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Abstract 

Current metagenome-assembled human phage catalogs contained mostly fragmented genomes. 

Here, we developed a vigorous phage detection method involving phage enrichment and long-

read sequencing and applied to 135 fecal samples. With ~10 times more efficient in obtaining 

complete genomes (~34%) than the Gut Virome Database, we identified the first megabase-

phage (~1.03Mb), and revealed the hidden diversity of the gut phageome including dozens of 

phages more prevalent than the crAssphages and Gubaphages. 

Main 

The gut viral community (also known as the gut phageome), mainly consisting of bacteriophages 

and archaeal viruses (phages hereafter), has been shown to be diverse in the human gut1,2. 

Phages play crucial roles in shaping the gut microbial composition and hold great promise for the 

precision manipulation of the gut bacteriome. Despite tremendous success in identifying human 

(gut) phages from metagenome-assembled genomes3-8, the resulting phage catalogs contained 

mostly fragmented genomes. For example, the Gut Virome Database (GVD) that were assembled 

from short-read sequencing of 2,697 viral-like particle (VLP) -enriched samples contained only 

~4% complete genomes3.  Bulk-metagenomic sequencing assembled phage catalogs such as the 

Gut Phage Database (GPD) contained slightly higher complete genome rates (~12%), but their 

methods could only recover few phage genomes per sample and underestimated the diversity of 

the human gut phageome.  

 Here, we developed a vigorous phage detection method involving phage enrichment and 

long-read sequencing, and applied to fecal samples of 180 healthy Chinese participants. Briefly, 

we first used a modified VLP enrichment protocol to an increased amount of feces (~500g) to 

extract high-quality, high-molecular-weight (HMW) doubled stranded phage DNAs (Methods). 

We subjected all qualified samples to viral next-generation sequencing (vNGS) and those with 
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sufficient amounts of HMW DNAs to PacBio third-generation sequencing (vTGS) (Fig. 1A) using 

the circular consensus sequencing (CCS) mode. After removing human host and bacterial 

contaminations, we assembled the resulting clean reads using a combined assembly strategy 

including vNGS, vTGS and hybrid assemblies (Methods), de-replicated at an average nucleotide 

identity (ANI) of 95% and obtained a total of non-redundant 97,660 contigs that were either ≥5 

kb or ≥1.5 kb and circular. We filtered the contigs using six popular viral recognition tools 

including VirSorter9, VirFinder10and PPR-Meta11, and evaluated the completeness of the contigs 

using CheckV. We retained contigs that were either recognized as viral by two and more tools 

(20,444), or by one tool and of high-quality by CheckV (3,069), resulting in a catalog of 23,513 

phage genomes that we referred to as the Chinese Human Gut Virome (CHGV) collection (Figure 

1A).  

34.58% (8,132) of the CHGV genomes were considered complete according to either 

CheckV (6,348 phages) or if they were circular (3,620, Methods; see also ref.12), representing a 

7~10 times increase in terms of the complete genome rate comparing to GVD3 (4%) and a 2~3 

times increase comparing to GPD4 (12%). Our method (i.e., the combined assembly) generated 

more non-redundant phage genomes per sample (thus were more diverse) than NGS assembly 

alone (Figure 1B) and longer genomes than GVD (and GPD under the same length filtering criteria, 

i.e. >10k; Figure 1C).  In addition, our CHGV catalog included 29% novel phage genomes (i.e., 

those that shared <75% ANI with public viruses; Method) that were not found in any published 

human virome datasets including the GVD, GPD, Cenote-Taker 2–compiled Human Virome 

Database (CHVD)6, Danish Enteric Virome Catalog (DEVoC)7, and Metagenomic Gut Virus catalog 

(MGV)5, which is significantly higher than GPD (~12% novel genomes). GVD contained higher 

proportion of novel phages (46%, Figure 1D), likely because of its significantly large sample size 

(2,697 VLP-samples).  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.07.03.498593doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.03.498593
http://creativecommons.org/licenses/by-nd/4.0/


 

 

4 

 

Figure 1 | A rigorous phage detection method recovered more and longer gut phages with 

higher proportion of complete phage genomes. A, Combined assembly of long- and short reads 
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generated a Chinese Human Gut Virome collection containing ~33% complete phage genomes. 

