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ABSTRACT

In drug development, a major reason for attrition is the lack of understanding of cellular
mechanisms governing drug toxicity. The black-box nature of conventional classification
models has limited their utility in identifying toxicity pathways. Here we developed DTox
(Deep learning for Toxicology), an interpretation framework for knowledge-guided neural
networks, which can predict compound response to toxicity assays and infer toxicity
pathways of individual compounds. We demonstrate that DTox can achieve the same level
of predictive performance as conventional models with a significant improvement in
interpretability. Using DTox, we were able to rediscover mechanisms of transcription
activation by three nuclear receptors, recapitulate cellular activities induced by aromatase
inhibitors and PXR agonists, and differentiate distinctive mechanisms leading to HepG2
cytotoxicity. Virtual screening by DTox revealed that compounds with predicted cytotoxicity
are at higher risk for clinical hepatic phenotypes. In summary, DTox provides a framework
for deciphering cellular mechanisms of toxicity in silico.

INTRODUCTION

With the application of quantitative high-throughput screening techniques, toxicity testing
programs!2 have generated millions of data points regarding the response of biological
systems to important chemical libraries, both in vitro and in vivo. Specifically, in the Tox21
program!, over 8,500 compounds were tested for a variety of toxicity endpoints including
stress response, genotoxicity, cytotoxicity, developmental toxicity, etc. These toxicity
profiles can assist with probing how chemicals interact with proteins and pathways to
trigger a certain outcome, and thus shed light on cellular mechanisms of toxicity3.
Furthermore, with the help of machine learning algorithms, researchers can identify the
chemical or biological patterns of a compound that might be predictive of adverse health
outcomes in human#5.

Previous studies have modeled toxicity endpoints from physiochemical properties of
compound using a wide range of supervised learning algorithms, including k-nearest
neighbors®7, Bayesian matrix factorization®, support vector machines??, random forestsé19,
gradient boosting!!, and more recently, deep neural networks1?-14, Even though most of
these algorithms achieved decent predictive performance, none of them could overcome the
trade-off between accuracy and interpretability. As algorithmic design gets more compley, it
becomes challenging to interrogate how each input feature contributes to the eventual
prediction>. A few post-hoc explanation techniques, such as local interpretable model-
agnostic explanations (LIME)!¢ and deep learning important features (DeepLIFT)7, were
developed to address the challenge. Nevertheless, these techniques often draw criticism in
that they only provide an approximate explanation with locally fitted naive models. Thus,
they may not reflect the real behavior of original model!8. More critically, the setting of
existing toxicity prediction models has limited the explanation of contributions from
structural properties or target proteins while interactions with pathways remain largely
uncharacterized. For toxicologists, the behavior of pathways proves crucial in deciphering
the cellular activities induced by a compound, and understanding how target proteins,
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specific pathways, and biological processes trigger the toxicity outcome as a whole>.
Therefore, a toxicity prediction model that achieves interpretability at both the gene and
pathway level is urgently needed.

Recent developments in visible neural networks (VNN) have overcome the accuracy-
interpretability trade-off. VNN is a type of neural network whose structure is guided by
extensive knowledge from biological ontologies and pathways. The incorporation of
ontological hierarchy in VNN forms a meaningful network structure that connects input gene
features to output response via hidden pathway modules, making the model highly
interpretable at both gene and pathway level. In a pioneering study, Ma et al built a VNN
with 2,526 Gene Ontology and Clique-eXtracted Ontology terms, for predicting growth rate
of yeast cells from gene deletion genotypes?®. The authors were also able to rediscover key
ontology terms responsible for cell growth by examining the structure of the VNN.
Subsequent studies have extended the VNN model for learning tasks regarding human cells,
such as predicting drug response and synergy in cancer cell lines??, modeling cancer
dependencies?l, and stratifying prostate cancer patients by treatment-resistance state?2. [t
is our working hypothesis that VNN can address the limitations of existing toxicity prediction
models due to its incorporation of pathway knowledge and the resulting high interpretability.
In this study, we employed the Reactome?23 pathway hierarchy to develop a VNN model—
namely DTox—for predicting compound response to 15 toxicity assays. Further, we
developed a DTox interpretation framework for identifying VNN paths that can explain the
toxicity outcome of compounds. We connected the identified VNN paths to cellular
mechanisms of toxicity by showing their involvement in the target pathway of respective
assay, their differential expression in the matched LINCS experiment?4, and their compliance
with screening results from mechanism of action assays. We applied the DTox models of cell
viability to perform a virtual screening of ~700,000 compounds and linked the predicted
cytotoxicity score with clinical phenotypes of drug-induced liver injury. We concluded with
a discussion of potential discoveries made by DTox, some of which have already been
validated in previous studies. Our code and data can be accessed openly at
https://github.com/yhao-compbio/DTox. In general, the DTox interpretation framework
will benefit in silico mechanistic studies and generate testable hypotheses for further
investigation.

RESULTS

Design and training of DTox VNN models for predicting compound response to toxicity
assays

We designed a VNN structure (Fig. 1; Methods) that connects target proteins (input features)
to assay outcome (output response) via Reactome pathways (hidden modules). The feature
profile containing 361 target proteins was inferred from structural properties of a
compound using our previously developed method, TargetTox2>. By our design, each
pathway is represented by 1-20 neurons depending on its size. Connections between input
features and the first hidden layer are constrained to follow protein-pathway annotations
while the connections among hidden layers are constrained to follow child-parent pathway
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relations. The incorporation of pathway hierarchy makes DTox VNN model highly
interpretable, in contrast to conventional black-box neural network models.

