

1 **Osteocalcin binds to a GPRC6A Venus fly trap allosteric site to positively modulate**
2 **GPRC6A signaling**

3

4 Rupesh Agarwal^{*1,2}, Min Pi^{*3}, Ruisong Ye³, Micholas Dean Smith^{1,2}, Jeremy C. Smith^{1,2}, L. Dar-
5 ryl Quarles³

6 *Authors have contributed equally

7

8 ¹University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge,
9 Tennessee 37830; and ²Department of Biochemistry and Cellular and Molecular Biology, University of
10 Tennessee, Knoxville, Tennessee 37996. ³Departments of Medicine, University of Tennessee Health Sci-
11 ence Center, Memphis, Tennessee 38163.

12

13 *Running title (60 characters): Osteocalcin binds to the GPRC6A as a positive allosteric modula-
14 tor*

15 *Keywords: G protein-coupled receptor (GPCR), homology modeling, mutagenesis, Osteocalcin,
16 isoform-selectivity, positively allosteric modulator, extracellular domain*

17

18 **Abstract**

19 GPRC6A is a member of the Family C G-protein coupled receptors that is activated by cations,
20 L-amino acids, the osteocalcin (Ocn) peptide, and testosterone. GPRC6A functions as a master
21 regulator of energy metabolism and sex hormone production. Based on homology to the related
22 receptors mGluR5 and CaSR, GPRC6A's multiple ligand specificity is likely based on an
23 orthosteric ligand binding site in the bilobed Venus fly trap (VFT) domain together with two posi-
24 tive allosteric modulator (PAM) sites, one in the VFT and the other in the 7TM domain. Here, we
25 show that Ocn acts as a PAM for GPRC6A by binding to a site in the VFT that is distinct from
26 the orthosteric site for calcium and L-amino acids. In agreement with this finding, alternatively
27 spliced GPRC6A isoforms 2 and 3, which lack regions of the VFT, and mutations in the predict-
28 ed Ocn binding site, K352E and H355P, prevent Ocn activation of GPRC6A. These observa-
29 tions provide a structural framework for understanding the ability of multiple distinct classes of
30 compounds to activate GPRC6A and set the stage to develop novel small molecules to activate
31 and inhibit this receptor.

32

33 **Introduction**

34 Osteocalcin (Ocn) is a 49 residue protein in humans that is mainly produced by osteoblasts in
35 bone. A vitamin K-dependent carboxylated form of Ocn comprises much of the non-collagenous
36 bone protein matrix, while an undercarboxylated form (unOcn) is released into the circulation to
37 function as a hormone. unOcn regulates energy metabolism through direct effects on metabolic
38 functions in multiple target tissues and by indirect effects mediated by an ensemble of metabolically
39 active hormones whose release is stimulated by unOcn (1-5). Indeed, unOcn is reported to
40 stimulate insulin secretion and β -cell proliferation in the pancreas (5), fibroblast growth factor 21
41 (FGF-21) release and glucose and fat metabolism in liver hepatocytes (6), interleukin 6 (IL-6)
42 secretion and glucose utilization in skeletal muscle myocytes (7), adiponectin release and
43 lipolytic activity in adipocytes in white fat (8), testosterone production from testicular Leydig
44 (2,6), and glucagon-like peptide 1 (GLP-1) secretion from gastrointestinal enterocytes (9,10).

45 The peripheral metabolic effects of Ocn are mediated through activation of GPRC6A, a member
46 of the Family C G-protein coupled receptors (5,11). GPRC6A is activated by several
47 orthosteric ligands, including basic L-amino acids (such as L-Lys, L-Arg, and L-ornithine) and
48 divalent cations (such as Ca^{2+} and Mg^{2+}). Also, positive allosteric modulators (PAMs) of
49 GPRC6A include testosterone, NPS-568, and di-phenyl and tri-phenyl compounds (12,13).
50 Gallate and epigallocatechin 3-gallate (ECGC), which are natural products in green tea, respectively
51 activate and inhibit GPRC6A (14). The structural basis for GPRC6A interaction with multiple
52 ligands is incompletely understood.

53 Family C GPCRs are characterized by their similarity in 7 transmembrane (7TM) domain sequences, a necessity for dimerization to function, and in most cases, the existence of a large N-terminal ligand-binding Venus flytrap (VFT) domain (15). Recently, high resolution structural data of the related mGluR5 (16) and CaSR (17-20), have identified how various ligands and drug molecules target the VFT and 7TM. For example, mGluR5 has the orthosteric binding site for L-glutamate in the VFT, and two positive modulating allosteric (PAM) sites, one located in the VFT and the other in the 7TM (16). The allosteric site located in the VFT was discovered by a nanobody, Nb43, that binds to Helix L and the L-M loop of mGluR5 to potentiate orthosteric agonist binding and receptor activation. Similarly, elucidation of the 3D structure of CaSR identified in the VFT an orthosteric Ca^{2+} ion binding site that acts as a composite agonist with L-amino acids, such as L-tryptophan, to stabilize the closure of the active VFT (17). CaSR also has an

64 allosteric site at the dimeric interface of the VFT (proximal to residue D248) to which the peptide
65 etecalcitide binds and acts as a positive allosteric modulator (PAM). In CaSR, additional small
66 molecule drugs act as PAMs (e.g., calcimimetics), or negative allosteric modulators (NAMs)
67 (e.g., calcilytic) via a site in the 7TM (17-20).

68 Based on this new structural information, we developed a structural model for the activation of
69 GPRC6A by orthosteric and allosteric ligands. We investigated Ocn activation of GPRC6A
70 isoforms with deleted segments of the extracellular domain, mapped the peptide fragments of
71 Ocn necessary for activation of GPRC6A, and examined if Ocn peptides bind to the VFT and
72 modulate GPRC6A function.

73

74 **Results**

75 ***Structural modeling of GPRC6A isoforms and L-Arginine orthosteric ligand binding.***

76 GPRC6A exists as three isoforms: isoform 1 represents the full-length receptor, and two alterna-
77 tively spliced receptor isoforms 2 and 3 are characterized by respective deletions of exon 3 and
78 exon 4 segments that encode regions of the VFT domain (21) (**Figure 1A**). To identify regions
79 that differ between the isoforms, we aligned the protein sequences of isoforms 1, 2 and 3 of
80 GPRC6A (**Figure 1B, S1**). The TM domains of these three isoforms have 100% sequence iden-
81 tity, but isoforms 2 and 3 are missing residues 271-445 and 446-516 in the extracellular domain,
82 respectively.

83 To derive the structure of GPRC6A, we used AlphaFold2 (22-25) to model the full-length iso-
84 form 1 (**Figure 1C**). AlphaFold2 is an AI-based technique that derives close-to-experimental ac-
85 curacy in protein structure prediction. These calculations confirmed that GPRC6A has 3 do-
86 mains: TM, CRD and VFT, similar to the related mGluR5 and CaSR Cryo-EM structures. The
87 residues deleted in the isoforms 2 and 3 correspond to different segments of the VFT domain. In
88 the case of isoform 2, a large segment of the VFT domain structure (~ 174 residues) is deleted,
89 whereas a relatively small region (~ 70 residues) is missing in isoform 3 (**Figure S1**).

90 In isoform 1, we identified an orthosteric ligand site near residues Tyr 148, Ser 149, Thr 172,
91 Asp 303 in the VFT based on structure superimposition with mGluR5 and CaSR (**Figure S2a**
92 and **S2b**). In contrast, in isoform 2, the orthosteric ligand binding site predicted based on align-
93 ing orthosteric bound structures of mGluR5 and CaSR structures is missing, foretelling a loss-
94 of-function (*vide infra*) (**Figure S2c**). The predicted orthosteric ligand binding site is retained in
95 isoform 3, and hence this isoform is predicted to be responsive to orthosteric ligands (*vide infra*).

96 To test these predictions, GPRC6A isoforms 1, 2, or 3 were transfected into HEK-293 cells and
97 receptor activation was measured by cAMP accumulation in response to the orthosteric ligand
98 L-Arg in the presence of 1 mM calcium. Isoform 2 resulted in loss of L-Arg stimulation of cAMP,
99 whereas isoform 3 retained responsiveness to L-Arg activation, similar to isoform 1 (**Figure 2A**).

100 ***GPRC6A isoforms 2 and 3 have attenuated responses to Ocn.***

101 The location of the Ocn binding site in GPRC6A is still not well understood. To explore the role
102 of the VFT in mediating the response to Ocn, we compared the ability of Ocn to activate the
103 three GPRC6A isoforms (**Figures 2B and C**). In the presence of 1 mM calcium Ocn activated
104 GPRC6A isoform 1 in a dose dependent manner, consistent with previous reports (5). GPRC6A
105 isoform 2 exhibited an attenuated ERK response with a complete loss of cAMP activation in re-
106 sponse to Ocn treatment. In contrast, GPRC6A isoform 3 also showed attenuation of Ocn-
107 induced ERK stimulation but the cAMP response to Ocn persisted (**Figures 2B and C**). Taken
108 together, loss-of Ocn responses in isoforms 2 and 3 suggest that the VFT is necessary for Ocn
109 activation of GPRC6A and that the different isoforms bias ligand-induced coupling to G-protein
110 signaling.

111 ***Identifying Ocn amino acids necessary for GPRC6A activation***

112 Ocn in humans is a 49 amino acid peptide. Initially, we used functional assays to refine the pro-
113 tein-protein interface between Ocn and GPRC6A VFT. We designed Ocn fragments (**Figure**
114 **3A**) (11,26) and compared their ability to activate the full length GPRC6A isoform 1 (**Figures 3B**
115 **and C**) transfected into HEK293 cells. Ocn peptide activation was measured by assessing both
116 ERK (**Figure 3B**) and cAMP (**Figure 3C**) signaling. Compared to the full length Ocn (1-49), all
117 peptide fragments activated signaling in cell transfected with GPRC6A to some degree. How-
118 ever, we found that the decapeptide fragment of Ocn 20-29 (revcelnpdc) located in the middle of
119 the protein and the C-terminal hexapeptide Ocn 44-49 (rfygpv) exhibited significantly higher ac-
120 tivity (**Figure 3B and C**).

