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Abstract:

The circular, multi-copy genome of mammalian mitochondria (mtDNA) is tightly regulated at the cellular level. The exact mechanisms by

which mtDNA copy number homeostasis is achieved in health and disease however, remains largely elusive. Current real-time PCR and

next generation sequencing technologies can only estimate average copy numbers from bulk samples, albeit single-cell approaches are

emerging. On contrary, microscopy analysis of mtDNA-related foci  allow not only to assess average copy numbers, but also their

heterogeneity at the single cell level, as well as to preserve spatial context. We developed mtFociCounter, a reproducible, open source,

free image analysis pipeline to quantify mitochondrial foci from single cells. mtFociCounter has a modular architecture, allowing single

cell segmentation, foci counting and optional foci filtering and contextualisation in a transparent and reproducible manner. It provides a

simple,  all-in-one  approach  for  (semi-)automated  foci  quantification.  Gateways  for  integration  of  specialised  image  segmentation

software are provided, while ensuring a unified and comparable output. We applied mtFociCounter to wild-type 3t3 mouse fibroblasts

and found large cell-to-cell heterogeneity of the number of nucleoids, mitochondrial area and nucleoid density across over 480 cells. Our

results raise concerns about the use of bulk-sample approaches to study mitochondrial nucleoid homeostasis, as well as provide a

ready-to-use solution to this problem. In the near future, we will apply  mtFociCounter to study different sample conditions to better

understand mitochondrial DNA homeostasis, as well as further develop the mtFociCounter. For this, we are actively looking for feedback

and suggestions, and are happy to assist in efforts to test the current version of mtFociCounter in other laboratories.

Introduction:

Mitochondria are dynamic cellular organelles which occur in a vast range of forms and shapes, depending on the type and state of their

host cell  (Tilokani  et al,  2018).  To build the oxidative phosphorylation (OXPHOS) apparatus, crucial for  cellular  energy production,

mitochondria express their own genome (mtDNA). Human and mouse mtDNA is circular, encodes 37 essential genes within ~16.6kb

and is stored as small (~100nm) granules, termed nucleoids (Brown et al, 2011; Kukat et al, 2011). Upon transcription, mitochondrial

RNA condensates into transient, fluid granules of similar size, which are called Mitochondrial RNA Granules (MRGs) (Iborra et al, 2004;

Antonicka & Shoubridge, 2015; Jourdain et al, 2016; Rey et al, 2020) (see Fig.1a). The amount of mtDNA is tightly regulated at the

cellular level and ranges from 100 to 100'000 copies depending on cell type and cell state (Stewart & Chinnery, 2015; D’Erchia et al,

2015;  Filograna  et  al,  2020;  Sasaki  et  al,  2017).  Aberrations of  mtDNA copy-number control  are associated with several  primary

mitochondrial disorders and common diseases including cancer, cardiovascular disease and neurodegeneration (Castellani et al, 2020;

Filograna et al, 2019, 2020; Zeviani & Viscomi, 2022). While mtDNA compaction or transcription regulation by TFAM likely plays a role,

the complete mechanism by which cells regulate mtDNA homeostasis is not well understood (Kanki et al, 2004; Filograna et al, 2019).

Reliable determination of the copy-number of mtDNA in a specimen, therefore, is not only important for fundamental biomedical and

cell-biological research but also for diagnostics.

In addition to their number, nucleoids within a cell can differ in a variety of other factors, such as the probability to replicate or the

amount of protein that is associated with a specific focus (Brüser et al, 2021). For mitochondrial transcription and MRGs on the other

hand, the degree and importance of cellular homeostasis and the existence of subspecies is yet to be explored.

To determine the number of mtDNA molecules per cell, current methods rely on quantitative PCR and sequencing  (Filograna  et al,

2020). Hereby, mtDNA content from bulk samples can be normalised to nuclear DNA abundance to obtain per-cell estimates. However,

these methods do not preserve any information beyond the averaged number and sequence of mtDNA molecules from bulk samples,

and do not allow to assess the variability between cells. While novel single-cell sequencing methods are emerging, they are only on the

virtue of sensitivity to capture mtDNA (Lareau et al, 2021). A recent alternative method to quantify mtDNA copy number from single cells

by droplet digital PCR holds greater promise, but is currently limited in throughput and lacks spatial information (O’Hara et al, 2019; Burr

& Chinnery, 2022). However, mtDNA-molecule number alone, without insight on their spatial distribution, is not a reliable marker for

mitochondrial states ((Ban-Ishihara et al, 2013)), and similar considerations apply to mtRNAs. 

Both,  nucleoids and MRGs can be visualised by  fluorescence microscopy  and,  due to  their  size below the  diffraction limit,  form

distinctive  foci  on  microscopy  images  (see  Fig.1b-d).  Single  mammalian  cells  can  contain  1'000s  of  nucleoids  and  by  counting

mitochondrial foci on fluorescence images it is possible to estimate this number within live or fixed cells. Determining mitochondrial foci-
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number by microscopy bears several advantages over sequencing based approaches. First, it preserves spatial information and local or

relative concentration differences can be assessed with subcellular or suborganellar resolution. Different sub-types of foci can therefore

be  quantified  (Brüser  et  al,  2021).  In  addition,  quantitative  methods  for  image  analysis  developed  for  one  foci-type  are  readily

transferable to other types, allowing direct comparison, for instance between one nucleoid marker and another. However, to quantify

large datasets of microscopy images to achieve statistically relevant sampling can be daunting. Manual approaches, which are still

applied today, are therefore often limited to few 10s of cells and 100s of foci for subsequent analysis (Xavier & Martinou, 2021; Silva-

Pinheiro et al, 2021). However, sample heterogeneity and human factors make it very difficult to quantify large datasets in consistent

and reproducible ways (see Fig.1c). Automation of foci-counting on the other hand readily allows scaling to 100s of cells and 10'000s of

foci  (Kukat et al, 2011; Kotrys et al, 2021; Brüser et al, 2021). In addition, automated analysis drastically reduces random errors and

observer biases and allows, in principle, to perfectly trace and reproduce the experimental workflow from raw images to final results.

