

1 **OTTERS: A powerful TWAS framework leveraging summary-level reference data**

2 Qile Dai^{1,12}, Geyu Zhou², Hongyu Zhao^{2,3}, Urmo Võsa⁴, Lude Franke^{5,6}, Alexis Battle⁷,
3 Alexander Teumer⁸, Terho Lehtimäki⁹, Olli Raitakari^{10,11}, Tõnu Esko⁴, eQTLGen Consortium,
4 Michael P. Epstein^{12*}, Jingjing Yang^{12*}

5

6 1. Department of Biostatistics and Bioinformatics, Emory University School of Public
7 Health, Atlanta, Georgia 30322, United States of America.

8 2. Program of Computational Biology and Bioinformatics, Yale University, New Haven,
9 Connecticut 06511, United States of America.

10 3. Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, United
11 States of America.

12 4. Estonian Genome Centre, Institute of Genomics, University of Tartu, 50090 Tartu,
13 Estonia.

14 5. Department of Genetics, University of Groningen, University Medical Center Groningen,
15 9700 RB Groningen, Netherlands.

16 6. Oncode Institute, 3521 AL Utrecht, Netherlands.

17 7. Department of Computer Science, and Departments of Biomedical Engineering, Johns
18 Hopkins University, Baltimore, Maryland 21218, United States of America

19 8. Institute for Community Medicine, University Medicine Greifswald, 17489 Greifswald,
20 Germany.

21 9. Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular
22 Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere
23 University, Tampere 33520, Finland.

24 10. Centre for Population Health Research, and Research Centre of Applied and Preventive
25 Cardiovascular Medicine, University of Turku, 20500 Turku, Finland.

26 11. Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital,
27 20521 Turku, Finland.

28 12. Center for Computational and Quantitative Genetics, Department of Human Genetics,
29 Emory University School of Medicine, Atlanta, Georgia 30322, United States of America.

30

31 *Correspondence Authors: M.P.E. (mepste@emory.edu) and J.Y. (jingjing.yang@emory.edu)

32

33

34 **Abstract**

35 Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable
36 to summary-level reference eQTL datasets. The development of TWAS methods that can harness
37 summary-level reference data is valuable to enable TWAS in broader settings and enhance power
38 due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS
39 (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple
40 polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL
41 reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and
42 powerful TWAS tool by both simulations and application studies.

43

44 **Keywords:**

45 Transcriptome-wide association study; Summary-level eQTL reference data; PRS method;
46 GWAS; UK Biobank; eQTLGen; Cardiovascular disease

47

48 Transcriptome-wide association study (TWAS) is a valuable analysis strategy for
49 identifying genes that influence complex traits and diseases through genetic regulation of gene
50 expression^{1–5}. Researchers have successfully deployed TWAS analyses to identify risk genes for
51 complex human diseases, including Alzheimer’s disease^{6–8}, breast cancer^{9–11}, ovarian cancer^{12,13},
52 and cardiovascular disease^{14,15}. A typical TWAS consists of two separate stages. In Stage I,
53 TWAS acquires individual-level genetic and expression data from relevant tissues available in a
54 reference dataset like the Genotype-Tissue Expression (GTEx) project^{16,17} or the North American
55 Brain Expression Consortium (NABEC)¹⁸, and trains multivariable regression models on the
56 reference data treating gene expression as outcome and SNP genotype data (typically cis-SNPs
57 nearby the test gene) as predictors to determine genetically regulated expression (GReX). After

58 Stage I that uses the GReX regression models to estimate effect sizes of SNP predictors that, in
59 the broad sense, are expression quantitative trait loci (eQTLs), Stage II of TWAS proceeds by
60 using these trained eQTL effect sizes to impute GReX within an independent GWAS of a complex
61 human disease or trait. One can then test for association between the imputed GReX and
62 phenotype, which is equivalent to a gene-based association test taking these eQTL effect sizes
63 as corresponding test SNP weights¹⁹⁻²¹.

64 For Stage I of TWAS, a variety of training tools exist for fitting GReX regression models
65 using reference expression and genetic data, including PrediXcan¹⁹, FUSION²⁰, and TIGAR²².
66 While these methods all employ different techniques for model fitting, they all require individual-
67 level reference expression and genetic data to estimate eQTL effect sizes for TWAS. Therefore,
68 these methods cannot be applied to emerging reference summary-level eQTL results such as
69 those generated by the eQTLGen²³ and CommonMind²⁴ consortia, which provide eQTL effect
70 sizes and p-values relating individual SNPs to gene expression. The development of TWAS
71 methods that can utilize such summary-level reference data is valuable to permit applicability of
72 the technique to broader analysis settings. Moreover, as TWAS power increases with increasing
73 reference sample size²⁵, TWAS using summary-level reference datasets can lead to enhanced
74 performance compared to using individual-level reference datasets since the sample sizes of the
75 former often are considerably larger than the latter. For example, the sample size of the summary-
76 based eQTLGen reference sample is 31,684 for blood, whereas the sample size of the individual-
77 level GTEx V6 reference is only 338 for the same tissue. Consequently, TWAS analysis
78 leveraging the summary-based eQTLGen dataset as reference likely can provide novel insights
79 into genetic regulation of complex human traits.

80 In this work, we propose a framework that can use summary-level reference data to train
81 GReX regression models required for Stage I of TWAS analysis. Our method is motivated by a
82 variety of published polygenic risk score (PRS) methods²⁶⁻³¹ that can predict phenotype in a test

83 dataset using summary-level SNP effect-size estimates and p-values based on single SNP tests
84 from an independent reference GWAS. We can adapt these PRS methods for TWAS since eQTL
85 effect sizes are essentially SNP effect sizes resulting from a reference “GWAS” of gene
86 expression. Thus, our predicted GReX in Stage II of TWAS is analogous to the PRS constructed
87 based on training GWAS summary statistics of single SNP-trait association. Here, we adapt four
88 representative summary-data based PRS methods — P-value Thresholding with linkage
89 disequilibrium (LD) clumping ($P+T$)²⁶, frequentist LASSO³² regression based method *lassosum*²⁷,
90 nonparametric Bayesian Dirichlet Process Regression (DPR) model³³ based method *SDPR*²⁹,
91 and Bayesian multivariable regression model based method with continuous shrinkage (CS)
92 priors *PRS-CS*²⁸ for TWAS analysis. We apply each of these PRS methods to first train eQTL
93 effect sizes based on a multivariable regression model from summary-level reference eQTL data
94 (Stage I), and subsequently use these eQTL effect sizes (i.e., eQTL weights) to impute GReX
95 and then test GReX-trait association in an independent test GWAS (Stage II).

96 As we will show, the PRS method with optimal performance for TWAS depends on the
97 underlying genetic architecture for gene expression. Since the genetic architecture of expression
98 is unknown *a priori*, we maximize the performance of TWAS over different possible architectures
99 by proposing a novel TWAS framework called OTTERS (**O**mnibus **T**ranscriptome **T**est using
100 **E**xpression **R**eference **S**ummary data). OTTERS first constructs individual TWAS tests and p-
101 values using eQTL weights trained by each of the PRS techniques outlined above, and then
102 calculates an omnibus test p-value using the aggregated Cauchy association test³⁴ (ACAT-O)
103 with all individual TWAS p-values (Figure 1). OTTERS is applicable to both summary-level and
104 individual-level test GWAS data within Stage II TWAS analysis.

105 In subsequent sections, we first describe how to use the PRS methods on summary-level
106 reference eQTL data in Stage I TWAS, and then describe how we can use the resulting eQTL
107 weights to perform Stage II TWAS using OTTERS. We then evaluate the performance of

108 individual PRS methods and OTTERS using simulated expression and real genetic data based
109 on patterns observed in real datasets. Interestingly, when we assume individual-level reference
110 data are available, we observe that OTTERS outperforms the popular FUSION²⁰ approach across
111 all simulation settings considered. Many of the individual PRS methods also outperform FUSION
112 in these settings. We then apply OTTERS to blood eQTL summary-level data (n=31,684) from
113 the eQTLGen consortium²³ and GWAS summary data of cardiovascular disease from the UK
114 Biobank (UKBB)³⁵. By comparing OTTERS results to those of FUSION²⁰ using individual-level
115 GTEEx reference data of whole blood tissue, we demonstrate that OTTERS using large summary-
116 level reference datasets and multiple gene expression imputation models can successfully reveal
117 potential risk genes missed by FUSION based on smaller individual-level reference datasets and
118 only one model. Finally, we conclude with a discussion.

119 **Results**

120 Method Overview

121 For the standard two-stage TWAS approach, Stage I estimates a GReX imputation model
122 using individual-level expression and genotype data available from a reference dataset, and then
123 Stage II uses the eQTL effect sizes from Stage I to impute gene expression (GReX) in an
124 independent GWAS and test for association between GReX and phenotype. GReX for test
125 samples can be imputed from individual-level genotype data and eQTL effect size estimates.
126 When individual-level GWAS data are not available, one can instead use summary-level GWAS
127 data for TWAS by applying the TWAS Z-score statistics proposed by FUSION²⁰ and S-
128 PrediXcan³⁶ (see details in Methods).

129 Since eQTL summary data are analogous to GWAS summary data where gene
130 expression represents the phenotype, we can follow the idea from PRS methods to estimate the
131 eQTL effect sizes based on a multivariable regression model using only marginal least squared

132 effect estimates and p-values (based on a single variant test) from the eQTL summary data as
133 well as a reference LD panel from samples of the same ancestry²⁶⁻²⁹. Although all PRS methods
134 are applicable to TWAS Stage I, we only consider four representative methods — *P+T*²⁶,
135 *Frequentist lassosum*²⁷, *Nonparametric Bayesian SDPR*²⁹, *Bayesian PRS-CS*²⁸ (see details in
136 Methods).

137 As shown in Figure 1, OTTERS first trains GReX imputation models per gene g using *P+T*,
138 *lassosum*, *SDPR*, and *PRS-CS* methods that each infers cis-eQTL weights using cis-eQTL
139 summary data and an external LD reference panel of the same ancestry (Stage I). Once we derive
140 cis-eQTL weights for each training method, we can impute the respective GReX using that
141 method and perform the respective gene-based association analysis in the test GWAS dataset.
142 We thus derive a set of TWAS p-values for gene g , one per training method. We then use these
143 TWAS p-values to create an omnibus test using the ACAT-O³⁴ approach that employs a Cauchy
144 distribution for inference (see details in Supplemental Methods). We refer to the p-value derived
145 from ACAT-O test as the OTTERS p-value. The ACAT-O³⁴ approach has been widely used in
146 hypothesis testing to combine multiple testing methods for the same hypothesis³⁷⁻³⁹, which has
147 been shown as an effective approach to leverage different test methods to increase the power
148 while still managing to control for type I error. Adding TWAS p-values based on additional PRS
149 methods to the ACAT-O test can possibly improve the power further at the cost of additional
150 computation.

151 Simulation Study

152 We used real genotype data from 1894 whole genome sequencing (WGS) samples from
153 the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) cohort^{40,41} and
154 Mount Sinai Brain Bank (MSBB) study⁴² for simulation. We divided 14,772 genes into five
155 groups according to gene length, and randomly selected 100 genes from each group (500
156 genes in total). We randomly split samples into 568 training (30%) and 1326 testing samples

157 (70%) to mimic a relatively small sample size in the real reference panel for training gene
158 expression imputation models.. From the real genotype data, we simulated 6 scenarios with 2
159 different proportions of causal cis-eQTL, $p_{causal} = (0.001, 0.01)$, as well as 3 different
160 proportions of gene expression variance explained by causal eQTL, $h_e^2 = (0.01, 0.05, 0.1)$.

161 We generated gene expression of gene g (\mathbf{E}_g) using the multivariable regression model
162 $\mathbf{E}_g = \mathbf{X}_g \mathbf{w} + \boldsymbol{\epsilon}_g$, where \mathbf{X}_g represents the standardized genotype matrix of the randomly
163 selected causal eQTL of gene g , $\boldsymbol{\epsilon}_g \sim N(0, (1 - h_e^2) \mathbf{I})$. We generated the eQTL effect sizes \mathbf{w}
164 from $N(0,1)$ and then re-scaled these effects to ensure that the expression variance explained
165 by all causal variants is h_e^2 . We generated 10 replicates of gene expression per scenario. For
166 each simulated gene expression, we then generated 10 sets of GWAS Z-scores to perform a
167 total of 50,000 TWAS simulations. We generated the GWAS Z-scores from a multivariate
168 normal distribution with $Z \sim MVN \left(\boldsymbol{\Sigma}_g \mathbf{w} \sqrt{n_{gwas} h_p^2}, \boldsymbol{\Sigma}_g \right)^{38}$, where \mathbf{w} is the true causal eQTL
169 effect sizes, $\boldsymbol{\Sigma}_g$ is the correlation matrix of the standardized genotype \mathbf{X}_g from test samples,
170 n_{gwas} is the assumed GWAS sample size, and h_p^2 denotes the amount of phenotypic variance
171 explained by simulated GReX= $\mathbf{X}_g \mathbf{w}$ (see Methods). We set $h_p^2 = 0.025$. To calibrate power, we
172 considered $n_{gwas} = (200K, 300K, 400K, 500K)$ for scenarios with $h_e^2 = 0.01$, $n_{gwas} = (25K, 50K,$
173 $75K, 100K)$ for scenarios with $h_e^2 = 0.05$, and $n_{gwas} = (10K, 20K, 30K, 40K)$ for scenarios with
174 $h_e^2 = 0.1$.

