red and r = 0.5 in
green). The respective values for ρ are ρ = −0.0101, ρ = −0.0106 and ρ = −0.0307. The x-axis is log-scaled. The
large-dotted lines represent the 75th percentile (q75 ), the dashed lines indicate the 99th percentile (q99 ), and solid
lines the maximum value (max ) of the purging time. Maximum values are several order of magnitudes higher than
the 75th percentile of the empirical distribution of the purging time.
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Figure 5: Probability that a new mutation appears in a region of length 106 bp before the first mutation is purged from the
population, under the partial dominance scenario, depending on the recombination rate between the first mutation
and the mating-type locus. We considered a mutation rate per base pair per reproduction event of 10−8. Here,
the reproduction events are those of the branching process, that change the composition of the mutant-carriers
subpopulation. The probability that a new mutation appears before the purge of the first one is approximated by
the proportion of simulation runs for which the number of reproduction events exceeds the expected number of
events needed for a new mutation to appear (see text). For each set of parameters (r, f , pin), 100,000 independent
simulations were run. Colors correspond to different values of the selfing rate f , and line styles to different values
of the intra-tetrad selfing rate pin. When f = 0, a single curve is displayed, as the value of pin has no impact under
complete outcrossing. For all simulations, we set s = 0.1 and h = 0.1.

4 Discussion483

Partially recessive deleterious mutations are almost surely purged in finite time while overdominant mutations can484

persist485

We have shown that partially recessive deleterious mutations close to a fungal-like mating-type locus (i.e. that486

does not prevent diploid selfing) are almost surely purged in finite time, except when they are neutral or behave as487

neutral. In the overdominance case, the probability of purge depends on parameter values. Low selfing rates, high488

intra-tetrad selfing rates or tight linkage to the mating-type locus increases both the maintenance probability and489

persistence of the overdominant allele, whereas a high selfing rate favors its purge.490

In particular, if linkage is complete (corresponding to r = 0 here, or to the case where the inversion encompasses491

a permanently heterozygous locus in Jay et al., 2022), an overdominant allele may be maintained in a population492

and even sweep to fixation with non-zero probability, which confirms previous findings (Antonovics et al., 1998,493

Antonovics and Abrams, 2004, Jay et al., 2022). This means that, although selfing purges deleterious mutations, a494
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mating-type locus can have a sheltering effect in its flanking regions.495

In general, the overdominant allele is maintained longer and with a higher probability in the population when the496

fitness advantage of heterozygotes over homozygotes is higher, in line with previous simulation results (Antonovics497

and Abrams, 2004). This conclusion is sensible: if the mutant is strongly favored in a heterozygous state, it can be498

maintained in this state in the population.499

The presence of the mating-type locus has a sheltering effect under selfing500

We found that, in both selection scenarii, the presence of the mating-type locus had no effect on the maintenance501

of deleterious mutations under outcrossing, but always had a sheltering effect under selfing, which strengthened as502

the selfing rate increased. Indeed, selfing increases homozygosity and thus accelerates the purge of a deleterious503

allele, whereas the presence of a permanently heterozygous mating-type locus induces more heterozygosity in its504

flanking regions, that counters the purging effect of selfing. The sheltering effect of a mating-type locus is thus all the505

more tangible as it counters the strong purging effect induced by selfing. Increasing intra-tetrad selfing also induces506

more heterozygosity and thus slightly reinforces the sheltering effect of the mating-type locus. This is consistent with507

the findings that, in fungi, ascomycetes that reproduce via outcrossing and live as haploids do not show evolutionary508

strata (Skinner et al., 1993, Zhong et al., 2002, Phan et al., 2003, Kuhn et al., 2006, Jin et al., 2007, Malkus et al.,509

2009) whereas pseudo-homothallic ascomycete fungi, living as dikaryotic and undergoing mostly intra-tetrad selfing,510

are those with evolutionary strata around their mating-type locus (Menkis et al., 2008, Hartmann, Duhamel, et al.,511

2021, Hartmann, Ament-Velásquez, et al., 2021, Vittorelli et al., 2022). In basidiomycetes also, the species with512

evolutionary strata are dikaryotic and automictic, e.g. Microbotryum fungi and Agaricus bisporus var. bisporus513

(Branco et al., 2017, Branco et al., 2018, Foulongne-Oriol et al., 2021). This may be explained by the fact that514

intra-tetrad selfing favors the accumulation of deleterious alleles near the mating-type locus, which in turn can515

promote selection for recombination suppression because there will be more variability in the number of mutations516

present in a genomic region close to the mating-type locus, and therefore more fragments having a much lower517

number of deleterious mutations than average in the population (Jay et al., 2022).518

Additionally, we found that the sheltering effect of a mating-type locus was stronger when the mutation was519

more strongly recessive. Indeed, the purging effect of selfing on partially recessive mutations is stronger for more520

recessive mutations (Charlesworth and Charlesworth, 1987, Caballero and Hill, 1992, Arunkumar et al., 2015), in521

which case the opposite force of the sheltering effect of a mating-type locus is strenghtened. This is in agreement522

with the results of studies on the sheltered load linked to a self-incompatibility locus, showing that completely523

recessive deleterious mutations are more easily fixed than partially recessive ones (Llaurens et al., 2009). This524

also confirms results on the fixation of inversions encompassing recessive deleterious mutations and linked to a525

permanently heterozygous locus (Olito et al., 2022, Jay et al., 2022). These results showed that inversions became526

fixed with a higher probability when segregating deleterious mutations were more strongly recessive.527

Rare events of long maintenance of deleterious mutations in the population can occur528

We further found that rare events of long maintenance of deleterious mutations in the population occurred529

under both selection scenarii. This shows that some deleterious mutations can persist in the population for an530

extended period of time before being purged, especially near the mating-type locus: in approximately 1% of our531

simulations, the purge of the deleterious mutation took several orders of magnitude longer than the 75% percentile532
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empirically obtained from the 100,000. These surprisingly long purging times are likely to be due to the dynamics533

of the mutant being almost critical (the dominant eigenvalue in the branching process approximation is negative,534

but close to zero). However, from a modeling perspective very little is currently known about these trajectories,535

and more generally about the extinction time of multitype branching processes. Studying the extinction time of a536

deleterious allele in a one locus-two allele setting with a unitype branching process approximation and a diffusion537

approximation showed that the standard deviation of the mean extinction time was higher than the mean itself (Nei,538

1971), which is a feature that was also found in our simulations of multitype branching processes. These results539

show that the extinction time of deleterious alleles is highly variable, producing long-lasting mutations that may540

induce an accumulation of deleterious alleles near a mating-type locus, which is a prerequisite for recombination541

suppression to extend away from this locus (Jay et al., 2022).542

The dynamics of deleterious mutations heavily relies on the mating system543

Our results show that the mating system, and selfing in particular, is a prevailing force impacting the dynamics544

of deleterious mutations. Indeed, we found that a mating-type locus shelters mutations and thus favors their545

maintenance, but increasing selfing reduces the maintenance of mutations with a stronger effect. This result is546

congruent with previous studies showing that an increase in the selfing rate induces i) a reduction of the mutational547

load at a given locus or at multiple non-interacting loci far from mating-type compatibility loci (Charlesworth et al.,548

1990, for a deterministic model, Abu Awad and Roze, 2018, for diffusion approximation), and ii) a reduction of the549

purging time of deleterious mutations (Caballero and Hill, 1992).550

However, we observed a particular behavior when the population reproduced only via selfing. Under complete551

selfing in our setting, the existence of a sheltering effect of a mating-type locus strongly depended on the values552

of the intra-tetrad selfing rate: the sheltering effect of the mating-type locus was detectable only when the intra-553

tetrad selfing coefficient exceeded a certain threshold, that depended on the dominance and selection coefficients.554