Unfortunately, the majority of currently used automated approaches for mitochondrial foci quantification use commercial software and

closed source code (Kukat et al, 2011; Kotrys et al, 2021; Brüser et al, 2021). The choice of influential parameters is not communicated

and together, the reproduction of previously published results, therefore, is hardly possible. Furthermore, the transferability of these

approaches between laboratories is very low and comparison of results or sequential studies across groups and projects is extremely

difficult.

Figure 1: Mitochondrial DNA and RNA foci.  a) Schematic of the central dogma within mitochondria. mtDNA is organised into fluid

condensates termed nucleoids (magenta). mtRNA is transcribed as long, polycistronic precursors and accumulates in fluid droplets,

Mitochondrial RNA Granules or MRGs (green). Upon processing, mitochondrial mRNA is translated into OXPHOS-complex subunits,

which produce ATP via a proton-gradient.  b) Spinning disk confocal image of 3t3 mouse cells with nucleoids stained with anti-DNA

antibody (magenta), mitochondria highlighted by mitochondrially targeted dsRed. (yellow) and DAPI-stained nuclei (cyan). c) Enlarged

inlets from b as indicated by Roman numbers with nucleoids in magenta and mitochondria in grey-scale. Defining what is an individual

focus by eye is often ambiguous, depends on visualisation settings and is hardly reproducible. d) Confocal image of U2OS human cells

MRGs stained by anti-BrU antibody (green) after 60min of BrU-incubation and mitochondria stained by anti-tom20 antibody (blue).

In this work, we created an easy-to-use, free and open source software tool to quantify mitochondrial or other cellular foci with single-

cell resolution. To this end, we present a Fiji-plugin (Schindelin et al, 2012), which we call mitochondrial foci counter, or mtFociCounter.

allowing users a simple approach to (semi-)automatically quantify microscopy images from a vast range of imaging modalities, from

standard Widefield and Confocal to superresolution microscopes. mtFociCounter returns the number of foci per cell and several other,

optional descriptors. All metadata to fully trace and reproduce every step from raw image to final results is preserved. Furthermore, it is

readily downloadable as open source code, from Github (https://github.com/TimoHenry). Its modular design, the open source code and

the integration in the well established framework of Fiji also allows to continuously improve and update mtFociCounter in the future. This

means users can adapt and add parts of the software to meet their specific needs while preserving a uniform and comparable output

format. We exemplify the use of mtFociCounter by assessing the reproducibility of nucleoid quantification and cell-to-cell heterogeneity

in 3t3 mouse fibroblasts.

Results:

mtFociCounter design and architecture

mtFociCounter is a Fiji-plugin which currently comprises three modules: ToTiff, CellOutline and FociCounter (see Fig.2). Each module

can be run independently, and is discussed briefly in the following.

The ToTiff module converts raw microscopy images into a standard Tiff-file format with a few clicks (see Fig.2b and Suppl.Fig.2a). The

user is asked to choose a directory containing all input files, and a new folder will be created to contain only .tiff files. Hereby, the original

file-extension (or ending) serves as a flag to find input-images. If images are already available in Tiff format, the ToTiff module can be

skipped.

The CellOutline module then takes Tiff-image files as input and allows to segment individual cells (see Fig.2c). For this, 3D raw-images

are maximum-intensity projected and all colours combined into a single, 2D image. The user is then asked to manually outline individual

cells with a simple brush-tool. This step allows to manually curate the input-data. For instance, dead or heavily overlapping cells, which

could  not  be  segmented  with  high  confidence,  can  be  excluded.  The  coordinates  of  every  region-of-interest  (ROI)  of  manually

segmented cells are saved and allow to reproduce this step. Then, a cropped image is created and saved for every segmented cell for

further processing. If preferred, cells can be singled out by other software, and directly processed by the FociCounter module described

below. To assist with cell segmentation, Wheat Germ Agglutinin (WGA) staining can be used (ThermoFischer: W11261). However, we
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found that WGA does not allow confident separation of medium densely cultured 3t3 fibroblast cells (see Suppl.Fig.2d). Instead, the

CellCatcher module  of  the  recently  published  MitoHacker workflow  (Rohani  et  al,  2020) may  represent  a  viable  alternative  for

mitochondria-channel based cell segmentation.

To quantify the number of foci per cell, the FociCounter module provides several options. The basic input requirement are 2D Tiff images

containing a ROI, which includes one cell (see  Suppl.Fig.2b). The user is then asked to specify which channel contains the foci to

analyse. FociCounter uses the built-in FindMaxima function from Fiji to detect foci. For this, a prominence value needs to be set, which

influences the number and type of foci detected.  FociCounter encourages the user to perform a parameter sweep of six prominence

values and requires to define a range of values. This allows to monitor the effect of the parameter-settings and to reduce parameter-bias

