

1 Discovery and biosynthetic assessment of *Streptomyces* 2 *ortus* sp nov. isolated from a deep-sea sponge

3 Sam E. Williams¹*, Catherine R. Back¹, Eleanor Best¹, Judith Mantell^{1,2}, James E.
4 M. Stach³, Tom A. Williams⁴, Paul R. Race¹ and Paul Curnow¹*

5 ¹ School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK

6 ² Woolfson Bioimaging Facility, University of Bristol, University Walk, Bristol, BS8 1TD, UK

7 ³ School of Natural and Environmental Sciences, Newcastle University, King's Road, Newcastle upon Tyne, NE1
8 7RU, UK

9 ⁴ School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK

10

11 *Authors to whom correspondence should be addressed.

12 samuel.williams@bristol.ac.uk

13 p.curnow@bristol.ac.uk

14 Abstract

15 The deep sea is known to host novel bacteria with the potential to produce a diverse
16 array of undiscovered natural products. Understanding these bacteria is thus of
17 broad interest in ecology and could also underpin applied drug discovery, specifically
18 in the area of antimicrobials. Here, we isolate a new strain of *Streptomyces* from the
19 tissue of the deep-sea sponge *Polymastia corticata* collected at a depth of 1869 m
20 from the Gramberg seamount in the Atlantic Ocean. This strain, which was given the
21 initial designation A15ISP2-DRY2^T, has a genome size of 9.29 Mb with a GC content
22 of 70.83%. Phylogenomics determined that A15ISP2-DRY2^T represents a novel
23 species within the genus *Streptomyces* as part of the *Streptomyces aurantiacus*
24 clade. The biosynthetic potential of A15ISP2-DRY2^T was assessed relative to other
25 members of the *aurantiacus* clade via comparative gene cluster family (GCF)
26 analysis. This revealed a clear congruent relationship between phylogeny and GCF
27 content. A15ISP2-DRY2^T contains six unique GCFs absent elsewhere in the clade.
28 Culture-based assays were used to demonstrate the antibacterial activity of
29 A15ISP2-DRY2^T against two drug-resistant human pathogens. We thus determine
30 A15ISP2-DRY2^T to be a novel bacterial species with considerable biosynthetic
31 potential and propose the systematic name *Streptomyces ortus* sp. nov.

32 Keywords

33 Comparative genomics, Molecular microbiology, Genome mining, Phylogenomics,
34 Marine actinomycetes, Antibacterial, Antibiotics

35

36 Impact Statement

37 The *Streptomyces* genus has contributed more to our antibiotic arsenal than any
38 other group of bacteria or fungi. Despite decades of exploration, global analysis has
39 suggested they still possess more undiscovered biosynthetic diversity than any other
40 bacterial group. Isolating novel species of *Streptomyces* is therefore a priority for
41 antibiotic discovery. Here we isolate a novel strain from a deep-sea sponge and use
42 comparative cluster analysis to identify six biosynthetic clusters unique to our deep-
43 sea strain. This work demonstrates the utility of continuing to isolate novel
44 *Streptomyces* strains for antibiotic discovery and, for the first time, we used species
45 tree-gene cluster tree reconciliation to assess the contribution of vertical evolution on
46 the biosynthetic gene cluster content of *Streptomyces*.

47 Introduction

48 Antimicrobial resistance (AMR) is a major threat to human health and was
49 associated with nearly 5 million deaths worldwide in 2019 (1). The discovery of new
50 antibiotics with novel modes of action is a critical part of combatting this threat. In
51 recent years there has been a renewed focus on microbial natural products as the
52 basis for this discovery (2). Historically, the majority of antibiotic natural products
53 have come from the bacterial group actinomycetes, with the majority of these arising
54 from a select few genera such as *Streptomyces* and *Micromonospora* (3, 4). It has
55 been estimated that over 50% of all clinically used antibiotics are derived from the
56 *Streptomyces* alone (4-7).

57

58 While *Streptomyces* remain an attractive target for biodiscovery initiatives, these
59 efforts can be generally frustrated by the continual re-discovery of known natural
60 products (8). One way to mitigate this problem is to focus upon relatively under
61 sampled environmental niches that could harbour strains which have acquired
62 biosynthetic innovations (9, 10). The microbial fauna intimately associated with
63 marine sponges have long been seen as a potential source of novel bioactive
64 metabolites, and *Streptomyces* strains are known to feature in sponge microbiota
65 (11, 12). While the bioprospecting of sponge samples has largely been limited to
66 accessible shallow waters (13), a more 'extreme' niche occupied by sponges – the
67 deep ocean – has been less well explored (14). It is now apparent that deep-sea
68 sponges can indeed host microbial communities with impressive bioactivity, and that
69 many such communities include the *Streptomyces* (15-17).

70

71 As well as traditional culture-based methods, bioinformatic genome mining for
72 biosynthetic gene clusters (BGCs) now has a central role in the process of natural
73 product discovery (5, 18). The identification of biosynthetic clusters by tools such as
74 antiSMASH (19) is complemented by software that can, for example, predict whether
75 a particular gene cluster might produce an antibiotic (20). Grouping together similar
76 BGCs from multiple genomes into Gene Cluster Families (GCFs) has provided a
77 deeper understanding of global biosynthetic diversity (21-23) and has been used to
78 estimate that just 3% of bacterial natural product classes have so far been
79 discovered (24). In such analyses, *Streptomyces* are found to have the greatest

80 biosynthetic potential with certain phylogenetic subgroupings within the genus –
81 specifically, a clade termed ‘*Streptomyces*_RG1’ (Relative Evolutionary Distance or
82 RED group 1) – expected to be biosynthetically exceptional even by the standards of
83 other *Streptomyces* (24). The isolation, identification, and characterisation of novel
84 taxa within this ‘RG1’ clade is therefore a priority for natural product discovery.

85

86 Here, we describe the discovery of a novel species of deep-sea *Streptomyces* with a
87 diverse biosynthetic repertoire and inherent antibiotic activity. We investigate the
88 biosynthetic potential of this strain through a comparative analysis of GCF diversity
89 within the *Streptomyces aurantiacus* clade (25) and highlight the extent that
90 specialised metabolism within this clade remains unexplored.

91 **Results**

92 **Isolation of Strain A15ISP2-DRY2^T**

93 A bacterial strain given the in-house designation A15ISP2-DRY2^T was isolated on
94 ISP2 agar as part of an ongoing effort to culture bacteria from the microbiota of
95 deep-sea sponges (26). The sponge sample was originally recovered by remote-
96 operated vehicle from the Gramberg seamount in the Atlantic Ocean (depth 1869m;
97 latitude 15.44530167; longitude: -51.09606). This was identified as the demosponge
98 *Polymastia corticata* based on cytochrome oxidase I (COI) gene identity (Table S1,
99 GenBank: OP036683). Strain A15ISP-DRY2^T produced a zone of inhibition against
100 the Gram-positive test strain *Bacillus subtilis* in a soft agar overlay assay but did not
101 inhibit the growth of the Gram-negative test strain *Escherichia coli* (data not shown).
102 A15ISP2-DRY2^T was shown to be Gram-positive (Figure S1), and electron
103 microscopy of the strain revealed branching filamentous substrate and spores
104 (Figure 1).

105

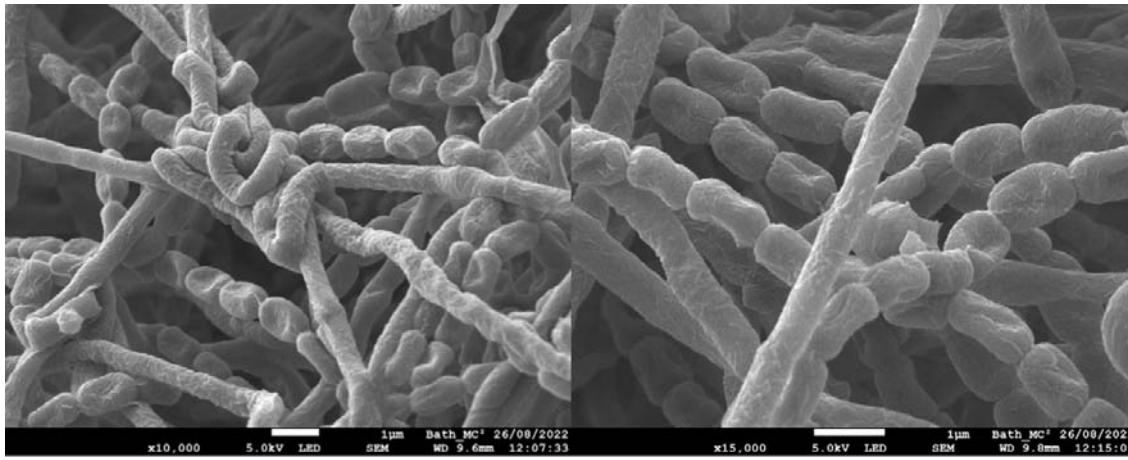


Figure 1. Cryo-Scanning Electron Micrographs of A15ISP2-DRY2^T colony grown on Mannitol Soya Flour Medium for 4 days.

106 **Taxonomic assignment**

107 A full-length 16S rRNA gene sequence of 1525 bp (GenBank: ON356025.1) was
108 sequenced and submitted to NCBI BLASTN 2.13.0+. A maximum likelihood tree of
109 closely-related type strains indicated that the deep-sea isolate was a member of the
110 *Streptomyces aurantiacus* clade (25) (Figure 2). Within this clade the closest
111 relatives to the isolate were the strains *Streptomyces dioscori* A217^T and
112 *Streptomyces liliiviolaceus* BH-SS-21^T with 16S rRNA gene identities of 99.74% and
113 99.61%, respectively.

