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Abstract

Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable
to summary-level reference eQTL datasets. The development of TWAS methods that can harness
summary-level reference data is valuable to enable TWAS in broader settings and enhance power
due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS
(Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple
polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL
reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and

powerful TWAS tool by both simulations and application studies.

Keywords:

Transcriptome-wide association study; Summary-level eQTL reference data; PRS method;

GWAS; UK Biobank; eQTLGen; Cardiovascular disease

Transcriptome-wide association study (TWAS) is a valuable analysis strategy for
identifying genes that influence complex traits and diseases through genetic regulation of gene
expression'=. Researchers have successfully deployed TWAS analyses to identify risk genes for
complex human diseases, including Alzheimer’s disease®?, breast cancer®-!!, ovarian cancer!?*3,
and cardiovascular disease'#!®. A typical TWAS consists of two separate stages. In Stage |,
TWAS acquires individual-level genetic and expression data from relevant tissues available in a
reference dataset like the Genotype-Tissue Expression (GTEX) project!®’ or the North American
Brain Expression Consortium (NABEC)!8, and trains multivariable regression models on the
reference data treating gene expression as outcome and SNP genotype data (typically cis-SNPs

nearby the test gene) as predictors to determine genetically regulated expression (GReX). After
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Stage | that uses the GReX regression models to estimate effect sizes of SNP predictors that, in
the broad sense, are expression quantitative trait loci (eQTLs), Stage Il of TWAS proceeds by
using these trained eQTL effect sizes to impute GReX within an independent GWAS of a complex
human disease or trait. One can then test for association between the imputed GReX and
phenotype, which is equivalent to a gene-based association test taking these eQTL effect sizes

as corresponding test SNP weights!®-2,

For Stage | of TWAS, a variety of training tools exist for fitting GReX regression models
using reference expression and genetic data, including PrediXcan'®, FUSION?°, and TIGAR?.
While these methods all employ different techniques for model fitting, they all require individual-
level reference expression and genetic data to estimate eQTL effect sizes for TWAS. Therefore,
these methods cannot be applied to emerging reference summary-level eQTL results such as
those generated by the eQTLGen?* and CommonMind?* consortia, which provide eQTL effect
sizes and p-values relating individual SNPs to gene expression. The development of TWAS
methods that can utilize such summary-level reference data is valuable to permit applicability of
the technique to broader analysis settings. Moreover, as TWAS power increases with increasing
reference sample size?®, TWAS using summary-level reference datasets can lead to enhanced
performance compared to using individual-level reference datasets since the sample sizes of the
former often are considerably larger than the latter. For example, the sample size of the summary-
based eQTLGen reference sample is 31,684 for blood, whereas the sample size of the individual-
level GTEx V6 reference is only 338 for the same tissue. Consequently, TWAS analysis
leveraging the summary-based eQTLGen dataset as reference likely can provide novel insights

into genetic regulation of complex human traits.

In this work, we propose a framework that can use summary-level reference data to train
GReX regression models required for Stage | of TWAS analysis. Our method is motivated by a

variety of published polygenic risk score (PRS) methods?¢-3! that can predict phenotype in a test
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83  dataset using summary-level SNP effect-size estimates and p-values based on single SNP tests
84  from an independent reference GWAS. We can adapt these PRS methods for TWAS since eQTL
85 effect sizes are essentially SNP effect sizes resulting from a reference “GWAS” of gene
86  expression. Thus, our predicted GReX in Stage Il of TWAS is analogous to the PRS constructed
87  based on training GWAS summary statistics of single SNP-trait association. Here, we adapt four
88 representative summary-data based PRS methods — P-value Thresholding with linkage
89  disequilibrium (LD) clumping (P+T)?¢, frequentist LASSO?* regression based method lassosum?’,
90 nonparametric Bayesian Dirichlet Process Regression (DPR) model®® based method SDPR?,
91 and Bayesian multivariable regression model based method with continuous shrinkage (CS)
92  priors PRS-CS? for TWAS analysis. We apply each of these PRS methods to first train eQTL
93 effect sizes based on a multivariable regression model from summary-level reference eQTL data
94  (Stage I), and subsequently use these eQTL effect sizes (i.e., eQTL weights) to impute GReX

95 and then test GReX-trait association in an independent test GWAS (Stage Il).

96 As we will show, the PRS method with optimal performance for TWAS depends on the
97 underlying genetic architecture for gene expression. Since the genetic architecture of expression
98 is unknown apriori, we maximize the performance of TWAS over different possible architectures
99 by proposing a novel TWAS framework called OTTERS (Omnibus Transcriptome Test using
100 Expression Reference Summary data). OTTERS first constructs individual TWAS tests and p-
101  values using eQTL weights trained by each of the PRS techniques outlined above, and then
102  calculates an omnibus test p-value using the aggregated Cauchy association test** (ACAT-O)
103  with all individual TWAS p-values (Figure 1). OTTERS is applicable to both summary-level and

104 individual-level test GWAS data within Stage Il TWAS analysis.

105 In subsequent sections, we first describe how to use the PRS methods on summary-level
106 reference eQTL data in Stage | TWAS, and then describe how we can use the resulting eQTL

107 weights to perform Stage Il TWAS using OTTERS. We then evaluate the performance of
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108 individual PRS methods and OTTERS using simulated expression and real genetic data based
109 on patterns observed in real datasets. Interestingly, when we assume individual-level reference
110  data are available, we observe that OTTERS outperforms the popular FUSION?® approach across
111 all simulation settings considered. Many of the individual PRS methods also outperform FUSION
112  in these settings. We then apply OTTERS to blood eQTL summary-level data (h=31,684) from
113 the eQTLGen consortium? and GWAS summary data of cardiovascular disease from the UK
114  Biobank (UKBB)%*. By comparing OTTERS results to those of FUSION?® using individual-level
115  GTEx reference data of whole blood tissue, we demonstrate that OTTERS using large summary-
116  level reference datasets and multiple gene expression imputation models can successfully reveal
117  potential risk genes missed by FUSION based on smaller individual-level reference datasets and

118 only one model. Finally, we conclude with a discussion.
119 Results

120 Method Overview

121 For the standard two-stage TWAS approach, Stage | estimates a GReX imputation model
122 using individual-level expression and genotype data available from a reference dataset, and then
123  Stage Il uses the eQTL effect sizes from Stage | to impute gene expression (GReX) in an
124  independent GWAS and test for association between GReX and phenotype. GReX for test
125 samples can be imputed from individual-level genotype data and eQTL effect size estimates.
126  When individual-level GWAS data are not available, one can instead use summary-level GWAS
127 data for TWAS by applying the TWAS Z-score statistics proposed by FUSION? and S-

128  PrediXcan® (see details in Methods).

129 Since eQTL summary data are analogous to GWAS summary data where gene
130  expression represents the phenotype, we can follow the idea from PRS methods to estimate the

131  eQTL effect sizes based on a multivariable regression model using only marginal least squared
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132  effect estimates and p-values (based on a single variant test) from the eQTL summary data as
133 well as a reference LD panel from samples of the same ancestry?®-2°. Although all PRS methods
134 are applicable to TWAS Stage |, we only consider four representative methods — P+T2%,
135  Frequentist lassosum?’, Nonparametric Bayesian SDPR?°, Bayesian PRS-CS? (see details in

136  Methods).

137 As shown in Figure 1, OTTERS first trains GReX imputation models per gene g using P+T,
138  lassosum, SDPR, and PRS-CS methods that each infers cis-eQTL weights using cis-eQTL
139 summary data and an external LD reference panel of the same ancestry (Stage ). Once we derive
140  cis-eQTL weights for each training method, we can impute the respective GReX using that
141  method and perform the respective gene-based association analysis in the test GWAS dataset.
142  We thus derive a set of TWAS p-values for gene g, one per training method. We then use these
143  TWAS p-values to create an omnibus test using the ACAT-O3* approach that employs a Cauchy
144  distribution for inference (see details in Supplemental Methods). We refer to the p-value derived
145  from ACAT-O test as the OTTERS p-value. The ACAT-0O3%* approach has been widely used in
146  hypothesis testing to combine multiple testing methods for the same hypothesis®’—3°, which has
147  been shown as an effective approach to leverage different test methods to increase the power
148  while still managing to control for type | error. Adding TWAS p-values based on additional PRS
149  methods to the ACAT-O test can possibly improve the power further at the cost of additional

150  computation.

151 Simulation Study

152 We used real genotype data from 1894 whole genome sequencing (WGS) samples from
153  the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) cohort*®#! and
154  Mount Sinai Brain Bank (MSBB) study*? for simulation. We divided 14,772 genes into five

155  groups according to gene length, and randomly selected 100 genes from each group (500

156  genes in total). We randomly split samples into 568 training (30%) and 1326 testing samples
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157  (70%) to mimic a relatively small sample size in the real reference panel for training gene
158  expression imputation models.. From the real genotype data, we simulated 6 scenarios with 2
159  different proportions of causal cis-eQTL, p.qusa; = (0.001,0.01), as well as 3 different

160  proportions of gene expression variance explained by causal eQTL, hZ2 = (0.01,0.05,0.1).