This strong effect of departing from complete selfing had previously been noted: introducing a small amount of555

outcrossing in a selfing population can lead to sharp changes in the dynamics of a deleterious mutation, whereas556

adding a small amount of selfing in an outcrossing population induces a smoother change (Holsinger and Feldman,557

1985).558

Limits of the methods559

Our results are limited to the case of a single load locus, in interaction with a heterozygous mating-type560

locus, and may not apply when considering different frameworks, such as multiple epistatic loci or with additional561

beneficial mutations, especially regarding the impact of the mating system. Indeed, selfing has a non-monotonous562

effect depending on the tightness of linkage between multiple interacting loci (Abu Awad and Roze, 2018): at low563

selfing rates, increasing linkage between loci increases the mutation load, whereas the opposite effect is observed at564

high selfing rates. Selfing also has a non-monotonous effect on genetic variation in populations under stabilizing565

selection (Lande and Porcher, 2015, Clo and Opedal, 2021). In addition, selfing can enhance the fixation chances566

of a deleterious allele when it hitchhikes during a selective sweep (Hartfield and Otto, 2011, Hartfield and Glémin,567

2014). Moreover, the impact of the mating system on the maintenance of deleterious mutations may be different568

if the number of individuals carrying the mutant allele exceeds a certain threshold. In this case, the branching569

process approximation does not hold anymore, and a deterministic model in large population may be used to570
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further describe the dynamics of the deleterious allele (Durrett and Schweinsberg, 2004, Durrett, 2008 Section571

6.1.3). The impact of the mating system then remains unclear: in large populations, selfing reduces the effective572

population size, which impairs the efficiency of selection and increases the mutational load of the population, but it573

also bolsters homozygosity, which favors the purge of deleterious mutations (Pollak, 1987, Caballero and Hill, 1992,574

Charlesworth and Wright, 2001, Wright et al., 2008).575

Another limitation of our approach is that we considered a fixed recombination rate for simplicity, but allowing576

this rate to vary would allow us to test whether recombination suppression could evolve. Such an outcome may577

depend on the strength of selection against the deleterious mutation, as well as on the mating system (Antonovics578

and Abrams, 2004, Abu Awad and Roze, 2018). In some previous models, the impact of a modifier of recombination579

in the form of a multi-allelic locus was studied by simulations, but no analytical results were obtained (Feldman,580

1972, Palsson, 2002, Antonovics and Abrams, 2004, Lenormand and Roze, 2022). The multitype branching process581

framework developed here would also be an interesting approach to obtain numerical results on this more complex582

situation, but analytical results would probably be out of reach because of the increase in complexity of the model.583

Conclusion and Perspectives584

In conclusion, our findings show that a mating-type locus has a sheltering effect on nearby deleterious mutations,585

especially in case of selfing and automixis, which can then play a role in the evolution of recombination suppression586

near mating-compatibility loci (Antonovics and Abrams, 2004, Jay et al., 2022). This may contribute to explain587

why evolutionary strata of recombination suppression near the mating-type locus are found mostly in automictic588

(pseudo-homothalic) fungi (Menkis et al., 2008, Branco et al., 2017, Branco et al., 2018, Hartmann et al., 2020,589

Hartmann, Ament-Velásquez, et al., 2021, Foulongne-Oriol et al., 2021, Vittorelli et al., 2022).590

The results obtained here on the accumulation of deleterious mutations should apply, beyond fungal-like mating-591

type loci, to other permanently heterozygous loci, such as supergenes (Llaurens et al., 2017). In contrast, sporophytic592

or gametophytic plant self-incompatibility loci prevent diploid selfing, leading to a completely different evolutionary593

scenario in their flanking regions as imposed by complete outcrossing. The diversity of observed patterns regarding594

the presence or absence, length and number of evolutionary strata around these regions (Uyenoyama, 2005) may595

be explained, in addition to the mating system, by other factors controlling the long-term behavior of deleterious596

mutations which are not studied here, such as the number of alleles at supergenes, the length of the haploid597

phase (Jay et al., 2022), or the presence of multiple load loci that are possibly physically linked and with epistatic598

interactions (Abu Awad and Roze, 2018, Lenormand and Roze, 2022). The questions of the genome-wide impact of599

a mating-type locus, and of the interaction between a permanently heterozygous locus and background mutations,600

are currently debated (Abu Awad and Waller, 2021). The branching process framework developed here could be601

applied to diploid individuals carrying a load locus with two alleles, undergoing selfing or outcrossing, in order to602

investigate the dynamics of a new deleterious mutation in a population with or without a mating-type locus.603

Our results showing the long maintenance of deleterious mutations in the vicinity of permanently heterozygous604

loci pave the way for future investigations on the accumulation of deleterious mutations. Previous studies (Coron605

et al., 2013, Coron, 2014) on mutational meltdown, showing that deleterious mutations accumulate faster when606

other mutations are already fixed, also encourage future work in this direction.607
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5 Appendix: Table of notation836

N Population size

G1, . . . , G4 Genotypes

(g1, . . . , g4) Number of individuals of each genotype

f Selfing probability

pin and pout = 1− pin Intra- and Inter-tetrad selfing probabilities

r Recombination rate

Si Probability of survival of an offspring of genotype i ∈ {1, 2, 3, 4} (see Figure 1)

s Selection coefficient in the partial dominance case

h Dominance coefficient in the partial dominance case

s3, s4 Selection coefficients in the overdominance case

Table 1
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6 Appendix: Intra-, Inter-tetrad selfing and outcrossing837

(A) Intra-tetrad selfing

Single parent

A a

Meiosis

One tetrad

A A a a

Gamete

A

Gamete

a

A a

Offspring

(B) Inter-tetrad selfing

Single parent

A a

Meiosis

A A a a

Meiosis

A A a a

Two tetrads

Gamete

A

Gamete

a

A a

Offspring

(C) Outcrossing

Parent 1

A a

Meiosis

Parent 2

A a

Meiosis

A A a a A A a a

One tetrad each

Gamete

A

Gamete

a

A a

Offspring

Figure 6: Schematic representation of the three mating systems considered in the model. Individuals are represented by a
pair of mating-type chromosomes, with the mating-type locus displayed. A diploid offspring is generated by the
fusion of two gametes carrying different mating-type alleles (A and a). (A) Under intra-tetrad selfing, both gametes
are picked from the same tetrad; only one parent is involved. (B) Under inter-tetrad selfing, the two gametes are
picked from two different tetrads (meioses) produced by the same diploid parent; only one parent is involved. (C)
Under outcrossing, the two gametes are picked in tetrads produced by different parents.
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7 Appendices for the Method section838