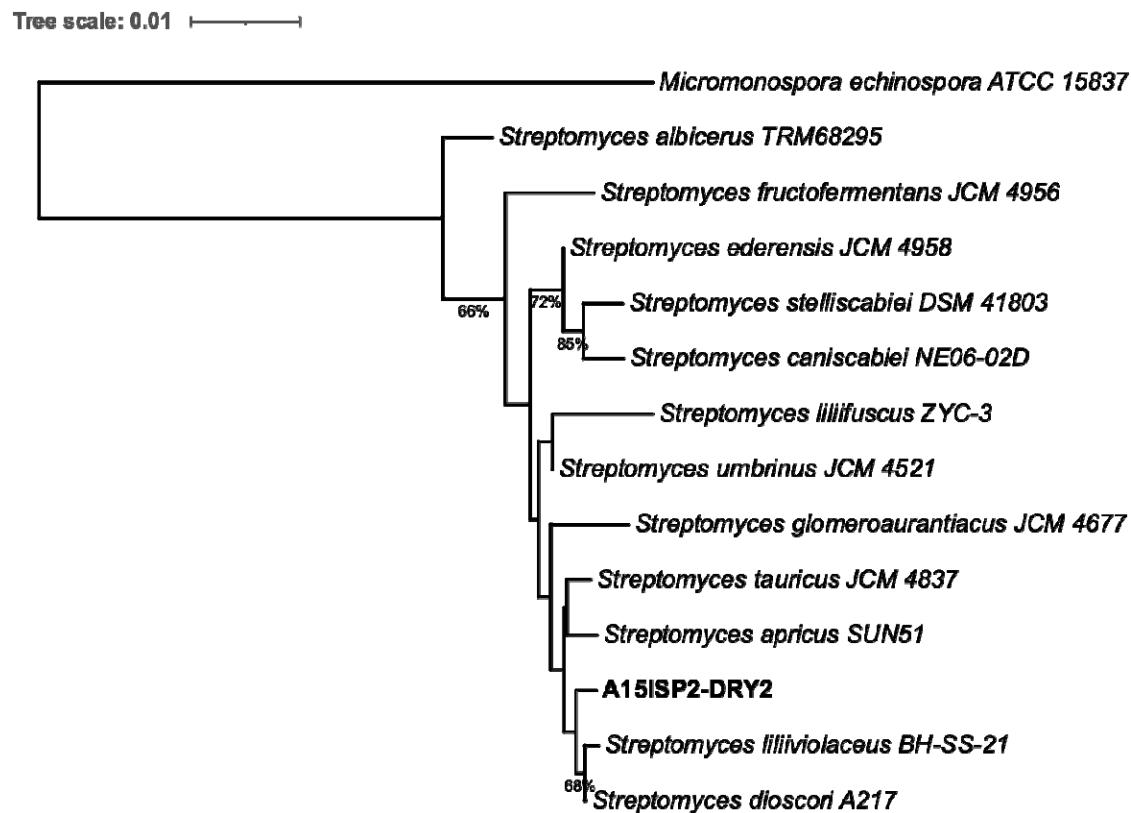


Figure 2. 16S rRNA gene sequence phylogeny of A15ISP2-DRY2^T. Produced with The Type (Strain) Genome Server (TYGS), bootstrap values below 50% not shown, average branch support 49.5%, 14 strains, δ statistics = 0.455. *Micromonospora echinospora* ATCC 15837 is used as an outgroup and the tree is rooted on this branch.

114 The differential chemotaxonomic properties of strain A15ISP2-DRY2^T and the
115 closely related *Streptomyces* species *S. dioscori* JCM 32173^T, *S. liliolaceus* BH-
116 SS-21^T and *S. tauricus* JCM 4837^T are given in Table 1. Major fatty acids (>10%) for
117 strain A15ISP2-DRY2^T were anteiso-C_{15:0}, C_{16:0}, iso-C_{16:0} and C_{16:1}ω7c. Minor fatty
118 acids (>5%) were iso-C_{14:0}, iso-C_{15:0} and anteiso-C_{17:0}. Whole cell sugars detected
119 were glucose, galactose, ribose, and minor amounts of mannose. The diagnostic
120 amino acid in whole-cell hydrolysates was LL-2,6-diaminopimelic acid.
121 Menaquinones MK8 H6 10.5%, MK8 H8 0.8%, MK9 H4 8.1%, MK9 H6 50.5% and
122 MK9 H8 30.1% were present.
123
124 *Table 1. Differential characteristics of strain A15ISP2-DRY2^T and closely related Streptomyces type strains*

Characteristic	1	2*	3*	4 ^T
----------------	---	----	----	----------------

Grown on sole carbon sources:

D-Fructose	+	-	+	+
L-Arginine	-	+	+	ND
L-Arabinose	-	+	+	+
Inositol	-	+	+	ND
Sodium citrate	-	+	+	ND

Hydrolysis of:

Gelatine	+	-	-	+
Tween 40	+	w	+	-

Activity:

H ₂ S production	-	+	-	+
Voges-Proskauer	+	-	-	ND

Major fatty acids:

iso-C _{17:1} ω5c	-	+	ND	-
---------------------------	---	---	----	---

Polar lipids:

Phosphatidylinositol	+	-	ND	+
Phosphatidylinositol mannoside	-	+	ND	+

125 * Data taken from Wang et al., 2018; [†] Data taken from Li et al., 2022

126 Strains: 1, A15ISP2-DRY2^T; 2, *S. dioscori* JCM 32173^T; 3, *S. tauricus* JCM 4837^T; 4, *S.*

127 *liliiviolaceus*, BH-SS-21^T. w = weakly positive. ND = No data.

128

129 The genome of A15ISP2-DRY2^T was sequenced to allow complete taxonomic
130 assignment and the biosynthetic potential of this strain. The complete assembled
131 genome was 9,291,524 bp in length, with a GC content of 70.83 %. The assembly
132 consisted of 9 contigs, or 4 scaffolds, with an L50 of 1 and the largest scaffold being
133 8,605,295 bp in length (Table S2). The assembled genome contained 8,130 genes,
134 six complete rRNAs, 66 tRNAs and a single CRISPR array (Table S3). The genome
135 was further analysed for expected single-copy orthologous genes from the order
136 Streptomycetales. Of 1579 expected genes, 1574 were complete (99.7%),
137 suggesting the assembly was of high biological accuracy (Table S4).

138

139 The Type (Strain) Genome Server (<https://tygs.dsmz.de>) (27) was used to calculate
140 digital DNA-DNA hybridisation (dDDH) values and to create a whole-genome
141 phylogeny (Figure 3). FastANI was then used to report the average nucleotide
142 identity (ANI) between the isolated strain and closely related type strains (28) (Table

143 S5). This was consistent with the results of 16S analysis and confirmed that the
144 closest relatives to A15ISP2-DRY2^T are *S. liliiviolaceus* BH-SS-21^T, with dDDH
145 score of 45.8%, ANI 93.31% and %GC difference 0.04, and 'S. dioscori' A217^T, with
146 dDDH 45.1%, ANI 93.08% and %GC difference 0.11. The relative dissimilarity of the
147 dDDH and ANI scores between A15ISP2-DRY2^T and these related strains reveals
148 that A15ISP2-DRY2^T should be considered a distinct species. We thus propose here
149 that A15ISP2-DRY2^T be given the systematic name *Streptomyces ortus* sp. nov. A
150 species description, including an explanation of the epithet and details of culture
151 deposition in accessible collections, is provided at the end of this manuscript.
152