(see Fig.3a). Depending on the input images, the optimal prominence value can range from 10 - 100'000au, and needs to be optimised

for a given experimental set-up. The detected foci are both output as a binary images as well as a list of ROIs. With the ROIs, it is

possible to visually assess the quality of detected foci depending on the prominence, when overlaid onto the corresponding single cells

image. To by-pass the sweep, the same number can be entered for the beginning and end of the range. FociCounter also provides the

option to use other channels from multicolour images to automatically curate the detected foci. To ensure only mitochondrial foci are

detected, mitochondria images can be used to create a mask and to filter the foci by enabling the "Filter with mitochondria" option. While

a manual segmentation option is provided, it is not recommended to use it for medium to high-throughput analysis. Instead, a simple

automated approach based on Fiji's  Convert  To Mask works well  for  clean images (see  Suppl.Fig.2c).  A machine-learning based

approach to segment mitochondria is not yet implemented into mtFociCounter, but choosing the option: "pre-segmented" provides an

easy gateway to use specialised software such as Ilastik (Berg et al, 2019) or Weka (Arganda-Carreras et al, 2017) for this often difficult

task to accurately segment mitochondria. In addition to foci-filtering, the area of the mitochondria within each cell is measured from the

binary mask. This can serve as an approximation for cell size, as the mitochondrial content is difficult to dissociate from cell size (Kitami

et al, 2012). It is evident that other fluorescent images, for instance staining organelles such as the ER, can also be used to filter foci by

co-localisation. To filter by exclusion, the option: "Subtract nucleus" can be ticked. Because the antibody against mtDNA not only detects

mitochondrial nucleoids but also has many targets in the nucleus (see Suppl.Fig. 2g), this is a useful feature to count only mitochondrial

foci. The same options for "pre-segmented", "automated" and "manual" segmentation are available, while a "learning-based" option

awaits implementation. For automated segmentation, a nuclear staining such as DAPI is required. However, for manual segmentation it

can be possible to re-use mitochondria, as the nuclear shape is often detectable by eye (see Suppl.Fig.2a). The segmented features

for  exclusion or  inclusion are saved as binary files for  every cell,  and can be used for further quantification as well  as to ensure

traceability and reproducibility of the full analysis pipeline (see Suppl.Fig. 2c).

Together, the modular design of mtFociCounter provides a simple, adaptable Fiji-plugin to quantify cellular foci. In addition to semi- and

fully automated options for coherent and reproducible quantification of mitochondrial foci, it readily allows to integrate other specialised

software, and to be adapted to different questions. Below, we will exemplify its use by quantifying the number and density of mtDNA-

nucleoids in single 3t3 mouse fibroblast cells.

Figure 2:  Workflow of mtFociCounter.  a)  First,  a user chooses one of the modules to process their  data.  Each module is run

individually, depending on the available input data.  b) The ToTiff-module converts various image-file type to TIFF images, which can

subsequently be used as input.  c) To segment single cells from tiff images, the  CellOutline-module can be used, providing different

options. d) Next, foci are detected using a range of prominence values defined by the user. Optionally, foci counted from the nuclear (or

other) area can then be excluded while mitochondria (or other) channels can be used to create an inclusion filter. e) Finally, a python

script as a jupyter notebook produces publication-ready figures as shown in  Fig.3. Example images of intermediary output for each

module are shown in Suppl.Fig2. 

mtDNA foci distribution in wild-type fibroblasts

To test the mtFociCounter we quantified the number of mitochondrial nucleoids per single cell in cultured NIH 3t3 mouse fibroblasts. To

this end, we created a stable cell line expressing mitochondrially targeted dsRed, (MTS-dsRed), using the SU9-targeting sequence as

previously described (Gäbelein et al, 2022). Cells were then fixed, and nucleoids stained with antibodies against mtDNA. The nucleus

was stained with DAPI and three-colour fluorescence images were acquired on a standard spinning disk confocal microscope (see

Fig.1b).  Next,  we used the  ToTiff module to convert  raw images from *.ims to *.tiff  format  (see  Fig.2b).  We created z-projected

composite images based on maximum intensity values and manually segmented individual cells using the  CellOutline module (see

Fig.2c and Suppl.Fig.2a & b). Dividing cells with insufficiently separated nuclei and cytosols or with condensed chromosomes, as well

as cells with faint mitochondrial signal were not included (see Suppl.Fig.2e & f).  In total, we analysed 481 single 3t3 wild-type (WT)

fibroblasts from three biological replicates of cells, which were seeded on different days, and originated from two separate batches of

thawed cells. With the FociCounter module, we then tested a range of prominence values in a parameter-sweep between 5 and 200 au

(Fig.3a) and between 5 and 50 (data not shown). Raw foci-binary images (see Suppl.Fig.2g) were first filtered using mitochondrial (see
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Suppl.Fig.2h)  and  nuclear  (see  Suppl.Fig.2i)  binary  masks  before  quantification.  For  this,  we used  the  FociCounter module  to

automatically  segment  mitochondria  with  a  simple  threshold.  We manually  segmented  nuclei  using  the  DAPI-channel  to  exclude

mtDNA-foci which are detected within the nuclear area. Automated segmentation of nuclei also works, but depends on a consistently

bright DAPI-staining. Filtered foci-binaries were then turned into ROIs, which were counted and can be visualised by overlay (see

Fig.2c). 

In agreement with visual inspection, we observed a sharp drop of detected foci at low prominence values, indicating a clear difference

between real positive and false positive signals (see Fig.3a). We decided to fix the prominence level at 122 au for further analysis (see

Fig.3b). We observed a mean number  of 322 per single cell, with a standard deviation of +/-135 foci (n=481 cells). However, the

number of detected foci per cell is not normally distributed (p=1*10-12, see Suppl.Fig.3a), and we found a median number of 302 foci.