121 To further investigate the bioactivity of Ocn 20-29 fragment *in vivo*, we injected the synthetic
122 Ocn 20-29 peptide (2 μ M/kg) into wild type *Gprc6a^{+/+}* and *Gprc6a^{-/-}* mice by the intraperitoneal
123 (IP) route (27), and collected blood and serum at 24 hours. We found that Ocn 20-29 at a dose
124 of 2 μ M/kg reduced blood glucose levels in wild-type mice by ~10% at 24 hours after
125 intraperitoneal administration of 2 μ M/kg, whereas the vehicle (saline) had no effect on blood
126 glucose (Fig. 4A). Consistent with Ocn effects in stimulating IL-6 release from skeletal muscle
127 (7), Ocn 20-29 at a dose of 2 μ M/kg IP also resulted in a significant increase in serum IL-6 in

128 wild type *Gprc6a*^{+/+} mice, but not in *Gprc6a* knockout (*Gprc6a*^{-/-}) mice (Fig. 4C). Ocn 20-29
129 injection did not significantly stimulate serum insulin (Fig. 4B) or adiponectin (Fig. 4D)
130 levels in wild-type mice at 24 hours at a dose of 2 μ M/kg.

131 ***Protein-protein docking to generate GPRC6A-VFT: Ocn complex structure***

132 As noted above, there are two PAM sites in the related receptors mGluR5 and CaSR, one in the
133 7TM domain targeted by small molecules and another in the VFT targeted by the protein
134 nanobody (16) and the etecalcitide peptide (20). Specifically, the PAM function of Nb43 is medi-
135 ated by a nanobody binding site near a helix in the VFT domain of the mGluR5 as defined by
136 Cryo-EM (16). Aligning the structures of the allosteric ligand bound VFTs mGluR5 (PDB 6N4Y)
137 and CaSR (PDB 7E6U, 7M3G) with our model of GPRC6A and its isoforms indicated that the
138 dimeric interface found to bind etecalcitide and NAM in CaSR was invariant across the GPRC6A
139 isoforms, while the binding pocket homologous to the mGluR5 nanobody PAM site was absent
140 in GPRC6A's isoform 2 (**Figure S3a**). We hypothesized that, given the loss of Ocn associated
141 function in isoform 2, the pocket homologous to the mGluR5 binding site may serve as the bind-
142 ing site for Ocn in GPRC6A. Using this site as our guide, we used HADDOCK 2.4 (28) to gener-
143 ate a model of the GPRC6A-VFT: Ocn complex. The top 4 scoring structures within the calcu-
144 lated top cluster were then subjected to additional analysis and visual inspection.

145 Our analysis revealed that the GPRC6A-VFT forms multiple hydrogen bonds (a list is provided
146 in **Table 1**) with Ocn in all the models. Residues 20-29 from the highest active Ocn fragment
147 also form multiple hydrogen bonds with GPRC6A residues (Gln 19, Asp26, Gln381, Lys352)
148 (**Figure 5**) and is also in proximity (within 4 \AA) to other residues (Ala385, Arg382, Asp26,
149 Asp349, Gln19, Gln22, Gln61, Glu356, Glu62, His351, His355, Pro20, Ser348, Ser350, Val28),
150 which can form other potential electrostatic interactions. Moreover, the Ocn model shows that
151 there is a disulfide bond between residues Cys 23 and Cys 29 (**Figure S3b**), both of which are
152 present in the Ocn fragment. This is predicted to provide structural integrity to the fragment and
153 would potentially fold similarly to the full length Ocn peptide. In analyzing the interactions be-
154 between the GPRC6A-VFT and Ocn, we observe that two GPRC6A-VFT residues, Lys 352 and
155 His 335, in the helix region (352-363) are common in all the models (**Figure 5, Table 1**). These
156 residues form hydrogen bonds with Ocn residues Asp 28, Asp 30 and Glu 31 and are near sev-
157 eral other residues present in 20-29 region of Ocn that was the most active fragment.

158 ***Validation of the complex structure using single point mutagenesis***

159 To test the above models, we mutated Lys352 or His355 in human GPRC6A, into Glu352 (mutant K352E) or Pro355 (mutant H355K), and also created double mutated Glu352/Pro355 (mutant K352E/H355P) GPRC6A. Mutants and wild-type hGPRC6A cDNAs were transiently transfected into HEK-293 cells and signaling was assessed in response to Ocn treatment.

163 We confirmed that mutants K352E, H355P, K352E/H355P, and WT mGPRC6A proteins were
164 equally expressed, as assessed by Western blotting using a Myc antibody, which recognized
165 the Myc epitope located at after signal peptides (1-18 amino acids) of the WT and mutant recep-
166 tors (**Figure S4 a,b**)

167 The full-length Ocn 1-49 peptide dose-dependently stimulated cAMP accumulation in the wild-
168 type receptor, but the response was significantly decreased in the K352E, H355P and
169 K352E/H355P mutant receptors (Figure 5A). Cells transfected with these three mutants
170 hGPRC6A cDNAs also showed no response to Ocn 20-29 stimulation (**Figure 6A**). These re-
171 sults indicate that the binding sites identified by the computational modeling are accurate and
172 that the helical region (352-363) is important for Ocn binding.

173 The Ocn 44-49 C-terminal fragment, which was predicted to bind to the 7TM in our prior homol-
174 ogous model (11), also had a significantly attenuated signaling response in the single mutants.
175 Interestingly, Ocn 44-49 was able to partially activate the double mutant as assessed by cAMP
176 accumulation (**Figure 6B**).

177

178 **Discussion**

179 Recent Cryo-EM analysis of Family C mGluR5 (16) and CaSR (17,19,20) receptors describes
180 the structural basis for their orthosteric ligand activation by calcium and L-amino acids and allo-
181 steric modulating effects of peptides and small molecules. In the current study, we developed
182 structural homology models of GPRC6A based on the Cryo-EM and found evidence for both
183 orthosteric and allosteric binding sites in its VFT, similar to mGluR5 and CaSR.

184 GPRC6A is activated by L-amino acids, cations, and the Ocn peptide (4). Prior work examined
185 the possible binding of the hexapeptide C-terminal domain of Ocn and identified a binding site in
186 the 7TM domain of GPRC6A for this fragment 44-48 (11). However, a comparison of recently
187 available Cryo-EM structures of mGluR5 and CaSR suggested that a regulatory binding site in
188 the VFT domains of Family C receptors may exist. These results led us to further examine the
189 Ocn induced activation of GPRC6A and its isoform-specific modulation. Interestingly, GPRC6A
190 isoforms only differ in the extracellular domain (i.e. VFT) which suggests that a second binding

191 site for Ocn may exist in the VFT. Taken together, the new structural models developed for
192 GPRC6A and complimentary experiments and peptide-protein docking calculations reported
193 here provide clear evidence of a binding site for full-length and/or residues 20-29 Ocn within the
194 GPRC6A VFT, located near the helical region (352-363).

195 Reports of GPRC6A activation by the peptide Ocn are inconsistent, with some studies showing
196 activation (2,3,5,11) and other studies finding no effect (29). Here, we confirmed Ocn activation
197 of GPRC6A in *in vitro* culture models. Moreover, the lowering of glucose and stimulation of IL-6
198 24 hours after a single injection of Ocn 20-29 in wild-type mice but not *Gprc6a*^{-/-} mice validate *in*
199 *vivo* effects of this peptide mediated through GPRC6A. The failure to observe expected stimula-
200 tion of insulin and adiponectin may be due to examining one time point, the short observation
201 period or the limited doses tested. Regardless, the location of the Ocn binding site in the VFT at
202 a site distinct from the orthosteric binding site suggests Ocn functions as a PAM rather than an
203 orthosteric ligand. The fact that Ocn activation of GPRC6A requires the presence of calcium
204 (3,5,11) *in vitro* is consistent with Ocn function as a PAM for GPRC6A (2,11).

205 Our findings also suggest altered ligand specificity and downstream signaling of GPRC6A
206 isoforms created by alternative splicing. The loss of a segment of the VFT in isoform 2 resulted
207 in the loss of responses to L-Arg as well as Ocn. In contrast, isoform 3 retains responsiveness
208 to orthosteric activation but exhibits biased signaling to Ocn, as evidence by loss of ERK but
209 preservation of cAMP signaling. Loss of this segment may alter the conformational changes
210 leading to opening of binding sites in the intracellular TM 6 domain that is important for G-
211 protein coupling. If so, different tissue distributions or the ratio of these isoforms would be ex-
212 pected to change orthosteric ligand and PAM sensitivities as well as alter coupling to down-
213 stream signaling pathways resulting in tissue-specific regulation mechanisms.

214 Our modeling data shows that most contacts between Ocn and GPRC6A are driven by the
215 structural part of the Ocn peptide (3 helical structure). Peptide fragments of Ocn consisting of 1-
216 7, 8-43, and 44-49 are released from bone (30). We tested the GPRC6A activation potential of
217 multiple Ocn fragments to further identify the key regions of Ocn that interface with GPRC6A.
218 The hexapeptide 20-29 most strongly activated GPRC6A, consistent with its location in the cru-
219 cial region of the full-length Ocn used in our docking studies to the VFT helix region. Ocn 8-19
220 (apvpypdpdplepr) also activated GPRC6A (**Figure 3**). This upstream peptide is similar to the
221 pentadecapeptide peptide wlgapvpypdpdplepr that is reported to activate GPRC6A *in vitro* and to
222 improve fatty liver disease and insulin resistance after oral or intraperitoneal administration to a
223 mouse model (31). When examining the activities associated with 44-49, it is important to recall

224 that previous docking and mutagenesis studies suggested that the C-terminus of Ocn binds to
225 the extracellular transmembrane domain of GPRC6A (11). This might explain the effects of the
226 rfygpv, C-terminal peptide of Ocn to activate GPRC6A in setting of mutations to disrupt the Ocn
227 binding domain in the VFT helix. Regardless, short peptides derived from Ocn might be devel-
228 oped for therapeutics to activate GPRC6A, similar to the 7 amino acid etacalcitide PAM for
229 CaSR.

230 Another interesting observation is the greater potency of the peptide 20-29 compared to Ocn 1-
231 49. Hypothetically this may be due to a potential disulfide bond present in the small peptide that
232 creates a stable complementary conformation within the predicted binding site. Alternatively,
233 competitive self-interactions between the domain and the disordered N-terminus of Ocn may
234 inhibit long-lived binding conformations between Ocn and GPRC6A. Instead, flexibility of the N-
235 terminal domain that result in N-terminal-VFT contacts may inhibit conformational changes
236 along the dimer interface of the VFT domains.

237 Although we did not examine binding of other PAMs to GPRC6A in this study, testosterone and
238 triphenol compounds that activate GPRC6A are predicted to bind to the 7TM domain of
239 GPRC6A (12,13), analogous to the second PAM domain in the 7TM domain of mGluR5 and
240 CaSR (16,20). This suggests that members of the Family C GPCRs, at least those with large
241 VFT domains, have a conserved structure consisting of two allosteric binding sites, one in the
242 VFT and the other in the 7TM domain, along with an orthosteric ligand binding domain in the
243 VFT.

