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Abstract

Tuberculosis has severe impacts in both humans and animals. Understanding the genetic basis
of survival of both Mycobacterium tuberculosis, the human adapted species, and
Mycobacterium bovis, the animal adapted species is crucial to deciphering the biology of both
pathogens. There are several studies that identify the genes required for survival of M.
tuberculosis in vivo using mouse models, however, there are currently no studies probing the
genetic basis of survival of M. bovis in vivo. In this study we utilise transposon insertion
sequencing in M. bovis to determine the genes required for survival in cattle. We identify
genes encoding established mycobacterial virulence functions such as the ESX-1 secretion
system, PDIM synthesis, mycobactin synthesis and cholesterol catabolism that are required
in vivo. We show that, as in M. tuberculosis, phoPR is required by M. bovis in vivo despite the
known defect in signalling through this system. Comparison to studies performed in glycerol
adapted species such as M. bovis BCG and M. tuberculosis suggests that there are differences
in the requirement for genes involved in cholesterol import (mce4 operon), oxidation (hsd)
and detoxification (cyp125). We report good correlation with existing mycobacterial virulence
functions, but also find several novel virulence factors, including genes involved in protein
mannosylation, aspartate metabolism and glycerol-phosphate metabolism. These findings
further extend our knowledge of the genetic basis of survival in vivo in bacteria that cause

tuberculosis and provide insight for the development of novel diagnostics and therapeutics.
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Importance

This is the first report of the genetic requirements of an animal adapted member of the MTBC
in a natural host. M. bovis has devastating impacts in cattle and bovine tuberculosis is a
considerable economic, animal welfare and public health concern. The data highlight the
importance of mycobacterial cholesterol catabolism and identifies several new virulence
factors. Additionally, the work informs the development of novel differential diagnostics and

therapeutics for TB in both human and animal populations.

Introduction

Bacteria belonging to the Mycobacterium tuberculosis complex (MTBC) have devastating
impacts in both animal and human populations. Mycobacterium bovis, an animal adapted
member of the MTBC and one of the main causative agents of bovine tuberculosis (bTB),
remains endemic in some high-income settings despite the implementation of a test and
slaughter policy. In low- and middle-income settings, the presence of bTB in livestock
combined with the absence of rigorous control measures contributes to the risk of zoonotic
transmission (1, 2). Control measures based on cattle vaccination utilise the live attenuated
vaccine M. bovis BCG but the efficacy of this vaccine still remains low in field situations (3, 4).
In addition to vaccines, the development of diagnostic tools for the identification of infected
individuals is crucial for the management of transmission. Currently, vaccination with M. bovis
BCG sensitises animals to the diagnostic tuberculin skin test, therefore, sensitive and specific

differentiating diagnostic strategies are a current imperative (5, 6).

The increased accessibility of whole genome fitness screens has allowed the assessment of

the impacts of the loss of gene function on bacterial survival (7). Such screens have been
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invaluable in identifying novel drug targets or candidates for the generation of new live
attenuated vaccines in a number of bacterial pathogens, including M. tuberculosis (8—13).
Studies utilising whole genome transposon mutagenesis screens to examine gene fitness in
vivo in M. tuberculosis have been limited to mouse models (8, 9, 13). These models do not
faithfully replicate the granulomatous pathology associated with TB, nor do mice contain the
same repertoire of CD1 molecules expressed by bovine T cells required to present
mycobacterial lipid antigens (14). Whole genome transposon mutagenesis screens utilising
non-human primates are limited because screening is restricted to smaller mutant pools (15).
To date, transposon insertion sequencing (Tn-seq) based studies in the context of bTB in cattle

have only been performed using M. bovis BCG strains (16, 17).

In this study we use Tn-seq to determine the genes required for survival of M. bovis directly
in cattle. We show that genes involved in the biosynthesis of phthiocerol dimycocerosates
(PDIMs), the ESX-1 secretion system, cholesterol catabolism, and mycobactin biosynthesis are
essential for survival in cattle, corroborating current knowledge of gene essentiality in
members of the MTBC (8, 9, 13, 16, 17). We identify differences in the requirement for genes
involved in cholesterol transport and oxidation in the fully virulent M. bovis strain. We also
identify several novel genes required for survival in vivo that have not been previously

described in members of the MTBC.


https://doi.org/10.1101/2022.03.15.484275
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.484275; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

94  Results and Discussion

95 Generation and sequencing of the input library.

96 We generated a transposon library in M. bovis AF2122/97 using the MycomarT7 phagemid
97 system as previously described (18, 19). Sequencing of the input library showed that
98 transposon insertions were evenly distributed around the genome and 27,751 of the possible
99 73,536 thymine—adenine dinucleotide (TA) sites contained an insertion representing a
100  saturation density of ~38% (Supplementary Figure S1 and Supplementary Table S1 -input
101  library). The M. bovis AF2122/97 genome has 3,989 coding sequences and insertions were
102  obtainedin 3,319 of these, therefore the input library contained insertions in 83% of the total

103  coding sequences.