175 In Stage I of our TWAS analysis, we applied *P+T* (0.001), *P+T* (0.05), *lassosum*, *SDPR*,
176 and *PRS-CS* methods to estimate eQTL weights using eQTL summary data and the reference
177 LD of training samples. In Stage II of the TWAS, we used the estimated eQTL weights and the
178 simulated GWAS Z-scores to conduct a gene-based association test. In addition to gene-based
179 association tests based on eQTL weights per training method, we further constructed the
180 corresponding OTTERS p-values. We evaluated the performance of the training methods with

181 test samples, comparing test R^2 that was the squared Pearson correlation coefficient between
182 imputed GReX and simulated gene expression. We evaluated TWAS power given by the
183 proportion of 50,000 repeated simulations with TWAS p-value $< 2.5 \times 10^{-6}$ (genome-wide
184 significance threshold adjusting for testing 20K independent genes). We only considered genes
185 with GReX test $R^2 > 0.01$ in the power analysis.

186 As shown in Figure 2, we demonstrated that the Stage I training method with optimal test
187 R^2 and TWAS power depended on the underlying genetic architecture of gene expression (p_{causal})
188 as well as gene expression heritability (h_e^2). In situations where true cis-eQTLs were sparse
189 ($p_{causal} = 0.001$) and the gene expression heritability was small ($h_e^2 = 0.01$), *P+T (0.05)* method
190 performed the best with the highest TWAS power among all individual methods. When gene
191 expression heritability is low ($h_e^2 = 0.01$), the power of *P+T (0.001)* and *lassosum* methods were
192 shown as the lowest for considering only genes with test $R^2 > 0.01$. When gene expression
193 heritability increased ($h_e^2 = 0.05$ or 0.1) within this sparse eQTL model, *P+T (0.001)* and PRS-CS
194 were generally the optimal methods. For a less sparse model with $p_{causal} = 0.01$, SDPR and PRS-
195 CS generally performed best among the individual methods. Relative to individual methods, we
196 found that combining the TWAS p-values based on the four PRS training methods together for
197 analysis in our OTTERS framework obtained the highest power across all scenarios.

198 To evaluate the type I error of the individual PRS methods along with OTTERS, we picked
199 one simulated replicate per gene from the scenario with $h_e^2 = 0.1$ and $p_{causal} = 0.001$,
200 simulated 2×10^3 phenotypes from $N(0,1)$, and permuted the eQTL weights for TWAS to
201 perform a total of 10^6 null simulations. OTTERS was shown well calibrated in the tails of the
202 distribution as shown by quantile-quantile (Q-Q) plots of TWAS p-values in Figure S1. We also
203 observed that OTTERS had well-controlled type I error for stringent significance levels between
204 10^{-4} and 2.5×10^{-6} (Table S1), which are typically utilized in TWAS. For more modest
205 significance thresholds ($\alpha = 10^{-2}$), we noted that OTTERS had a slightly inflated type-I error rate.

206 This modest inflation is consistent with the findings of the original ACAT-O work, which showed
207 that the Cauchy-distribution-based approximation that ACAT-O employs may not be accurate for
208 larger p-values when correlation among tests is strong³⁴. This suggests that modest OTTERS p-
209 values may be interpreted with caution.

210 We also compared the performance of our individual PRS training methods to those of
211 FUSION assuming individual-level reference data were available for the latter method to train
212 GReX models. As shown in Figure 2A, we interestingly observed that our training methods yielded
213 similar or improved test R^2 compared to FUSION in this situation, with *SDPR* and *PRS-CS*
214 outperforming FUSION across all simulation settings. Comparing TWAS power, we found that
215 OTTERS outperformed FUSION by a considerable margin in our simulations (Figure 2B). These
216 simulation results suggest that, while we developed OTTERS based on PRS training methods to
217 handle summary-level reference data, OTTERS can still improve TWAS power when individual-
218 level reference data are available. This is likely because OTTERS accounts for multiple possible
219 models of genetic architectures of gene expression assumed by the different PRS training
220 methods.

221 *GReX Imputation Accuracy in GTEx V8 Blood Samples*

222 To evaluate the imputation accuracy of *P+T* (0.001), *P+T* (0.05), *lassosum*, *SDPR*, and
223 *PRS-CS* methods in real data, we applied these training methods to summary-level eQTL
224 reference data from the eQTLGen consortium²³ with n=31,684 blood samples, to train GReX
225 imputation models for 16,699 genes. For test data, we downloaded the transcriptomic data of 315
226 blood tissue samples that are in GTEx V8 but were not part of GTEx V6 (as GTEx V6 samples
227 contributed to the reference eQTLGen consortium summary data). For these 315 samples, we
228 compared imputed GReX to observed expression levels. We considered trained imputation
229 models with test $R^2 > 0.01$ as “valid” models, as suggested by previous TWAS methods^{20,43}. We
230 also compared imputation accuracy of these five training models to those using FUSION based

231 on a smaller individual-level training dataset (individual-level GTEx V6 reference dataset; see
232 Methods). For such models, we compared the test R^2 for genes that had test $R^2 > 0.01$ by at least
233 one training method.

234 We observed that *PRS-CS* obtained the most “valid” GReX imputation models with test
235 $R^2 > 0.01$. Among 16,699 tested genes, *PRS-CS* obtained “valid” GReX imputation models for
236 10,337 genes, compared to 9,816 genes by *P+T* (0.001) (5.0% less valid genes than *PRS-CS*),
237 9,662 genes by *P+T* (0.05) (6.5% less), 8,718 genes by *lassosum* (15.7% less), 9,670 genes by
238 *SDPR* (6.5% less), and 4,704 genes by *FUSION* (54.5% less) (Table 1). Among the “valid” GReX
239 imputation models obtained by each method, the ones trained by *PRS-CS* have the highest
240 median test R^2 . The *P+T* (0.001) method obtained the second most “valid” GReX imputation
241 models with the second largest median test R^2 , as compared to *P+T* (0.05), *lassosum*, and *SDPR*
242 (Table 1). We note that the performance of *PRS-CS* method was not sensitive to the global
243 shrinkage parameter (Figure S2).

244 By comparing test R^2 per “valid” GReX imputation model by *PRS-CS* versus the other
245 methods (Figure 3), we observed that *PRS-CS* had the best overall performance for imputing
246 GReX as it provided the most “valid” models with higher GReX imputation accuracy compared to
247 *P+T* methods, *lassosum*, *SDPR*, and *FUSION*. Comparing the test R^2 among the other four
248 training methods, we observed that these two *P+T* methods obtained similar test R^2 per “valid”
249 model. Meanwhile, the test R^2 per valid model varied widely among the *P+T* methods, *lassosum*,
250 and *SDPR* (Figure S3), suggesting that none of these four were optimal across all genes and their
251 performance likely depended on the underlying unknown genetic architecture. These results are
252 consistent with our simulation results.

253 TWAS of Cardiovascular Disease

254 Using the eQTL weights trained by *P+T* (0.001), *P+T* (0.05), *lassosum*, *SDPR*, and *PRS-*
255 CS methods with the eQTLGen²³ reference data and reference LD from GTEx V8 WGS
256 samples⁴⁴, we applied our OTTERS framework to the summary-level GWAS data of
257 Cardiovascular Disease from UKBB (n=459,324, case fraction = 0.319)³⁵ (see Methods). We
258 performed TWAS of cardiovascular disease for 16,678 genes. First, for each gene, we obtained
259 TWAS p-values per individual training method (*P+T* (0.001), *P+T* (0.05), *lassosum*, *SDPR*, and
260 *PRS-CS*). Second, we performed genomic control⁴⁵ for TWAS test statistics generated under
261 each specific training model, by scaling all test statistics to ensure that the median test p-value
262 equals to 0.5. Last, we only considered genes with test GReX $R^2 > 0.01$ by at least one PRS
263 training method in additional GTEx V8 samples in the follow-up ACAT-O test. We combined the
264 adjusted p-values across all five training models using ACAT-O to obtain our OTTERS test
265 statistics and p-values. Genes with OTTERS p-values $< 2.998 \times 10^{-6}$ (Bonferroni corrected
266 significance level) were identified as significant TWAS genes for cardiovascular risk.

267 In total, we identified 40 significant TWAS genes by using OTTERS. To identify
268 independently significant TWAS genes, we calculated the R^2 (squared correlation) between the
269 GReX predicted by *PRS-CS* for of each pair of genes. For a pair of genes with the predicted
270 GReX $R^2 > 0.5$, we only kept the gene with the smaller TWAS p-value as the independently
271 significant gene. OTTERS obtained 38 independently significant TWAS genes (Table 2, Figure
272 3B), compared to 17 independently significant genes by *P+T* (0.001), 11 by *P+T* (0.05), 10 by
273 *lassosum*, 41 by *SDPR*, and 12 by *PRS-CS*. Among these 38 independent TWAS risk genes
274 identified by OTTERS, gene *RP11-378A13.1* (OTTERS p-value = 9.78×10^{-9}) was not within 1
275 MB of any known GWAS risk loci with genomic-control corrected p-value $< 5 \times 10^{-8}$ in the
276 UKBB summary-level GWAS data. This novel risk gene *RP11-378A13.1* was also identified to
277 be a significant TWAS risk gene in blood tissue for systolic blood pressure, high cholesterol, and
278 cardiovascular disease by FUSION¹.

279 We compared our OTTERS results with the TWAS results shown on TWAS hub (see
280 Web Resource) obtained by FUSION using the same UKBB GWAS summary data of
281 cardiovascular disease but using a smaller individual-level reference expression dataset from
282 GTEx V6 (whole blood tissue, n=338). Of the 38 independent genes that OTTERS identified
283 from TWAS with eQTLGen reference data of whole blood, FUSION only identified 8 of these
284 genes (*CLCN6b, PSRC1, RP11-378A13.1, CAMK1D, SIDT2, MTHFSD, NTN5, OPRL1*) when
285 using the GTEx V6 reference data of the same tissue. FUSION did identify 13 additional
286 OTTERS genes (*NPPA, CPEB4, NT5C2, TNNT3, C11orf49, CSK, FES, MBTPS1, ACE, MRI1,*
287 *HAUS8, RPL28, CTSZ*), when considering all available tissue types in GTEx V6 reference data.
288 These genes were identified by FUSION when considering the GTEx V6 reference data of
289 artery, thyroid, adipose visceral, and nerve tibial tissues. For example, the most significant gene
290 *FES* (OTTERS p-value = 2.87×10^{-32}) was identified by FUSION using GTEx reference data of
291 artery tibial, thyroid, and adipose visceral omentum tissues, and was also identified as a TWAS
292 risk gene for high blood pressure, which is strongly related to cardiovascular disease⁴⁶.

293 Our OTTERS method also identified 17 novel risk genes (*LINC01093, SERPINB6,*
294 *CARMIL1, ZSCAN12P1, HCG4P7, HCG4P3, HLA-S, PSPHP1, LPL, PTP4A3, SLC03A1,*
295 *RALBP1, SULT2B1, EDN3, ZBTB46, FAM3B, MX1*) that were not detected by FUSION using
296 GTEx V6 data, where *EDN3* (Endothelin 3, a member of the endothelin family) was shown to be
297 active in the cardiovascular system and play an important role in the maintenance of blood
298 pressure or generation of hypertension⁴⁷.

299 By comparing OTTERS results with the ones obtained by individual methods (Table 2;
300 Figure 4; Figure S4), we found that all individual methods contributed to the OTTERS results. For
301 example, the novel risk gene *LINC01093* was only identified by *lassosum*, while genes *CPEB4*,
302 *SIDT2*, and *ACE* were only detected by *PRS-CS* and *SDPR* and the novel risk gene *EDN3* was
303 only identified by the *P+T* methods. To better understand the differences among individual

304 methods, we plotted the eQTL weights estimated by *P+T* (0.001), *P+T* (0.05), *lassosum*, *SDPR*,
305 and *PRS-CS* for three example genes that were only detected by one or two individual methods
306 (Figures S5-S7). For these genes, we plotted the eQTL weights produced by each method with
307 such weights color coded with respect to $-\log_{10}$ (GWAS p-values) from the UKBB GWAS
308 summary statistics and shape coded with respect to the direction of UKBB GWAS Z-score
309 statistics. Generally, significant TWAS p-values would be obtained by methods that obtained
310 eQTL weights with relatively large magnitude for SNPs with relatively more significant GWAS p-
311 values.

