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Abstract 34 

Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable 35 

to summary-level reference eQTL datasets. The development of TWAS methods that can harness 36 

summary-level reference data is valuable to enable TWAS in broader settings and enhance power 37 

due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS 38 

(Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple 39 

polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL 40 

reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and 41 

powerful TWAS tool by both simulations and application studies.   42 

 43 

Keywords: 44 

Transcriptome-wide association study; Summary-level eQTL reference data; PRS method; 45 

GWAS; UK Biobank; eQTLGen; Cardiovascular disease 46 

 47 

Transcriptome-wide association study (TWAS) is a valuable analysis strategy for 48 

identifying genes that influence complex traits and diseases through genetic regulation of gene 49 

expression1–5. Researchers have successfully deployed TWAS analyses to identify risk genes for 50 

complex human diseases, including Alzheimer’s disease6–8, breast cancer9–11, ovarian cancer12,13, 51 

and cardiovascular disease14,15. A typical TWAS consists of two separate stages. In Stage I, 52 

TWAS acquires individual-level genetic and expression data from relevant tissues available in a 53 

reference dataset like the Genotype-Tissue Expression (GTEx) project16,17 or the North American 54 

Brain Expression Consortium (NABEC)18, and trains multivariable regression models on the 55 

reference data treating gene expression as outcome and SNP genotype data (typically cis-SNPs 56 

nearby the test gene) as predictors to determine genetically regulated expression (GReX). After 57 
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Stage I that uses the GReX regression models to estimate effect sizes of SNP predictors that, in 58 

the broad sense, are expression quantitative trait loci (eQTLs), Stage II of TWAS proceeds by 59 

using these trained eQTL effect sizes to impute GReX within an independent GWAS of a complex 60 

human disease or trait. One can then test for association between the imputed GReX and 61 

phenotype, which is equivalent to a gene-based association test taking these eQTL effect sizes 62 

as corresponding test SNP weights19–21.  63 

For Stage I of TWAS, a variety of training tools exist for fitting GReX regression models 64 

using reference expression and genetic data, including PrediXcan19, FUSION20, and TIGAR22. 65 

While these methods all employ different techniques for model fitting, they all require individual-66 

level reference expression and genetic data to estimate eQTL effect sizes for TWAS. Therefore, 67 

these methods cannot be applied to emerging reference summary-level eQTL results such as 68 

those generated by the eQTLGen23 and CommonMind24 consortia, which provide eQTL effect 69 

sizes and p-values relating individual SNPs to gene expression. The development of TWAS 70 

methods that can utilize such summary-level reference data is valuable to permit applicability of 71 

the technique to broader analysis settings. Moreover, as TWAS power increases with increasing 72 

reference sample size25, TWAS using summary-level reference datasets can lead to enhanced 73 

performance compared to using individual-level reference datasets since the sample sizes of the 74 

former often are considerably larger than the latter. For example, the sample size of the summary-75 

based eQTLGen reference sample is 31,684 for blood, whereas the sample size of the individual-76 

level GTEx V6 reference is only 338 for the same tissue. Consequently, TWAS analysis 77 

leveraging the summary-based eQTLGen dataset as reference likely can provide novel insights 78 

into genetic regulation of complex human traits.  79 

 In this work, we propose a framework that can use summary-level reference data to train 80 

GReX regression models required for Stage I of TWAS analysis. Our method is motivated by a 81 

variety of published polygenic risk score (PRS) methods26–31 that can predict phenotype in a test 82 
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dataset using summary-level SNP effect-size estimates and p-values based on single SNP tests 83 

from an independent reference GWAS. We can adapt these PRS methods for TWAS since eQTL 84 

effect sizes are essentially SNP effect sizes resulting from a reference “GWAS” of gene 85 

expression. Thus, our predicted GReX in Stage II of TWAS is analogous to the PRS constructed 86 

based on training GWAS summary statistics of single SNP-trait association. Here, we adapt four 87 

representative summary-data based PRS methods –– P-value Thresholding with linkage 88 

disequilibrium (LD) clumping (P+T)26, frequentist LASSO32 regression based method lassosum27, 89 

nonparametric Bayesian Dirichlet Process Regression (DPR) model33 based method SDPR29, 90 

and Bayesian multivariable regression model based method with continuous shrinkage (CS) 91 

priors PRS-CS28 for TWAS analysis. We apply each of these PRS methods to first train eQTL 92 

effect sizes based on a multivariable regression model from summary-level reference eQTL data 93 

(Stage I), and subsequently use these eQTL effect sizes (i.e., eQTL weights) to impute GReX 94 

and then test GReX-trait association in an independent test GWAS (Stage II).  95 

As we will show, the PRS method with optimal performance for TWAS depends on the 96 

underlying genetic architecture for gene expression. Since the genetic architecture of expression 97 

is unknown apriori, we maximize the performance of TWAS over different possible architectures 98 

by proposing a novel TWAS framework called OTTERS (Omnibus Transcriptome Test using 99 

Expression Reference Summary data). OTTERS first constructs individual TWAS tests and p-100 

values using eQTL weights trained by each of the PRS techniques outlined above, and then 101 

calculates an omnibus test p-value using the aggregated Cauchy association test34 (ACAT-O) 102 

with all individual TWAS p-values (Figure 1). OTTERS is applicable to both summary-level and 103 

individual-level test GWAS data within Stage II TWAS analysis.  104 

In subsequent sections, we first describe how to use the PRS methods on summary-level 105 

reference eQTL data in Stage I TWAS, and then describe how we can use the resulting eQTL 106 

weights to perform Stage II TWAS using OTTERS. We then evaluate the performance of 107 
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individual PRS methods and OTTERS using simulated expression and real genetic data based 108 

on patterns observed in real datasets. Interestingly, when we assume individual-level reference 109 

data are available, we observe that OTTERS outperforms the popular FUSION20 approach across 110 

all simulation settings considered. Many of the individual PRS methods also outperform FUSION 111 

in these settings. We then apply OTTERS to blood eQTL summary-level data (n=31,684) from 112 

the eQTLGen consortium23 and GWAS summary data of cardiovascular disease from the UK 113 

Biobank (UKBB)35. By comparing OTTERS results to those of FUSION20 using individual-level 114 

GTEx reference data of whole blood tissue, we demonstrate that OTTERS using large summary-115 

level reference datasets and multiple gene expression imputation models can successfully reveal 116 

potential risk genes missed by FUSION based on smaller individual-level reference datasets and 117 

only one model. Finally, we conclude with a discussion.  118 

Results 119 

Method Overview 120 

For the standard two-stage TWAS approach, Stage I estimates a GReX imputation model 121 

using individual-level expression and genotype data available from a reference dataset, and then 122 

Stage II uses the eQTL effect sizes from Stage I to impute gene expression (GReX) in an 123 

independent GWAS and test for association between GReX and phenotype. GReX for test 124 

samples can be imputed from individual-level genotype data and eQTL effect size estimates. 125 

When individual-level GWAS data are not available, one can instead use summary-level GWAS 126 

data for TWAS by applying the TWAS Z-score statistics proposed by FUSION20 and S-127 

PrediXcan36 (see details in Methods).  128 

 Since eQTL summary data are analogous to GWAS summary data where gene 129 

expression represents the phenotype, we can follow the idea from PRS methods to estimate the 130 

eQTL effect sizes based on a multivariable regression model using only marginal least squared 131 
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effect estimates and p-values (based on a single variant test) from the eQTL summary data as 132 

well as a reference LD panel from samples of the same ancestry26–29. Although all PRS methods 133 

are applicable to TWAS Stage I, we only consider four representative methods –– P+T26, 134 

Frequentist lassosum27, Nonparametric Bayesian SDPR29, Bayesian PRS-CS28 (see details in 135 