Knowledge-guided visible neural network
=1

Notch-HLH _ |

- pathway  _ |

Signaling =1
by EGFR =

Gene
expression

o

- Signal
- transduction

TargetTox

(e]e]el0)I(e]0)0);

Prediction >

Chemical Specific Biological Assay
EEEE— «—> «—> «—>

structure pathways processes outcome

Interpretation

A

Notch-HLH _ Gene )
pathway expression "

O
AN
QO
AN
(e]e]e))
S

Toxicity

Signaling Signal
by EGFR transduction

Layer-wise relevance propagation

Figure 1 | Modeling compound response to toxicity assay with DTox. For toxicity prediction, the chemical
structure of a compound is quantified using MACCS fingerprints before being converted to target profile by
our previously developed method, TargetTox. The target profile is then fed into our DTox VNN, whose
structure is guided by Reactome pathway hierarchy. Specific pathways and biological processes are coded as
hidden modules with a series of neurons. For model interpretation, the network output is propagated
backward onto each neuron as relevance score using the layer-wise relevance propagation technique. A
permutation-based strategy is then employed to identify the VNN paths of high relevance. Each path connects
a compound to its toxicity outcome via the target protein, specific pathways, and biological process.

We trained DTox VNN models on 15 datasets from the Tox21 high throughput screening
program!. Each dataset contains active and inactive compounds for one toxicity assay, with
an average of 5,178 available compounds per assay (Supplementary Fig. 1a; Methods). We
implemented an early stopping criterion to speed up the training process (Methods). As a
result, the training process was completed within 100-200 epochs for all 15 datasets
(Supplementary Fig. 2). We also implemented hyperparameter tuning by grid search to
derive an optimal model for the prediction of each assay outcome (Supplementary Table 1;
Methods). On average, an optimal DTox VNN model contains 412 hidden pathway modules
(Supplementary Fig. 1b), and 45,623 neural network parameters (Supplementary Fig. 1c).
The average ratio between number of training samples versus number of network
parameters is 0.13+0.03 (Supplementary Fig. 1d), with the model of estrogen receptor
agonist assay being the highest (0.31) and the model of hedgehog antagonist assay being the
lowest (0.07). Compared to a conventional multi-layer perceptron (MLP) model, DTox VNN
model has far fewer network parameters. On average, the number of network parameters
for a DTox VNN only accounts for three percent of the number for a matched MLP
(Supplementary Fig. 1e).
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To customize the network structure for prediction of each assay outcome, we made the root
biological process a hyperparameter of DTox VNN (Methods). This means through
hyperparameter tuning, we can choose a branch or combination of branches from the
Reactome pathway hierarchy that result in the best predictive performance for an assay of
interest (Fig. 2a). For instance, signal transduction pathways alone can deliver the optimal
model for HEK293 cell viability assay while additional pathways from immune system are
required for HepG2 cell viability prediction, suggesting a potential role of immune response
in HepG2 cytotoxicity. In general, models built with multiple branches perform better than
models built with a single branch.
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Figure 2 | Prediction of compound
response to 15 toxicity assays. (a)
Heatmap showing the training
performance of DTox VNN built under
different combinations of root biological
processes (shown as upset plot at the
bottom). To facilitate comparison, the
model performance is normalized within
each assay using Z-transform. The
optimal combination for each assay is
highlighted with a red star. The name of
each assay is annotated on the left, with
name of the assay cell line included in
parenthesis. AhR: aryl hydrocarbon
receptor, AP-1: activator protein-1, AR-
MDA: androgen receptor in MDA-kb2 AR-
luc cell line, ARE: antioxidant response
element, CAR: constitutive androstane
receptor, ER-BG1: estrogen receptor in
BG1 cell line, PR-BLA: progesterone
receptor in PR-UAS-bla HEK293T cell
line, PXR: pregnane X receptor, RAR:
retinoid acid receptor, ROR: retinoid-
related orphan receptor. (b) Barplot
showing the validation performance in
nine toxicity assays (see Supplementary
Figure 3 for the remaining six assays).
The nine selected assays are involved in
the subsequent analyses. Performance of
DTox VNN (VNN) is compared against
four other models: an alternative visible
neural network built with shuffled
pathway hierarchy (VNN-S), a multi-layer
perceptron with the same number of
hidden layers and neurons as DTox VNN
(MLP), random forest (RF), and gradient
boosting (GB). Performance is measured
by two metrics: area under ROC curve
and balanced accuracy, with error bar
shows the 95% confidence interval.

level of performance as complex classification
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We validated the predictive performance of DTox VNN models on held-out validation sets,
which on average contain 1,295 compounds per assay. The optimal models of all 15 assays
exhibit an area under the ROC curve (AUROC) greater than 0.7 (0.7-0.8: 6 models, 0.8-0.9: 9
models). Similarly, 14 models exhibit a balanced accuracy above 0.55 (0.55-0.65: 9 models,
0.65-0.75: 4 models, > 0.75: 1 model) except for the optimal model of AP-1 signaling agonist
assay. We then compared the optimal performance of DTox VNN against four other
classification algorithms (Fig. 2b and Supplementary Fig. 3; Supplementary Table 2;
Methods). Comparing DTox VNN to an alternative model built with shuffled pathway
hierarchy (VNN-S), we observed two assays where DTox VNN significantly outperformed
VNN-S in balanced accuracy (estrogen receptor agonist and retinoid-related orphan receptor
gamma antagonist). Comparing DTox VNN to a matched MLP model, we observed one assay
where DTox VNN significantly outperformed MLP in balanced accuracy (pregnane X
receptor agonist), and two assays in the opposite direction (HEK293 and HepG2 cell
viability). Comparing DTox VNN to random forest (RF) and gradient boosting (GB), we
observed one assay where DTox VNN significantly outperformed both RF and GB
(constitutive androstane receptor agonist), and one assay in the opposite direction (AP-1
signaling agonist). In general, DTox VNN model achieved the same level of predictive
performance as these well-established classification algorithms.