Bar plot comparing the CheckV13 complete(CheckV completeness 100%) genome ratio among 

databases. GVD: The Gut Virome Database; GPD: the Gut Phage Database. *note phage genomes 

<10k were excluded from the GPD catalogue. B, Rarefaction curves of non-redundant/unique 

phage contigs obtained from the short-(vNGS) and combined-assemblies, and the public VLP 

samples used in the GVD (vPub).  C, Genome lengths of different assemblies and catalogues. D, 

Bar plot showing the novelty of the CHGV and selected public human viral catalogues as 

compared with all other human viral catalogues including GVD, GPD, CHVD6, DEVoC7, and MGV5. 

Identical: ≥ 95% average nucleotide identity (ANI); partially: ≥ 70% ANI; novel <70% ANI.  E, 

Large phage genomes of  ≥ 100 kb in size reported in recent studies4,5,7,12,14-17  and the 

corresponding identification methods. F, Phylogenetic relationships among the gut megaphage-

1 (Gut-MBP1) identified in this study and representative phages with length ≥100 kb from public 

databases, including the crAssphages and Gubaphages (~100 kb), Mehaphage (~250 kb), 

Lakphage (~550 kb) and Kabirphage (~260 kb); T7 phages were included as the outgroups. The 

protein sequences of the terminase genes were used to build the phylogenetic tree using 

FastTree v2.1.10 18. The tree was visualized using iTol19. G, Phylogenetic analysis of the top ten 

VCs (ranked by VC size) using terminase protein sequences (left) and their abundance and 

prevalence in our samples (right). An arbitrary relative abundance cutoff of 1e-6 was used to 

calculate the prevalence of the member phages of the VCs. H, Number of phages that are more 

prevalent than the crAssphages and Gubaphages in CHGV under different abundance cutoffs. 
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  Our method identified the first megabase phage (MBphage), Gut-MBP1 of 1,026 kb in size 

that was larger than any bacteriophages ever reported4,5,7,12,14-17 (Fig. 1E). Phylogenetic analysis 

using the protein sequences of the terminase genes indicated that the Gut-MBP1 formed its own 

clade from other known large phages (Fig. 1F). We identified additional 20 potential MBphages 

in CHGV and GVD using the terminase proteins (Supplementary, Methods). These phages ranged 

from 5 kb~ 536 kb in size, likely being only fragments; among them, three showed high overall 

protein similarities with Gut-MBP1. Our data thus extended the upper limit of phage genome size 

and blurred the boundary between the living and nonliving. 

 Our method also revealed the hidden diversity of the human gut phageome in the 

following two aspects. First, by grouping the CHGV genomes into 1,982 non-singleton viral 

clusters (VCs) using the Markov clustering algorithm20 (Methods), we identified a VC_1 that was 

more diverse (i.e., contained more phage genomes) than all the VCs corresponding to 

crAssphages and Gubaphages, the two known most diverse phage clades in the human gut4, and 

a VC_4 that was more diverse than most other VCs (Figure 1G). Both VCs contained novel phages 

that were not found in the NCBI Viral RefSeq database, and formed their own clades in a 

phylogenetic tree consisting the genomes in the top 10 VCs. Their members were highly 

abundant (comparable to that of the crAssphages and Gubaphages) and prevalent (with a median 

prevalence of 16.3% and 26.6% at an arbitrary relative abundance cutoff of 1e-6, respectively) in 

our samples, and were of 40 and 50 kb in size (Fig. 1G). Additional 81 potential VC_1 phages could 

be identified in the GPD and MGV databases3-7  that shared high overall sequence similarities 

(Supplementary). Second, we identified at least dozens of phages that were more prevalent than 

the most prevalent crAssphages and Gubaphages in our samples, regardless of the relative 

abundance cutoffs (Fig. 1H). 

In summary, our rigorous phage detection method was highly efficient in recovering 

complete phage genomes from human feces and significantly expanded our knowledge on the 

hidden diversity of the human gut phageome in multiple dimensions. 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.07.03.498593doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.03.498593
http://creativecommons.org/licenses/by-nd/4.0/


 

 

7 

References 

1 Ogilvie, L. A. et al. Genome signature-based dissection of human gut metagenomes to 
extract subliminal viral sequences. Nat Commun 4, 2420, doi:10.1038/ncomms3420 
(2013). 