104

105  Mycobacterium bovis specific immune responses were observed in cattle

106  Twenty-four clinically healthy calves of approximately 6 months of age were inoculated with
107  the library through the endobronchial route. Infection was monitored by IFN-y release assay
108 (IGRA) at the time of inoculation and 2 weeks post infection. M. bovis specific immune
109  responses were observed for all study animals at 2 weeks post infection (Figure 1A and B).
110  Each animal presented very low background of circulating IFN-y together with a statistically
111  significant increase in IFN-y release in response to PPD-B compared to PPD-A antigens (Figure
112 1C; *** p £0.001). This indicates that infection with the library was successfully established

113 in the cattle.

114
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121 Figure 1. bTB specific IFN-gamma release in cattle infected with the M. bovis Tn-library.
122 Blood was collected from all 24 animals on the day of infection and 2 weeks later. No response
123  was detected to either PPD-A or PPD-B antigen stimulation prior to infection (Figure 1A and
124  Figure 1B, week 0). All animals presented a significant and specific response to PPD-B
125 compared to PPD-A as determined by a paired T-test using GraphPad Prism (Figure 1C). ***
126 p<0.001
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131  Pathology associated with infection was greater in the lung and thoracic lymph nodes

132 Animals were culled at 6 weeks post infection. Lung sections and upper (head and neck) and
133 lower (thoracic) respiratory tract associated lymph nodes were examined for gross lesions.
134  Lesions typical of M. bovis infection were observed in the tissues examined. Pathology scores
135  are shown in Figure 2A. Greater pathology was observed in lung and thoracic lymph nodes

136 compared to the head and neck lymph nodes.

137

138  Higher bacterial loads were associated with the lung and thoracic lymph nodes

139  Bacterial counts were highest in lesions derived from the lung compared to those from the
140  thoraciclymph nodes and head and neck lymph nodes (Figure 2B). The lowest bacterial counts
141  were observed within the head and neck lymph nodes. However, this was not significant when
142  compared to thoracic lymph nodes. The volume of each macerate varied depending on lesion
143  size. Considering macerate volume, average bacterial loads of 107, 10° and 10° were
144  recovered from lesions from samples of the lungs, thoracic lymph nodes and head and neck

145  lymph nodes, respectively.
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157  Figure 2. Tissue pathology and bacterial load in tissue sites. Six weeks after infection
158  animals were subjected to post-mortem examination. Gross pathology and evidence of TB-
159  like granulomas lesions were scored. Data presented is the mean across animals of the total
160  scores for each tissue group from 24 animals +/- the standard deviation. Lung and thoracic
161  lymph nodes were observed to contain the highest pathology compared to head and neck
162  lymph nodes (Figure 2A). For bacterial load estimation, aliquots of macerates were plated
163  onto modified 7H11 agar containing kanamycin. Colonies were counted after 3-4 weeks
164  growth. Data are presented as mean CFU/ml per collected tissue group +/- standard
165  deviation. Lung tissue contained the highest bacterial burden compared to thoracic and head
166  and neck lymph nodes as determined by one-way ANOVA analysis using GraphPad Prism
167  (Figure 2b). *** p <0.001, ** p = 0.002, *p=0.01
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171  Recovery and sequencing of in vivo selected transposon libraries

172 Inorder to recover the Tn library from harvested tissue ~ 10°-10° CFU from lungs and thoracic
173  lymph nodes were plated onto several 140 mm modified 7H11 plates containing kanamycin
174  to minimize competition between mutants. Samples from 4 cattle were lost due to fungal
175  contamination, therefore the samples processed represent samples from 20 cattle. Lung
176  samples were plated from all 20 animals and thoracic lymph nodes samples were plated from
177 6 cattle. Bacteria were grown for 4-6 weeks before harvesting for genomic DNA extraction
178  and subsequent sequencing (see Supplementary Table S1 for assignation of sequencing files
179  tosamples). The diversities of the output libraries were compared to the input library for each
180 sample (Supplementary Figure S2 and Table S1). On average, libraries recovered from lung
181  lesions from 20 different cattle contained 14,456 unique mutants and those recovered from
182  the thoracic lymph nodes contained an average of 16,210 unique mutants. Given that the
183  input library contained 27,751 unique mutants this represented a loss of diversity of ~ 40-
184  50%. Good coverage of coding sequences (CDSs) was maintained as the output libraries still

185  contained insertions in (on average) 68-70% of the open reading frames.