244 Finally, GPR158 is another proposed Ocn sensing receptor. The Cryo-EM structure of GPR158
245 has recently been defined (32). Our VFT Ocn binding region between GPRC6A and GPR158 is
246 not conserved and a structure superimposition of the two structures shows that the helix region
247 (352-363) identified for GPRC6A is missing in GPR158.

248 Our findings are limited by the lack of Cryo-EM structural data for GPRC6A. Cryo-EM analysis
249 of mGluR5 and CaSR show that each functions as homodimers, where activation leads to clo-
250 sure of the VFT and conformational changes the 7TMs revealing G-protein binding sites on the
251 cytoplasmic side necessary for signaling(17). For CaSR, which is most closely related to
252 GPRC6A, receptor activation results in 7TM asymmetry in the homodimer leading to only one
253 protomer for G-protein coupling being stabilized by PAM binding. Our biased signaling response
254 to Ocn in isoforms 2 and 3 suggests that there may be a structural basis for the divergent cAMP
255 and ERK responses to Ocn. To fully understand GPRC6A signaling we may need cryo-electron

256 microscopy structures of GPRC6A in inactive or active states bound to the orthosteric ligands,
257 PAMS and NAMs.

258

259 **Materials and methods**

260 **System and docking details**

261 GPRC6A and Ocn structures were modeled using AlphaFold2 (22,25,33), which is an AI system
262 developed by DeepMind to predict a 3D structure of a protein from its amino acid sequence.
263 Multiple sequence alignment (MSA) was performed using the Jackhammer method. The
264 'max_recycles' parameter, r which controls the maximum number of times the structure is fed
265 back into the neural network for refinement, was set to 3. All the other parameters were set to
266 default. The final models were ranked using the pLDDT score. Glycans were not added as the
267 details are not well known. For docking, HADDOCK 2.4 (28) was used to dock the GPRC6A-
268 VFP to Ocn. GPRC6A residue numbers 334,335,336,337 and mature Ocn residue numbers
269 21,22,23,24,25,26, and 27 were used to guide the docking. The best 4 models from the top
270 cluster (containing 133 models) with HADDOCK score of -81.2 ± 1.1 and Z-score of -1.5 were
271 analyzed.

272 **Simulation details**

273 Molecular dynamics simulation (MD) of the top ranked AlphaFold2 model was performed using
274 the Amber simulation engine(34) to refine the structures. The MD was performed on the protein
275 using Amber14 ff14SB (35) force field, with a non-bonded cutoff of 10 Å using the Particle Mesh
276 Ewald algorithm (36). The protein-glycan bound system was hydrated by water model TIP3P
277 (37) in an octahedral box of 10 Å around the protein in each direction. Initially, the protein was
278 held fixed with a force constant of 500 kcal mol⁻¹ Å⁻² while the system was energy minimized
279 with 500 steps of steepest descent followed by 500 steps with the conjugate gradient method. In
280 a second minimization step, the restraints on the protein were removed and 1000 steps of
281 steepest descent minimization was performed, followed by 1500 steps of conjugate gradient.
282 The system was heated to 300 K while holding the protein fixed with a force constant of 10 kcal
283 mol⁻¹ Å⁻² for 1000 steps. Then, the restraints were removed, and 1000 MD steps were per-
284 formed. The SHAKE algorithm(38) was used to constrain all bonds involving hydrogen in the
285 simulations. MD production runs were performed at 300 K using the NPT ensemble and a 2 fs
286 time step. The temperature was fixed with the Langevin dynamics thermostat (39) and the pres-

287 sure was fixed with the Monte Carlo barostat (40). The last snapshot from the 20ns trajectory
288 was used for all analyses.

289 **Measurement of Total and Phospho-ERK by ERK Elisa Analysis**

290 Ocn was purified from bovine tibial bone extracts (41,42). Decarboxylated Ocn was produced by
291 treating Ocn in vacuo at 110°C (42-44). The purity and decarboxylation state were confirmed by
292 native gel electrophoresis (41), or by blotting followed by reaction with 4-diazobenzene sulfonic
293 acid staining for γ -carboxyglutamic acid (42,43). The human Ocn fragments were synthesized
294 by BioMatik USA (Wilmington, Delaware, USA).

295 All culture reagents were from Invitrogen (Waltham, MA, USA). Human embryonic kidney HEK-
296 293 cells were obtained from American Type Culture Collection and cultured in DMEM medium
297 supplemented with 10% fetal bovine serum and 1% Penicillin/Streptomycin (P/S). Briefly,
298 HEK-293 cells transfected with/without human GPRC6A isoforms cDNA plasmids were starved
299 by overnight incubation in serum-free DMEM/F12 containing 0.1% bovine serum albumin (BSA)
300 and stimulated with various ligands at different doses. ERK activation was assessed 20 min
301 after treatment by using ERK1/2 (phospho-T203/Y204) ELISA Kit (Invitrogen) corrected for the
302 amount of total ERK using ERK1/2 (Total) ELISA Kit (Invitrogen) to measure ERK levels.

303 **Measurement of cAMP accumulation**

304 HEK-293 transfected with human GPRC6A isoform cDNA plasmids cells (10^5 cells/well) (45)
305 were cultured in triplicate in 24-well plates in DMEM supplemented with 10% fetal bovine serum
306 and 1% penicillin/streptomycin (100 U/mL of penicillin and 100 μ g/mL of streptomycin) for 48
307 hours followed by 4 hours incubation in DMEM/F12 containing 0.1% BSA and 0.5 mM IBMX to
308 achieve quiescence. Quiescent cells were treated with vehicle control, various ligands at con-
309 centration as indicated for 40 minutes at 37°C. Then, the reaction was stopped, and the cells
310 lysed with 0.5 mL 0.1N HCl. cAMP levels were measured by using Cyclic AMP EIA kit (Cayman
311 Chemical) following the manufacturer's protocol.

312 **Mouse and serum biochemistry**

313 8 week old wild-type ($Gprc6a^{+/+}$) and global knock out ($Gprc6a^{-/-}$) mice were injected
314 intraperitoneal with Ocn 20-29 (2 μ M/kg body weight), or vehicle (saline; 10 μ l/g body weight).
315 Serum was collected at 24 hours after intraperitoneal injection. Blood glucose levels were
316 measured by using blood glucose strips and the Accu-Check glucometer as described (7,27).
317 Insulin (mouse) ultrasensitive ELISA kit was obtained from ALPCO Immunoassays (Salem, NH,

318 USA). Mouse IL-6 ELISA Kit was purchased from Invitrogen (Waltham, MA, USA). Mouse
319 Adiponectin PicoKine™ Quick ELISA Kit was obtained from mybiosource.com.

320 The *Gprc6a*^{-/-} mouse model was created by replacing exon 2 of the GPRC6A gene with the
321 hygromycin resistance gene, as described previously (46). Mice were maintained and used in
322 accordance with recommendations as described (National Research Council 1985; Guide for
323 the Care and Use of Laboratory Animals Department of Health and Human Services Publication
324 NIH 86-23, Institute on Laboratory Animal Resources, Rockville, MD) and following guidelines
325 established by the University of Tennessee Health Science Center Institutional Animal Care and
326 Use Committee. The animal study protocol was approved by the institutional review boards at
327 University of Tennessee Health Science Center Institutional Animal Care and Use Committee.

328 **Site-directed mutagenesis**

329 *In-vitro* mutagenesis by PCR-mediated recombination QuikChange II XL Site-Directed Mutagenesis Kit (Agilent) was performed using the cDNA of human GPRC6A cloned in the vector
330 pcDNA3 (Invitrogen) as template. The primer sets as following. K352E.sen: GTGACAGTCACGAACTCTTACATG; K352E.antisen: CATGTAAGAGTTCGAGACTGTCAC;
331 H355P.sen: CAAACTCTTACCTGAATATGCCATG; H355P.antisen:
332 CATGGCATATTCAAGGTAAGAGTTTG; K352E/H355P.sen:
333 GTGACAGTCACGAACTCTTACGTGAATATGC; and K352E/H355P.antisen:
334 GCATATTCAAGGTAAGAGTTCGTGAATGTCAC. All mutants were confirmed by sequencing.

337 **Statistics**

338 We evaluated differences between groups with the Student's *t* test, and for multiple groups by
339 two-way ANOVA, followed by a *post-hoc* Tukey's test. Significance was set at $p < 0.05$. All
340 values are expressed as means \pm SEM. All computations were performed using the Statgraphic
341 statistical graphics system (STSC Inc., Rockville, MD, USA).

342

343 **Abbreviations**

344 cAMP: cyclic adenosine monophosphate; CRD: cysteine rich domain; ERK: extracellular-signal-
345 regulated kinase; GPRC6A: G protein-coupled receptor family C group 6 member A; NAM: neg-
346 ative allosteric modulator; Ocn: osteocalcin; PAM: positive allosteric modulator; VFT: venus fly-
347 trap; TM: transmembrane.

