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ABSTRACT 

In drug development, a major reason for attrition is the lack of understanding of cellular 
mechanisms governing drug toxicity. The black-box nature of conventional classification 
models has limited their utility in identifying toxicity pathways. Here we developed DTox 
(Deep learning for Toxicology), an interpretation framework for knowledge-guided neural 
networks, which can predict compound response to toxicity assays and infer toxicity 
pathways of individual compounds. We demonstrate that DTox can achieve the same level 
of predictive performance as conventional models with a significant improvement in 
interpretability. Using DTox, we were able to rediscover mechanisms of transcription 
activation by three nuclear receptors, recapitulate cellular activities induced by aromatase 
inhibitors and PXR agonists, and differentiate distinctive mechanisms leading to HepG2 
cytotoxicity. Virtual screening by DTox revealed that compounds with predicted cytotoxicity 
are at higher risk for clinical hepatic phenotypes. In summary, DTox provides a framework 
for deciphering cellular mechanisms of toxicity in silico.  

 

INTRODUCTION 

With the application of quantitative high-throughput screening techniques, toxicity testing 
programs1,2 have generated millions of data points regarding the response of biological 
systems to important chemical libraries, both in vitro and in vivo. Specifically, in the Tox21 
program1, over 8,500 compounds were tested for a variety of toxicity endpoints including 
stress response, genotoxicity, cytotoxicity, developmental toxicity, etc. These toxicity 
profiles can assist with probing how chemicals interact with proteins and pathways to 
trigger a certain outcome, and thus shed light on cellular mechanisms of toxicity3. 
Furthermore, with the help of machine learning algorithms, researchers can identify the 
chemical or biological patterns of a compound that might be predictive of adverse health 
outcomes in human4,5.  

Previous studies have modeled toxicity endpoints from physiochemical properties of 
compound using a wide range of supervised learning algorithms, including k-nearest 
neighbors6,7, Bayesian matrix factorization8, support vector machines7,9, random forests6,10, 
gradient boosting11, and more recently, deep neural networks12-14. Even though most of 
these algorithms achieved decent predictive performance, none of them could overcome the 
trade-off between accuracy and interpretability. As algorithmic design gets more complex, it 
becomes challenging to interrogate how each input feature contributes to the eventual 
prediction15. A few post-hoc explanation techniques, such as local interpretable model-
agnostic explanations (LIME)16 and deep learning important features (DeepLIFT)17, were 
developed to address the challenge. Nevertheless, these techniques often draw criticism in 
that they only provide an approximate explanation with locally fitted naïve models. Thus, 
they may not reflect the real behavior of original model18. More critically, the setting of 
existing toxicity prediction models has limited the explanation of contributions from 
structural properties or target proteins while interactions with pathways remain largely 
uncharacterized. For toxicologists, the behavior of pathways proves crucial in deciphering 
the cellular activities induced by a compound, and understanding how target proteins, 
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specific pathways, and biological processes trigger the toxicity outcome as a whole5. 
Therefore, a toxicity prediction model that achieves interpretability at both the gene and 
pathway level is urgently needed.  

Recent developments in visible neural networks (VNN) have overcome the accuracy-
interpretability trade-off. VNN is a type of neural network whose structure is guided by 
extensive knowledge from biological ontologies and pathways. The incorporation of 
ontological hierarchy in VNN forms a meaningful network structure that connects input gene 
features to output response via hidden pathway modules, making the model highly 
interpretable at both gene and pathway level. In a pioneering study, Ma et al. built a VNN 
with 2,526 Gene Ontology and Clique-eXtracted Ontology terms, for predicting growth rate 
of yeast cells from gene deletion genotypes19. The authors were also able to rediscover key 
ontology terms responsible for cell growth by examining the structure of the VNN. 
Subsequent studies have extended the VNN model for learning tasks regarding human cells, 
such as predicting drug response and synergy in cancer cell lines20, modeling cancer 
dependencies21, and stratifying prostate cancer patients by treatment-resistance state22. It 
is our working hypothesis that VNN can address the limitations of existing toxicity prediction 
models due to its incorporation of pathway knowledge and the resulting high interpretability. 
In this study, we employed the Reactome23 pathway hierarchy to develop a VNN model—
namely DTox—for predicting compound response to 15 toxicity assays. Further, we 
developed a DTox interpretation framework for identifying VNN paths that can explain the 
toxicity outcome of compounds. We connected the identified VNN paths to cellular 
mechanisms of toxicity by showing their involvement in the target pathway of respective 
assay, their differential expression in the matched LINCS experiment24, and their compliance 
with screening results from mechanism of action assays. We applied the DTox models of cell 
viability to perform a virtual screening of ~700,000 compounds and linked the predicted 
cytotoxicity score with clinical phenotypes of drug-induced liver injury. We concluded with 
a discussion of potential discoveries made by DTox, some of which have already been 
validated in previous studies. Our code and data can be accessed openly at 
https://github.com/yhao-compbio/DTox. In general, the DTox interpretation framework 
will benefit in silico mechanistic studies and generate testable hypotheses for further 
investigation.  

  

RESULTS 

Design and training of DTox VNN models for predicting compound response to toxicity 
assays   
We designed a VNN structure (Fig. 1; Methods) that connects target proteins (input features) 
to assay outcome (output response) via Reactome pathways (hidden modules). The feature 
profile containing 361 target proteins was inferred from structural properties of a 
compound using our previously developed method, TargetTox25. By our design, each 
pathway is represented by 1-20 neurons depending on its size. Connections between input 
features and the first hidden layer are constrained to follow protein-pathway annotations 
while the connections among hidden layers are constrained to follow child-parent pathway 
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relations. The incorporation of pathway hierarchy makes DTox VNN model highly 
interpretable, in contrast to conventional black-box neural network models.   