Methods).  136 

As shown in Figure 1, OTTERS first trains GReX imputation models per gene g using P+T, 137 

lassosum, SDPR, and PRS-CS methods that each infers cis-eQTL weights using cis-eQTL 138 

summary data and an external LD reference panel of the same ancestry (Stage I). Once we derive 139 

cis-eQTL weights for each training method, we can impute the respective GReX using that 140 

method and perform the respective gene-based association analysis in the test GWAS dataset. 141 

We thus derive a set of TWAS p-values for gene g, one per training method. We then use these 142 

TWAS p-values to create an omnibus test using the ACAT-O34 approach that employs a Cauchy 143 

distribution for inference (see details in Supplemental Methods). We refer to the p-value derived 144 

from ACAT-O test as the OTTERS p-value. The ACAT-O34 approach has been widely used in 145 

hypothesis testing to combine multiple testing methods for the same hypothesis37–39, which has 146 

been shown as an effective approach to leverage different test methods to increase the power 147 

while still managing to control for type I error. Adding TWAS p-values based on additional PRS 148 

methods to the ACAT-O test can possibly improve the power further at the cost of additional 149 

computation.  150 

Simulation Study 151 

We used real genotype data from 1894 whole genome sequencing (WGS) samples from 152 

the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) cohort40,41 and 153 

Mount Sinai Brain Bank (MSBB) study42 for simulation. We divided 14,772 genes into five 154 

groups according to gene length, and randomly selected 100 genes from each group (500 155 

genes in total). We randomly split samples into 568 training (30%) and 1326 testing samples  156 
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(70%) to mimic a relatively small sample size in the real reference panel for training gene 157 

expression imputation models.. From the real genotype data, we simulated 6 scenarios with 2 158 

different proportions of causal cis-eQTL, 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = (0.001, 0.01), as well as 3 different 159 

proportions of gene expression variance explained by causal eQTL, ℎ𝑒
2 =  (0.01, 0.05, 0.1).   160 

We generated gene expression of gene 𝑔 (𝑬𝑔) using the multivariable regression model 161 

𝑬𝑔 = 𝑿𝒈𝒘 + 𝝐𝒈, where 𝑿𝑔 represents the standardized genotype matrix of the randomly 162 

selected causal eQTL of gene 𝑔, 𝝐𝑔 ∼ 𝑁(0, (1 − ℎ𝑒
2)𝑰). We generated the eQTL effect sizes 𝒘 163 

from 𝑁(0,1) and then re-scaled these effects to ensure that the expression variance explained 164 

by all causal variants is ℎ𝑒
2. We generated 10 replicates of gene expression per scenario. For 165 

each simulated gene expression, we then generated 10 sets of GWAS Z-scores to perform a 166 

total of 50,000 TWAS simulations. We generated the GWAS Z-scores from a multivariate 167 

normal distribution with 𝑍 ∼ 𝑀𝑉𝑁 (𝚺𝒈𝒘√𝑛𝑔𝑤𝑎𝑠 ℎ𝑝
2 , 𝚺𝒈)38, where 𝒘 is the true causal eQTL 168 

effect sizes, 𝚺𝒈 is the correlation matrix of the standardized genotype 𝑋𝑔 from test samples, 169 

𝑛𝑔𝑤𝑎𝑠  is the assumed GWAS sample size, and ℎ𝑝
2 denotes the amount of phenotypic variance 170 

explained by simulated GReX=𝑿𝒈𝒘 (see Methods). We set ℎ𝑝
2 = 0.025. To calibrate power, we 171 

considered 𝑛𝑔𝑤𝑎𝑠 = (200K, 300K, 400K, 500K) for scenarios with ℎ𝑒
2 = 0.01, 𝑛𝑔𝑤𝑎𝑠 = (25K, 50K, 172 

75K, 100K) for scenarios with ℎ𝑒
2 = 0.05, and 𝑛𝑔𝑤𝑎𝑠 = (10K, 20K, 30K, 40K) for scenarios with 173 

ℎ𝑒
2 = 0.1.  174 

In Stage I of our TWAS analysis, we applied P+T (0.001), P+T (0.05), lassosum, SDPR, 175 

and PRS-CS methods to estimate eQTL weights using eQTL summary data and the reference 176 

LD of training samples. In Stage II of the TWAS, we used the estimated eQTL weights and the 177 

simulated GWAS Z-scores to conduct a gene-based association test. In addition to gene-based 178 

association tests based on eQTL weights per training method, we further constructed the 179 

corresponding OTTERS p-values. We evaluated the performance of the training methods with 180 
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test samples, comparing test 𝑅2 that was the squared Pearson correlation coefficient between 181 

imputed GReX and simulated gene expression. We evaluated TWAS power given by the 182 

proportion of 50,000 repeated simulations with TWAS p-value < 2.5 × 10−6  (genome-wide 183 

significance threshold adjusting for testing 20K independent genes). We only considered genes 184 

with GReX test 𝑅2 > 0.01 in the power analysis. 185 

As shown in Figure 2, we demonstrated that the Stage I training method with optimal test 186 

𝑅2 and TWAS power depended on the underlying genetic architecture of gene expression (𝑝𝑐𝑎𝑢𝑠𝑎𝑙) 187 

as well as gene expression heritability (ℎ𝑒
2 ). In situations where true cis-eQTLs were sparse 188 

(𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.001) and the gene expression heritability was small (ℎ𝑒
2 = 0.01), P+T (0.05) method 189 

performed the best with the highest TWAS power among all individual methods. When gene 190 

expression heritability is low (ℎ𝑒
2 = 0.01), the power of  P+T (0.001) and lassosum methods were 191 

shown as the lowest for considering only genes with test 𝑅2 > 0.01. When gene expression 192 

heritability increased (ℎ𝑒
2 = 0.05 or 0.1) within this sparse eQTL model, P+T (0.001) and PRS-CS  193 

were generally the optimal methods. For a less sparse model with 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.01, SDPR and PRS-194 

CS generally performed best among the individual methods. Relative to individual methods, we 195 

found that combining the TWAS p-values based on the four PRS training methods together for 196 

analysis in our OTTERS framework obtained the highest power across all scenarios.  197 

 To evaluate the type I error of the individual PRS methods along with OTTERS, we picked 198 

one simulated replicate per gene from the scenario with  ℎ𝑒
2 = 0.1  and 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = 0.001 , 199 

simulated 2 ×  103  phenotypes from 𝑁(0,1) , and permuted the eQTL weights for TWAS to 200 

perform a total of 106 null simulations. OTTERS was shown well calibrated in the tails of the 201 

distribution as shown by quantile-quantile (Q-Q) plots of TWAS p-values in Figure S1. We also 202 

observed that OTTERS had well-controlled type I error for stringent significance levels between 203 

10−4  and 2.5 × 10−6  (Table S1), which are typically utilized in TWAS. For more modest 204 

significance thresholds (𝛼 = 10−2) , we noted that OTTERS had a slightly inflated type-I error rate. 205 
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This modest inflation is consistent with the findings of the original ACAT-O work, which showed 206 

that the Cauchy-distribution-based approximation that ACAT-O employs may not be accurate for 207 

larger p-values when correlation among tests is strong34. This suggests that modest OTTERS p-208 

values may be interpreted with caution.  209 

We also compared the performance of our individual PRS training methods to those of 210 

FUSION assuming individual-level reference data were available for the latter method to train 211 

GReX models. As shown in Figure 2A, we interestingly observed that our training methods yielded 212 

similar or improved test 𝑅2  compared to FUSION in this situation, with SDPR and PRS-CS 213 

outperforming FUSION across all simulation settings. Comparing TWAS power, we found that 214 