161 We generated gene expression of gene g (E,) using the multivariable regression model
162 E; = X w + €4, where X, represents the standardized genotype matrix of the randomly

163  selected causal eQTL of gene g, €, ~ N(0, (1 — hZ)I). We generated the eQTL effect sizes w
164 from N(0,1) and then re-scaled these effects to ensure that the expression variance explained
165 by all causal variants is h2. We generated 10 replicates of gene expression per scenario. For

166  each simulated gene expression, we then generated 10 sets of GWAS Z-scores to perform a

167  total of 50,000 TWAS simulations. We generated the GWAS Z-scores from a multivariate
168  normal distribution with Z ~ MV N <Zgw /ngwas hZ, Zg>38, where w is the true causal eQTL

169  effect sizes, X, is the correlation matrix of the standardized genotype X, from test samples,
170 ngyqs is the assumed GWAS sample size, and hf, denotes the amount of phenotypic variance
171 explained by simulated GReX=X,w (see Methods). We set hfg = 0.025. To calibrate power, we
172 considered ng,,,s = (200K, 300K, 400K, 500K) for scenarios with hZ = 0.01, ngyes = (25K, 50K,
173 75K, 100K) for scenarios with h2 = 0.05, and Ngwas = (10K, 20K, 30K, 40K) for scenarios with

174  hZ=0.1.

175 In Stage | of our TWAS analysis, we applied P+T (0.001), P+T (0.05), lassosum, SDPR,
176  and PRS-CS methods to estimate eQTL weights using eQTL summary data and the reference
177 LD of training samples. In Stage Il of the TWAS, we used the estimated eQTL weights and the
178 simulated GWAS Z-scores to conduct a gene-based association test. In addition to gene-based
179  association tests based on eQTL weights per training method, we further constructed the

180  corresponding OTTERS p-values. We evaluated the performance of the training methods with
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181 test samples, comparing test R? thatwas the squared Pearson correlation coefficient between
182  imputed GReX and simulated gene expression. We evaluated TWAS power given by the
183  proportion of 50,000 repeated simulations with TWAS p-value < 2.5 x 107® (genome-wide
184  significance threshold adjusting for testing 20K independent genes). We only considered genes

185  with GReX test R? > 0.01 in the power analysis.

186 As shown in Figure 2, we demonstrated that the Stage | training method with optimal test
187  R? and TWAS power depended on the underlying genetic architecture of gene expression (p.qusai)
188 as well as gene expression heritability (h2). In situations where true cis-eQTLs were sparse
189  (Peausar = 0.001) and the gene expression heritability was small (h2 = 0.01), P+T (0.05) method
190 performed the best with the highest TWAS power among all individual methods. When gene
191  expression heritability is low (h2 = 0.01), the power of P+T (0.001) and lassosum methods were
192  shown as the lowest for considering only genes with test R? > 0.01. When gene expression
193  heritability increased (hZ = 0.05 or 0.1) within this sparse eQTL model, P+T (0.001) and PRS-CS
194  were generally the optimal methods. For a less sparse model with p.4,s0: = 0.01, SDPR and PRS-
195 CS generally performed best among the individual methods. Relative to individual methods, we
196  found that combining the TWAS p-values based on the four PRS training methods together for

197 analysis in our OTTERS framework obtained the highest power across all scenarios.

198 To evaluate the type | error of the individual PRS methods along with OTTERS, we picked
199 one simulated replicate per gene from the scenario with h2 =0.1 and p.gyusq = 0.001 ,
200 simulated 2 x 103 phenotypes from N(0,1), and permuted the eQTL weights for TWAS to
201  perform a total of 10° null simulations. OTTERS was shown well calibrated in the tails of the
202  distribution as shown by quantile-quantile (Q-Q) plots of TWAS p-values in Figure S1. We also
203  observed that OTTERS had well-controlled type | error for stringent significance levels between
204 107* and 2.5 x 107° (Table S1), which are typically utilized in TWAS. For more modest

205  significance thresholds (a« = 1072) , we noted that OTTERS had a slightly inflated type-I error rate.
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206  This modest inflation is consistent with the findings of the original ACAT-O work, which showed
207  that the Cauchy-distribution-based approximation that ACAT-O employs may not be accurate for
208 larger p-values when correlation among tests is strong®*. This suggests that modest OTTERS p-

209 values may be interpreted with caution.

210 We also compared the performance of our individual PRS training methods to those of
211  FUSION assuming individual-level reference data were available for the latter method to train
212 GReX models. As shown in Figure 2A, we interestingly observed that our training methods yielded
213 similar or improved test R? compared to FUSION in this situation, with SDPR and PRS-CS
214  outperforming FUSION across all simulation settings. Comparing TWAS power, we found that
215  OTTERS outperformed FUSION by a considerable margin in our simulations (Figure 2B). These
216  simulation results suggest that, while we developed OTTERS based on PRS training methods to
217  handle summary-level reference data, OTTERS can still improve TWAS power when individual-
218 level reference data are available. This is likely because OTTERS accounts for multiple possible
219 models of genetic architectures of gene expression assumed by the different PRS training

220 methods.

221 GReX Imputation Accuracy in GTEx V8 Blood Samples

222 To evaluate the imputation accuracy of P+T (0.001), P+T (0.05), lassosum, SDPR, and
223  PRS-CS methods in real data, we applied these training methods to summary-level eQTL
224  reference data from the eQTLGen consortium? with n=31,684 blood samples, to train GReX
225  imputation models for 16,699 genes. For test data, we downloaded the transcriptomic data of 315
226 blood tissue samples that are in GTEx V8 but were not part of GTEx V6 (as GTEx V6 samples
227  contributed to the reference eQTLGen consortium summary data). For these 315 samples, we
228 compared imputed GReX to observed expression levels. We considered trained imputation
229  models with test R? > 0.01 as “valid” models, as suggested by previous TWAS methods?®43, We

230 also compared imputation accuracy of these five training models to those using FUSION based
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231 on a smaller individual-level training dataset (individual-level GTEx V6 reference dataset; see
232  Methods). For such models, we compared the test R? for genes that had test R? > 0.01 by at least

233 one training method.

234 We observed that PRS-CS obtained the most “valid” GReX imputation models with test
235 R?>0.01. Among 16,699 tested genes, PRS-CS obtained “valid” GReX imputation models for
236 10,337 genes, compared to 9,816 genes by P+T (0.001) (5.0% less valid genes than PRS-CS),
237 9,662 genes by P+T (0.05) (6.5% less), 8,718 genes by lassosum (15.7% less), 9,670 genes by
238  SDPR (6.5% less), and 4,704 genes by FUSION (54.5% less) (Table 1). Among the “valid” GReX
239  imputation models obtained by each method, the ones trained by PRS-CS have the highest
240 median test R2. The P+T (0.001) method obtained the second most “valid” GReX imputation
241  models with the second largest median test R?, as compared to P+T (0.05), lassosum, and SDPR
242 (Table 1). We note that the performance of PRS-CS method was not sensitive to the global

243  shrinkage parameter (Figure S2).

244 By comparing test R? per “valid” GReX imputation model by PRS-CS versus the other
245  methods (Figure 3), we observed that PRS-CS had the best overall performance for imputing
246  GReX as it provided the most “valid” models with higher GReX imputation accuracy compared to
247  P+T methods, lassosum, SDPR, and FUSION. Comparing the test R? among the other four
248  training methods, we observed that these two P+T methods obtained similar test R? per “valid”
249 model. Meanwhile, the test R? per valid model varied widely among the P+T methods, lassosum,
250 and SDPR (Figure S3), suggesting that none of these four were optimal across all genes and their
251  performance likely depended on the underlying unknown genetic architecture. These results are

252 consistent with our simulation results.

253  TWAS of Cardiovascular Disease

10
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Using the eQTL weights trained by P+T (0.001), P+T (0.05), lassosum, SDPR, and PRS-
CS methods with the eQTLGen?® reference data and reference LD from GTEx V8 WGS
samples*, we applied our OTTERS framework to the summary-level GWAS data of
Cardiovascular Disease from UKBB (n=459,324, case fraction = 0.319)* (see Methods). We
performed TWAS of cardiovascular disease for 16,678 genes. First, for each gene, we obtained
TWAS p-values per individual training method (P+T (0.001), P+T (0.05), lassosum, SDPR, and
PRS-CS). Second, we performed genomic control* for TWAS test statistics generated under
each specific training model, by scaling all test statistics to ensure that the median test p-value
equals to 0.5. Last, we only considered genes with test GReX R? > 0.01 by at least one PRS
training method in additional GTEx V8 samples in the follow-up ACAT-O test. We combined the
adjusted p-values across all five training models using ACAT-O to obtain our OTTERS test
statistics and p-values. Genes with OTTERS p-values < 2.998 x 10~° (Bonferroni corrected

significance level) were identified as significant TWAS genes for cardiovascular risk.

In total, we identified 40 significant TWAS genes by using OTTERS. To identify
independently significant TWAS genes, we calculated the R? (squared correlation) between the
GReX predicted by PRS-CS for of each pair of genes. For a pair of genes with the predicted
GReX R? > 0.5, we only kept the gene with the smaller TWAS p-value as the independently
significant gene. OTTERS obtained 38 independently significant TWAS genes (Table 2, Figure
3B), compared to 17 independently significant genes by P+T (0.001), 11 by P+T (0.05), 10 by
lassosum, 41 by SDPR, and 12 by PRS-CS. Among these 38 independent TWAS risk genes
identified by OTTERS, gene RP11-378A13.1 (OTTERS p-value = 9.78 x 10~°) was not within 1
MB of any known GWAS risk loci with genomic-control corrected p-value <5 x 1072 in the
UKBB summary-level GWAS data. This novel risk gene RP11-378A13.1 was also identified to
be a significant TWAS risk gene in blood tissue for systolic blood pressure, high cholesterol, and

cardiovascular disease by FUSIONZ.