7.1 Rates of creation of offspring with given genotypes (Moran process)839

Parental

Genotypes

Intra/Inter

- Tetrad

Recombination Genotype of offspring

. . G1 G2 G3 G4

G1

fg1

Intra

pin

(A) (1− r) fg1pin(1− r) 0 0 0

(A) r 1

4
fg1pinr

1

4
fg1pinr

1

4
fg1pinr

1

4
fg1pinr

Inter

pout

(AA) (1− r)2 fg1pout(1− r)2 0 0 0

(AP) 2(1− r)r 1

2
2fg1pout(1− r)r 0 1

4
2fg1pout(1− r)r

1

4
2fg1pout(1− r)r

(PP) r2 1

4
fg1poutr

2 1

4
fg1poutr

2 1

4
fg1poutr

2 1

4
fg1poutr

2

G2

fg2

Intra

pin

(A) (1− r) 0 fg2pin(1− r) 0 0

(P) r 1

4
fg2pinr

1

4
fg2pinr

1

4
fg2pinr

1

4
fg2pinr

Inter

pout

(AA) (1− r)2 0 fg2pout(1− r)2 0 0

(AP) 2(1− r)r 0 1

2
2fg2pout(1− r)r

1

4
2fg2pout(1− r)r

1

4
2fg2pout(1− r)r

(PP) r2 1

4
fg2poutr

2 1

4
fg2poutr

2 1

4
fg2poutr

2 1

4
fg2poutr

2

G3 fg3 Same tetrad (homozyg.) 0 0 fg3 0

G4 fg4 Same tetrad (homozyg.) 0 0 0 fg4

Table 2: Table summarizing the rates of production of an offspring of each genotype (last four columns) in case of selfing.
Parental Genotype: The genotype of the individual involved in the mating event; Intra/Inter-tetrad : Mating through
intra- of inter-tetrad selfing (see section 2.1 for definitions); Recombination: Occurrence of a recombination event in
the tetrads from which gametes are picked. "A" stands for "Absence" in one tetrad, "P" stands for "Presence" in
one tetrad. We use only one letter when the two gametes come from the same tetrad or when one of the genotypes
involved is homozygous at the load locus. For example, (AP) indicates that recombination occured in one tetrad
but not in the other. Gi: the rate at which an offspring of genotype Gi is produced, due to the scenario of parental
genotype, intra/inter tetrad selfing and presence/absence of recombination considered. The total rate Tg(+Gi) at
which a new offspring of genotype Gi is created when the population state is g = (g1, g2, g3, g4) is then the sum of
all the rates appearing in column Gi in this Table, Table 3 and Table 4.

840
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Parental

Genotypes

Recombination Genotype of offspring

. G1 G2 G3 G4

G1G1

(1− f)×

g1
g1 − 1

N − 1

(AA) (1− r)2 (1− f)g1
g1 − 1

N − 1
(1− r)2 0 0 0

(AP) 2(1− r)r 1

2
2(1− f)g1

g1 − 1

N − 1
(1− r)r 0 1

4
2(1− f)g1

g1 − 1

N − 1
(1− r)r

1

4
2(1− f)g1

g1 − 1

N − 1
(1− r)r

(PP) r2 1

4
(1− f)g1

g1 − 1

N − 1
r
2 1

4
(1− f)g1

g1 − 1

N − 1
r
2 1

4
(1− f)g1

g1 − 1

N − 1
r
2 1

4
(1− f)g1

g1 − 1

N − 1
r
2

G1G2

2(1− f)×

g1
g2

N − 1

(AA) (1− r)2 0 0 1

2
2(1− f)g1

g2

N − 1
(1− r)2

1

2
2(1− f)g1

g2

N − 1
(1− r)2

(AP) (1− r)r 1

2
2(1− f)g1

g2

N − 1
(1− r)r 0 1

4
2(1− f)g1

g2

N − 1
(1− r)r

1

4
2(1− f)g1

g2

N − 1
(1− r)r

(PA) r(1− r) 0 1

2
2(1− f)g1

g2

N − 1
r(1− r)

1

4
2(1− f)g1

g2

N − 1
r(1− r)

1

4
2(1− f)g1

g2

N − 1
r(1− r)

(PP) r2 1

4
2(1− f)g1

g2

N − 1
r
2 1

4
2(1− f)g1

g2

N − 1
r
2 1

4
2(1− f)g1

g2

N − 1
r
2 1

4
2(1− f)g1

g2

N − 1
r
2

G1G3

2(1− f)×

g1
g3

N − 1

(A) 1− r 1

2
2(1− f)g1

g3

N − 1
(1− r) 0 1

2
2(1− f)g1

g3

N − 1
(1− r) 0

(P) r 1

4
2(1− f)g1

g3

N − 1
r

1

4
2(1− f)g1

g3

N − 1
r

1

2
2(1− f)g1

g3

N − 1
r 0

G1G4

2(1− f)×

g1
g4

N − 1

(A) 1− r 1

2
2(1− f)g1

g4

N − 1
(1− r) 0 0 1

2
2(1− f)g1

g4

N − 1
(1− r)

(P) r 1

4
2(1− f)g1

g4

N − 1
r

1

4
2(1− f)g1

g4

N − 1
r 0 1

2
2(1− f)g1

g4

N − 1
r

Table 3: Part 1 of the table summarizing the rates of production of an offspring of each genotype (last four columns) in case
of outcrossing. Parental Genotype: The genotype of the individuals involved in the mating event; Recombination:
Occurrence of a recombination event in the tetrads from which gametes are picked. "A" stands for "Absence" in
one tetrad, "P" stands for "Presence" in one tetrad. We use only one letter when the two gametes come from the
same tetrad or when one of the genotypes involved is homozygous at the load locus. For example, (AP) indicates
that recombination occured in one tetrad but not the other. Gi: the rate at which an offspring of genotype Gi is
produced, due to the scenario of parental genotype, intra/inter tetrad selfing and presence/absence of recombination
considered. The total rate Tg(+Gi) at which a new offspring of genotype Gi is created when the population state
is g = (g1, g2, g3, g4) is then the sum of all the rates appearing in column Gi in this Table, Table 2 and Table 4.
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Parental

Genotypes

Recombination Genotype of offspring

. G1 G2 G3 G4

G2G2

(1− f)×

g2
g2 − 1

N − 1

(AA) (1− r)2 0 (1− f)g2
g2 − 1

N − 1
(1− r)2 0 0

(AP) 2(1− r)r 0 1

2
2(1− f)g2

g2 − 1

N − 1
(1− r)r

1

4
2(1− f)g2

g2 − 1

N − 1
(1− r)r

1

4
2(1− f)g2

g2 − 1

N − 1
(1− r)r

(PP) r2 1

4
(1− f)g2

g2 − 1

N − 1
r
2 1

4
(1− f)g2

g2 − 1

N − 1
r
2 1

4
(1− f)g2

g2 − 1

N − 1
r
2 1

4
(1− f)g2

g2 − 1

N − 1
r
2

G2G3

2(1− f)×

g2
g3

N − 1

(A) 1− r 0 1

2
(1− f)g2

g3

N − 1
(1− r)

1

2
2(1− f)g2

g3

N − 1
(1− r) 0

(P) r 1

4
2(1− f)g2

g3

N − 1
r

1

4
2(1− f)g2

g3

N − 1
r

1

2
2(1− f)g2

g3

N − 1
r 0

G2G4

2(1− f)×

g2
g4

N − 1

(A) 1− r 0 1

2
2(1− f)g2

g4

N − 1
(1− r) 0 1

2
2(1− f)g2

g4

N − 1
(1− r)

(P) r 1

4
2(1− f)g2

g4

N − 1
r

1

4
2(1− f)g2

g4

N − 1
r 0 1

2
2(1− f)g2

g4

N − 1
r

G3G3

(1− f)×

g3
g3 − 1

N − 1

Same tetrads 0 0 (1− f)g3
g3 − 1

N − 1
0

G3G4

2(1− f)×

g3
g4

N − 1

Same tetrads 1

2
2(1− f)g3

g4

N − 1

1

2
2(1− f)g3

g4

N − 1
0 0

G4G4

(1− f)×

g4
g4 − 1

N − 1

Same tetrads 0 0 0 (1− f)g4
g4 − 1

N − 1

Table 4: Part 2 of the table summarizing the rates of production of an offspring of each genotype (last four columns) in
case of outcrossing. Parental Genotype: The genotype of the individuals involved in the mating; Recombination:
Occurrence of a recombination event in the tetrads from which gametes are picked. "A" stands for "Absence" in
one tetrad, "P" stands for "Presence" in one tetrad. We use only one letter when the two gametes come from the
same tetrad or when one of the genotypes involved is homozygous at the load locus. For example, (AP) indicates
that recombination occured in one tetrad but not the other. Gi: the rate at which an offspring of genotype Gi is
produced, due to the scenario of parental genotype, intra/inter tetrad selfing and presence/absence of recombination
considered. The total rate Tg(+Gi) at which a new offspring of genotype Gi is created when the population state
is g = (g1, g2, g3, g4) is then the sum of all the rates appearing in column Gi in this Table, Table 2 and Table 3.
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The total rate at which an offspring of a given genotype is produced is then obtained by summing the rates841

along each column Gi in Tables 2, 3 and 4. This gives:842

Tg(+G1) = fg1

(
1− r +

r

4

(
1− (1− pin)(1− r)