OTTERS outperformed FUSION by a considerable margin in our simulations (Figure 2B). These 215 

simulation results suggest that, while we developed OTTERS based on PRS training methods to 216 

handle summary-level reference data, OTTERS can still improve TWAS power when individual-217 

level reference data are available. This is likely because OTTERS accounts for multiple possible 218 

models of genetic architectures of gene expression assumed by the different PRS training 219 

methods.  220 

GReX Imputation Accuracy in GTEx V8 Blood Samples 221 

To evaluate the imputation accuracy of P+T (0.001), P+T (0.05), lassosum, SDPR, and 222 

PRS-CS methods in real data, we applied these training methods to summary-level eQTL 223 

reference data from the eQTLGen consortium23 with n=31,684 blood samples, to train GReX 224 

imputation models for 16,699 genes. For test data, we downloaded the transcriptomic data of 315 225 

blood tissue samples that are in GTEx V8 but were not part of GTEx V6 (as GTEx V6 samples 226 

contributed to the reference eQTLGen consortium summary data).  For these 315 samples, we 227 

compared imputed GReX to observed expression levels. We considered trained imputation 228 

models with test 𝑅2 > 0.01 as “valid” models, as suggested by previous TWAS methods20,43. We 229 

also compared imputation accuracy of these five training models to those using FUSION based 230 
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on a smaller individual-level training dataset (individual-level GTEx V6 reference dataset; see 231 

Methods). For such models, we compared the test 𝑅2 for genes that had test 𝑅2 > 0.01 by at least 232 

one training method. 233 

We observed that PRS-CS obtained the most “valid” GReX imputation models with test 234 

𝑅2>0.01. Among 16,699 tested genes, PRS-CS obtained “valid” GReX imputation models for 235 

10,337 genes, compared to 9,816 genes by P+T (0.001) (5.0% less valid genes than PRS-CS), 236 

9,662 genes by P+T (0.05) (6.5% less), 8,718 genes by lassosum (15.7% less), 9,670 genes by 237 

SDPR (6.5% less), and 4,704 genes by FUSION (54.5% less) (Table 1). Among the “valid” GReX 238 

imputation models obtained by each method, the ones trained by PRS-CS have the highest 239 

median test 𝑅2. The P+T (0.001) method obtained the second most “valid” GReX imputation 240 

models with the second largest median test 𝑅2, as compared to P+T (0.05), lassosum, and SDPR 241 

(Table 1). We note that the performance of PRS-CS method was not sensitive to the global 242 

shrinkage parameter (Figure S2). 243 

By comparing test 𝑅2 per “valid” GReX imputation model by PRS-CS versus the other 244 

methods (Figure 3), we observed that PRS-CS had the best overall performance for imputing 245 

GReX as it provided the most “valid” models with higher GReX imputation accuracy compared to 246 

P+T methods, lassosum, SDPR, and FUSION. Comparing the test 𝑅2  among the other four 247 

training methods, we observed that these two P+T methods obtained similar test 𝑅2 per “valid” 248 

model. Meanwhile, the test 𝑅2 per valid model varied widely among the P+T methods, lassosum, 249 

and SDPR (Figure S3), suggesting that none of these four were optimal across all genes and their 250 

performance likely depended on the underlying unknown genetic architecture. These results are 251 

consistent with our simulation results. 252 

TWAS of Cardiovascular Disease  253 
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Using the eQTL weights trained by P+T (0.001), P+T (0.05), lassosum, SDPR, and PRS-254 

CS methods with the eQTLGen23 reference data and reference LD from GTEx V8 WGS 255 

samples44, we applied our OTTERS framework to the summary-level GWAS data of 256 

Cardiovascular Disease from UKBB (n=459,324, case fraction = 0.319)35 (see Methods). We 257 

performed TWAS of cardiovascular disease for 16,678 genes. First, for each gene, we obtained 258 

TWAS p-values per individual training method (P+T (0.001), P+T (0.05), lassosum, SDPR, and 259 

PRS-CS). Second, we performed genomic control45 for TWAS test statistics generated under 260 

each specific training model, by scaling all test statistics to ensure that the median test p-value 261 

equals to 0.5. Last, we only considered genes with test GReX 𝑅2 > 0.01 by at least one PRS 262 

training method in additional GTEx V8 samples in the follow-up ACAT-O test. We combined the 263 

adjusted p-values across all five training models using ACAT-O to obtain our OTTERS test 264 

statistics and p-values. Genes with OTTERS p-values < 2.998 × 10−6  (Bonferroni corrected 265 

significance level) were identified as significant TWAS genes for cardiovascular risk.  266 

In total, we identified 40 significant TWAS genes by using OTTERS. To identify 267 

independently significant TWAS genes, we calculated the 𝑅2 (squared correlation) between the 268 

GReX predicted by PRS-CS for of each pair of genes. For a pair of genes with the predicted 269 

GReX 𝑅2 > 0.5, we only kept the gene with the smaller TWAS p-value as the independently 270 

significant gene. OTTERS obtained 38 independently significant TWAS genes (Table 2, Figure 271 

3B), compared to 17 independently significant genes by P+T (0.001), 11 by P+T (0.05), 10 by 272 

lassosum, 41 by SDPR, and 12 by PRS-CS. Among these 38 independent TWAS risk genes 273 

identified by OTTERS, gene RP11-378A13.1 (OTTERS p-value = 9.78 × 10−9) was not within 1 274 

MB of any known GWAS risk loci with genomic-control corrected p-value < 5 × 10−8 in the 275 

UKBB summary-level GWAS data. This novel risk gene RP11-378A13.1 was also identified to 276 

be a significant TWAS risk gene in blood tissue for systolic blood pressure, high cholesterol, and 277 

cardiovascular disease by FUSION1.  278 
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We compared our OTTERS results with the TWAS results shown on TWAS hub (see 279 

Web Resource) obtained by FUSION using the same UKBB GWAS summary data of 280 

cardiovascular disease but using a smaller individual-level reference expression dataset from 281 

GTEx V6 (whole blood tissue, n=338). Of the 38 independent genes that OTTERS identified 282 

from TWAS with eQTLGen reference data of whole blood, FUSION only identified 8 of these 283 

genes (CLCN6b, PSRC1, RP11-378A13.1, CAMK1D, SIDT2, MTHFSD, NTN5, OPRL1) when 284 

using the GTEx V6 reference data of the same tissue. FUSION did identify 13 additional 285 

OTTERS genes (NPPA, CPEB4, NT5C2, TNNT3, C11orf49, CSK, FES,  MBTPS1, ACE, MRI1, 286 

HAUS8, RPL28, CTSZ), when considering all available tissue types in GTEx V6 reference data. 287 

These genes were identified by FUSION when considering the GTEx V6 reference data of 288 

artery, thyroid, adipose visceral, and nerve tibial tissues. For example, the most significant gene 289 

FES (OTTERS p-value = 2.87 × 10−32) was identified by FUSION using GTEx reference data of 290 

artery tibial, thyroid, and adipose visceral omentum tissues, and was also identified as a TWAS 291 

risk gene for high blood pressure, which is strongly related to cardiovascular disease46. 292 

Our OTTERS method also identified 17 novel risk genes (LINC01093, SERPINB6, 293 

CARMIL1, ZSCAN12P1, HCG4P7, HCG4P3, HLA-S, PSPHP1, LPL, PTP4A3, SLCO3A1, 294 

RALBP1, SULT2B1, EDN3, ZBTB46, FAM3B, MX1) that were not detected by FUSION using 295 

GTEx V6 data, where EDN3 (Endothelin 3, a member of the endothelin family) was shown to be 296 

active in the cardiovascular system and play an important role in the maintenance of blood 297 

pressure or generation of hypertension47. 298 

 By comparing OTTERS results with the ones obtained by individual methods (Table 2; 299 

Figure 4; Figure S4), we found that all individual methods contributed to the OTTERS results.  For 300 

example, the novel risk gene LINC01093 was only identified by lassosum, while genes CPEB4, 301 