Using  the  mitochondria  mask,  the  mitochondrial  area  was  recorded by  FociCounter for  every  single  cell  (see  Fig.3b).  We  then

computed the mean mitochondrial area per cell to be 237.43 μm2 with a standard deviation of +/-105.76 μm2 (n=481 cells). Again, the

distribution of mitochondrial area does not follow a Normal distribution (p=7*10-16, see Suppl.Fig.3b) and the median mitochondrial area

observed was 216.69 μm2. The wide distribution of values for both, number of foci and mitochondrial area is exemplified by the very

large  standard  deviations.  The coefficient  of  variation  for  foci  per  cell  was  42% and 44.5% for  the  mitochondrial  area,  and  the

interquartile ranges (IQR) were 193 and 125.69 μm2 for the number of foci and mitochondrial area respectively.

Next, we assessed whether foci-number and mitochondrial area are correlated within single cells. Indeed, we found that the number of

foci  per  cell  is  strongly  correlated  with  the  mitochondrial  area of  that  same cell  (Corr=0.87,  n=481 cells,  see  Fig.3c).  This  is  in

accordance with the literature, which found a semi-regulated spacing of nucleoids along mitochondria across eukaryotic species (Lewis

et al, 2016; Jajoo et al, 2016), as well as our own observations of a positive correlation between MRGs and mitochondrial length (Rey et

al, 2020), both suggesting a link between total mitochondrial area of a cell and foci number.

To distinguish between potential effects on cell size and thus mitochondrial network-size, and mitochondrial foci number such as number

of nucleoids, we propose to normalise foci-counts by mitochondrial area. Upon normalisation, we found a mean nucleoid-density of

1.388 foci/μm2 and a standard deviation of +/-0.247 (n=481 cells, see  Fig.3b). The distribution of nucleoid-density is much closer to

Normal, with few outliers for very small mitochondria (p=0.00098, see  Suppl.Fig.3c). Interestingly, when extreme data-points below

0.75 foci/μm2 are excluded, the distribution is not significantly different from a Normal distribution (data not shown). The median number

of foci/μm2 is 1.401, the coefficient of variation 17.8% and the IQR is 0.305.

To assess the sampling effect and reproducibility of our sample preparation procedure, we compared the data from three biological

replicates (see Fig.3d). The number of foci per cell were significantly different between the three replicates (Shannon-Wilcoxon-U-test,

alpha = 1%). Interestingly, the mitochondrial area between the first replicate (20220603, n=163) and the third replicate (20220708,

n=213) were not differentiable, whereas the second replicate (20220706, n=105) was different from both. Notably, the foci-density differs

less between the different biological replicates, albeit the second replicate is clearly different from the third (see Fig.3d). 

We also investigated the variability between technical replicates of samples which were processed in parallel, whereby seeding, fixing,

staining  and image-acquisition  was  performed simultaneously  for  all  samples  (see  Suppl.Fig.3d).  Unfortunately,  this  reduces  the

sample-size to less than 100 cells per sample. Where per-sample sample-sizes were highest, on replicate one (n=76 and n=87), we

found  no  statistical  significance  between  technical  replicates,  indicating  that  our  sample-preparation  procedure  is  reproducible.

However, for the other two biological replicates, the large cell-to-cell heterogeneity and low number of samples between n=41 and n=88

resulted in significant differences between, in principle, technically identical samples.

In addition to our results described above, we also acquired datasets of 3t3 fibroblasts with a point-scanning confocal, and a super-

resolution Elyra7 SIM2 microscope,  as well  as  using an anti-tom20 antibody instead of  MTS-dsRFP expression,  for  mitochondrial

staining  (see  Suppl.Fig.3e  and f).  The  image  acquisition  on  these  microscopes  has  a  much  lower  throughput,  inherent  to  the

microscopy technique (point-scanning) or FOV and post-processing (SIM2). In return, both allow to increase the resolution by fine-tuning

the acquisition parameters and thereby provide higher accuracy, in particular for mitochondria. We observed that staining mitochondria

by  tom20-antibody  considerably  increases  the  noise,  and  we  recommend  using  fluorescent  proteins  for  organelle  segmentation

whenever  possible.  Together,  our  data  exemplifies  the  straight  forward  transferability  of  the  mtFociCounter-approach  to  different

microscopy techniques, depending on the availability and desired emphasis between accuracy and throughput.

Figure 3: Mitochondrial nucleoid analysis in 3t3 wild-type cells with mtFociCounter. a) Number of foci counted per cell for n=481

cells  from three pooled biological  replicates  with differing  prominence values.  b) Kernel  density  estimates  and histograms of  foci

(magenta, left), mitochondrial area (yellow, centre) and normalised foci density (pink, right) with a fixed prominence value of 122 au from

all cells analysed in  a.  c) Scatter plot of foci-count and mitochondrial area for every cell with regression-fit (blue line) and standard

deviation (shaded). Histograms of the distribution of the number of detected mtDNA-foci (y-axis, right) and mitochondrial area (x-axis,

top) are shown. A good positive correlation between foci-count and mitochondrial area was found (R=0.87). d) Comparison of biological

replicates for foci count (left, magenta), mitochondrial area (centre, yellow) and foci density (right, pink) are shown as box plots. Number
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of cells for each biological replicate (sampled on different days) comprises two or three technical replicates (sampled and treated in

parallel), and are indicated below the plots. All box plots show the first and third quartiles and the median, whiskers comprise the rest of

the distributions except outliers.  Where applicable, a two-tailed Mann-Whitney U-test was performed, and **** denotes p-values <

0.0001, 'ns' denotes non-significant differences (alpha = 5%) and all data-points are shown as purple dots.