312 In Figure S5, we showed the eQTL weights for gene *SIDT2*, which was a significant risk
313 gene identified by both *PRS-CS* and *SDPR*, and had p-values $< 10^{-4}$ by other methods.
314 Compared to *lassosum*, *SDPR* had more significant GWAS SNPs colocalized with eQTLs
315 having relatively large weights in the test region, and *PRS-CS* had more non-significant GWAS
316 SNPs colocalized with eQTLs having zero weights. Compared to the *P+T* methods, *SDPR* and
317 *PRS-CS* based on a multivariate regression model modeled LD among all test SNPs, and thus
318 estimated eQTL weights leading to significant TWAS findings. In Figure S6, we provided the
319 results of gene *EDN3*, which was only identified by *P+T* methods (p-values $\leq 9.15 \times 10^{-8}$).
320 Compared to *P+T* methods, *SDPR* (p-value = 5.9×10^{-3}) and *PRS-CS* (p-value = 0.0158) had
321 fewer significant GWAS SNPs colocalized with eQTLs that had relatively large weights in the
322 test region, while *lassosum* (p-value = 8.6×10^{-6}) assigned relatively large weights to more
323 non-significant GWAS SNPs. In Figure S7, we provided results for gene *LINC01093*, which was
324 only identified by *lassosum*. For this gene, *SDPR* and *PRS-CS* estimated near-zero weights for
325 most test SNPs with significant GWAS p-values in the test region. Most significant GWAS SNPs
326 did not have eQTL test p-values < 0.001 or 0.05, and were thus filtered out by *P+T* methods.
327 *lassosum* was the only method that produced relatively large eQTL weights that co-localized
328 with GWAS significant SNPs.

329

330 These results were consistent with our simulation study results, demonstrating that the
331 performance of different individual methods depended on the underlying genetic architecture. We
332 do note that there were a handful of genes identified by an individual method that were not
333 significant using OTTERS (Table S2). Nonetheless, the omnibus test borrows strength across all
334 individual methods, thus generally achieves higher TWAS power and identifies the group of most
335 robust TWAS risk genes.

336 By examining the Q-Q plots of TWAS p-values, we observed a moderate inflation for all
337 methods (Figure S8). Such inflation in TWAS results is not uncommon^{48–50}, which could be due
338 to similar inflation in the GWAS summary data and not distinguishing the pleiotropy and mediation
339 effects for considered gene expression and phenotype of interest⁵¹ (Figure S9). We also observed
340 a notable inflation in the GWAS p-values of cardiovascular disease from UKBB (Figure S9), as
341 we estimated the LD score regression⁵² intercept to be 1.1 from the GWAS summary data.

342 We did not consider directly comparing to FUSION in our above TWAS analyses of
343 cardiovascular disease since we used the summary-level reference data eQTLGen. However, to
344 assess the performance of OTTERS and FUSION in a real study where individual-level reference
345 data are available, we performed an additional TWAS analysis of cardiovascular disease in the
346 UK Biobank using the GTEx V8 data of 574 whole blood samples as the reference data. We
347 trained OTTERS Stage I using cis-eQTL summary statistics obtained from these 574 GTEx V8
348 whole blood samples and reference LD from GTEx V8 WGS samples, and trained FUSION
349 models using individual-level genotype data and gene expression data of the same 574 whole
350 blood samples.

351 We tested TWAS association for 19,653 genes and identified genes with TWAS p-values
352 $< 2.53 \times 10^{-6}$ (Bonferroni corrected significance level) as significant TWAS genes. Training $R^2 >$

353 0.01 was used to select “valid” GReX imputation models for TWAS (Figure S10). To identify
354 independently significant TWAS genes, we calculated the training R^2 between the GReX
355 predicted by lassosum for each pair of genes, since lassosum had the best training R^2 (Figure
356 S10). For a pair of genes with the predicted GReX $R^2 > 0.5$, we only kept the gene with the smaller
357 TWAS p-value as the independently significant gene. As a result, OTTERS obtained 34
358 independently significant TWAS genes, while FUSION identified 21 independently significant
359 TWAS genes (Figure S11). A total of 14 genes were identified by both FUSION and OTTERS
360 (Table S3).

361 These results demonstrate the advantages of OTTERS for using multiple PRS training
362 methods to account for the unknown genetic architecture of gene expression, which is consistent
363 in our simulation results. These results also showed the advantage of using eQTL summary data
364 with a larger training sample size, as more independently significant TWAS genes were identified
365 by using the eQTLGen summary reference data (38 vs. 34), even with a more stringent rule (test
366 instead of training $R^2 > 0.01$) applied to select test genes with “valid” GReX imputation models.

367 Computational Time

368 The computational time per gene of different PRS methods depends on the number of test
369 variants considered for the target gene. Thus, we calculated the computational time and memory
370 usage for 4 groups of genes whose test variants were <2000, between 2000 and 3000, between
371 3000 and 4000, and >4000, respectively. Among all tested genes in our real studies, the median
372 number of test variants per gene is 3152, and the proportion of genes in each group is 10.3%,
373 33.4%, 34.5%, and 21.8%, respectively. For each group, we randomly selected 10 genes on
374 Chromosome 4 to evaluate the average computational time and memory usage per gene. We
375 benchmarked the computational time and memory usage of each method on one Intel(R) Xeon(R)
376 processor (2.10 GHz). The evaluation was based on 1000 MCMC iterations for SDPR and PRS-
377 CS (default) without parallel computation (Table S4). We showed that *P+T* and *lassosum* were

378 computationally more efficient than *SDPR* and *PRS-CS*, whose speed were impeded by the need
379 of MCMC iterations. Between the two Bayesian methods, *SDPR* implemented in C++ uses
380 significantly less time and memory than *PRS-CS* implemented in Python.

381 **Discussion**

382 Our OTTERS framework represents an omnibus TWAS tool that can leverage summary-
383 level expression and genotype results from a reference sample, thereby robustly expanding the
384 use of TWAS into more settings. To this end, we adapted and evaluated five different PRS
385 methods assuming different underlying genetic models, including the relatively simple method
386 *P+T*²⁶ with two different p-value thresholds (0.001 and 0.05), the frequentist method *lassosum*²⁷,
387 as well as the Bayesian methods *PRS-CS*²⁸ and *SDPR*²⁹ within our omnibus test for optimal
388 inference. We note that additional PRS methods such as *MegaPRS*³⁰ or *PUMAS*³¹ could also be
389 implemented as additional OTTERS Stage I training methods. Higher TWAS power might be
390 obtained by adding more PRS methods in OTTERS Stage I, with additional computation cost. We
391 also note that the existing *SMR-HEIDI*⁵³ method, which uses summary-level data from GWAS and
392 eQTL studies to test for possible causal genetic effects of a trait of interest that were mediated through
393 gene expression, could also be used as an alternative method besides TWAS. However, the SMR
394 method generally restricts eQTL for consideration, excluding those where the eQTL p-values
395 larger than a certain threshold, e.g., 0.05.

396 In simulation studies, we demonstrated that the performance of each of these five PRS
397 methods depended substantially on the underlying genetic architecture for gene expression, with
398 *P+T* methods generally performing better for sparse architecture whereas the Bayesian methods
399 performing better for denser architecture. Consequently, since genetic architecture of gene
400 expression is unknown apriori, we believe this justifies the use of the omnibus TWAS test
401 implemented in OTTERS for practical use as this test had near-optimal performance across all
402 simulation scenarios considered. While we developed our methods with summary-level reference

403 data in mind, we note that our prediction methods and OTTERS perform well (in terms of
404 imputation accuracy and power) relative to existing TWAS methods like FUSION when individual-
405 level reference data are available.

406 In our real data application using UKBB GWAS summary-level data, we compared
407 OTTERS TWAS results using reference eQTL summary data from eQTLGen consortium to
408 FUSION TWAS results using a substantially smaller individual-level reference dataset from GTEx
409 V6. OTTERS identified 13 significant TWAS risk genes that were missed by FUSION using
410 individual-level GTEx V6 reference data of blood tissue, suggesting that the use of larger
411 reference datasets like eQTLGen in TWAS can identify novel findings. Interestingly, the genes
412 missed by FUSION were instead detected using individual-level GTEx reference data of other
413 tissue types that are more directly related to cardiovascular disease. By comparing OTTERS to
414 FUSION when the same individual-level GTEx V8 reference data of whole blood samples were
415 used, we still observed that OTTERS identified more risk genes than FUSION, which we believe
416 is due to the former method accounting for the unknown genetic architecture of gene expression
417 by using multiple regression methods to train GReX imputation models. These applied results
418 were consistent with our simulation results.

419 Among all individual methods, *P+T* is the most computationally efficient method. The
420 Bayesian methods *SDPR* and *PRS-CS* require more computation time than the frequentist
421 method *lassosum* as the former set of methods require a large number of MCMC iterations for
422 model fit. By comparing the performance of these five methods in terms of the imputation accuracy
423 and TWAS power in simulations and real applications, we conclude that none of these methods
424 were optimal across different genetic architectures. We found that all methods provided distinct
425 and considerable contributions to the final OTTERS TWAS results. These results demonstrate
426 the benefits of OTTERS in practice, since OTTERS can combine the strength of these individual
427 methods to achieve the optimal performance.

428 To enable the use of OTTERS by the public, we provide an integrated tool (see Availability
429 of data and materials) to: (1) Train GReX imputation models (i.e., estimate eQTL weights in Stage
430 I) using eQTL summary data by *P+T*, *lassosum*, *SDPR*, and *PRS-CS*; (2) Conduct TWAS (i.e.,
431 testing gene-trait association in Stage II) using both individual-level and summary-level GWAS
432 data with the estimated eQTL weights; and (3) Apply ACAT-O to aggregate the TWAS p-values
433 from individual training methods. Since the existing tools for *P+T*, *lassosum*, *SDPR*, and *PRS-CS*
434 were originally developed for PRS calculations, we adapted and optimized them for training GReX
435 imputation models in our OTTERS tool. For example, we integrate TABIX⁵⁴ and PLINK⁵⁵ tools in
436 OTTERS to extract input data per target gene more efficiently. We also enable parallel
437 computation in OTTERS for training GReX imputation models and testing gene-trait association
438 of multiple genes.

439 The OTTERS framework does have its limitations. First, training GReX imputation models
440 by all individual methods on average cost ~20 minutes for all 5 training models per gene, which
441 might be computationally challenging for studying eQTL summary data of multiple tissue types
442 and for ~20K genome-wide genes. Users might consider prioritize *P+T*(0.001), *lassosum*, and
443 *SDPR* training methods as these three provide complementary results in our studies. Second, the
444 currently available eQTL summary statistics are mainly derived from individuals of European
445 descent. Our OTTERS trained GReX imputations model based on these eQTL summary
446 statistics, and the resulting imputed GReX could consequently have attenuated cross-population
447 predictive performance⁵⁶. This might limit the transferability of our TWAS results across
448 populations. Third, our OTTERS cannot provide the direction of the identified gene-phenotype
449 associations, which should be referred to the sign of the TWAS Z-score statistic per training
450 method. Last, even though the method applies to integrate both cis- and trans- eQTL with GWAS
451 data, the computation time and availability of summary-level trans-eQTL reference data are still
452 the main obstacles. Our current OTTERS tool only considers cis-eQTL effects. Extension of

453 OTTERS to enable cross-population TWAS and incorporation of trans-eQTL effects is part of our
454 ongoing research but out of the scope of this work.

455 Our novel OTTERS framework using large-scale eQTL summary data has the potential to
456 identify more significant TWAS risk genes than standard TWAS tools that use smaller individual-
457 level reference transcriptomic data and use only a single regression method for training GReX
458 imputation models. This tool provides the opportunity to leverage not only available public eQTL
459 summary data of various tissues for conducting TWAS of complex traits and diseases, but also
460 the emerging summary-level data of other types of molecular QTL such as splicing QTLs,
461 methylation QTLs, metabolomics QTLs, and protein QTLs. For example, OTTERS could be
462 applied to perform proteome-wide association studies using summary-level reference data of
463 genetic-protein relationships such as those reported by the SCALLOP consortium⁵⁷, and
464 epigenome-wide association studies using summary-level reference data of methylation-
465 phenotype relationships reported by Genetics of DNA Methylation Consortium (GoDMC) (see
466 Web Resources). OTTERS would be most useful for the broad researchers who only have access
467 to summary-level QTL reference data and summary-level GWAS data. The feasibility of
468 integrating summary-level molecular QTL data and GWAS data makes our OTTERS tool valuable
469 for wide application in current multi-omics studies of complex traits and diseases.

470 **Methods**

471 Traditional Two-Stage TWAS Analysis

472 Stage I of TWAS estimates a GReX imputation model using individual-level expression
473 and genotype data available from a reference dataset. Consider the following GReX imputation
474 model from n individuals and m SNPs (multivariable regression model assuming linear additive
475 genetic effects) within the reference dataset:

476
$$\mathbf{E}_g = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(0, \sigma_\epsilon^2 \mathbf{I}). \quad \text{(Equation 1)}$$

477 Here, E_g is a vector representing gene expression levels of gene g , X is an $n \times m$ matrix of
478 genotype data of SNP predictors proximal or within gene g , w is a vector of genetic effect sizes
479 (referred to as a broad sense of eQTL effect sizes), and ϵ is the error term. Here, we consider
480 only cis-SNPs within 1 MB of the flanking 5' and 3' ends as genotype predictors that are coded
481 within X ^{19,20,22}. Once we configure the model in Equation 1, we can employ methods like
482 PrediXcan, FUSION, and TIGAR to fit the model and obtain estimates of eQTL effect sizes (\hat{w}).