SIDT2, and ACE were only detected by PRS-CS and SDPR and the novel risk gene EDN3 was 302 

only identified by the P+T methods. To better understand the differences among individual 303 
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methods, we plotted the eQTL weights estimated by P+T (0.001), P+T (0.05), lassosum, SDPR, 304 

and PRS-CS for three example genes that were only detected by one or two individual methods 305 

(Figures S5-S7). For these genes, we plotted the eQTL weights produced by each method with 306 

such weights color coded with respect to −𝑙𝑜𝑔10 (GWAS p-values) from the UKBB GWAS 307 

summary statistics and shape coded with respect to the direction of UKBB GWAS Z-score 308 

statistics. Generally, significant TWAS p-values would be obtained by methods that obtained 309 

eQTL weights with relatively large magnitude for SNPs with relatively more significant GWAS p-310 

values.  311 

In Figure S5, we showed the eQTL weights for gene SIDT2, which was a significant risk 312 

gene identified by both PRS-CS and SDPR, and had p-values < 10−4 by other methods. 313 

Compared to lassosum, SDPR had more significant GWAS SNPs colocalized with eQTLs 314 

having relatively large weights in the test region, and PRS-CS had more non-significant GWAS 315 

SNPs colocalized with eQTLs having zero weights. Compared to the P+T methods, SDPR and 316 

PRS-CS based on a multivariate regression model modeled LD among all test SNPs, and thus 317 

estimated eQTL weights leading to significant TWAS findings. In Figure S6, we provided the 318 

results of gene EDN3, which was only identified by P+T methods (p-values ≤ 9.15 × 10−8). 319 

Compared to P+T methods, SDPR (p-value = 5.9 × 10−3) and PRS-CS (p-value = 0.0158) had 320 

fewer significant GWAS SNPs colocalized with eQTLs that had relatively large weights in the 321 

test region, while lassosum (p-value = 8.6 × 10−6) assigned relatively large weights to more 322 

non-significant GWAS SNPs. In Figure S7, we provided results for gene LINC01093, which was 323 

only identified by lassosum. For this gene, SDPR and PRS-CS estimated near-zero weights for 324 

most test SNPs with significant GWAS p-values in the test region. Most significant GWAS SNPs 325 

did not have eQTL test p-values < 0.001 or 0.05, and were thus filtered out by P+T methods. 326 

lassosum was the only method that produced relatively large eQTL weights that co-localized 327 

with GWAS significant SNPs.  328 
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 329 

These results were consistent with our simulation study results, demonstrating that the 330 

performance of different individual methods depended on the underlying genetic architecture. We 331 

do note that there were a handful of genes identified by an individual method that were not 332 

significant using OTTERS (Table S2). Nonetheless, the omnibus test borrows strength across all 333 

individual methods, thus generally achieves higher TWAS power and identifies the group of most 334 

robust TWAS risk genes.  335 

By examining the Q-Q plots of TWAS p-values, we observed a moderate inflation for all 336 

methods (Figure S8). Such inflation in TWAS results is not uncommon48–50, which could be due 337 

to similar inflation in the GWAS summary data and not distinguishing the pleiotropy and mediation 338 

effects for considered gene expression and phenotype of interest51 (Figure S9). We also observed 339 

a notable inflation in the GWAS p-values of cardiovascular disease from UKBB (Figure S9), as 340 

we estimated the LD score regression52 intercept to be 1.1 from the GWAS summary data. 341 

We did not consider directly comparing to FUSION in our above TWAS analyses of 342 

cardiovascular disease since we used the summary-level reference data eQTLGen. However, to 343 

assess the performance of OTTERS and FUSION in a real study where individual-level reference 344 

data are available, we performed an additional TWAS analysis of cardiovascular disease in the 345 

UK Biobank using the GTEx V8 data of 574 whole blood samples as the reference data. We 346 

trained OTTERS Stage I using cis-eQTL summary statistics obtained from these 574 GTEx V8 347 

whole blood samples and reference LD from GTEx V8 WGS samples, and trained FUSION 348 

models using individual-level genotype data and gene expression data of the same 574 whole 349 

blood samples.   350 

We tested TWAS association for 19,653 genes and identified genes with TWAS p-values 351 

< 2.53 × 10−6 (Bonferroni corrected significance level) as significant TWAS genes. Training 𝑅2 >352 
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0.01 was used to select “valid” GReX imputation models for TWAS (Figure S10). To identify 353 

independently significant TWAS genes, we calculated the training 𝑅2  between the GReX 354 

predicted by lassosum for of each pair of genes, since lassosum had the best training 𝑅2 (Figure 355 

S10). For a pair of genes with the predicted GReX 𝑅2 > 0.5, we only kept the gene with the smaller 356 

TWAS p-value as the independently significant gene. As a result, OTTERS obtained 34 357 

independently significant TWAS genes, while FUSION identified 21 independently significant 358 

TWAS genes (Figure S11). A total of 14 genes were identified by both FUSION and OTTERS 359 

(Table S3).  360 

These results demonstrate the advantages of OTTERS for using multiple PRS training 361 

methods to account for the unknown genetic architecture of gene expression, which is consistent 362 

in our simulation results. These results also showed the advantage of using eQTL summary data 363 

with a larger training sample size, as more independently significant TWAS genes were identified 364 

by using the eQTLGen summary reference data (38 vs. 34), even with a more stringent rule (test 365 

instead of training 𝑅2 > 0.01) applied to select test genes with “valid” GReX imputation models. 366 

Computational Time 367 

The computational time per gene of different PRS methods depends on the number of test 368 

variants considered for the target gene. Thus, we calculated the computational time and memory 369 

usage for 4 groups of genes whose test variants were <2000, between 2000 and 3000, between 370 

3000 and 4000, and >4000, respectively. Among all tested genes in our real studies, the median 371 

number of test variants per gene is 3152, and the proportion of genes in each group is 10.3%, 372 

33.4%, 34.5%, and 21.8%, respectively. For each group, we randomly selected 10 genes on 373 

Chromosome 4 to evaluate the average computational time and memory usage per gene. We 374 

benchmarked the computational time and memory usage of each method on one Intel(R) Xeon(R) 375 

processor (2.10 GHz). The evaluation was based on 1000 MCMC iterations for SDPR and PRS-376 

CS (default) without parallel computation (Table S4). We showed that P+T and lassosum were 377 
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computationally more efficient than SDPR and PRS-CS, whose speed were impeded by the need 378 

of MCMC iterations. Between the two Bayesian methods, SDPR implemented in C++ uses 379 

significantly less time and memory than PRS-CS implemented in Python. 380 

Discussion  381 

Our OTTERS framework represents an omnibus TWAS tool that can leverage summary-382 

level expression and genotype results from a reference sample, thereby robustly expanding the 383 

use of TWAS into more settings. To this end, we adapted and evaluated five different PRS 384 

methods assuming different underlying genetic models, including the relatively simple method 385 

P+T26 with two different p-value thresholds (0.001 and 0.05), the frequentist method lassosum27, 386 

as well as the Bayesian methods PRS-CS28 and SDPR29 within our omnibus test for optimal 387 

inference. We note that additional PRS methods such as MegaPRS30 or PUMAS31 could also be 388 

implemented as additional OTTERS Stage I training methods. Higher TWAS power might be 389 

obtained by adding more PRS methods in OTTERS Stage I, with additional computation cost. We 390 

also note that the existing SMR-HEIDI53 method, which uses summary-level data from GWAS and 391 

eQTL studies to test for possible causal genetic effects of a trait of interest that were mediated through 392 

gene expression, could also be used as an alternative method besides TWAS. However, the SMR 393 

method generally restricts eQTL for consideration, excluding those where the eQTL p-values 394 

larger than a certain threshold, e.g., 0.05.    395 

In simulation studies, we demonstrated that the performance of each of these five PRS 396 

methods depended substantially on the underlying genetic architecture for gene expression, with 397 