Discussion:

To understand the biological processes that underlie the regulation of mitochondrial gene expression in health and disease, it remains

crucial to improve reproducibility and availability of tools for mitochondrial foci quantification by (semi-)automated image analysis (see

Fig.1). We created a user-friendly, free and open source software to quantify mitochondrial foci as a Fiji-plugin, mtFociCounter. It has a

modular design and readily allows users to fine-tune and adapt the workflow to their experimental set-up (see Fig.2). It also provides

gateways to use other, specialised software for segmentation, while producing generalised and comparable output data. We exemplify

the quantitative analysis of mitochondrial nucleoids by  mtFociCounter in mouse fibroblasts and showcase the use of a transparent

parameter-sweep (see Fig.3a). In 3t3 fibroblasts we find a large variability between individual WT cells (see Fig.3b). This is in good

agreement with recent reports of single cell mtDNA copy-numbers (O’Hara et al, 2019; Burr & Chinnery, 2022), and large heterogeneity

between individual cells is expected  (Symmons & Raj, 2016). Furthermore, in mixed populations of proliferative cells, such as most

cultured cell lines, cellular state occupation does not necessarily follow a Normal distribution. It is therefore not surprising that we do not

find the number of nucleoids or the mitochondrial area to be normally distributed across individual cells (see  Fig.3b). However, this

raises concerns about the meaningfulness of bulk-sample average (mean) measurements of the number of mtDNA-molecules per cell,

as a readout of mtDNA-homeostasis. The correlation between nucleoid number and mitochondrial mass, which we observe, further

implies that differences in cell growth or mitochondrial biogenesis cannot readily be distinguished from effects on nucleoid homeostasis

by determining the number of mtDNA molecules per cell (see Fig.3c). We therefore propose to normalise mitochondrial nucleoid counts

by mitochondrial mass, mitochondrial area or other measures of cell size. The here reported mean and median occupancy of nucleoids

along the mitochondrial  network is on the same order as for MRGs  (Rey  et al,  2020).  Interestingly,  in our experiments, nucleoid-

densities still do not follow a Normal distribution, albeit further sampling could help to rule out that the remaining deviation is not due to

confounding measurement errors from few small cells with clustered mitochondria (see Suppl.Fig.2h).

In addition, the large cell-to-cell variability creates challenges when sampling single cells at low throughput. We found that experimental

replicates can differ significantly for small sample sizes below or around n=100 (see  Fig.3, Suppl.Fig.3). We therefore propose to

sample  at  least  one  to  two  hundred  cells  per  technical  replicate.  Depending  on  the  methods  for  sample  preparation,  such  as

immunostaining of  mitochondria (see  Suppl.Fig.3e),  we further  propose that  that  Control  and Treated samples are  processed in

parallel, to avoid confounding batch-effects.

Limitations and outlook

The presented beta-version of mtFociCounter has some remaining short-comings, and will be further improved in the near future. One

of the current limitations for higher throughput applications is the need for manual segmentation to isolate single cells reliably. Required

user  input  may  restrict  the transferability  from one laboratory  to another,  albeit  the implementation  of  CellOutline allows to  trace

decisions on previously analysed data, and thereby perfect reproducibility. In addition, pre-segmented cells can already be used as

input, providing a gateway for combination with other software. In the future, alternative, automated cell-segmentation strategies will be

assessed and directly implemented into mtFociCounter to enhance ease-of-use. Novel Machine Learning approaches for nuclear and

mitochondrial segmentation could also provide useful additions. A second limitation can be the raw-data analysis, which is currently

based on openly available python code. The development of a simpler user-interface will  enhance the accessibility to researchers

without any programming skills, albeit the data can already be analysed by other means. 

It is important to note that a fully reproducible analysis pipeline does not guarantee fully reproducible results. Prior to comparative

assays, it is crucial to optimise the sample preparation using control cells.  mtFociCounter allows to compare technical replicates and

thereby quantify the reproducibility of a particular experimental setup (see Suppl.Fig.3). We found that low sampling frequency impairs

reproducibility due to the large cell-to-cell heterogeneity. For truly conclusive verification of our experimental setup we will therefore

increase the  sampling to at  least  one or  two hundred cells  per  independent  replicate.  However,  high quality  plus  high-resolution

microscopy still represents the major bottleneck for high throughput mitochondrial analysis.

Finally, the possibility to quantify of other cellular characteristics, such as cell cycle state, foci state or correlation between different foci

would provide useful additions to the mtFociCounter in the future. Therefore, we look forward to comments, input and contributions to

further improve and adapt this platform for a wider range of applications, increased throughput and further improved data quality. 
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Conclusion:

Here, we provide a platform to concentrate low and medium through-put efforts to quantitatively analyse effects on mitochondrial health,

mtFociCounter. We demonstrate the use of mtFociCounter to analyse single cell variability of mitochondrial nucleoid density in mouse

fibroblasts as well  as the reproducibility of  our experimental  design and required sampling frequency.  mtFociCounter represents a

framework to study effects on mitochondrial foci number in a quantitative and reproducible manner, as well as allowing to assess cell-to-

cell  heterogeneity  of  foci  numbers  and  densities  beyond  mitochondria.  This  allows  to  overcome current  limitations  to  accurately

determine the effect of treatments or mutations on mitochondria, based on bulk-measurements. 

Material and methods:

Cell culture

Cells were grown in growth medium with DMEM GlutaMax (Gibco: 31966-021) supplemented with 1% PenStrep and 10% Calf Serum

(ATCC: 30-2030). Calf Serum instead of Fetal Calf Serum is used to maintain proliferative cell populations of NIH/3t3 fibroblasts (ATCC:

CRL-1658TM). Stable cell-lines expressing MTS-dsRed were created as previously described (Gäbelein et al, 2022). In brief, wild-type

or mutant cells were transformed with lentivirus to express MTS-dsRed. Cells were then FACS-sorted for high expression of dsRed and

subsequently preserved in cryo-stocks or cultured for no more than 20 passages, to ensure genetic coherence across experiments.