2 Lynch, S. V. & Pedersen, O. The Human Intestinal Microbiome in Health and Disease. 
N Engl J Med 375, 2369-2379, doi:10.1056/NEJMra1600266 (2016). 

3 Gregory, A. C. et al. The Gut Virome Database Reveals Age-Dependent Patterns of 
Virome Diversity in the Human Gut. Cell Host Microbe 28, 724-+, 
doi:10.1016/j.chom.2020.08.003 (2020). 

4 Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. 
Massive expansion of human gut bacteriophage diversity. Cell 184, 1098-+, 
doi:10.1016/j.cell.2021.01.029 (2021). 

5 Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the 
human gut microbiome. Nat Microbiol 6, 960-+, doi:10.1038/s41564-021-00928-6 
(2021). 

6 Tisza, M. J. & Buck, C. B. A catalog of tens of thousands of viruses from human 
metagenomes reveals hidden associations with chronic diseases. Proceedings of the 
National Academy of Sciences 118, e2023202118, doi:10.1073/pnas.2023202118 
(2021). 

7 Espen, L. V. et al. A Previously Undescribed Highly Prevalent Phage Identified in a 
Danish Enteric Virome Catalog. mSystems 6, e00382-00321, 
doi:10.1128/msystems.00382-21 PMID - 34665009 (2021). 

8 Lai, S. et al. mMGE: a database for human metagenomic extrachromosomal mobile 
genetic elements. Nucleic Acids Res 49, D783-D791, doi:10.1093/nar/gkaa869 
(2021). 

9 Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from 
microbial genomic data. Peerj 3, doi:10.7717/peerj.985 (2015). 

10 Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. Z. VirFinder: a novel k-mer 
based tool for identifying viral sequences from assembled metagenomic data. 
Microbiome 5, doi:10.1186/s40168-017-0283-5 (2017). 

11 Fang, Z. C. et al. PPR-Meta: a tool for identifying phages and plasmids from 
metagenomic fragments using deep learning. Gigascience 8, 
doi:10.1093/gigascience/giz066 (2019). 

12 Benler, S. et al. Thousands of previously unknown phages discovered in whole-
community human gut metagenomes. Microbiome 9, 78, doi:10.1186/s40168-021-
01017-w (2021). 

13 Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-
assembled viral genomes. Nat Biotechnol 39, 578-585, doi:10.1038/s41587-020-
00774-7 PMID - 33349699 (2021). 

14 Tisza, M. J. & Buck, C. B. A catalog of tens of thousands of viruses from human 
metagenomes reveals hidden associations with chronic diseases. Proc Natl Acad Sci 
U S A 118, doi:10.1073/pnas.2023202118 (2021). 

15 Al-Shayeb, B. et al. Clades of huge phages from across Earth's ecosystems. Nature 
578, 425-+, doi:10.1038/s41586-020-2007-4 (2020). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.07.03.498593doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.03.498593
http://creativecommons.org/licenses/by-nd/4.0/


 

 

8 

16 Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in gut 
microbiomes. Nat Microbiol 4, 693-700, doi:10.1038/s41564-018-0338-9 (2019). 

17 Zhao, L. et al. Uncovering 1,058 novel human enteric DNA viruses through deep 
long-read third-generation sequencing and their clinical impact. Gastroenterology, 
doi:10.1053/j.gastro.2022.05.048 (2022). 

18 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2--approximately maximum-
likelihood trees for large alignments. PLoS One 5, e9490, 
doi:10.1371/journal.pone.0009490 (2010). 

19 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for 
phylogenetic tree display and annotation. Nucleic Acids Research 49, gkab301-, 
doi:10.1093/nar/gkab301 PMID - 33885785 (2021). 

20 Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale 
detection of protein families. Nucleic Acids Research 30, 1575-1584, doi:DOI 
10.1093/nar/30.7.1575 (2002). 

 Methods 

Sample collection 

Human fecal samples were obtained from healthy volunteers recruited in Wuhan and Shanghai, 

China. All volunteers remained anonymous but were asked to complete a questionnaire to collect 

relevant information such as their sex, age, height, weight, health status, and recent antibiotic 

usage (Table S1). The exclusion criteria included (1) the use of antibiotics or probiotic 

supplements up to one month before the study; (2) the use of drugs known to significantly affect 

the gut microbiota composition, such as metformin1,2, statin3 or proton-pump inhibitors4,5, in the 

month prior to sample collection; (3) current chronic intestinal diseases or a history of intestinal 

diseases; and (4) menstruation at the time of sampling in females. After collection, the samples 

were immediately cooled with dry ice and transferred to a −80°C freezer within five hours. To 

obtain a large amount of feces for phage extraction, up to three stool samples were collected 

from each participant and mixed together; the mixed samples totaling at least 500 grams were 

processed further. In total, 163 qualified samples were obtained (Table S1).  