P+T methods generally performing better for sparse architecture whereas the Bayesian methods 398 

performing better for denser architecture. Consequently, since genetic architecture of gene 399 

expression is unknown apriori, we believe this justifies the use of the omnibus TWAS test 400 

implemented in OTTERS for practical use as this test had near-optimal performance across all 401 

simulation scenarios considered. While we developed our methods with summary-level reference 402 
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data in mind, we note that our prediction methods and OTTERS perform well (in terms of 403 

imputation accuracy and power) relative to existing TWAS methods like FUSION when individual-404 

level reference data are available.   405 

In our real data application using UKBB GWAS summary-level data, we compared 406 

OTTERS TWAS results using reference eQTL summary data from eQTLGen consortium to 407 

FUSION TWAS results using a substantially smaller individual-level reference dataset from GTEx 408 

V6. OTTERS identified 13 significant TWAS risk genes that were missed by FUSION using 409 

individual-level GTEx V6 reference data of blood tissue, suggesting that the use of larger 410 

reference datasets like eQTLGen in TWAS can identify novel findings. Interestingly, the genes 411 

missed by FUSION were instead detected using individual-level GTEx reference data of other 412 

tissue types that are more directly related to cardiovascular disease. By comparing OTTERS to 413 

FUSION when the same individual-level GTEx V8 reference data of whole blood samples were 414 

used, we still observed that OTTERS identified more risk genes than FUSION, which we believe 415 

is due to the former method accounting for the unknown genetic architecture of gene expression 416 

by using multiple regression methods to train GReX imputation models. These applied results 417 

were consistent with our simulation results. 418 

Among all individual methods, P+T is the most computationally efficient method. The 419 

Bayesian methods SDPR and PRS-CS require more computation time than the frequentist 420 

method lassosum as the former set of methods require a large number of MCMC iterations for 421 

model fit. By comparing the performance of these five methods in terms of the imputation accuracy 422 

and TWAS power in simulations and real applications, we conclude that none of these methods 423 

were optimal across different genetic architectures. We found that all methods provided distinct 424 

and considerable contributions to the final OTTERS TWAS results. These results demonstrate 425 

the benefits of OTTERS in practice, since OTTERS can combine the strength of these individual 426 

methods to achieve the optimal performance.  427 
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To enable the use of OTTERS by the public, we provide an integrated tool (see Availability 428 

of data and materials) to: (1) Train GReX imputation models (i.e., estimate eQTL weights in Stage 429 

I) using eQTL summary data by P+T, lassosum, SDPR, and PRS-CS; (2) Conduct TWAS (i.e., 430 

testing gene-trait association in Stage II) using both individual-level and summary-level GWAS 431 

data with the estimated eQTL weights; and (3) Apply ACAT-O to aggregate the TWAS p-values 432 

from individual training methods. Since the existing tools for P+T, lassosum, SDPR, and PRS-CS 433 

were originally developed for PRS calculations, we adapted and optimized them for training GReX 434 

imputation models in our OTTERS tool. For example, we integrate TABIX54 and PLINK55 tools in 435 

OTTERS to extract input data per target gene more efficiently. We also enable parallel 436 

computation in OTTERS for training GReX imputation models and testing gene-trait association 437 

of multiple genes.  438 

The OTTERS framework does have its limitations. First, training GReX imputation models 439 

by all individual methods on average cost ~20 minutes for all 5 training models per gene, which 440 

might be computationally challenging for studying eQTL summary data of multiple tissue types 441 

and for ~20K genome-wide genes. Users might consider prioritize P+T(0.001), lassosum, and 442 

SDPR training methods as these three provide complementary results in our studies. Second, the 443 

currently available eQTL summary statistics are mainly derived from individuals of European 444 

descent. Our OTTERS trained GReX imputations model based on these eQTL summary 445 

statistics, and the resulting imputed GReX could consequently have attenuated cross-population 446 

predictive performance56. This might limit the transferability of our TWAS results across 447 

populations. Third, our OTTERS cannot provide the direction of the identified gene-phenotype 448 

associations, which should be referred to the sign of the TWAS Z-score statistic per training 449 

method. Last, even though the method applies to integrate both cis- and trans- eQTL with GWAS 450 

data, the computation time and availability of summary-level trans-eQTL reference data are still 451 

the main obstacles. Our current OTTERS tool only considers cis-eQTL effects. Extension of 452 
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OTTERS to enable cross-population TWAS and incorporation of trans-eQTL effects is part of our 453 

ongoing research but out of the scope of this work.  454 

Our novel OTTERS framework using large-scale eQTL summary data has the potential to 455 

identify more significant TWAS risk genes than standard TWAS tools that use smaller individual-456 

level reference transcriptomic data and use only a single regression method for training GReX 457 

imputation models. This tool provides the opportunity to leverage not only available public eQTL 458 

summary data of various tissues for conducting TWAS of complex traits and diseases, but also 459 

the emerging summary-level data of other types of molecular QTL such as splicing QTLs, 460 

methylation QTLs, metabolomics QTLs, and protein QTLs. For example, OTTERS could be 461 

applied to perform proteome-wide association studies using summary-level reference data of 462 

genetic-protein relationships such as those reported by the SCALLOP consortium57, and 463 

epigenome-wide association studies using summary-level reference data of methylation-464 

phenotype relationships reported by Genetics of DNA Methylation Consortium (GoDMC) (see 465 

Web Resources). OTTERS would be most useful for the broad researchers who only have access 466 

to summary-level QTL reference data and summary-level GWAS data. The feasibility of 467 

integrating summary-level molecular QTL data and GWAS data makes our OTTERS tool valuable 468 

for wide application in current multi-omics studies of complex traits and diseases.  469 

Methods 470 

Traditional Two-Stage TWAS Analysis 471 

Stage I of TWAS estimates a GReX imputation model using individual-level expression 472 

and genotype data available from a reference dataset. Consider the following GReX imputation 473 

model from 𝑛 individuals and 𝑚 SNPs (multivariable regression model assuming linear additive 474 

genetic effects) within the reference dataset: 475 

𝑬𝑔 = 𝑿𝒘 + 𝝐,  𝝐 ∼ 𝑁(0, 𝜎𝜖
2𝑰).          (Equation 1) 476 
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Here, 𝑬𝑔  is a vector representing gene expression levels of gene 𝑔,  𝑿 is an 𝑛 × 𝑚 matrix of 477 

genotype data of SNP predictors proximal or within gene 𝑔, 𝒘 is a vector of genetic effect sizes 478 

(referred to as a broad sense of eQTL effect sizes), and 𝝐 is the error term. Here, we consider 479 

only cis-SNPs within 1 MB of the flanking 5’ and 3’ ends as genotype predictors that are coded 480 

within 𝑿 19,20,22. Once we configure the model in Equation 1, we can employ methods like 481 

PrediXcan, FUSION, and TIGAR to fit the model and obtain estimates of eQTL effect sizes (𝒘̂).  482 

Stage II of TWAS uses the eQTL effect sizes (𝒘̂) from Stage I to impute gene expression 483 

(GReX) in an independent GWAS and then test for association between GReX and phenotype. 484 

Given individual-level GWAS data with genotype data 𝑿𝑛𝑒𝑤 and eQTL effect sizes (𝒘̂) from Stage 485 

I, the GReX for 𝑿𝑛𝑒𝑤 can be imputed by 𝑮𝑹𝒆𝑿̂ = 𝑿𝑛𝑒𝑤  𝒘̂. The follow-up TWAS would test the 486 

association between 𝑮𝑹𝒆𝑿̂ and phenotype 𝒀 based on a generalized linear regression model, 487 

which is equivalent to a gene-based association test taking 𝒘̂  as test SNP weights. When 488 

individual-level GWAS data are not available, one can apply FUSION and S-PrediXcan test 489 

statistics to summary-level GWAS data as follows:  490 

𝑍𝑔,𝐹𝑈𝑆𝐼𝑂𝑁 =  
∑ (𝑤̂𝑗𝑍𝑗)