483 Stage II of TWAS uses the eQTL effect sizes (\hat{w}) from Stage I to impute gene expression
484 (GReX) in an independent GWAS and then test for association between GReX and phenotype.
485 Given individual-level GWAS data with genotype data X_{new} and eQTL effect sizes (\hat{w}) from Stage
486 I, the GReX for X_{new} can be imputed by $\widehat{GReX} = X_{new} \hat{w}$. The follow-up TWAS would test the
487 association between \widehat{GReX} and phenotype Y based on a generalized linear regression model,
488 which is equivalent to a gene-based association test taking \hat{w} as test SNP weights. When
489 individual-level GWAS data are not available, one can apply FUSION and S-PrediXcan test
490 statistics to summary-level GWAS data as follows:

$$491 Z_{g,FUSION} = \frac{\sum_{j=1}^J (\hat{w}_j Z_j)}{\sqrt{\hat{w}' V \hat{w}}}, \quad Z_{g,S-PrediXcan} = \frac{\sum_{j=1}^J (\hat{w}_j \hat{\sigma}_j Z_j)}{\sqrt{\hat{w}' V \hat{w}}} \quad (\text{Equation 2})$$

492 where Z_j is the single variant Z -score test statistic in GWAS for the j^{th} SNP, $j = 1, \dots, J$, for all test
493 SNPs that have both eQTL weights with respect to the test gene g and GWAS Z -scores; $\hat{\sigma}_j$ is
494 the genotype standard deviation of the j^{th} SNP; and V denotes the genotype correlation matrix in
495 FUSION Z -score statistic and genotype covariance matrix in S-PrediXcan Z -score statistic of the
496 test SNPs. In particular, $\hat{\sigma}_j$ and V can be approximated from a reference panel with genotype
497 data of samples of the same ancestry such as those available from the 1000 Genomes
498 Project⁵⁸. If \hat{w} are standardized effect sizes estimated assuming standardized genotype X and

499 gene expression E_g in Equation 1, FUSION and S-PrediXcan Z-score statistics are equivalent¹³.

500 Otherwise, the S-PrediXcan Z-score should be applied to avoid false positive inflation.

501 TWAS Stage I Analysis using Summary-Level Reference Data

502 We now consider a variation of TWAS Stage I to estimate cis-eQTL effect sizes \hat{w} based
503 on a multivariable regression model (Equation 1) from summary-level reference data. We assume
504 that the summary-level reference data provide information on the association between a single
505 genetic variant j ($j = 1, \dots, m$) and expression of gene g . This information generally consists of
506 effect size estimates ($\tilde{w}_j, j = 1, \dots, m$) and p-values derived from the following single variant
507 regression models:

508
$$E_g = X_j w_j + \epsilon, \epsilon \sim N(0, \sigma_\epsilon^2 I), j = 1, \dots, m. \quad (\text{Equation 3})$$

509 Here, X_j is an $n \times 1$ vector of genotype data for genetic variant j . Since eQTL summary data are
510 analogous to GWAS summary data where gene expression represents the phenotype, we can
511 estimate the eQTL effect sizes \hat{w} using marginal least squared effect estimates ($\tilde{w}_j, j = 1, \dots, m$)
512 and p-values from the QTL summary data as well as reference linkage disequilibrium (LD)
513 information of the same ancestry^{26–29}. Although all PRS methods apply to the TWAS Stage I
514 framework, we only consider four representative methods as follows:

515 **P+T:** The *P+T* method selects eQTL weights by LD-clumping and P-value Thresholding²⁶.
516 Given threshold P_T for p-values and threshold R_T for LD R^2 , we first exclude SNPs with marginal
517 p-values from eQTL summary data greater than P_T or strongly correlated (LD R^2 greater than R_T)
518 with another SNP having a more significant marginal p-value (or Z-score statistic value). For the
519 remaining selected test SNPs, we use marginal standardized eQTL effect sizes from eQTL
520 summary data as eQTL weights for TWAS in Stage II. We considered $R_T = 0.99$ and $P_T =$
521 (0.001, 0.05) in this paper and implemented the *P+T* method using PLINK 1.9⁵⁵ (see Web

522 Resources). We denote the *P+T* method with P_T equal to 0.001 and 0.05 as *P+T (0.001)* and
523 *P+T (0.05)*, respectively.

524 *Frequentist lassosum*: With standardized \mathbf{E}_g and \mathbf{X} , we can show that the marginal least
525 squared eQTL effect size estimates from the single variant regression model (Equation 3) is $\tilde{\mathbf{w}} =$
526 $\mathbf{X}^T \mathbf{E}_g / n$ and that the LD correlation matrix is $\mathbf{R} = \mathbf{X}^T \mathbf{X} / n$. That is,

527
$$\mathbf{X}^T \mathbf{E}_g = n \tilde{\mathbf{w}} \text{ and } \mathbf{X}^T \mathbf{X} = n \mathbf{R}. \quad (\text{Equation 4})$$

528 By approximating $n \mathbf{R}$ by $n \mathbf{R}_s$ ($\mathbf{R}_s = (1 - s) \mathbf{R}_r + s \mathbf{I}$ with a tuning parameter $0 < s < 1$, a reference
529 LD correlation matrix \mathbf{R}_r from an external panel such as one from the 1000 Genomes Project⁵⁸,
530 and an identity matrix \mathbf{I}) in the LASSO³² penalized loss function, the frequentist *lassosum*
531 method²⁷ can tune the LASSO penalty parameter and s using a pseudovalidation approach and
532 then solve for eQTL effect size estimates $\hat{\mathbf{w}}$ by minimizing the approximated LASSO loss function
533 requiring no individual-level data (see details in Supplemental Methods).

534 *Bayesian SDPR*: Bayesian DPR method³³ as implemented in TIGAR²² estimates $\hat{\mathbf{w}}$ for the
535 underlying multivariable regression model in Equation 1 by assuming a normal prior $N(0, \sigma_w^2)$ for
536 w_j and a Dirichlet process prior⁵⁹ $DP(H, \alpha)$ for σ_w^2 with base distribution H and concentration
537 parameter α . *SDPR*²⁹ assumes the same DPR model but can be applied to estimate the eQTL
538 effect sizes $\hat{\mathbf{w}}$ using only eQTL summary data (see details in Supplemental Methods).

539 *Bayesian PRS-CS*: The *PRS-CS* method²⁸ assumes the following normal prior for w_j and
540 non-informative scale-invariant Jeffreys prior on the residual variance σ_ϵ^2 in Equation 1

541
$$w_j \sim N\left(0, \frac{\sigma_\epsilon^2}{n} \psi_j\right), \quad p(\sigma_\epsilon^2) \propto \sigma_\epsilon^{-2}; \quad \psi_j \sim Gamma(a, \delta_j), \quad \delta_j \sim Gamma(b, \phi),$$

542 where local shrinkage parameter ψ_j has an independent gamma-gamma prior and ϕ is a global-
543 shrinkage parameter controlling the overall sparsity of \mathbf{w} . *PRS-CS* sets hyper parameters $a = 1$

544 and $b = 1/2$ to ensure the prior density of w_j to have a sharp peak around zero to shrink small
545 effect sizes of potentially false eQTL towards zero, as well as heavy, Cauchy-like tails which
546 asserts little influence on eQTLs with larger effects. Posterior estimates \hat{w} will be obtained from
547 eQTL summary data (i.e., marginal effect size estimates \tilde{w} and p-values) and reference LD
548 correlation matrix R by Gibbs Sampler (see details in Supplemental Methods). We set ϕ as the
549 square of the proportion of causal variants in the simulation and as 10^{-4} per gene in the real data
550 application.

551 OTTERS Framework

552 As shown in Figure 1, OTTERS first trains GReX imputation models per gene g using $P+T$,
553 *lassosum*, *SDPR*, and *PRS-CS* methods that each infers cis-eQTLs weights using cis-eQTL
554 summary data and an external LD reference panel of similar ancestry (Stage I). Once we derive
555 cis-eQTLs weights for each training method, we can impute the respective GReX using that
556 method and perform the respective gene-based association analysis in the test GWAS dataset
557 using the formulas given in Equation 2 (Stage II). We thus derive a set of TWAS p-values for gene
558 g ; one p-value for each training model that we applied. We then use these TWAS p-values to
559 create an omnibus test using the ACAT-O³⁴ approach that employs a Cauchy distribution for
560 inference (see details in Supplemental Methods). We refer to the p-value derived from ACAT-O
561 test as the OTTERS p-value.

562 Marginal eQTL Effect Sizes

563 In practice of training GReX imputation models using reference eQTL summary data, the
564 marginal standardized eQTL effect sizes were approximated by $\tilde{w}_j \approx Z_j / \sqrt{\text{median}(n_{g,j})}$, where
565 Z_j denotes the corresponding eQTL Z-score statistic value by single variant test and
566 $\text{median}(n_{g,j})$ denotes the median sample size of all cis-eQTLs for the target gene g . The median
567 cis-eQTL sample size per gene was also taken as the sample size value required by *lassosum*,

568 *SDPR*, and *PRS-CS* methods, for robust performance. Since summary eQTL datasets (e.g.,
569 eQTLGen) were generally obtained by meta-analysis of multiple cohorts, the sample size per test
570 SNP could vary across all cis-eQTLs of the test gene. The median cis-eQTL sample size ensures
571 a robust performance for applying those eQTL summary data based methods.

572 *LD Clumping*

573 We performed LD-clumping with $R_T=0.99$ for all individual methods in both simulation and
574 real studies. Using PRS-CS as an example, we also showed that LD-clumping does not affect the
575 GReX imputation accuracy compared to no clumping in the real data testing (Figure S12).

576 *LD Blocks for lassosum, PRS-CS, and SDPR*

577 LD blocks were determined externally by *ldetect*⁶⁰ for *lassosum* and *PRS-CS*, while
578 internally for *SDPR* which ensure that SNPs in one LD block do not have nonignorable correlation
579 ($R^2 > 0.1$) with SNPs in other blocks.

580 *Simulate GWAS Z-score*

581 Given gene expression \mathbf{E}_g simulated from the multivariate regression model $\mathbf{E}_g = \mathbf{X}_g \mathbf{w} +$
582 $\boldsymbol{\epsilon}_g$ with standardized genotype matrix \mathbf{X}_g and $\boldsymbol{\epsilon}_g \sim N(0, (1 - h_e^2) \mathbf{I})$, we assume GWAS phenotype
583 data of n_{gwas} samples are simulated from the following linear regression model

584
$$\mathbf{Y} = h_p(\mathbf{X}_g \mathbf{w}) + \boldsymbol{\epsilon}_p, \quad \boldsymbol{\epsilon}_p \sim N(0, \mathbf{I}).$$

585 Conditioning on true genetic effect sizes, the GWAS Z-score test statistics of all test SNPs will
586 follow a multivariate normal distribution, $MVN\left(\boldsymbol{\Sigma}_g \mathbf{w} \sqrt{n_{gwas} h_p^2}, \boldsymbol{\Sigma}_g\right)$, where $\boldsymbol{\Sigma}_g$ is the correlation
587 matrix of the standardized genotype \mathbf{X}_g from test samples, and h_p^2 denotes the amount of
588 phenotypic variance explained by simulated GReX= $\mathbf{X}_g \mathbf{w}$ ³⁸. Thus, for a given GWAS sample size,
589 we can generate GWAS Z-score statistic values from this multivariate normal distribution.

590 *FUSION using Individual-level Reference Data*

591 To train GReX imputation models by FUSION with individual-level reference data, we
592 trained Best Linear Unbiased Predictor (BLUP) model⁶¹, Elastic-net regression⁶², LASSO
593 regression³², and single best eQTL model as implemented in the FUSION tool (see Web
594 Resource). Default settings were used to train GReX imputation models by FUSION in our
595 simulation and real studies. LASSO regression was performed only for genes with positive
596 estimated expression heritability. The eQTL weights of the best trained GReX imputation model
597 will be used to conduct TWAS by FUSION.

598 *GTEx V8 Dataset*

599 GTEx V8 dataset (dbGaP phs000424.v8.p2) contains comprehensive profiling of WGS
600 genotype data and RNA-sequencing (RNA-seq) transcriptomic data across 54 human tissue
601 types of 838 donors. The GTEx V8 WGS genotype data of all samples were used to construct
602 reference LD in our studies. The GTEx V6 RNA-seq data of whole blood samples were used to
603 train GReX imputation models by FUSION, and the GTEx V8 RNA-seq data of additional whole
604 blood samples (n=315) were used to test GReX imputation accuracy in our studies. GTEx V8
605 RNA-seq data of all whole blood samples (n=574) were also used as reference data for
606 comparing the performance of OTTERS and FUSION.

