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6 While biomolecular condensates are often liquid-like, many experiments found that condensates
7 also exhibit solid-like behaviors, making them indissoluble in conditions liquid condensates dissolve.
8 Despite the biological significance of indissoluble condensates to cellular fitness, the mechanisms
9 underlying the indissolubility of solid-like condensates are still unclear. In this work, we study
10 the effects of elasticity on the dissolution of biomolecular condensates. We demonstrate that the
1 bulk stress inside condensates may prevent the condensates from dissolution and obtain a new
12 mechanical equilibrium condition of elastic condensates. Moreover, we theoretically predict a phase
13 diagram of indissolubility for biomolecular condensates and identify a minimum bulk modulus for the
14 condensates to be indissoluble. To verify our theories, we simulate the two-fluid model in which the
15 slow component corresponding to biomolecules generates elastic stress. Our theoretical predictions
16 are nicely confirmed and independent of microscopic details. Our works show that elasticity makes
17 biomolecular condensates less prone to dissolution.

18 Biomolecular condensates are ubiquitous in various or-
1v ganisms, usually composed of proteins and RNAs [1-9].
» They often have crucial biological functions [8, 10-16],
a1 such as adaptive responses to stresses, accelerating bio-
2 chemical reactions, and sequestering molecules from re-
actions. Therefore, the accurate regulation of biomolec-
2 ular condensates’ formation and dissolution is critical.
» Meanwhile, experiments have also found that biomolec-
2 ular condensates are viscoelastic [17]: they are solid-like
27 on a short time scale and liquid-like on a long time scale.
Interestingly, they often exhibit aging behaviors, and the
viscoelastic relaxation time, which separates solid and
s liquid behaviors, increases over time [18]. Indeed, aged
31 condensates may become indissoluble or infusible in con-
5 ditions where newly formed condensates can easily dis-
solve or fuse [3, 4, 9, 10, 14, 19-21]. The resistance to
s dissolution of solid-like condensates is particularly signif-
3 icant when the condensates are induced by deep super-
saturation [7]. Dissolution of solid-like condensates may
w need assistance by energy-consuming enzymes [20, 22—
24], therefore, reducing cellular fitness. Moreover, failure
3 to dissolve condensates during mitosis leads to aberrant
w0 condensates that cause cell-cycle arrest and ultimately
cell death [25].
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Despite the importance of solid-like nature on the dis-
solution of condensates [15, 18], theoretical studies on the
formation and dissolution of biomolecular condensates
have so far been limited to fluid models, in which the
elastic nature of condensates are neglected [26]. Among
the most common theoretical models, the hydrodynamic
s model involving diffusion and advection, often called
Model H [26, 27], can successfully incorporate the physics
needed to describe the dynamics of phase separation and
si droplet growth. However, it does not include the elas-
s2 tic nature of condensates. Therefore, it cannot explain
the indissolubility of solid-like condensates in conditions
where liquid condensates dissolve.
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In this work, we investigate the effects of elasticity on
the dissolubility of biomolecular condensates, combining
both theories and numerical simulations. In the follow-
ing, we first introduce our theoretical frameworks, fo-
cusing on elastic condensates subject to an abrupt con-
trol parameter change, e.g., some post-translational mod-
ifications that reduce the attractive strength between
biomolecules. Without elasticity, they are supposed to
dissolve. We derive the mechanical equilibrium condi-
tions for elastic condensates and find that the bulk stress
may prevent the dissolution and render the condensate
indissoluble. To test our theoretical predictions, we sim-
ulate the two-fluid model [28, 29] beyond the traditional
Model H, in which the biomolecule velocity field and the
elastic stress are dynamically coupled. Numerical simu-
lations of the two-fluid model nicely confirm our theories.
Our theories’ validity is independent of the microscopic
details, such as the free energy forms of the biomolecule
density field, as we confirm numerically.

Furthermore, we theoretically predict a phase diagram
of indissolubility as a function of effective temperature
and the condensate’s bulk modulus. We demonstrate a
minimum bulk modulus for the condensate to be indis-
soluble. Numerical simulations nicely confirm our pre-
dictions regarding the boundary between the dissoluble
and indissoluble phases. Our results suggest that the
dissolution of elastic condensates can be facilitated by
decreasing biomolecules’ attractive strength and lower-
ing the condensates’ bulk moduli. Finally, we discuss the
biological implications of our work and propose potential
experiments to test our predictions.