 

 

We trained DTox VNN models on 15 datasets from the Tox21 high throughput screening 
program1. Each dataset contains active and inactive compounds for one toxicity assay, with 
an average of 5,178 available compounds per assay (Supplementary Fig. 1a; Methods). We 
implemented an early stopping criterion to speed up the training process (Methods). As a 
result, the training process was completed within 100-200 epochs for all 15 datasets 
(Supplementary Fig. 2). We also implemented hyperparameter tuning by grid search to 
derive an optimal model for the prediction of each assay outcome (Supplementary Table 1; 
Methods). On average, an optimal DTox VNN model contains 412 hidden pathway modules 
(Supplementary Fig. 1b), and 45,623 neural network parameters (Supplementary Fig. 1c). 
The average ratio between number of training samples versus number of network 
parameters is 0.13±0.03 (Supplementary Fig. 1d), with the model of estrogen receptor 
agonist assay being the highest (0.31) and the model of hedgehog antagonist assay being the 
lowest (0.07). Compared to a conventional multi-layer perceptron (MLP) model, DTox VNN 
model has far fewer network parameters. On average, the number of network parameters 
for a DTox VNN only accounts for three percent of the number for a matched MLP 
(Supplementary Fig. 1e).  
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Figure 1 | Modeling compound response to toxicity assay with DTox. For toxicity prediction, the chemical 
structure of a compound is quantified using MACCS fingerprints before being converted to target profile by 
our previously developed method, TargetTox. The target profile is then fed into our DTox VNN, whose 
structure is guided by Reactome pathway hierarchy. Specific pathways and biological processes are coded as 
hidden modules with a series of neurons. For model interpretation, the network output is propagated 
backward onto each neuron as relevance score using the layer-wise relevance propagation technique. A 
permutation-based strategy is then employed to identify the VNN paths of high relevance. Each path connects 
a compound to its toxicity outcome via the target protein, specific pathways, and biological process. 
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To customize the network structure for prediction of each assay outcome, we made the root 
biological process a hyperparameter of DTox VNN (Methods). This means through 
hyperparameter tuning, we can choose a branch or combination of branches from the 
Reactome pathway hierarchy that result in the best predictive performance for an assay of 
interest (Fig. 2a). For instance, signal transduction pathways alone can deliver the optimal 
model for HEK293 cell viability assay while additional pathways from immune system are 
required for HepG2 cell viability prediction, suggesting a potential role of immune response 
in HepG2 cytotoxicity. In general, models built with multiple branches perform better than 
models built with a single branch. 

  

DTox VNN can achieve the same level of performance as complex classification 
algorithms  

Figure 2 | Prediction of compound 
response to 15 toxicity assays. (a) 
Heatmap showing the training 
performance of DTox VNN built under 
different combinations of root biological 
processes (shown as upset plot at the 
bottom). To facilitate comparison, the 
model performance is normalized within 
each assay using Z-transform. The 
optimal combination for each assay is 
highlighted with a red star. The name of 
each assay is annotated on the left, with 
name of the assay cell line included in 
parenthesis. AhR: aryl hydrocarbon 
receptor, AP-1: activator protein-1, AR-
MDA: androgen receptor in MDA-kb2 AR-
luc cell line, ARE: antioxidant response 
element, CAR: constitutive androstane 
receptor, ER-BG1: estrogen receptor in 
BG1 cell line, PR-BLA: progesterone 
receptor in PR-UAS-bla HEK293T cell 
line, PXR: pregnane X receptor, RAR: 
retinoid acid receptor, ROR: retinoid-
related orphan receptor. (b) Barplot 
showing the validation performance in 
nine toxicity assays (see Supplementary 
Figure 3 for the remaining six assays). 
The nine selected assays are involved in 
the subsequent analyses. Performance of 
DTox VNN (VNN) is compared against 
four other models: an alternative visible 
neural network built with shuffled 
pathway hierarchy (VNN-S), a multi-layer 
perceptron with the same number of 
hidden layers and neurons as DTox VNN 
(MLP), random forest (RF), and gradient 
boosting (GB). Performance is measured 
by two metrics: area under ROC curve 
and balanced accuracy, with error bar 
shows the 95% confidence interval. 
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We validated the predictive performance of DTox VNN models on held-out validation sets, 
which on average contain 1,295 compounds per assay. The optimal models of all 15 assays 
exhibit an area under the ROC curve (AUROC) greater than 0.7 (0.7-0.8: 6 models, 0.8-0.9: 9 
models). Similarly, 14 models exhibit a balanced accuracy above 0.55 (0.55-0.65: 9 models, 
0.65-0.75: 4 models, > 0.75: 1 model) except for the optimal model of AP-1 signaling agonist 
assay. We then compared the optimal performance of DTox VNN against four other 
classification algorithms (Fig. 2b and Supplementary Fig. 3; Supplementary Table 2; 
Methods). Comparing DTox VNN to an alternative model built with shuffled pathway 
hierarchy (VNN-S), we observed two assays where DTox VNN significantly outperformed 
VNN-S in balanced accuracy (estrogen receptor agonist and retinoid-related orphan receptor 
gamma antagonist). Comparing DTox VNN to a matched MLP model, we observed one assay 
where DTox VNN significantly outperformed MLP in balanced accuracy (pregnane X 
receptor agonist), and two assays in the opposite direction (HEK293 and HepG2 cell 
viability). Comparing DTox VNN to random forest (RF) and gradient boosting (GB), we 
observed one assay where DTox VNN significantly outperformed both RF and GB 
(constitutive androstane receptor agonist), and one assay in the opposite direction (AP-1 
signaling agonist). In general, DTox VNN model achieved the same level of predictive 
performance as these well-established classification algorithms.  