Development of a DTox interpretation framework for explaining VNN predictions

A fundamental advantage of VNN over other classification algorithms lies in its high
interpretability. The incorporation of pathway hierarchy enables us to reason through
hidden layers of VNN for mechanistic interpretation. Therefore, we developed a DTox
interpretation framework to identify paths from VNN that can explain the toxicity outcome
of a compound (Fig. 1; Methods). Each identified path links together a root biological
process, its descendant pathway modules, and a target protein feature. The framework has
two hyperparameters: y and €. y controls the stability of interpretation results while &
controls the sparsity. We evaluated the effect of hyperparameter settings on identified VNN
paths (Supplementary Fig. 4, Methods). We observed that the set of identified paths
exhibits consistently high similarity across distinct hyperparameter settings, as the average
Jaccard Index reaches 0.70. Due to the high similarity, we only used the VNN paths identified
from one setting (y = 0.001, € = 0.1) for the following validation analyses (Supplementary
Table 3).

DTox interpretation framework can rediscover mechanisms of transcription
activation by nuclear receptor

To evaluate whether DTox interpretation framework can rediscover known mechanism for
a toxicity outcome, we looked for “ground truth” from the VNN paths identified for four
nuclear receptor assays: androgen receptor antagonist, estrogen receptor agonist, retinoic
acid receptor antagonist, and retinoid-related orphan receptor gamma antagonist. Each of
the four assays measures compound response to a specific nuclear receptor transcription
pathway. Therefore, we established ground truth as the VNN path that links together root
process of gene expression, nuclear receptor transcription pathway, and the specified target
receptor (AR, ERa, RAR, RORy; Fig. 3). In three of the four nuclear receptor assays, our
framework was able to identify the ground truth path for at least 29% of all active
compounds (ERa: 29%, RARB: 31%, RORy: 54%). Comparing to identifying by chance, our
framework improved the proportion by at least two-folds.
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Figure 3 | Validation of identified VNN paths by known mechanisms. The “ground truth” VNN path placed
at the top represents the known mechanism of transcription activation by nuclear receptor. A compound is
considered to be validated by the known mechanism if the ground truth path is identified by DTox. The
validation analysis is performed for four nuclear receptor assays, with each barplot comparing the observed
versus expected proportion of validated compounds for a single receptor. The expected proportion is
computed by random sampling, with the histogram and fitted density curve showing the sampled distribution
(95% confidence interval shown as error bar).

DTox interpretation framework can recapitulate cellular activities induced by
aromatase inhibitors and pregnane X receptor agonists

To evaluate whether DTox interpretation framework can recapitulate cellular activities
induced by active compounds, we studied the differential expression of VNN paths identified
for four assays: aromatase inhibitor, mitochondria toxicity, pregnane X receptor agonist, and
HepG2 cell viability (Methods). In total, we obtained the gene expression profile measured
from 321 LINCS experiments in which an active compound was used to treat the assay cell
line (121 experiments for aromatase inhibitor assay, 54 for mitochondria toxicity assay, 101
for pregnane X receptor agonist assay, and 45 for HepG2 cell viability assay). Of all 321
experiments, we found 161 (50%) cases where DTox interpretation framework was able to
identify at least one differentially expressed VNN path. On average, 3.8+0.6% of VNN paths
identified by our framework were found to be differentially expressed, significantly higher
than the expected proportion by chance (2.4+0.3%, P = 3.5e%). We then performed the
comparison separately by assay and dose-time combinations (Fig. 4a). In aromatase
inhibitor assay, our framework outperformed the expected proportion across all three dose-
time combinations (FDR = 0.01). In pregnane X receptor agonist assay, our framework
outperformed the expected proportion among the two groups of experiments conducted 24
hours after treatment (FDR = 0.03). In HepG2 cell viability assay, although no overall
difference was detected among experiments conducted 6 hours after treatment (FDR = 0.07),
our framework was still able to identify a relatively high proportion of differentially
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expressed VNN paths for individual compounds such as cilnidipine (21.4%), cyclopamine
(12.5%), and chloroxine (10%).
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Figure 4 | Validation of identified VNN paths by differential expression. (a) A VNN path is considered to
be differentially expressed (DE) if all pathways along the path is enriched for DE genes from the matched
LINCS experiment. The validation analysis is performed for four assays (columns) in three different dose-
time groups (rows), with each scatter plot comparing the observed versus expected proportion of DE paths
for a single group. The observed proportion is computed with VNN paths identified for each compound while
the expected proportion is computed with all possible VNN paths. A T-test is employed to examine whether
the average observed proportion of each group is significantly higher than the average expected proportion
(FDR value shown at the bottom right). The diagonal is shown as black dashed line, with compounds in the
upper triangle (observed > expected) shown in blue and compounds in the lower triangle (observed <
expected) shown in grey. Compounds with the top five observed proportion in each group are annotated with
their names. (b) Barplot showing the DE VNN paths that are recurrently identified for at least five aromatase
inhibitors. Each VNN path is named after its lowest-level pathway. Paths that contain the “transcriptional
regulation by TP53” pathway is highlighted in salmon while the remaining paths are colored in cyan.
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Based on the results of differential expression analysis, induced cellular activities appear to
be more consistent among aromatase inhibitors compared to the other three assays. As we
discovered ten differentially expressed VNN paths that are recurrently identified for at least
five aromatase inhibitors (Fig. 4b). By contrast, we only discovered one such VNN path for
the other three assays combined. Interestingly, “transcriptional regulation by TP53” and its
descendant pathways are involved in six of the ten discovered VNN paths, suggesting a
potential mechanism for regulation of aromatase by p53 in the MCF-7 aro estrogen
responsive element (MCF-7aro/ERE) breast cancer cell line, a finding supported by previous
study?®. In addition to p53, interlukin-4 and interlukin-13 also appears to play an important
role in regulation of aromatase, as the relevant VNN path is linked to 17 aromatase inhibitors
by differential expression. The finding is worth further experimental investigation.