𝐽
𝑗=1

√𝒘̂′𝑽𝒘̂
 ,      𝑍𝑔,𝑆−𝑃𝑟𝑒𝑑𝑖𝑋𝑐𝑎𝑛 =  

∑ (𝑤̂𝑗𝜎̂𝑗𝑍𝑗)
𝐽
𝑗=1

√𝒘̂′𝑽𝒘̂
       (Equation 2) 491 

where 𝑍𝑗 is the single variant Z-score test statistic in GWAS for the jth SNP, 𝑗 = 1, … , 𝐽, for all test 492 

SNPs that have both eQTL weights with respect to the test gene 𝑔 and GWAS Z-scores; 𝜎̂𝑗  is 493 

the genotype standard deviation of the jth SNP; and 𝑽 denotes the genotype correlation matrix in 494 

FUSION Z-score statistic and genotype covariance matrix in S-PrediXcan Z-score statistic of the 495 

test SNPs. In particular, 𝜎̂𝑗  and 𝑽 can be approximated from a reference panel with genotype 496 

data of samples of the same ancestry such as those available from the 1000 Genomes 497 

Project58. If 𝒘̂ are standardized effect sizes estimated assuming standardized genotype 𝑿 and 498 
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gene expression 𝑬𝑔 in Equation 1, FUSION and S-PrediXcan Z-score statistics are equivalent13. 499 

Otherwise, the S-PrediXcan Z-score should be applied to avoid false positive inflation.  500 

TWAS Stage I Analysis using Summary-Level Reference Data  501 

 We now consider a variation of TWAS Stage I to estimate cis-eQTL effect sizes 𝒘̂ based 502 

on a multivariable regression model (Equation 1) from summary-level reference data. We assume 503 

that the summary-level reference data provide information on the association between a single 504 

genetic variant j (𝑗 = 1, … , 𝑚) and expression of gene g. This information generally consists of 505 

effect size estimates (𝑤̃𝑗 , 𝑗 = 1, … , 𝑚) and p-values derived from the following single variant 506 

regression models:  507 

 𝑬𝑔 = 𝑿𝑗𝑤𝑗 + 𝝐,  𝝐 ∼ 𝑁(0, 𝜎𝜖
2𝑰), 𝑗 =  1, … , 𝑚.      (Equation 3) 508 

Here, 𝑿𝑗 is an 𝑛 × 1 vector of genotype data for genetic variant 𝑗. Since eQTL summary data are 509 

analogous to GWAS summary data where gene expression represents the phenotype, we can 510 

estimate the eQTL effect sizes 𝒘̂ using marginal least squared effect estimates (𝑤̃𝑗 , 𝑗 = 1, … , 𝑚) 511 

and p-values from the QTL summary data as well as reference linkage disequilibrium (LD) 512 

information of the same ancestry26–29. Although all PRS methods apply to the TWAS Stage I 513 

framework, we only consider four representative methods as follows:  514 

P+T: The P+T method selects eQTL weights by LD-clumping and P-value Thresholding26. 515 

Given threshold 𝑃𝑇 for p-values and threshold 𝑅𝑇 for LD 𝑅2, we first exclude SNPs with marginal 516 

p-values from eQTL summary data greater than 𝑃𝑇 or strongly correlated (LD 𝑅2 greater than 𝑅𝑇) 517 

with another SNP having a more significant marginal p-value (or Z-score statistic value). For the 518 

remaining selected test SNPs, we use marginal standardized eQTL effect sizes from eQTL 519 

summary data as eQTL weights for TWAS in Stage II. We considered 𝑅𝑇 = 0.99  and 𝑃𝑇 =520 

(0.001, 0.05)  in this paper and implemented the P+T method using PLINK 1.955 (see Web 521 
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Resources).  We denote the P+T method with 𝑃𝑇 equal to 0.001 and 0.05 as P+T (0.001) and 522 

P+T (0.05), respectively.  523 

Frequentist lassosum: With standardized 𝑬𝒈 and X, we can show that the marginal least 524 

squared eQTL effect size estimates from the single variant regression model (Equation 3) is 𝒘̃ =525 

𝑿𝑇𝑬𝑔/𝑛 and that the LD correlation matrix is 𝑹 = 𝑿𝑇𝑿/𝑛. That is,  526 

𝑿𝑇𝑬𝑔 = 𝑛𝒘̃ and 𝑿𝑇𝑿 = 𝑛𝑹.      (Equation 4) 527 

By approximating 𝑛𝑹 by 𝑛𝑹𝒔 (𝑹𝑠 =  (1 − 𝑠)𝑹𝒓 + 𝑠𝑰 with a tuning parameter 0 < 𝑠 < 1, a reference 528 

LD correlation matrix 𝑹𝒓 from an external panel such as one from the 1000 Genomes Project58, 529 

and an identity matrix 𝑰) in the LASSO32 penalized loss function,  the frequentist lassosum 530 

method27 can tune the LASSO penalty parameter and 𝑠 using a pseudovalidation approach and 531 

then solve for eQTL effect size estimates 𝒘̂ by minimizing the approximated LASSO loss function 532 

requiring no individual-level data (see details in Supplemental Methods). 533 

 Bayesian SDPR: Bayesian DPR method33 as implemented in TIGAR22 estimates 𝒘̂ for the 534 

underlying multivariable regression model in Equation 1 by assuming a normal prior 𝑁(0, 𝜎𝑤
2 ) for 535 

𝑤𝑗  and a Dirichlet process prior59 𝐷𝑃(𝐻, 𝛼)  for 𝜎𝑤
2  with base distribution 𝐻  and concentration 536 

parameter 𝛼. SDPR29 assumes the same DPR model but can be applied to estimate the eQTL 537 

effect sizes 𝒘̂ using only eQTL summary data (see details in Supplemental Methods).  538 

Bayesian PRS-CS: The PRS-CS method28 assumes the following normal prior for 𝑤𝑗 and 539 

non-informative scale-invariant Jeffreys prior on the residual variance 𝜎𝜖
 2 in Equation 1  540 

𝑤𝑗~𝑁 (0,
𝜎𝜖

2

𝑛
𝜓𝑗) ,   𝑝(𝜎𝜖

2) ∝ 𝜎𝜖
 2;   𝜓𝑗~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝛿𝑗), 𝛿𝑗~𝐺𝑎𝑚𝑚𝑎(𝑏, 𝜙)， 541 

where local shrinkage parameter 𝜓𝑗 has an independent gamma-gamma prior and 𝜙 is a global-542 

shrinkage parameter controlling the overall sparsity of 𝒘. PRS-CS sets hyper parameters 𝑎 = 1 543 
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and 𝑏 = 1/2 to ensure the prior density of 𝑤𝑗 to have a sharp peak around zero to shrink small 544 

effect sizes of potentially false eQTL towards zero, as well as heavy, Cauchy-like tails which 545 

asserts little influence on eQTLs with larger effects. Posterior estimates 𝒘̂ will be obtained from 546 

eQTL summary data (i.e., marginal effect size estimates 𝒘̃ and p-values) and reference LD 547 

correlation matrix 𝑹 by Gibbs Sampler (see details in Supplemental Methods). We set 𝜙 as the 548 

square of the proportion of causal variants in the simulation and as 10−4 per gene in the real data 549 

application.  550 

OTTERS Framework 551 

As shown in Figure 1, OTTERS first trains GReX imputation models per gene g using P+T, 552 

lassosum, SDPR, and PRS-CS methods that each infers cis-eQTLs weights using cis-eQTL 553 

summary data and an external LD reference panel of similar ancestry (Stage I). Once we derive 554 

cis-eQTLs weights for each training method, we can impute the respective GReX using that 555 

method and perform the respective gene-based association analysis in the test GWAS dataset 556 

using the formulas given in Equation 2 (Stage II). We thus derive a set of TWAS p-values for gene 557 

g; one p-value for each training model that we applied. We then use these TWAS p-values to 558 

create an omnibus test using the ACAT-O34 approach that employs a Cauchy distribution for 559 

inference (see details in Supplemental Methods). We refer to the p-value derived from ACAT-O 560 

test as the OTTERS p-value.  561 

Marginal eQTL Effect Sizes 562 

In practice of training GReX imputation models using reference eQTL summary data, the 563 

marginal standardized eQTL effect sizes were approximated by 𝑤̃𝑗 ≈ 𝑍𝑗/√𝑚𝑒𝑑𝑖𝑎𝑛(𝑛𝑔,𝑗), where 564 