186  Comparison of the read counts between the input and output libraries allowed a
187  measurement of the impact of the insertion on the survival of mutants in cattle. The results
188  are represented as a mean log; fold-change in the output compared with the input for each
189  gene. The entire dataset is shown in supplementary Table S4 and a volcano plot from the
190 lungs and thoracic lymph node of two representative animals is shown in Supplementary
191  Figure S3. Comparison of the mean log; fold-change between lung and lymph node samples
192  showed good correlation (Spearman’s rho = 0.88, p-value <2.2e-16) (Supplementary Figure

193  S4). TRANSIT resampling was performed to compare the composition of the mutant
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194  population in the lungs and thoracic lymph nodes of paired cattle, it was also applied to
195 compare all the thoracic lymph nodes with the lungs of all cattle samples. No statistically
196  significant differences were observed indicating that there were no differences in mutant

197 composition between the tissue sites.

198 No insertion mutants were significantly over-represented in the output library in any of the
199  animals. Although interestingly, insertions in MB0025, a gene that is unique to M. bovis
200 appeared to improve growth in cattle as mean log; fold-changes of +3.9 (lungs) and +4.2
201  (lymph nodes) were observed; however, significance criteria were not met in any of the
202  animals. In order to define a list of attenuating mutations, we used a similar approach to that
203  used in a previous study with an M. bovis BCG library in cattle (16). Insertions in genes were
204  defined as attenuating if they had log, fold-change of -1.5 or below and an adjusted p-value
205 0of <0.05 in at least half of the animals (Table S4, significant in 50% of cattle tab). When using
206  these criteria, there were 141 genes where insertions caused significant attenuation in the
207  lungsor the thoracic lymph nodes, 20 genes that reached significance only in the lungs (shown
208 in red) and 16 genes that reached significance only in the thoracic lymph nodes (shown in
209 green). Of the 141 genes, 109 had been previously described as being required in vivo in M.
210  tuberculosis H37Rv in mouse models through the use of whole genome Tn screens

211 representing ~77% overlap with the previous literature (8, 9, 13).

212
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217  Comparison with mutations known to cause attenuation in the MTBC

218 Insertions in the RD1 encoded ESX-1 type VIl secretion system secreting virulence factors and
219  immunodominant antigens EsxA (CFP-10) and EsxB (ESAT-6) are expected to cause
220  attenuation (20). The impacts of insertions in this region are summarised in Figure 3 but are
221  also available in Supplementary Table S4 (RD regions tab) and Supplementary Figure S5.
222  Insertions in genes encoding the structural components of the apparatus (eccB1, eccCal,
223 eccCbl, eccD1) were severely attenuating (log, fold-change -6 to -9). Insertions in eccAl,
224 which also codes for a structural component of the apparatus, were less impactful (log, fold-
225  changes of -2 to -3) despite good insertion saturation in this gene. This is supported by the
226  work of others who have shown that deletion of eccA1 in Mycobacterium marinum leads to
227  only a partial secretion defect (21). There were no impacts seen due to insertions in accessory
228  genesespl, espK and espH. The lack of attenuation seen in espK mutants is supported by other
229  studies showing that this gene is dispensable for secretion through the apparatus and is not
230 required for virulence of M. bovis in guinea pigs (22, 23). Insertions in esxA and esxB resulted
231  in severe attenuation (log; fold-change of -6) but this did not reach significance cut-offs (adj.
232 p=<0.05) in any of the cattle. This is likely to be due to the small number of TAs in these genes

233  which makes it challenging to measure mutant frequency.
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244  Figure 3. Fold-changes caused by transposon insertions in the ESX-1 secretion system in the
245  lungs and lymph nodes of infected cattle. Asterisks indicate that genes had an adjusted p-
246 value of <0.05 in at least half of the animals. The genes are grouped according to function as
247  indicated by the colour scheme. The log, fold-change are indicated on a yellow to red scale
248  and present as a dot in the centre of the gene.
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253  The highest levels of attenuation seen were in genes involved in the synthesis of the cell wall
254  virulence lipids PDIMs (ppsABCDE and mas with log; fold-changes of ~-10 commonly seen).
255  PDIM synthesis is well known to be required for the survival of M. tuberculosis and M. bovis
256  in mice and guinea pigs (24, 25). Insertions in genes involved in the synthesis of PDIMs were
257  the most under-represented (log, fold-changes of -8 to -10) in the output library (Figure 4,
258  Supplementary Table S4, mycolipids tab). MmpL7 is involved in PDIM transport and there is
259  evidence that it is phosphorylated by the serine-threonine kinase PknD (26). PknD-MmpL7
260 interactions are thought to be perturbed in M. bovis as pknD is split into two coding sequences
261 in the bovine pathogen by a frameshift mutation (27). The data presented here suggest that

262  MmpL7 still functions despite the frameshift mutation.

263 lIron restriction is thought to be a mechanism by which the host responds to mycobacterial
264  infection, although different cellular compartments may be more restrictive than others (28).
265 Insertion in many of the genes involved in mycobactin synthesis (Mb2406-Mb2398, mbtJ-
266 mbtH) were attenuating in cattle (Figure 4, Supplementary Table S4, mycobactin synthesis
267  tab). As mycobactin is required for the acquisition of iron, this confirms that, like other