DTox interpretation framework can differentiate distinctive mechanisms leading to
HepG2 cytotoxicity

Next, we sought to explain the compound-induced cytotoxicity in HepG2 cells using VNN
paths identified for HepG2 cell viability assay. A recent review paper2? summarized four
major mechanisms leading to cell death in drug-induced liver injury (DILI): (i) TNFR1/2
mediated apoptosis via caspase activation and pro-survival inhibition, (ii) MST1/2 mediated
apoptosis via Hippo signaling, (iii) immune response activation via MHC class II antigen
presentation, and (iv) TLR3 /4 mediated necrosis (Fig. 5a). Since HepG2 cell line was derived
from liver tissue, we can use the four mechanisms as a reference for compound-induced
cytotoxicity in HepG2 cells. We identified nine Reactome pathways that participate in the
four mechanisms (Fig. 5a). We then mapped HepG2-cytotoxic compounds to the nine
Reactome pathways via VNN paths identified by our framework (Supplementary Fig. 5). Of
all 1,120 cytotoxic compounds, 707 (63%) compounds are mapped to at least one of the nine
cell death-related pathways. We performed hierarchical clustering on the mapping and
identified two compound clusters (Supplementary Fig. 5). Compounds in first cluster are
linked to cytotoxicity via apoptosis while compounds in the second cluster are linked to
cytotoxicity via immune activation and necrosis. Nevertheless, we discovered a few
compounds that exhibit characteristics of both clusters. For instance, according to our
framework, mifepristone, a medical abortion drug, causes cytotoxicity in HepG2 cells by
activating both apoptosis (via MAPK1/MAPK3 signaling and Hippo signaling) and necrosis
(via TLR3 and TLR4 cascade), a finding supported by previous studies?8-3° (Fig. 5d). In
addition, our framework was able to link mifepristone with its therapeutic target,
glucocorticoid receptor, via PTK6 signaling (Supplementary Table 3). The other
therapeutic target of mifepristone, progesterone receptor, is not in the VNN.

To evaluate whether DTox interpretation framework can differentiate distinctive
mechanisms leading to HepG2 cytotoxicity, we looked for accordance between the assigned
pathway relevance and screening results from two mechanism of action assays (included in
the Tox21 datasets). The first assay we studied measures caspase 3/7 induction in HepG2
cells. Caspase 3 and caspase 7 are key executioners of apoptosis3l. They are involved in
TNFR1/2 mediated apoptosis, and YAP/TAZ phosphorylation of Hippo signaling32 (Fig. 5a).
Accordingly, we compared the assigned relevance scores between caspase 3/7+ and caspase
3/7- compounds regarding TNFR1-induced proapoptotic signaling and Hippo signaling (Fig.
5b). Overall, we did not observe significantly higher relevance among caspase 3/7+
compounds regarding the two signaling pathways (FDR = 0.31 and 0.42, respectively).
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However, for Hippo signaling, we did observe higher pathway relevance among caspase
3/7+ compounds above the 90t percentile of two distributions (highlighted in Fig. 5b),
hence a partial agreement between assigned pathway relevance and caspase 3/7 induction
screening. By contrast, the pattern among top-ranked compounds was not observed in other
cell death-related pathways except for MHC class II antigen presentation (FDR = 0.02; Fig.
5b), suggesting a potential role of caspase 3/7 in MHC class Il antigen presentation, a finding
worth of further investigation.
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Figure 5 | In-depth analysis of HepG2 cytotoxicity using identified VNN paths. (a) Established
mechanisms for cell death in drug-induced liver injury. Reactome pathways relevant to the mechanisms are
identified and used as reference for the analysis. (b and c¢) Survival plots comparing the pathway relevance
scores among active (orange curve) versus inactive (grey curve) compounds of two mechanisms of action
assays: caspase 3/7 induction (b) and disruption of the mitochondrial membrane potential (c). Comparisons
are made for nine cell death-related pathways, with each plot showing the comparison for a single pathway.
Red star at the top right denotes that the pathway is related to the respective mechanism of action. Log-rank
test is employed to examine whether the two distributions in each plot are significantly different (FDR value
shown at the bottom left). (d) Network diagram showing the simplified DTox VNN structure connecting
mifepristone (triangle node) to the HepG2 cytotoxicity (rectangle node) via pathway modules (round nodes).
Pathways with relevance score > 0 are colored in purple, with the scale proportional to relevance scale. The
VNN paths identified for mifepristone by DTox are shown in solid lines while the rest are shown in dashed
lines. (e and f) heatmaps showing the enrichment of nine cell death-related pathways among compounds
associated with 20 drug-induced liver injury phenotypes (e) and among compounds of 14 ATC classes (f).
Cells are colored based on odds ratio. Fisher’s exact test is employed to examine the significance of
enrichment (asterisk denotes FDR < 0.05). VOD/SOS: veno-occlusive disease and sinusoidal obstruction