𝑍𝑗  denotes the corresponding eQTL Z-score statistic value by single variant test and  565 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑛𝑔,𝑗) denotes the median sample size of all cis-eQTLs for the target gene 𝑔. The median 566 

cis-eQTL sample size per gene was also taken as the sample size value required by lassosum, 567 
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SDPR, and PRS-CS methods, for robust performance. Since summary eQTL datasets (e.g., 568 

eQTLGen) were generally obtained by meta-analysis of multiple cohorts, the sample size per test 569 

SNP could vary across all cis-eQTLs of the test gene. The median cis-eQTL sample size ensures 570 

a robust performance for applying those eQTL summary data based methods.   571 

LD Clumping 572 

We performed LD-clumping with 𝑅𝑇=0.99 for all individual methods in both simulation and 573 

real studies. Using PRS-CS as an example, we also showed that LD-clumping does not affect the 574 

GReX imputation accuracy compared to no clumping in the real data testing (Figure S12). 575 

LD Blocks for lassosum, PRS-CS, and SDPR 576 

LD blocks were determined externally by ldetect60 for lassosum and PRS-CS, while 577 

internally for SDPR which ensure that SNPs in one LD block do not have nonignorable correlation 578 

(𝑅2 > 0.1) with SNPs in other blocks. 579 

Simulate GWAS Z-score 580 

Given gene expression 𝑬𝑔 simulated from the multivariate regression model 𝑬𝑔 = 𝑿𝒈𝒘 +581 

𝝐𝒈 with standardized genotype matrix 𝑿𝒈 and  𝝐𝑔 ∼ 𝑁(0, (1 − ℎ𝑒
2)𝑰, we assume GWAS phenotype 582 

data of 𝑛𝑔𝑤𝑎𝑠 samples are simulated from the following linear regression model 583 

𝒀 = ℎ𝑝(𝑿𝒈𝒘) + 𝝐𝒑, 𝝐𝑝 ∼ 𝑁(0, 𝑰).  584 

 Conditioning on true genetic effect sizes, the GWAS Z-score test statistics of all test SNPs will 585 

follow a multivariate normal distribution, 𝑀𝑉𝑁 (𝚺𝐠𝒘√𝑛𝑔𝑤𝑎𝑠ℎ𝑝
2 , 𝚺𝒈), where 𝚺𝒈 is the correlation 586 

matrix of the standardized genotype 𝑋𝑔  from test samples, and ℎ𝑝
2  denotes the amount of 587 

phenotypic variance explained by simulated GReX=𝑿𝒈𝒘38. Thus, for a given GWAS sample size, 588 

we can generate GWAS Z-score statistic values from this multivariate normal distribution. 589 
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FUSION using Individual-level Reference Data  590 

To train GReX imputation models by FUSION with individual-level reference data, we 591 

trained Best Linear Unbiased Predictor (BLUP) model61, Elastic-net regression62, LASSO 592 

regression32, and single best eQTL model as implemented in the FUSION tool (see Web 593 

Resource). Default settings were used to train GReX imputation models by FUSION in our 594 

simulation and real studies. LASSO regression was performed only for genes with positive 595 

estimated expression heritability. The eQTL weights of the best trained GReX imputation model 596 

will be used to conduct TWAS by FUSION. 597 

GTEx V8 Dataset 598 

GTEx V8 dataset (dbGaP phs000424.v8.p2) contains comprehensive profiling of WGS 599 

genotype data and RNA-sequencing (RNA-seq) transcriptomic data across 54 human tissue 600 

types of 838 donors. The GTEx V8 WGS genotype data of all samples were used to construct 601 

reference LD in our studies. The GTEx V6 RNA-seq data of whole blood samples were used to 602 

train GReX imputation models by FUSION, and the GTEx V8 RNA-seq data of additional whole 603 

blood samples (n=315) were used to test GReX imputation accuracy in our studies. GTEx V8 604 

RNA-seq data of all whole blood samples (n=574) were also used as reference data for 605 

comparing the performance of OTTERS and FUSION.   606 

eQTLGen Consortium Dataset 607 

The eQTLGen consortium23 dataset was generated based on meta-analysis across 37 608 

individual cohorts (n=31,684) including GTEx V6 as a sub-cohort. eQTLGen samples consist of 609 

25,482 blood (80.4%) and 6,202 peripheral blood mononuclear cell (19.6%) samples. We 610 

considered SNPs with minor allele frequency (MAF) > 0.01, Hardy–Weinberg P value >0.0001, 611 

call rate >0.95, genotype imputation 𝑟2  > 0.5 and observed in at least 2 cohorts23. We only 612 

considered cis-eQTL (within ±1MB around gene transcription start sites (TSS)) with test sample 613 
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size > 3000. As a result, we used cis-eQTL summary data of 16,699 genes from eQTLGen to 614 

train GReX imputation models for use in OTTERS in this study. 615 

UK Biobank GWAS Data of Cardiovascular Disease 616 

Summary-level GWAS data of Cardiovascular Disease from UKBB (n=459,324, case 617 

fraction = 0.319)35 were generated by BOLT-LMM based on the Bayesian linear mixed model per 618 

SNP63 with assessment centered, sex, age, and squared age as covariates. Although BOLT-LMM 619 

was derived based on a quantitative trait model, it can be applied to analyze case-control traits 620 

and has well-controlled false positive rate when the trait is sufficiently balanced with case fraction 621 

≥ 10% and samples are of the same ancestry . The tested dichotomous cardiovascular disease 622 

phenotype includes a list of sub-phenotypes: hypertension, heart/cardiac problem, peripheral 623 

vascular disease, venous thromboembolic disease, stroke, transient ischaemic attack (tia), 624 

subdural haemorrhage/haematoma, cerebral aneurysm, high cholesterol, and other 625 

venous/lymphatic disease.  626 

Data Availability 627 

eQTLGen consortium data are available from their portal website (https://www.eqtlgen.org). UK 628 

Biobank summary-level GWAS data are available through the Alkes Group 629 

(https://alkesgroup.broadinstitute.org/UKBB). Individual-level GTEx reference data are available 630 

through dbGap (Accession phs000424.v8.p2). ROS/MAP/MSBB WGS data used in our 631 

simulation studies are available through Synapse with data access application 632 

(https://www.synapse.org/#!Synapse:syn10901595). All source code and scripts used in this 633 

study are available through OTTERS Github page (https://github.com/daiqile96/OTTERS). 634 

Ethics Approval 635 
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All data used in this study are de-identified genotype data and summary level eQTL and GWAS 636 

data. ROS/MAP genotype data were collected with ethics approval from the IRB at Rush 637 

University and all participants consented to participate.  638 
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SDPR: https://github.com/eldronzhou/SDPR 682 

TWAS hub: http://twas-hub.org 683 

 684 

  685 
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Tables 686 

Table 1. Test 𝑹𝟐 in 315 whole blood tissue samples from GTEx V8. 687 

 688 

689 

 P+T(0.001) P+T(0.05) lassosum SDPR PRS-CS FUSIONb 

# Genes with 

𝑅2  > 0.01 
9,816 9,662 8,718 9,670 10,337 4,704 

Median 𝑅2a 0.044 0.0430 0.0416 0.0418 0.0517 0.0367 

a: Median 𝑅2 among genes with test 𝑅2 > 0.01 per method. 