268  members of the MTBC, needs to scavenge iron from the host for survival (13, 16).
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281  Figure 4. Violin plot of normalised log. fold changes in gene insertions recovered from
282  bovine lung or thoracic lymph node tissue samples in selected gene groups. Black bars
283  indicate overall median of normalized log, fold-change among genes in grouping. White bars
284  indicate mean log; fold-change for each gene in the group across all samples in either lung or
285  lymph node tissue
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287  The role of the cholesterol catabolism in M. tuberculosis is well documented and it is required
288  for both energy generation and manipulation of the immune response (29-31). Cholesterol
289  uptake is mediated by the Mce4 transporter coded by the mce4 operon Rv3492c-Rv3501c
290 (Mb3522c¢c-MB3531c) (32, 33). It has been suggested that an alternative cholesterol
291  acquisition pathway operates in M. bovis BCG Danish as, unlike insertions in genes in the
292  down-stream catabolic pathway, insertions in the mce4 operon do not result in attenuation
293  in this strain (16). In contrast, our study shows that cholesterol transport via the Mce4
294  transporter is required in M. bovis (Figure 4, Supplementary Table S4 -cholesterol catabolism
295  tab, Figure 5). This corroborates work performed in M. tuberculosis, where Mce4 has been
296  shown to be required for growth in chronically infected mice (9, 32). Propionyl-coA generated
297  from the catabolism of cholesterol is toxic and detoxification mechanisms include
298  incorporation into PDIMs (34, 35). The observation that BCG Danish contains a lower amount
299  of PDIMs compared to BCG Pasteur (16) suggests a correlation between Mce4 mediated
300 cholesterol transport and PDIM synthesis and previous studies have demonstrated an
301 increase in PDIM biosynthesis as a result of mce4 over-expression (36). PDIMs biosynthesis
302 genes are over-expressed in M. bovis compared to M. tuberculosis (27) and comparison of
303  our dataset with Tn-seq studies performed in M. tuberculosis (9) indicates an over-reliance of

304 M. bovis on cholesterol transport through the Mce4 transporter (Figure 5).
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310  Figure 5. Comparison of reported log; fold-change in M. bovis, M. bovis BCG and Mtb
311 transposon insertion sequencing experiments for orthologous genes in the cholesterol
312  catabolic pathway. Greatest attenuation (most negative log, fold-change) is coloured by
313  darkest red. Studies used for comparison include Mendum et al., (24) and Bellarose et al., (9).
314  Grey bars represent genes for which there is no information as they were either ES or GD in
315 input library or had less than 5 insertions in any TA site in any sample (input and all output).
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317  Early stages of cholesterol catabolism involve the oxidation of cholesterol to cholestenone, a
318 reaction catalysed by the 3B-hydroxysteroid dehydrogenase (hsd) encoded by
319 Rv1106¢/Mb1136¢c (37). The cytochrome P450 Cyp125 (Mb3575¢/Rv3545c) is required for the
320 subsequent detoxification of cholestenone (38). Insertions in both hsd and cyp125in M. bovis
321  were severely attenuating with log, fold-changes of ~-5 to -7 (Supplementary Table S4 -
322  cholesterol catabolism tab, Figure 5). Previous studies have shown that these genes are not
323  required for the survival of M. tuberculosis in macrophages or in guinea pigs and this is
324  thought to be due to the availability of other carbon sources, including glycolytic substrates,
325 in vivo (37, 39-43). M. bovis is more restricted in metabolic capabilities and is unable to
326  generate energy from glycolytic intermediates, largely due to a disrupted pyruvate kinase
327 encoded by pykA (44, 45). The essentiality of hsd and cyp125 during infection for M. bovis but
328 not M. tuberculosis supports the hypothesis of an over-reliance of M. bovis on cholesterol.
329  Given the potential for the use of host cholesterol metabolites as diagnostic biomarkers, this

330 observation might have applications in the development of differential diagnostics (46).

331

332  Genes that are differentially expressed between Mycobacterium bovis and Mycobacterium
333 tuberculosis.

334  Several studies have identified key expression differences between M. bovis and M.
335  tuberculosis (27, 47, 48). We examined the dataset for insights on the role of differentially
336  expressed genes and transcriptional regulators during infection. One important regulatory
337  system in M. tuberculosis is the two-component regulatory system PhoPR and deletions in
338 the phoPR genes alongside fadD26 are attenuating mutations in the live vaccine MTBVAC (49—
339  51). Our data show that insertions in both phoPR and fadD26 were severely attenuating with