))
+ fg2

r

4

(
1− (1− pin)(1− r)

)
+

1− f
N − 1

[
g1

(
1− r

2

)(
(g1 − 1)

(
1− r

2

)
+ g3 + g4

)
+ g2r

(
(g2 − 1)

r

4
+

1

2
(g3 + g4)

)
+ g1g2r

(
1− r

2

)
+ g3g4

]
,

Tg(+G2) = fg1
r

4

(
1− (1− pin)(1− r)

)
+ fg2

(
1− r +

r

4

(
1− (1− pin)(1− r)

))
+

1− f
N − 1

[
g2

(
1− r

2

)(
(g2 − 1)

(
1− r

2

)
+ g3 + g4

)
+ g1r

(
(g1 − 1)

r

4
+

1

2
(g3 + g4)

)
+ g1g2r

(
1− r

2

)
+ g3g4

]
,

Tg(+G3) = fg1
r

4

(
1 + (1− pin)(1− r)

)
+ fg2

r

4

(
1 + (1− pin)(1− r)

)
+ fg3

+
1− f
N − 1

[
g1(g1 − 1)

r

2

(
1− r

2

)
+ g2(g2 − 1)

r

2

(
1− r

2

)
+ g1g2

(
1− r +

r2

2

)
+ g3(g1 + g2 + (g3 − 1))

]
,

Tg(+G4) = fg1
r

4

(
1 + (1− pin)(1− r)

)
+ fg2

r

4

(
1 + (1− pin)(1− r)

)
+ fg4

+
1− f
N − 1

[
g1(g1 − 1)

r

2

(
1− r

2

)
+ g2(g2 − 1)

r

2

(
1− r

2

)
+ g1g2

(
1− r +

r2

2

)
+ g4(g1 + g2 + (g4 − 1))

]
.

7.2 Reproduction law for the branching process843

We give here an example of how the reproduction laws for the branching process are derived from the rates of the844

Moran process, using the approximate regime (1).845

Let us derive the coefficient A12 of the matrix A, which is the rate at which an individual of genotype G2846

generates an offspring of genotype G1 and survives. Equivalently, this is the rate at which an individual of genotype847

G2 generates a descendance vector equal to e1 + e2.848

Using the rates obtained for the Moran model, the rate at which an individual of genotype G2 produces an849

offspring of genotype G1 is:850

f
r

4

(
1− (1− pin)(1− r)

)
+ (1− f)

[
r

(
g2 − 1

N − 1
× r

4
+

1

2

(
g3

N − 1
+

g4
N − 1

))
+

g1
N − 1

r
(

1− r

2

)]
. (5)

The first term, with a factor f , is the rate at which an individual of genotype G2 produces an offspring of851

genotype G1 by selfing. The second term, with a factor 1 − f , is the rate at which an individual of genotype G2852

produces an offspring of genotype G1 by outcrossing. In this term, the fractions of the form gi
N−1 represent the853

probabilities that an individual of genotype Gi is chosen to mate with the G2 parent.854

Using the approximation (1), i.e. assuming that g4 ≈ N and gi � N for i = 1, 2, 3, we obtain that the quantity855

in Eq. (5) can be approximated by:856
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f
r

4

(
1− (1− pin)(1− r)

)
+ (1− f)

r

2
.

To obtain A12, it remains to multiply this rate by the probability that the offspring survives, S1, and the857

probability that the parent G2 is not chosen to die, N−1N . As the population size N is considered large, the latter858

probability is approximately equal to 1.859

This gives:860

A12 =

[
f
r

4

(
1− (1− pin)(1− r)

)
+ (1− f)

r

2

]
× S1.
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7.3 Equation for the expected value of the size of the mutant population861

This appendix gives the details of the derivation of the coefficients of the matrix C defined by862

d
dt

EZ0
[Zt] = EZ0

[Zt]C,

following Bacaër, 2018. Note that this is the same matrix defined in Athreya and Ney, 1972, Eq. 9, part. V.7.2., or863

in Pénisson, 2010, Eq. 1.1.16, but here we use the methodology described by Bacaër, 2018 to derive its coefficients.864

In the following, type j refers to the genotype Gj . We will use the standard notation sz := sz11 s
z2
2 . . . szdd for s865

and z two vectors of the same dimension d.866

7.3.1 Notation867

For all t ≥ 0, let us denote the expected value of the process at time t by E(t):868

E(t) =


E1(t)

E2(t)

E3(t)

 =


E[Zt,1]

E[Zt,2]

E[Zt,3]

 .

For z ∈ N3 and t ≥ 0, we let p(t, z) = P(Zt = z) be the probability that the system is found in state z at time

t. Let f(t, .) be the generating function of the variable Zt: for all s ∈ [0, 1]3,

f(t, s) :=
∑
z∈N3

p(t, z)sz = E
[
s
Zt,1

1 s
Zt,2

2 s
Zt,3

3

]
.

Recalling that Y j stands for the random vector of number of descendants of each type generated by the re-869

production of a type j individual, we also define πj(z) = P(Y j = (z1, z2, z3)). As indicated in the main text,870

the rates at which an individual of type j reproduces and gives rise to a descendance vector ei + ej , ei or 0 are871

respectively Aij , Tij and Djj . We denote the total rate at which a reproduction event occurs for a parent of type872

j by cj :=
∑
i

Aij +
∑
i

Tij +Djj .873

The reproduction law of type j individuals is then given by, for every i ∈ {1, 2, 3},874

P(Y j = ei + ej) =
Aij
cj
, P(Y j = ei) =

Tij
cj
, P(Y j = 0) =

Djj

cj
.

Finally, let hj be the generating function of the reproduction law of type j individuals, for j ∈ {1, 2, 3}. That875

is, for s ∈ [0, 1]3,876

hj(s) =
∑
z∈N3

πj(z)s
z = E

[
s
Y j
1

1 s
Y j
2

2 s
Y j
3

3

]
.

7.3.2 Ordinary differential edecompoquation (ODE) satisfied by (E(t))t≥0877

The reproduction law of each type has finite moments of all order, because the number of descendants produced can

not exceed 2. That garantees that there is no explosion of the population in finite time. Hence, standard results

on multi-dimensional random variables (see for example Athreya and Ney, 1972) give us that, for all types j and
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all t ≥ 0,

Ej(t) =
∂f

∂sj
(t,1),

with 1 = (1, 1, 1), which gives878

dEj(t)
dt

=
∂2f

∂sj∂t
(t,1) =

∂

∂sj

(∑
z∈N3

∂p

∂t
(t, z)sz

)∣∣∣
s=1

.

The variation of p over time ∂p(t,z)
∂t can be decomposed into two terms. For z ∈ N3,879

∂p

∂t
(t, z) = −

3∑
j=1

zjcjp(t, z) +
3∑
j=1

∑
u,v∈N3

u+v=z

(uj + 1)cjp(t, u+ ej)πj(v).