607 *eQTLGen Consortium Dataset*

608 The eQTLGen consortium²³ dataset was generated based on meta-analysis across 37
609 individual cohorts (n=31,684) including GTEx V6 as a sub-cohort. eQTLGen samples consist of
610 25,482 blood (80.4%) and 6,202 peripheral blood mononuclear cell (19.6%) samples. We
611 considered SNPs with minor allele frequency (MAF) > 0.01, Hardy–Weinberg P value >0.0001,
612 call rate >0.95, genotype imputation r^2 > 0.5 and observed in at least 2 cohorts²³. We only
613 considered cis-eQTL (within ± 1 MB around gene transcription start sites (TSS)) with test sample

614 size > 3000. As a result, we used cis-eQTL summary data of 16,699 genes from eQTLGen to
615 train GReX imputation models for use in OTTERS in this study.

616 **UK Biobank GWAS Data of Cardiovascular Disease**

617 Summary-level GWAS data of Cardiovascular Disease from UKBB (n=459,324, case
618 fraction = 0.319)³⁵ were generated by BOLT-LMM based on the Bayesian linear mixed model per
619 SNP⁶³ with assessment centered, sex, age, and squared age as covariates. Although BOLT-LMM
620 was derived based on a quantitative trait model, it can be applied to analyze case-control traits
621 and has well-controlled false positive rate when the trait is sufficiently balanced with case fraction
622 $\geq 10\%$ and samples are of the same ancestry. The tested dichotomous cardiovascular disease
623 phenotype includes a list of sub-phenotypes: hypertension, heart/cardiac problem, peripheral
624 vascular disease, venous thromboembolic disease, stroke, transient ischaemic attack (tia),
625 subdural haemorrhage/haematoma, cerebral aneurysm, high cholesterol, and other
626 venous/lymphatic disease.

627 **Data Availability**

628 eQTLGen consortium data are available from their portal website (<https://www.eqtldgen.org>). UK
629 Biobank summary-level GWAS data are available through the Alkes Group
630 (<https://alkesgroup.broadinstitute.org/UKBB>). Individual-level GTEx reference data are available
631 through dbGap (Accession phs000424.v8.p2). ROS/MAP/MSBB WGS data used in our
632 simulation studies are available through Synapse with data access application
633 (<https://www.synapse.org/#!Synapse:syn10901595>). All source code and scripts used in this
634 study are available through OTTERS Github page (<https://github.com/daiqile96/OTTERS>).

635 **Ethics Approval**

636 All data used in this study are de-identified genotype data and summary level eQTL and GWAS
637 data. ROS/MAP genotype data were collected with ethics approval from the IRB at Rush
638 University and all participants consented to participate.

639 **Acknowledgements**

640 The authors thank Dr. Greg Gibson from Georgia Tech for his insightful comments and discussion
641 that help the development and improve the quality of this manuscript. This work was supported
642 by National Institutes of Health grant awards R35GM138313 (QD, JY), RF1AG071170 (QD,
643 MPE), and Estonian Research Council Grant PUT (PRG1291) for TE. NIH/NIA grants
644 P30AG10161, R01AG15819, R01AG17917, R01AG30146, R01AG36836, R01AG56352,
645 U01AG32984, U01AG46152, U01AG61356, the Illinois Department of Public Health, the
646 Translational Genomics Research Institute support the generation of the ROS/MAP data led by
647 ASB, PLDJ and DAB. The Young Finns Study has been financially supported by the Academy of
648 Finland: grants 322098, 286284, 134309 (Eye), 126925, 121584, 124282, 255381, 256474,
649 283115, 319060, 320297, 314389, 338395, 330809, and 104821, 129378 (Salve), 117797
650 (Gendi), and 141071 (Skidi), the Social Insurance Institution of Finland, Competitive State
651 Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University
652 Hospitals (grant X51001), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Foundation
653 for Cardiovascular Research, Finnish Cultural Foundation, The Sigrid Juselius Foundation,
654 Tampere Tuberculosis Foundation, Emil Aaltonen Foundation, Yrjö Jahnsson Foundation, Signe
655 and Ane Gyllenberg Foundation, Diabetes Research Foundation of Finnish Diabetes Association,
656 EU Horizon 2020 (grant 755320 for TAXINOMISIS and grant 848146 for To Aition), European
657 Research Council (grant 742927 for MULTIEPIGEN project), Tampere University Hospital
658 Supporting Foundation, and Finnish Society of Clinical Chemistry and the Cancer Foundation
659 Finland. The funders had no role in study design, data collection and analysis, decision to publish,
660 or preparation of the manuscript.

661 **Authors' contributions**

662 QD conducted data analysis and drafted the manuscript; JY and MPE conceptualized and led the
663 project, and edited the manuscript; GZ and HZ consulted data analysis and edited the manuscript;
664 UV, LF, AB, AT, TL, OR, TE, contributed reference eQTL summary data and edited the
665 manuscript; eQTLGen Consortium contributed eQTLGen summary data.

666 **Competing interests**

667 The authors declare no competing interests and consent for publication.

668 **Materials & Correspondence**

669 Correspondence and material requests should be sent to M.P.E. (mpepste@emory.edu) and
670 J.Y. (jingjing.yang@emory.edu).

671 **Description of Supplemental Data**

672 Supplemental data include 12 figures, 4 tables, and supplemental methods.

673 **Web Resources**

674 ACAT: <https://github.com/yaowuliu/ACAT>

675 eQTLGen: <https://www.eqtngen.org>

676 FUSION: <http://gusevlab.org/projects/fusion>

677 GoDMC: <http://www.godmc.org.uk>

678 lassosum: <https://github.com/tshmak/lassosum>

679 OTTERS: <https://github.com/daiqile96/OTTERS>

680 PLINK: <https://www.cog-genomics.org/plink>

681 PRS-CS: <https://github.com/getian107/PRScs>

682 SDPR: <https://github.com/eldronzhou/SDPR>

683 TWAS hub: <http://twas-hub.org>

684

685

686 **Tables**

687 **Table 1. Test R^2 in 315 whole blood tissue samples from GTEx V8.**

	P+T(0.001)	P+T(0.05)	lassosum	SDPR	PRS-CS	FUSION ^b
# Genes with $R^2 > 0.01$	9,816	9,662	8,718	9,670	10,337	4,704
Median R^2 ^a	0.044	0.0430	0.0416	0.0418	0.0517	0.0367

688

a: Median R^2 among genes with test $R^2 > 0.01$ per method.

b: FUSION was trained on GTEx V6 blood samples while all other training methods were trained using eQTLGen summary statistics (n=31,684) and reference LD from GTEx V8 samples.

689

690 **Table 2. Independent TWAS risk genes of cardiovascular disease identified by OTTERS.**
 691 Reference eQTL summary data from eQTLGen consortium and GWAS summary data from
 692 UKBB were used. The corresponding TWAS p-values by 5 individual PRS methods and
 693 OTTERS are shown in the table with significant p-values in bold, and those for genes with test
 694 GReX $R^2 \leq 0.01$ were shown as a dash.

CHROM	ID	OTTERS	P+T(0.001)	P+T(0.05)	lassosum	SDPR	PRS-CS
1	CLCN6 ^a	5.75E-15	4.94E-09	5.40E-08	8.77E-09	1.19E-15	1.43E-09
1	NPPA ^b	4.32E-08	1.55E-08	2.14E-07	-	-	6.71E-06
1	PSRC1 ^a	8.37E-20	5.68E-08	8.46E-07	6.26E-11	1.67E-20	1.41E-12
2	RP11-378A13.1 ^a	9.78E-09	3.97E-02	4.98E-02	1.62E-05	1.96E-09	1.15E-04
4	LINC01093 ^c	2.57E-09	9.85E-02	5.31E-02	5.13E-10	1.08E-02	2.41E-02
5	CPEB4 ^b	3.05E-14	1.26E-02	2.05E-02	2.70E-05	6.05E-15	1.60E-07
6	SERPINB6 ^c	1.47E-07	2.12E-01	2.24E-01	7.56E-03	2.95E-08	7.53E-04
6	CARMIL1 ^c	9.23E-09	5.34E-03	3.41E-03	4.15E-03	1.85E-09	1.72E-03
6	ZSCAN12P1 ^c	1.84E-08	6.00E-01	5.75E-01	4.62E-01	3.67E-09	3.10E-01
6	HCG4P7 ^c	8.93E-50	3.70E-01	3.69E-01	2.30E-01	1.79E-50	7.26E-01
6	HCG4P3 ^c	5.33E-20	4.20E-01	4.05E-01	5.03E-04	1.07E-20	2.42E-03
6	HLA-S ^c	4.57E-07	7.13E-01	7.31E-01	3.02E-01	9.14E-08	2.33E-01
7	PSPHP1 ^c	1.21E-09	2.17E-01	2.26E-01	9.65E-03	2.43E-10	1.10E-01
8	LPL ^c	5.73E-07	1.78E-03	3.26E-03	4.44E-02	1.15E-07	1.05E-04
8	PTP4A3 ^c	1.28E-06	8.13E-02	8.33E-02	6.23E-05	2.58E-07	1.67E-03
10	CAMK1D ^a	2.51E-09	3.83E-02	4.97E-02	1.23E-03	5.03E-10	4.97E-05
10	NT5C2 ^b	1.21E-07	1.69E-06	2.92E-06	1.64E-05	3.15E-07	2.69E-08
11	TNNT3 ^b	1.67E-10	1.09E-06	3.33E-06	2.03E-09	3.40E-11	4.01E-07
11	C11orf49 ^b	2.28E-06	8.55E-07	1.78E-06	5.44E-05	-	2.93E-04
11	SIDT2 ^a	7.26E-09	6.14E-05	1.33E-04	3.66E-05	1.46E-09	3.81E-07
15	CSK ^b	2.30E-09	1.70E-07	2.15E-06	7.41E-10	2.80E-09	2.17E-09
15	FES ^b	2.87E-32	4.78E-08	1.23E-06	9.13E-24	5.75E-33	1.94E-15
15	SLCO3A1 ^c	3.78E-08	1.85E-02	3.15E-02	4.65E-05	7.57E-09	1.14E-03
16	MBTPS1 ^b	5.80E-08	2.62E-01	3.05E-01	9.15E-04	1.16E-08	2.34E-03
16	MTHFSD ^a	4.65E-07	5.16E-02	5.94E-02	1.65E-02	9.30E-08	3.20E-03
17	ACE ^b	9.42E-07	4.93E-06	1.03E-05	4.23E-06	9.66E-07	2.68E-07
18	RALBP1 ^c	1.40E-06	1.48E-01	1.54E-01	2.12E-04	2.81E-07	5.55E-03
19	MRI1 ^b	8.38E-09	8.34E-03	1.60E-02	7.79E-03	1.68E-09	2.65E-03
19	HAUS8 ^b	1.60E-07	4.41E-08	1.38E-07	1.67E-06	1.42E-06	3.29E-05
19	SULT2B1 ^c	2.32E-06	7.73E-07	-	-	2.97E-02	1.10E-02
19	NTN5 ^a	9.03E-10	2.75E-08	1.16E-07	6.23E-06	1.85E-10	9.73E-09
19	RPL28 ^b	3.76E-07	7.33E-02	1.16E-01	6.64E-03	7.52E-08	4.23E-03
20	CTSZ ^b	3.32E-09	2.57E-02	1.99E-02	3.40E-09	8.25E-10	1.04E-01
20	EDN3 ^c	1.29E-07	3.61E-08	9.15E-08	8.60E-06	5.90E-03	1.58E-02
20	ZBTB46 ^c	1.07E-06	2.83E-07	8.35E-06	-	1.81E-03	1.27E-05
20	OPRL1 ^a	5.84E-07	3.44E-07	2.69E-06	1.85E-03	5.51E-05	1.90E-07
21	FAM3B ^c	1.08E-10	2.28E-02	2.58E-02	8.07E-06	2.17E-11	1.04E-05
21	MX1 ^c	6.04E-22	4.36E-01	3.83E-01	3.16E-07	1.21E-22	1.24E-03

a: Risk gene of UKBB cardiovascular disease in TWAS-hub identified using GTEx whole blood tissue.

b: Risk genes of UKBB cardiovascular disease in TWAS-hub identified using other GTEx tissue types.

c: Novel risk gene

695 **Figure Titles and Legends**

696 **Figure 1. OTTERS framework.**

697 OTTERS estimates cis-eQTL weights from eQTL summary data and reference LD panel using
698 four imputation models (Stage I), and conducts ACAT-O test to combine gene-based
699 association test p-values from individual methods with individual/summary level test GWAS data
700 (Stage II).

701 **Figure 2. Test R^2 (A) and TWAS power (B) comparison in simulation studies**

702 Various proportions of true causal cis-eQTL $p_{causal} = (0.001, 0.01)$ and gene expression
703 heritability $h_e^2 = (0.01, 0.05, 0.1)$ were considered in the simulation studies. The GWAS sample
704 size was chosen with respect to h_e^2 values. The proportion of phenotype variance explained by
705 gene expression (h_p^2) was set to be 0.025. TWAS was conducted using simulated GWAS Z-
706 scores.

707 **Figure 3. Test R^2 by PRS-CS versus $P+T(0.001)$, $P+T(0.05)$, *lassosum*, *SDPR*, *FUSION*.**

708 Test R^2 by PRS-CS versus $P+T(0.001)$ (A), $P+T(0.05)$ (B), *lassosum* (C), *SDPR* (D), and *FUSION*
709 (E) with 315 GTEx V8 test samples, with different colors denoting whether test $R^2 > 0.01$ only by
710 PRS-CS (red), only by the y axis method (green), or both methods (blue). Genes with test $R^2 >$
711 0.01 by at least one method were included in the plot.

