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Abstract

Brain imaging with a high-spatiotemporal resolution is crucial for accurate brain-function
mapping. Electroencephalography (EEG) and functional Magnetic Resonance Imag-
ing (fMRI) are two popular neuroimaging modalities with complementary features that
record brain function with high temporal and spatial resolution, respectively. One pop-
ular non-invasive way to obtain data with both high spatial and temporal resolutions is
to combine the fMRI activation map and EEG data to improve the spatial resolution of
the EEG source localization. However, using the whole fMRI map may cause spurious
results for the EEG source localization, especially for deep brain regions. Consider-
ing the head’s conductivity, deep regions’ dipoles with low activity are unlikely to be
detected by the EEG electrodes at the scalp. In this study, we use fMRI’s high spatial-
frequency component to identify the local high-intensity activations that are most likely
to be captured by the EEG. The 3D Empirical Mode Decomposition (3D-EMD), a data-
driven method, is used to decompose the fMRI map into its spatial-frequency compo-
nents. Different validation measurements for EEG source localization show improved
performance for the EEG inverse-modeling informed by the fMRI’s high-frequency spa-
tial component compared to the fMRI-informed EEG source-localization methods. The
level of improvement varies depending on the voxels’ intensity and their distribution.
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1. Introduction

Deep brain structures are critically important for brain function [1–4]. Thus, detect-
ing the dipoles generated by the activity within deep regions is crucial for evaluating
these regions’ functions. Invasive techniques based on subdural electrodes are used to
spot deep brain activity [1, 2, 5]. However, as these techniques are invasive, they could
cause infection and other serious problems. Thus, a non-invasive yet accurate method is
desired for localizing deep brain activity.

Electroencephalography (EEG) noninvasively records the electric potential produced
by synchronous electrical dipoles in the brain. EEG sources are calculated by modeling
the head layers with different conductivities and source currents using the quasi-static
approximations of Maxwell’s equations. However, finding the dipoles creating the scalp
EEG signal is quite challenging and suffers from imprecision (typically in the order of
centimeters) [6–9]. It is because, in addition to needing precise modeling of dipoles,
head’s conductivity, and noises, the number of possible dipoles outnumbers the EEG
electrodes on the scalp. Consequently, there could be many dipole configurations that
produce the same electric potential on the scalp [1, 9–12]. Moreover, localizing EEG
signals arising from deep brain sources is usually more complex and is still under de-
bate [1, 13].

Many EEG source-localization methods tend to assign sources of the recorded EEG
signals to the dipoles on the cortical surface or have a low spatial resolution [1, 12, 14,
15]. Some methods, such as wMNE [16–18] and LORETA [19–21], have been pro-
posed to reduce the effect of surface sources and improve the accuracy of specifying
active dipoles in deep brain locations such as dipoles in the thalamus and hippocam-
pus [20, 22]. wMNE method uses the column normalization of the lead-field matrix as
a weighting matrix to compensate for the lower gains of deeper sources in the MNE
method. On the other hand, LORETA assumes similarities between the current density
of each cortex point to its neighbors and, thus maximum smoothness of the solution. In
the LORETA method, a Laplacian operator is combined with the lead-field normaliza-
tion of the wMNE method to ensure spatial coherence [1, 18, 20, 22]. However, each
of these methods has its disadvantages. For instance, LORETA localizes deep sources
smoother and better compared to the wMNE technique but provides lower spatial reso-
lution, which is not good for the focal source estimation [1, 13, 15, 22, 23].

Scalp signals at the EEG electrodes are the combination of the captured signals from
all the brain sources. Consequently, they contain various frequencies arising from differ-
ent mechanisms underlying the neural activity [24]. It has been shown that focusing on
EEG frequency bands separately and performing source localization for a single EEG
band leads to more accurate results than the broadband EEG signal [25].