The first term is the rate at which the population departs from state z, and is given by the sum over all types880

j of the rate at which individuals of type j reproduce. The second term is the rate at which the population arrives881

in state z from another state, and can be decomposed according to the individual type whose reproduction changes882

the population state. Note that the descendance vector generated during the reproduction event (v) counts the883

parent when it does not die, implying that the population is formally decreased by one individual of type j and884

increased by a vector v during the reproduction event. In other words, if the population starts from a state u+ ej885

and an individual of type j reproduces by creating a vector v of descendants, the final state of the population is886

u+ ej − ej + v = u+ v.887

Back to the derivative of f with respect to t, we use the fact that the rates cj are independent of the current888

state of the population to re-arrange the sums and obtain:889

∂f

∂t
(t, s) =

∑
z∈N3

∂p

∂t
(t, z)sz

=
∑
z∈N3

− 3∑
j=1

zjcjp(t, z)s
z +

3∑
j=1

∑
u,v∈N3

u+v=z

(uj + 1)cjp(t, u+ ej)πj(v)sz



=
∑
j

cj

−∑
z∈N3

zjp(t, z)s
z +

∑
z∈N3

∑
u,v∈N3

u+v=z

(uj + 1)p(t, u+ ej)πj(v)sz


=
∑
j

cj

(
−sj

∑
z∈N3

zjp(t, z)s
z−ej +

∑
v∈N3

∑
u∈N3

(uj + 1)p(t, u+ ej)πj(v)su+v

)

=
∑
j

cj

(
−sj

∑
z∈N3

zjp(t, z)s
z−ej +

∑
v∈N3

πj(v)sv
∑
u∈N3

(uj + 1)p(t, u+ ej)s
u

)

=
∑
j

cj

(
−sj

∂f

∂sj
(t, s) + hj(s)

∂f

∂sj
(t, s)

)
=
∑
j

cj(hj(s)− sj)
∂f

∂sj
(t, s).
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Writing δi,j = 1 if i = j and δi,j = 0 otherwise, we then obtain for the expected value:890

dEi
dt

=
∂

∂si

∂f

∂t
(t, s)

∣∣
s=1

=
∑
j

cj

(
∂hj
∂si

(1)− δi,j
)
∂f

∂sj
(t,1) +

∑
j

cj(hj(1)− 1)
∂2f

∂si∂sj
(t,1)

=
∑
j

cj

(
∂hj
∂si

(1)− δi,j
)
Ej(t) +

∑
j

cj(hj(1)− 1)
∂2f

∂si∂sj
(t,1)

=
∑
j

cj

(
∂hj
∂si

(1)− δi,j
)
Ej(t),

where the last equality arises from the fact that, because hj is a generating function,

hj(1)− 1 =
∑
z∈N3

πj(z)− 1 = 0.

The matrix C we are looking for is thus defined by Cij = cj

(
∂hj

∂si
(1)− δij

)
for 1 ≤ i, j ≤ 3.891

Furthermore, we have, for all j,892

hj(s) =
1

cj

(∑
i

Aijsisj +
∑
i

Tijsi +Djj

)
.

Combining the above, we arrive at893

Cij =


Aij + Tij if i 6= j,

Ajj −
∑
k 6=j

Tkj −Djj if i = j.

In conclusion, the matrix C is given by894

C =


(fa(r) + (1− f)d(r))S1 − S4

(
fc(r) + (1− f) r2

)
S1 (1− f)S1(

fc(r) + (1− f) r2
)
S2 (fa(r) + (1− f)d(r))S2 − S4 (1− f)S2

fb(r)S3 fb(r)S3 fS3 − S4

 , (6)

with895

a(r) = 1− r +
r

4

(
1− (1− pin)(1− r)

)
, b(r) =

r

4

(
1 + (1− pin)(1− r)

)
,

c(r) =
r

4

(
1− (1− pin)(1− r)

)
, and d(r) = 1− 1

2
r.
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7.4 Reducibility of the matrix C and probability of extinction of the branching pro-896

cess897

We will use the standard notation sz := sz11 s
z2
2 . . . szdd for s and z two vectors of the same dimension d.898

Assessing the type of branching process at hand (super-, sub-, or critical) relies on the study of the eigenvalues899

of the matrix C. We use results of Sewastjanow, 1975 detailed in Pénisson, 2010 to obtain conditions on the almost-900

sure extinction of the process. When the matrix C is irreducible, the Perron-Froebenius theory of positive matrices901

states that it has a unique dominant eigenvalue. The branching process is then super-, sub-, or critical when this902

dominant eigenvalue is respectively positive, negative, or zero (Athreya and Ney, 1972, V.7.2.). In particular, the903

probability of extinction is equal to 1 when ρ ≤ 0.904

In our case, the matrix C can be reducible (for example, when f = 0). In order to obtain a result on the905

probability of extinction in the subcritical case, we use the theory of sub-processes and of final classes. We recall906

below useful definitions and the principal result used (Sewastjanow, 1975).907

Let (Zt)t>0 be a multitype branching process, with types in a finite set K. The equivalence relation of com-

munication is defined by: for all states ki, kj ∈ K, we say that ki and kj communicate, if and only if there exist

s, t > 0 such that

Peki
(Zs,kj > 0) > 0 and Pekj

(Zt,ki > 0) > 0.

This means that there exists a time at which the probability that the population described by a branching

process initiated with a single individual of type ki contains an individual of type kj is positive, and a time at which

the probability that the population described by a branching process initiated with a single individual of type kj

contains an individual of type ki is positive as well. If a subset K̃ = {k1, . . . , kp} is a class for the communication

equivalence relation (meaning that each state of K̃ communicates with all the others but communicates with none

of the states in K̃c), the K̃-subprocess is the process defined for all t > 0 by

Z̃t :=
(
Zt,k1 , . . . , Zt,kp

)
,

which is the vector Zt from which only the coordinates of the types in the class K̃ are kept. (Z̃t)t≥0 is still a908

branching process, and is by definition irreducible.909

Let Ft,ki : s ∈ [0, 1]d 7−→ Eeki

[
sZt
]
be the generating function of the process (Zt)t≥0 at time t, starting with one910

individual of type ki. K̃ = {k1, . . . , kp} is then said to be a final class if it is non-empty, and satisfies the property911

that there exists t > 0 such that for all ki ∈ K̃ and s ∈ [0, 1]d, Ft,ki(s) is of the form912

Ft,ki(s) = αki,1(t, s)sk1 + · · ·+ αki,p(t, s)skp ,

where the coefficients αki,j can be expressed using the coordinates sk of s such that k /∈ K̃. In other words, Ft,ki(s)913

is linear in sk for all k ∈ K̃. The interpretation of this property is that whenever the population starts from a single914

individual of type ki ∈ K̃, at any time t ≥ 0 there is one, and only one, individual of a type kj ∈ K̃ (and potentially915

other individuals with types in K̃c). The following result gives a condition for the almost sure extinction of the916

process (Zt)t≥0 in the general case where the matrix C is not necessarily irreducible. Recall that the Perron’s root917
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ρ of a process, when it exists, is a real eigenvalue of the matrix associated with the process such that all real parts918

of other eigenvalues are smaller than ρ (see Pénisson, 2010 Th. 1.1.7 and the following ones for a more detailed919

definition).920

Proposition 1 (Prop. 1.1.22 in Pénisson, 2010)921

Let (Zt)t>0 be a continuous time Galton-Watson process, and let ρ = max
K̃

ρK̃ be the maximal value of the Perron’s922

roots of all the possible K̃-subprocesses. Then the process (Zt)t>0 almost surely dies out if and only if there are no923

final classes and ρ 6 0.924

Let us verify that our branching process does not contain a final class. For that, we show that the generating925

function of the process starting from any state has a non-zero coefficient of degree zero, and thus cannot be linear.926

For any t > 0, r ∈ [0, 1]3 and any j ∈ {1, 2, 3}, we can decompose the generating function into927

Ft,j(r) = Eej (rZt) = Pej (Zt = 0) +
∑

z∈N3\{0}

Pej (Zt = z)rz.