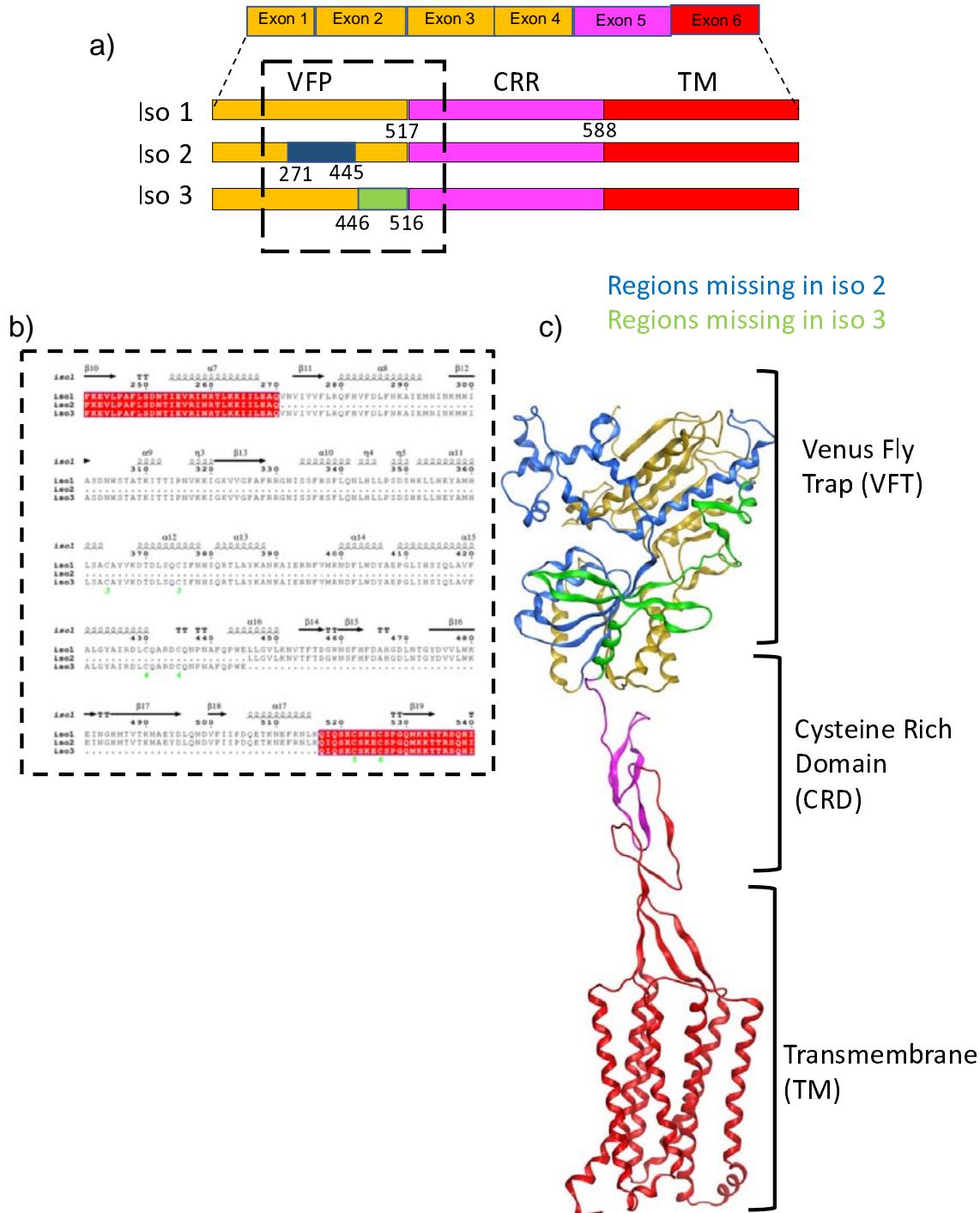
348 **Acknowledgements**

349 This work was supported by grants from the National Institutes of Health, NIAMS grant number
350 1R01AR071930 and NIDDK grant numbers 1R01DK121132 and 1R01DK120567 (LDQ)
351 The content is solely the responsibility of the authors and does not necessarily represent the
352 official views of the National Institutes of Health.

353

354 **Author Contributions**

355 Rupesh Agarwal, Micholas Dean Smith and Jeremy C. Smith were responsible for the computa-
356 tional studies and Min Pi, Ruisong Ye, and L. Darryl Quarles were responsible for the experi-
357 mental studies regarding GPRC6A. All authors contributed to the writing of the paper.


358

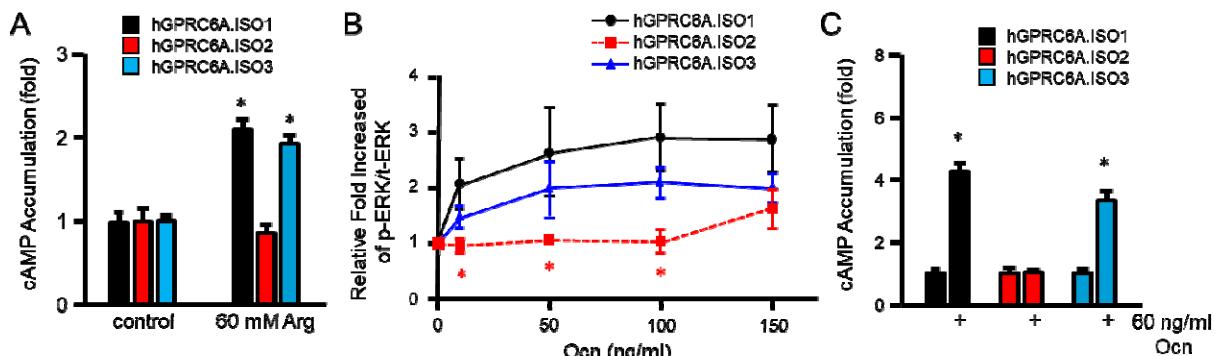
359 **Conflict of interest**

360 The authors declare that they have no conflicts of interest with the contents of this article.

361

362 **Figures and Tables**

363


364 **Figure 1. Sequence and structure of GPRC6a** a) Placement of exons and its location in
 365 GPRC6A isoform 1, 2 and 3 structure; b) Sequence alignment of Venus flytrap (VFT) domain
 366 showing missing regions of isoform 2 and 3; Structure model of GPRC6A showing the three
 367 domains and the missing region of isoform 2 and 3.

368

369

370

371

372 **Figure 2. Activities of GPRC6A isoforms on response to Ocn.** A. Comparison of effects of L-
373 Arg on GPRC6A isoforms mediated cAMP accumulation. Comparison of dose-dependent ef-
374 ffects of Ocn on GPRC6A isoforms mediated ERK activation (B) and cAMP accumulation (C).
375 HEK-293 cells were transfected with cDNA plasmids of GPRC6A isoform 1, 2 or 3 for 48 hours,
376 after incubated in Dulbecco's modified Eagle's medium /F-12 containing 0.1% bovine serum al-
377 bumine quiescence media for 4 hours, then exposed to L-Arg or Ocn at indicated concentrations
378 for 15 minutes for ERK activation, or 40 minutes for cAMP accumulation details as described
379 under "Methods". * indicates a significant difference from control and stimulation groups at
380 p<0.05.
381