Immunofluorescence

Cells were seeded on 12 mm glass slide cover slips (epredia: CB00130RAC20MNZ0) in different wells of 24-well  plates, and at a

density of 50'000 cells per well. The next day, the medium was aspirated and 300 μL of pre-warmed 4% PFA (Thermo scientific: J19943-

K2) was added for 20 min of fixation at room temperature (RT). Samples were then rinsed once, and washed with PBS two times for 10

min at RT. Optionally, samples were refrigerated (4 °C) for some hours at this step, before continued processing later on the same day.

The cells were then permeabilised for 10-20 min with 250uL of 0.1% Triton X-100 (Fluka: 93420), before blocking with 300 μL of 5%

BSA (Sigma: A7030-100G) in PBS for 15-30 min at RT. For immunostaining, anti-mtDNA antibodies (EMD Millipore: CBL186) and anti-

tom20 antibodies (Proteintech: 11802-1-AP) were then diluted in 5% BSA at a ratio of 1:250 (a solution of at least 125 μL was made to

reduce pipetting errors), and cover slips were flipped onto 20 μL drops of antibody-solution on parafilm for 1 hour of incubation in a

humid chamber at  RT.  Samples were then rinsed once and washed two times for  5-15 min with PBS. Next,  anti-IgM Alexa 647

antibodies (Invitrogen: A21238) were diluted in 5% BSA at a ratio of 1:750 (a solution of at least 350 μL was made) and cover slips

incubated as described above, for 45 min. Cover  slips were then flipped onto drops of DAPI diluted in PBS (1:5000) and incubated for

15 min before again rinsing and washing in PBS. Individual cover slips were then mounted onto a drop of ProLong Gold (Invitrogen:

P10144) and cured at 4 °C over night, in a dark but ventilated chamber. Samples were always imaged the next day, to avoid sample

deterioration.

Microscopy

The qualitative example image of MRGs in U2OS cells was taken on a SP8-STED in regular Confocal mode (see  Suppl.Fig.1c).

Suppl.Fig.2d was acquired on a Zeiss LSM880 point scanning confocal  microscope with Zen software, using a Plan-Apochromat

63x/1.40 Oil DIC M27 objective. 405, 488, 561 and 633nm laser lines and adequate filter settings were used to sequentially acquire

each channel for minimal bleed-through. All other images were acquired using an Andor Dragonfly 500 confocal spinning disk system on

a Nikon Eclipse TiE inverted microscope. Image stacks were taken at 0.3 μm intervals, and using a 100x or 60x objective lense (NA1.4).

We used 405 nm, 561 nm or 633 nm excitation lasers and acquired images on a Zyla 4.2 PLUS sCMOS camera with Fusion software

(Andor).

Image Analysis

All image processing and analysis was done using the mtFociCounter workflow described in this article and the complete source code is

available on Github. We set the prominence range for our images between 5 and 200 au. We used the manual segmentation option for

the  nuclei  using  the  DAPI-channel  as  input,  because  the  DAPI-signal  was  too  low  for  rigorous  automation  but  good  for  visual

determination of the nuclear shape. Mitochondria were automatically detected, and used to filter the foci, as well as to determine the cell

area. Raw-data was then processed with python 3, using a jupyter notebook which is also available on Github.
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Software

Only free and open-source software was used for this project, with the exception of microscope-steering, as indicated, and microsoft

power point for figure arrangement. For analysis, MiniConda was used as a package manager to run python 3 and jupyter notebooks.

For writing, reference management and image-generation, LibreOffice, Zotero and Fiji were used respectively.

Accessibility:

All  data  and  code  are  freely  accessible  on  the  data-repository  Zenodo  (doi:  1.5281/zenodo.6962215)  and  Github

(https://github.com/TimoHenry) respectively. Please do not hesitate to contact the authors in case of unclarity, questions about the use,

suggestions for improvements or any other queries. Please make changes to the source code and submit improvements via Github.

Biological material may be available upon reasonable request.

Acknowledgments:

This research was funded by EMBO Long Term Fellowship 2021-152. We thank Pedro Pinheiro-Silva for 3t3 NIH cell lines, Christoph

Gäbelein and Julia Vorholt for stable cell line creation, Benoît Kornmann and Quian Feng for plasmids, and Suliana Manley for the

support during the initial conceptualisation.

Competing interests:

Michal Minczuk is co-founder and scientific advisor at Pretzel Therapeutics Inc. Beyond this, the authors do not declare any competing

interests. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2022. ; https://doi.org/10.1101/2022.08.13.503663doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.13.503663
http://creativecommons.org/licenses/by/4.0/


References:

Antonicka H & Shoubridge EA (2015) Mitochondrial RNA Granules Are Centers for Posttranscriptional RNA Processing and Ribosome

Biogenesis. Cell Reports 10: 920–932

Arganda-Carreras  I,  Kaynig  V,  Rueden  C,  Eliceiri  KW,  Schindelin  J,  Cardona  A &  Sebastian  Seung  H  (2017)  Trainable  Weka

Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33: 2424–2426

Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K & Ishihara N (2013) Dynamics of nucleoid structure regulated by mitochondrial fission

contributes to cristae reformation and release of  cytochrome c.  Proceedings of  the National  Academy of  Sciences 110:

11863–11868

Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, et al (2019) ilastik: interactive

machine learning for (bio)image analysis. Nat Methods 16: 1226–1232

Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF & Clayton DA (2011) Superresolution Fluorescence Imaging

of Mitochondrial Nucleoids Reveals Their Spatial Range, Limits, and Membrane Interaction.  Molecular and Cellular Biology

31: 4994–5010

Brüser C, Keller-Findeisen J & Jakobs S (2021) The TFAM-to-mtDNA ratio defines inner-cellular  nucleoid populations with distinct

activity levels. Cell Reports 37: 110000

Burr  SP & Chinnery  PF (2022)  Measuring  Single-Cell  Mitochondrial  DNA Copy  Number  and  Heteroplasmy using  Digital  Droplet

Polymerase Chain Reaction. JoVE: 63870

Castellani CA, Longchamps RJ, Sun J, Guallar E & Arking DE (2020) Thinking outside the nucleus: Mitochondrial DNA copy number in

health and disease. Mitochondrion 53: 214–223

D’Erchia AM, Atlante A, Gadaleta G, Pavesi G, Chiara M, De Virgilio C, Manzari C, Mastropasqua F, Prazzoli GM, Picardi E, et al (2015)

Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory

activity. Mitochondrion 20: 13–21

Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, Simard ML, Wredenberg A, Freyer C, Stewart JB, et al (2019)

Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the

mouse. Sci Adv 5: eaav9824

Filograna R, Mennuni M, Alsina D & Larsson N (2020) Mitochondrial DNA copy number in human disease: the more the better? FEBS

Lett: 1873-3468.14021

Gäbelein CG, Feng Q,  Sarajlic  E,  Zambelli  T,  Guillaume-Gentil  O,  Kornmann B & Vorholt  JA (2022) Mitochondria transplantation

between living cells. PLOS Biology 20: e3001576

Iborra FJ, Kimura H & Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biology 2

Jajoo R, Jung Y, Huh D, Viana MP, Rafelski SM, Springer M & Paulsson J (2016) Accurate concentration control of mitochondria and

nucleoids. Science 351: 169–172

Jourdain  AA,  Boehm  E,  Maundrell  K  &  Martinou  J  (2016)  Mitochondrial  RNA granules:  Compartmentalizing  mitochondrial  gene

expression. J Cell Biol 212: 611–614

Kanki T, Ohgaki K, Gaspari M, Gustafsson CM, Fukuoh A, Sasaki N, Hamasaki N & Kang D (2004) Architectural Role of Mitochondrial

Transcription Factor A in Maintenance of Human Mitochondrial DNA. Mol Cell Biol 24: 9823–9834

Kitami T, Logan DJ, Negri J, Hasaka T, Tolliday NJ, Carpenter AE, Spiegelman BM & Mootha VK (2012) A Chemical Screen Probing the

Relationship between Mitochondrial Content and Cell Size. PLoS ONE 7: e33755

Kotrys AV, Borowski LS & Szczesny RJ (2021) High-Throughput Measurement of Mitochondrial RNA Turnover in Human Cultured Cells.

In Mitochondrial Gene Expression, Minczuk M & Rorbach J (eds) pp 133–146. New York, NY: Springer US

Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson N-G & Jakobs S (2011) Super-resolution microscopy reveals that mammalian

mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA.  Proceedings of the National

Academy of Sciences 108: 13534–13539

Lareau CA, Ludwig LS, Muus C, Gohil SH, Zhao T, Chiang Z, Pelka K, Verboon JM, Luo W, Christian E, et al (2021) Massively parallel

single-cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol 39: 451–461

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2022. ; https://doi.org/10.1101/2022.08.13.503663doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.13.503663
http://creativecommons.org/licenses/by/4.0/


Lewis SC, Uchiyama LF & Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human

cells. Science 353: aaf5549

O’Hara  R,  Tedone  E,  Ludlow  A,  Huang  E,  Arosio  B,  Mari  D  &  Shay  JW  (2019)  Quantitative  mitochondrial  DNA copy  number

determination using droplet digital PCR with single-cell resolution. Genome Res 29: 1878–1888

Rey T, Zaganelli S, Cuillery E, Vartholomaiou E, Croisier M, Martinou J-C & Manley S (2020) Mitochondrial RNA granules are fluid

condensates positioned by membrane dynamics. Nat Cell Biol 22: 1180–1186

Rohani A, Kashatus JA, Sessions DT, Sharmin S & Kashatus DF (2020) Mito Hacker: a set of tools to enable high-throughput analysis

of mitochondrial network morphology. Sci Rep 10: 18941

Sasaki T, Sato Y, Higashiyama T & Sasaki N (2017) Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during

the cell cycle in Fucci2-HeLa cells. Sci Rep 7: 11257

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al (2012)

Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682

Silva-Pinheiro P, Pardo-Hernández C, Reyes A, Tilokani L, Mishra A, Cerutti R, Li S, Rozsivalova D-H, Valenzuela S, Dogan SA, et al

(2021) DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion.  Nucleic Acids

Research 49: 5230–5248

Stewart JB & Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat

Rev Genet 16: 530–542

Symmons O & Raj A (2016) What’s Luck Got to Do with It: Single Cells, Multiple Fates, and Biological Nondeterminism. Molecular Cell

62: 788–802

Tilokani  L,  Nagashima  S,  Paupe  V  &  Prudent  J  (2018)  Mitochondrial  dynamics:  overview  of  molecular  mechanisms.  Essays  in

Biochemistry 62: 341–360

Xavier VJ & Martinou J-C (2021) Visualization of Mitochondrial RNA Granules in Cultured Cells Using 5-Bromouridine Labeling. In

Mitochondrial Gene Expression, Minczuk M & Rorbach J (eds) pp 69–73. New York, NY: Springer US