Development of a DTox interpretation framework for explaining VNN predictions  
A fundamental advantage of VNN over other classification algorithms lies in its high 
interpretability. The incorporation of pathway hierarchy enables us to reason through 
hidden layers of VNN for mechanistic interpretation. Therefore, we developed a DTox 
interpretation framework to identify paths from VNN that can explain the toxicity outcome 
of a compound (Fig. 1; Methods). Each identified path links together a root biological 
process, its descendant pathway modules, and a target protein feature. The framework has 
two hyperparameters: γ and ε. γ controls the stability of interpretation results while ε 
controls the sparsity. We evaluated the effect of hyperparameter settings on identified VNN 
paths (Supplementary Fig. 4; Methods). We observed that the set of identified paths 
exhibits consistently high similarity across distinct hyperparameter settings, as the average 
Jaccard Index reaches 0.70. Due to the high similarity, we only used the VNN paths identified 
from one setting (γ = 0.001, ε = 0.1) for the following validation analyses (Supplementary 
Table 3).   

DTox interpretation framework can rediscover mechanisms of transcription 
activation by nuclear receptor 
To evaluate whether DTox interpretation framework can rediscover known mechanism for 
a toxicity outcome, we looked for “ground truth” from the VNN paths identified for four 
nuclear receptor assays: androgen receptor antagonist, estrogen receptor agonist, retinoic 
acid receptor antagonist, and retinoid-related orphan receptor gamma antagonist. Each of 
the four assays measures compound response to a specific nuclear receptor transcription 
pathway. Therefore, we established ground truth as the VNN path that links together root 
process of gene expression, nuclear receptor transcription pathway, and the specified target 
receptor (AR, ER⍺, RARβ, RORγ; Fig. 3). In three of the four nuclear receptor assays, our 
framework was able to identify the ground truth path for at least 29% of all active 
compounds (ER⍺: 29%, RARβ: 31%, RORγ: 54%). Comparing to identifying by chance, our 
framework improved the proportion by at least two-folds.  
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DTox interpretation framework can recapitulate cellular activities induced by 
aromatase inhibitors and pregnane X receptor agonists 
To evaluate whether DTox interpretation framework can recapitulate cellular activities 
induced by active compounds, we studied the differential expression of VNN paths identified 
for four assays: aromatase inhibitor, mitochondria toxicity, pregnane X receptor agonist, and 
HepG2 cell viability (Methods). In total, we obtained the gene expression profile measured 
from 321 LINCS experiments in which an active compound was used to treat the assay cell 
line (121 experiments for aromatase inhibitor assay, 54 for mitochondria toxicity assay, 101 
for pregnane X receptor agonist assay, and 45 for HepG2 cell viability assay). Of all 321 
experiments, we found 161 (50%) cases where DTox interpretation framework was able to 
identify at least one differentially expressed VNN path. On average, 3.8±0.6% of VNN paths 
identified by our framework were found to be differentially expressed, significantly higher 
than the expected proportion by chance (2.4±0.3%, P = 3.5e-5). We then performed the 
comparison separately by assay and dose-time combinations (Fig. 4a). In aromatase 
inhibitor assay, our framework outperformed the expected proportion across all three dose-
time combinations (FDR = 0.01). In pregnane X receptor agonist assay, our framework 
outperformed the expected proportion among the two groups of experiments conducted 24 
hours after treatment (FDR = 0.03). In HepG2 cell viability assay, although no overall 
difference was detected among experiments conducted 6 hours after treatment (FDR = 0.07), 
our framework was still able to identify a relatively high proportion of differentially 
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Figure 3 | Validation of identified VNN paths by known mechanisms. The “ground truth” VNN path placed 
at the top represents the known mechanism of transcription activation by nuclear receptor. A compound is 
considered to be validated by the known mechanism if the ground truth path is identified by DTox. The 
validation analysis is performed for four nuclear receptor assays, with each barplot comparing the observed 
versus expected proportion of validated compounds for a single receptor. The expected proportion is 
computed by random sampling, with the histogram and fitted density curve showing the sampled distribution 
(95% confidence interval shown as error bar).   
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expressed VNN paths for individual compounds such as cilnidipine (21.4%), cyclopamine 
(12.5%), and chloroxine (10%).   

 

 

Figure 4 | Validation of identified VNN paths by differential expression. (a) A VNN path is considered to 
be differentially expressed (DE) if all pathways along the path is enriched for DE genes from the matched 
LINCS experiment. The validation analysis is performed for four assays (columns) in three different dose-
time groups (rows), with each scatter plot comparing the observed versus expected proportion of DE paths 
for a single group. The observed proportion is computed with VNN paths identified for each compound while 
the expected proportion is computed with all possible VNN paths. A T-test is employed to examine whether 
the average observed proportion of each group is significantly higher than the average expected proportion 
(FDR value shown at the bottom right). The diagonal is shown as black dashed line, with compounds in the 
upper triangle (observed > expected) shown in blue and compounds in the lower triangle (observed < 
expected) shown in grey. Compounds with the top five observed proportion in each group are annotated with 
their names. (b) Barplot showing the DE VNN paths that are recurrently identified for at least five aromatase 
inhibitors. Each VNN path is named after its lowest-level pathway. Paths that contain the “transcriptional 
regulation by TP53” pathway is highlighted in salmon while the remaining paths are colored in cyan. 
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Based on the results of differential expression analysis, induced cellular activities appear to 
be more consistent among aromatase inhibitors compared to the other three assays. As we 
discovered ten differentially expressed VNN paths that are recurrently identified for at least 
five aromatase inhibitors (Fig. 4b). By contrast, we only discovered one such VNN path for 
the other three assays combined. Interestingly, “transcriptional regulation by TP53” and its 
descendant pathways are involved in six of the ten discovered VNN paths, suggesting a 
potential mechanism for regulation of aromatase by p53 in the MCF-7 aro estrogen 
responsive element (MCF-7aro/ERE) breast cancer cell line, a finding supported by previous 
study26. In addition to p53, interlukin-4 and interlukin-13 also appears to play an important 
role in regulation of aromatase, as the relevant VNN path is linked to 17 aromatase inhibitors 
by differential expression. The finding is worth further experimental investigation.  