b: FUSION was trained on GTEx V6 blood samples while all other training methods were trained using 

eQTLGen summary statistics (n=31,684) and reference LD from GTEx V8 samples. 
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Table 2. Independent TWAS risk genes of cardiovascular disease identified by OTTERS. 690 
Reference eQTL summary data from eQTLGen consortium and GWAS summary data from 691 
UKBB were used. The corresponding TWAS p-values by 5 individual PRS methods and 692 

OTTERS are shown in the table with significant p-values in bold, and those for genes with test 693 
GReX 𝑅2 ≤ 0.01 were shown as a dash. 694 

CHROM ID OTTERS P+T(0.001) P+T(0.05) lassosum SDPR PRS-CS 

1 CLCN6a 5.75E-15 4.94E-09 5.40E-08 8.77E-09 1.19E-15 1.43E-09 
1 NPPAb 4.32E-08 1.55E-08 2.14E-07 - - 6.71E-06 
1 PSRC1a 8.37E-20 5.68E-08 8.46E-07 6.26E-11 1.67E-20 1.41E-12 
2 RP11-378A13.1a 9.78E-09 3.97E-02 4.98E-02 1.62E-05 1.96E-09 1.15E-04 
4 LINC01093c 2.57E-09 9.85E-02 5.31E-02 5.13E-10 1.08E-02 2.41E-02 
5 CPEB4b 3.05E-14 1.26E-02 2.05E-02 2.70E-05 6.05E-15 1.60E-07 
6 SERPINB6c 1.47E-07 2.12E-01 2.24E-01 7.56E-03 2.95E-08 7.53E-04 
6 CARMIL1c 9.23E-09 5.34E-03 3.41E-03 4.15E-03 1.85E-09 1.72E-03 
6 ZSCAN12P1c 1.84E-08 6.00E-01 5.75E-01 4.62E-01 3.67E-09 3.10E-01 
6 HCG4P7c 8.93E-50 3.70E-01 3.69E-01 2.30E-01 1.79E-50 7.26E-01 
6 HCG4P3c 5.33E-20 4.20E-01 4.05E-01 5.03E-04 1.07E-20 2.42E-03 
6 HLA-Sc 4.57E-07 7.13E-01 7.31E-01 3.02E-01 9.14E-08 2.33E-01 
7 PSPHP1c 1.21E-09 2.17E-01 2.26E-01 9.65E-03 2.43E-10 1.10E-01 
8 LPLc 5.73E-07 1.78E-03 3.26E-03 4.44E-02 1.15E-07 1.05E-04 
8 PTP4A3c 1.28E-06 8.13E-02 8.33E-02 6.23E-05 2.58E-07 1.67E-03 
10 CAMK1Da 2.51E-09 3.83E-02 4.97E-02 1.23E-03 5.03E-10 4.97E-05 
10 NT5C2b 1.21E-07 1.69E-06 2.92E-06 1.64E-05 3.15E-07 2.69E-08 
11 TNNT3b 1.67E-10 1.09E-06 3.33E-06 2.03E-09 3.40E-11 4.01E-07 
11 C11orf49b 2.28E-06 8.55E-07 1.78E-06 5.44E-05 - 2.93E-04 
11 SIDT2a 7.26E-09 6.14E-05 1.33E-04 3.66E-05 1.46E-09 3.81E-07 
15 CSKb 2.30E-09 1.70E-07 2.15E-06 7.41E-10 2.80E-09 2.17E-09 
15 FESb 2.87E-32 4.78E-08 1.23E-06 9.13E-24 5.75E-33 1.94E-15 
15 SLCO3A1c 3.78E-08 1.85E-02 3.15E-02 4.65E-05 7.57E-09 1.14E-03 
16 MBTPS1b 5.80E-08 2.62E-01 3.05E-01 9.15E-04 1.16E-08 2.34E-03 
16 MTHFSDa 4.65E-07 5.16E-02 5.94E-02 1.65E-02 9.30E-08 3.20E-03 
17 ACEb 9.42E-07 4.93E-06 1.03E-05 4.23E-06 9.66E-07 2.68E-07 
18 RALBP1c 1.40E-06 1.48E-01 1.54E-01 2.12E-04 2.81E-07 5.55E-03 
19 MRI1b 8.38E-09 8.34E-03 1.60E-02 7.79E-03 1.68E-09 2.65E-03 
19 HAUS8b 1.60E-07 4.41E-08 1.38E-07 1.67E-06 1.42E-06 3.29E-05 
19 SULT2B1c 2.32E-06 7.73E-07 - - 2.97E-02 1.10E-02 
19 NTN5a 9.03E-10 2.75E-08 1.16E-07 6.23E-06 1.85E-10 9.73E-09 
19 RPL28b 3.76E-07 7.33E-02 1.16E-01 6.64E-03 7.52E-08 4.23E-03 
20 CTSZb 3.32E-09 2.57E-02 1.99E-02 3.40E-09 8.25E-10 1.04E-01 
20 EDN3c 1.29E-07 3.61E-08 9.15E-08 8.60E-06 5.90E-03 1.58E-02 
20 ZBTB46c 1.07E-06 2.83E-07 8.35E-06 - 1.81E-03 1.27E-05 
20 OPRL1a 5.84E-07 3.44E-07 2.69E-06 1.85E-03 5.51E-05 1.90E-07 
21 FAM3Bc 1.08E-10 2.28E-02 2.58E-02 8.07E-06 2.17E-11 1.04E-05 
21 MX1c 6.04E-22 4.36E-01 3.83E-01 3.16E-07 1.21E-22 1.24E-03 

a: Risk gene of UKBB cardiovascular disease in TWAS-hub identified using GTEx whole blood tissue.  

b: Risk genes of UKBB cardiovascular disease in TWAS-hub identified using other GTEx tissue types.    

c: Novel risk gene      
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Figure Titles and Legends  695 

Figure 1. OTTERS framework.  696 

OTTERS estimates cis-eQTL weights from eQTL summary data and reference LD panel using 697 

four imputation models (Stage I), and conducts ACAT-O test to combine gene-based 698 

association test p-values from individual methods with individual/summary level test GWAS data 699 

(Stage II). 700 

Figure 2. Test 𝑹𝟐 (A) and TWAS power (B) comparison in simulation studies  701 

Various proportions of true causal cis-eQTL 𝑝𝑐𝑎𝑢𝑠𝑎𝑙 = (0.001, 0.01) and gene expression 702 

heritability ℎ𝑒
2 = (0.01, 0.05, 0.1) were considered in the simulation studies. The GWAS sample 703 

size was chosen with respect to ℎ𝑒
2 values. The proportion of phenotype variance explained by 704 

gene expression (ℎ𝑝
2) was set to be 0.025. TWAS was conducted using simulated GWAS Z-705 

scores.  706 

Figure 3. Test 𝑹𝟐 by PRS-CS versus P+T(0.001), P+T(0.05), lassosum, SDPR, FUSION.   707 

Test 𝑅2 by PRS-CS versus P+T(0.001) (A), P+T(0.05) (B), lassosum (C), SDPR (D), and FUSION 708 

(E) with 315 GTEx V8 test samples, with different colors denoting whether test 𝑅2 > 0.01 only by 709 

PRS-CS (red), only by the y axis method (green), or both methods (blue). Genes with test 𝑅2 > 710 

0.01 by at least one method were included in the plot. 711 

Figure 4. Manhattan plot of TWAS results by OTTERS.  712 

Manhattan plot of TWAS results by OTTERS using GWAS summary-level statistics of 713 

cardiovascular disease and imputation models fitted based on eQTLGen summary statistics. 714 

Independently significant TWAS risk genes are labeled.    715 
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