A popular way to specify deep activities is to guide EEG source localization by func-
tional Magnetic Resonance Imaging (fMRI) data which is a noninvasive brain-imaging
method with high spatial resolution. In this approach, EEG source localization results
are affected by adding fMRI activation map information as a weight for locations that
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are most likely to be active during a specific task and condition. Combining high-spatial-
resolution data from fMRI with high-temporal-resolution data from EEG leads to data
with a high spatial and temporal resolution [6, 7, 9, 26, 27]. The fMRI activation map
can be used as a spatial constraint to solve the EEG-band inverse problem at a selected
time window to investigate the brain-function dynamics [6–8].

A significant fMRI activation map is generated by the general linear model, consid-
ering conditions as regressors for the task-based data. For resting-state data, the fMRI-
derived priors could be based on the changes in the correlation map in the resting-state
networks [2, 28]. Voxels with changed functional connectivity in resting-state networks
are considered active voxels in the fMRI map for resting-state data. Considering the
fMRI map as a constraint should be done cautiously due to the mismatch between EEG
and fMRI signals caused by the spatial extent of the BOLD signals around neuronal
firing areas and signal detection failure [7, 8, 29, 30]. Consequently, EEG electrodes
might not capture all the activity revealed on the fMRI map, especially in deep brain re-
gions [2, 31–33]. Thus, considering the whole fMRI activation map as prior information
on activated areas could cause spurious results for the EEG source localization.

As the EEG electrodes are placed on the scalp and due to the electrical conductivity
of the head (transduction of the signals through the brain, cerebrospinal fluid, skull, and
scalp), deep dipoles’ electrical activity must be higher than a threshold to have a chance
to be recorded by the EEG electrodes [2, 3, 5, 31–33]. Using fMRI’s high spatial fre-
quency components instead of the whole fMRI map provides more detailed spatial infor-
mation on places with the local high activation [34]. High-intensity values on the fMRI
map in deep brain regions are more likely to have enough signal-to-noise ratio (SNR)
and be captured by the EEG electrodes [2, 31–33]. Moreover, in active areas, lower
activation intensity and, accordingly, lower SNR around the highly activated voxels may
reflect the spatial extent of the BOLD signals around neuronal firing spots [30]. Thus,
fMRI high spatial frequency component- by specifying the local high-intensity voxels in
active areas- spots the neuronal activities that are more likely to be recorded by the EEG
electrodes.

In this study, we use the three-dimensional EMD method [35–37] to decompose
each fMRI activation map into its Spatial Intrinsic Mode Functions (SIMFs). EMD is
an adaptive and data-driven method that applies to any nonlinear and nonstationary data.
Applying the 3D-EMD method [37] to the fMRI map extracts maps from high to low
spatial frequencies. In the 3D-EMD method, the data’s upper and lower envelopes are
defined using the minima and maxima maps of the data. Subtracting the mean of the
computed envelopes from the original data obtains the data’s spatial components. These
steps are repeated for the residual of the subtraction until there is no meaningful spatial
frequency or variation to extract from the data (more details about this method can be
found in [37]).

The first extracted SIMF that contains high spatial frequencies detects more abrupt
changes, peaks, and valleys in the data and, therefore, more spatial details in the data.
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In contrast, the higher SIMFs that contain lower frequencies show smoother variations.
Therefore, high-frequency SIMF, by providing more details of the local spatial changes,
helps to find dipoles of local maximum activation with more chance of their activa-
tion being captured by the EEG electrodes. We hypothesize that source-localizing EEG
bands, constrained by the EMD-based [35, 36] fMRI’s high-spatial-frequency map, pro-
vide more details with higher spatial accuracy about the activity of the sources. It primar-
ily benefits the localization of deep dipoles, as they must have a relatively high intensity
to pass different head layers and get to the electrodes on the head surface [5, 12]. More-
over, in patients with seizures, regions of higher-than-normal blood flow (fMRI intensity
maximums) during a seizure may indicate where the seizure occurs [38]. Therefore, us-
ing the high SIMFs could assist in specifying a seizure starting point more accurately.
Consequently, it improves the clinical interpretation of EEG signals and provides better
diagnosis for different brain diseases.