This study was approved by the Ethics Committee of the Tongji Medical College of 

Huazhong University of Science and Technology, Wuhan China (No, S1241) and the Human Ethics 

Committee of the School of Life Sciences of Fudan University, Shanghai China (No, BE1940). 
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Virome enrichment and short- and long-read sequencing 

The virome enrichment protocol applied to the fecal samples was adapted from ref.6 with 

modifications to accommodate the large quantity of the collected feces from each participant. 

Briefly, 400~500 g of frozen feces taken from a -80°C freezer was added to five liters of SM (200 

mM NaCl, 10 mM MgSO4, 50 mM Tris-HCl (pH 7.5)) buffer and stirred by an automated stirrer 

(A200plus, OuHor, Shanghai, China) at low speed (120 rpm) at room temperature until all feces 

were dispersed. Then, the suspended mixture was filtered through four layers of gauze (21 s x 32 

s/28 x 28) and centrifuged at 5000 x g for 45 min at 4 °C. The supernatant was transferred to 

fresh tubes and centrifuged at 8000 x g for 45 min at 4 °C. The supernatant was subsequently 

concentrated to ~300 ml via a 100 KD ultrafiltration membrane (Sartorius, VIVO FLOW 200). NaCl 

was then added to the filtrates to a final concentration of 0.5 mol/L, and the samples were stored 

at 4 °C for one hour. Then, PEG 8000 was added to a final concentration of 10% w/v, and the 

samples were incubated at 4 °C overnight. On the following day, phage particles were 

sedimented at 13000 x g for 35 min at 4 °C. 

The obtained pellets were fully suspended in 18~36 mL TE buffer and treated by gently 

shaking with an equal volume of chloroform. The mixture was centrifuged at 3500 x g for 10 min 

at 4 °C. The aqueous phase was then transferred to a sterile round-bottomed flask and 

evaporated for 15 min using a rotary evaporator at room temperature to remove traces of 

chloroform, which could affect the activity of DNase I in the subsequent step. The aqueous phase 

was transferred to a new centrifuge tube, TE buffer was added to recover the volume before 

treatment with chloroform, and DNase buffer was added to a 1× final concentration. Then, for 

every 6 mL of supernatant, 50 µL of a DNase I mixture (33.3 U/µL, Biolab) and 25 µL of an RNase 

A mixture (0.5 U/µL, Biolab) were added, and the resultant mixture was incubated in a 

thermostatic oscillator (THZ-C, Peiying, Suzhou, China) at 100 rpm for 30 min at 37 °C before the 

enzymes were inactivated by the addition of EDTA buffer (final concentration 35 mM) and 

incubation at 70°C for 10 min. 

Nucleic acid was then extracted using a HiPure HP DNA Maxi Kit (D6322, Magen, 

Guangzhou, China) according to the manufacturer's instructions. Briefly, proteinase K and SDS 
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lysis buffer were added, and the mixture was then incubated at 56 °C for one hour. Viral particles 

were further lysed by adding the CFL buffer provided with the kit, and the lysates were 

subsequently treated with an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1, pH 

8.0), followed by centrifugation at 12000 × g for 15 min at room temperature. After centrifugation, 

the supernatant was transferred to a new centrifuge tube and treated with an equal volume of 

chloroform with gentle shaking, followed by centrifugation at 12000 x g for 15 min at room 

temperature. The aqueous phase was transferred to a new tube, loaded onto a DNA Mini Column 

provided by the kit, and centrifuged at 12000 x g for 1 min. The DNA Mini Column was then 

washed with GDP and GW2 buffers. DNA was eluted using DNA elution buffer and stored at -

80 °C for further analysis. Note that all buffers and columns used in this part of the study were 

provided in the kit. 