DTox interpretation framework can differentiate distinctive mechanisms leading to 
HepG2 cytotoxicity 
Next, we sought to explain the compound-induced cytotoxicity in HepG2 cells using VNN 
paths identified for HepG2 cell viability assay. A recent review paper27 summarized four 
major mechanisms leading to cell death in drug-induced liver injury (DILI): (i) TNFR1/2 
mediated apoptosis via caspase activation and pro-survival inhibition, (ii) MST1/2 mediated 
apoptosis via Hippo signaling, (iii) immune response activation via MHC class II antigen 
presentation, and (iv) TLR3/4 mediated necrosis (Fig. 5a). Since HepG2 cell line was derived 
from liver tissue, we can use the four mechanisms as a reference for compound-induced 
cytotoxicity in HepG2 cells. We identified nine Reactome pathways that participate in the 
four mechanisms (Fig. 5a). We then mapped HepG2-cytotoxic compounds to the nine 
Reactome pathways via VNN paths identified by our framework (Supplementary Fig. 5). Of 
all 1,120 cytotoxic compounds, 707 (63%) compounds are mapped to at least one of the nine 
cell death-related pathways. We performed hierarchical clustering on the mapping and 
identified two compound clusters (Supplementary Fig. 5). Compounds in first cluster are 
linked to cytotoxicity via apoptosis while compounds in the second cluster are linked to 
cytotoxicity via immune activation and necrosis. Nevertheless, we discovered a few 
compounds that exhibit characteristics of both clusters. For instance, according to our 
framework, mifepristone, a medical abortion drug, causes cytotoxicity in HepG2 cells by 
activating both apoptosis (via MAPK1/MAPK3 signaling and Hippo signaling) and necrosis 
(via TLR3 and TLR4 cascade), a finding supported by previous studies28-30 (Fig. 5d). In 
addition, our framework was able to link mifepristone with its therapeutic target, 
glucocorticoid receptor, via PTK6 signaling (Supplementary Table 3). The other 
therapeutic target of mifepristone, progesterone receptor, is not in the VNN.  

To evaluate whether DTox interpretation framework can differentiate distinctive 
mechanisms leading to HepG2 cytotoxicity, we looked for accordance between the assigned 
pathway relevance and screening results from two mechanism of action assays (included in 
the Tox21 datasets). The first assay we studied measures caspase 3/7 induction in HepG2 
cells. Caspase 3 and caspase 7 are key executioners of apoptosis31. They are involved in 
TNFR1/2 mediated apoptosis, and YAP/TAZ phosphorylation of Hippo signaling32 (Fig. 5a). 
Accordingly, we compared the assigned relevance scores between caspase 3/7+ and caspase 
3/7- compounds regarding TNFR1-induced proapoptotic signaling and Hippo signaling (Fig. 
5b). Overall, we did not observe significantly higher relevance among caspase 3/7+ 
compounds regarding the two signaling pathways (FDR = 0.31 and 0.42, respectively). 
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However, for Hippo signaling, we did observe higher pathway relevance among caspase 
3/7+ compounds above the 90th percentile of two distributions (highlighted in Fig. 5b), 
hence a partial agreement between assigned pathway relevance and caspase 3/7 induction 
screening. By contrast, the pattern among top-ranked compounds was not observed in other 
cell death-related pathways except for MHC class II antigen presentation (FDR = 0.02; Fig. 
5b), suggesting a potential role of caspase 3/7 in MHC class II antigen presentation, a finding 
worth of further investigation.  

 

 

The second assay we studied measures disruption of the mitochondrial membrane potential 
(MMP). MMP is a key indicator of mitochondrial activity as it is required for ATP synthesis.  
Disruption of MMP can lead to release of cytochrome c, which in turn amplifies the apoptosis 
signal33. The downstream effectors of TNFR1/2, including caspase activation and inhibition 
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Figure 5 | In-depth analysis of HepG2 cytotoxicity using identified VNN paths. (a) Established 
mechanisms for cell death in drug-induced liver injury. Reactome pathways relevant to the mechanisms are 
identified and used as reference for the analysis. (b and c) Survival plots comparing the pathway relevance 
scores among active (orange curve) versus inactive (grey curve) compounds of two mechanisms of action 
assays: caspase 3/7 induction (b) and disruption of the mitochondrial membrane potential (c). Comparisons 
are made for nine cell death-related pathways, with each plot showing the comparison for a single pathway. 
Red star at the top right denotes that the pathway is related to the respective mechanism of action. Log-rank 
test is employed to examine whether the two distributions in each plot are significantly different (FDR value 
shown at the bottom left). (d) Network diagram showing the simplified DTox VNN structure connecting 
mifepristone (triangle node) to the HepG2 cytotoxicity (rectangle node) via pathway modules (round nodes). 
Pathways with relevance score > 0 are colored in purple, with the scale proportional to relevance scale. The 
VNN paths identified for mifepristone by DTox are shown in solid lines while the rest are shown in dashed 
lines. (e and f) heatmaps showing the enrichment of nine cell death-related pathways among compounds 
associated with 20 drug-induced liver injury phenotypes (e) and among compounds of 14 ATC classes (f). 
Cells are colored based on odds ratio. Fisher’s exact test is employed to examine the significance of 
enrichment (asterisk denotes FDR < 0.05). VOD/SOS: veno-occlusive disease and sinusoidal obstruction 
syndrome 
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of NF-κB activation, can cause disruption of MMP33,34 (Fig. 5a). Accordingly, we compared 
the assigned relevance scores between MMP-disrupting and nondisruptive compounds 
regarding TNFR1-induced proapoptotic signaling, TNFR1-induced NF-κB signaling, and 
TNFR2-induced NF-κB signaling (Fig. 5c). We observed significantly higher relevance among 
MMP-disrupting compounds regarding TNFR1-induced proapoptotic and TNFR1-induced 
NF-κB signaling (FDR = 5e-6 and 3e-6, respectively). And the pattern of higher relevance is 
consistent across all percentiles of two distributions, hence an agreement between assigned 
pathway relevance and MMP disruption screening. By contrast, the pattern was not observed 
in other cell death-related pathways except for MHC class II antigen presentation (FDR = 4e-

6; Fig. 5c), suggesting the potential involvement of mitochondria in antigen presentation, a 
finding supported by previous study35.  