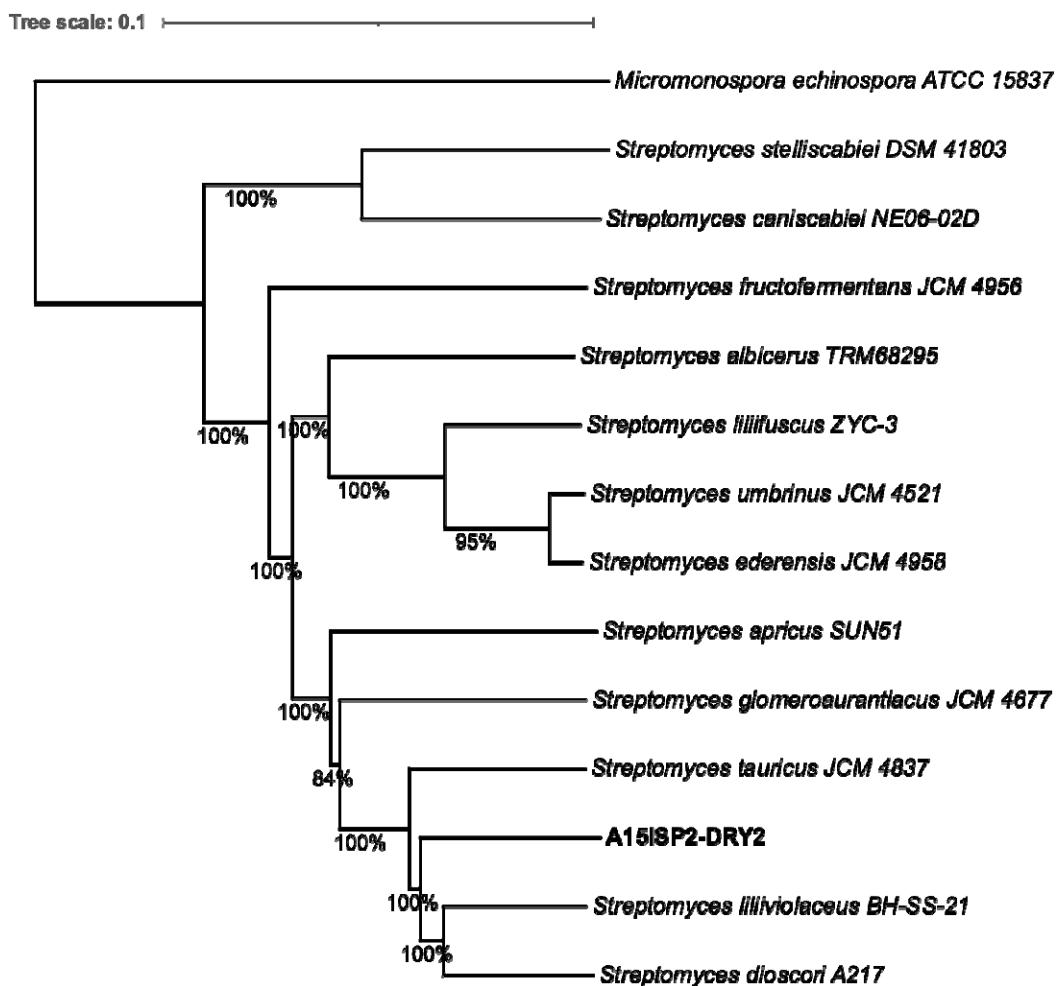


Figure 3. Maximum likelihood whole-genome phylogeny. 13 strains automatically chosen using the Type Genome Server (TYGS) with GGDC. *Micromonospora echinospora* ATCC 15837 is included as an outgroup and the tree is rooted on this branch. Average branch support 98.1%, bootstrap data shown as % for each branch. δ statistics = 0.131. Excluding the outgroup: % GC 70.02-72.41, genome size 7.67-11.96 Mb, Number of proteins 6,307-10,784. Distance

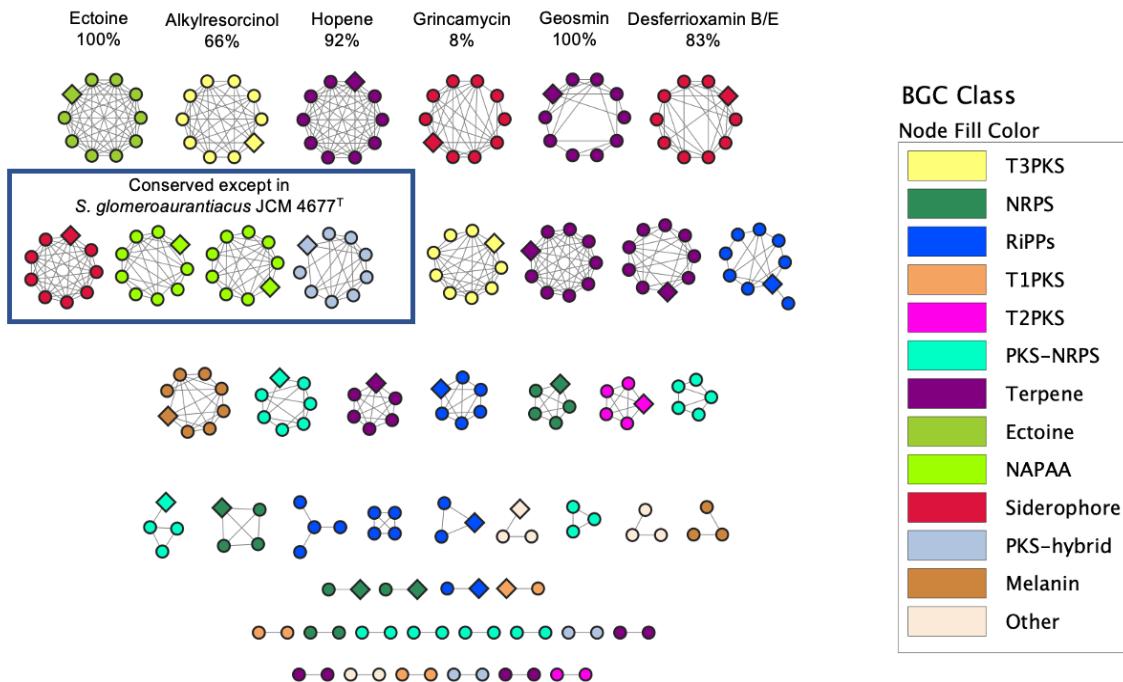
formula = D5

153 The whole-genome analysis additionally revealed that A15ISP2-DRY2^T belongs to
154 the recently defined *Streptomyces*_RG1, the clade which has the highest
155 biosynthetic potential of any genus level group in the bacterial kingdom (24). This
156 suggests that the *Streptomyces* isolate described here represents an excellent
157 candidate for further bioprospecting.

158 **Analysis of biosynthetic gene clusters**

159 The genome of A15ISP2-DRY2^T was analysed with antiSMASH 6.1.1 for the
160 identification of putative biosynthetic gene clusters (BGCs). A total of 34 complete
161 BGCs were identified. Just 9 of these showed high gene similarity (>80%) to
162 currently characterised BGCs (Table 2). Only 19 of the identified BGCs were most
163 similar to those found in the closest relative listed in the antiSMASH database ‘*S.*
164 *dioscori* A217’ (Table S6). Additionally, the genome was submitted to the Antibiotic
165 Resistant Target Seeker 2 (ARTS; <https://arts.ziemertlab.com>) (29). This identified
166 that 19 of the 34 identified BGCs in A15ISP2-DRY2^T were in proximity to a
167 duplicated core gene or a known antibiotic resistance gene. This genomic context
168 indicates that these BGCs may produce antibiotic compounds (18, 30).

169 *Table 2. Output from antiSMASH 6.1.1 for the genome assembly of isolate A15ISP2-DRY2^T.*


Region	Type	Cluster Size (bp)	Most Similar Known Cluster	Similarity
1	NRPS, T3PKS	117,822	Herboxidiene	10%
2	Terpene	21,059	2-methylisoborneol	100%
3	NRPS	56,791	Foxicins A-D	29%
4	Siderophore	13,852	No similar cluster	
5	NAPAA	33969	Rapamycin	17%
6	Ecotine	10,405	Ecotine	100%
7	Terpene	21,086	Albaflavenone	100%
8	PKS-like, T1PKS	48,134	Arsono-polyketide	91%
9	T3PKS	41,119	Alkylresorcinol	66%
10	NRPS, T3PKS, terpene	122,195	Feglymycin	73%
11	T2PKS, Ladderane	76451	Simocyclinone D8	40%
12	Terpene	25,548	Isorenieratene	100%
13	NRPS	77,342	Borrelidin	4%
14	NRPS	49245	Rimosamide	21%
15	NRPS	44,350	Diisonitrile	55%

antibiotic SF2768				
16	Lanthipeptide- class- iii, RiPP-like	10,216	Informatipeptin	42%
17	T1PKS, terpene	42,550	Oxalomycin B	9%
18	Terpene	19,424	Herboxidiene	4%
19	NRPS, NRPS-like, T1PKS, other, terpene	187,132	Aurantimycin A	48%
20	Terpene	24,515	Hopene	92%
21	NRPS-like, PKS-like, T1PKS, ectoine	52,830	Showdomycin	17%
22	Siderophore	11933	Grincamycin	8%
23	NAPAA	34,968	Stenothrinicin	13%
24	Terpene	22,187	Geosmin	100%
25	RiPP-like	10,685	<i>No similar cluster</i>	
26	NRPS, NRPS-like, betalactone	91,586	Vazabitide A	23%
27	Lanthipeptide class iv	22,754	<i>No similar cluster</i>	
28	Siderophore	13,568	<i>No similar cluster</i>	
29	PKS-like, RRE- containing, T2PKS	72,534	Cinerubin B	100%
30	Melanin	10,516	Melanin	60%
31	Siderophore	11788	Desferrioxamin B/E	83%
32	RiPP-like	11875	<i>No similar cluster</i>	
33	Nucleoside	20,705	<i>No similar cluster</i>	
34	NRPS	44,035	Lysolipin I	4%

170 Biosynthetic Cluster Comparison within the *S. aurantiacus* Clade

171 To further evaluate the biosynthetic novelty of A15ISP2-DRY2^T, a BiG-SCAPE gene
172 cluster family (GCF) analysis (21) was conducted within a clade of the 10 closest
173 relatives. A total of 377 BGCs were identified across the 10 genomes analysed.
174 These grouped into 188 GCFs with 133 singletons and a total of 577 links (Figure 4,
175 Figure S2). Just 22 (11.7%) of these GCFs clustered with a MiBIG reference BGC
176 (31), highlighting the extent of unexplored specialised metabolism within this clade.
177 Just six biosynthetic GCFs were shared amongst all members of the clade (Figure
178 4). Less stringently, ten GCFs were near-ubiquitous, being conserved in all members
179 of the clade apart from *S. glomeroaurantiacus* JCM 4677^T. The six conserved GCFs
180 included the well-characterised clusters responsible for producing Ectoine, Hopene,
181 Geosmin, Desferrioxamin B/E and Alkylresorcinol which are common across most
182 *Streptomyces* strains (32). The other GCF found ubiquitously across the clade was a

183 siderophore cluster with low gene similarity (8%) to that for the antibiotic polyketide
 184 Grincamycin (33).