The second assay we studied measures disruption of the mitochondrial membrane potential
(MMP). MMP is a key indicator of mitochondrial activity as it is required for ATP synthesis.
Disruption of MMP can lead to release of cytochrome c, which in turn amplifies the apoptosis
signal33. The downstream effectors of TNFR1/2, including caspase activation and inhibition
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of NF-xB activation, can cause disruption of MMP33.34 (Fig. 5a). Accordingly, we compared
the assigned relevance scores between MMP-disrupting and nondisruptive compounds
regarding TNFR1-induced proapoptotic signaling, TNFR1-induced NF-kB signaling, and
TNFR2-induced NF-kB signaling (Fig. 5¢). We observed significantly higher relevance among
MMP-disrupting compounds regarding TNFR1-induced proapoptotic and TNFR1-induced
NF-kB signaling (FDR = 5e-¢ and 3e-%, respectively). And the pattern of higher relevance is
consistent across all percentiles of two distributions, hence an agreement between assigned
pathway relevance and MMP disruption screening. By contrast, the pattern was not observed
in other cell death-related pathways except for MHC class Il antigen presentation (FDR = 4e-
6; Fig. 5¢), suggesting the potential involvement of mitochondria in antigen presentation, a
finding supported by previous study3>.

Interpretation of HepG2 cytotoxicity links clinical phenotypes of DILI to TLR3/4
mediated necrosis

We also sought to explain 20 clinical phenotypes of DILI using the derived mapping between
compounds and nine cell death-related pathways. For each DILI phenotype, we identified the
enriched pathways among its associated compounds (Fig. 5e; Methods). We observed a
disproportionate prevalence of high odds ratio in the two necrosis-related pathways (TLR3
and TLR4 cascade signaling) across almost all DILI phenotypes, with hepatic necrosis,
hepatitis, and hepatic fibrosis being the three highest. In total, nine phenotypes are
significantly enriched for TLR3/4 mediated necrosis (FDR < 0.05). By contrast, only four
phenotypes are significantly enriched for immune activation via MHC class II antigen
presentation while no phenotype is significantly enriched for Hippo signaling or TNFR1/2
mediated apoptosis. These results suggest that TLR3/4 mediated necrosis is a common
cause for clinical phenotypes of DILI, a finding supported by previous studies3637.

Similarly, we identified the enriched pathways among compounds of 14 Anatomical
Therapeutic Chemical (ATC) classes (Fig. 5f). Each ATC class represents a group of drugs
that act on a specific organ or system. We found three classes (hormonal, sensory, and
dermatological) significantly enriched for TLR3/4 mediated necrosis, and two classes
(hormonal and dermatological) significantly enriched for immune activation via MHC class
[T antigen presentation.

HepG2 cytotoxicity score predicted by DTox VNN can differentiate hepatic cyst
compounds from negative controls

Finally, we implemented the optimal DTox VNN models of two cell viability assays (HepG2
and HEK293) to predict the probability of cytotoxicity for 708,409 compounds from
DSSTox38 (Supplementary Table 4). The list of compounds provides a great coverage of the
chemical landscape of interest to toxicological and environmental researchers. To
demonstrate the clinical application of DTox VNN, we sought to differentiate DSSTox
compounds associated with DILI phenotypes from negative controls using the predicted
HepG2 cytotoxicity score (Fig. 6). We were able to detect significantly higher predicted
scores among the compounds associated with hepatic cyst (P = 0.015), as hepatic cyst is the
only DILI phenotype showing a significant association with HepG2 cytotoxicity (OR = 1.90,
95% CI: 1.04-3.45). Among the remaining 19 DILI phenotypes showing weak or no
association with HepG2 cytotoxicity (9 phenotypes with OR > 1, 10 with OR < 1), we were
only able to detect a significant difference for one phenotype: hepatic steatosis (P = 0.008).
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Figure 6 | Application of predicted cytotoxicity score in clinical hepatic phenotypes. Boxplot on the
right compares the predicted HepG2 cytotoxicity scores among drugs associated with clinical hepatic
phenotypes (green box) versus negative controls (yellow box), while barplot on the left shows the odds ratio
between HepG2 cytotoxicity and each phenotype (95% confidence interval shown as error bar). Results for
ten phenotypes with odds ratio > 1 are shown in the plot. Mann-Whitney U test is employed to examine
whether the drugs associated with each phenotype are predicted with higher cytotoxicity scores than the
negative controls (red star next to the phenotype name denotes P < 0.05).

Similarly, we sought to differentiate DSSTox compounds associated with drug-induced
kidney injury (DIKI) phenotypes from negative controls using predicted HEK293
cytotoxicity score (Supplementary Fig. 6). Unfortunately, we were not able to detect
significant difference for any of the 24 DIKI phenotypes, as none of them exhibits a significant
association with HEK293 cytotoxicity (lower bound of 95% OR CI < 1).