382

383

384

385

386

387

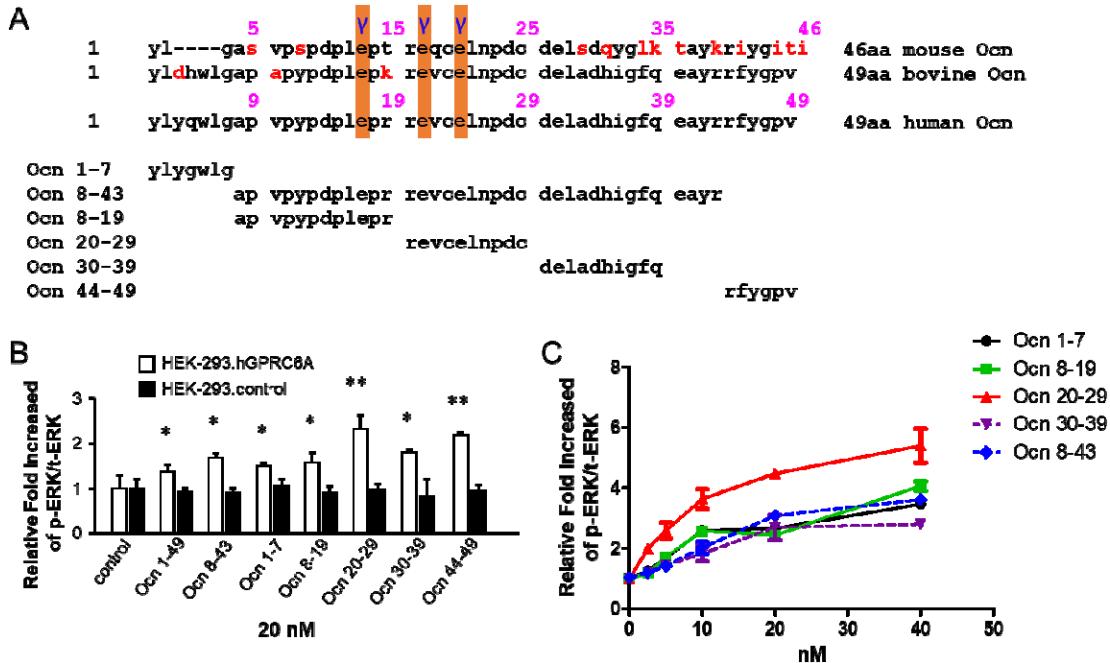
388

389

390

391

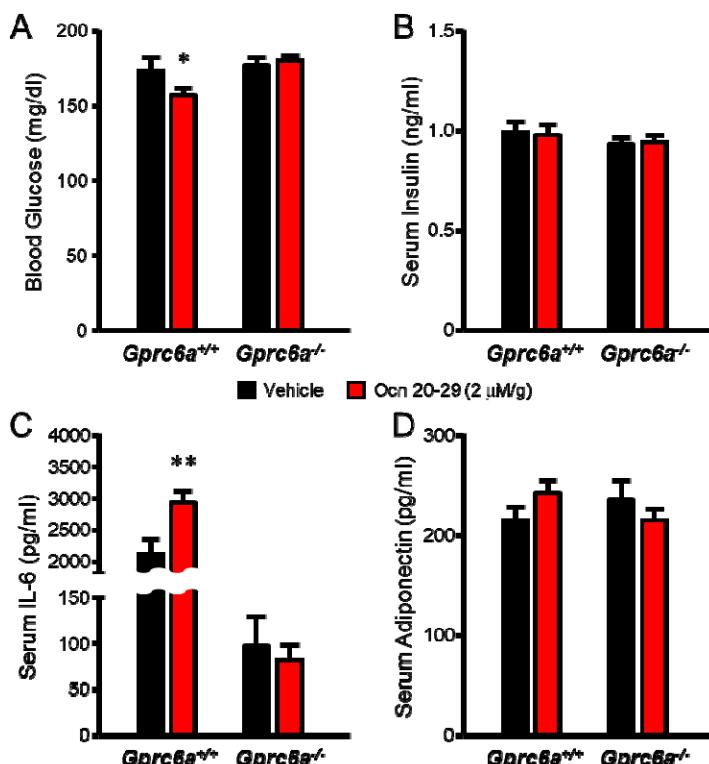
392


393

394

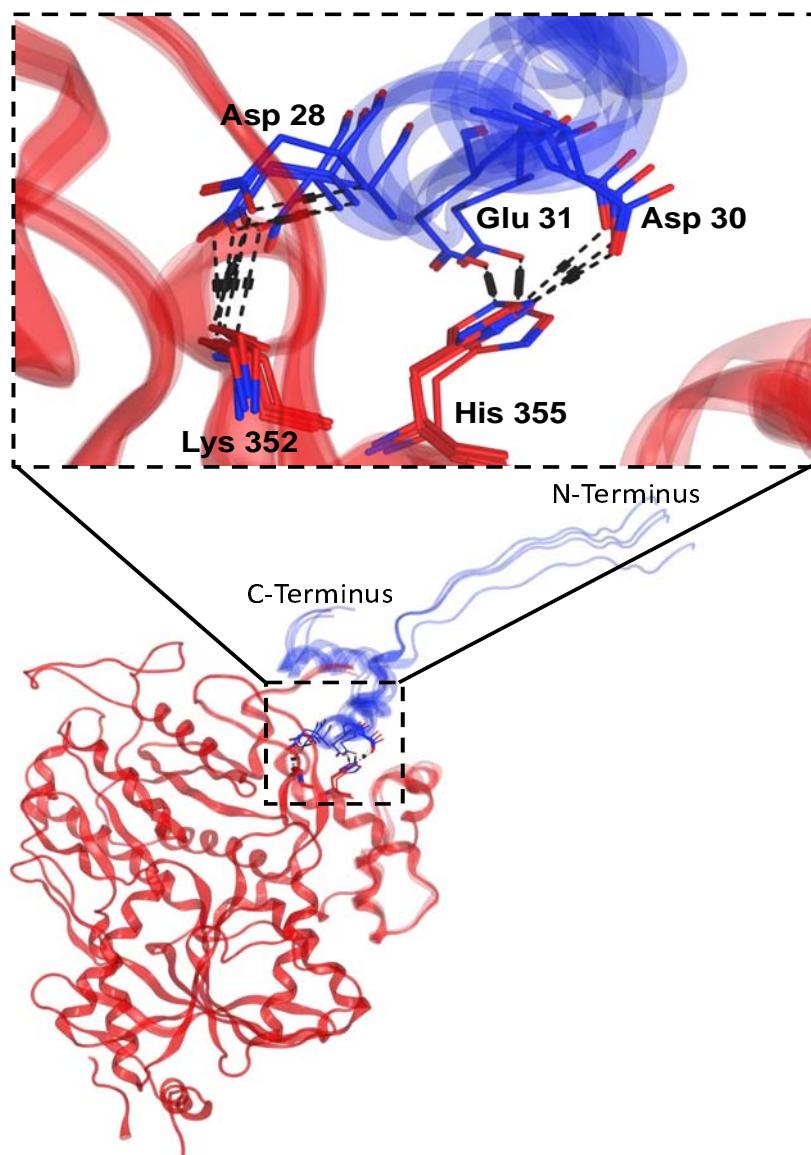
395

396


397

398
 399 **Figure 3. The activities of human Ocn peptide fragments.** A, The sequence alignment of full
 400 length mouse, bovine and human Ocn (upper panel), and synthesized peptide fragments of hu-
 401 man Ocn (bottom panel). Red alphabets indicate different amino acids compared to human Ocn
 402 sequence. "Y" indicates carboxylation sites in Ocn. B, Comparison of the activities of syn-
 403 the-sized fragments of human Ocn (at 20 nM) by ERK phosphorylation in HEK-293 trans-
 404 fected with vector pcDNA3 (black bar) and HEK-293 cells transfected with pcDNA3-hGPRC6A cDNA (white bar). * and ** indicate a significant difference from control and stimulation groups at $p<0.05$ and
 405 $p<0.01$, respectively. C, Dose response of synthesized fragments of Ocn in HEK-293 cells
 406 transfected with pcDNA3-hGPRC6A cDNA. The ERK phosphorylation was measured 15
 407 minutes for Ocn fragments at concentration as indicated at indicated stimulation in HEK-293
 408 cells transfected with pcDNA3-hGPRC6A cDNA after 4 hours quiescence.

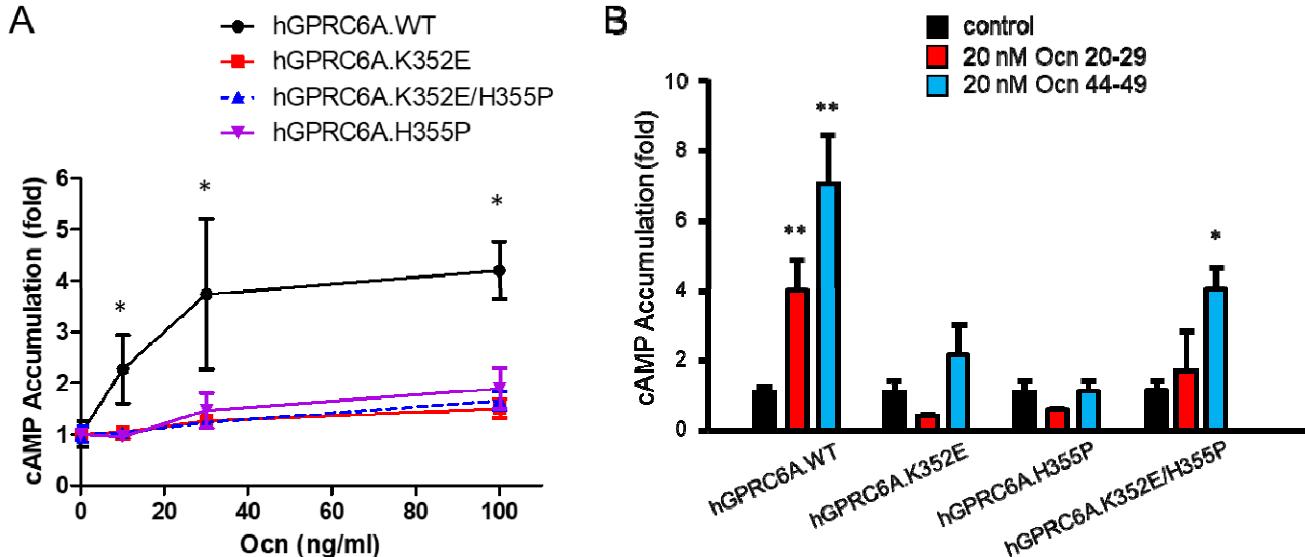
410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421


422

423
424
425
426
427
428
429
430
431
432
433

Figure 4. The effects of Ocn fragment, Ocn 20-29 on GPRC6A-mediated regulation of blood glucose and serum IL-6 levels in mouse. The biological activities of Ocn 20-29 were assessed 24 hours after intraperitoneal injection of 2 μ g/kg the Ocn 20-29 peptide (red bar) or vehicle (saline, black bar) in 8 week-old Gprc6a^{+/+} or Gprc6a^{-/-} mice by measuring blood glucose (A), serum insulin (B), IL-6 (C), and adiponectin (D). Ocn 20-29 significantly decreased the blood glucose level, and increased serum IL-6 level compared to vehicle in wild-type mice. These response were lost in Gprc6a^{-/-} mice. We observed no differences in serum insulin or adiponectin levels in Ocn 20-29 and vehicle treated mice. * and ** indicate a significant difference from vehicle and Ocn 20-29 injection groups ($n \geq 5$) at $p < 0.05$ and $p < 0.01$, respectively.

434


435
436

437 **Figure 5: Superimposition of the top 4 models of GPRC6A's VFT domain (in red) and Ocn (in**
438 **blue) complex generated from HADDOCK.** The key residue interactions present in the common in
439 helix region (352-363) of GPRC6A's VFT and residues 20-29 of Ocn.

440

441

442

443

444 **Figure 6. Mutagenesis of residues in predicted Ocn-binding pocket of GPRC6A.** A, Com-
445 parison of dose-dependent effects of Ocn on cAMP accumulation in HEK-293 cells transfect-
446 ed with the cDNA plasmids of WT, K352E, H355P, or K352E/H355P hGPRC6A. * indicate a signifi-
447 cant difference from control and stimulation groups at $p<0.05$ and $p<0.01$, respectively. B,
448 Comparison of Ocn small fragments, Ocn 20-29 or Ocn 44-49 at 20 nM concentration on cAMP
449 accumulation in HEK-293 cells transfected with the cDNA plasmids of WT, K352E, H355P, or
450 K352E/H355P hGPRC6A. * and ** indicate a significant difference from control and stimulation
451 groups at $p<0.05$ and $p<0.01$, respectively.

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

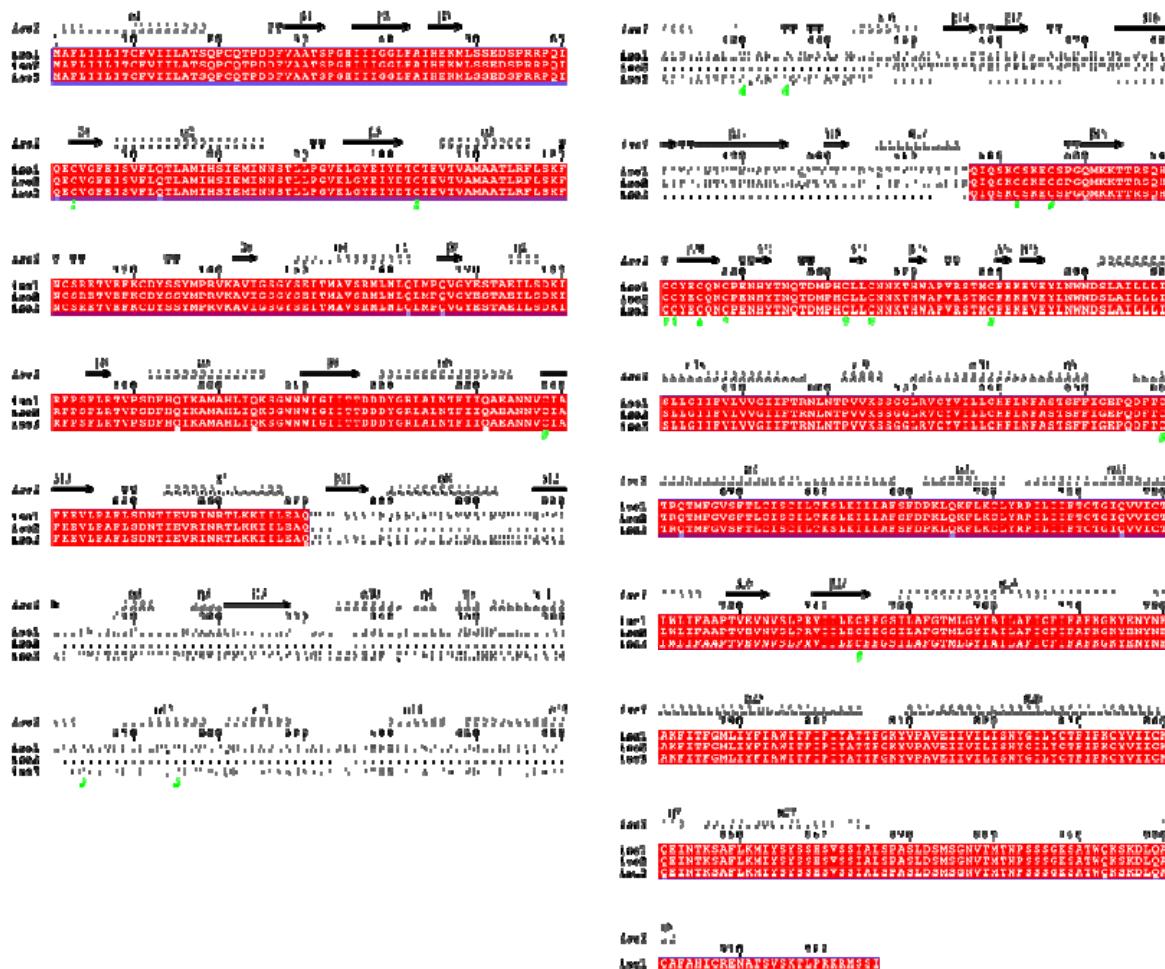
467

468

469 **Table 1: List of hydrogen bonds between GPRC6A-VFT and Ocn in best 4 structures from**
470 **the top cluster from HADDOCK.**
471