11
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279 We compared our OTTERS results with the TWAS results shown on TWAS hub (see
280  Web Resource) obtained by FUSION using the same UKBB GWAS summary data of

281  cardiovascular disease but using a smaller individual-level reference expression dataset from
282  GTEx V6 (whole blood tissue, n=338). Of the 38 independent genes that OTTERS identified
283  from TWAS with eQTLGen reference data of whole blood, FUSION only identified 8 of these
284  genes (CLCN6b, PSRC1, RP11-378A13.1, CAMKI1D, SIDT2, MTHFSD, NTN5, OPRL1) when
285  using the GTEXx V6 reference data of the same tissue. FUSION did identify 13 additional

286 OTTERS genes (NPPA, CPEB4, NT5C2, TNNT3, C110rf49, CSK, FES, MBTPS1, ACE, MRI1,
287 HAUSS, RPL28, CTSZ), when considering all available tissue types in GTEx V6 reference data.
288  These genes were identified by FUSION when considering the GTEXx V6 reference data of

289  artery, thyroid, adipose visceral, and nerve tibial tissues. For example, the most significant gene
290 FES (OTTERS p-value = 2.87 x 10732) was identified by FUSION using GTEXx reference data of
291 artery tibial, thyroid, and adipose visceral omentum tissues, and was also identified as a TWAS

292  risk gene for high blood pressure, which is strongly related to cardiovascular disease?®.

293 Our OTTERS method also identified 17 novel risk genes (LINC01093, SERPINBS,
294  CARMIL1, ZSCAN12P1, HCG4P7, HCG4P3, HLA-S, PSPHP1, LPL, PTP4A3, SLCO3Al,
295 RALBP1, SULT2B1, EDN3, ZBTB46, FAM3B, MX1) that were not detected by FUSION using
296 GTEXx V6 data, where EDN3 (Endothelin 3, a member of the endothelin family) was shown to be
297 active in the cardiovascular system and play an important role in the maintenance of blood

298  pressure or generation of hypertension®’.

299 By comparing OTTERS results with the ones obtained by individual methods (Table 2;
300 Figure 4; Figure S4), we found that all individual methods contributed to the OTTERS results. For
301 example, the novel risk gene LINC01093 was only identified by lassosum, while genes CPEB4,
302 SIDT2, and ACE were only detected by PRS-CS and SDPR and the novel risk gene EDN3 was

303 only identified by the P+T methods. To better understand the differences among individual
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methods, we plotted the eQTL weights estimated by P+T (0.001), P+T (0.05), lassosum, SDPR,
and PRS-CS for three example genes that were only detected by one or two individual methods
(Figures S5-S7). For these genes, we plotted the eQTL weights produced by each method with
such weights color coded with respect to —log,, (GWAS p-values) from the UKBB GWAS
summary statistics and shape coded with respect to the direction of UKBB GWAS Z-score
statistics. Generally, significant TWAS p-values would be obtained by methods that obtained
eQTL weights with relatively large magnitude for SNPs with relatively more significant GWAS p-

values.

In Figure S5, we showed the eQTL weights for gene SIDT2, which was a significant risk
gene identified by both PRS-CS and SDPR, and had p-values < 10~* by other methods.
Compared to lassosum, SDPR had more significant GWAS SNPs colocalized with eQTLs
having relatively large weights in the test region, and PRS-CS had more non-significant GWAS
SNPs colocalized with eQTLs having zero weights. Compared to the P+T methods, SDPR and
PRS-CS based on a multivariate regression model modeled LD among all test SNPs, and thus
estimated eQTL weights leading to significant TWAS findings. In Figure S6, we provided the
results of gene EDN3, which was only identified by P+T methods (p-values < 9.15 x 1078),
Compared to P+T methods, SDPR (p-value = 5.9 x 1073) and PRS-CS (p-value = 0.0158) had
fewer significant GWAS SNPs colocalized with eQTLs that had relatively large weights in the
test region, while lassosum (p-value = 8.6 x 10~%) assigned relatively large weights to more
non-significant GWAS SNPs. In Figure S7, we provided results for gene LINC01093, which was
only identified by lassosum. For this gene, SDPR and PRS-CS estimated near-zero weights for
most test SNPs with significant GWAS p-values in the test region. Most significant GWAS SNPs
did not have eQTL test p-values < 0.001 or 0.05, and were thus filtered out by P+T methods.
lassosum was the only method that produced relatively large eQTL weights that co-localized

with GWAS significant SNPs.
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329

330 These results were consistent with our simulation study results, demonstrating that the
331  performance of different individual methods depended on the underlying genetic architecture. We
332 do note that there were a handful of genes identified by an individual method that were not
333  significant using OTTERS (Table S2). Nonetheless, the omnibus test borrows strength across all
334  individual methods, thus generally achieves higher TWAS power and identifies the group of most

335  robust TWAS risk genes.

336 By examining the Q-Q plots of TWAS p-values, we observed a moderate inflation for all
337 methods (Figure S8). Such inflation in TWAS results is not uncommon*¢-%°, which could be due
338  to similar inflation in the GWAS summary data and not distinguishing the pleiotropy and mediation
339 effects for considered gene expression and phenotype of interest®! (Figure S9). We also observed
340 a notable inflation in the GWAS p-values of cardiovascular disease from UKBB (Figure S9), as

341  we estimated the LD score regression®? intercept to be 1.1 from the GWAS summary data.

342 We did not consider directly comparing to FUSION in our above TWAS analyses of
343  cardiovascular disease since we used the summary-level reference data eQTLGen. However, to
344  assess the performance of OTTERS and FUSION in a real study where individual-level reference
345 data are available, we performed an additional TWAS analysis of cardiovascular disease in the
346 UK Biobank using the GTEx V8 data of 574 whole blood samples as the reference data. We
347 trained OTTERS Stage | using cis-eQTL summary statistics obtained from these 574 GTEx V8
348  whole blood samples and reference LD from GTEx V8 WGS samples, and trained FUSION
349 models using individual-level genotype data and gene expression data of the same 574 whole

350 blood samples.

351 We tested TWAS association for 19,653 genes and identified genes with TWAS p-values

352 <253 x 10~° (Bonferroni corrected significance level) as significant TWAS genes. Training R? >
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353  0.01 was used to select “valid” GReX imputation models for TWAS (Figure S10). To identify
354 independently significant TWAS genes, we calculated the training R? between the GReX
355  predicted by lassosum for of each pair of genes, since lassosum had the best training R? (Figure
356  S10). For a pair of genes with the predicted GReX R? > 0.5, we only kept the gene with the smaller
357 TWAS p-value as the independently significant gene. As a result, OTTERS obtained 34
358 independently significant TWAS genes, while FUSION identified 21 independently significant
359 TWAS genes (Figure S11). A total of 14 genes were identified by both FUSION and OTTERS

360 (Table S3).

361 These results demonstrate the advantages of OTTERS for using multiple PRS training
362 methods to account for the unknown genetic architecture of gene expression, which is consistent
363  in our simulation results. These results also showed the advantage of using eQTL summary data
364  with a larger training sample size, as more independently significant TWAS genes were identified
365 by using the eQTLGen summary reference data (38 vs. 34), even with a more stringent rule (test

366 instead of training R? > 0.01) applied to select test genes with “valid” GReX imputation models.

367 Computational Time

368 The computational time per gene of different PRS methods depends on the number of test
369  variants considered for the target gene. Thus, we calculated the computational time and memory
370  usage for 4 groups of genes whose test variants were <2000, between 2000 and 3000, between
371 3000 and 4000, and >4000, respectively. Among all tested genes in our real studies, the median
372 number of test variants per gene is 3152, and the proportion of genes in each group is 10.3%,
373  33.4%, 34.5%, and 21.8%, respectively. For each group, we randomly selected 10 genes on
374 Chromosome 4 to evaluate the average computational time and memory usage per gene. We
375 benchmarked the computational time and memory usage of each method on one Intel(R) Xeon(R)
376  processor (2.10 GHz). The evaluation was based on 1000 MCMC iterations for SDPR and PRS-

377  CS (default) without parallel computation (Table S4). We showed that P+T and lassosum were
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378 computationally more efficient than SDPR and PRS-CS, whose speed were impeded by the need
379 of MCMC iterations. Between the two Bayesian methods, SDPR implemented in C++ uses

380 significantly less time and memory than PRS-CS implemented in Python.
381 Discussion

382 Our OTTERS framework represents an omnibus TWAS tool that can leverage summary-
383 level expression and genotype results from a reference sample, thereby robustly expanding the
384 use of TWAS into more settings. To this end, we adapted and evaluated five different PRS
385 methods assuming different underlying genetic models, including the relatively simple method
386  P+T?2% with two different p-value thresholds (0.001 and 0.05), the frequentist method lassosum?’,
387 as well as the Bayesian methods PRS-CS?® and SDPR?® within our omnibus test for optimal
388 inference. We note that additional PRS methods such as MegaPRS* or PUMAS?! could also be
389 implemented as additional OTTERS Stage | training methods. Higher TWAS power might be
390 obtained by adding more PRS methods in OTTERS Stage |, with additional computation cost. We
391  also note that the existing SMR-HEIDI®*® method, which uses summary-level data from GWAS and

392  eQTL studies to test for possible causal genetic effects of a trait of interest that were mediated through

393 gene expression, could also be used as an alternative method besides TWAS. However, the SMR
394 method generally restricts eQTL for consideration, excluding those where the eQTL p-values

395 larger than a certain threshold, e.qg., 0.05.