Specifically, we add a weight coefficient computed from the map of the fMRI’s high-
frequency SIMFs to the EEG lead-field matrix. Weights with higher values show the
locations with a higher probability of being the sources of the recorded EEG signals and
vice versa [7]. The proposed method can be used as an accurate neuroimaging technique
to unveil the brain sources’ activity with high spatiotemporal resolution. We validate
our approach using simulating EEG signals and the corresponding fMRI activation map.
We evaluate how different activation intensities and distributions of an fMRI active area
affect the source localization results of fMRI- and SIMF-informed EEG inverse model-
ing. We use measurements such as dipole localization error (DLE), Spatial Dispersion,
and the F1-score to validate the proposed method and compare its results to the fMRI-
informed EEG inverse modeling.

2. Method

2.1. Simulating EEG signals
We simulated EEG signals from two randomly selected sparse connected sources

with frequencies of 5 Hz and sensor-level SNR of 4 dB for 90 subjects as follows:

Signal(t) = A(t) sin(2π f t + θ) + Noise, (1)

where A and f are the amplitude and the frequency of the signal, t is the time, and θ is
the starting phase of the signal. Narrow band noise is randomly added to each of the
sources’ signals. Then, the simulated source signal, which contains simulated sensor
noise, is projected to the sensor space using the forward model. 128 scalp electrodes
based on the 10−20 system and the volume-based BEM model [39] comprising of 13439
nodes (dipoles) were used to compute the lead field and the forward model. Thus, the
source signal is multiplied by the lead field matrix for each source to forward project the
source data to the sensor. The final sensor signal at each sensor is computed by summing
up the resulting signals projected from all the source signals.
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A standard MRI image with size 197 × 233 × 189 was used to make the head
model [40–42], and volume-based registration of the EEG sources to be accorded with
the fMRI activation map. In this simulation, there was a correlation coefficient of
0.9 and 5 ms delays between the sources’ time courses. We used SIMMEEG [42], a
Matlab toolbox, to simulate the EEG signals.

2.2. Deriving priors from fMRI

We considered three active areas in the fMRI map. Two corresponded to the two
EEG active sources, while the third one had no correspondence in the EEG activation
map. fMRI values were randomly assigned within a corresponding spatial neighbour-
hood of each simulated EEG source to simulate fMRI active regions. We did not des-
ignate specific locations for the high-intensity voxels in the active areas. However, we
put random values with a higher mean value for closer distances and with a lower mean
value for farther distances. Figure 1 represents the locations of EEG sources, S1 and S2,
which are also the center of the simulated fMRI active regions.

S2S1 S3

Figure 1: Locations of the simulated sources, S1, S2, and S3, are shown from left to right, respectively.
Simulated EEG sources’ subject-based coordinates are S1 = [82, 77, 82] and S2 = [57, 117, 84]. fMRI
active regions are simulated in their spatial neighbourhood and comprise deep brain locations in the limbic
lobe and posterior cingulate for S1, and sub-lobar, and insula, regions for S2. The fMRI extra source S3 is
not related to any EEG source and comprises voxels in the temporal lobe and superior temporal areas.

The third active area in the fMRI activation map was simulated like the other two
fMRI active regions, although it does not correspond to neuronal activity and is a repre-
sentation of other processes in the brain, such as the maintenance of membrane potentials
and neurotransmitter release and uptake. This is because there might be places detected
as active in the fMRI map but not detectable in EEG recordings. These sources are re-
ferred to as “fMRI extra sources” [7, 8, 29]. S3 in Figure 1 demonstrates the location of
the third activated area, the fMRI extra source, in the simulated fMRI map.