340 log; fold-changes of -6 to -9 (Figure 6, Supplementary Table S4, phoPR regulon tab and
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341  mycolipids tab). This reinforces the role of this system in virulence, despite the presence of a
342  single nucleotide polymorphism (SNP) in the sensor kinase phoR that impacts signalling
343  through the system in M. bovis (52). Signal potentiation via phoR is required for secretion of
344  ESAT-6 through the ESX-1 secretory system and M. bovis is known to have compensatory
345  mutations elsewhere in the genome, e.g. in the espACD operon, that restores ESAT-6
346  secretion in the face of a deficient signalling system (49, 52, 53). Our data also show that Tn
347 insertions in espA of the espACD operon (required for ESAT-6 secretion) and in mprA, a
348 transcriptional regulator of that operon (54) were severely attenuating (log2 fold-changes -7

349  to-9), emphasising the relevance of ESAT-6 as a virulence factor.

350 Studies comparing differences in expression during in vitro growth between M. bovis and M.
351  tuberculosis show that genes involved in sulfolipid (SL-1) biosynthesis are expressed at lower
352 levels in M. bovis compared to M. tuberculosis (27, 47). Interestingly, insertions in genes
353 involved in SL-1 biosynthesis (Mb3850-Mb3856) are not attenuating in vivo (Supplementary
354  File S4, mycolipids tab), reinforcing the lack of importance of SL-1 for M. bovis in vivo, at least

355 at the stages of infection studied here.

356  One of the most highly attenuating insertions occurred in Mb0222/Rv0216 (log fold change
357 -8 to -9). This gene has been shown to be highly (> 10-fold) over-expressed in M. bovis
358 compared with M. tuberculosis but the physiological function of this gene is not currently
359  known. The secreted antigens MPB70 and MPB83, encoded by Mb2900 and Mb2898 are also
360 over-expressed in M. bovis and play a role in host-specific immune responses, however,
361 insertions in these genes did not cause attenuation in vivo in our dataset (55).

362
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379  Figure 6. Fold-changes caused by transposon insertions in phoP, phoR and fadD26 in the
380  lungs and lymph nodes of infected cattle. Samples with adjusted p-values (BH-fdr corrected)
381 <0.05 are indicated with purple points.
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390 Novel attenuating mutations

391 We identified 32 genes that were required for survival of M. bovis in cattle that had not been
392  previously described as being essential in vivo through transposon mutagenesis screens of M.
393  tuberculosis in mouse models (8, 9, 13) (see Supplementary Table 4, Significant in 50% of
394 cattle tab). While writing this publication, a large scale Tn-seq study that utilised over 120 M.
395 tuberculosis libraries and several diverse mouse genotypes (the collaborative cross mouse
396  panel (56)) showed that the panel of genes required for the survival of M. tuberculosis in vivo
397 is much larger than previously reported (57). A direct comparison of our dataset with the
398  study by Smith et al., revealed that a further 13 genes were shown to be required in at least
399 one mouse strain in that study. A summary set of the remaining 19 genes is given in
400 Supplementary Table 4, Not in Mtb Tn-seqs tab. Some of these genes have been shown to be

401  attenuated in the mouse model in M. tuberculosis through the use of single mutants (58-61).

402

403 Included in this list are genes required for phenolic glycolipid synthesis (Figure 7). Insertions
404  in Mb2971c/Rv2947c (pks15/1) and in Mb2972c/Rv2948c (fadD22) were attenuating in M.
405  bovis but these genes are not required in vivo in M. tuberculosis, including in the extended
406  panel of mouse genotypes (8, 9, 13, 57). Both pks15/1 and fadD22 are involved in the early
407  stages of synthesis of phenolic glycolipids (PGLs) and are involved in virulence (62). The
408 requirement for these genes in M. bovis but not in M. tuberculosis is consistent with the
409  observation that the Tn-seq studies in M. tuberculosis are often carried out using lineage 4
410  strains (H37Rv and CDC1551) that harbour a frameshift mutation in the pks15/1 gene, which

411  renders them unable to synthesise PGLs. This removes the requirement for these genes in
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412  vivo in lineage 4 strains of M. tuberculosis. pks15/1 has been previously reported to be

413  required for survival of M. bovis in a guinea pig model of infection (63).