396 In simulation studies, we demonstrated that the performance of each of these five PRS
397 methods depended substantially on the underlying genetic architecture for gene expression, with
398  P+T methods generally performing better for sparse architecture whereas the Bayesian methods
399 performing better for denser architecture. Consequently, since genetic architecture of gene
400 expression is unknown apriori, we believe this justifies the use of the omnibus TWAS test
401 implemented in OTTERS for practical use as this test had near-optimal performance across all

402  simulation scenarios considered. While we developed our methods with summary-level reference
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403 data in mind, we note that our prediction methods and OTTERS perform well (in terms of
404  imputation accuracy and power) relative to existing TWAS methods like FUSION when individual -

405 level reference data are available.

406 In our real data application using UKBB GWAS summary-level data, we compared
407 OTTERS TWAS results using reference eQTL summary data from eQTLGen consortium to
408 FUSION TWAS results using a substantially smaller individual-level reference dataset from GTEXx
409 V6. OTTERS identified 13 significant TWAS risk genes that were missed by FUSION using
410 individual-level GTEx V6 reference data of blood tissue, suggesting that the use of larger
411  reference datasets like eQTLGen in TWAS can identify novel findings. Interestingly, the genes
412 missed by FUSION were instead detected using individual-level GTEx reference data of other
413  tissue types that are more directly related to cardiovascular disease. By comparing OTTERS to
414  FUSION when the same individual-level GTEx V8 reference data of whole blood samples were
415  used, we still observed that OTTERS identified more risk genes than FUSION, which we believe
416  is due to the former method accounting for the unknown genetic architecture of gene expression
417 by using multiple regression methods to train GReX imputation models. These applied results

418  were consistent with our simulation results.

419 Among all individual methods, P+T is the most computationally efficient method. The
420 Bayesian methods SDPR and PRS-CS require more computation time than the frequentist
421  method lassosum as the former set of methods require a large number of MCMC iterations for
422  modelfit. By comparing the performance of these five methods in terms of the imputation accuracy
423  and TWAS power in simulations and real applications, we conclude that none of these methods
424  were optimal across different genetic architectures. We found that all methods provided distinct
425  and considerable contributions to the final OTTERS TWAS results. These results demonstrate
426  the benefits of OTTERS in practice, since OTTERS can combine the strength of these individual

427  methods to achieve the optimal performance.
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428 To enable the use of OTTERS by the public, we provide an integrated tool (see Availability
429  of data and materials) to: (1) Train GReX imputation models (i.e., estimate eQTL weights in Stage
430 1) using eQTL summary data by P+T, lassosum, SDPR, and PRS-CS; (2) Conduct TWAS (i.e.,
431  testing gene-trait association in Stage Il) using both individual-level and summary-level GWAS
432  data with the estimated eQTL weights; and (3) Apply ACAT-O to aggregate the TWAS p-values
433 from individual training methods. Since the existing tools for P+T, lassosum, SDPR, and PRS-CS
434  were originally developed for PRS calculations, we adapted and optimized them for training GReX
435  imputation models in our OTTERS tool. For example, we integrate TABIX>* and PLINK®® tools in
436 OTTERS to extract input data per target gene more efficiently. We also enable parallel
437  computation in OTTERS for training GReX imputation models and testing gene-trait association

438  of multiple genes.

439 The OTTERS framework does have its limitations. First, training GReX imputation models
440 by all individual methods on average cost ~20 minutes for all 5 training models per gene, which
441  might be computationally challenging for studying eQTL summary data of multiple tissue types
442  and for ~20K genome-wide genes. Users might consider prioritize P+T(0.001), lassosum, and
443  SDPR training methods as these three provide complementary results in our studies. Second, the
444  currently available eQTL summary statistics are mainly derived from individuals of European
445  descent. Our OTTERS trained GReX imputations model based on these eQTL summary
446  statistics, and the resulting imputed GReX could consequently have attenuated cross-population
447  predictive performance®. This might limit the transferability of our TWAS results across
448  populations. Third, our OTTERS cannot provide the direction of the identified gene-phenotype
449  associations, which should be referred to the sign of the TWAS Z-score statistic per training
450 method. Last, even though the method applies to integrate both cis- and trans- eQTL with GWAS
451 data, the computation time and availability of summary-level trans-eQTL reference data are still

452  the main obstacles. Our current OTTERS tool only considers cis-eQTL effects. Extension of
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453  OTTERS to enable cross-population TWAS and incorporation of trans-eQTL effects is part of our

454  ongoing research but out of the scope of this work.

455 Our novel OTTERS framework using large-scale eQTL summary data has the potential to
456  identify more significant TWAS risk genes than standard TWAS tools that use smaller individual-
457  level reference transcriptomic data and use only a single regression method for training GReX
458  imputation models. This tool provides the opportunity to leverage not only available public eQTL
459  summary data of various tissues for conducting TWAS of complex traits and diseases, but also
460 the emerging summary-level data of other types of molecular QTL such as splicing QTLS,
461  methylation QTLs, metabolomics QTLs, and protein QTLs. For example, OTTERS could be
462  applied to perform proteome-wide association studies using summary-level reference data of
463  genetic-protein relationships such as those reported by the SCALLOP consortium®’, and
464  epigenome-wide association studies using summary-level reference data of methylation-
465  phenotype relationships reported by Genetics of DNA Methylation Consortium (GoDMC) (see
466  Web Resources). OTTERS would be most useful for the broad researchers who only have access
467 to summary-level QTL reference data and summary-level GWAS data. The feasibility of
468 integrating summary-level molecular QTL data and GWAS data makes our OTTERS tool valuable

469  for wide application in current multi-omics studies of complex traits and diseases.
470 Methods

471  Traditional Two-Stage TWAS Analysis

472 Stage | of TWAS estimates a GReX imputation model using individual-level expression
473  and genotype data available from a reference dataset. Consider the following GReX imputation
474  model from n individuals and m SNPs (multivariable regression model assuming linear additive

475  genetic effects) within the reference dataset:

476 E;,=Xw+e, €~N(0,02]). (Equation 1)
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477  Here, E, is a vector representing gene expression levels of gene g, X is an n X m matrix of
478  genotype data of SNP predictors proximal or within gene g, w is a vector of genetic effect sizes
479 (referred to as a broad sense of eQTL effect sizes), and € is the error term. Here, we consider
480  only cis-SNPs within 1 MB of the flanking 5’ and 3’ ends as genotype predictors that are coded
481  within X92922. Once we configure the model in Equation 1, we can employ methods like

482 PrediXcan, FUSION, and TIGAR to fit the model and obtain estimates of eQTL effect sizes (w).

483 Stage Il of TWAS uses the eQTL effect sizes (w) from Stage | to impute gene expression
484  (GReX) in an independent GWAS and then test for association between GReX and phenotype.
485  Given individual-level GWAS data with genotype data X,,.,, and eQTL effect sizes (w) from Stage
486 |, the GReX for X,,.,, can be imputed by GReX = X,,,,, w. The follow-up TWAS would test the
487  association between GReX and phenotype Y based on a generalized linear regression model,
488  which is equivalent to a gene-based association test taking w as test SNP weights. When
489 individual-level GWAS data are not available, one can apply FUSION and S-PrediXcan test

490  statistics to summary-level GWAS data as follows:

401 Z ), @;2)) 5o 18,2))

GFUSION = ~ = Zg.s—predixcan = Tove (Equation 2)

492  where Z; is the single variant Z-score test statistic in GWAS for the "SNP, j =1,...,], for all test
493  SNPs that have both eQTL weights with respect to the test gene g and GWAS Z-scores; 6; is

494  the genotype standard deviation of the j" SNP; and V denotes the genotype correlation matrix in
495 FUSION Z-score statistic and genotype covariance matrix in S-PrediXcan Z-score statistic of the
496  test SNPs. In particular, 6; and V can be approximated from a reference panel with genotype
497  data of samples of the same ancestry such as those available from the 1000 Genomes

498  Project®. If w are standardized effect sizes estimated assuming standardized genotype X and
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499  gene expression E, in Equation 1, FUSION and S-PrediXcan Z-score statistics are equivalent®s,

500 Otherwise, the S-PrediXcan Z-score should be applied to avoid false positive inflation.

501 TWAS Stage | Analysis using Summary-Level Reference Data

502 We now consider a variation of TWAS Stage | to estimate cis-eQTL effect sizes w based
503 ona multivariable regression model (Equation 1) from summary-level reference data. We assume
504 that the summary-level reference data provide information on the association between a single
505 genetic variant j (j = 1, ..., m) and expression of gene g. This information generally consists of
506 effect size estimates (w;,j =1,..,m) and p-values derived from the following single variant

507 regression models:
508 E;,=Xwj+€ €~N(0,6¢I),j = 1,..,m. (Equation 3)

509 Here, X; is an n x 1 vector of genotype data for genetic variant j. Since eQTL summary data are
510 analogous to GWAS summary data where gene expression represents the phenotype, we can
511  estimate the eQTL effect sizes w using marginal least squared effect estimates (w;,j = 1, ...,m)
512 and p-values from the QTL summary data as well as reference linkage disequilibrium (LD)
513 information of the same ancestry?®-2°, Although all PRS methods apply to the TWAS Stage |