Equilibrium  conditions of elastic condensates.—
Biomolecular condensates usually have well-defined vis-
coelastic relaxation times, below which the condensates
behave as elastic materials [17, 18]. In this work, we
simplify the problem by considering aged condensates
with their viscoelastic relaxation times much longer than
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FIG. 1. Mechanical equilibrium conditions of elastic conden-
sates. Liquid-like condensates are initially formed, which then
become aged and solid-like. An abrupt change in the attrac-
tive strength between biomolecules is introduced, correspond-
ing to a change in the shape of the biomolecule free energy
fo(¢) from two minimums to a single minimum. Here ¢ is
the biomolecule density. The condensate’s bulk stress op is
involved in the new equilibrium condition.

o the time scales of biological interests, e.g., the duration
o3 of cell-cycle phases. Therefore, the viscoelastic relax-
o ation time can be taken as infinite, which is the main
os focus of this work. We introduce an abrupt reduc-
o tion to the attractive strength between the biomolecules.
or Biologically, one of the most relevant perturbations is
e the post-translational modification such as phosphory-
o0 lation, which introduces Coulomb repulsive interaction
100 between biomolecular monomers and reduces the attrac-
o1 tive interaction [5, 13, 30]. Other perturbations that
102 can lead to similar effects include changing temperature,
103 pH, and salt concentrations. In the absence of elasticity,
104 the condensates will dissolve because the free energy of
105 biomolecule density changes from a form with two min-
s imums to a form with only one minimum (Figure 1).
17 However, as shown in the following, the elastic force may
108 prevent the dissolution.

In liquid-liquid phase separation, a stable conden-
uo sate requires mechanical equilibrium [31, 32], such that
w iy = Hous + (d — 1)y/R. Here, Tl (out) is the osmotic
12 pressure inside (outside) the condensate, d is the spatial
us dimension, v is the surface tension constant and R is
14 the condensate radius. In the presence of elastic stress,
we need to take account of the elastic energy Fy) of the
condensate so that the equilibrium condition becomes

109

115

116

(d—1)y

ILi, —op = out + R s

(1)

Here op = 0Fq(Vin)/OVin is the bulk stress inside the
us condensate due to elasticity where Vi, is the volume of
uo the condensate (Figure 1). As we show later, the inclu-
120 sion of bulk stress compensates the imbalance of osmotic
121 pressures. To find the expression of o, we use the con-
122 stitutive equation of the bulk stress and the continuity
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equation of biomolecule density (¢)

oo
aTB =GV - vp, (2)
09
Bt —¢V - vp (3)

Here vy, is the velocity field of the biomolecules, which is
responsible for the bulk stress. G is the bulk modulus.
In writing the above two equations, we assume that ¢ and
op are uniform inside the condensate, which we confirm
numerically later. Combining Eqs. (2, 3), we obtain

o1 )
(bin
where ¢ and ¢y, are the biomolecule densities inside
condensates before and after the reduction of attrac-
tive strength between the biomolecules. The equilibrium
condition must be satisfied for all condensates in a sys-
tem of multiple condensates with the bulk stress deter-
mined by Eq. (4), and ITj;, and Iy, determined by ¢,
and @oyut, respectively. Fach condensate can have dif-
ferent ¢;,’s although they share the same biomolecule
density ¢@oy outside them. Given the radii R’s and the
densities ¢;,’s of each condensate, ¢o,t can be calcu-
lated using the conservation of total molecular number:
Voo =3 Vitin,i + (V= >, Vi)pour. Here, V is the to-
tal volume, V; is the volume of condensate ¢ assuming a
spherical shape, and the summation is over all conden-
sates. ¢ is the average density over the total volume.

To uniquely determine the densities inside conden-
sates, we still need one more equation. For liquid conden-
sates, it is a uniform chemical potential. However, in our
case, the condensate is solid, so the exchange of molecules
is suppressed as soon as the mechanical equilibrium is
established [3, 8, 15]. Instead, we propose that conden-
sate size does not change upon the weakening of attrac-
tive interaction between biomolecules, namely, R = Ry,
where R and Ry are the radii of an elastic condensate
before and after the condition changes. We confirm this
assumption numerically later. We note that the conden-
sate’s constant radius and decreased density do not con-
flict with the suppressed exchange of molecules since the
density change happens when the system is initially out-
of-equilibrium after the attractive strength suddenly de-
creases. As a result, the density decreases initially until
the condensate reaches mechanical equilibrium. Finally,
we remark that in our case, the bulk stress inside the
condensate stabilizes the condensate, in contrast to the
bulk stress outside a condensate, e.g., due to the sur-
rounding polymer network that suppresses the formation
of condensates [33-40].