The purified VLP DNAs were quality checked and subsequently sequenced on the Illumina 

(short-read) and PacBio (long-read) platforms. For Illumina sequencing, nucleic acids were 

sheared with a g-TUBE (Covaris, USA) to generate a target size fragment of 400 bp, followed by 

sequencing library construction using the Nextera XT DNA Library Preparation Kit (Cat. No. FC-

131-1096, Illumina, USA) according to the manufacturer's instructions and sequencing using an 

Illumina HiSeq2000 sequencer (Novogen, Beijing, China) to generate paired-end reads of 150 bp. 

The generated dataset was then referred to as viral next generation sequencing (vNGS) data. For 

PacBio sequencing, DNAs were sheared into approximately 5 kb fragments by using a g-TUBE 

(Covaris, USA) and purified with AMPure PB magnetic beads, followed by a quality check using 

0.7% agarose gel electrophoresis. The qualified samples were employed to construct sequencing 

libraries using the SMRTbellTM Express Template Prep Kit 2.0 (Pacific Biosciences, USA) according 

to the manufacturer's instructions. The quality of the DNA libraries was checked with an Agilent 

2100 Bioanalyzer (Agilent Technologies, USA), and the libraries were then sequenced with a 

PacBio RS II sequencer (Pacific Biosciences, Menlo Park, CA, USA) in circular consensus 

sequencing (CCS) mode. The generated dataset was then referred to as viral third generation 

sequencing (vTGS) data. 
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Raw data processing 

Raw next generation sequencing of viral reads (referred to as vNGS hereafter) were processed 

with Trimmomatic v0.387 (with parameter LEADING:3 TRAILING:3 SLIDINGWINDOW:15:30 

MINLEN:50) to remove adaptors and trim low-quality bases; reads of 50 bp or less after trimming 

were discarded. The third generation sequencing of viral reads (referred to as vTGS) reads were 

corrected with CCS using pbccs (v4.0.0, https://github.com/nlhepler/pbccs) with the default 

parameters. 

Putative human reads were identified from the trimmed/CCSed reads by aligning the 

latter to the human reference genome (hg38; GCA_000001405.15) using Bowtie28 (v2.4.2, --end-

to-end) with default parameters and removed from further analysis. 

In total, we obtained 4.89 terabytes of clean data for the vNGS samples and 561 gigabytes 

of CCSed data for the vTGS samples. 

Combined assembly of short- and long- reads 

Briefly, IDBA-UD9 (Release 1.1.3, parameters: --maxk 120 --step 10 –min_contig 1000) was used 

to assemble the filtered vNGS data. Canu10 (v2.0-, parameters: genomeSize=20k 

corOutCoverage=1 -corrected) and Flye11 (v2.8.2, parameters: --meta --genome-size 20k --min-

overlap 1000) were used to assemble the filtered vTGS CCS reads. Because Canu does not have a 

meta-assembly mode and tends to extend contigs by merging DNA sequences from different viral 

species to generate erroneous contigs, unitigs were used for subsequent analysis; unitigs are 

basic blocks of contigs that are shorter but more reliable than contigs ('unitigs' are derived from 

contigs; wherever a contig end intersects the middle of another contig, the contig is split)12. To 

further extend the sequences, MetaBAT213 (version 2, default parameters) was used to group 

unitigs into bins. If all unitigs from one contig could be grouped into the same bin, contigs instead 

of unitigs were used for further analysis. OPERA-MS14 (v0.9.0, parameters: -contig-len-thr 1000 -

-polishing --no-strain-clustering --no-ref-clustering) and metaSpades15 (v3.13.1, default 

parameters) were employed for hybrid assemblies using both the vTGS and vNGS datasets from 

the same samples(Figure S1). 
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Contigs/unitigs obtained from all the above three strategies were merged; for samples 

that did not have vTGS data, contigs from the IDBA-UD assembler were used.  

The merged dataset was dereplicated using CD-HIT16 (v4.8.1, parameters: -c 0.95 -n 8) 

using a global identity threshold of 95%.  

Prediction of viral contigs with state-of-the-art tools 

To identify viral contigs, six independent state-of-the-art viral identification pipelines were used, 

including VirSorter v2.017 (--min-score 0.7), VirFinder v1.118 (default parameters), and PPR-Meta 

v1.119 (default parameters). A BLAST search against the Viral RefSeq genomes was also 

performed using BLASTn v.2.7.120 with the default parameters and an E-value cutoff of <1e-10; 

Release 201 (Jul 06, 2020) of the Viral RefSeq database contained 13,148 viral genomes. In 

addition, the annotated protein sequences were used for BLAST searches against the NCBI POG 

(Phage Orthologous Groups) database 201321. 