GPRC6A residue id	Ocn residue id	Distance (Å)	Model number
Asn389	Asp34	2.79	1
Asp26	Tyr46	2.73	1
His355	Asp30	2.93	1
Lys352	Asp28	3.31	1
Ser348	Glu31	2.67	1
Asp26	Asn26	2.81	2
Asp26	Phe45	3.83	2
Asp26	Tyr46	2.73	2
Gln381	Glu24	2.8	2
Gln381	Pro27	3.06	2
His355	Asp30	3.38	2
His355	Glu31	2.8	2
Lys352	Asp28	3.12	2
Ser348	Glu31	2.71	2
Ala385	Asp30	3.47	3
Asn389	Asp34	2.81	3
Asn389	His35	4.7	3
Asp26	Asn26	2.81	3
Gln19	Pro18	3.89	3
Gln19	Glu21	3.03	3
Gln381	Glu24	2.81	3
His355	Asp30	2.91	3
Lys352	Asp28	3.18	3
Pro20	Pro18	3.48	3
Ser348	Glu31	3.6	3
Ala385	Asp30	3.57	4
Asp26	Phe45	3.38	4
Gln19	Pro18	3.86	4
Gln381	Glu24	2.8	4
Gln381	Asp30	2.87	4
His355	Glu31	2.75	4
Lys352	Asp28	3.06	4
Pro20	Pro18	3.06	4
Ser348	Glu31	2.71	4

472

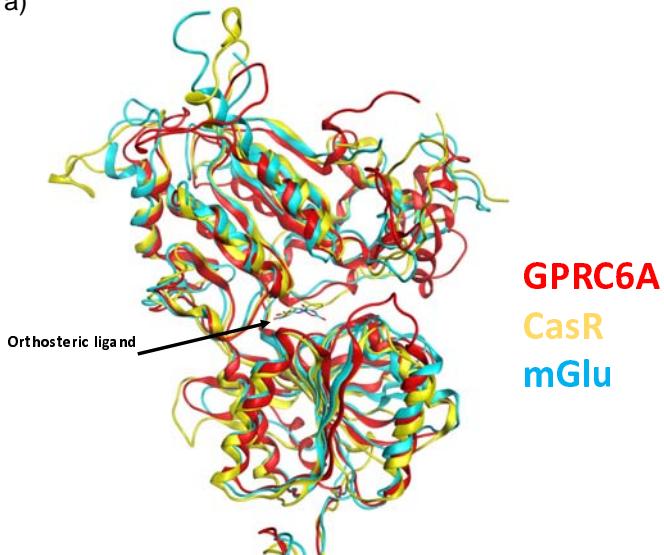

473 **Supporting Information**

474 **Table S1. The amino acid sequence of synthesized human Ocn.**

475

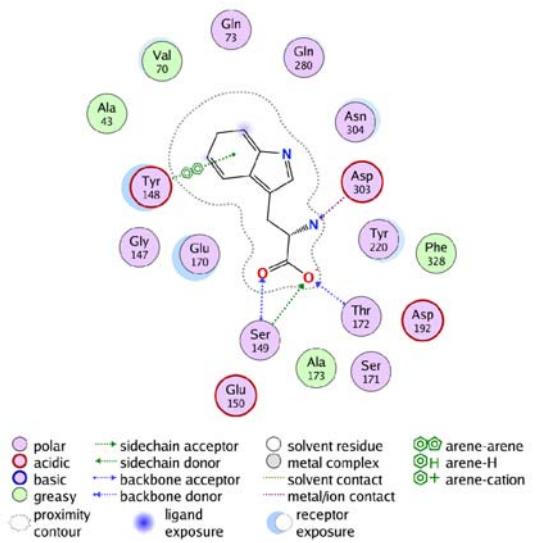
Name	Sequence	476
Ocn 1-7	YLYGWLG	477
Ocn 8-43	APVPYPDPLEPRREVCELNPD C DELADHIGFQEAYR	478
Ocn 8-19	APVPYPDPLEPR	479
Ocn 20-29	REVCELNPD C	480
Ocn 30-39	DELADHIGFQ	481
Ocn 44-49	RFYGPV	482
		483
		484

485

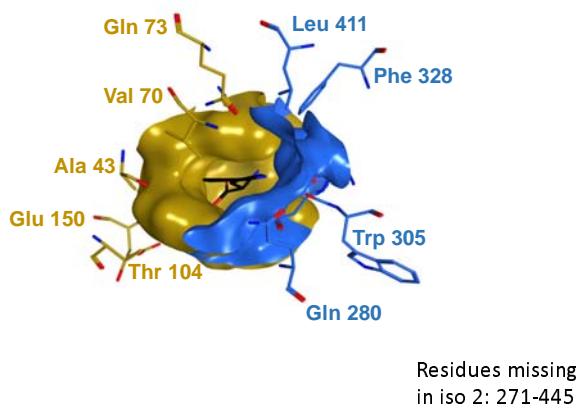


486

487

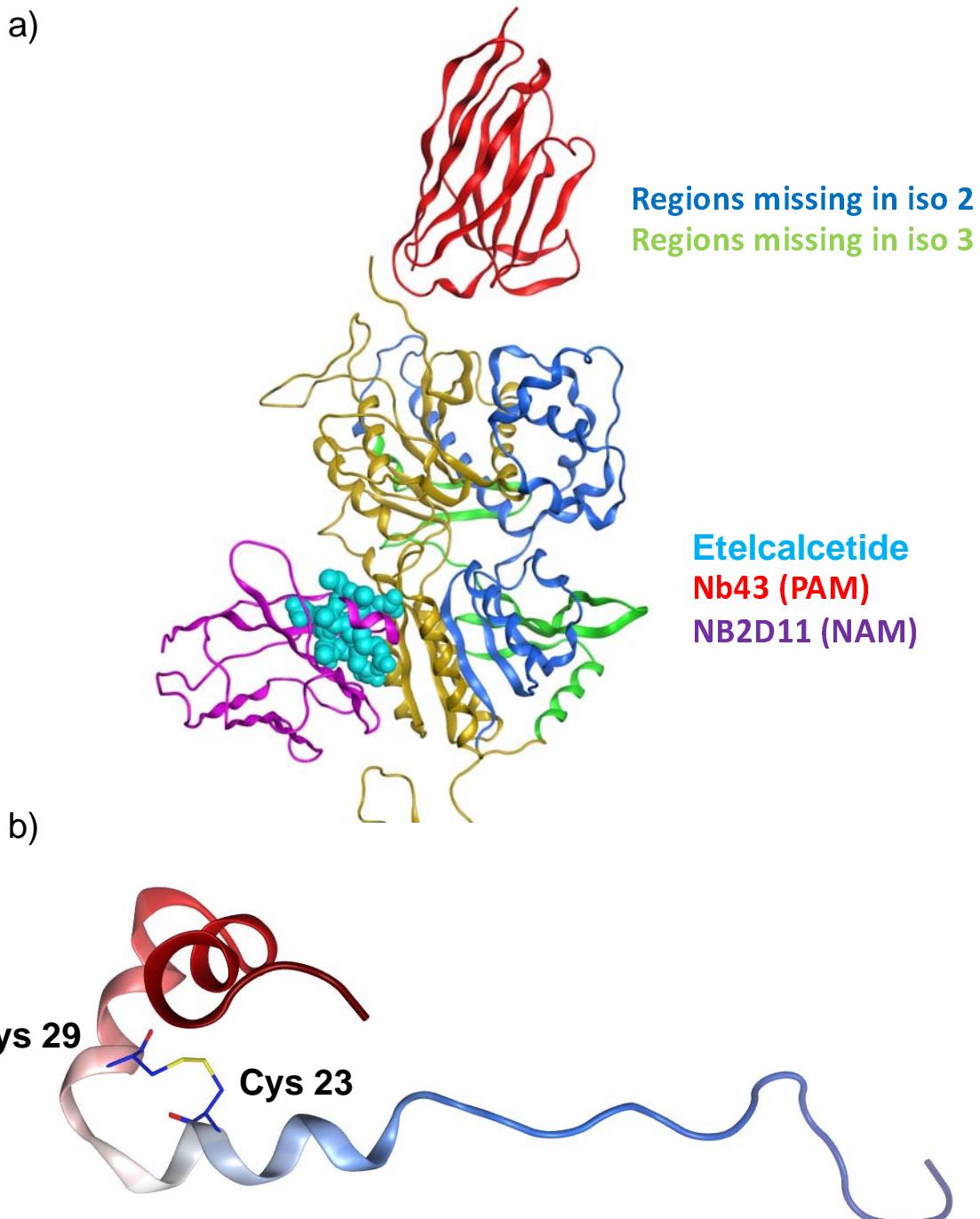

488 Figure S1: Sequence alignment of GPRC6A isoform 1, 2 and 3.

a)



489

b)


c)

490

491

492 Figure S2: a) Superimposed structure of AlphaFold2 minimized model of GPRC6A, CaSR with
493 L-Trp (PDB 7DTU) and mGluR5 with orthosteric analogue L-quisqualate (PDB 6N51) (in ribbon)
494 showing orthosteric ligands. b) Interaction map of L-Trp in isoform 1 c) Modeling of the
495 orthosteric ligand from CaSR in GPRC6A-isoform 1. Black: Trp (placed using CaSR:Trp as
496 template); Blue (orthosteric residues/ orthosteric binding pocket region missing in iso2); yellow:
497 iso1 orthosteric pocket region.
498

499

500 Figure S3: a) Superimposition of crystal structures on GPRC6A model. Yellow ribbon: GPRC6A;
501 Dark blue ribbon: region missing in iso2; green ribbon: part missing in iso3; Red ribbon: PAM
502 Nb43 from mGluR5 (PDB 6N4Y); magenta ribbon: NAM NB2D11 from CaSR (PDB 7E6U); Cy-
503 an sphere: etelcalcetide (calcimimetic drug) (PDB 7M3G); b) AlphaFold2 minimized model of
504 hOcn colored from N to C terminus (Blue to red) showing disulfide bond between Cys23 and
505 Cys29.