712 **Figure 4. Manhattan plot of TWAS results by OTTERS.**

713 Manhattan plot of TWAS results by OTTERS using GWAS summary-level statistics of
714 cardiovascular disease and imputation models fitted based on eQTLGen summary statistics.
715 Independently significant TWAS risk genes are labeled.

716 **eQTLGen Consortium Author List**

717 Mawussé Agbessi¹, Habibul Ahsan², Isabel Alves¹, Anand Kumar Andiappan³, Wibowo
718 Arindrarto⁴, Philip Awadalla¹, Alexis Battle^{5,6}, Frank Beutner⁷, Marc Jan Bonder^{8,9}, Dorret I.
719 Boomsma¹⁰, Mark W. Christiansen¹¹, Annique Claringbould^{8,12}, Patrick Deelen^{8,13,12,14}, Tõnu
720 Esko¹⁵, Marie-Julie Favé¹, Lude Franke^{8,12}, Timothy Frayling¹⁶, Sina A. Gharib^{11,17}, Greg Gibson¹⁸,
721 Bastiaan T. Heijmans⁴, Gibran Hemani¹⁹, Rick Jansen²⁰, Mika Kähönen²¹, Anette Kalnpenkis¹⁵,
722 Silva Kasela¹⁵, Johannes Kettunen²², Yungil Kim^{23,5}, Holger Kirsten²⁴, Peter Kovacs²⁵, Knut
723 Krohn²⁶, Jaanika Kronberg¹⁵, Viktorija Kukushkina¹⁵, Zoltan Kutalik²⁷, Bennett Lee³, Terho
724 Lehtimäki²⁸, Markus Loeffler²⁴, Urko M. Marigorta^{18,29,30}, Hailang Mei³¹, Lili Milani¹⁵, Grant W.
725 Montgomery³², Martina Müller-Nurasyid^{33,34,35}, Matthias Nauck^{36,37}, Michel G. Nivard³⁸, Brenda
726 Penninx²⁰, Markus Perola³⁹, Natalia Pervjakova¹⁵, Brandon L. Pierce², Joseph Powell⁴⁰, Holger
727 Prokisch^{41,42}, Bruce M. Psaty^{11,43}, Olli T. Raitakari⁴⁴, Samuli Ripatti⁴⁵, Olaf Rotzschke³, Sina
728 Rüeger²⁷, Ashis Saha⁵, Markus Scholz²⁴, Katharina Schramm^{46,34}, Ilkka Seppälä²⁸, Eline P.
729 Slagboom⁴, Coen D.A. Stehouwer⁴⁷, Michael Stumvoll⁴⁸, Patrick Sullivan⁴⁹, Peter A.C. 't Hoen⁵⁰,
730 Alexander Teumer⁵¹, Joachim Thiery⁵², Lin Tong², Anke Tönjes⁴⁸, Jenny van Dongen¹⁰, Maarten
731 van Iterson⁴, Joyce van Meurs⁵³, Jan H. Veldink⁵⁴, Joost Verlouw⁵³, Peter M. Visscher³², Uwe
732 Völker⁵⁵, Urmo Võsa^{8,15}, Harm-Jan Westra^{8,12}, Cisca Wijmenga⁸, Hanieh Yaghootkar^{16,56,57}, Jian
733 Yang^{32,58}, Biao Zeng¹⁸, Futa Zhang³²

734
735 Author list is ordered alphabetically
736

- 737 1. Computational Biology, Ontario Institute for Cancer Research, Toronto, Canada
- 738 2. Department of Public Health Sciences, University of Chicago, Chicago, United States of
739 America
- 740 3. Singapore Immunology Network, Agency for Science, Technology and Research, Singapore,
741 Singapore
- 742 4. Leiden University Medical Center, Leiden, The Netherlands
- 743 5. Department of Computer Science, Johns Hopkins University, Baltimore, United States of
744 America
- 745 6. Departments of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
746 of America
- 747 7. Heart Center Leipzig, Universität Leipzig, Leipzig, Germany
- 748 8. Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
- 749 9. European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- 750 10. Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit
751 Amsterdam, Amsterdam Public Health research institute and Amsterdam Neuroscience, the
752 Netherlands
- 753 11. Cardiovascular Health Research Unit, University of Washington, Seattle, United States of
754 America
- 755 12. Oncode Institute
- 756 13. Genomics Coordination Center, University Medical Centre Groningen, Groningen, The
757 Netherlands
- 758 14. Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA,
759 Utrecht, The Netherlands
- 760 15. Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- 761 16. Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter
762 Hospital, Exeter, United Kingdom
- 763 17. Department of Medicine, University of Washington, Seattle, United States of America
- 764 18. School of Biological Sciences, Georgia Tech, Atlanta, United States of America

765 19. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
766 20. Amsterdam UMC, Vrije Universiteit, Department of Psychiatry, Amsterdam Public Health
767 research institute and Amsterdam Neuroscience, The Netherlands
768 21. Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and
769 Health Technology, Tampere University, Tampere, Finland
770 22. University of Helsinki, Helsinki, Finland
771 23. Genetics and Genomic Science Department, Icahn School of Medicine at Mount Sinai, New
772 York, United States of America
773 24. Institut für Medizinische Informatik, Statistik und Epidemiologie, LIFE – Leipzig Research
774 Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany
775 25. IFB Adiposity Diseases, Universität Leipzig, Leipzig, Germany
776 26. Interdisciplinary Center for Clinical Research, Faculty of Medicine, Universität Leipzig, Leipzig,
777 Germany
778 27. Lausanne University Hospital, Lausanne, Switzerland
779 28. Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research
780 Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere,
781 Finland
782 29. Integrative Genomics Lab, CIC bioGUNE, Bizkaia Science and Technology Park, Derio,
783 Bizkaia, Basque Country, Spain
784 30. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
785 31. Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden,
786 The Netherlands
787 32. Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
788 33. Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center
789 for Environmental Health, Neuherberg, Germany
790 34. Department of Medicine I, University Hospital Munich, Ludwig Maximilian's University,
791 München, Germany
792 35. DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance,
793 Munich, Germany
794 36. Institute of Clinical Chemistry and Laboratory Medicine, Greifswald University Hospital,
795 Greifswald, Germany
796 37. German Center for Cardiovascular Research (partner site Greifswald), Greifswald, Germany
797 38. Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, VU,
798 Amsterdam, The Netherlands
799 39. National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland
800 40. Garvan Institute of Medical Research, Garvan-Weizmann Centre for Cellular Genomics,
801 Sydney, Australia
802 41. Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
803 42. Institute of Human Genetics, Technical University Munich, Munich, Germany
804 43. Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States of
805 America
806 44. Centre for Population Health Research, Department of Clinical Physiology and Nuclear
807 Medicine, Turku University Hospital and University of Turku, Turku, Finland
808 45. Statistical and Translational Genetics, University of Helsinki, Helsinki, Finland
809 46. Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center
810 for Environmental Health, Neuherberg, Germany
811 47. Department of Internal Medicine and School for Cardiovascular Diseases (CARIM), Maastricht
812 University Medical Center, Maastricht, The Netherlands
813 48. Department of Medicine, Universität Leipzig, Leipzig, Germany
814 49. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm,
815 Sweden

816 50. Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life
817 Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
818 51. Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
819 52. Institute for Laboratory Medicine, LIFE – Leipzig Research Center for Civilization Diseases,
820 Universität Leipzig, Leipzig, Germany
821 53. Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
822 54. UMC Utrecht Brain Center, University Medical Center Utrecht, Department of Neurology,
823 Utrecht University, Utrecht, The Netherlands
824 55. Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald,
825 Greifswald, Germany
826 56. School of Life Sciences, College of Liberal Arts and Science, University of Westminster, 115
827 New Cavendish Street, London, United Kingdom
828 57. Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology,
829 Luleå, Sweden
830 58. Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang 325027,
831 China
832

833 **References**

834 1. Mancuso, N. *et al.* Integrating Gene Expression with Summary Association Statistics to Identify
835 Genes Associated with 30 Complex Traits. *Am J Hum Genet* **100**, 473–487 (2017).

836 2. Gusev, A. *et al.* Transcriptome-wide association study of schizophrenia and chromatin activity yields
837 mechanistic disease insights. *Nat Genet* **50**, 538–548 (2018).

838 3. Mancuso, N. *et al.* Large-scale transcriptome-wide association study identifies new prostate cancer
839 risk regions. *Nat Commun* **9**, 4079 (2018).

840 4. Wainberg, M. *et al.* Opportunities and challenges for transcriptome-wide association studies. *Nat*
841 *Genet* **51**, 592–599 (2019).

842 5. Strunz, T., Lauwen, S., Kiel, C., Hollander, A. den & Weber, B. H. F. A transcriptome-wide association
843 study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-
844 related macular degeneration. *Sci Rep* **10**, 1584 (2020).

845 6. Raj, T. *et al.* Integrative transcriptome analyses of the aging brain implicate altered splicing in
846 Alzheimer's disease susceptibility. *Nat Genet* **50**, 1584–1592 (2018).

847 7. Hao, S., Wang, R., Zhang, Y. & Zhan, H. Prediction of Alzheimer's Disease-Associated Genes by
848 Integration of GWAS Summary Data and Expression Data. *Frontiers in Genetics* **9**, (2019).

849 8. Luningham, J. M. *et al.* Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL
850 Information through Summary Statistics. *The American Journal of Human Genetics* **107**, 714–726
851 (2020).

852 9. Hoffman, J. D. *et al.* Cis-eQTL-based trans-ethnic meta-analysis reveals novel genes associated with
853 breast cancer risk. *PLoS Genet* **13**, e1006690 (2017).

854 10. Wu, L. *et al.* A transcriptome-wide association study of 229,000 women identifies new candidate
855 susceptibility genes for breast cancer. *Nat Genet* **50**, 968–978 (2018).

856 11. Bhattacharya, A. *et al.* A framework for transcriptome-wide association studies in breast cancer in
857 diverse study populations. *Genome Biol* **21**, 42 (2020).

858 12. Gusev, A. *et al.* A transcriptome-wide association study of high-grade serous epithelial ovarian
859 cancer identifies new susceptibility genes and splice variants. *Nat Genet* **51**, 815–823 (2019).

860 13. Parrish, R. L., Gibson, G. C., Epstein, M. P. & Yang, J. TIGAR-V2: Efficient TWAS tool with
861 nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8. *Human Genetics and*
862 *Genomics Advances* **3**, 100068 (2022).

863 14. Thériault, S. *et al.* Genetic Association Analyses Highlight IL6, ALPL, and NAV1 As 3 New
864 Susceptibility Genes Underlying Calcific Aortic Valve Stenosis. *Circulation: Genomic and Precision*
865 *Medicine* **12**, e002617 (2019).

866 15. Zhu, Z. *et al.* Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-
867 related traits: a large-scale genome-wide cross-trait analysis. *Respiratory Research* **20**, 64 (2019).

868 16. Lonsdale, J. *et al.* The Genotype-Tissue Expression (GTEx) project. *Nat Genet* **45**, 580–585 (2013).

869 17. THE GTEx CONSORTIUM. The GTEx Consortium atlas of genetic regulatory effects across human
870 tissues. *Science* **369**, 1318–1330 (2020).

871 18. Gibbs, J. R. *et al.* Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in
872 Human Brain. *PLOS Genetics* **6**, e1000952 (2010).

873 19. Gamazon, E. R. *et al.* A gene-based association method for mapping traits using reference
874 transcriptome data. *Nat Genet* **47**, 1091–1098 (2015).

875 20. Gusev, A. *et al.* Integrative approaches for large-scale transcriptome-wide association studies. *Nat*
876 *Genet* **48**, 245–252 (2016).

877 21. Tang, S. *et al.* Novel Variance-Component TWAS method for studying complex human diseases with
878 applications to Alzheimer's dementia. *PLOS Genetics* **17**, e1009482 (2021).

879 22. Nagpal, S. *et al.* TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances
880 Gene Mapping of Complex Traits. *The American Journal of Human Genetics* **105**, 258–266 (2019).

881 23. Võsa, U. *et al.* Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and
882 polygenic scores that regulate blood gene expression. *Nat Genet* **53**, 1300–1310 (2021).

883 24. The CommonMind Consortium (CMC) *et al.* Large eQTL meta-analysis reveals differing patterns
884 between cerebral cortical and cerebellar brain regions. *Sci Data* **7**, 340 (2020).

885 25. Cao, C. *et al.* Power analysis of transcriptome-wide association study: Implications for practical
886 protocol choice. *PLOS Genetics* **17**, e1009405 (2021).

887 26. Purcell, S. M. *et al.* Common polygenic variation contributes to risk of schizophrenia and bipolar
888 disorder. *Nature* **460**, 748–752 (2009).

889 27. Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via penalized
890 regression on summary statistics. *Genetic Epidemiology* **41**, 469–480 (2017).

891 28. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression
892 and continuous shrinkage priors. *Nat Commun* **10**, 1776 (2019).

893 29. Zhou, G. & Zhao, H. A fast and robust Bayesian nonparametric method for prediction of complex
894 traits using summary statistics. *PLoS Genet* **17**, e1009697 (2021).