Interpretation of HepG2 cytotoxicity links clinical phenotypes of DILI to TLR3/4 
mediated necrosis 
We also sought to explain 20 clinical phenotypes of DILI using the derived mapping between 
compounds and nine cell death-related pathways. For each DILI phenotype, we identified the 
enriched pathways among its associated compounds (Fig. 5e; Methods). We observed a 
disproportionate prevalence of high odds ratio in the two necrosis-related pathways (TLR3 
and TLR4 cascade signaling) across almost all DILI phenotypes, with hepatic necrosis, 
hepatitis, and hepatic fibrosis being the three highest. In total, nine phenotypes are 
significantly enriched for TLR3/4 mediated necrosis (FDR < 0.05). By contrast, only four 
phenotypes are significantly enriched for immune activation via MHC class II antigen 
presentation while no phenotype is significantly enriched for Hippo signaling or TNFR1/2 
mediated apoptosis. These results suggest that TLR3/4 mediated necrosis is a common 
cause for clinical phenotypes of DILI, a finding supported by previous studies36,37.  

Similarly, we identified the enriched pathways among compounds of 14 Anatomical 
Therapeutic Chemical (ATC) classes (Fig. 5f). Each ATC class represents a group of drugs 
that act on a specific organ or system. We found three classes (hormonal, sensory, and 
dermatological) significantly enriched for TLR3/4 mediated necrosis, and two classes 
(hormonal and dermatological) significantly enriched for immune activation via MHC class 
II antigen presentation. 

HepG2 cytotoxicity score predicted by DTox VNN can differentiate hepatic cyst 
compounds from negative controls  
Finally, we implemented the optimal DTox VNN models of two cell viability assays (HepG2 
and HEK293) to predict the probability of cytotoxicity for 708,409 compounds from 
DSSTox38 (Supplementary Table 4). The list of compounds provides a great coverage of the 
chemical landscape of interest to toxicological and environmental researchers. To 
demonstrate the clinical application of DTox VNN, we sought to differentiate DSSTox 
compounds associated with DILI phenotypes from negative controls using the predicted 
HepG2 cytotoxicity score (Fig. 6). We were able to detect significantly higher predicted 
scores among the compounds associated with hepatic cyst (P = 0.015), as hepatic cyst is the 
only DILI phenotype showing a significant association with HepG2 cytotoxicity (OR = 1.90, 
95% CI: 1.04-3.45). Among the remaining 19 DILI phenotypes showing weak or no 
association with HepG2 cytotoxicity (9 phenotypes with OR > 1, 10 with OR < 1), we were 
only able to detect a significant difference for one phenotype: hepatic steatosis (P = 0.008).  
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Similarly, we sought to differentiate DSSTox compounds associated with drug-induced 
kidney injury (DIKI) phenotypes from negative controls using predicted HEK293 
cytotoxicity score (Supplementary Fig. 6). Unfortunately, we were not able to detect 
significant difference for any of the 24 DIKI phenotypes, as none of them exhibits a significant 
association with HEK293 cytotoxicity (lower bound of 95% OR CI < 1).  

 

DISCUSSION 

Biologically informed VNNs provide a solution to the dilemma posed by conventional 
supervised learning models: Whether to achieve good predictive performance or high model 
interpretability. Here, we have explored the implementation of VNNs for predicting and 
explaining compound response to toxicity assays. Compared to previous efforts, our DTox 
VNN model uniquely stands out in four aspects: First, the structure of DTox VNN can be 
customized for an outcome of interest according to the underlying biological processes, 
making the model flexible towards various assay outcomes. Our hyperparameter tuning 
process can help with removing unrelated pathways from the network hierarchy and thus 
adds credibility to model interpretation. Second, trimming of network hierarchy significantly 
reduces the number of trainable parameters in DTox VNNs, which in turn prevents 
overfitting. Through comparisons with well-established classification algorithms, we have 
demonstrated that DTox VNN is a highly efficient learning model with good predictive 
performance. For instance, DTox VNN achieved the same level of performance as a matched 

Figure 6 | Application of predicted cytotoxicity score in clinical hepatic phenotypes. Boxplot on the 
right compares the predicted HepG2 cytotoxicity scores among drugs associated with clinical hepatic 
phenotypes (green box) versus negative controls (yellow box), while barplot on the left shows the odds ratio 
between HepG2 cytotoxicity and each phenotype (95% confidence interval shown as error bar). Results for 
ten phenotypes with odds ratio > 1 are shown in the plot. Mann-Whitney U test is employed to examine 
whether the drugs associated with each phenotype are predicted with higher cytotoxicity scores than the 
negative controls (red star next to the phenotype name denotes P < 0.05).    
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MLP with only three percent of the network parameters. Third, the introduction of an early 
stopping criterion combined with a relatively small network size makes DTox VNN a fast-
learning model. In this study, a learning task that involves 5,000 samples typically converges 
within 100-200 epochs, with each epoch taking ~90s to complete on a single CPU. Last, and 
most importantly, DTox advances a novel interpretation framework that identifies high-
relevance VNN paths for explaining the toxicity outcome of compounds. The framework 
builds on top of layer-wise relevance propagation39 and assigns a relevance score to each 
VNN path. The innovation of our framework resides in its ability to statistically assess the 
significance of each path, with an empirical p-value computed from permutation test. 
Through mechanistic interpretation on individual assays, we have demonstrated the 
biological significance behind the VNN paths identified by our framework. For instance, in 
three nuclear receptor assays, our framework was able to consistently identify the 
corresponding “ground truth” VNN path that represents mechanism of transcription 
activation. In HepG2 cell viability assay, our framework was able to differentiate distinctive 
mechanisms leading to cytotoxicity. In aromatase inhibitor and pregnane X receptor agonist 
assays, our framework was able to disproportionately identify VNN paths that represent the 
cellular activities induced by specific compounds of interest, implying its potential to detect 
mechanism of action.   