Let us prove that Pej (Zt = 0) > 0 for every j ∈ {1, 2, 3}. This will prove that the generating function cannot be928

linear for any initial type, and thus that the process does not contain any final classes.929

Let j ∈ {1, 2, 3}, τ1 be the time of the first reproduction event, and Y j1 be the descendance vector created at930

that time. We have931

Pej (Zt = 0) ≥ Pej
(
{τ1 ≤ t} ∩ {Y j1 = 0}

)
= Pej

(
Y j1 = 0|τ1 ≤ t

)
Pej
(
τ1 ≤ t

)
= Pej (τ1 ≤ t)× P(Y j = 0)

= (1− e−cjt)
Djj

cj
,

where cj is the total rate of reproduction of an individual of type j, and Djj is the rate at which an individual of932

type j reproduces and gives rise to a null vector of descendants. Hence, Pej (Zt = 0) > 0 when Djj > 0.933

For both selection scenarii, D11 = D22 = D33 = S4. In the partial dominance selection scenario, S4 = 1, and934

in the overdominant selection scenario, S4 = 1 − s4. Having Djj = 0 for any j is impossible in the first scenario935

and requires s4 = 1 in the second scenario, which means that the wild allele is lethal, which is not a reasonable936

assumption. We thus take s4 < 1. As a consequence, the generating function cannot be linear, and the process937

does not contain any final class.938

The result of Proposition 1 then applies here, and the sign of the dominant eigenvalue of matrix C gives a939

condition on the almost-sure extinction of the process.940
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8 Appendices for the Results section941

8.1 Supplementary figures942

Figure S1: Relative variation of the derivative of the eigenvalue in the partial dominance case, for varying selfing rate f
(x-axis), dominance coefficient h (y-axis, left) and selection coefficient s (y-axis, right). For each panel, the values
of ∂ρ

∂r
|r=0.5 range from a minimal value, which is negative, to zero. We divided each value of the derivative by

this minimum in order to plot values between 0 and 1 for every panel. This enables us to compare the impact
of different parameters (h, s and f) on the sheltering effect of the mating-type locus. The darker the color, the
more the mating-type locus shelters the mutation, thus promoting its maintenance.
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Figure S2: Relative variation of the derivative of the eigenvalue in the overdominance case, for varying selfing rate f (x-axis),
and selection coefficients s3 (y-axis, left) and s4 (y-axis, right), with s3 > s4. For each panel, the values of
∂ρ
∂r
|r=0.5 range from a minimal value, which is negative, to zero. We divided each value of the derivative by this

minimum in order to plot values between 0 and 1 for every panel. This enables us to compare the impact of
different parameters (s3, s4 and f) on the sheltering effect of the mating-type locus. The darker the color, the
more the mating-type locus shelters the mutation, thus promoting its maintenance.
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Figure S3: Difference between the dominant eigenvalue derivative at r = 0.5 and at r = 0, ∆
(
∂ρ
∂r

)
= ∂ρ

∂r
|r=0.5 − ∂ρ∂r |r=0. The

left panel shows the partial dominance case, the right panel shows the overdominance case, for varying selfing
rate f (x-axis), and intra-tetrad selfing rate (y-axis). The difference is always positive, with both derivative being
negative (see App. 8.2.3 and App. 8.3.3). This means that the absolute value of the derivative at r = 0 is
always greater than the absolute value of the derivative at r = 0.5. The darker the color, the larger the difference
between the two derivatives.
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Figure S4: Empirical distribution of the deleterious allele purging time for the partial dominance scenario. A total of 100,000
simulations were run, with s = 0.1, h = 0.1, r = 0.1, pin = 0.5, starting from one heterozygous individual
(X0 = (1, 0, 0)), and for three values of the selfing rate (f = 0 in green, f = 0.5 in red and f = 1 in blue). The
respective values for ρ are ρ = −0.0100, ρ = −0.0157 and ρ = −0.0818. The x-axis is log-scaled. The large-dotted
lines represent the 75th percentile (q75 ), the dashed lines indicate the 99th percentile (q99 ), and solid lines the
maximum value (max ) of the purging time. Maximum values are several order of magnitudes higher than the
75th percentile of the empirical distribution of the purging time.
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Figure S5: Empirical distribution of the deleterious allele purging time for the overdominance scenario. A total of 100,000
simulations were run, with s3 = 0.1, f = 0.5, pin = 0.5, starting from one heterozygous individual (X0 = (1, 0, 0)),
for several values of the recombination rate and of the selection coefficient s4 (r = 0.1, s4 = 0.001 in blue,
r = 0.5, s4 = 0.01 in red, and r = 0.5, s4 = 0.001 in green). The respective values for ρ are ρ = −0.0052,
ρ = −0.0129 and ρ = −0.0219. The parameters were chosen so that the process is sub-critical and thus the
purging time is almost surely finite. The x-axis is log-scaled. The large-dotted lines represent the 75th percentile
(q75 ), the dashed lines indicate the 99th percentile (q99 ), and solid lines the maximum value (max ) of the
purging time. Maximum values are several order of magnitudes higher than the 75th percentile of the empirical
distribution of the purging time.
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Figure S6: Empirical distribution of the deleterious allele purging time for the overdominant scenario. A total of 100,000
simulations were run, with s3 = 0.5, pin = 0.5, s4 = 0.01, r = 0.4, starting from one heterozygous individual
(X0 = (1, 0, 0)), for four values of the selfing rate (f = 0.1 in yellow, f = 0.5 in red, f = 0.9 in blue, f = 1 in
green). The respective values for ρ are ρ = −0.0035, ρ = −0.0713, ρ = −0.1905 and ρ = −0.25. Parameters were
chosen so that the process is sub-critical and thus the purging time is almost surely finite. The x-axis is log-scaled.
The large-dotted lines represent the 75th percentile (q75 ), dashed lines indicate the 99th percentile (q99 ), and
solid lines the maximum value (max ) of the purging time. Maximum values are several order of magnitudes higher
than the 75th percentile of the empirical distribution of the purging time. Note that the selection coefficient for
bb homozygotes is high (s3 = 0.5).

8.2 The dominant eigenvalue, its sign and its derivative: partial dominance scenario943

8.2.1 Determination of the dominant eigenvalue944

The eigenvalues computed with Mathematica (Wolfram Research, 2015) are, for the partial dominance case,945

λ0 = −r − hs(1− r), λ+ =
1

4

(
β +
√

∆
)
, λ− =

1

4

(
β −
√

∆
)
,

where946

β = f
(
− r(1− hs)α+ 2(1− s)

)
− 2(1 + hs), α = 2− r − pin(1− r), (7)
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and947

∆ = (β + 4hs)2 − 8fsrα(1− h)(1− hs). (8)

It is straightforward to see that λ+ > λ−.948

949

Let us prove that we also have λ+ > λ0. We used Geogebra to assist us in the calculations.950

λ+ > λ0 if and only if (iff)
1

4

(
β +
√

∆
)
≥ λ0 iff

√
∆ ≥ 4λ0 − β.

If 4λ0 − β ≤ 0, the last inequality if straightforward, as
√

∆ ≥ 0.951

Let us study the sign of 4λ0 − β. We define P (r) := 4λ0 − β = a2r
2 + a1r + a0, with952

a2 = −f(1− hs)(1− pin) < 0, a1 = f(1− hs)(2− pin)− 4(1− hs) < 0, and a0 = −2f(1− s) + 2(1− hs) > 0.

P is a second-order polynomial, with negative quadratic coefficient and positive coefficient of order zero (because953

1− hs > 1− s > f(1− s)). Thus, P admits two roots, one negative and one positive. We denote the positive root954

by rP . For r ∈ [0, rP ], we have P (r) ≥ 0, and for r > rP , we have P (r) < 0. Consequently, we readily obtain that955

when r > rP , λ+ > λ0.956

Let us now consider the case r ∈ [0, rP ]. For such an r, using that 4λ0 − β ≥ 0, we can write that957

√
∆ ≥ 4λ0 − β iff ∆ ≥ (4λ0 − β)2.

Let us write Q(r) := (4λ0 − β)2 −∆ = b2r
2 + b1r + b0, with958

b2 = f(1− hs)(1− pin) > 0, b1 = 2(1− hs)− f(1− hs)(2− pin)− fs(1− h)(1− pin),

and b0 = −2(1− hs)(1− f)− pinfs(1− h) < 0.