895 30. Zhang, Q., Privé, F., Vilhjálmsson, B. & Speed, D. Improved genetic prediction of complex traits from
896 individual-level data or summary statistics. *Nat Commun* **12**, 4192 (2021).

897 31. Zhao, Z. *et al.* PUMAS: fine-tuning polygenic risk scores with GWAS summary statistics. *Genome
898 Biology* **22**, 257 (2021).

899 32. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. *Journal of the Royal Statistical
900 Society: Series B (Methodological)* **58**, 267–288 (1996).

901 33. Zeng, P. & Zhou, X. Non-parametric genetic prediction of complex traits with latent Dirichlet process
902 regression models. *Nat Commun* **8**, 456 (2017).

903 34. Liu, Y. *et al.* ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant Analysis in
904 Sequencing Studies. *The American Journal of Human Genetics* **104**, 410–421 (2019).

905 35. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-
906 scale datasets. *Nat Genet* **50**, 906–908 (2018).

907 36. Gamazon, E. R. *et al.* A gene-based association method for mapping traits using reference
908 transcriptome data. *Nat Genet* **47**, 1091–1098 (2015).

909 37. Li, X. *et al.* Dynamic incorporation of multiple in silico functional annotations empowers rare variant
910 association analysis of large whole-genome sequencing studies at scale. *Nat Genet* **52**, 969–983
911 (2020).

912 38. Feng, H. *et al.* Leveraging expression from multiple tissues using sparse canonical correlation
913 analysis and aggregate tests improves the power of transcriptome-wide association studies. *PLOS
914 Genetics* **17**, e1008973 (2021).

915 39. Wang, T., Ionita-Laza, I. & Wei, Y. Integrated Quantile RAnk Test (iQRAT) for gene-level associations.
916 *arXiv:1910.10102 [stat]* (2020).

917 40. Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. OVERVIEW AND FINDINGS FROM THE
918 RELIGIOUS ORDERS STUDY. *Curr Alzheimer Res* **9**, 628–645 (2012).

919 41. Bennett, D. A. *et al.* Religious Orders Study and Rush Memory and Aging Project. *J Alzheimers Dis* **64**,
920 S161–S189 (2018).

921 42. Wang, M. *et al.* The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data
922 in Alzheimer's disease. *Sci Data* **5**, 180185 (2018).

923 43. Bhattacharya, A., Li, Y. & Love, M. I. MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide
924 Association Studies. *PLOS Genetics* **17**, e1009398 (2021).

925 44. Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression
926 across human tissues. *Nature* **550**, 204–213 (2017).

927 45. Devlin, B., Roeder, K. & Wasserman, L. Genomic Control, a New Approach to Genetic-Based
928 Association Studies. *Theoretical Population Biology* **60**, 155–166 (2001).

929 46. Fuchs, F. D. & Whelton, P. K. High Blood Pressure and Cardiovascular Disease. *Hypertension* **75**, 285–
930 292 (2020).

931 47. Masaki, T. The endothelin family: an overview. *J Cardiovasc Pharmacol* **35**, S3-5 (2000).

932 48. Xue, H., Pan, W. & Initiative, for the A. D. N. Some statistical consideration in transcriptome-wide
933 association studies. *Genetic Epidemiology* **44**, 221–232 (2020).

934 49. Liu, A. E. & Kang, H. M. Meta-imputation of transcriptome from genotypes across multiple datasets
935 by leveraging publicly available summary-level data. *PLOS Genetics* **18**, e1009571 (2022).

936 50. Yang, Y. *et al.* CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-
937 wide association studies. *Bioinformatics* **36**, 2009–2016 (2020).

938 51. Yuan, Z. *et al.* Testing and controlling for horizontal pleiotropy with probabilistic Mendelian
939 randomization in transcriptome-wide association studies. *Nat Commun* **11**, 3861 (2020).

940 52. Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from polygenicity in
941 genome-wide association studies. *Nat Genet* **47**, 291–295 (2015).

942 53. Zhu, Z. *et al.* Integration of summary data from GWAS and eQTL studies predicts complex trait gene
943 targets. *Nat Genet* **48**, 481–487 (2016).

944 54. Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. *Bioinformatics* **27**,
945 718–719 (2011).

946 55. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets.
947 *Gigascience* **4**, 7 (2015).

948 56. Keys, K. L. *et al.* On the cross-population generalizability of gene expression prediction models. *PLOS
949 Genetics* **16**, e1008927 (2020).

950 57. Folkersen, L. *et al.* Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931
951 individuals. *Nat Metab* **2**, 1135–1148 (2020).

952 58. Auton, A. *et al.* A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).

953 59. Lijoi, A., Prünster, I. & Walker, S. G. On Consistency of Nonparametric Normal Mixtures for Bayesian
954 Density Estimation. *Journal of the American Statistical Association* **100**, 1292–1296 (2005).

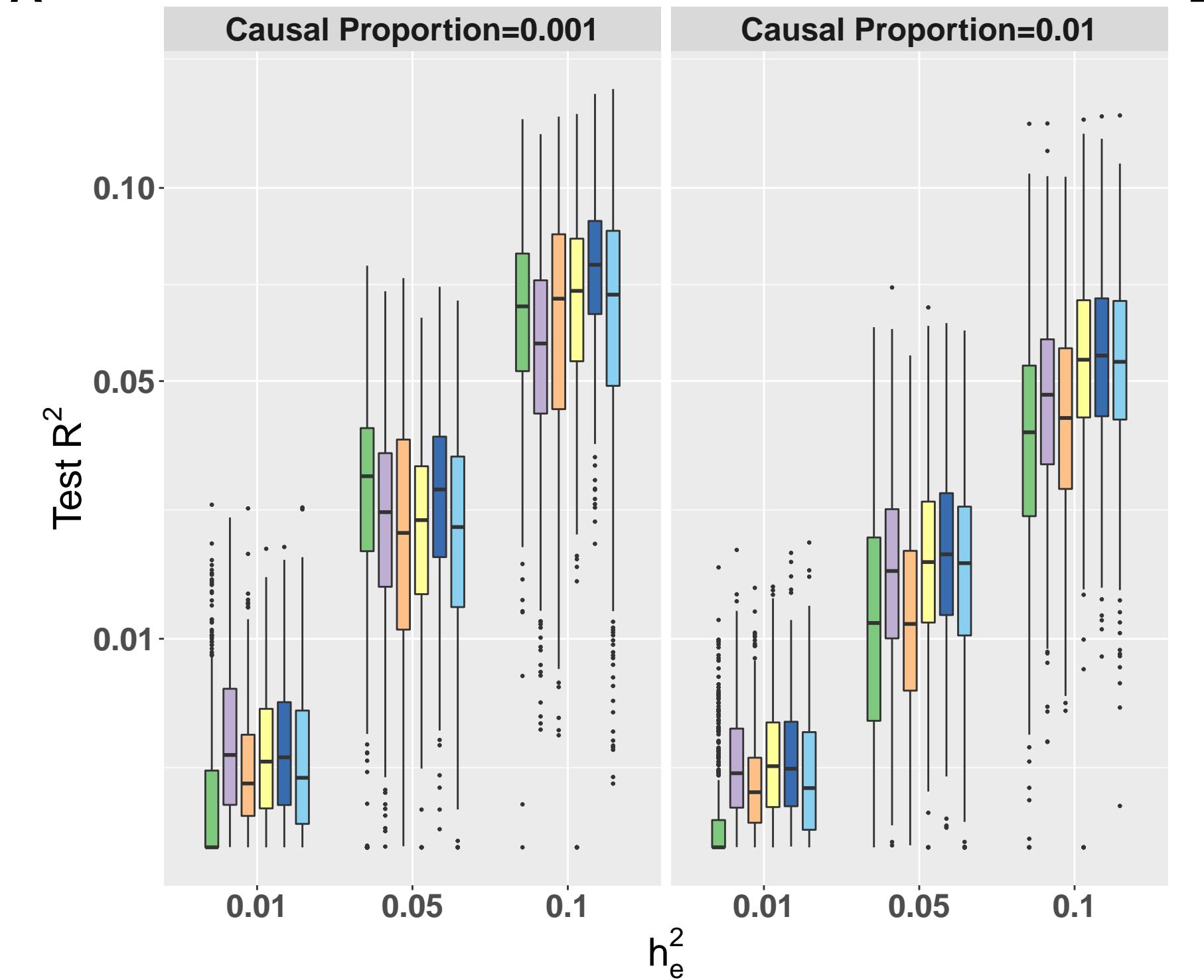
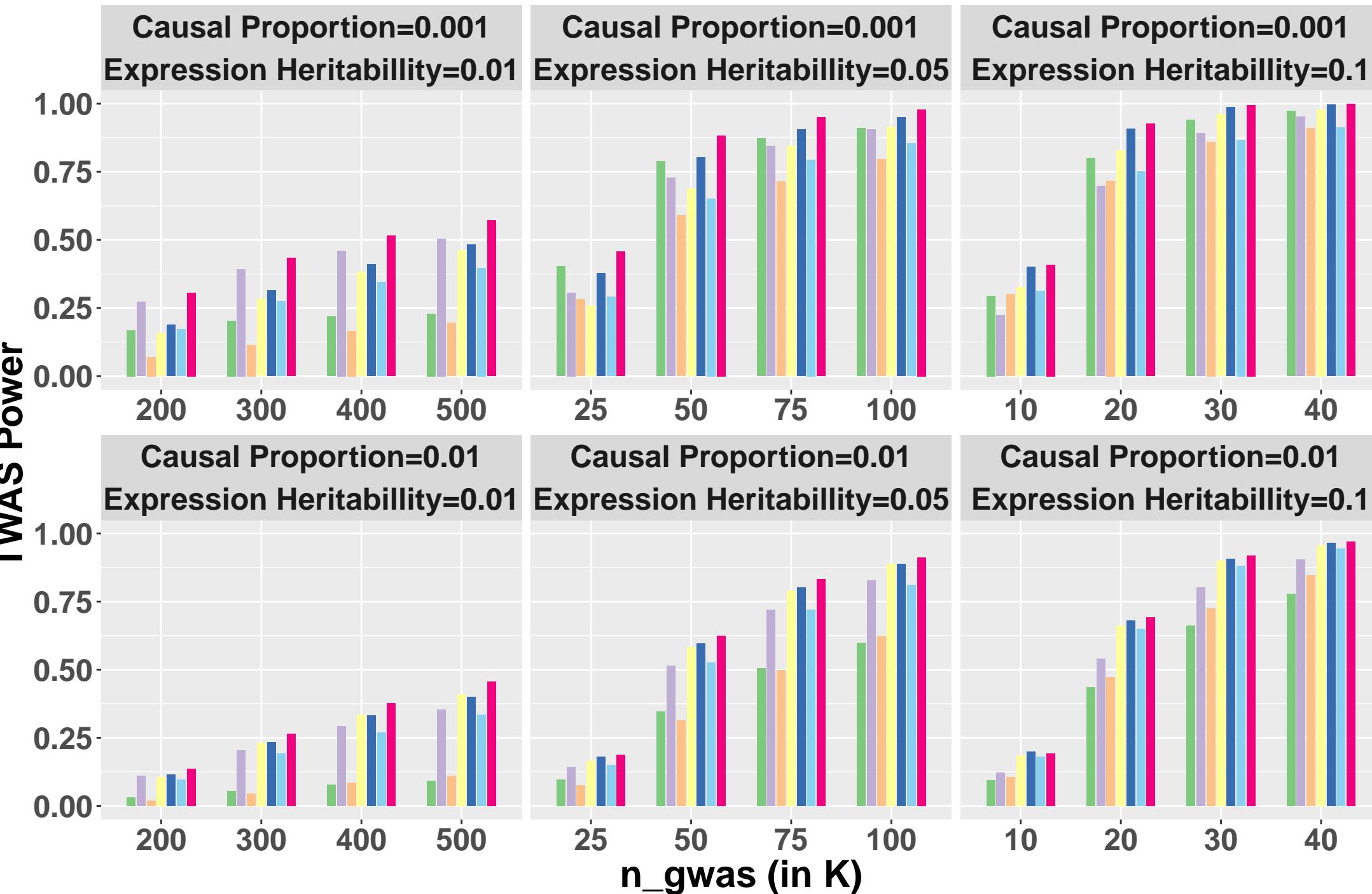
955 60. Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in human
956 populations. *Bioinformatics* **32**, 283–285 (2016).

957 61. Robinson, G. K. That BLUP is a Good Thing: The Estimation of Random Effects. *Statistical Science* **6**,
958 15–32 (1991).

959 62. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. *Journal of the Royal
960 Statistical Society: Series B (Statistical Methodology)* **67**, 301–320 (2005).