Besides the expected results, DTox also generated new mechanistic hypotheses along model 
interpretation, some of which can be supported by previous studies. For instance, our 
framework suggested a potential role for p53 in the regulation of aromatase in MCF-
7aro/ERE, a breast cancer cell line. It has been revealed that p53 can directly bind to 
proximal promoter PII in breast adipose stromal cells, which in turn inhibits aromatase 
expression26. In another case, our framework suggested three signaling pathways, including 
MAPK/ERK (i.e., MAPK1/ MAPK3 Reactome pathway), Hippo, and TLR3/4, altogether 
contribute to the HepG2 cytotoxicity of mifepristone. Accordingly, recent studies have 
pointed out the effect of mifepristone on ERK activation28, YAP (a core factor of Hippo) 
activation29, and TLR4 regulation30. Particularly, ERK activation by mifepristone can lead to 
cytotoxicity in uterine natural killer cells28 while YAP activation by mifepristone can induce 
hepatomegaly in mice29. Two additional findings from our cytotoxicity analysis have been 
corroborated by previous studies: (i) The involvement of mitochondria in antigen 
presentation via ATP synthase and mitochondrial calcium uniporter35, and (ii) the disruption 
of TLR3/4 signaling in DILI36,37. In addition, some unexpected findings by DTox are worth 
further investigation, such as the role of immune response in HepG2 cytotoxicity, the role of 
interleukin 3/14 in regulation of aromatase, the role of caspase 3/7 in MHC class II antigen 
presentation, etc. 

Despite the highlights mentioned above, DTox bears some limitations in its current form. 
First, as with all deep learning models, DTox VNN requires a time-consuming 
hyperparameter tuning process before an optimal model can be reached. And as we 
observed in the analysis (Fig. 2a), an optimal setting may greatly improve the predictive 
performance of DTox VNN. However, the issue can be resolved with implementation of GPU 
computing. Second, as we observed in performance assessment, shuffling Reactome 
hierarchy did not significantly attenuate the predicative performance of DTox VNN, 
suggesting undocumented interactions between pathways may contribute to toxicity 
prediction. Therefore, future investigation should be conducted how to train a VNN to 
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recognize these interactions. One possible solution is to incorporate stochastic connections 
between pathways of distinct branches during training. Finally, despite the incorporation of 
pathway ontology, DTox VNN did not significantly outperform other well-established 
classification algorithms, as most differences are within the 95% confidence interval of 
performance metrics. We noticed the recent development of toxicology-focused graph 
database such as ComptoxAI, which provides extensive knowledge on relations among 
chemicals, genes, assays, as well as many other entities40. Such database may help us 
generate more comprehensive feature profile for model training, and thus improves the 
predicative performance of DTox. 

In the future, we expect the application of DTox in two distinct directions. The first direction 
is concerned with efficacy or toxicity prediction for virtual screening. As what we have 
accomplished in the screening of ~700,000 DSSTox compounds for cytotoxicity, DTox VNN 
can quickly go through large-scale chemical libraries and prioritize compounds for further 
experimental testing. The second direction is concerned with outcome explanation for 
generating new hypothesis. As we have shown throughout the study, DTox interpretation 
framework may detect new mechanism of action for compounds, uncover cellular 
mechanism for outcomes of interest, and identify new therapeutic targets for diseases.   

 

METHODS 

Processing Tox21 datasets and inferring feature profile for DTox model training  
The Tox21 datasets1 contain screening results describing the response of in vitro toxicity 
assays to compounds of interest, including approved drugs, experimental drugs, small 
molecules, and environmental chemicals. We extracted active and inactive compounds from 
the screening results of each assay, then removed compounds with inconclusive or 
ambiguous results. We further removed assays with fewer than 5,000 available compounds, 
focused our analyses on the remaining 15 assays. To quantify structural properties of 
compounds, we used rcdk package to compute 166 binary MACCS fingerprints that cover 
most of the interesting physicochemical features for drug discovery41. We then implemented 
TargetTox25, a feature selection pipeline trained on compound-target interaction data, to 
infer the target-binding probability of each compound from its MACCS fingerprints. As a 
result, we derived a feature profile containing 361 target proteins for assay outcome 
modeling.  

Constructing DTox VNN with Reactome pathway hierarchy 
We designed VNN structure based on the Reactome pathway hierarchy that comprises root 
biological processes, child-parent pathway relations, and protein-pathway annotations 
(downloaded in Aug 2019)23. To trim the scale of neural network and prevent overfitting, we 
adopted two hyperparameters to filter Reactome pathways: (i) minimal pathway size 
(values for tuning: 5, 20) and (ii) root biological process (values for tuning: ‘gene expression’, 
‘immune system’, ‘metabolism’, ‘signal transduction’, and all possible combinations among 
the four, 15 values in total). We selected the four processes due to their broad coverage and 
direct involvement in cellular mechanism of toxicity. Each pathway is coded as a hidden 
module with fixed number of neurons. For a pathway p, the number is defined by 𝑁𝑝 =
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𝑟𝑜𝑢𝑛𝑑[1 + (𝑁𝑚𝑎𝑥 − 1) ∗ 
log 𝑆𝑝 𝑆𝑚𝑖𝑛⁄

log  𝑆𝑚𝑎𝑥 𝑆𝑚𝑖𝑛⁄
], where Sp denotes size of p, Smin and Smax denote the 

minimal and maximal size of pathway in VNN,  respectively, Nmax (= 20) denotes the maximal 
number of neurons for a hidden module. As a result, hidden modules of larger pathways are 
assigned with more neurons to capture potentially more complex response.  