414

415 The list also includes genes that are involved in post-translational modifications such as
416  glycosylation. Rv1002c is thought to add mannose groups to secreted proteins and over-
417  expression of this protein in M. smegmatis was recently shown to enhance survival in vivo
418 and inhibit pro-inflammatory cytokine production (64). The substrates of this protein
419  mannosyltransferase are thought to be several secreted lipoproteins, including LpgW which
420 is involved in the insertion of the virulence lipid LAM at the mycobacterial cell surface (64,

421  65).
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437  Figure 7. Fold-changes caused by transposon insertions in pks15/1, fadD22, Rv1002c, aspC
438 and glpD2 in the lungs and lymph nodes of infected cattle. Samples with adjusted p-values
439  (BH-fdr corrected) < 0.05 are indicated with purple points.
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440  Finally, this list includes two genes (aspC and glpD2) that are essential in vitro in M.
441  tuberculosis but not in M. bovis (10, 11, 18, 66). Information regarding aspC and glpD2 from
442  Tn-seq approaches is likely to be lacking in M. tuberculosis because Tn mutants will not be
443  represented in the input pool. The absence of insertion mutants in these genes in the most
444  recent large-scale M. tuberculosis Tn-seq study supports this (57). One of these genes
445  MBO0344c/Rv0337c (aspC) is an aspartate aminotransferase involved in the utilisation of
446  amino acids (aspartate) as a nitrogen source (67). The other gene Mb3303c/Rv3302c (glpD2)
447 is a membrane bound glycerol-phosphate dehydrogenase. In Escherichia coli, glpD2 is an
448  essential enzyme, functioning at the central junction of respiration, glycolysis, and
449  phospholipid biosynthesis and catalyses the oxidation of dihydroxyacetone phosphate
450 (DHAP) from glycerol-3-phosphate resulting in the donation of electrons to the electron
451  transport chain (68). Its essentiality in vitro in M. tuberculosis might be explained by the usage
452  of glycerol during in vitro growth in this species. The contribution of the membrane bound
453  glpD2 in donation of electrons to the electron transport chain, has been suggested but not
454  yet explored in the MTBC (69). Given the interest in the electron transport chain as a
455 chemotherapeutic target in M. tuberculosis, the data presented here suggests that inhibition
456  of glpD2 might be a fruitful approach in the development of new drugs for the treatment of
457  TB in humans (70). The role of this gene in M. bovis in vivo is perhaps surprising, given the
458  disruptions in glycerol phosphate uptake and pathways that phosphorylate glycerol in M.
459  bovis AF2122/97 (71). However, M. tuberculosis is thought to engage in catabolism of
460 membrane derived glycerophospholipids which may be a potential source of glycerol-3-

461  phosphate in members of the complex (72).

462
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463 Materials and Methods

464  Bacterial strains and culture methods

465 M. bovis strain AF2122/97 was maintained on modified Middlebrook 7H11 (BD Difco™)
466  medium (73). Liquid cultures of M. bovis were grown in Middlebrook 7H9 media (BD Difco™)
467  containing 75 mM sodium pyruvate, 0.05% v/v Tween“80 and 10% Middlebrook albumin-
468  dextrose-catalase (ADC) (BBL BD Biosciences). Kanamycin at 25 pg/ml was used for selection

469  where appropriate.

470

471  Generation of input transposon mutant library and preparation of the inoculum

472  Transposon libraries in M. bovis were generated as previously described using the
473  MycomarT7 phagemid system as per Majumdar et al with modifications (19). Approximately
474 66,000 kanamycin resistant transductants were scraped and homogenised in 7H9 medium
475  and stored frozen at -80°Cin 1 ml aliquots. CFU counting was performed on the homogenised

476  culture to inform inoculum dosage.

477

478  Cattle Infection

479  Experiments were carried out according to the UK Animal (Scientific Procedures) Act 1986
480 under project license PPL70/7737. Ethical permission was obtained from the APHA Animal
481  Welfare Ethical Review Body (AWERB) (UK Home Office PCD number 70/6905). All animal
482  infections were carried out within the APHA large animal biocontainment level 3 facility.
483  Twenty-four Holstein-Friesian crosses of 6 months of age were sourced from an officially TB-

484  free herd. An infectious dose of 7 x 10* CFU was targeted for the “input” library, allowing
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485 each mutant to be represented in the library ~ 2.5-fold. Retrospective counting of the
486  inoculum revealed the actual inoculum for infection contained 4 x 10* CFU. The inoculum was
487  delivered endobronchially in 2 ml of 7H9 medium. In brief, animals were sedated with xylazine
488  (Rompun® 2%, Bayer, France) according to the manufacturer’s instructions (0.2 mL/100 kg, IV
489  route) prior to the insertion of an endoscope through the nasal cavity into the trachea for
490  delivery of the inoculum through a 1.8 mm internal diameter cannula (Veterinary Endoscopy
491  Services, U.K.) above the bronchial opening to the cardiac lobe and the main bifurcation

492  between left and right lobes.