514  framework, we only consider four representative methods as follows:

515 P+T: The P+T method selects eQTL weights by LD-clumping and P-value Thresholding?®.
516  Given threshold P; for p-values and threshold Ry for LD R?, we first exclude SNPs with marginal
517  p-values from eQTL summary data greater than P or strongly correlated (LD R? greater than Ry)
518  with another SNP having a more significant marginal p-value (or Z-score statistic value). For the
519 remaining selected test SNPs, we use marginal standardized eQTL effect sizes from eQTL
520 summary data as eQTL weights for TWAS in Stage Il. We considered Ry = 0.99 and P =

521  (0.001,0.05) in this paper and implemented the P+T method using PLINK 1.9% (see Web
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522  Resources). We denote the P+T method with P; equal to 0.001 and 0.05 as P+T (0.001) and

523  P+T (0.05), respectively.

524 Frequentist lassosum: With standardized E, and X, we can show that the marginal least

525  squared eQTL effect size estimates from the single variant regression model (Equation 3) is w =

526 X"E,/n and that the LD correlation matrix is R = X" X/n. That is,
527 X"E, =nwand X"X =nR.  (Equation 4)

528 By approximating nR by nRg (Rg = (1 — s)R, + sI with atuning parameter 0 < s < 1, areference
529 LD correlation matrix R, from an external panel such as one from the 1000 Genomes Project®®,
530 and an identity matrix I) in the LASSO®*? penalized loss function, the frequentist lassosum
531  method?’ can tune the LASSO penalty parameter and s using a pseudovalidation approach and
532  then solve for eQTL effect size estimates w by minimizing the approximated LASSO loss function

533  requiring no individual-level data (see details in Supplemental Methods).

534 Bayesian SDPR: Bayesian DPR method® as implemented in TIGAR?? estimates w for the
535 underlying multivariable regression model in Equation 1 by assuming a normal prior N(0, ¢.2) for
536 w; and a Dirichlet process prior®® DP(H, ) for o2 with base distribution H and concentration

537 parameter . SDPR?° assumes the same DPR model but can be applied to estimate the eQTL

538 effect sizes w using only eQTL summary data (see details in Supplemental Methods).

539 Bayesian PRS-CS: The PRS-CS method?®® assumes the following normal prior for w; and

540 non-informative scale-invariant Jeffreys prior on the residual variance ¢ in Equation 1
2
541 w;~N (O,%gbj), p(62) x 62; P;~Gamma(a,§;),8;~Gamma(b, ¢),

542 where local shrinkage parameter y; has an independent gamma-gamma prior and ¢ is a global-

543  shrinkage parameter controlling the overall sparsity of w. PRS-CS sets hyper parameters a = 1
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544  and b = 1/2 to ensure the prior density of w; to have a sharp peak around zero to shrink small
545  effect sizes of potentially false eQTL towards zero, as well as heavy, Cauchy-like tails which
546  asserts little influence on eQTLs with larger effects. Posterior estimates w will be obtained from
547 eQTL summary data (i.e., marginal effect size estimates w and p-values) and reference LD
548  correlation matrix R by Gibbs Sampler (see details in Supplemental Methods). We set ¢ as the
549  square of the proportion of causal variants in the simulation and as 10~* per gene in the real data

550 application.

551 OTTERS Framework

552 As shown in Figure 1, OTTERS first trains GReX imputation models per gene g using P+T,
553 lassosum, SDPR, and PRS-CS methods that each infers cis-eQTLs weights using cis-eQTL
554  summary data and an external LD reference panel of similar ancestry (Stage 1). Once we derive
555  cis-eQTLs weights for each training method, we can impute the respective GReX using that
556  method and perform the respective gene-based association analysis in the test GWAS dataset
557  using the formulas given in Equation 2 (Stage Il). We thus derive a set of TWAS p-values for gene
558 ; one p-value for each training model that we applied. We then use these TWAS p-values to
559 create an omnibus test using the ACAT-03%* approach that employs a Cauchy distribution for
560 inference (see details in Supplemental Methods). We refer to the p-value derived from ACAT-O

561 testasthe OTTERS p-value.

562 Marginal eQTL Effect Sizes

563 In practice of training GReX imputation models using reference eQTL summary data, the
564  marginal standardized eQTL effect sizes were approximated by W; ~ Z;/,/median(n, ;), where
565 Z; denotes the corresponding eQTL Z-score statistic value by single variant test and
566  median(ng ;) denotes the median sample size of all cis-eQTLs for the target gene g. The median

567 cis-eQTL sample size per gene was also taken as the sample size value required by lassosum,
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568 SDPR, and PRS-CS methods, for robust performance. Since summary eQTL datasets (e.g.,
569 eQTLGen) were generally obtained by meta-analysis of multiple cohorts, the sample size per test
570  SNP could vary across all cis-eQTLs of the test gene. The median cis-eQTL sample size ensures

571 arobust performance for applying those eQTL summary data based methods.

572 LD Clumping

573 We performed LD-clumping with R;+=0.99 for all individual methods in both simulation and
574  real studies. Using PRS-CS as an example, we also showed that LD-clumping does not affect the

575 GReX imputation accuracy compared to no clumping in the real data testing (Figure S12).

576 LD Blocks for lassosum, PRS-CS, and SDPR

577 LD blocks were determined externally by Idetect® for lassosum and PRS-CS, while
578 internally for SDPR which ensure that SNPs in one LD block do not have nonignorable correlation

579  (R? > 0.1) with SNPs in other blocks.

580 Simulate GWAS Z-score

581 Given gene expression E, simulated from the multivariate regression model E; = X w +
582 €4 with standardized genotype matrix X, and €, ~ N(0, (1 — h2)I, we assume GWAS phenotype

583  data of ng,,,s; Samples are simulated from the following linear regression model

584 Y = hy(X,w)+€, € ~N(QOD.

585 Conditioning on true genetic effect sizes, the GWAS Z-score test statistics of all test SNPs will
586  follow a multivariate normal distribution, MV N <2‘.gw /ngwashf,,zg>, where X, is the correlation

587  matrix of the standardized genotype X, from test samples, and hzz, denotes the amount of
588  phenotypic variance explained by simulated GReX=X,w*. Thus, for a given GWAS sample size,

589  we can generate GWAS Z-score statistic values from this multivariate normal distribution.
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FUSION using Individual-level Reference Data

To train GReX imputation models by FUSION with individual-level reference data, we
trained Best Linear Unbiased Predictor (BLUP) model®, Elastic-net regression®?, LASSO
regression®2, and single best eQTL model as implemented in the FUSION tool (see Web
Resource). Default settings were used to train GReX imputation models by FUSION in our
simulation and real studies. LASSO regression was performed only for genes with positive
estimated expression heritability. The eQTL weights of the best trained GReX imputation model

will be used to conduct TWAS by FUSION.

GTEx V8 Dataset

GTEx V8 dataset (dbGaP phs000424.v8.p2) contains comprehensive profiling of WGS
genotype data and RNA-sequencing (RNA-seq) transcriptomic data across 54 human tissue
types of 838 donors. The GTEx V8 WGS genotype data of all samples were used to construct
reference LD in our studies. The GTEx V6 RNA-seq data of whole blood samples were used to
train GReX imputation models by FUSION, and the GTEx V8 RNA-seq data of additional whole
blood samples (n=315) were used to test GReX imputation accuracy in our studies. GTEx V8
RNA-seq data of all whole blood samples (n=574) were also used as reference data for

comparing the performance of OTTERS and FUSION.

eQTLGen Consortium Dataset

The eQTLGen consortium?® dataset was generated based on meta-analysis across 37
individual cohorts (n=31,684) including GTEx V6 as a sub-cohort. eQTLGen samples consist of
25,482 blood (80.4%) and 6,202 peripheral blood mononuclear cell (19.6%) samples. We
considered SNPs with minor allele frequency (MAF) > 0.01, Hardy—Weinberg P value >0.0001,
call rate >0.95, genotype imputation r?2 > 0.5 and observed in at least 2 cohorts?. We only

considered cis-eQTL (within £1MB around gene transcription start sites (TSS)) with test sample
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614  size > 3000. As a result, we used cis-eQTL summary data of 16,699 genes from eQTLGen to

615 train GReX imputation models for use in OTTERS in this study.

616 UK Biobank GWAS Data of Cardiovascular Disease

617 Summary-level GWAS data of Cardiovascular Disease from UKBB (n=459,324, case
618 fraction = 0.319)°° were generated by BOLT-LMM based on the Bayesian linear mixed model per
619  SNP®® with assessment centered, sex, age, and squared age as covariates. Although BOLT-LMM
620 was derived based on a quantitative trait model, it can be applied to analyze case-control traits
621  and has well-controlled false positive rate when the trait is sufficiently balanced with case fraction
622 > 10% and samples are of the same ancestry . The tested dichotomous cardiovascular disease
623  phenotype includes a list of sub-phenotypes: hypertension, heart/cardiac problem, peripheral
624  vascular disease, venous thromboembolic disease, stroke, transient ischaemic attack (tia),
625 subdural haemorrhage/haematoma, cerebral aneurysm, high cholesterol, and other

626  venous/lymphatic disease.