Figure 4. BiG-SCAPE GCF network analysis of 10 Streptomyces within the S. auranticus clade, including A15ISP2-DRY2^T. Conserved GCFs are annotated with the name of the compound produced by the most similar known cluster, and antiSMASH % gene similarity to that cluster. Diamonds nodes are BGCs belonging to A15ISP2-DRY2^T. Fragmented BGC nodes were removed so that only one node per GCF per strain was left in the network. Singletons are excluded from the figure. Figure legend shows compounds produced by gene products of the most similar known cluster. Key: NRPS: non-ribosomal polyketide synthase, here including NRPS-like clusters; RiPP, ribosomally-synthesised and post-translationally modified peptides, here including lanthipeptides and RiPP-like clusters; NAPAA: non-alpha poly-amino acids; PKS-hybrid, here including T1PKS-terpene, heterocyst glycolipid synthase-like PKS-T1PKS, Other, here including redox-cofactor, phosphoglycolipid and nucleoside. T1PKS: Type I polyketide synthase, T2PKS: Type II polyketide synthase, T3PKS: Type III polyketide synthase.

185 The phylogenetic subgroup encompassing A15ISP2-DRY2^T, *S. liliiviolaceus* BH-SS-
 186 21^T, 'S. dioscori' A217 and *S. tauricus* JCM 4837^T exclusively contained GCFs for a
 187 polyketide synthase-non-ribosomal polyketide synthase (PKS-NRPS) hybrid cluster
 188 and an NRPS cluster. The subgroup also contained the type II polyketide synthase
 189 (T2PKS) for the anthracycline cinerubin B (34). Interestingly the cinerubin B GCF
 190 was also found in *S. fructofermentans*, suggesting this GCF has moved into the
 191 clade on two separate events. A nucleoside GCF with no similar other known cluster
 192 was found in all members of the group except *S. tauricus*. A15ISP2-DRY2^T and its
 193 closest relative *S. liliiviolaceus* BH-SS-21^T also had two GCFs not found elsewhere
 194 including a NRPS-like cluster with 23% similarity to a cluster for Vazabitide A (35).
 195 This BGC was deemed likely to produce an antimicrobial, with ARTS 2.0 identifying

196 a duplicated core gene and a putative resistance model within the cluster. Overall,
197 this analysis demonstrates a clear phylogenetic relationship of BGC distribution in
198 this clade, with close relatives sharing a higher portion of conserved BGCs.

199

200 A15ISP2-DRY2^T had 6 GCFs not found in any other members of the clade,
201 potentially suggesting 6 BGC acquisition events since its speciation from *S.*
202 *liliiviolaceus*. Two of these unique GCFs are likely to produce antibiotics based on
203 ARTS analysis. These are a T2PKS and ladderane hybrid BGC, containing a known
204 resistance model and 40% gene homology to the novel DNA gyrase inhibitor
205 simocyclinone D8 (36); and an NRPS BGC with a duplicated cell envelope core gene
206 within the cluster. A15ISP2-DRY2^T also had a unique large NRPS-type III polyketide
207 synthase (T3PKS) hybrid BGC with 73% similarity to the glycopeptide-related
208 antibiotic feglymycin, but ARTS did not detect any resistance markers for this cluster.
209 There thus appear to be uncharacterised BGCs within A15ISP2-DRY2^T, responsible
210 for producing antibiotics and not found in closely related *Streptomyces* species.

211 **Predominantly Vertical GCF Transmission within the *S. aurantiacus***
212 **Clade**

213 To investigate the contributions of vertical inheritance and lateral gene transfer (LGT)
214 to the evolution of BGCs within the *S. aurantiacus* clade, we performed gene cluster
215 tree-species tree reconciliation. In total there were 28 GCF trees, where the GCF
216 was present in at least 3 strains, which were reconciled against the clade species
217 tree using an Amalgamated Likelihood Estimation (ALE) (37). ALE draws the gene
218 tree into the species tree using a probabilistic model of gene origination, duplication,
219 transfer, and loss, with model parameters estimated from the data using maximum
220 likelihood. Consistent with the observed congruence between the species tree and
221 BGC repertoires of these organisms, the ALE analysis suggested that vertical
222 inheritance was the predominant mode of BGC evolution within the *S. aurantiacus*
223 clade. The GCF branch verticality, a measure of vertical transmission in relation to
224 transfer or loss, demonstrated an average GCF verticality of 89%. This analysis
225 suggested that 12 to 13 of the GCFs analysed were already present in the last
226 common ancestor of the *S. aurantiacus* clade (Figure 5). The analysis also
227 highlighted loss events, such as a T1PKS-NRPS BGC with homology to

228 aurantimycin A, and evidenced acquisition events, such as a T1PKS-NRPS BGC
229 with low homology to showdomycin in the *S. ortus* group.

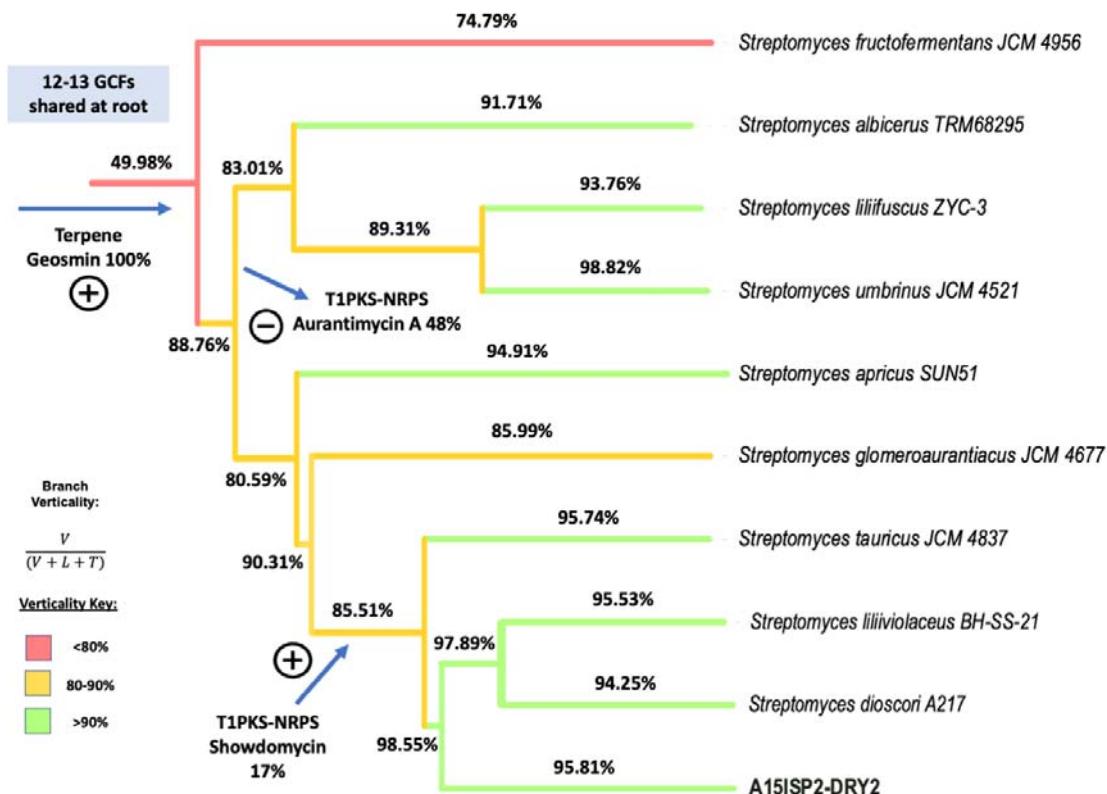


Figure 5. GCF transmission within the *S. aurantiacus* clade revealed using gene cluster tree-species tree reconciliation. ALE analysis showed the evolution of 28 gene cluster families present in 3 or more strains. These clusters generally evolved vertically, with >90% verticality on most branches of the tree (verticality was measured as the proportion of ancestor-to-descendant vertical transmissions as a proportion of all inferred events). For illustrative purposes, the inferred origin or loss of 3 clusters is illustrated. V = Number of vertical transmissions, L = Number of loss events, T = Number of transfers.

230 Antimicrobial activity testing

231 Following the bioinformatic analysis, we next tested whether this strain produced any
232 antibiotic compounds during laboratory culture. The strain was grown in a liquid
233 culture medium for 7 days and organic extraction of the liquid culture was performed
234 to create a crude metabolite extract. The extract was a bright cherry red in colour.
235 The bioactivity of this metabolite extract was assessed against a panel of clinically
236 relevant pathogenic bacteria (Figure 6; for a full list of strains tested see Materials
237 and Methods). Antibacterial activity was observed against Gram-positive strains
238 including a clinical isolate of vancomycin-resistant and methicillin-resistant
239 *Staphylococcus aureus* designated strain Mu50 (38) and the fusidic acid/rifampicin-

240 resistant *Enterococcus faecalis* JH2-2 (39). The antibiotic activity of the culture
241 extract was somewhat dependent on the culture conditions used; for example, the
242 antibiotic activity was drastically reduced in extracts using mannitol as the carbon
243 source (Figure S3). Further work is now ongoing to determine the extract component
244 responsible for this bioactivity.