493

494  Infection Monitoring with the IFN-y release Assay (IGRA)

495  Blood was collected by jugular venepuncture from animals on the day of the infectious
496 challenge and two weeks after infection. Heparinized whole blood (250 ul) was incubated
497  with purified protein derivative (PPD) from M. avium (PPD-A) or PPD from M. bovis (PPD-B)
498  (Prionics™) respectively at 25 IU and 30 IU final. Pokeweed mitogen was used as the positive
499  control at 10 ug/mL and a medium-only negative control. After 24 h incubation in 5% (v/v)
500 CO3, 95% humidity, 37 °C atmosphere bloods were centrifuged (400 x g for 5 min); 120 pl of
501 supernatant was removed and stored at -80 °C for subsequent IFN-y quantification using the

502 BOVIGAM® kit (Prionics™) in accordance with the manufacturer’s instructions.

503

504  Collection of tissues and gross pathology scores

505 Six weeks after the initial infection animals were subjected to post-mortem examination.

506 Initially the experiment was designed with two time points; an early time point (6 weeks) and
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507 a later time point of 8 weeks. However, due to the unexpected high-levels of pathology seen
508 atthe earlier time-points all animals were culled at 6 weeks. Gross pathology and evidence of
509 TB-like granulomas lesions was scored using a modified methodology to that previously
510 described in (74). Tissue from head and neck lymph nodes (from the right and left sub-
511  mandibular lymph nodes, the right and left medial retropharyngeal lymph nodes), thoracic
512 lymph nodes (the right and left bronchial lymph nodes, the cranial tracheobronchial lymph
513  nodes, the cranial and caudal mediastinal lymph nodes) and from lung lesions, was collected
514  into sterile containers and frozen at —-80 °C until further processing. Frozen tissues were

515 thawed and homogenised in PBS using a Seward Stomacher Paddle Blender.

516

517  Recovery of the output transposon mutant library from tissues

518  Tissue macerates collected from study animals were thawed at room temperature, diluted in
519  PBS and plated on modified 7H11 agar to determine bacterial loads. Colony counts were
520 performed after 3-4 weeks growth. For recovery of the library from tissue macerates ~10°-
521  10° CFU were plated from lung lesions and thoracic lymph node lesions onto modified 7H11
522  media containing 25 pug/ml kanamycin. The colonies were plated over several 140 mm petri
523  dishes to minimise competition between mutants. The colonies were harvested after 4-6

524  weeks growth and genomic DNA extracted.

525

526 Genomic DNA extraction

527 Genomic DNA from the input and recovered libraries was isolated by an extended bead

528 beating procedure with detergent-based lysis, phenol-chloroform DNA extraction and
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529  precipitation as previously described (18). DNA quality was assessed by nano-spectrometry
530 (DeNovix) and gel electrophoresis and quantified by Qubit analysis using the Broad Range

531  Assay Kit (ThermoScientific).

532

533 Library preparation for transposon directed insertion sequencing

534  DNA (2 ug) was resuspended in 50 pL distilled water and sheared to approximately 550 bp
535 fragments using a S220 focussed-ultrasonicator (Covaris), according to the manufacturer’s
536  protocol. Fragmented DNA was repaired using NEBNext blunt-end repair kit (New England
537  Biolabs) and purified using Monarch PCR clean-up kit (NEB). Blunted DNA was A-tailed using
538  NEBNext dA-tailing kit (NEB) and column purified. Custom transposon sequencing adaptors
539  (Supplementary Table S3) were generated by heating an equimolar mix of Com_AdaptorPt1
540 primer and Com_AdaptorPt2 (P7+index) primers to 95°C for 5 min, followed by cooling by 1°C
541  every 40 s to a final temperature of 4°C in a thermocycler. Adaptors were ligated to A-tailed
542 library fragments using NEBNext quick ligase kit. Transposon-containing fragments were
543  enriched by PCR using ComP7 primer (10 uM) and an equimolar mix of primers P5-IR2a-d
544  primer (10 uM) in a reaction with 50 ng of adaptor ligated template and Phusion DNA
545  polymerase (NEB) in a thermocycler with the following program 98°C 3 min; 4 cycles of 98°C
546  20s,70°C 20s, 72°C 1 min; 20 cycles of 98°C 20s, 67°C 20s, 72°C 1 min; 72°C 3 min. Transposon-
547  enriched libraries were subsequently purified with AMPureXP beads (Beckman), pooled

548  together and further purified using AMPure XP beads.

549

550
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551  Data analysis

552  Indexed libraries were combined, spiked with 20% PhiX, and sequenced on the lllumina Hiseq
553 3000 platform, using v2 chemistry, generating single-end reads of 250 bp. Raw .fastq
554  sequencing files were analysed for quality and pre-processed using the TRANSIT TPP tool (75)
555  set to default ‘Sassetti’ protocol, in order to remove transposon tags and adapter sequences,
556 and to map reads using BWA-mem to TA sites to the M. bovis AF2122/97 genome
557  (NC_002945.3). The TRANSIT ‘tnseq_stats’ tool was run on each sample to assess insertion

558  density, skew, kurtosis and potential amplification bias.