627 Data Availability

628 eQTLGen consortium data are available from their portal website (https://www.eqgtlgen.org). UK

629 Biobank summary-level GWAS data are available through the Alkes Group

630 (https://alkesgroup.broadinstitute.org/UKBB). Individual-level GTEXx reference data are available

631  through dbGap (Accession phs000424.v8.p2). ROS/MAP/MSBB WGS data used in our
632 simulation studies are available through Synapse with data access application

633  (https://www.synapse.org/#!Synapse:syn10901595). All source code and scripts used in this

634  study are available through OTTERS Github page (https://github.com/daigile96/OTTERS).

635 Ethics Approval
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636  All data used in this study are de-identified genotype data and summary level eQTL and GWAS
637 data. ROS/MAP genotype data were collected with ethics approval from the IRB at Rush

638  University and all participants consented to participate.
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28


mailto:mpepste@emory.edu
mailto:ingjing.yang@emory.edu
https://github.com/yaowuliu/ACAT
https://www.eqtlgen.org/
http://gusevlab.org/projects/fusion
http://www.godmc.org.uk/
https://github.com/tshmak/lassosum
https://github.com/daiqile96/OTTERS
https://www.cog-genomics.org/plink
https://github.com/getian107/PRScs
https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

682 SDPR: https://qgithub.com/eldronzhou/SDPR

683  TWAS hub: http://twas-hub.org

684

685
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Tables
Table 1. Test R% in 315 whole blood tissue samples from GTEx V8.
P+T(0.001) P+T(0.05) lassosum SDPR PRS-CS FUSIONP
# ;e'leg.‘(’)"fh 9,816 9,662 8,718 9,670 10,337 4,704
Median R?? 0.044 0.0430 0.0416 0.0418 0.0517 0.0367

a: Median R? among genes with test R? > 0.01 per method.
b: FUSION was trained on GTEx V6 blood samples while all other training methods were trained using

eQTLGen summary statistics (n=31,684) and reference LD from GTEx V8 samples.
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690 Table 2. Independent TWAS risk genes of cardiovascular disease identified by OTTERS.
691 Reference eQTL summary data from eQTLGen consortium and GWAS summary data from
692 UKBB were used. The corresponding TWAS p-values by 5 individual PRS methods and

693 OTTERS are shown in the table with significant p-values in bold, and those for genes with test
694  GReX R? < 0.01 were shown as a dash.

CHROM ID OTTERS P+T(0.001) P+T(0.05) lassosum SDPR PRS-CS
1 CLCN6? 5.75E-15 4.94E-09 5.40E-08 8.77E-09  1.19E-15 1.43E-09
1 NPPAP 4.32E-08 1.55E-08 2.14E-07 - - 6.71E-06
1 PSRC1® 8.37E-20 5.68E-08 8.46E-07 6.26E-11  1.67E-20 1.41E-12
2 RP11-378A13.12  9.78E-09 3.97E-02 4.98E-02 1.62E-05 1.96E-09  1.15E-04
4 LINCO1093¢ 2.57E-09 9.85E-02 5.31E-02 5.13E-10 1.08E-02  2.41E-02
5 CPEB4P 3.05E-14 1.26E-02 2.05E-02 2.70E-05  6.05E-15  1.60E-07
6 SERPINB6¢ 1.47E-07 2.12E-01 2.24E-01 7.56E-03  2.95E-08  7.53E-04
6 CARMIL1® 9.23E-09 5.34E-03 3.41E-03 4.15E-03  1.85E-09 1.72E-03
6 ZSCAN12P1°¢ 1.84E-08 6.00E-01 5.75E-01 4.62E-01  3.67E-09 3.10E-01
6 HCG4P7¢ 8.93E-50 3.70E-01 3.69E-01 2.30E-01  1.79E-50 7.26E-01
6 HCG4P3¢ 5.33E-20 4.20E-01 4.05E-01 5.03E-04  1.07E-20 2.42E-03
6 HLA-S¢ 4.57E-07 7.13E-01 7.31E-01 3.02E-01  9.14E-08 2.33E-01
7 PSPHP1¢ 1.21E-09 2.17E-01 2.26E-01 9.65E-03  2.43E-10 1.10E-01
8 LPLe 5.73E-07 1.78E-03 3.26E-03 4.44E-02  1.15E-07 1.05E-04
8 PTP4A3c 1.28E-06 8.13E-02 8.33E-02 6.23E-05  2.58E-07 1.67E-03
10 CAMK1D?® 2.51E-09 3.83E-02 4.97E-02 1.23E-03  5.03E-10 4.97E-05
10 NT5C2° 1.21E-07 1.69E-06 2.92E-06 1.64E-05  3.15E-07 2.69E-08
11 TNNT3® 1.67E-10 1.09E-06 3.33E-06 2.03E-09 3.40E-11  4.01E-07
11 Cllorfagb 2.28E-06 8.55E-07 1.78E-06 5.44E-05 - 2.93E-04
11 SIDT22 7.26E-09 6.14E-05 1.33E-04 3.66E-05  1.46E-09 3.81E-07
15 CSKb 2.30E-09 1.70E-07 2.15E-06 7.41E-10 2.80E-09 2.17E-09
15 FESP 2.87E-32 4.78E-08 1.23E-06 9.13E-24  5.75E-33  1.94E-15
15 SLCO3A1¢ 3.78E-08 1.85E-02 3.15E-02 4.65E-05  7.57E-09  1.14E-03
16 MBTPS1P 5.80E-08 2.62E-01 3.05E-01 9.15E-04  1.16E-08  2.34E-03
16 MTHFSD? 4.65E-07 5.16E-02 5.94E-02 1.65E-02  9.30E-08 3.20E-03
17 ACEP 9.42E-07 4.93E-06 1.03E-05 4.23E-06  9.66E-07  2.68E-07
18 RALBP1¢ 1.40E-06 1.48E-01 1.54E-01 2.12E-04  2.81E-07 5.55E-03
19 MRI1P 8.38E-09 8.34E-03 1.60E-02 7.79E-03  1.68E-09  2.65E-03
19 HAUSS8P 1.60E-07 4.41E-08 1.38E-07 1.67E-06  1.42E-06 3.29E-05
19 SULT2B1¢ 2.32E-06 7.73E-07 - - 2.97E-02  1.10E-02
19 NTN5® 9.03E-10 2.75E-08 1.16E-07 6.23E-06  1.85E-10  9.73E-09
19 RPL28P 3.76E-07 7.33E-02 1.16E-01 6.64E-03  7.52E-08 4.23E-03
20 CTSzb 3.32E-09 2.57E-02 1.99E-02 3.40E-09 8.25E-10 1.04E-01
20 EDN3¢ 1.29E-07 3.61E-08 9.15E-08 8.60E-06  5.90E-03  1.58E-02
20 ZBTB46¢ 1.07E-06 2.83E-07 8.35E-06 - 1.81E-03  1.27E-05
20 OPRL1® 5.84E-07 3.44E-07 2.69E-06 1.85E-03  5.51E-05  1.90E-07
21 FAM3B¢ 1.08E-10 2.28E-02 2.58E-02 8.07E-06  2.17E-11  1.04E-05
21 MX1¢ 6.04E-22 4.36E-01 3.83E-01 3.16E-07 1.21E-22  1.24E-03

a: Risk gene of UKBB cardiovascular disease in TWAS-hub identified using GTEx whole blood tissue.
b: Risk genes of UKBB cardiovascular disease in TWAS-hub identified using other GTEX tissue types.

c: Novel risk gene
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Figure Titles and Legends

Figure 1. OTTERS framework.

OTTERS estimates cis-eQTL weights from eQTL summary data and reference LD panel using
four imputation models (Stage 1), and conducts ACAT-O test to combine gene-based
association test p-values from individual methods with individual/summary level test GWAS data
(Stage II).

Figure 2. Test R (A) and TWAS power (B) comparison in simulation studies

Various proportions of true causal cis-eQTL p.qusa; = (0.001,0.01) and gene expression
heritability h2 = (0.01,0.05,0.1) were considered in the simulation studies. The GWAS sample
size was chosen with respect to h? values. The proportion of phenotype variance explained by
gene expression (hj) was set to be 0.025. TWAS was conducted using simulated GWAS Z-

scores.
Figure 3. Test R? by PRS-CS versus P+T(0.001), P+T(0.05), lassosum, SDPR, FUSION.

Test R? by PRS-CS versus P+T(0.001) (A), P+T(0.05) (B), lassosum (C), SDPR (D), and FUSION
(E) with 315 GTEx V8 test samples, with different colors denoting whether test R? > 0.01 only by
PRS-CS (red), only by the y axis method (green), or both methods (blue). Genes with test R? >

0.01 by at least one method were included in the plot.
Figure 4. Manhattan plot of TWAS results by OTTERS.

Manhattan plot of TWAS results by OTTERS using GWAS summary-level statistics of
cardiovascular disease and imputation models fitted based on eQTLGen summary statistics.

Independently significant TWAS risk genes are labeled.