The fMRI-based constraints are added to the EEG inverse problem as a weight co-
efficient multiplied by the gain matrix. Thus, based on the fMRI activation map, a diag-
onal location-weighting matrix is computed with a size corresponding to the EEG head
model and the lead field matrix used in the forward model. To compute fMRI’s high
spatial-frequency-based weights for EEG inverse modeling, we used the spatial EMD or
3D-EMD method to decompose the fMRI map into its spatial components [37].
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Accordingly, the fMRI map is decomposed as follows:

fMRI =
n∑

i=1

SIMFi + Residue, (2)

where the first SIMF contains the highest changes of the fMRI activation map while the
later SIMFs are smoother maps of spatial changes; the Residue represents the voxels’
intensity trend in the fMRI map.

2.3. SIMF-informed EEG Inverse Modeling

EEG signals are projected back into the brain dipole current J via the inverse model
as follows:

J = RGT
(
GRGT + λC

)−1
Y, (3)

where G is the gain matrix, λ is the regularization parameter, C is the noise covariance
matrix, and Y is the EEG recorded signals. The source-level covariance matrix R repre-
sents prior knowledge about the distribution of J [9]. R is usually assumed as an identity
matrix, I, but applying fMRI data prior to EEG source localization, it is constructed
according to weighting parameters computed from the fMRI map.

We used the first SIMF for making the diagonal SIMF-induced location-weighting
matrix instead of the whole fMRI-induced weighting matrix to add to the EEG inverse
problem. In the SIMF1, voxels with low fMRI intensities relative to their nearest high-
intensity voxel in the fMRI map are considered not active to avoid weighting for the
regions with weak fMRI signals that may not be caused by neuronal electrical activity
and firing [30]. We then excluded voxels of intensity with less than half of the peak
voxel intensity as their activity is unlikely to be captured by the EEG electrodes and,
considering weak activities, add wrong weights to the EEG inverse model. It should be
noted that, for real data, the threshold determining enough intensity for a voxel to be
recorded on the scalp depends on the location of the voxel’s region in the brain. For
identifying low-activated voxels, the intensity of the voxel is added to its value in the
residue (SIMF1+Residue) as the residue shows the intensity trend at voxels, and then
the intensity threshold is applied.

We used the Brainstorm Matlab toolbox [43] to solve the EEG inverse problem
and localize EEG sources constrained by the fMRI- and high-frequency SIMF-induced
weights. In informed inverse modeling, large values for the weights derived from the
fMRI and its SIMF activation map indicate more likely active locations. In contrast,
small values indicate locations that are less likely to be active in EEG. Furthermore, to
avoid spatially biased source localization by using the fMRI map as hard constraints, we
put a weight of 0.1 instead of zero as a weight for the gain matrix of the EEG inverse
model in not-activated areas in the fMRI map. The off-diagonal elements of R were set
to zero [8].
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In Brainstorm, we used the same volume head model to avoid errors and mislo-
calization caused by different head models during inverse and forward modeling. We
examined how different activation intensities of the sources affect the source localiza-
tion result. Figure 2 presents a schematic of applying the EMD-based-spatiotemporal
fMRI constraints to the EEG source imaging.

Figure 2: Schematic of SIMF-informed EEG source localization. High-frequency spatial components ex-
tracted from the fMRI map and the EEG signals recorded at the same condition are used for finding the
activated sources with high spatial and temporal resolution. We start with computing the weighting matrix
from the fMRI activation map. A) The 3D-EMD method is applied to the fMRI activation map to decom-
pose it into its B) SIMFs. C) The local highly activated voxels are specified and after applying the activation
threshold, D) they are registered to the same head model used for EEG inverse modeling. E) Each diag-
onal element of the weighting matrix R is computed according to its correspondence voxel activity in the
fMRI activation map registered to the head model of the EEG inverse modeling. We used a weight of 0.1
for the dipoles in regions that are not activated based on the fMRI map. F) For a single EEG band (Y)
recorded at EEG sensors, the gain matrix (G) and the covariance matrix (C) are computed. G) We solve
the fMRI-informed-EEG inverse modeling equation by adding the diagonal weighting matrix R, computed
from high-frequency SIMFs, as a coefficient for the gain matrix G. H) The SIMF-informed EEG source
localization result is computed.