DISCUSSION

Biologically informed VNNs provide a solution to the dilemma posed by conventional
supervised learning models: Whether to achieve good predictive performance or high model
interpretability. Here, we have explored the implementation of VNNs for predicting and
explaining compound response to toxicity assays. Compared to previous efforts, our DTox
VNN model uniquely stands out in four aspects: First, the structure of DTox VNN can be
customized for an outcome of interest according to the underlying biological processes,
making the model flexible towards various assay outcomes. Our hyperparameter tuning
process can help with removing unrelated pathways from the network hierarchy and thus
adds credibility to model interpretation. Second, trimming of network hierarchy significantly
reduces the number of trainable parameters in DTox VNNs, which in turn prevents
overfitting. Through comparisons with well-established classification algorithms, we have
demonstrated that DTox VNN is a highly efficient learning model with good predictive
performance. For instance, DTox VNN achieved the same level of performance as a matched
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MLP with only three percent of the network parameters. Third, the introduction of an early
stopping criterion combined with a relatively small network size makes DTox VNN a fast-
learning model. In this study, a learning task that involves 5,000 samples typically converges
within 100-200 epochs, with each epoch taking ~90s to complete on a single CPU. Last, and
most importantly, DTox advances a novel interpretation framework that identifies high-
relevance VNN paths for explaining the toxicity outcome of compounds. The framework
builds on top of layer-wise relevance propagation3? and assigns a relevance score to each
VNN path. The innovation of our framework resides in its ability to statistically assess the
significance of each path, with an empirical p-value computed from permutation test.
Through mechanistic interpretation on individual assays, we have demonstrated the
biological significance behind the VNN paths identified by our framework. For instance, in
three nuclear receptor assays, our framework was able to consistently identify the
corresponding “ground truth” VNN path that represents mechanism of transcription
activation. In HepG2 cell viability assay, our framework was able to differentiate distinctive
mechanisms leading to cytotoxicity. In aromatase inhibitor and pregnane X receptor agonist
assays, our framework was able to disproportionately identify VNN paths that represent the
cellular activities induced by specific compounds of interest, implying its potential to detect
mechanism of action.

Besides the expected results, DTox also generated new mechanistic hypotheses along model
interpretation, some of which can be supported by previous studies. For instance, our
framework suggested a potential role for p53 in the regulation of aromatase in MCF-
7aro/ERE, a breast cancer cell line. It has been revealed that p53 can directly bind to
proximal promoter PII in breast adipose stromal cells, which in turn inhibits aromatase
expression2®, In another case, our framework suggested three signaling pathways, including
MAPK/ERK (i.e, MAPK1/ MAPK3 Reactome pathway), Hippo, and TLR3/4, altogether
contribute to the HepG2 cytotoxicity of mifepristone. Accordingly, recent studies have
pointed out the effect of mifepristone on ERK activation28, YAP (a core factor of Hippo)
activation??, and TLR4 regulation39. Particularly, ERK activation by mifepristone can lead to
cytotoxicity in uterine natural killer cells?® while YAP activation by mifepristone can induce
hepatomegaly in mice2?. Two additional findings from our cytotoxicity analysis have been
corroborated by previous studies: (i) The involvement of mitochondria in antigen
presentation via ATP synthase and mitochondrial calcium uniporter35, and (ii) the disruption
of TLR3/4 signaling in DILI3®37. In addition, some unexpected findings by DTox are worth
further investigation, such as the role of immune response in HepG2 cytotoxicity, the role of
interleukin 3/14 in regulation of aromatase, the role of caspase 3/7 in MHC class II antigen
presentation, etc.

Despite the highlights mentioned above, DTox bears some limitations in its current form.
First, as with all deep learning models, DTox VNN requires a time-consuming
hyperparameter tuning process before an optimal model can be reached. And as we
observed in the analysis (Fig. 2a), an optimal setting may greatly improve the predictive
performance of DTox VNN. However, the issue can be resolved with implementation of GPU
computing. Second, as we observed in performance assessment, shuffling Reactome
hierarchy did not significantly attenuate the predicative performance of DTox VNN,
suggesting undocumented interactions between pathways may contribute to toxicity
prediction. Therefore, future investigation should be conducted how to train a VNN to


https://doi.org/10.1101/2022.02.28.482300
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.28.482300; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

recognize these interactions. One possible solution is to incorporate stochastic connections
between pathways of distinct branches during training. Finally, despite the incorporation of
pathway ontology, DTox VNN did not significantly outperform other well-established
classification algorithms, as most differences are within the 95% confidence interval of
performance metrics. We noticed the recent development of toxicology-focused graph
database such as ComptoxAl, which provides extensive knowledge on relations among
chemicals, genes, assays, as well as many other entities#0. Such database may help us
generate more comprehensive feature profile for model training, and thus improves the
predicative performance of DTox.

In the future, we expect the application of DTox in two distinct directions. The first direction
is concerned with efficacy or toxicity prediction for virtual screening. As what we have
accomplished in the screening of ~700,000 DSSTox compounds for cytotoxicity, DTox VNN
can quickly go through large-scale chemical libraries and prioritize compounds for further
experimental testing. The second direction is concerned with outcome explanation for
generating new hypothesis. As we have shown throughout the study, DTox interpretation
framework may detect new mechanism of action for compounds, uncover cellular
mechanism for outcomes of interest, and identify new therapeutic targets for diseases.

METHODS

Processing Tox21 datasets and inferring feature profile for DTox model training

The Tox21 datasets! contain screening results describing the response of in vitro toxicity
assays to compounds of interest, including approved drugs, experimental drugs, small
molecules, and environmental chemicals. We extracted active and inactive compounds from
the screening results of each assay, then removed compounds with inconclusive or
ambiguous results. We further removed assays with fewer than 5,000 available compounds,
focused our analyses on the remaining 15 assays. To quantify structural properties of
compounds, we used rcdk package to compute 166 binary MACCS fingerprints that cover
most of the interesting physicochemical features for drug discovery*!. We then implemented
TargetTox25, a feature selection pipeline trained on compound-target interaction data, to
infer the target-binding probability of each compound from its MACCS fingerprints. As a
result, we derived a feature profile containing 361 target proteins for assay outcome
modeling.