32


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

716 eQTLGen Consortium Author List

717 Mawussé Agbessi!, Habibul Ahsan?, Isabel Alves!, Anand Kumar Andiappan®, Wibowo
718  Arindrarto?, Philip Awadallal, Alexis Battle®>®, Frank Beutner’, Marc Jan Bonder®®, Dorret I.
719  Boomsmal®, Mark W. Christiansen!!, Annique Claringbould®!?, Patrick Deelen®31214 Tgnu
720  Esko'®, Marie-Julie Favé?!, Lude Franke®!?, Timothy Frayling'®, Sina A. Gharib!''’, Greg Gibson?8,
721  Bastiaan T. Heijmans®, Gibran Hemani'®, Rick Jansen?®, Mika Kahonen??, Anette Kalnapenkis!®,
722  Silva Kasela®®, Johannes Kettunen?, Yungil Kim#?®, Holger Kirsten®*, Peter Kovacs?®, Knut
723  Krohn?, Jaanika Kronberg'®, Viktorija Kukushkina®®, Zoltan Kutalik?’, Bernett Lee®, Terho
724  Lehtimaki®, Markus Loeffler?*, Urko M. Marigorta!®2%% Hailang Mei®, Lili Milani*®, Grant W.
725  Montgomery®?, Martina Muller-Nurasyid®3343%, Matthias Nauck3-3’, Michel G. Nivard®®, Brenda
726  Penninx?®, Markus Perola®, Natalia Pervjakova!®, Brandon L. Pierce?, Joseph Powell*°, Holger
727  Prokisch®#?, Bruce M. Psaty!* Olli T. Raitakari**, Samuli Ripatti*®, Olaf Rotzschke®, Sina
728  Rueger?, Ashis Saha®, Markus Scholz?*, Katharina Schramm?®34 |lkka Seppala?®, Eline P.
729  Slagboom?*, Coen D.A. Stehouwer*’, Michael Stumvoll*®, Patrick Sullivan*®, Peter A.C. ‘t Hoen*,
730  Alexander Teumer®!, Joachim Thiery®?, Lin Tong?, Anke Tonjes*®, Jenny van Dongen'®, Maarten
731  van lterson*, Joyce van Meurs®, Jan H. Veldink®, Joost Verlouw®3, Peter M. Visscher®?, Uwe
732 Volker®®, Urmo Vdsa®®, Harm-Jan Westra®!?, Cisca Wijmenga?®, Hanieh Yaghootkar!®657 Jian
733  Yang®?%8, Biao Zeng'®, Futao Zhang®?

734

735  Author list is ordered alphabetically

736

737 1. Computational Biology, Ontario Institute for Cancer Research, Toronto, Canada

738 2. Department of Public Health Sciences, University of Chicago, Chicago, United States of
739  America

740 3. Singapore Immunology Network, Agency for Science, Technology and Research, Singapore,
741  Singapore

742 4. Leiden University Medical Center, Leiden, The Netherlands

743 5. Department of Computer Science, Johns Hopkins University, Baltimore, United States of
744  America

745 6. Departments of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
746  of America

747 7. Heart Center Leipzig, Universitat Leipzig, Leipzig, Germany

748 8. Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
749 9. European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
750 10. Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit
751  Amsterdam, Amsterdam Public Health research institute and Amsterdam Neuroscience, the
752  Netherlands

753 11. Cardiovascular Health Research Unit, University of Washington, Seattle, United States of
754  America

755  12. Oncode Institute

756  13. Genomics Coordination Center, University Medical Centre Groningen, Groningen, The
757  Netherlands

758  14. Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA,
759 Utrecht, The Netherlands

760  15. Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
761  16. Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter
762  Hospital, Exeter, United Kingdom

763  17. Department of Medicine, University of Washington, Seattle, United States of America

764  18. School of Biological Sciences, Georgia Tech, Atlanta, United States of America

33


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

765 19. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom

766  20. Amsterdam UMC, Vrije Universiteit, Department of Psychiatry, Amsterdam Public Health
767  research institute and Amsterdam Neuroscience, The Netherlands

768  21. Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and
769  Health Technology, Tampere University, Tampere, Finland

770  22. University of Helsinki, Helsinki, Finland

771  23. Genetics and Genomic Science Department, Icahn School of Medicine at Mount Sinai, New
772  York, United States of America

773  24. Institut fur Medizinische InformatiK, Statistik und Epidemiologie, LIFE — Leipzig Research
774  Center for Civilization Diseases, Universitat Leipzig, Leipzig, Germany

775  25. IFB Adiposity Diseases, Universitat Leipzig, Leipzig, Germany

776  26. Interdisciplinary Center for Clinical Research, Faculty of Medicine, Universitét Leipzig, Leipzig,
777  Germany

778  27. Lausanne University Hospital, Lausanne, Switzerland

779  28. Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research
780  Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere,
781  Finland

782 29. Integrative Genomics Lab, CIC bioGUNE, Bizkaia Science and Technology Park, Derio,
783  Bizkaia, Basque Country, Spain

784  30. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

785  31. Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden,
786  The Netherlands

787  32. Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia

788  33. Institute of Genetic Epidemiology, Helmholtz Zentrum Miinchen - German Research Center
789  for Environmental Health, Neuherberg, Germany

790  34. Department of Medicine |, University Hospital Munich, Ludwig Maximilian’s University,
791  Minchen, Germany

792  35. DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance,
793  Munich, Germany

794  36. Institute of Clinical Chemistry and Laboratory Medicine, Greifswald University Hospital,
795  Greifswald, Germany

796  37. German Center for Cardiovascular Research (partner site Greifswald), Greifswald, Germany
797  38. Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, VU,
798  Amsterdam, The Netherlands

799  39. National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland

800 40. Garvan Institute of Medical Research, Garvan-Weizmann Centre for Cellular Genomics,
801  Sydney, Australia

802  41. Institute of Neurogenomics, Helmholtz Zentrum Miinchen, Neuherberg, Germany

803  42. Institute of Human Genetics, Technical University Munich, Munich, Germany

804  43. Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States of
805 America

806  44. Centre for Population Health Research, Department of Clinical Physiology and Nuclear
807  Medicine, Turku University Hospital and University of Turku, Turku, Finland

808  45. Statistical and Translational Genetics, University of Helsinki, Helsinki, Finland

809  46. Institute of Genetic Epidemiology, Helmholtz Zentrum Minchen - German Research Center
810  for Environmental Health, Neuherberg, Germany

811  47.Department of Internal Medicine and School for Cardiovascular Diseases (CARIM), Maastricht
812 University Medical Center, Maastricht, The Netherlands

813  48. Department of Medicine, Universitat Leipzig, Leipzig, Germany

814  49. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,
815  Sweden

34


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

816 50. Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life
817  Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands

818  51. Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany

819  52. Institute for Laboratory Medicine, LIFE — Leipzig Research Center for Civilization Diseases,
820  Universitat Leipzig, Leipzig, Germany

821 53. Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands

822  54. UMC Utrecht Brain Center, University Medical Center Utrecht, Department of Neurology,
823 Utrecht University, Utrecht, The Netherlands

824  55. Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald,
825  Greifswald, Germany

826  56. School of Life Sciences, College of Liberal Arts and Science, University of Westminster, 115
827  New Cavendish Street, London, United Kingdom

828  57. Division of Medical Sciences, Department of Health Sciences, Luled University of Technology,
829  Luled, Sweden

830 58. Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang 325027,
831 China

832

35


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

References

1.

10.

Mancuso, N. et al. Integrating Gene Expression with Summary Association Statistics to ldentify
Genes Associated with 30 Complex Traits. Am J Hum Genet 100, 473—487 (2017).

Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields
mechanistic disease insights. Nat Genet 50, 538-548 (2018).

Mancuso, N. et al. Large-scale transcriptome-wide association study identifies new prostate cancer
risk regions. Nat Commun 9, 4079 (2018).

Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat
Genet 51, 592-599 (2019).

Strunz, T., Lauwen, S., Kiel, C., Hollander, A. den & Weber, B. H. F. A transcriptome-wide association
study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-
related macular degeneration. Sci Rep 10, 1584 (2020).

Raj, T. et al. Integrative transcriptome analyses of the aging brain implicate altered splicing in
Alzheimer’s disease susceptibility. Nat Genet 50, 1584—-1592 (2018).

Hao, S., Wang, R., Zhang, Y. & Zhan, H. Prediction of Alzheimer’s Disease-Associated Genes by
Integration of GWAS Summary Data and Expression Data. Frontiers in Genetics 9, (2019).
Luningham, J. M. et al. Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL
Information through Summary Statistics. The American Journal of Human Genetics 107, 714-726
(2020).

Hoffman, J. D. et al. Cis-eQTL-based trans-ethnic meta-analysis reveals novel genes associated with
breast cancer risk. PLoS Genet 13, e1006690 (2017).

Wou, L. et al. A transcriptome-wide association study of 229,000 women identifies new candidate

susceptibility genes for breast cancer. Nat Genet 50, 968—978 (2018).

36


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

856 11. Bhattacharya, A. et al. A framework for transcriptome-wide association studies in breast cancer in
857 diverse study populations. Genome Biol 21, 42 (2020).

858 12. Guseyv, A. et al. A transcriptome-wide association study of high-grade serous epithelial ovarian

859 cancer identifies new susceptibility genes and splice variants. Nat Genet 51, 815-823 (2019).

860 13. Parrish, R. L., Gibson, G. C., Epstein, M. P. & Yang, J. TIGAR-V2: Efficient TWAS tool with

861 nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8. Human Genetics and

862 Genomics Advances 3, 100068 (2022).

863 14. Thériault, S. et al. Genetic Association Analyses Highlight IL6, ALPL, and NAV1 As 3 New

864 Susceptibility Genes Underlying Calcific Aortic Valve Stenosis. Circulation: Genomic and Precision
865 Medicine 12, e002617 (2019).