506

507

508

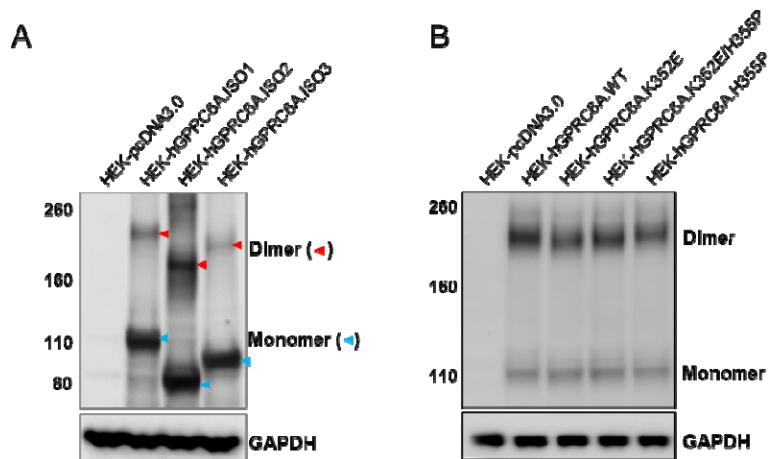
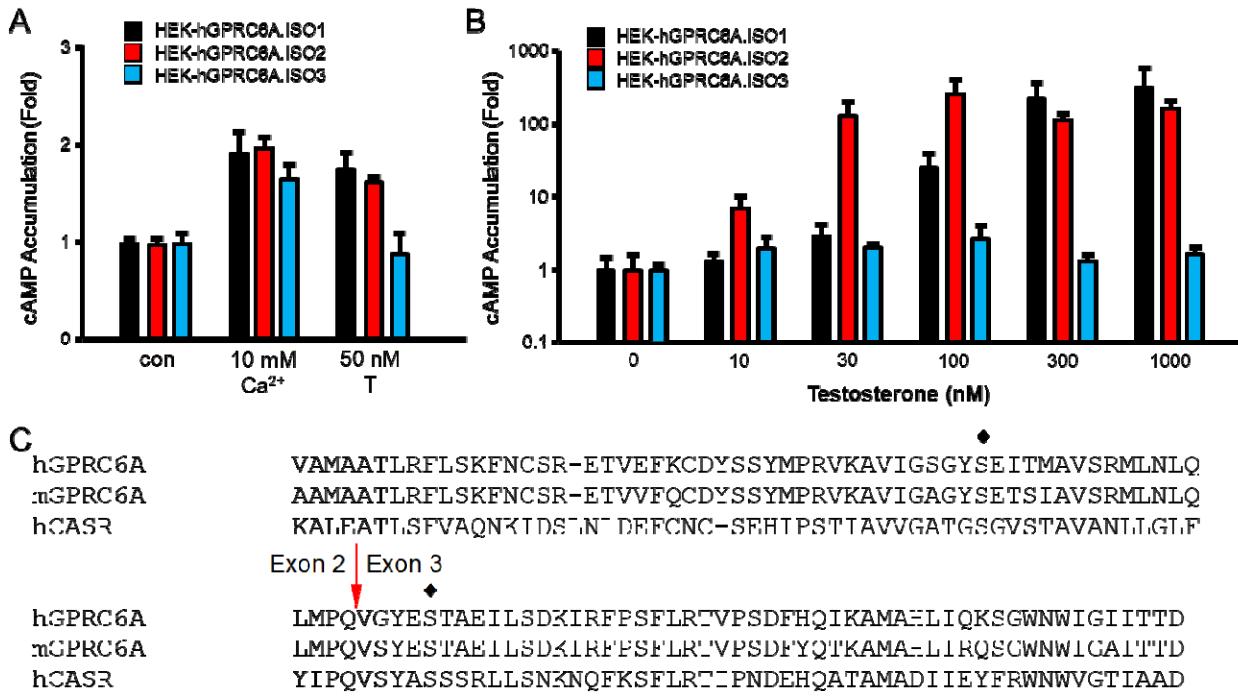



Figure S4. The protein expression of GPRC6A isoforms (A) and mutants (B).

514

515 Figure S5. GPRC6A isoform 3 loss responsive to T activation. A. Comparison of effects of Ca²⁺
 516 or T on GPRC6A isoforms mediated cAMP accumulation. B. Comparison of dose-dependent
 517 effects of T on GPRC6A isoforms mediated cAMP accumulation. HEK-293 cells were transfect-
 518 ed with cDNA plasmids of GPRC6A isoform 1, 2 or 3 for 48 hours, after incubated in Dulbecco's
 519 modified Eagle's medium /F-12 containing 0.1% bovine serum albumin quiescence media for 4
 520 hours, then exposed to Ca²⁺ or T at indicated concentrations for 40 minutes for cAMP accumu-
 521 lation details as described under "Methods". * and ** indicate a significant difference from
 522 control and stimulation groups at p<0.05, and 0.01. C. Alignment of human GPRC6A, mouse
 523 GPRC6A and human CaSR showing predicted Ca²⁺ binding sites. Red arrow shows the
 524 junction of exon 2 and exon 3. ♦ indicate expected amino acid in GPRC6A depended
 525 by CaSR.

526
 527

528 **References**

529

530 1. Lee, N. K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J. D., Confavreux, C., Dacquin, R., Mee, P.
 531 J., McKee, M. D., Jung, D. Y., Zhang, Z., Kim, J. K., Mauvais-Jarvis, F., Ducy, P., and
 532 Karsenty, G. (2007) Endocrine regulation of energy metabolism by the skeleton. *Cell* **130**,
 533 456-469

534 2. Oury, F., Sumara, G., Sumara, O., Ferron, M., Chang, H., Smith, C. E., Hermo, L., Suarez,
 535 S., Roth, B. L., Ducy, P., and Karsenty, G. (2011) Endocrine regulation of male fertility by
 536 the skeleton. *Cell* **144**, 796-809

537 3. Pi, M., Nishimoto, S. K., and Darryl Quarles, L. (2021) Explaining Divergent Observations
538 Regarding Osteocalcin/GPRC6A Endocrine Signaling. *Endocrinology* **162**

539 4. Pi, M., Nishimoto, S. K., and Quarles, L. D. (2017) GPRC6A: Jack of all metabolism (or
540 master of none). *Mol Metab* **6**, 185-193

541 5. Pi, M., Wu, Y., and Quarles, L. D. (2011) GPRC6A mediates responses to osteocalcin in
542 beta-cells in vitro and pancreas in vivo. *J Bone Miner Res* **26**, 1680-1683

543 6. Pi, M., Xu, F., Ye, R., Nishimoto, S. K., Williams, R. W., Lu, L., and Darryl Quarles, L. (2020)
544 Role of GPRC6A in Regulating Hepatic Energy Metabolism in Mice. *Sci Rep* **10**, 7216

545 7. Mera, P., Laue, K., Wei, J., Berger, J. M., and Karsenty, G. (2016) Osteocalcin is necessary
546 and sufficient to maintain muscle mass in older mice. *Mol Metab* **5**, 1042-1047

547 8. Mukai, S., Mizokami, A., Otani, T., Sano, T., Matsuda, M., Chishaki, S., Gao, J., Kawakubo-
548 Yasukochi, T., Tang, R., Kanematsu, T., Takeuchi, H., Jimi, E., and Hirata, M. (2021)
549 Adipocyte-specific GPRC6A ablation promotes diet-induced obesity by inhibiting
550 lipolysis. *J Biol Chem* **296**, 100274

551 9. Mizokami, A., Mukai, S., Gao, J., Kawakubo-Yasukochi, T., Otani, T., Takeuchi, H., Jimi, E.,
552 and Hirata, M. (2020) GLP-1 signaling is required for improvement of glucose tolerance
553 by osteocalcin. *J Endocrinol* **244**, 285-296

554 10. Mizokami, A., Yasutake, Y., Higashi, S., Kawakubo-Yasukochi, T., Chishaki, S., Takahashi,
555 I., Takeuchi, H., and Hirata, M. (2014) Oral administration of osteocalcin improves
556 glucose utilization by stimulating glucagon-like peptide-1 secretion. *Bone* **69**, 68-79

557 11. Pi, M., Kapoor, K., Ye, R., Nishimoto, S. K., Smith, J. C., Baudry, J., and Quarles, L. D.
558 (2016) Evidence for Osteocalcin Binding and Activation of GPRC6A in beta-Cells.
559 *Endocrinology* **157**, 1866-1880

560 12. Pi, M., Kapoor, K., Ye, R., Hwang, D. J., Miller, D. D., Smith, J. C., Baudry, J., and Quarles,
561 L. D. (2018) Computationally identified novel agonists for GPRC6A. *PLoS One* **13**,
562 e0195980

563 13. Pi, M., Kapoor, K., Wu, Y., Ye, R., Senogles, S. E., Nishimoto, S. K., Hwang, D. J., Miller, D.
564 D., Narayanan, R., Smith, J. C., Baudry, J., and Quarles, L. D. (2015) Structural and
565 Functional Evidence for Testosterone Activation of GPRC6A in Peripheral Tissues. *Mol
566 Endocrinol* **29**, 1759-1773

567 14. Pi, M., Kapoor, K., Ye, R., Smith, J. C., Baudry, J., and Quarles, L. D. (2018) GPCR6A Is a
568 Molecular Target for the Natural Products Gallate and EGCG in Green Tea. *Mol Nutr
569 Food Res* **62**, e1700770

570 15. Pin, J. P., Galvez, T., and Prezeau, L. (2003) Evolution, structure, and activation
571 mechanism of family 3/C G-protein-coupled receptors. *Pharmacol Ther* **98**, 325-354

572 16. Koehl, A., Hu, H., Feng, D., Sun, B., Zhang, Y., Robertson, M. J., Chu, M., Kobilka, T. S.,
573 Laeremans, T., Steyaert, J., Tarrasch, J., Dutta, S., Fonseca, R., Weis, W. I., Mathiesen, J.
574 M., Skiniotis, G., and Kobilka, B. K. (2019) Structural insights into the activation of
575 metabotropic glutamate receptors. *Nature* **566**, 79-84

576 17. Chen, X., Wang, L., Cui, Q., Ding, Z., Han, L., Kou, Y., Zhang, W., Wang, H., Jia, X., Dai, M.,
577 Shi, Z., Li, Y., Li, X., and Geng, Y. (2021) Structural insights into the activation of human
578 calcium-sensing receptor. *Elife* **10**

579 18. Park, J., Zuo, H., Frangaj, A., Fu, Z., Yen, L. Y., Zhang, Z., Mosyak, L., Slavkovich, V. N., Liu,
580 J., Ray, K. M., Cao, B., Vallese, F., Geng, Y., Chen, S., Grassucci, R., Dandey, V. P., Tan, Y.