Q is a second-order polynomial, with positive quadratic coefficient, and negative coefficient of order 0. Hence,959

Q admits two roots, one negative, and one positive. We denote the positive root by rQ. In order to prove that960

λ+ > λ0, we have to prove that Q(r) ≤ 0 when P (r) > 0, i.e. when r ∈ [0, rP ]. As Q(0) < 0 and Q has only961

one positive root, proving that Q(rP ) < 0 will imply that Q(r) ≤ 0 for r ∈ [0, rP ]. Let us prove that Q(rP ) < 0.962

Noting that the quadratic coefficients of P and Q are the opposites of one another, we use the equation P (rP ) = 0963

to obtain964

Q(rP ) = rP

(
− 2(1− hs)− fs(1− h)(1− pin)

)
+ fs(1− h)(2− pin).
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Seeing Q(rP ) as an affine function of rP , we obtain that the function rP 7−→ Q(rP ) admits a unique root, which965

is positive, and that we will denote by r0P :966

r0P =
fs(1− h)(2− pin)

2(1− hs) + fs(1− h)(1− pin)
.

We wish to prove that rP ≥ r0P , as it implies that Q(rP ) ≤ 0. Having rP ≥ r0P is equivalent to having P (r0P ) ≥ 0,967

as rP is the unique positive root of P and P (0) ≥ 0. Consequently, it only remains to prove that P (r0P ) ≥ 0, which968

is equivalent to969

(
2(1− hs) + fs(1− h)(1− pin)

)2
P (r0P ) ≥ 0.

To obtain this result, an efficient way is to consider the left-hand term as a polynomial in pin. Let us write970

K(pin) = (2(1− hs) + fs(1− h)(1− pin))2P (r0) = c2p
2
in + c1pin + c0, with971

c2 = f2s(1− s)(1− fs)(1− h) > 0, c1 = 2(1− s)f3s2(1− h)2 > 0

and c0 = (1− h)2f2s2
(
1− hs+ f(s− 1)

)
+ 4(1− f)(1− hs)2 > 0.

K is thus a second-degree polynomial in pin, with a positive quadratic coefficient, and a minimum reached for a972

negative value (minimum reached at −c1/(2c2) < 0). K is thus monotonic for positive abscissa, and the coefficient973

of order zero is positive. Consequently, for all pin ≥ 0, we have K(pin) ≥ 0. We have then P (r0) ≥ 0, which974

concludes the proof that λ+ ≥ λ0.975

Based on the result we just obtained, from now on we write ρ = λ+.976

977

8.2.2 Sign of the dominant eigenvalue978

We prove that ρ < 0, except when s = 0, or when h = 0 and r = 0, in which cases ρ = 0. Recall the notation α, β979

from (7) and ∆ from (8).980

First, considering that r ∈ [0, 1] and pin ∈ [0, 1], we have 0 < α < 2, which leads to β < 0.981

When s = 0 or (r, h) = (0, 0), ∆ = β2, which gives, as β < 0,
√

∆ =
√
β2 = |β| = −β. We then have982

ρ = 1
4 (β − β) = 0.983

Let us now consider the case where s 6= 0 and (r, h) 6= (0, 0). We have984

β +
√

∆ > 0 iff 0 > β > −
√

∆ iff 0 < β2 < ∆ iff β2 −∆ < 0.

Moreover, β2 − ∆ = −16f(1 − s)hs + 8frα(1 − hs)s + 16hs. The sign of ρ is thus the sign of fh(2 − rα)s +985

2h(1 − f) + rαf , which is an affine function of s. The slope and intercept of this function are both non-positive986

when (r, h) 6= 0 or s 6= 0, which gives ρ < 0 in those cases.987
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8.2.3 Derivative of the dominant eigenvalue988

The derivative of ρ is989

∂ρ

∂r
=

1

4

(
β′(r) +

1

2

∆′(r)√
∆

)
,

Evaluating this derivative at r = 0.5, and using that β′(0.5) = −f(1− hs), we obtain990

∂ρ

∂r

∣∣∣
r=0.5

= −1

4
f(1− hs)

(
1 +

β(0.5) + 4s√
∆

)
.

Simple calculations lead to ∂ρ
∂r |r=0.5 = 0 when f = 0, or s = 0, or s = 1, or h = 1, or f = 1 and pin ≤ 3− 8s(1−h)

1−hs .991

In the latter case, whether the inequality is verified or not determines the sign of ∆ and therefore the value of
√

∆,992

which is either equal to β(0.5)+4s or −(β(0.5)+4s). The derivative is then either equal to zero or strictly negative.993

For the rest of this paragraph, we study the sign of the derivative when none of the above cases is met.994

Let us write γ = β(0.5) + 4s. If γ ≥ 0, we readily obtain ∂ρ
∂r |r=0.5 < 0. Let us then assume that γ < 0. In this995

case, we have996

∂ρ

∂r

∣∣∣
r=0.5

< 0 iff 1 +
γ√
∆
> 0 iff

√
∆ > −γ.

As −γ > 0, this comes down to997

∂ρ

∂r

∣∣∣
r=0.5

< 0 iff ∆ > γ2 iff (1− s)(f − 1) < 0,

which is indeed satisfied.998

In conclusion, we have shown that, in the general case,

∂ρ

∂r

∣∣∣
r=0.5

< 0.

We also compute the derivative at r = 0. We have β(0) = 2f(1− s)− 2(1 + hs), β′(0) = −f(1− hs)(2− pin),999

∆(0) =
(
2f(1− s)− 2(1− hs)

)2, and ∆′(0) = 2β′(0)(β(0) + 4hs)− 8fs(1− h)(1− hs)(2− pin).1000

After simplification, this gives1001

∂ρ

∂r

∣∣∣
r=0

= −f(1− hs)(2− pin)

4

(
1 + sgn

(
f(1− s)− (1− hs)

)
+

2s(1− h)

|f(1− s)− (1− hs)|

)
,

with sgn
(
f(1 − s) − (1 − hs)

)
is equal to 1 (respectively to −1) when f(1 − s) − (1 − hs) is positive (resp.1002

negative).1003

We obtain immediately that1004

∂ρ

∂r

∣∣∣
r=0
≤ 0.
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8.3 The dominant eigenvalue, its sign and its derivative: overdominance scenario1005

8.3.1 Determination of the dominant eigenvalue1006

The eigenvalues computed with Mathematica (Wolfram Research, 2015) for the overdominant case are

λ0 = s4 − r, λ+ =
1

4

(
β +
√

∆
)
, λ− =

1

4

(
β −
√

∆
)

with1007

β = f (r [pin(1− r) + r − 2]− 2s3 + 2) + 4s4 − 2, (9)

and1008

∆ = (β − 4s4)2 + 8frs3(pin(1− r) + r − 2) (10)

Here again, we obviously have λ+ > λ−.1009

We follow the same method as in the partial dominance case to prove that λ+ > λ0.1010

We have

λ+ > λ0 if and only if (iff)
1

4

(
β +
√

∆
)
≥ λ0 iff

√
∆ ≥ 4λ0 − β.

If 4λ0 − β ≤ 0, the last inequality if straightforward, as
√

∆ ≥ 0. Let us thus study the sign of 4λ0 − β. Let us1011

define the function P by P (r) := 4λ0 − β = a2r
2 + a1r + a0, with1012

a2 = −f(1− pin) < 0, a1 = f(2− pin)− 4 < 0, and a0 = 2(1− f(1− s3)) > 0.

P is a second-order polynomial, with a negative quadratic coefficient and a positive coefficient of order 0. Hence1013

P admits two roots, one which is negative and one which is positive. We denote the positive root by rP . For1014

r ∈ [0, rP ], we have P (r) ≥ 0, and for r > rP , we have P (r) < 0. Consequently, we readily obtain that when r > rP ,1015

the conclusion follows.1016

Let us now consider r ∈ [0, rP ]. For such an r, as 4λ0 − β ≥ 0, again we have1017

√
∆ ≥ 4λ0 − β iff ∆ ≥ (4λ0 − β)2.