245

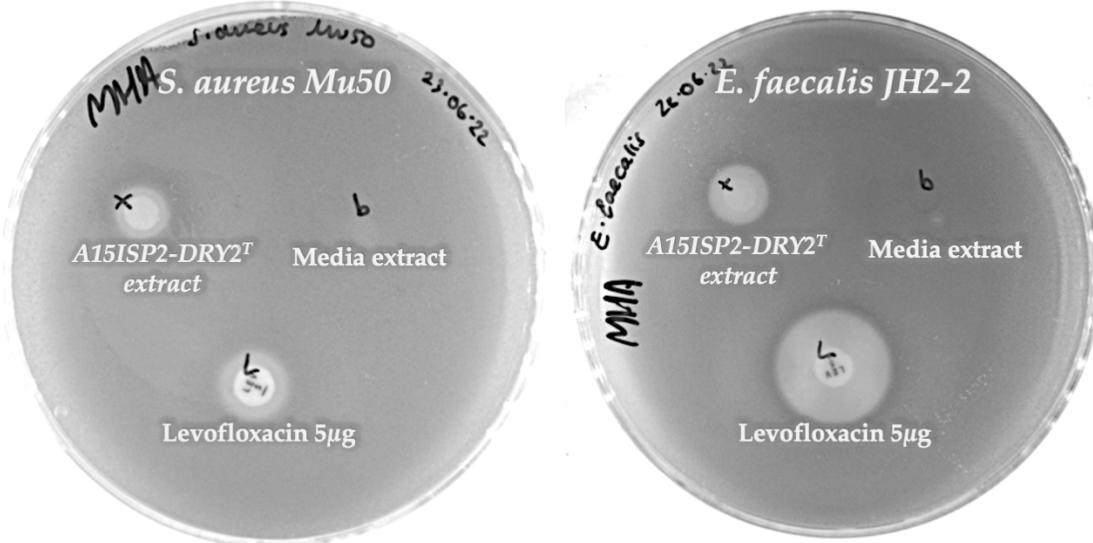


Figure 6. Example of antibiotic activity in crude media extracts of *Streptomyces A15T*. Clearance zones are visible in agar overlay assays against the pathogens *Staphylococcus aureus* Mu50 (left) and *Enterococcus faecalis* JH2-2 (right). The broad-spectrum antibiotic Levofloxacin is used as a positive control.

246

247 Discussion

248 The results presented here outline the discovery of a novel species of
249 *Streptomyces* and represent the first *Streptomyces* strain isolated in our wider efforts
250 to isolate deep-sea sponge-associated microbes (26). This study provides evidence
251 that continuing to isolate actinomycetes, even those mined extensively such as
252 *Streptomyces*, can lead to the discovery of taxonomic novelty and biosynthetic
253 diversity. This supports prior large-scale global sequence analyses demonstrating
254 that *Streptomyces*, in particular *Streptomyces*_RG1, not only have the highest
255 number of GCFs among bacteria, but also the highest number of yet uncharacterised
256 and unknown GCFs (24). The current study indicates that continuing to isolate,
257 sequence, and screen novel species within this group could represent an important
258 route to the discovery of new natural products.

259

260 Our study suggests that GCF content is shaped both by vertical inheritance and
261 lateral gene transfer; strains share much of their GCF repertoire with close relatives,
262 but also acquire individual GCFs from more distant lineages. Evidence on the extent
263 and rate of LGT within *Streptomyces* is mixed. A phylogenetic study of LGT within
264 *Streptomyces* suggested that only 10 LGT events occur every million years and that
265 while the transfer of biosynthetic genes was overrepresented in the data, the transfer
266 of entire intact BGCs was relatively rare (40). In contrast, a study by Martinet et al.
267 investigating 18 strains from the same species (*S. lunaelactis*), found that 54% of
268 BGCs were actually strain-specific (41). This lack of conserved BGCs within a
269 species highlights a limitation of this analysis, as different strains within the same
270 species may have a variable biosynthetic repertoire, driven in part by the acquisition
271 of new clusters from outside the clade. Additional aspects to consider are that
272 fragmented GCFs will decrease the apparent vertical transmission, while the
273 omission of GCFs present in only one or two strains will increase the apparent
274 verticality. So, while it remains clear that phylogenetic distance plays a major role in
275 the biosynthetic repertoire – with A15ISP2-DRY2^T sharing most of its GCFs with its
276 closest relatives – exchange of BGCs over larger evolutionary distances is also
277 important, as reflected in the 6 unique GCFs present in A15ISP2-DRY2^T but not
278 found elsewhere in the clade (Table S8). This result is consistent with the view that

279 lateral acquisition of BGCs is an important driver of biosynthetic diversity. In the
280 future, a systematic study of *Streptomyces* radiation using these techniques might
281 help to provide a global picture of the relative contributions of vertical descent and
282 LGT to GCF content.

283

284 Here we use BiG-SCAPE and ARTS to rapidly assess the biosynthetic novelty of
285 A15ISP2-DRY2^T within its clade. Resistance-based mining or target-directed mining
286 — the identification of resistance genes within BGCs — has led to the discovery of
287 several first-in-class antibiotics from *Streptomyces* in recent years (30, 42). ARTS
288 identified that 19 of 34 BGC regions in A15ISP2-DRY2^T contained such potential
289 resistance or a duplicated core gene, including two GCFs found exclusively in
290 A15ISP2-DRY2^T. These clusters represent priority targets for compound isolation or,
291 if not produced under standard laboratory conditions, heterologous expression (43,
292 44). A15ISP2-DRY2^T shared the majority of the identified GCFs with its closest
293 relatives (*S. liliiviolacens* BH-SS-21^T and 'S. dioscori' A217^T'), despite these strains
294 being isolated from drastically different environments: *S. dioscori* from a yam plant
295 and *S. liliiviolacens* from soil (45, 46). Interestingly, the related strains show distinct
296 bioactivities, with 'S. dioscori' A217 having activity solely against Gram-negative
297 *Klebsiella pneumoniae* (46) and *S. liliiviolacens* BH-SS-21^T reporting activity against
298 the Gram-negative plant pathogen *Ralstonia solanacearum* (45). This suggests that
299 the metabolomic profile of A15ISP2-DRY2^T is distinct from its close relatives and
300 highlights the poorly understood relationship between the genome and metabolome
301 of a strain (47, 48). It is possible that different environmental niches may select for
302 strains with distinct metabolomes rather than distinct BGCs (48). The distinct
303 antibiotic spectrum displayed by our novel deep-sea strain, therefore, warrants
304 further investigation and the characterisation of the specialised metabolite(s)
305 responsible is now a priority. Overall, the *in silico* and *in vitro* results presented here
306 suggest this novel deep-sea *Streptomyces* is an excellent candidate for further
307 antibiotic bioprospecting.

308 Description of '*Streptomyces ortus* sp. nov.'

309 The systematic name proposed for the isolated strain A15ISP2-DRY2^T is
310 *Streptomyces ortus* sp. nov. The species nomenclature *ortus* (or-tus), sunrise or

311 risen, L. masculine. adj. reflects the deep-sea origins of the original isolate and the
312 red colour that colonies display when grown on ISP2 media. The type strain is
313 A15ISP2-DRY2^T (NCIMB 15405^T = DSM 113116^T), isolated from a deep-sea
314 demosponge sponge identified as *Polymastia corticata* from the Gramberg seamount
315 in the Atlantic Ocean (depth 1869m; latitude 15.44530167; longitude: -51.09606).
316 An aerobic, Gram positive, filamentous actinomycetota, that forms branched
317 substrate hyphae and aerial mycelia with spores (~ 0.82 µm x 1.27 µm) on mannitol
318 soy flour agar. The strain has a high salt tolerance with growth up to 8 % w/v (1.37
319 M) NaCl. It was successfully cultured at pH 5-12 and at temperatures 4, 15, 20, 28,
320 and 37 °C. The strain had 6 complete rRNAs with each 16S rRNA gene sequence
321 deposited in GenBank ON356021-ON356026. The genome size of the type strain is
322 9.27 Mb (GenBank Accession: JAIFZO000000000) and its genomic DNA GC content
323 is 70.83 %.

324 Methods

325 Sponge identification

326 The sponge sample was thoroughly rinsed three times in sterile artificial seawater
327 (33.3 g/L, Crystal Sea Marine Mix, Marine Enterprise International). DNA was
328 extracted from ~0.25 g of sponge tissue in a laminar flow hood using the DNeasy
329 PowerSoil Kit (Qiagen, Hilden, Germany) using the optimized procedure of Marotz *et*
330 *al.* (49). Sponge taxonomy was based on the mitochondrial cytochrome oxidase
331 subunit I (COI). The COI gene was amplified through PCR using the universal primer
332 pair LCO1490 (GGTCAACAAATCATAAAGATATTGG) and HCO2198
333 (TAAACTTCAGGGTGACCAAAAAATCA) (50). The reaction comprised 20 µL
334 Platinum™ Hot Start PCR Master Mix (Thermo Fisher Scientific, Waltham, MA,
335 USA), 2 µL of each primer at 10 pmol/µL, 14 µL MilliQ water and 2 µL DNA template.
336 Thermocycler conditions were as described by Yang *et al.* (51): 1-minute
337 denaturation at 94°C; 5 cycles of 94°C for 30□sec, 45°C for 90□sec and 72°C for
338 1□min; 35 cycles of 94°C for 30□sec, 51°C for 40□sec and 72°C for 1□min; and a
339 final extension step at 72°C for 5□min. The successful amplification of a COI gene
340 fragment of approximately 680 bp was confirmed by agarose gel electrophoresis
341 before the amplicon was purified with the DNA Cleanup Kit (New England Biolabs,
342 Ipswich, MA, USA) and sequenced (Eurofins Genomics, Wolverhampton, UK). The
343 closest relative was determined based on the highest percent identity in a BLASTN
344 search against the NCBI Nucleotide database (52).