Simulations of the two-fluid model.— We numerically
simulate the two-fluid model in two dimensions [28, 29] to
test our theories with two components: the slow compo-
nent corresponding to the biomolecules and the fast com-
170 ponent corresponding to the solvent. It is the biomolecule
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FIG. 2. Simulations of multiple coexisting elastic conden-
sates. (a) The density field ¢ after decreasing the x parameter
in the Flory-Huggins free energy from 3.0 to 1.5. For liquid
condensates, they will simply dissolve. In contrast, the elas-
tic condensates can be indissoluble. (b) The osmotic pressure
IT from the same simulation of (a). (c) The bulk stress op
from the same simulation of (a). (d) II — op from the same
simulation of (a). In this figure, we take ¢po = 0.45, Gp = 20,
Gs =20, and ¢. = 0.5.

17

oy

component that generates the elastic stress. The average
velocity field v = ¢vp + (1 — ¢)vs where vy, are vg are
respectively the biomolecule and solvent velocity field.
In the two-fluid model, the biomolecule density field ¢ is
spatially dependent with its value between 0 and 1. The
dynamics of the biomolecule density and velocity field
follows (see details in Supplementary Information)

9 _ o(1 - ¢)?
ot ¢
—V-II+V-0—-Vp+nViv=0.
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(6)

Here, ( is the friction constant between biomolecules and
solvent, and 7 is the viscosity. The pressure p is deter-
mined by the incompressible condition: V -v = 0. The
stress tensor 0 = og+oglI where op is the bulk stress and
og is the shear stress tensor. They follow the Maxwellian
dynamics such that (Supplementary Information),
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where G is the bulk modulus. To simulate elastic con-
densates, we take the relaxation time of bulk stress to
be diverging at a critical density ¢. such that 75'(¢)
(¢ — $)O (¢ — @), where O(x) is the Heaviside function.
We remark that if we take the stress tensor to be zero
in Egs. (5, 6), they are reduced to the classical Model
o H [27]. The osmotic stress tensor is determined by the

=—(vp-V)op —

(7)
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FIG. 3. Computations of the surface tension constant -y

and predictions of the density field using different types
of free energy. (a) The inferred surface tension constant
v = (Ilin —o B —Iout ) R approaches an asymptotic value in the
large radius limit. (b) A comparison of the theoretical predic-
tions of ¢in and ¢out (black dashed lines) and the simulations
(yellow dots above ¢. and blue dots below ¢.) [same as Figure
2(a)]. Each yellow and blue curve represents one condensate
and r is the distance from the condensate center. (c) For the
Flory-Huggins free energy, the initial density field (gray dots)
cannot be maintained after x decreases and the final density
field is established. (d) For the Landau-Ginzburg free energy,
the equilibrium density field can also be predicted by our the-
ories after the control parameter « increases from —1 to 1. In
(a) and (b), Gp = 20, x; = 3.0, x5y = 1.5. ¢o = 0.45 in (b).
In (c) and (d), we simulate a single condensate (see details
in Supplementary Information) with Ry =9. Gg = 10 in (c)
and Gg = 20 in (d). In all figures, Gs = 20 and ¢. = 0.5.

1 biomolecule free energy f(¢), V- II = ¢V f/(p) where
w2 f(¢) = fo(@) +$(Ve)? and C is a constant. If not men-
103 tioned explicitly, we use the Flory-Huggins free energy
e density: fo(9) = co(¢1n(9)+(1—¢) In(1— )+ xd(1-3)).
15 Here ¢g kpT/Vy where kp is the Boltzmann con-
106 stant, T is the temperature, and Vj is the biomolecular
17 monomer volume. We note that the condition of stable
108 liquid condensate for the Flory-Huggins model is that
199 the parameter x > 2. We use the osmotic pressure II to
20 represent the scalar osmotic stress computed from fo(¢),
a0 IT = ¢fi(¢) — fo(¢). By non-dimensionalizing Egs. (5,
6), we choose the unit of elastic modulus as €, the time
unit tg = n/€g, and the length unit lo = \/n/{ (see esti-
mations in Supplementary Information).
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We note that the osmotic stress and the elastic stress
are fundamentally different as the osmotic stress is a func-
tion of the instantaneous density field while the elastic
stress depends on the accumulated change of the den-
sity field. Omne may attempt to compute an effective
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elastic free energy that is a function of ¢ so that the
elastic bulk stress is included in the osmotic pressure as
o fL(¢) — fa(¢) = —op. However, the resulting effective
chemical potential peg = f/'(¢) + f(¢) is not uniform
across the system, which suggests that the elastic stress
cannot be included in the free energy as a function of the
density field (Figure S1).