3. Results

The 3D-EMD method is applied to the fMRI map to decompose it into its SIMFs at
each time window. Figure 3, demonstrates the application of the 3D-EMD on the fMRI
map used in this study. For illustration purposes, we focused on one of the fMRI active
zones to show the result of applying spatial EMD to the data and how the decomposed
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SIMFs look like. SIMF1 is shown in Figure 3B and indicates that it can be used to
locate the local high-intensity values in the fMRI map and to specify detailed intensity
variation in the active area.
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Figure 3: fMRI activation map and its SIMFs around one of the simulated sources. Figures demonstrate
A) an fMRI active spot in the brain, B) SIMF1, C) SIMF2, D) SIMF3, and E) Residue, applying the 3D-
EMD method. SIMF1 specifies the local maxima of fMRI intensities, and the residue presents the intensity
trend of the fMRI activation map’s voxels.

After source localization, we consider sources with a magnitude higher than 10 per-
cent of the maximum intensity as a threshold [44]. To evaluate the proposed method and
compare its results with the fMRI-informed EEG source localization, we compute DLE,
Spatial Dispersion, and F1-score [13, 14, 45].

We compare the results of EEG source localization guided by the whole fMRI signal
and the high spatial frequency of fMRI for simulated source configurations with different
average intensities of the third active area. µ is the mean magnitude of the fMRI map
at two of the active areas, and the mean magnitude of the third region is changed with
respect to them. In this study, we consider different intensity distributions of the fMRI
extra source as it makes more distinguishable changes in the validation measurement
results compared to the cases where the true sources’ intensities differ.

Table 1 shows the comparison of the DLE results for the fMRI- and SIMF-based
EEG source localization for the same source configuration. It indicates that DLE values
remain roughly the same with changing the mean intensity of the sources for fMRI-
informed EEG-source localization. However, for SIMF-informed EEG source localiza-
tion, the DLE values decrease by decreasing the mean intensity of sources. The lower
DLE value represents the better performance of the SIMF-informed EEG source local-
ization in specifying active sources more accurately and with lower localization errors.
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Mean amplitude of
fMRI extra active area fMRI+EEG SIMF1+EEG Improvement (%)

1µ 33.5891 ± 0.2925 27.7011 ± 0.2765 17.5295%
0.8µ 34.0157 ± 0.3078 23.8480 ± 0.2726 29.8912%
0.3µ 35.5804 ± 0.3545 10.3789 ± 0.1335 70.8297%

Table 1: DLE for different fMRI extra active area’s amplitude when the whole fMRI signal and high spatial
frequencies of fMRI are considered as prior for EEG source localization with p-value < 0.05. Lower DLE
means better source localization.

Table 2 presents the results of Spatial Dispersion for the same comparison as Table 1.
For fMRI-informed EEG source localization, the Spatial Dispersion value decreases as
the sources’ mean intensity decreases. The lower values of the source intensities in the
denominator of the Spatial Dispersion equation make it lower. However, for each source
configuration, SIMF-informed EEG source localization shows significantly lower values
for the Spatial Dispersion than the fMRI-informed EEG source localization, which rep-
resents the better performance of informing EEG source localization by the SIMF rather
than the whole fMRI. Table 3 shows the F1-score results for the same comparisons and
source configurations as Table 1 and Table 2. Although not much improvement is seen
in terms of F1-score measurements, still, for each source configuration, F1-score for
the SIMF-informed EEG source localization has a higher value than the fMRI-informed
EEG source localization.

Mean amplitude of
fMRI extra active area fMRI+EEG SIMF1+EEG Improvement (%)

1µ 60.1786 ± 0.6162 58.1358 ± 0.6354 3.3945%
0.8µ 61.2021 ± 0.6160 54.8200 ± 0.6616 10.4279%
0.3µ 65.6162 ± 0.6005 32.9865 ± 1.1856 49.7281%

Table 2: Spatial Dispersion for different fMRI extra active area’s amplitude when the whole fMRI signal and
high spatial frequencies of fMRI are considered as prior for EEG source localization with p-value < 0.05.
Lower Spatial Dispersion means better source localization.