Constructing DTox VNN with Reactome pathway hierarchy

We designed VNN structure based on the Reactome pathway hierarchy that comprises root
biological processes, child-parent pathway relations, and protein-pathway annotations
(downloaded in Aug 2019)23. To trim the scale of neural network and prevent overfitting, we
adopted two hyperparameters to filter Reactome pathways: (i) minimal pathway size
(values for tuning: 5, 20) and (ii) root biological process (values for tuning: ‘gene expression’,
‘immune system’, ‘metabolism’, ‘signal transduction’, and all possible combinations among
the four, 15 values in total). We selected the four processes due to their broad coverage and
direct involvement in cellular mechanism of toxicity. Each pathway is coded as a hidden
module with fixed number of neurons. For a pathway p, the number is defined by N,, =
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minimal and maximal size of pathway in VNN, respectively, Nmax (= 20) denotes the maximal
number of neurons for a hidden module. As a result, hidden modules of larger pathways are
assigned with more neurons to capture potentially more complex response.

], where Sp denotes size of p, Smin and Smax denote the

Under Reactome hierarchy, DTox VNN model starts from input layer containing 361 protein
features, which are connected to lowest-level hidden modules by protein-pathway
annotations. The connections to a hidden module of pathway p are encoded by a weight
matrix Wp with dimensions Np*Nprotein, where Np denotes the hidden module size, and Nprotein
denotes the number of input proteins annotated with p. With Wp, input vector xp is
transformed to output vector yp via y, = ReLu[xpWZ; + b, ], where bp denotes the bias

vector. The hidden modules are then interconnected by child-parent pathway relations until
root biological processes are reached. Finally, the root biological processes are connected to
output layer containing assay outcome. The connections to output layer are encoded by a
weight matrix Wr with dimensions I*Nr, where Nr denotes the sum of root hidden module
sizes. The final output y-is comupted as y, = Sigmoid[x, WL + b,]. In addition, we adopted
the idea of auxiliary layer from DCelll® to prevent gradients from vanishing in the lower
hierarchy, and to facilitate the learning of new patterns from individual pathways.
Specifically, output vector of a hidden module yj is transformed to an auxiliary scalar y,, via
yp = Sigmoid[y,W'}, + b,], where W, denotes the weights matrix with dimensions 1*Nj.
The auxiliary scalars from all hidden modules are then evaluated in aloss function along with
the final output: BCELoss(y,,y) + a ¥, By BCEL0ss(yy, ¥) + A Il W |I,. The auxiliary factor a
is a hyperparameter of VNN model (values for tuning: 0.1, 0.5, 1), balancing between root
and auxiliary loss terms. fp serves as the adjustment factor for auxiliary loss term from
pathway p, being computed as the inverse number of pathway count within the
corresponding hidden layer. Therefore, pathways in the higher hierarchy exhibit greater
contribution to the loss function as pathway count decreases dramatically along the
hierarchy. A (= 1e#) is the coefficient for L2 regularization.

Learning optimal VNN model for Tox21 assay outcome prediction

Each dataset is split into learning and validation sets by ratio of 4:1. During model training,
the learning set is further split into training and testing sets by ratio of 7:1. At every epoch,
forward and backward propagation are performed on the training set for deriving gradients
of model parameters. The parameters are then optimized by ADAM algorithm with mini-
batch size of 32. At the end of every epoch, loss function is evaluated on the testing set for
determining the early stopping criterion. Specifically, model training stops if the testing loss
has not decreased for 20 epochs.

As mentioned above, DTox VNN model has three hyperparameters: minimal pathway size,
root biological process, and the auxiliary factor a. To find the optimal setting for each assay,
we adopted grid search and implemented all possible (90 in total; Supplementary Table 5)
hyperparameter combinations to train VNN models. We evaluated each trained model by
computing loss function on the whole learning set, then identified the optimal model that
minimizes learning loss. Finally, the held-out validation set was used to evaluate the
performance of optimal VNN model and compare with other machine learning models. We
adopted two performance metrics for the task: area under the ROC curve (AUROC) and
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balanced accuracy. We computed the 95% confidence interval (CI) of metrics using
bootstrapped samples from predicted outcome probabilities. On average, the bootstrapped
samples contain 63.3% of unique original samples. The performance of two methods is
significantly different if their CIs do not overlap. Four machine learning models were
considered for performance comparison: (i) an alternative VNN model built under shuffled
Reactome pathway hierarchy while the shuffle preserves the number of children for each
parent pathway and the number of connections between hidden layers (ii) a fully-connected
multi-layer perceptron model with the same number of hidden layers and neurons as
optimal VNN model, (iii) an optimal random forest model derived from hyperparameter
tuning (Supplementary Table 5), and (iv) an optimal gradient boosting model derived from
hyperparameter tuning (Supplementary Table 5).