866 15. Zhu, Z. et al. Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-
867 related traits: a large-scale genome-wide cross-trait analysis. Respiratory Research 20, 64 (2019).
868  16. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580-585 (2013).
869 17. THE GTEX CONSORTIUM. The GTEx Consortium atlas of genetic regulatory effects across human
870 tissues. Science 369, 1318-1330 (2020).

871 18. Gibbs, J. R. et al. Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in
872 Human Brain. PLOS Genetics 6, €1000952 (2010).

873 19. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference

874 transcriptome data. Nat Genet 47, 1091-1098 (2015).

875  20. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat
876 Genet 48, 245-252 (2016).

877  21. Tang, S. et al. Novel Variance-Component TWAS method for studying complex human diseases with

878 applications to Alzheimer’s dementia. PLOS Genetics 17, e1009482 (2021).

37


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

available under aCC-BY-NC-ND 4.0 International license.

Nagpal, S. et al. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances
Gene Mapping of Complex Traits. The American Journal of Human Genetics 105, 258-266 (2019).
V0sa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and
polygenic scores that regulate blood gene expression. Nat Genet 53, 1300-1310 (2021).

The CommonMind Consortium (CMC) et al. Large eQTL meta-analysis reveals differing patterns
between cerebral cortical and cerebellar brain regions. Sci Data 7, 340 (2020).

Cao, C. et al. Power analysis of transcriptome-wide association study: Implications for practical
protocol choice. PLOS Genetics 17, 1009405 (2021).

Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar
disorder. Nature 460, 748—752 (2009).

Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via penalized
regression on summary statistics. Genetic Epidemiology 41, 469-480 (2017).

Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression
and continuous shrinkage priors. Nat Commun 10, 1776 (2019).

Zhou, G. & Zhao, H. A fast and robust Bayesian nonparametric method for prediction of complex
traits using summary statistics. PLoS Genet 17, e1009697 (2021).

Zhang, Q., Privé, F., Vilhjalmsson, B. & Speed, D. Improved genetic prediction of complex traits from
individual-level data or summary statistics. Nat Commun 12, 4192 (2021).

Zhao, Z. et al. PUMAS: fine-tuning polygenic risk scores with GWAS summary statistics. Genome
Biology 22, 257 (2021).

Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical
Society: Series B (Methodological) 58, 267—288 (1996).

Zeng, P. & Zhou, X. Non-parametric genetic prediction of complex traits with latent Dirichlet process

regression models. Nat Commun 8, 456 (2017).

38


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

available under aCC-BY-NC-ND 4.0 International license.

Liu, Y. et al. ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant Analysis in
Sequencing Studies. The American Journal of Human Genetics 104, 410-421 (2019).

Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-
scale datasets. Nat Genet 50, 906—-908 (2018).

Gamazon, E. R. et al. A gene-based association method for mapping traits using reference
transcriptome data. Nat Genet 47, 1091-1098 (2015).

Li, X. et al. Dynamic incorporation of multiple in silico functional annotations empowers rare variant
association analysis of large whole-genome sequencing studies at scale. Nat Genet 52, 969-983
(2020).

Feng, H. et al. Leveraging expression from multiple tissues using sparse canonical correlation
analysis and aggregate tests improves the power of transcriptome-wide association studies. PLOS
Genetics 17, e1008973 (2021).

Wang, T., lonita-Laza, I. & Wei, Y. Integrated Quantile RAnk Test (iQRAT) for gene-level associations.
arXiv:1910.10102 [stat] (2020).

Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. OVERVIEW AND FINDINGS FROM THE
RELIGIOUS ORDERS STUDY. Curr Alzheimer Res 9, 628—645 (2012).

Bennett, D. A. et al. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 64,
$161-S189 (2018).

Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data
in Alzheimer’s disease. Sci Data 5, 180185 (2018).

Bhattacharya, A, Li, Y. & Love, M. I. MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide
Association Studies. PLOS Genetics 17, e1009398 (2021).

Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression

across human tissues. Nature 550, 204-213 (2017).

39


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

927 45. Devlin, B., Roeder, K. & Wasserman, L. Genomic Control, a New Approach to Genetic-Based

928 Association Studies. Theoretical Population Biology 60, 155—-166 (2001).

929 46. Fuchs, F. D. & Whelton, P. K. High Blood Pressure and Cardiovascular Disease. Hypertension 75, 285—
930 292 (2020).

931  47. Masaki, T. The endothelin family: an overview. J Cardiovasc Pharmacol 35, S3-5 (2000).

932 48. Xue, H., Pan, W. & Initiative, for the A. D. N. Some statistical consideration in transcriptome-wide
933 association studies. Genetic Epidemiology 44, 221-232 (2020).

934  49. liu, A. E. & Kang, H. M. Meta-imputation of transcriptome from genotypes across multiple datasets
935 by leveraging publicly available summary-level data. PLOS Genetics 18, e1009571 (2022).

936  50. Yang, Y. et al. CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-
937 wide association studies. Bioinformatics 36, 2009—2016 (2020).

938 51. Yuan, Z. et al. Testing and controlling for horizontal pleiotropy with probabilistic Mendelian

939 randomization in transcriptome-wide association studies. Nat Commun 11, 3861 (2020).

940  52. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in

941 genome-wide association studies. Nat Genet 47, 291-295 (2015).

942  53. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene
943 targets. Nat Genet 48, 481-487 (2016).

944 54, Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27,
945 718-719 (2011).

946  55. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets.
947 Gigascience 4, 7 (2015).

948  56. Keys, K. L. et al. On the cross-population generalizability of gene expression prediction models. PLOS

949 Genetics 16, 1008927 (2020).

40


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

950

951

952

953

954

955

956

957

958

959

960

961

962

963

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486451; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

57.

58.

59.

60.

61.

62.

63.

available under aCC-BY-NC-ND 4.0 International license.

Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931
individuals. Nat Metab 2, 1135-1148 (2020).

Auton, A. et al. A global reference for human genetic variation. Nature 526, 68—74 (2015).

Lijoi, A., Priinster, |. & Walker, S. G. On Consistency of Nonparametric Normal Mixtures for Bayesian
Density Estimation. Journal of the American Statistical Association 100, 1292—1296 (2005).

Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in human
populations. Bioinformatics 32, 283—-285 (2016).

Robinson, G. K. That BLUP is a Good Thing: The Estimation of Random Effects. Statistical Science 6,
15-32 (1991).

Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 67, 301-320 (2005).

Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large

cohorts. Nat Genet 47, 284—290 (2015).

41


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

Causal Proportion=0.001 Causal Proportion=0.01

0.10-

0.05-

Test R?

0.01- 1 :

0.01 0.05 0.1 0.01 0.05

Method

Causal Proportion=0.001 Causal Proportion=0.001 Causal Proportion=0.001

Expression Heritabillity=0.01  Expression Heritabillity=0.05  Expression Heritabillity=0.1
1.00-

O
o
S

0.75-
0.50-
200 300 400 500 25 50 75 100 10 20 30 40

Causal Proportion=0.01 Causal Proportion=0.01 Causal Proportion=0.01
Expression Heritabillity=0.01  Expression Heritabillity=0.05  Expression Heritabillity=0.1

TWAS Power
S

o
\l
&

. 0.50-
e
' 200 300 400 500 25 5 75 100 10 20 30 40

0
n_gwas (in K)

P+T(0.001) lassosum [ PRS-CS M OTTERS
P+T(0.05) SDPR FUSION


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

50-

N
Q

—log10(PVALUE)

Q

w
Q

N
<

TWAS of Cardiovascular Disease by OTTERS

FES
[
MX1
|
[NTNS]
CAMK1D
RP11-578A13.1] [LINC01093 ) [CARMIL1 m e —
: [SERPlNBG}\{ZSCANﬂPl] INT5C2) SLCO3ALL, - .AOPRLl
"§ . [HLA-S] . .,_Cllorf49 . * tw "*  RALBPL] o\ - .%}
° o 8
ﬂﬂmﬂmauﬁﬂmanémdh P
e FC A R CHE G SHR R O A AV =

Chromosome



https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

P+T(0.001)

0.50-

0.50-

0.01

0.10 0.20
PRS-CS

0.10 0.20
PRS-CS

0.50

0.50

FUSION

0.50-

0.01

0.10 0.20
PRS-CS

0.100.20
PRS-CS

0.50

0.50

lassosum

0.50-

o o
=N
o

o

o
o
=

0.01

0.10 0.20
PRS-CS

0.50


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

OTTE RS

Stage I: Training Stage II: Testing

[S
L
[S
’

GReX Imputatlon-‘

|
Training Data :MOdEI :

- >
Summary o .
Data L ' Estimated

. - Test
| 1 cis-eQTL Gene-Based R
|
|
|

Output

OTTERS ¢
P-values -

! . iati P-values
f , Weights Asssociation Test _j

Reference
LD

"9SUI| [BUONBUIANI] 0"y ON-ON-AG-OOE Japun djqejiene
n KPIdQIn 0 A<IIAaNI © AIYMAINDIN nQ'IIIPIﬁ <RI OLIA ‘1antint/ioinne ain <l (I\I\QII\QI mad Kﬁ natinian 10l

Individual/Summary
test GWAS data


https://doi.org/10.1101/2022.03.30.486451
http://creativecommons.org/licenses/by-nc-nd/4.0/