Overall, results of the DLE, Spatial Dispersion, and F1-score show that informed
source localization performs better and is more accurate when the high spatial frequen-
cies of the fMRI activation map are used as prior information instead of the whole fMRI
map. By lowering the mean of the fMRI activation intensity but keeping the same vari-
ance at the location of the third source with respect to the two other areas, results show
lower DLE and Spatial Dispersion and higher F1-score applying the high-frequency
SIMFs.

These results revealed the effect of the distribution of the voxels’ intensities. An
active area with high mean intensity has a smoother surface and variation compared
to an active area with lower mean intensity and the same variance. Accordingly, for
the first-mentioned active area, there might be a case that the active area does not even
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have a SIMF to get extracted. However, the latter area with a lower mean has a relatively
sparser and lower number of voxels with high enough SNR, which cause much difference
between the activation map derived from high-frequency SIMF and the whole fMRI
map. The sparser the distribution of high-intensity voxels, the more difference between
the SIMF- and fMRI-based EEG source localization results.

Mean amplitude of
fMRI extra active area fMRI+EEG SIMF1+EEG Improvement (%)

1µ 0.8621 ± 0.0006 0.8816 ± 0.0005 2.2619%
0.8µ 0.8590 ± 0.0006 0.8956 ± 0.0005 4.2608%
0.3µ 0.8672 ± 0.0007 0.8891 ± 0.0007 2.5254%

Table 3: F1-score for different fMRI extra active area’s amplitude when the whole fMRI signal and high spa-
tial frequencies of fMRI are considered as prior for EEG source localization with p-value < 0.05. F1-score
evaluates a method for identifying true activation. A higher value of the F1-score means better identification
of the sources.

Figures 4 and 5, respectively, show an axial view of the results for fMRI-informed
and high-frequency SIMF-informed EEG source localization when the mean intensity of
the fMRI extra active area is 0.3 µ. Images from the top left to the bottom right indicate
the result of each source localization from 0 to 996.1 ms with 66.5 ms apart.

Figure 4: fMRI-informed source localization results when the mean intensity of the fMRI extra active area
is 0.3 µ. Axial brain images from top left to bottom right show the sources’ activity from 0 ms to 996.1 ms
with 66.5 ms apart.
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Figure 5: High-SIMF informed source localization results when the mean intensity of the fMRI extra active
area is 0.3 µ. Axial brain images from top left to bottom right demonstrate the sources’ activity from 0 ms
to 996.1 ms with 66.5 ms apart.

Of note, as the two simulated EEG sources are in deep brain regions, uninformed EEG
inverse modeling would show activity in the majority of surface brain areas. However,
adding fMRI weight to the inverse model helps to find deep activated sources more
accurately. Applying SIMF1-induced weights instead of whole fMRI data improves lo-
calizing sources’ activity by locating sparser and more accurate highly active dipoles
with more spatial details and, consequently, higher spatial resolution.

It should be mentioned that we can compute fMRI-based priors for a specific time
window of interest in the EEG data, which makes them time-variant fMRI constraints.
It has been shown that EEG inverse modeling informed by static fMRI constraints may
cause inaccurate or erroneous results [27].

4. Discussion

In this paper, we show that using the high spatial components (SIMF) of an fMRI
map as a spatial constraint for the EEG source localization improves the accuracy of
specifying active dipoles. This approach is effective for localizing deep brain active
dipoles, which their activities play a pivotal role in central nervous system functioning.
Due to the different head-layers conductivities, electrical potential from deep dipoles can
be captured by EEG electrodes on the scalp if their power is high enough. The larger
the depth is, the weaker the source affects the scalp signal. Applying the data-driven
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3D-EMD method, fMRI map data recorded at the same condition as EEG recording
is decomposed into its spatial components (SIMFs). Information from high-frequency
SIMF that spot voxels with the local high-activation is added to the EEG inverse model
as a weight to avoid the bias of EEG inverse modeling toward surface dipoles.