559  The M. bovis AF2122/97 genome was scanned for the non-permissive Himarl transposon
560 insertion motif ('SGNTANCS', where S is either G or C and N is any base) as previously
561 described [10]. 6605 sites were identified as non-permissive (approximately 9% of total TA
562  sites) and excluded from resampling analysis. A custom annotation, ‘.prot-table’ for TRANSIT,
563  was created from the M. bovis AF2122/97 annotation file (NCBI Accession Number LT708304,
564  version LT708304.1). TRANSIT HMM was run on the input library using the default
565 normalisation (TTR) with LOESS correction for genomic position bias. Each TA site was
566  assigned an essentiality state and genes were assigned an essentiality call based on the

567  assigned state of the TA sites within annotated gene boundaries.

568 Resampling between the input library and each of the output sample libraries was performed
569 independently using the TRANSIT resampling algorithm and the complete prot-table. TTR
570  normalisation was used for 23 of the samples, and betageom normalisation for the three
571  samples with skew of greater than 50. The initial resampling output files were evaluated to
572 identify genes with very few, or no, reads at any TA site within the gene boundaries in both

573  theinput library and output sample libraries. Genes with no read counts greater than 4 at any
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TA site, in any sample, and with a sum of all reads at any TA site across the 26 samples less
than 55, were flagged. Essential and unchanged genes were removed from the prot-table
prior to further evaluation. Resampling was further limited to protein-coding genes.
Resampling was re-run for each sample using the attenuated prot-table and an edited
TRANSIT resampling script to return the left-tail p-value, as the data were expected to reflect

attenuation. All p-values were corrected for multiple testing with FDR adjustment.

All analysis and plots were performed using R and R packages, tidyverse and circlize (76-78).
Orthologous TB genes were obtained from supplementary data files published by Malone et
al, 2018 (27). All scripts, prot-tables and insertion files are available at

https://github.com/jenjane118/Mbovis in-vivo Tnseq, DOI:10.5281/zenodo.6354151.

Sequencing files (.fastq) are deposited in SRA (Bioproject ID: PRINA816175, Submission ID:

SUB11067380)
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887  Figure Legends

888  Figure 1. bTB specific IFN-gamma release in cattle infected with the M. bovis Tn-library.
889  Blood was collected from all 24 animals on the day of infection and 2 weeks later. No response
890  was detected to either PPD-A or PPD-B antigen stimulation prior to infection (Figure 1A and
891  Figure 1B, week 0). All animals presented a significant and specific response to PPD-B
892 compared to PPD-A as determined by a paired T-test using GraphPad Prism (Figure 1C). ***

893 p<0.001

894

895  Figure 2. Tissue pathology and bacterial load in tissue sites. Six weeks after infection
896  animals were subjected to post-mortem examination. Gross pathology and evidence of TB-
897  like granulomas lesions were scored. Data presented is the mean across animals of the total
898  scores for each tissue group from 24 animals +/- the standard deviation. Lung and thoracic
899 lymph nodes were observed to contain the highest pathology compared to head and neck
900 lymph nodes (Figure 2A). For bacterial load estimation, aliquots of macerates were plated
901 onto modified 7H11 agar containing kanamycin. Colonies were counted after 3-4 weeks
902 growth. Data are presented as mean CFU/ml per collected tissue group +/- standard
903  deviation. Lung tissue contained the highest bacterial burden compared to thoracic and head
904 and neck lymph nodes as determined by one-way ANOVA analysis using GraphPad Prism

905  (Figure 2b). *** p<0.001, ** p =0.002, *p=0.01

906

907  Figure 3. Fold-changes caused by transposon insertions in the ESX-1 secretion system in the

908 lungs and lymph nodes of infected cattle. Asterisks indicate that genes had an adjusted p-
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909 value of <0.05 in at least half of the animals. The genes are grouped according to function as
910 indicated by the colour scheme. The log; fold-change are indicated on a yellow to red scale

911  and present as a dot in the centre of the gene.

912

913  Figure 4. Violin plot of normalised log, fold changes in gene insertions recovered from
914  bovine lung or thoracic lymph node tissue samples in selected gene groups. Black bars
915 indicate overall median of normalized log, fold-change among genes in grouping. White bars
916 indicate mean log,fold-change for each gene in the group across all samples in either lung or

917  lymph node tissue

918

919  Figure 5. Comparison of reported log, fold-change in M. bovis, M. bovis BCG and Mtb
920 transposon insertion sequencing experiments for orthologous genes in the cholesterol
921 catabolic pathway. Greatest attenuation (most negative log, fold-change) is coloured by
922  darkest red. Studies used for comparison include Mendum et al., (24) and Bellarose et al., (9).
923  Grey bars represent genes for which there is no information as they were either ES or GD in

924  input library or had less than 5 insertions in any TA site in any sample (input and all output).

925

926  Figure 6. Fold-changes caused by transposon insertions in phoP, phoR and fadD26 in the
927  lungs and lymph nodes of infected cattle. Samples with adjusted p-values (BH-fdr corrected)

928 < 0.05 are indicated with purple points.

929
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