345 Isolation of A15ISP2-DRY2^T

346 The procedures for strain culturing and isolation, and the method of antibiotic
347 screening by soft agar overlay, were performed as previously described (26). To bias
348 strain culturing towards spore-forming bacteria, a dry-stamping technique was
349 adapted from Mincer *et al.* (53). 0.25 g of the sponge was dried at 60°C for 90
350 minutes, ground with a sterile pestle, and then stamped onto ISP2 (4.0 g dextrose,
351 4.0 g yeast extract, 10.0 g malt extract, 33.3 g Crystal Sea Marine Mix, Marine
352 Enterprise International, 15 g agar, 1 L ddH₂O) agar plates using a sterile plastic
353 bung.

354 Cryo-SEM imaging

355 A15ISP2-DRY2^T was streaked onto Mannitol Soya Flour Medium (54), grown for 4
356 days at 28°C and a single colony was removed with a scalpel. For scanning electron
357 microscopy (SEM), colonies were mounted on the surface of an aluminium stub with
358 optimal cutting temperature (O.C.T) compound (Agar Scientific) mixed with colloidal
359 graphite as the mounting medium. The stub was plunged into liquid nitrogen slush to
360 cryopreserve the material. Each sample was transferred to the preparation chamber
361 of a Quorum PP3010T cryo-transfer system attached to a JEOL 7900 Field Emission
362 SEM. Sublimation of surface frost was performed at -95°C for 3 minutes before re-
363 cooling then sputter coating with platinum for 2 minutes at 10mA. After coating the
364 sample was transferred to the cryo stage mounted in the SEM chamber held at
365 approximately -140°C. The samples were imaged at 5kV. Average spore dimensions
366 were determined with Fiji (ImageJ v2.3.0) using the UCSB NanoFab plugin
367 Microscope Measurement Tools package.

368 **Strain Growth Conditions**

369 The standard growth conditions for culturing A15ISP2-DRY2^T were on standard ISP2
370 media (4.0 g dextrose, 4.0 g yeast extract, 10.0 g malt extract, 15 g agar, 1L ddH₂O)
371 at 28°C, pH 7.2. To examine the impact of different growth conditions, strains were
372 cultured in triplicate on ISP2 agar over a range of temperatures, salinities, and pH
373 values deviating from the standard culture conditions. Growth temperatures on
374 standard ISP2 were 0°C, 4°C, 15°C, 20°C, 28°C, and 37°C. Additional NaCl was
375 introduced at concentrations between 0%, 2%, 4%, 6%, 8%, 10%, 12% and 15%
376 w/v. pH was adjusted to final values of 5, 6, 7, 8, 9, 10, 11 and 12 with 2 M HCl or 2
377 M NaOH. Plates incubated at 0°C were also supplemented with 3% glycerol to
378 prevent freezing. Gram staining was carried out as previously described (55).

379 **Analysis of Fatty Acid Cell Wall Composition**

380 Chemotaxonomic analysis was prepared from biomass produced in M.65 medium
381 (L-1) containing 4.0 g glucose, 4.0 g yeast extract, and 10.0 g malt extract (pH 7.2).
382 Whole-cell sugars and isomers of diaminopimelic acid were diagnosed with standard
383 samples by thin-layer chromatography (TLC) on cellulose plates according to
384 Staneck (56). Polar lipids were extracted from freeze-dried material in
385 chloroform:methanol:0.3% aqueous NaCl, separated by two-dimensional TLC and

386 detected according to Tindall (57). Cellular fatty acids were extracted, methylated
387 and analysed using minor modifications of the methods of Miller (58) and Kuykendall
388 *et al.* (59). The fatty-acid methyl esters were separated by GC and identified using
389 the Sherlock Microbial Identification System (MIDI, Newark, USA). Menaquinones
390 were extracted in hexane, purified by silica-based solid phase extraction, and
391 analysed by reverse phase HPLC-DAD-MS. All analyses were performed by DSMZ
392 services, Leibniz-Institute DSMZ, Braunschweig, Germany.

393 **Genome assembly**

394 A colony was inoculated from a freshly-streaked ISP2 agar plate into 1mL of liquid
395 media of the same composition. These liquid cultures were incubated in a shaking
396 incubator (180 rpm, 28°C) for 3-4 days until confluent bacterial growth was achieved.
397 Genome extraction was then performed using the GenElute Bacterial Genomic DNA
398 (gDNA) extraction kit (Sigma-Aldrich, St. Louis, MO, USA) as per the manufacturer's
399 instructions. Illumina sequencing was performed as a commercial service by
400 Microbes NG (<https://microbesng.com/>). Briefly, libraries were constructed using the
401 XT Index Kit (Nextera®) and sequenced using HiSeq or NovoSeq platform (Illumina,
402 San Diego, CA, USA) to produce 2 x 250 bp paired-end reads. Trimmomatic (v0.30)
403 was used for adaptor and quality trimming with a sliding window quality cut-off of
404 Q15 (60). Nanopore sequencing was conducted in-house. Extracted genomic DNA
405 was sequenced using a Mk1B R9 MinION flow-cell (Oxford Nanopore Technologies,
406 Oxford, UK) and raw fast5 files were based called using Guppy (v6.3.8). Sequencing
407 files were assembled *de novo* with Unicycler v0.4.6 (61) and the assembly was
408 scaffolded with MeDuSa v1.6 (62) (reference strains listed in Table S8). Alignment of
409 trimmed Illumina reads to the final assemblies used Bowtie2 v2.2.9 (63) and error
410 rate was calculated with Qualimap2 v2.2.2 (64). The contiguity and accuracy of the
411 assembly were assessed respectively with QUAST v5.0.2 (65) and Benchmarking
412 Universal Single-Copy Orthologs (BUSCO) (v5.3.2) (66). Assembly and quality
413 assessment was completed on the Galaxy web platform (<https://usegalaxy.eu/>) (67).

414 **Phylogenomics**

415 The final genome assembly file was submitted to the DSMZ Type Strain Genome
416 Server (TYGS v .321; <https://tygs.dsmz.de/>) and the Genome to Genome Distance

417 Calculator (GGDC v 2.1; <https://ggdc.dsmz.de>) (27). Phylogenetic trees were
418 visualised using the interactive tree of life (iTOL) V5 (68) with *Micromonospora*
419 *echinospora* ATCC 15837 selected as an outgroup. Average nucleotide identity
420 (ANI) was calculated on www.usegalaxy.eu using the fastANI algorithm (69) against
421 the closest relatives identified by TYGS. The genome was submitted for annotation
422 to the NCBI Prokaryote Genome Annotation Pipeline (PGAP) (v6.3) (70).

423 **Biosynthetic Cluster Comparison of the *S. aurantiacus* Clade**

424 BGCs from the *S. aurantiacus* clade and the isolated strain was identified using
425 antiSMASH 6.1 (19). Where multiple assemblies were available, the highest-quality
426 genome for each species in GenBank was chosen (Table S8). To enable cluster
427 comparison, detected BGCs were grouped into Gene Cluster Families (GCF) using
428 BiG-SCAPE v1.1.0 (21). BiG-SCAPE was run with the *--mix* flag and the clustering
429 distance parameter was tested at 0.3, 0.35, 0.4, 0.45 and 0.5. 0.35 was chosen, as
430 this represented the lowest cut-off that grouped the geosmin BGC into a single GCF
431 (71). The resulting network map output was loaded into Cytoscape v3.9.1 (72). The *-*
432 *-mibig* flag was used to identify closely related clusters from The Minimum
433 Information about a Biosynthetic Gene cluster (MiBIG 2.0) database (31). For each
434 GCF, aligned amino acid sequences produced by BiG-SCAPE were used as input
435 for IQTREE2 (73) to create 1000 bootstrapped GCF trees using the best-fitting
436 substitution model as selected by the Bayesian Information Criterion. Bootstrapped
437 trees were used as input for ALEobserve and then reconciled against the rooted
438 species tree using ALEml_undated (ALE v1.0) (37). The verticality of each branch
439 was then calculated as the inferred number of ancestor-to-descendant vertical
440 transmissions as a proportion of all inferred events.

441 **Bioactivity Testing**

442 A cube of mycelium containing agar was used to inoculate a starter culture of 50mL
443 liquid ISP2 without dextrose in 250 mL baffled Erlenmeyer flasks. After 24 hours of
444 growth at 28°C with agitation at 180 rpm, 10 mL of the starter culture was used to
445 inoculate 100 mL of ISP2 media in 250 mL baffled Erlenmeyer flasks and grown for 7
446 days (28°C, 180 rpm). The total culture was then extracted through rigorous shaking
447 with an equal volume of ethyl acetate (Sigma-Aldrich, St. Louis, MO, USA). The

448 organic layer was removed and dried over anhydrous MgSO₄ (Sigma-Aldrich, St.
449 Louis, MO, USA) before being evaporated under vacuum. The dried crude extract
450 was resuspended in 2 mL methanol for bioactivity testing.