Tests of theoretical predictions.— We simulate multiple
coexisting condensates, first generated by the two-fluid
model without elasticity from a uniform density ¢q as the
initial condition (see details in Supplementary Informa-
tion). The average density is therefore set by the initial
condition. The initial Flory-Huggins parameter x; = 3.
We add elasticity to the condensates after the formation
of multiple spherical condensates to mimic the aging pro-
cess. After a short time, we change x to xy = 1.5 so that
the free energy fo(¢) changes from a form with two min-
imums to a form with only one minimum (Figure 1).

After the reduction of y, we find that these conden-
sates are indissoluble under the parameters we take. The
density field inside condensates is indeed uniform as as-
sumed (Figure 2a). We also confirm our assumptions of
uniform bulk stress (Figure 2c¢) and constant radii (Fig-
ure S2). An example of simulations is shown in Movie
S1. The osmotic pressure is significantly different across
the boundaries of condensates (Figure 2b). For liquid
condensates, they will quickly dissolve due to the large
pressure difference. In contrast, the bulk stress balances
the osmotic pressure difference for elastic condensates.
Indeed, we find that the difference between the osmotic
pressure and bulk stress (I — o) is uniform across the
boundaries (Figure 2d). We note that the uniform II—op
is not valid near the condensate boundaries due to the
surface tension. Using the variable sizes of condensates,
we compute the radius dependence of surface tension con-
stant v, and find that « converges to a constant value in
the large radius limit (Figure 3a), suggesting that it is
well defined in the thermodynamic limit.

To compute the predicted densities inside and outside
condensates, in principle, we need to solve n equations
of Eq. (1) with a shared ous(¢out) because each con-
densate has a different radius. Here, n is the number
of condensates. However, if we neglect the contribution
of surface tension in Eq. (1), we can combine all con-
densates to find the common ¢;, that works for all con-
densates. We find that the surface tension constant is
relatively small in our simulations, so our predictions of
the densities ¢i, and ¢ont with v = 0 (Figure 3b) are
very close to the predictions with a finite v (Figure S3).
Therefore, we neglect the surface tension in the following
theoretical calculations.

To test the generality of our theories, we also use the
Landau-Ginzburg free energy and find that our theories
are equally applicable (Figure 3c, d). In both cases, the
condensates can be indissoluble after changing the forms
of free energies from two minimums to a shape with only
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one minimum. We find that the numerical densities ¢
as a function of the distance from the condensate center
precisely match the theoretical predictions. We also test
our theories using asymmetric Flory-Huggins model and
again obtain satisfying agreements between simulations
and theoretical predictions (Figure S4a).

To test the effects of the shear modulus, we repeat the
above simulations with the Flory-Huggins free energy and
change the shear modulus with the same bulk modulus.
We find that the density distributions are insensitive to
the values of shear moduli (Figure S5), corroborating the
major role of bulk stress in the mechanical equilibrium
conditions. Finally, we also test the effects of the critical
density and find that our results are valid independent of
¢ (Figure S4b, S6-S8).

a b
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FIG. 4. A critical bulk modulus Gg,. above which conden-
sates are indissoluble. (a) Phase diagram of condensate indis-
solubility with control parameters xs and Gg. The theoreti-
cal predicted G, is the black line and the simulation results
are the blue dots and red crosses. (b) Schematics for the force
balance in the crossover regime of condensates.