Let us define the function Q by Q(r) := (4λ0 − β)2 −∆ = b2r
2 + b1r + b0, with1018

b2 = f(1− pin) > 0, b1 = f(1 + s3)(pin − 1)− f + 2, and b0 = −fs3pin − 2(1− f) < 0.
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Q is a second-order polynomial, with positive quadratic coefficient, and negative coefficient of order 0. Hence,1019

Q admits two roots, one negative and one positive. We denote the positive root by rQ. In order to prove that1020

λ+ > λ0, we have to prove that Q(r) ≤ 0 when P (r) > 0, i.e. when r ∈ [0, rP ]. As Q(0) < 0 and Q has only1021

one positive root, proving that Q(rP ) < 0 will imply that Q(r) ≤ 0 for r ∈ [0, rP ]. Let us prove that Q(rP ) < 0.1022

Noting that the quadratic coefficients of P and Q are the opposites of one another, we use the equation P (rP ) = 01023

to obtain1024

Q(rP ) = rP

(
− 2− fs3(1− pin)

)
+ fs3(2− pin).

Seeing Q(rP ) as an affine function of rP , we obtain that the function rP 7−→ Q(rP ) admits a unique root, which1025

is positive, and that we will denote by r0P :1026

r0P =
fs3(2− pin)

2 + fs3(1− pin)
.

We wish to prove that rP ≥ r0P , as it implies that Q(rP ) ≤ 0. Having rP ≥ r0P is equivalent to having P (r0) ≥ 0,1027

as rP is the unique positive root of P and P (0) ≥ 0. There is thus left to prove that P (r0P ) ≥ 0, which is equivalent1028

to1029

(
2 + fs3(1− pin)

)2
P (r0P ) ≥ 0.

To obtain this result, an efficient way is to consider the left-hand term as a polynomial in pin.1030

Let us write K(pin) = (2 + fs3(1− pin))2P (r0P ) = c2p
2
in + c1pin + c0, with1031

c2 = f2s3(1− s3)(1− fs3) > 0, c1 = 2(1− s3)f3s23 > 0 and c0 = f2s23
(
(1− f)(1− s3) + s3

)
+ 4(1− f) > 0.

K is thus a second-degree polynomial in pin, with a positive quadratic coefficient and positive coefficient of1032

order 0, that reaches its minimum for a negative value (minimum reached at −c1/(2c2) < 0). Consequently, for all1033

pin ≥ 0, we have K(pin) ≥ 0. We have then P (r0P ) ≥ 0, which concludes the proof that λ+ ≥ λ0.1034

Based on the result we just obtained, from now on we write ρ = λ+.1035

8.3.2 Sign of the dominant eigenvalue1036

In this selection scenario, ρ is not of constant sign.1037

The condition for ρ ≥ 0 is1038

√
f2
[
r
(
pin(1− r) + r − 2

)
− 2s3 + 2

]2
+ 4f(2(s3 − 1)− r(2s3 − 1)((pin − 1)r − pin + 2)) + 4

+f
[
r(pin(1− r) + r − 2)− 2s3 + 2

]
+ 4s4 ≥ 2.

We compute the dominant eigenvalue and study its sign for simple cases, and then use a numerical approach1039

to complete the analysis (Figure 2). Under complete intra-tetrad selfing (f = 1, pin = 1), we have ρ = s4 − r/2 if1040
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s3 ≥ r/2 and ρ = s4− s3 if s3 < r/2. As s4 ≤ s3, the condition to have ρ ≥ 0 reduces to r ≤ 2s4. This is consistent1041

with the results of Antonovics and Abrams, 2004, as the authors set s3 = 1 and thus obtain ρ = s4 − r/2. Under1042

complete selfing (f = 1), if r(2 − r − pin(1 − r)) − 2s3 ≥ 0, then ρ = s4 − s3 ≤ 0. This shows that the value of1043

the dominant eigenvalue, and thus the dynamics of the process, depends only on the selection strength when the1044

recombination rate r exceeds a certain threshold. Moreover, this threshold depends only on the selection coefficient1045

for homozygous deleterious (s3), and on the probability of intra-tetrad mating (pin). This threshold appears on1046

the bottom panels of Figure 2. Under complete outcrossing (f = 0), we have ρ = s4 ≥ 0. When the mutation is1047

completely linked to a mating-type allele (r = 0), we have ρ = s4 ≥ 0. When the mutation is neutral (s3 = 0,1048

implying s4 = 0 as well), we have ρ = 0. Finally, when BB homozygotes are not disfavored (s4 = 0), we have ρ < 0.1049

Indeed, in this case, β = fr[pin(1− r) + r − 2]− 2fs3 + 2(f − 1) < 0. We thus have1050

ρ ≥ 0 iff
√

∆ ≥ −β ≥ 0 iff ∆ ≥ β2 iff 8frs3(pin(1− r) + r − 2) ≥ 0.

But we trivially have pin(1− r) + r − 2 ≤ 0, and so the condition is not met and ρ < 0.1051

8.3.3 Derivative of the dominant eigenvalue1052

The derivative of the largest eigenvalue ρ is1053

∂ρ

∂r
=

1

4

(
β′(r) +

1

2

∆′(r)√
∆

)
.

Moreover, we have1054

β′(r) = 2f(1− pin)r + f(pin − 2)

and1055

∆′(r) = 2β′(r)(β(r)− 4s4) + 8fs3(2(1− pin)r + pin − 2).

Evaluating these quantities at r = 0.5, we obtain β′(0.5) = −f , and so1056

∂ρ

∂r

∣∣∣
r=0.5

= −1

4
f

(
1 +

β(0.5)− 4s4 + 4s3√
∆

)
.

Simple calculations lead to ∂ρ
∂r |r=0.5 = 0 when f = 0, or s3 = 0, or f = 1 and pin ≤ 3− 8s3.1057

For the rest of this paragraph, we study the sign of the derivative when none of the above cases is met.1058

Let us write γ = β(r = 0.5)− 4s4 + 4s3. If γ ≥ 0, we readily obtain that ∂ρ
∂r |r=0.5 < 0. Let us then assume that1059

γ < 0. In this case, we have1060
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∂ρ

∂r

∣∣∣
r=0.5

< 0 iff 1 +
γ√
∆
> 0 iff

√
∆ > −γ.

As −γ > 0,1061

∂ρ

∂r

∣∣∣
r=0.5

< 0 iff ∆ > γ2 iff (β − 4s4)2 + 8frs3(pin(1− r) + r − 2) > (β − 4s4)2 + 8s3(β − 4s4) + 16s23.

After some simplifications, we obtain

∂ρ

∂r

∣∣∣
r=0.5

< 0 iff f <
8

3
,

which is always satisfied as f ∈ [0, 1].1062

In conclusion, we have shown that
∂ρ

∂r

∣∣∣
r=0.5

< 0.

We also compute the derivative at r = 0. We have β(0) = 2f(1 − s3) + 4s4 − 2, β′(0) = −f(2 − pin),1063

∆(0) =
(
2f(1− s3)− 2

)2, and ∆′(0) = 2β′(0)(β(0)− 4s4)− 8fs3(2− pin).1064

After simplification, this gives1065

∂ρ

∂r

∣∣∣
r=0

= −f(2− pin)

4

(
1 + sgn

(
2f(1− s3)− 2

)
+

4s4
|2f(1− s3)− 4s4|

)
,

with sgn
(
2f(1− s3)− 2

)
is equal to 1 (respectively to −1) when 2f(1− s3)− 2 is positive (resp. negative).1066

We obtain immediately that1067

∂ρ

∂r

∣∣∣
r=0
≤ 0.
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