A contig was annotated as a virus if it was circular/met at least two out of the following 

criteria 1-5,  adopted from the Gut Virome Database (GVD) 22: 

• VirSorter score ≥ 0.7, 

• VirFinder score > 0.6, 

• PPR-Meta phage score > 0.7, 

• Hits to Viral RefSeq with > 50% identity & > 90% coverage, 

• Minimum of three ORFs, producing BLAST hits to the NCBI POG database 2013 with an E-

value of ≤ 1e-5, with at least two per 10 kb of contig length. 

• Alternatively, contigs met one of the above criterium and were annotated as high-quality 

(≥ 90% completeness) by CheckV23 were also annotated as viruses. 

As short contigs may only represent fragments of viral genomes, contigs that were longer 

than 5 kb or circular contigs longer than 1.5 kb were selected for further analyses; this dataset 
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was referred to as the Chinese Human Gut Virome (CHGV) dataset, which consisted of a total 

of 23,513 viral populations.  

Rarefaction curves were generated by randomly resampling the pool of N samples 10 

times and then plotting the number of dereplicated (unique) contigs found in each set of samples.  

Public viral genome databases/catalogs used in this study 

The following public human virome databases were used in this study. GPD, the Gut Phage 

Database24, includes 142,000 viral genomes assembled from metagenome sequencing. GVD, the 

gut virome database22, includes 33,242 viral genomes assembled from Viral like particles (VLP) 

sequencing. MGV, the Metagenomic Gut Virus collection25, includes 54,118 candidate viral 

species assembled from metagenome sequencing. CHVD, the Cenote Human Virome Database26, 

includes 45,033 viral taxa assembled from metagenome sequencing. DEVoC, the Danish Enteric 

Virome Cataloge27, includes 12,986 viral genomes assembled from VLP sequencing. The NCBI viral 

Reference genomes, Release 201 (Jul 06, 2020) of the Viral RefSeq database contained 13,148 

viral genomes. 

Identification of complete phage genomes in CHGV and public viral datasets 

The CheckV23 program were used on the CHGV and public viral datasets, those that were 

annotated with 100% completeness were considered to be complete genomes (CheckV 

complete). 

In addition, a customized pipeline was used to identify circular contigs that were 

considered as complete genomes in CHGV. First, the BLASTn program20 was used to search for 

alignable regions within each contig; if the front and tail portions of the contig were exact 

matches over 30 base pairs (nucleotide identity=100, E-value<1e-5), they were considered as 

circular genomes28. Second, the clean sequencing reads were mapped to the CHGV genomes 

using either pbmm2 (https://github.com/PacificBiosciences/pbmm2) for the vTGS data or 

bowtie28 for the vNGS. Genomes with at least two reads mapped to both the front and tail of the 

genome were considered to be circular genomes, resulting additional 1,054 circular genomes. 
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Estimating the proportion of novel viral genomes in one dataset as compared with all other 

viral databases 

To estimate the proportion of novel viral genomes in one dataset, the BLASTn tool was used to 

search all its sequences against all other viral databases mentioned above. Average nucleotide 

identity (ANI) was calculated by merging the hit regions with identity ≥90%, and hit length ≥ 

500bp, then calculated the coverage of these regions. Based on the overall ANI, a viral sequence 

is considered to be identical, partial identical or novel if it has ≥ 95%, ≥ 70% or <70% ANI as 

compared with other viral sequences. 

Identification of the first megabasephage (MBphage)  

We extracted the longest genome with ~1,026 kb in length. Gut-MBP1 was classified as high-

quality by CheckV37 (Methods). The annotation with VirSorter2 excluded the possibility of a 

nucleocytoplasmic large DNA virus (i.e., NCLDV; Methods).  

We observed overall even sequencing-depth of 1,740× and 412× across the Gut-MBP1 genome 

according to the vNGS and vTGS reads, respectively, thus excludes the possibility of false 

assembly. A peak region of ~5.8kb was found between 745~751 kb was presumably due to 

repeated sequences; the assembly of this region was supported by 58 vTGS reads that covered 

the whole region and ~1,000 vTGS reads that spanned the junctions on both sides of the region 

(~470 vTGS reads at each side, Figure S2). 