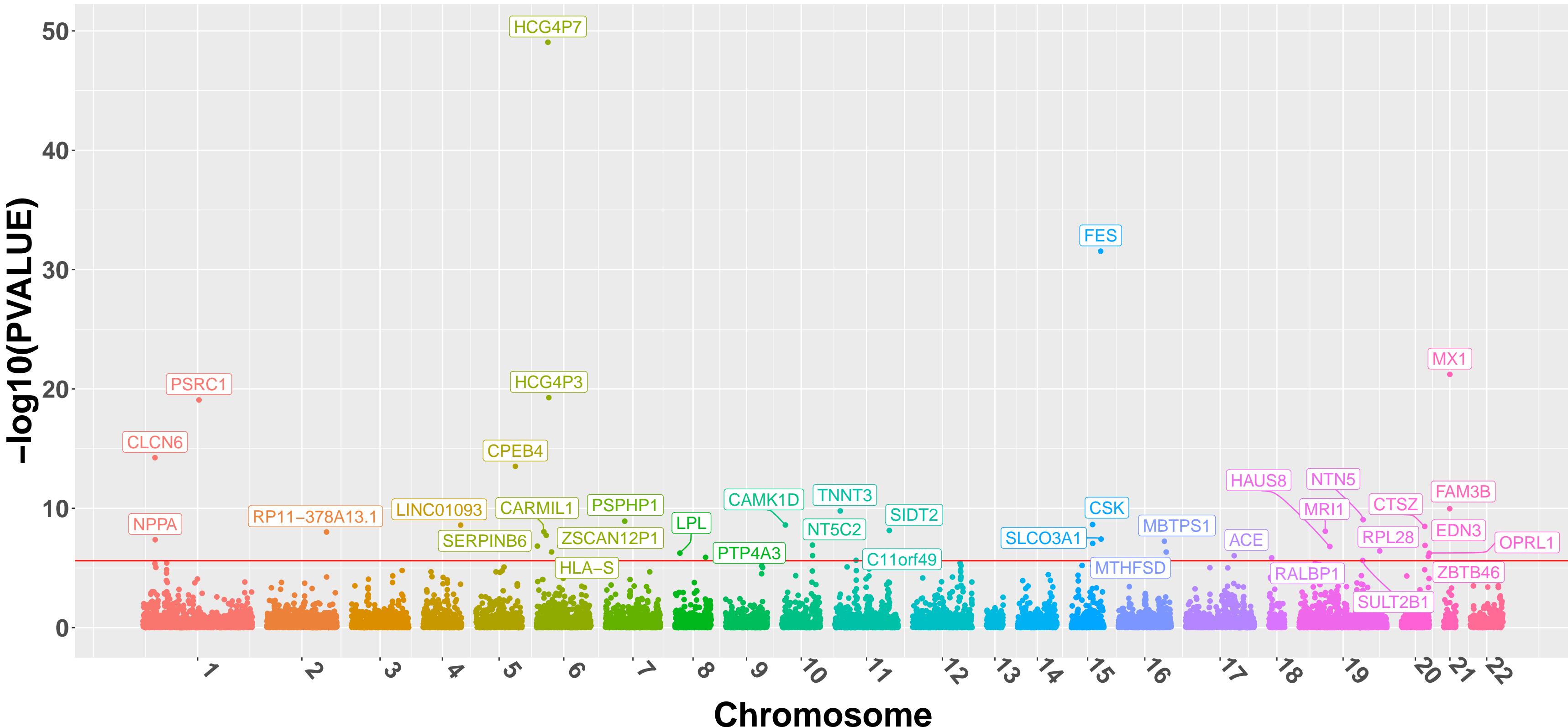
961 63. Loh, P.-R. *et al.* Efficient Bayesian mixed-model analysis increases association power in large
962 cohorts. *Nat Genet* **47**, 284–290 (2015).

963

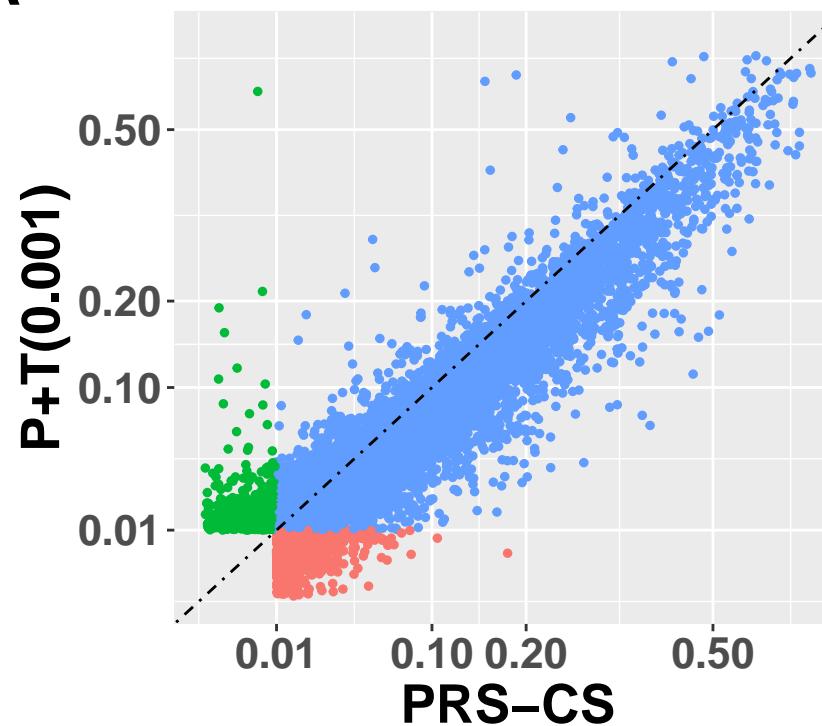
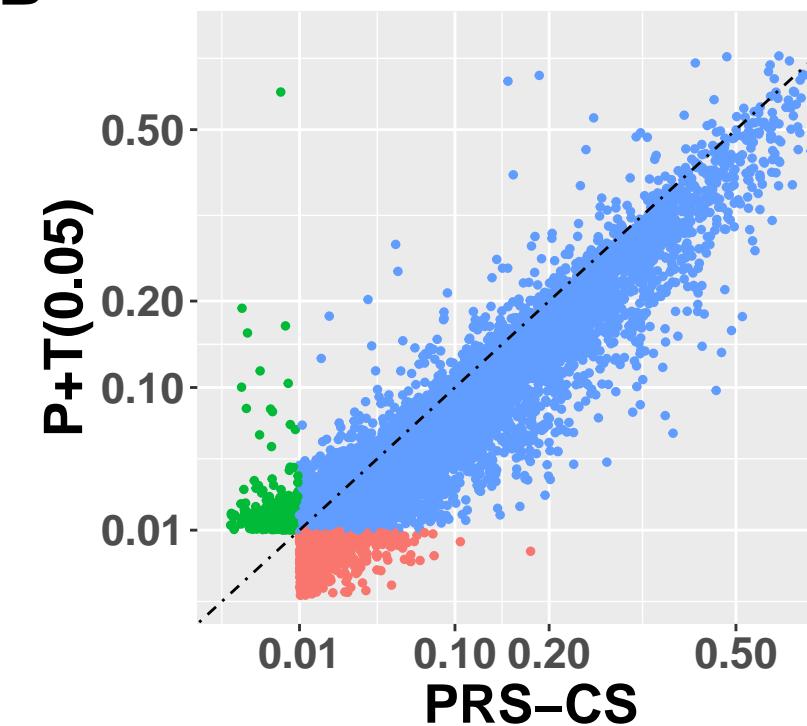
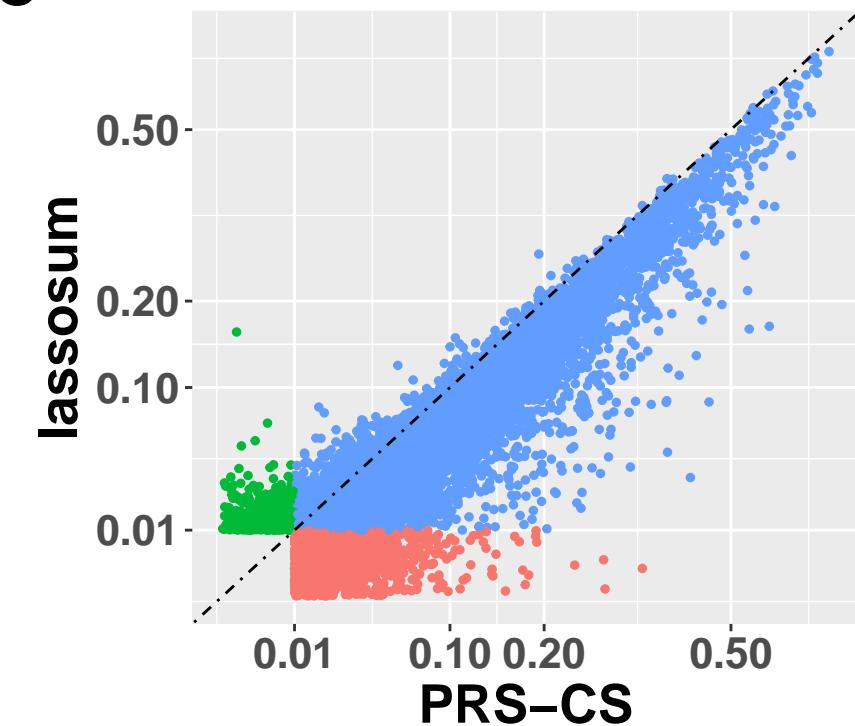
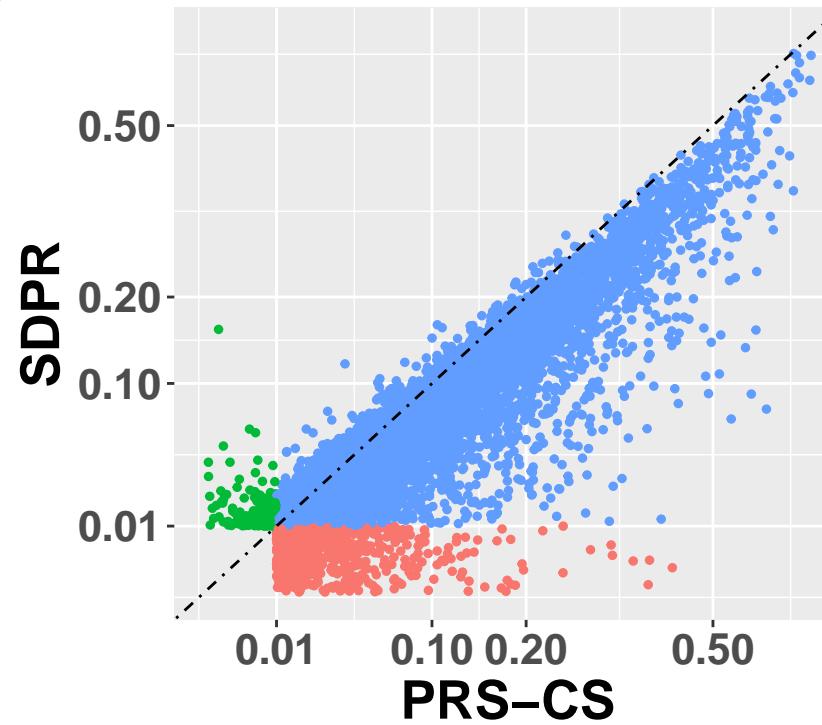
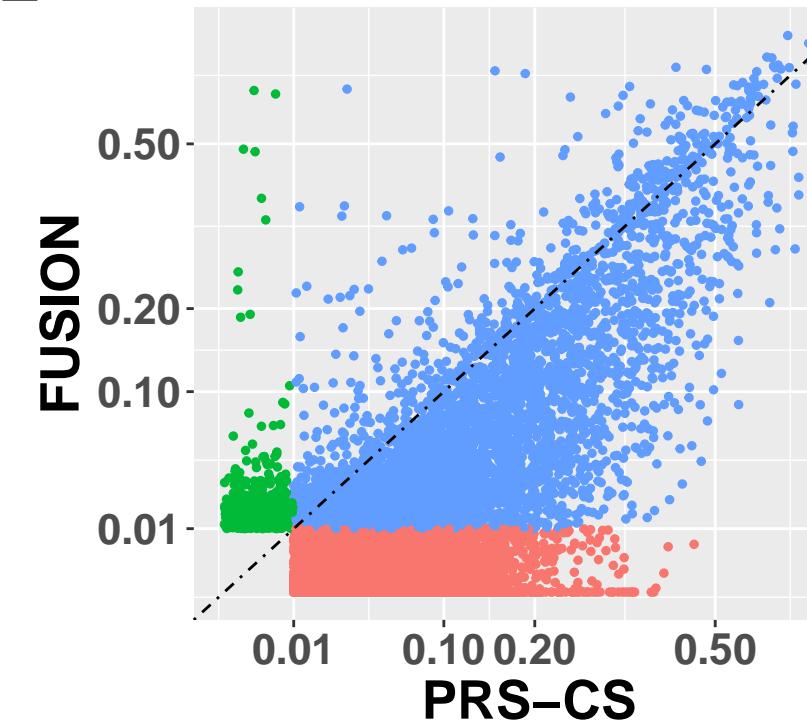
A**B**

Method █ P+T(0.001) █ lassosum █ PRS-CS
█ P+T(0.05) █ SDPR █ FUSION █ OTTERS

TWAS of Cardiovascular Disease by OTTERS



Test R²

A**B****C****D****E**

OTTERS