451

452 Bioactivity testing employed the following ESKAPE pathogens; *Staphylococcus*
453 *aureus* Mu50, *Klebsiella pneumoniae* NCTC 5055, *Acinetobacter baumannii* ATCC
454 19606, *Pseudomonas aeruginosa* PAO1, *Escherichia coli* BW55113 and
455 *Enterococcus faecalis* UB591 (JH2-2). All strains were grown in Muller-Hinton broth
456 at 37°C for 16 h with shaking at 180 rpm. Cultures were diluted to OD₆₀₀ = 0.01 in
457 warm, molten Muller-Hinton agar (0.75 % agar), and 10 mL was poured over a plate
458 of solid Muller-Hinton agar and allowed to set. The crude extract of A15ISP2-DRY2^T
459 (25 µL) was dried onto sterile disks of filter paper, which were placed onto the
460 surface of the set agar. ISP2 media extracts were used as a negative control and
461 disks containing Levofloxacin (5 µg) were used as positive controls. The plates were
462 incubated at 37°C, for 16 h, at which point zones of inhibition could be observed.

463 **Data Availability**

464 The partial COI gene was deposited in GenBank with the accession OP036683. In
465 total A15ISP2-DRY2 had six 16S rRNA genes. Each was submitted to the NCBI 16S
466 rRNA database with the accession numbers ON356021-ON356026. This Whole
467 Genome Shotgun project has been deposited at DDBJ/ENA/GenBank
468 under the accession JAIFZO000000000. The version described
469 in this paper is version JAIFZO010000000.

470 **Contributions:**

471 Conceptualization: SEW, PC, PRR
472 Methodology: SEW, TAW, JM
473 Investigation: SEW, CB, EB, JS, JM
474 Visualization: SEW
475 Funding acquisition: PC, PRR
476 Supervision: PC, PRR
477 Formal analysis: SEW, TAW
478 Writing – original draft: SEW, PC

479 Writing – review & editing: SEW, PC, CB, PRR, EB, TAW

480

481 Conflicts of Interest: Authors declare no potential conflicts of interest

482 Funding and acknowledgements:

483 SEW is supported by the Bristol Centre for Engineering Biology (BrisEngBio) under
484 UKRI Biotechnology and Biological Sciences (BBSRC) award BB/W013959/1.

485 Further grants that have supported this work include BBSRC grants BB/T001968/1
486 and BB/M025624/1, and the Medical Research Foundation grant MRF-131-0005-
487 RG-RACE-C0853. EB was supported by the Wellcome Trust ISSF and Elizabeth
488 Blackwell Institute clinical primer scheme. The TROPICS research cruise (expedition
489 JC094) was funded by the European Research Council via the ERC Consolidator
490 Grant agreement number 278705. TAW is supported by a Royal Society University
491 Research Fellowship (URF\R\201024).

492

493 The authors gratefully acknowledge the Material and Chemical Characterisation
494 Facility (MC²) at the University of Bath (doi.org/10.15125/mx6j-3r54) for technical
495 support and assistance in obtaining Cryo-SEM images for the paper. The authors
496 also thank Laura Robinson and Kate Hendry for sample collection during expedition
497 JC094.

498 References

- 499 1. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic 500 analysis. *The Lancet*. 2022.
- 501 2. Clardy J, Walsh C. Lessons from natural molecules. *Nature*. 2004;432:829.
- 502 3. Bibb Mervyn J. Understanding and manipulating antibiotic production in 503 actinomycetes. *Biochemical Society Transactions*. 2013;41(6):1355-64.
- 504 4. Bérdy J. Bioactive Microbial Metabolites. *The Journal of Antibiotics*. 505 2005;58(1):1-26.
- 506 5. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and 507 future. *Current Opinion in Microbiology*. 2019;51:72-80.
- 508 6. Barks EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, et 509 al. Taxonomy, Physiology, and Natural Products of Actinobacteria. *Microbiology* 510 and Molecular Biology Reviews. 2016;80(1):1-43.
- 511 7. Bérdy J. Thoughts and facts about antibiotics: Where we are now and where 512 we are heading. *The Journal of Antibiotics*. 2012;65(8):385-95.
- 513 8. Chevrette MG, Handelsman J. Needles in haystacks: reevaluating old 514 paradigms for the discovery of bacterial secondary metabolites. *Natural Product 515 Reports*. 2021.
- 516 9. Wilson ZE, Brimble MA. Molecules derived from the extremes of life: a 517 decade later. *Natural Product Reports*. 2021;38(1):24-82.
- 518 10. Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb 519 ME. Extreme environments: microbiology leading to specialized metabolites. *Journal 520 of Applied Microbiology*. 2020;128(3):630-57.
- 521 11. Huang X, Kong F, Zhou S, Huang D, Zheng J, Zhu W. *Streptomyces 522 tirandamycinicus* sp. nov., a Novel Marine Sponge-Derived Actinobacterium With 523 Antibacterial Potential Against *Streptococcus agalactiae*. *Front Microbiol*. 524 2019;10:482.
- 525 12. Khan ST, Tamura T, Takagi M, Shin-Ya K. *Streptomyces tateyamensis* sp. 526 nov., *Streptomyces marinus* sp. nov. and *Streptomyces haliclonae* sp. nov., isolated 527 from the marine sponge *Haliclona* sp. *Int J Syst Evol Microbiol*. 2010;60(Pt 12):2775-9.
- 528 13. Indraningrat A, Smidt H, Sipkema D. Bioprospecting Sponge-Associated 529 Microbes for Antimicrobial Compounds. *Marine Drugs*. 2016;14(5):87.
- 530 14. Danovaro R, Snelgrove PVR, Tyler P. Challenging the paradigms of deep-sea 531 ecology. *Trends in Ecology & Evolution*. 2014;29(8):465-75.
- 532 15. Back CR, Stennett HL, Williams SE, Wang L, Ojeda Gomez J, Abdulle OM, et 533 al. A New Micromonospora Strain with Antibiotic Activity Isolated from the 534 Microbiome of a Mid-Atlantic Deep-Sea Sponge. *Marine Drugs*. 2021;19(2):105.
- 535 16. Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, et 536 al. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and 537 Perspectives. *Mar Drugs*. 2018;16(10).
- 538 17. Risdian C, Landwehr W, Rohde M, Schumann P, Hahnke RL, Spröer C, et al. 539 *Streptomyces bathyalis* sp. nov., an actinobacterium isolated from the sponge in a 540 deep sea. *Antonie Van Leeuwenhoek*. 2021;114(4):425-35.
- 541 18. Ziemert N, Alanjary M, Weber T. The evolution of genome mining in 542 microbes - a review. *Natural Product Reports*. 2016;33(8):988-1005.
- 543

544 19. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema
545 Marnix H, et al. antiSMASH 6.0: improving cluster detection and comparison
546 capabilities. *Nucleic Acids Research*. 2021;49(W1):W29-W35.

547 20. Alanjary M, Kronmiller B, Adamek M, Blin K, Weber T, Huson D, et al. The
548 Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic
549 cluster prioritization and novel drug target discovery. *Nucleic Acids Research*.
550 2017;45(W1):W42-W8.

551 21. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH,
552 Parkinson EI, et al. A computational framework to explore large-scale biosynthetic
553 diversity. *Nature Chemical Biology*. 2020;16(1):60-8.

554 22. Kautsar SA, van der Hooft JJ, de Ridder D, Medema MH. BiG-SLiCE: A
555 highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters.
556 *GigaScience*. 2021;10(1).

557 23. Kautsar SA, Blin K, Shaw S, Weber T, Medema MH. BiG-FAM: the
558 biosynthetic gene cluster families database. *Nucleic Acids Research*.
559 2020;49(D1):D490-D7.

560 24. Gavriilidou A, Kautsar SA, Zaburannyi N, Krug D, Müller R, Medema MH, et
561 al. Compendium of specialized metabolite biosynthetic diversity encoded in
562 bacterial genomes. *Nature Microbiology*. 2022;7(5):726-35.

563 25. Saygin H. Genomic insight into the *Streptomyces aurantiacus* clade:
564 reclassification of *Streptomyces ederensis* as a later heterotypic synonym of
565 *Streptomyces umbrinus* and *Streptomyces glomeroaurantiacus* as a later heterotypic
566 synonym of *Streptomyces aurantiacus*. *International Journal of Systematic and
567 Evolutionary Microbiology*. 2021;71(5).

568 26. Williams SE, Stennett HL, Back CR, Tiwari K, Ojeda Gomez J, Challand MR,
569 et al. The Bristol Sponge Microbiome Collection: A Unique Repository of Deep-Sea
570 Microorganisms and Associated Natural Products. *Antibiotics*. 2020;9(8):509.

571 27. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform
572 for state-of-the-art genome-based taxonomy. *Nature Communications*.
573 2019;10(1):2182.

574 28. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High
575 throughput ANI analysis of 90K prokaryotic genomes reveals clear species
576 boundaries. *Nature Communications*. 2018;9(1):5114.

577 29. Mungan MD, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N. ARTS
578 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for
579 comparative genome mining. *Nucleic Acids Res*. 2020;48(W1):W546-w52.