 

Identification of longest viral genomes from public databases and literature 

Longest bacterial phages were extracted from recent studies including 2022. Zhao, L et al.29; 2020, 

Al-Shayeb, B. et al.30; 2019, Devoto, A. E. et al.31; 2021, Tisza, M. J. & Buck, C. B.32; 2021, Benler, 

S. et al.28, and public databases including MGV 25, GPD 24and GVD 22. DeVoc. 
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Functional annotation of CHGV proteins 

The encoded protein sequences of the CHGV genomes were annotated using Prodigal 33 v2.6.3 

with default parameters. 

 Proteins translated from the CDS sequences were then annotated with eggNOG mapper 

v1.0.3-334 and hmmscan35 v3.3.2 against Pfam36 v34.0, and VOGdb v204 (E value <1e-5, 

score >=50, http://vogdb.org/).   

The terminase protein sequences were extracted to conduct phylogenetic analysis (below 

section). 

Phylogenetic analysis of selected phages 

Phylogenetic analysis was performed for selected phages using the terminase protein sequences. 

Briefly, for each group of phages of interest, their terminase protein sequences were aligned 

using MUSCLE38 v3.8.1551 with the default parameters. Phylogenetic trees were built with 

FastTree39 v2.1.10 with default parameters. Phylogenetic trees were then visualized and 

annotated using iTol40 and EvolView41.  

Representative phages with length ≥100 kb were obtained from the following public 

datasets, including the crAssphages42 and Gubaphages24 (~100 kb), Mahaphage30 (~250 kb), 

Lakphage31 (~550 kb) and Kabirphage30 (~260 kb). 

Clustering viral contigs into viral clusters (VCs) 

The clustering of gut viral contigs into viral clusters (VCs) was performed using a strategy adopted 

from the GPD24. Briefly, a BLASTn algorithm with default parameters was used to search the 

nucleotide sequences of the CHGV viral contigs against themselves for homologous sequences. 

An E-value threshold of 1E-10 was first used to filter the BLASTn results; the BLASTn query-hit 

pairs were further filtered to retain those with a coverage > 70% on larger genomes and 

coverage >90% on smaller genomes. Here, the coverage was calculated by merging the aligned 

fraction length of BLASTn high-scoring pair (HSP) sequences that shared at least 90% nucleotide 

similarity. Finally, a Markov clustering algorithm43 (MCL v14-137) was used with an inflation value 
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of 4.0, which took the filtered BLASTn results as input, carried out graph-based clustering and 

clustered the viral contigs into VCs. 

Identification of crAssphages and Gubaphages in CHGV contigs 

crAss-like phage genomes were annotated by following the method reported in a previous study 

44. First, the nucleotide sequences of all CHGV contigs were subjected to search against the 

protein sequences of the polymerase (UGP_018) and the terminase (UGP_092) of the 

prototypical crAssphage (p-crAssphage, NC_024711.1) using BLASTx. Second, the nucleotide 

sequence similarities between the CHGV contigs and the p-crAssphage genome were assessed 

using BLASTn. A contig was then labeled as a putative crAssphage when it was longer than 70 kb 

and met at least one of the following criteria: 

1. BLASTx hit with an E-value <1e-10 against either p-crAssphage polymerase or terminase 

2. ≥95% nucleotide identity over 80% of the contig length with the p-crAssphage genome 

Gubaphage genomes were annotated by clustering viral contigs with the Gubaphage 

genomes obtained from the GPD database24 into viral clusters (VCs) using the methods 

mentioned above. Viral contigs that were in the same VC as Gubaphage were annotated as 

Gubaphages.  

Estimation of the relative abundance of the CHGV genomes at the viral contig and VC levels 

To estimate the abundance of viral contigs, the vNGS clean reads were mapped to the CHGV 

database using Bowtie2. Then, we calculated the reads per kilobase million (RPKM) value of each 

viral contig. Relative species abundance was calculated by dividing the RPKM of a specific viral 

contig by the total RPKM of all viral contigs. 

To avoid the noise of low-abundance taxa, viral contigs with relative abundances lower 

than 0.0001% were removed and the relative abundances were recalculated so that the total 

abundances of all contigs were added to 100%. 
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VC abundance was generated based on viral contig abundances by dividing the sum of 

the RPKM values of the viral contigs from the same viral cluster by the total RPKM value. 
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