Phase diagram of indissolubility.— In the following, we
systematically investigate the indissoluble conditions of
elastic condensates. We compute the theoretically pre-
dicted ¢, after y is lowered from x; = 3 to xs as a
function of G using Eq. (1). We find that ¢;, decreases
as Gp decreases (Figure S9a). From this calculation, we
predict the critical bulk modulus Gp . for the conden-
sate to be indissoluble given X, based on the condition
¢in > ¢ where ¢, is the critical density above which the
condensates become elastic. Because both xy and Gp ap-
pear linearly in Eq. (1), the phase boundary separating
the dissoluble and indissoluble phase must be linear in
the Xf‘GB parameter space.

To test our predictions, we simulate a single conden-
sate with two control parameters x y and G g and monitor
its dissolution dynamics after y is reduced from y; = 3
to x¢. We label the condensate as dissoluble or indissol-
uble depending on if the system becomes uniform or not
after a long waiting time ¢ = 10* (see examples in Figure
S9b, ¢ and Movie S2). As expected, when Gp = 0, the
condensate is stable only if xy > 2. For xy < 2, the
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condensate becomes indissoluble if the bulk modulus is
larger than a critical value. The numerically simulated
phase diagram nicely matches the predicted phase dia-
gram (Figure 4a). Our results are not sensitive to the
values of ¢. as we get similar results using different ¢,
(Figure S10).

We find that to match the predicted phase boundary to
the simulations accurately, we need to solve the equation
Gin = 08¢, with 8 = 1.1 to find the critical bulk modulus
(Figure 4a and Figure S9a). To understand why 6 is close
but slightly larger than 1, we remark that for the elastic
condensate to be stable, ¢, must be larger than ¢, to en-
sure force balance across the condensate boundary. The
biomolecules are subject to two types of force: the force
from the gradient of the osmotic tensor (-V - IT) and the
force from the gradient of the elastic stress (V - o). We
can further decompose the former force into two parts,
one is from the free energy fo(¢), which we call the os-
motic force, and the other is from the $ (V¢)? term in the
free energy, which we call the surface tension force. For
a liquid condensate, the osmotic force always balances
the surface tension force across the condensate bound-
ary. Because the osmotic pressure is a non-monotonic
function of density, in this case, the crossover regime can
be separated into three parts in which both the surface
tension force and the osmotic force change their signs (see
the schematic in Figure 4b and numerical simulations
in Figure S1la). For an elastic condensate, the osmotic
force always points outwards from the condensates since
the osmotic pressure is now a monotonically increasing
function of ¢, while the surface tension force still changes
its sign. Therefore, in this case, an inward elastic force
must exist to balance the sum of surface tension force
and osmotic force in the crossover regime (Figure 4b and
Figure S11b). In conclusion, ¢;, should be larger than
¢, to ensure a finite elastic force in the crossover regime;
therefore, 6 > 1.

Discussion.—Our work provides the first mechanis-
tic understanding of the indissolubility of solid-like
biomolecular condensates. We show that the bulk stress
can balance the osmotic pressure difference inside and
outside the condensates, therefore preventing the dis-
solution. Numerical simulations of the two-fluid model
nicely confirm our theoretical predictions of the mechan-
ical equilibrium condition. Moreover, we theoretically
and numerically obtain a phase diagram of indissolubil-
ity for elastic condensates and obtain a minimum bulk
modulus for condensates to be indissoluble. There re-
main some open questions, including the effects of shear
modulus. While we numerically find that our simulations
are mostly independent of the values of shear moduli, a
small but finite shear modulus is nevertheless necessary
to maintain the spherical shapes of condensates.

Finally, our results demonstrate that the bulk mod-
ulus is the primary material property determining con-
densates’ indissolubility. The phase diagram of indissol-
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ubility (Figure 4) can be experimentally tested, e.g., by
measuring the critical pH or salt concentrations (corre-
sponding to the x parameter in the Flory-Huggins free
energy) to dissolve the condensates and in the meantime,
measuring the bulk modulus separately. We note that the
shear modulus of gel is usually the order of nkgT where n
is the cross-linker density, and meanwhile, the bulk mod-
ulus is typically hundreds of shear modulus [31]. Note
that the unit of the bulk modulus is kgT'/Vp in the two-
fluid model, which suggests that the critical bulk moduli
that are of order 1 in the phase diagram (Figure 4d) may
be biologically relevant. Our results may have implica-
tions for developing condensate-targeting drugs to change
condensate properties inside cells, e.g., lowering the bulk
moduli to dissolve irreversible condensates.
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