Under Reactome hierarchy, DTox VNN model starts from input layer containing 361 protein 
features, which are connected to lowest-level hidden modules by protein-pathway 
annotations. The connections to a hidden module of pathway p are encoded by a weight 
matrix Wp with dimensions Np*Nprotein, where Np denotes the hidden module size, and Nprotein 

denotes the number of input proteins annotated with p. With Wp, input vector xp is 
transformed to output vector yp via 𝒚𝒑 = 𝑅𝑒𝐿𝑢[𝒙𝒑𝑾𝒑

𝑇 + 𝒃𝒑] , where bp denotes the bias 

vector. The hidden modules are then interconnected by child-parent pathway relations until 
root biological processes are reached. Finally, the root biological processes are connected to 
output layer containing assay outcome. The connections to output layer are encoded by a 
weight matrix Wr with dimensions 1*Nr, where Nr denotes the sum of root hidden module 
sizes. The final output yr is comupted as 𝑦𝑟 =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑[𝒙𝒓𝑾𝒓

𝑇 + 𝑏𝑟]. In addition, we adopted 
the idea of auxiliary layer from DCell19 to prevent gradients from vanishing in the lower 
hierarchy, and to facilitate the learning of new patterns from individual pathways. 
Specifically, output vector of a hidden module yp is transformed to an auxiliary scalar 𝑦𝑝

′  via 

𝑦𝑝
′ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑[𝒚𝒑𝑾′𝒑

𝑇 + 𝑏𝑝
′ ], where 𝑾𝒑

′ denotes the weights matrix with dimensions 1*Np. 

The auxiliary scalars from all hidden modules are then evaluated in a loss function along with 
the final output: 𝐵𝐶𝐸𝐿𝑜𝑠𝑠(𝑦𝑟 , 𝑦) + 𝛼 ∑ 𝛽𝑝𝐵𝐶𝐸𝐿𝑜𝑠𝑠(𝑦𝑝

′ , 𝑦)𝑝 + 𝜆 ∥ 𝑊 ∥2. The auxiliary factor ⍺ 

is a hyperparameter of VNN model (values for tuning: 0.1, 0.5, 1), balancing between root 
and auxiliary loss terms. βp serves as the adjustment factor for auxiliary loss term from 
pathway p, being computed as the inverse number of pathway count within the 
corresponding hidden layer. Therefore, pathways in the higher hierarchy exhibit greater 
contribution to the loss function as pathway count decreases dramatically along the 
hierarchy. λ (= 1e-4) is the coefficient for L2 regularization.  

Learning optimal VNN model for Tox21 assay outcome prediction  
Each dataset is split into learning and validation sets by ratio of 4:1. During model training, 
the learning set is further split into training and testing sets by ratio of 7:1. At every epoch, 
forward and backward propagation are performed on the training set for deriving gradients 
of model parameters. The parameters are then optimized by ADAM algorithm with mini-
batch size of 32. At the end of every epoch, loss function is evaluated on the testing set for 
determining the early stopping criterion. Specifically, model training stops if the testing loss 
has not decreased for 20 epochs.  

As mentioned above, DTox VNN model has three hyperparameters: minimal pathway size, 
root biological process, and the auxiliary factor ⍺. To find the optimal setting for each assay, 
we adopted grid search and implemented all possible (90 in total; Supplementary Table 5) 
hyperparameter combinations to train VNN models. We evaluated each trained model by 
computing loss function on the whole learning set, then identified the optimal model that 
minimizes learning loss. Finally, the held-out validation set was used to evaluate the 
performance of optimal VNN model and compare with other machine learning models. We 
adopted two performance metrics for the task: area under the ROC curve (AUROC) and 
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balanced accuracy. We computed the 95% confidence interval (CI) of metrics using 
bootstrapped samples from predicted outcome probabilities. On average, the bootstrapped 
samples contain 63.3% of unique original samples. The performance of two methods is 
significantly different if their CIs do not overlap. Four machine learning models were 
considered for performance comparison: (i) an alternative VNN model built under shuffled 
Reactome pathway hierarchy while the shuffle preserves the number of children for each 
parent pathway and the number of connections between hidden layers (ii) a fully-connected 
multi-layer perceptron model with the same number of hidden layers and neurons as 
optimal VNN model, (iii) an optimal random forest model derived from hyperparameter 
tuning (Supplementary Table 5), and (iv) an optimal gradient boosting model derived from 
hyperparameter tuning (Supplementary Table 5).  

Interpretating optimal VNN model by layer-wise relevance propagation 
Layer-wise relevance propagation39 (LRP) is a model interpretation tool for deep neural 
networks. Through backward propagation, LRP assigns each neuron a share of the network 
output, redistributes it to its predecessors in equal amount until input layer is reached. The 
propagation procedure ensures that relevance conservation is an inherent property of LRP. 
To implement LRP, we adopted two local propagation rules: generic rule and input-layer 
rule42.  

Generic rule was applied to relevance propagation of the hidden neurons. For two connected 
neurons j and k from a child-parent pathway pair, the forward propagation of VNN follows 
𝑎𝑘 = 𝑅𝑒𝐿𝑢(∑ 𝑎𝑗𝑤𝑗𝑘 + 𝑏𝑘𝑗 ), where ak denotes the activation of neuron k. The generic rule 

propagates relevance between them as 𝑅𝑗 =  ∑
𝑎𝑗∙(𝑤𝑗𝑘+𝛾𝑤𝑗𝑘

+ )

𝜀∙𝑆𝐷[(𝑤𝑗𝑘+𝛾𝑤𝑗𝑘
+ )𝑗𝑘]+∑ 𝑎𝑗∙(𝑤𝑗𝑘+𝛾𝑤𝑗𝑘

+ )𝑗
𝑘 𝑅𝑘, where γ 

and ε are two hyperparameters of the rule. γ (values for tuning: 0.001, 0.01, 0.1) controls the 
contribution of positive weights in relevance propagation. Increasing the value of γ can 
marginalize neurons with negative weights and decrease the variance of relevance across 
neurons, and thus may lead to more stable interpretation results. ε (values for tuning: 0.001, 
0.01, 0.1) absorbs relevance from neurons with weak or contradictory weights. Increasing 
the value of ε can give prominence to a few neurons with high weights, and thus may lead to 
more sparse interpretation results.  