580 30. Gerry W, Elizabeth C, David S, Christian H, Andrew P, Gerd P. A widespread
581 family of bacterial gene clusters produces ClpP inhibitors. *Nature Portfolio*. 2021.

582 31. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft
583 JJ, et al. MiBiG 2.0: a repository for biosynthetic gene clusters of known function.
584 *Nucleic Acids Research*. 2019;48(D1):D454-D8.

585 32. Vicente CM, Thibessard A, Lorenzi J-N, Benhadj M, Hôtel L, Gacemi-Kirane
586 D, et al. Comparative Genomics among Closely Related *Streptomyces* Strains
587 Revealed Specialized Metabolite Biosynthetic Gene Cluster Diversity. *Antibiotics*.
588 2018;7(4):86.

589 33. Zhang Y, Huang H, Chen Q, Luo M, Sun A, Song Y, et al. Identification of the
590 grincamycin gene cluster unveils divergent roles for GcnQ in different hosts,
591 tailoring the L-rhodinose moiety. *Org Lett*. 2013;15(13):3254-7.

592 34. Kersten RD, Ziemert N, Gonzalez DJ, Duggan BM, Nizet V, Dorrestein PC, et
593 al. Glycogenomics as a mass spectrometry-guided genome-mining method for
594 microbial glycosylated molecules. *Proceedings of the National Academy of Sciences*.
595 2013;110(47):E4407.

596 35. Hasebe F, Matsuda K, Shiraishi T, Futamura Y, Nakano T, Tomita T, et al.
597 Amino-group carrier-protein-mediated secondary metabolite biosynthesis in
598 *Streptomyces*. *Nat Chem Biol*. 2016;12(11):967-72.

599 36. Flatman RH, Howells AJ, Heide L, Fiedler HP, Maxwell A. Simocyclinone D8,
600 an inhibitor of DNA gyrase with a novel mode of action. *Antimicrob Agents
601 Chemother*. 2005;49(3):1093-100.

602 37. Szöllösi GJ, Rosikiewicz W, Boussau B, Tannier E, Daubin V. Efficient
603 exploration of the space of reconciled gene trees. *Syst Biol*. 2013;62(6):901-12.

604 38. Ellis RW. Mu50 glycopeptide-resistant *Staphylococcus aureus*: the case of the
605 missing penicillinase. *Journal of Antimicrobial Chemotherapy*. 2003;51(3):739-40.

606 39. Jacob AE, Hobbs SJ. Conjugal transfer of plasmid-borne multiple antibiotic
607 resistance in *Streptococcus faecalis* var. zymogenes. *J Bacteriol*. 1974;117(2):360-72.

608 40. McDonald BR, Currie CR. Lateral Gene Transfer Dynamics in the Ancient
609 Bacterial Genus *Streptomyces*. *mBio*. 2017;8(3):e00644-17.

610 41. Martinet L, Naômé A, Baiwir D, De Pauw E, Mazzucchelli G, Rigali S. On the
611 Risks of Phylogeny-Based Strain Prioritization for Drug Discovery: *Streptomyces*
612 *lunaelactis* as a Case Study. *Biomolecules*. 2020;10(7):1027.

613 42. Culp EJ, Waglechner N, Wang W, Fiebig-Comyn AA, Hsu Y-P, Koteva K, et
614 al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling.
615 *Nature*. 2020;578(7796):582-7.

616 43. Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, et al.
617 Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields
618 the antibiotic taromycin A. *Proceedings of the National Academy of Sciences*.
619 2014;111(5):1957-62.

620 44. Aron AT, Gentry EC, McPhail KL, Nothias L-F, Nothias-Esposito M,
621 Bouslimani A, et al. Reproducible molecular networking of untargeted mass
622 spectrometry data using GNPS. *Nature Protocols*. 2020;15(6):1954-91.

623 45. Li K, Man Y, Liu J, Liu Z, Ma H, Zhu H, et al. *Streptomyces liliifuscus* sp. nov
624 and an anti-ginger plague agent *Streptomyces liliiviolaceus* sp. nov, two novel
625 species isolated from soil of *Lilium lancifolium*. *International Journal of Systematic
626 and Evolutionary Microbiology*. 2022;72(4).

627 46. Wang Z, Tian J, Li X, Gan L, He L, Chu Y, et al. *Streptomyces dioscori* sp.
628 nov., a Novel Endophytic Actinobacterium Isolated from Bulbil of *Dioscorea*
629 *bulbifera* L. *Current Microbiology*. 2018;75(10):1384-90.

630 47. Qi Y, Nepal KK, Blodgett JAV. A comparative metabologenomic approach
631 reveals mechanistic insights into *Streptomyces* antibiotic crypticity. *Proceedings of
632 the National Academy of Sciences*. 2021;118(31):e2103515118.

633 48. Antony-Babu S, Stien D, Eparvier V, Parrot D, Tomasi S, Suzuki MT. Multiple
634 *Streptomyces* species with distinct secondary metabolomes have identical 16S rRNA
635 gene sequences. *Scientific Reports*. 2017;7(1):11089.

636 49. Marotz C, Amir A, Humphrey G, Gaffney J, Gogul G, Knight R. DNA
637 extraction for streamlined metagenomics of diverse environmental samples.
638 *BioTechniques*. 2017;62(6):290-3.

639 50. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for
640 amplification of mitochondrial cytochrome c oxidase subunit I from diverse
641 metazoan invertebrates. *Mol Mar Biol Biotechnol.* 1994;3(5):294-9.

642 51. Yang Q, Franco CMM, Sorokin SJ, Zhang W. Development of a multilocus-
643 based approach for sponge (phylum Porifera) identification: refinement and
644 limitations. *Scientific Reports.* 2017;7(1):41422.

645 52. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
646 search tool. *J Mol Biol.* 1990;215(3):403-10.

647 53. Mincer TJ, Jensen PR, Kauffman CA, Fenical W. Widespread and Persistent
648 Populations of a Major New Marine Actinomycete Taxon in Ocean Sediments.
649 *Applied and Environmental Microbiology.* 2002;68(10):5005-11.

650 54. Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG. Dispersed growth
651 of Streptomyces in liquid culture. *Applied Microbiology and Biotechnology.*
652 1989;31(3):272-7.

653 55. Moyes RB, Reynolds J, Breakwell DP. Differential staining of bacteria: gram
654 stain. *Curr Protoc Microbiol.* 2009;Appendix 3:Appendix 3C.

655 56. Staneck JL, Roberts GD. Simplified approach to identification of aerobic
656 actinomycetes by thin-layer chromatography. *Appl Microbiol.* 1974;28(2):226-31.

657 57. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic Characterization and
658 the Principles of Comparative Systematics. *Methods for General and Molecular
659 Microbiology* 2007. p. 330-93.

660 58. Miller LT. Single derivatization method for routine analysis of bacterial
661 whole-cell fatty acid methyl esters, including hydroxy acids. *J Clin Microbiol.*
662 1982;16(3):584-6.

663 59. Kuykendall LD, Roy MA, O'neill JJ, Devine TE. Fatty Acids, Antibiotic
664 Resistance, and Deoxyribonucleic Acid Homology Groups of *Bradyrhizobium
665 japonicum*. *International Journal of Systematic and Evolutionary Microbiology.*
666 1988;38:358-61.

667 60. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
668 sequence data. *Bioinformatics.* 2014;30(15):2114-20.

669 61. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial
670 genome assemblies from short and long sequencing reads. *PLOS Computational
671 Biology.* 2017;13(6):e1005595.

672 62. Bosi E, Donati B, Galardini M, Brunetti S, Sagot M-F, Lió P, et al. MeDuSa: a
673 multi-draft based scaffolder. *Bioinformatics.* 2015;31(15):2443-51.

674 63. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nature
675 methods.* 2012;9(4):357-9.

676 64. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-
677 sample quality control for high-throughput sequencing data. *Bioinformatics*
678 (Oxford, England). 2016;32(2):292-4.

679 65. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
680 for genome assemblies. *Bioinformatics.* 2013;29(8):1072-5.

681 66. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM.
682 BUSCO: assessing genome assembly and annotation completeness with single-copy
683 orthologs. *Bioinformatics.* 2015;31(19):3210-2.

684 67. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, •ech M, et al. The
685 Galaxy platform for accessible, reproducible and collaborative biomedical analyses:
686 2018 update. *Nucleic Acids Research.* 2018;46(W1):W537-W44.

687 68. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for
688 phylogenetic tree display and annotation. *Nucleic Acids Research*.
689 2021;49(W1):W293-W6.

690 69. Yoon S-H, Ha S-m, Lim J, Kwon S, Chun J. A large-scale evaluation of
691 algorithms to calculate average nucleotide identity. *Antonie van Leeuwenhoek*.
692 2017;110(10):1281-6.

693 70. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky
694 L, et al. NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res*.
695 2016;44(14):6614-24.

696 71. Martín-Sánchez L, Singh KS, Avalos M, van Wezel GP, Dickschat JS, Garbeva
697 P. Phylogenomic analyses and distribution of terpene synthases among
698 *Streptomyces*. *Beilstein journal of organic chemistry* [Internet]. 2019 2019; 15:[1181-93
699 pp.].

700 72. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
701 Cytoscape: a software environment for integrated models of biomolecular
702 interaction networks. *Genome Res*. 2003;13(11):2498-504.

703 73. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von
704 Haeseler A, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
705 Inference in the Genomic Era. *Mol Biol Evol*. 2020;37(5):1530-4.

706