Zeviani M & Viscomi C (2022) Mitochondrial Neurodegeneration. Cells 11: 637

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2022. ; https://doi.org/10.1101/2022.08.13.503663doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.13.503663
http://creativecommons.org/licenses/by/4.0/


Figure 1

c ii iiii

b i
ii

iii

20µm 20µm

5µm 5µm 5µm

d

ATP
mtRNAmtDNA

O
X
P
H

O
S

a



Figure 2

b ToTiff

directory:

raw images

mkdir tiff_input_”date”:
.tiff images

takes input directory

finds files with flag (.nd, .czi, etc.)

opens images

saves as .tiff and closes

INPUT: ”date”; ToTiff CellOutline FociCountera

INPUT OUTPUT

CellOutlinec

in tiff_input_”date”:

ROI list for every FOV

mkdir outCells_”date”:

singleCell.tiff

finds .tiff in input

Options:

adapt z-projection

choose: max. sum. avg.

set top & bottom for every image

manual cell segmentation

draw & add roi for every cell

Segment single cells & save

directory:

.tiff images
INPUT OUTPUT

e python analysis

.csv files figures

combine data into data frame

compute density

create plots

perform statistical analysis

OUTPUTINPUT

finds .tiff in input

number of channels ___

foci channel ___

prominence range __    __

Options:

subtract nucleus

nuclear channel

nucleus segmentation:

manual automated pre-segmented

subtract mitochondria

mitochondria channel

mitochondria segmentation:

manual automated pre-segmented

10um

FociCounterd

single 

cell .tiff
INPUT OUTPUT

Presegmented

options:

nucleus_

binary

in outFoci_”date”:

Results_”date”.csv

ROI for every cell & prominence

foci_binary for every cell & prominence

optional:

nucleus_binary for every cell

mitochondria_binary for every cell

mito_

binary



Figure 3

a b

c d

n = 481 n = 481 n = 481

n = 105 n = 213n = 163 n = 105 n = 213n = 163 n = 105 n = 213n = 163

n = 481

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y



Supplementary Figures:

Supplementary Figure 1, Mitochondrial DNA and RNA foci.

a) Left, three colour composite confocal image of 3t3 fibroblasts stably expressing MTS-dsRed (yellow), stained with antibodies against

mtDNA and with Alexa 647 (magenta), and DAPI (cyan). Centre and right, individual channels of the same FOV.

b) Left, two colour composite confocal image of U2OS cells after 60 min of BrU incubation, stained with antibodies against tom20  (blue)

and BrU (green), and with Alexa 488 and Alexa 647 respectively. Centre and right, individual channels of the same FOV.

Supplementary Figure 2, Workflow of the mitoFociCounter.

a) An  example  image  with  multiple  cells  is  shown.  The  cell-to-cell  variability  in  shape,  size  and  expression  levels  is  apparent.

Mitochondria are stained in yellow (MTS-dsRed), nucleus in cyan (DAPI) and nucleoids in magenta (anti-mtDNA Alexa647). The image

is a projection of the maximum intensity for each pixel across several z-planes. 

b) A single cell from (a) outlined by manually drawn ROI (yellow dash), as output by the CellOutline module.

c) Example output from the  FociCounter module with nucleus and mitochondria options, analysing the cell from  (b).  Top two rows:

binary images of detected foci for each prominence parameter: 5, 44, 83, 122, 161, 200 (from top left to bottom right). Bottom row, left:

binary of manually segmented nucleus; centre: binary of automatically generated mitochondrial mask; right: overlay of final, counted

ROIs (prominence: 122) on composite image with mtDNA (magenta) & mitochondria (blue) channels.

d) Example image of maximum intensity projected point scanning confocal image of maximum inten

e) and f) Example images of other FOVs, with arrows pointing to actively dividing cells.  

g - i) Montages of all binaries produced and used to quantify sample 2 from replicate 20220603. g) Shows all foci detected using

prominence level of 122. h) Contains all mitochondrial masks used to filter foci. i) With nuclear masks used to filter nuclear signal.

Supplementary Figure 3, Mitochondrial nucleoid analysis in 3t3 wild-type cells with mitoFociCounter.

a) - c) Quantile-Quantile plots indicating that foci count (a), mitochondrial area (b) and foci density (c) do not follow a normal distribution.

Notably it is mostly the smallest and largest values which do not follow the expected trend, and foci density, in particular, is very close to

normal. 

d) Box plots which denote the first and third quartiles and the median and whiskers comprising the rest of the foci density distributions

are shown for each biological and technical replicate. Left, all data of 3t3 wild-type cells are shown in side-by side comparison, with

number of analysed single cells indicated. Then, individual technical replicates of sample slides which were processed and images in

parallel  are compared side-by-side for  the sampling days:  20220603, 20220706,  20220708. Two-tailed Mann-Whitney U-test  were

performed, and **** denotes p-values < 0.001, *** denotes p-values < 0.001, ** denotes p-values < 0.01, * denotes p-values < 0.05 and

'ns' denotes non-significant differences (alpha = 5%) and all data-points are shown as purple dots.

e) Single FOV of 3t3 WT fibroblasts, with mitochondria in blue (MTS-dsRed) and nucleoids in magenta (anti-mtDNA Alexa647), as

imaged with LSM880 Point Scanning Confocal microscope. Left: overlay of both channels, centre: mitochondria only, right: foci only. 

f) Single FOV of a 3t3 WT fibroblast, with mitochondria in blue (MTS-dsRed) and nucleoids in magenta (anti-mtDNA Alexa647), as

imaged with Elyra7 SIM2. Left: overlay of both channels, centre: mitochondria only, right: foci only. 
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