Input-layer rule was only applied to relevance propagation of the input protein features. For 
a protein feature i and its connected neuron j from a lowest-level pathway, the input-layer 

rule propagates relevance between them as 𝑅𝑖 =  ∑
𝑥𝑖𝑤𝑖𝑗 − 𝑙𝑖𝑤𝑖𝑗

+ − ℎ𝑖𝑤𝑖𝑗
−

∑ 𝑥𝑖𝑤𝑖𝑗 − 𝑙𝑖𝑤𝑖𝑗
+ − ℎ𝑖𝑤𝑖𝑗

−
𝑖

𝑗 𝑅𝑗, where li (= 0) and 

hi (= 1) are the lower and upper bound of input feature values.  

Identifying significant VNN paths for explaining toxicity outcome of compounds 
After relevance of each neuron being assigned via LRP, a relevance score is computed for 
each pathway by summing up the relevance scores of its neurons. An observed score is then 
computed for each VNN path connecting input protein feature to output assay outcome as: 
𝑆𝑝𝑎𝑡ℎ =  ∑ log 𝑅𝑝

+
𝑝 ∈ 𝑝𝑎𝑡ℎ , where p denotes a protein or pathway along the path. The relevance 

scores are converted to non-negative values, as we are only interested in the proteins or 
pathways that are more likely to result in toxicity outcome. The log transformation is 
adopted to adjust the scale of relevance scores from different layers, as the number of 
pathways decreases dramatically along the hierarchy.  
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To assess the significance of each observed path score, we employed a permutation-based 
strategy to derive the null distribution. Specifically, we shuffled the outcome label of each 
Tox21 dataset, then re-trained random VNN models using the same hyperparameter setting 
as previously trained optimal model. The procedure was repeated for N = 200 times, a 
balance between sample size and running time. Scores derived from the random VNN models 
comprise the null distribution for each observed path score, and thus the empirical P-value 
can be computed as 𝑆𝑝𝑎𝑡ℎ =  ∑ 𝐼(𝑆𝑝𝑎𝑡ℎ−𝑖 ≥ 𝑆𝑝𝑎𝑡ℎ)𝑁

𝑖=1 𝑁⁄ . We used false discovery rate (FDR) 

to perform multiple testing correction on all VNN paths, then identified the significant paths 
(FDR < 0.05) for each active compound.  

As mentioned above, DTox interpretation framework has two hyperparameters: γ and ε from 
the generic rule. To study the effect of hyperparameter settings on model interpretation, we 
implemented all possible (9 in total) hyperparameter combinations to identify significant 
VNN paths for active compounds. We measured the similarity between each pair of settings 
by the median Jaccard Index among active compounds regarding their identified significant 
paths.  

Processing LINCS dataset for validation of DTox interpretation results  
The LINCS dataset24 contains gene-expression profiles derived after genetic and small-
molecule perturbations on a number of cell lines, including MCF-7 (cell line of aromatase 
assay) and HepG2 (cell line of mitochondria toxicity assay, PXR agonist assay, and HepG2 cell 
viability assay). We extracted the profiles induced by active compounds of the four assays in 
their respective cell line. We removed the profiles that did not pass quality control, then 
separated the remaining ones into three groups based on dose and time of perturbation 
(1.11μM-24h, 10μM-6h, 10μM-24h). We used the LINCS level 5 data, which consists of 
moderated differential expression Z-scores, for the validation analysis.  

To assess the differential expression of VNN paths identified for each compound, we first 
identified differentially expressed genes (DEGs) from the corresponding profile by |Z| > 2, as 
suggested by LINCS. Then, we used Fisher’s exact test to examine whether the pathways 
along each VNN path are enriched for DEGs. A test p-value was computed for each pathway. 
We used FDR to perform multiple testing correction on all pathways along each path. A VNN 
path is differentially expressed if all the pathways involved are significantly enriched for 
DEGs (FDR < 0.05). Finally, we calculated the proportion of differentially expressed paths 
among the paths identified by DTox (observed proportion) and among all possible paths in 
VNN (expected proportion).   

Processing NSIDES dataset for analyzing DTox results on HepG2- and HEK293-
cytotoxic compounds 
The NSIDES dataset43 contains drug-adverse event relations that are derived from FDA 
reports after adjusting for confounding factors. Each drug-adverse event pair is assigned 
with a proportional reporting ratio (PRR) score along with its 95% CI, which measures the 
extent to which the adverse event is disproportionately reported among individuals taking 
the drug. We manually curated a list of 20 clinical phenotype terms associated with drug-
induced liver injury (DILI; Supplementary Table 6) and a list of 24 clinical phenotype terms 
associated with drug-induced kidney injury (DIKI; Supplementary Table 6). Drugs 
associated with each phenotype of interest are identified by the lower bound of 95% CI (> 
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1). Drugs not associated with each phenotype of interest (negative controls) are identified 
by both the lower (< 1) and the upper (> 1) bound of 95% CI.  

To measure the association between each DILI phenotype and HepG2 cytotoxicity, we 
calculated the odds ratio and its 95% CI based on a 2*2 contingency table. The same 
procedure was performed to measure the association between each DIKI phenotype and 
HEK293 cytotoxicity. We also used Fisher’s exact test to evaluate the enrichment of nine cell 
death-related pathways among the drugs associated with DILI phenotypes. The odds ratio 
and test P-value were computed for each phenotype-pathway pair. We used FDR to perform 
multiple testing correction on all phenotype-pathway pairs.   
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