Interpretating optimal VNN model by layer-wise relevance propagation

Layer-wise relevance propagation3? (LRP) is a model interpretation tool for deep neural
networks. Through backward propagation, LRP assigns each neuron a share of the network
output, redistributes it to its predecessors in equal amount until input layer is reached. The
propagation procedure ensures that relevance conservation is an inherent property of LRP.
To implement LRP, we adopted two local propagation rules: generic rule and input-layer
rule#2,

Generic rule was applied to relevance propagation of the hidden neurons. For two connected
neurons j and k from a child-parent pathway pair, the forward propagation of VNN follows
a, = ReLu(Yj ajwj, + by), where ar denotes the activation of neuron k. The generic rule
aj'(ij+VWfk)
E'SD[(ij+YWfk)jk]+Zj aj'(ij+YWfrk)
and ¢ are two hyperparameters of the rule. y (values for tuning: 0.001, 0.01, 0.1) controls the
contribution of positive weights in relevance propagation. Increasing the value of y can
marginalize neurons with negative weights and decrease the variance of relevance across
neurons, and thus may lead to more stable interpretation results. € (values for tuning: 0.001,
0.01, 0.1) absorbs relevance from neurons with weak or contradictory weights. Increasing
the value of € can give prominence to a few neurons with high weights, and thus may lead to
more sparse interpretation results.

propagates relevance between them as R; = Y, Ry, where y

Input-layer rule was only applied to relevance propagation of the input protein features. For
a protein feature i and its connected neuron j from a lowest-level pathway, the input-layer
Xiwij — liwi*'j - hjw

ij R (=
— R;, where [; (= 0) and
Zixiwij—liw;rj—hiwij 7’ ( )

rule propagates relevance between themas R; = Y

hi (= 1) are the lower and upper bound of input feature values.

Identifying significant VNN paths for explaining toxicity outcome of compounds

After relevance of each neuron being assigned via LRP, a relevance score is computed for
each pathway by summing up the relevance scores of its neurons. An observed score is then
computed for each VNN path connecting input protein feature to output assay outcome as:
Spath = Xp e patn 108 R;,’, where p denotes a protein or pathway along the path. The relevance
scores are converted to non-negative values, as we are only interested in the proteins or
pathways that are more likely to result in toxicity outcome. The log transformation is
adopted to adjust the scale of relevance scores from different layers, as the number of
pathways decreases dramatically along the hierarchy.
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To assess the significance of each observed path score, we employed a permutation-based
strategy to derive the null distribution. Specifically, we shuffled the outcome label of each
Tox21 dataset, then re-trained random VNN models using the same hyperparameter setting
as previously trained optimal model. The procedure was repeated for N = 200 times, a
balance between sample size and running time. Scores derived from the random VNN models
comprise the null distribution for each observed path score, and thus the empirical P-value
can be computed as Sparn = X1 I (Sparn-i = Spacn)/N. We used false discovery rate (FDR)
to perform multiple testing correction on all VNN paths, then identified the significant paths
(FDR < 0.05) for each active compound.

As mentioned above, DTox interpretation framework has two hyperparameters: y and ¢ from
the generic rule. To study the effect of hyperparameter settings on model interpretation, we
implemented all possible (9 in total) hyperparameter combinations to identify significant
VNN paths for active compounds. We measured the similarity between each pair of settings
by the median Jaccard Index among active compounds regarding their identified significant
paths.

Processing LINCS dataset for validation of DTox interpretation results

The LINCS dataset?4 contains gene-expression profiles derived after genetic and small-
molecule perturbations on a number of cell lines, including MCF-7 (cell line of aromatase
assay) and HepG2 (cell line of mitochondria toxicity assay, PXR agonist assay, and HepG2 cell
viability assay). We extracted the profiles induced by active compounds of the four assays in
their respective cell line. We removed the profiles that did not pass quality control, then
separated the remaining ones into three groups based on dose and time of perturbation
(1.11uM-24h, 10uM-6h, 10uM-24h). We used the LINCS level 5 data, which consists of
moderated differential expression Z-scores, for the validation analysis.

To assess the differential expression of VNN paths identified for each compound, we first
identified differentially expressed genes (DEGs) from the corresponding profile by |Z| > 2, as
suggested by LINCS. Then, we used Fisher’s exact test to examine whether the pathways
along each VNN path are enriched for DEGs. A test p-value was computed for each pathway.
We used FDR to perform multiple testing correction on all pathways along each path. A VNN
path is differentially expressed if all the pathways involved are significantly enriched for
DEGs (FDR < 0.05). Finally, we calculated the proportion of differentially expressed paths
among the paths identified by DTox (observed proportion) and among all possible paths in
VNN (expected proportion).

Processing NSIDES dataset for analyzing DTox results on HepG2- and HEK293-
cytotoxic compounds

The NSIDES dataset*? contains drug-adverse event relations that are derived from FDA
reports after adjusting for confounding factors. Each drug-adverse event pair is assigned
with a proportional reporting ratio (PRR) score along with its 95% CI, which measures the
extent to which the adverse event is disproportionately reported among individuals taking
the drug. We manually curated a list of 20 clinical phenotype terms associated with drug-
induced liver injury (DILI; Supplementary Table 6) and a list of 24 clinical phenotype terms
associated with drug-induced kidney injury (DIKI; Supplementary Table 6). Drugs
associated with each phenotype of interest are identified by the lower bound of 95% CI (>
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1). Drugs not associated with each phenotype of interest (negative controls) are identified
by both the lower (< 1) and the upper (> 1) bound of 95% CI.

To measure the association between each DILI phenotype and HepG2 cytotoxicity, we
calculated the odds ratio and its 95% CI based on a 2*2 contingency table. The same
procedure was performed to measure the association between each DIKI phenotype and
HEK293 cytotoxicity. We also used Fisher’s exact test to evaluate the enrichment of nine cell
death-related pathways among the drugs associated with DILI phenotypes. The odds ratio
and test P-value were computed for each phenotype-pathway pair. We used FDR to perform
multiple testing correction on all phenotype-pathway pairs.
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