581 Z., Eng, E., Lee, Y., Kloss, B., Liu, Z., Hendrickson, W. A., Potter, C. S., Carragher, B.,
582 Graziano, J., Conigrave, A. D., Frank, J., Clarke, O. B., and Fan, Q. R. (2021) Symmetric
583 activation and modulation of the human calcium-sensing receptor. *Proc Natl Acad Sci U*
584 *SA* **118**

585 19. Wen, T., Wang, Z., Chen, X., Ren, Y., Lu, X., Xing, Y., Lu, J., Chang, S., Zhang, X., Shen, Y.,
586 and Yang, X. (2021) Structural basis for activation and allosteric modulation of full-
587 length calcium-sensing receptor. *Sci Adv* **7**

588 20. Gao, Y., Robertson, M. J., Rahman, S. N., Seven, A. B., Zhang, C., Meyerowitz, J. G.,
589 Panova, O., Hannan, F. M., Thakker, R. V., Brauner-Osborne, H., Mathiesen, J. M., and
590 Skiniotis, G. (2021) Asymmetric activation of the calcium-sensing receptor homodimer.
591 *Nature* **595**, 455-459

592 21. Wellendorph, P., and Brauner-Osborne, H. (2004) Molecular cloning, expression, and
593 sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. *Gene* **335**,
594 37-46

595 22. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
596 Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.,
597 A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T.,
598 Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M.,
599 Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K.,
600 Kohli, P., and Hassabis, D. (2021) Highly accurate protein structure prediction with
601 AlphaFold. *Nature* **596**, 583-589

602 23. Jumper, J., and Hassabis, D. (2022) Protein structure predictions to atomic accuracy with
603 AlphaFold. *Nat Methods* **19**, 11-12

604 24. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D.,
605 Stroe, O., Wood, G., Laydon, A., Zidek, A., Green, T., Tunyasuvunakool, K., Petersen, S.,
606 Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., Figurnov, M., Cowie, A., Hobbs, N.,
607 Kohli, P., Kleywegt, G., Birney, E., Hassabis, D., and Velankar, S. (2022) AlphaFold Protein
608 Structure Database: massively expanding the structural coverage of protein-sequence
609 space with high-accuracy models. *Nucleic Acids Res* **50**, D439-D444

610 25. Skolnick, J., Gao, M., Zhou, H., and Singh, S. (2021) AlphaFold 2: Why It Works and Its
611 Implications for Understanding the Relationships of Protein Sequence, Structure, and
612 Function. *J Chem Inf Model* **61**, 4827-4831

613 26. Baumgrass, R., Williamson, M. K., and Price, P. A. (1997) Identification of peptide
614 fragments generated by digestion of bovine and human osteocalcin with the lysosomal
615 proteinases cathepsin B, D, L, H, and S. *J Bone Miner Res* **12**, 447-455

616 27. Phillips, C. M., Goumidi, L., Bertrais, S., Field, M. R., Ordovas, J. M., Cupples, L. A.,
617 Defoort, C., Lovegrove, J. A., Drevon, C. A., Blaak, E. E., Gibney, M. J., Kiec-Wilk, B.,
618 Karlstrom, B., Lopez-Miranda, J., McManus, R., Hercberg, S., Lairon, D., Planells, R., and
619 Roche, H. M. (2010) Leptin receptor polymorphisms interact with polyunsaturated fatty
620 acids to augment risk of insulin resistance and metabolic syndrome in adults. *J Nutr* **140**,
621 238-244

622 28. Dominguez, C., Boelens, R., and Bonvin, A. M. (2003) HADDOCK: a protein-protein
623 docking approach based on biochemical or biophysical information. *J Am Chem Soc* **125**,
624 1731-1737

625 29. Rueda, P., Harley, E., Lu, Y., Stewart, G. D., Fabb, S., Diepenhorst, N., Cremers, B.,
626 Rouillon, M. H., Wehrle, I., Geant, A., Lamarche, G., Leach, K., Charman, W. N.,
627 Christopoulos, A., Summers, R. J., Sexton, P. M., and Langmead, C. J. (2016) Murine
628 GPRC6A Mediates Cellular Responses to L-Amino Acids, but Not Osteocalcin Variants.
629 *PLoS One* **11**, e0146846

630 30. Power, M. J., and Fottrell, P. F. (1991) Osteocalcin: diagnostic methods and clinical
631 applications. *Crit Rev Clin Lab Sci* **28**, 287-335

632 31. Teng, B., Huang, C., Cheng, C. L., Udduttula, A., Yu, X. F., Liu, C., Li, J., Yao, Z. Y., Long, J.,
633 Miao, L. F., Zou, C., Chu, J., Zhang, J. V., and Ren, P. G. (2020) Newly identified peptide
634 hormone inhibits intestinal fat absorption and improves NAFLD through its receptor
635 GPRC6A. *J Hepatol* **73**, 383-393

636 32. Jeong, E., Kim, Y., Jeong, J., and Cho, Y. (2021) Structure of the class C orphan GPCR
637 GPR158 in complex with RGS7-Gbeta5. *Nat Commun* **12**, 6805

638 33. Varadi, M., European Molecular Biology Laboratory, E. B. I., Hinxton, UK, Anyango, S.,
639 European Molecular Biology Laboratory, E. B. I., Hinxton, UK, Deshpande, M., European
640 Molecular Biology Laboratory, E. B. I., Hinxton, UK, Nair, S., European Molecular Biology
641 Laboratory, E. B. I., Hinxton, UK, Natassia, C., European Molecular Biology Laboratory, E.
642 B. I., Hinxton, UK, Yordanova, G., European Molecular Biology Laboratory, E. B. I.,
643 Hinxton, UK, Yuan, D., European Molecular Biology Laboratory, E. B. I., Hinxton, UK,
644 Stroe, O., European Molecular Biology Laboratory, E. B. I., Hinxton, UK, Wood, G.,
645 European Molecular Biology Laboratory, E. B. I., Hinxton, UK, Laydon, A., DeepMind, L.,
646 UK, Žídek, A., DeepMind, L., UK, Green, T., DeepMind, L., UK, Tunyasuvunakool, K.,
647 DeepMind, L., UK, Petersen, S., DeepMind, L., UK, Jumper, J., DeepMind, L., UK, Clancy,
648 E., DeepMind, L., UK, Green, R., DeepMind, L., UK, Vora, A., DeepMind, L., UK, Lutfi, M.,
649 DeepMind, L., UK, Figurnov, M., DeepMind, L., UK, Cowie, A., DeepMind, L., UK, Hobbs,
650 N., DeepMind, L., UK, Kohli, P., DeepMind, L., UK, Kleywegt, G., European Molecular
651 Biology Laboratory, E. B. I., Hinxton, UK, Birney, E., European Molecular Biology
652 Laboratory, E. B. I., Hinxton, UK, Hassabis, D., DeepMind, L., UK, Velankar, S., and
653 European Molecular Biology Laboratory, E. B. I., Hinxton, UK. (2022) AlphaFold Protein
654 Structure Database: massively expanding the structural coverage of protein-sequence
655 space with high-accuracy models. *Nucleic Acids Research* **50**

656 34. Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr.,
657 Onufriev, A., Simmerling, C., Wang, B., and Woods, R. J. (2005) The Amber biomolecular
658 simulation programs. *Journal of computational chemistry* **26**, 1668-1688

659 35. Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and Simmerling,
660 C. (2015) ff14SB: Improving the Accuracy of Protein Side Chain and Backbone
661 Parameters from ff99SB. *J Chem Theory Comput* **11**, 3696-3713

662 36. Darden, T., York, D., and Pedersen, L. (1993) Particle Mesh Ewald - an N.Log(N) Method
663 for Ewald Sums in Large Systems. *J Chem Phys* **98**, 10089-10092

664 37. Price, D. J., and Brooks, C. L., 3rd. (2004) A modified TIP3P water potential for simulation
665 with Ewald summation. *J Chem Phys* **121**, 10096-10103

666 38. Miyamoto, S., and Kollman, P. A. (1992) Settle - an Analytical Version of the Shake and
667 Rattle Algorithm for Rigid Water Models. *Journal of computational chemistry* **13**, 952-
668 962

669 39. Zwanzig, R. (1973) Nonlinear generalized Langevin equations. *Journal of Statistical*
670 *Physics* **9**, 215-220

671 40. Åqvist, J., Wennerström, P., Nervall, M., Bjelic, S., and Brandsdal, B. O. (2004) Molecular
672 dynamics simulations of water and biomolecules with a Monte Carlo constant pressure
673 algorithm. *Chemical physics letters* **384**, 288-294

674 41. Nishimoto, S. K., and Price, P. A. (1979) Proof that the gamma-carboxyglutamic acid-
675 containing bone protein is synthesized in calf bone. Comparative synthesis rate and
676 effect of coumadin on synthesis. *J Biol Chem* **254**, 437-441

677 42. Sabek, O. M., Nishimoto, S. K., Fraga, D., Tejpal, N., Ricordi, C., and Gaber, A. O. (2015)
678 Osteocalcin Effect on Human beta-Cells Mass and Function. *Endocrinology* **156**, 3137-
679 3146

680 43. Nishimoto, S. K. (1990) A colorimetric assay specific for gamma-carboxyglutamic acid-
681 containing proteins: its utility in protein purification procedures. *Anal Biochem* **186**, 273-
682 279

683 44. Nishimoto, S. K., and Price, P. A. (1985) The vitamin K-dependent bone protein is
684 accumulated within cultured osteosarcoma cells in the presence of the vitamin K
685 antagonist warfarin. *J Biol Chem* **260**, 2832-2836

686 45. Pi, M., Parrill, A. L., and Quarles, L. D. (2010) GPRC6A mediates the non-genomic effects
687 of steroids. *J Biol Chem* **285**, 39953-39964

688 46. Pi, M., Chen, L., Huang, M. Z., Zhu, W., Ringhofer, B., Luo, J., Christenson, L., Li, B.,
689 Zhang, J., Jackson, P. D., Faber, P., Brunden, K. R., Harrington, J. J., and Quarles, L. D.
690 (2008) GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome.
691 *PLoS One* **3**, e3858

692