Specifically, EEG source localization methods mostly fail to localize deep brain
dipoles [1, 12–15]. They relate the recorded potential to the low-intensity dipoles on
the brain surface instead of high-intensity dipoles in the deep regions like the insula and
thalamus [1, 12–15]. EEG sources are congruent with the hemodynamic changes mea-
sured by fMRI. One widely used method to improve this performance impairment of the
EEG inverse modeling is using the fMRI map data, which is of high spatial resolution as
priors for constraining EEG source space [10, 46, 47]. Thus, several studies have used
EEG and fMRI data recorded during the same task or simultaneously in a resting state
to yield data with high spatial and temporal resolution [6–9, 26–28].

However, using the whole fMRI data may cause spurious results because all the ac-
tivities of the activated regions on the fMRI map cannot be captured by EEG electrodes
on the scalp. They might not have enough SNR (especially problematic for active deep
brain regions) or not be generated by neuronal firing. The first issue is caused by the
requirement that neural activity in deep regions, mapped in fMRI, must have an inten-
sity higher than a threshold, depending on the different brain layers’ conductivity, to be
recorded by the scalp electrodes. The second issue might be caused by the spatial extent
of the BOLD signals, which appear as voxels with low SNR around highly activated
voxels.

Subcortical regions are mediators for the brain networks’ communication as they
are anatomically connected to an extensive part of cortical regions. Deep regions pro-
cess primitive functions such as sleep, wakefulness, consciousness, learning, and mem-
ory [1–4]. It has been shown in Refs. [2, 48] subcortical structures, such as the amygdala
and thalamus, and some parts of the hippocampus, such as the dentate gyrus, have rel-
atively high source density compared to other regions in the neocortex. Thus, a small
active volume in these regions is enough to produce a high-power signal to be detected
by the scalp electrodes. Thereby, we use fMRI’s high-frequency SIMFs instead of ap-
plying the whole fMRI map, to spot more sparse and localized regions with voxels of
high-intensity power that are more probable to be captured by the EEG electrodes. Con-
sequently, weighting the lead-filed matrix of the EEG inverse model based on these
high-frequency SIMFs leads to more accurate results with higher resolution.

We compared the SIMF-based EEG inverse modeling performance with the fMRI-
based EEG inverse modeling. Results demonstrated that using SIMF as a prior constraint
makes the EEG inverse modeling more accurate and localizes sources sparser compared
to other methods. More accurate source localization means the proposed method pro-
vides higher spatial resolution data of neural activity [49].

Furthermore, we considered the fMRI-extra source in our computations for the EEG
inverse modeling. There is also a case where we might have an EEG-extra or fMRI-
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invisible source. EEG-extra source is either active for a short time or is from a few
neurons that cannot make significant and detectable metabolism changes to be appeared
in fMRI [50]. It has been shown in Refs. [8, 51] that for including the EEG-extra source,
we need to find the proper and high enough value as a coefficient for the fMRI-induced
weight matrix that lets the EEG-extra source be visible in inverse modeling. Thus, the
whole process will be the same as when there is no EEG-extra source, except that af-
ter applying the high-spatial-frequency-induced weight, we find a constant value to be
multiplied by the whole lead-field matrix that is large enough to balance the weight
coefficient matrix.

It is of note that the proposed method can be used for resting state data as well as
task. It has been shown in Ref. [34] that resting-state functional connectivity computed
based on the high-frequency fMRI’s SIMFs is more precise than based on the whole
fMRI data. Each resting-state brain network computed from resting-state fMRI data
is associated with a specific combination of EEG bands [28]. Thus, we can localize
the sources that cause variations in the resting-state EEG bands connectivity pattern by
adding weights for grids corresponding to the highly activated voxels at regions in which
the fMRI connectivity map has been changed.

Moreover, it has been demonstrated that the fMRI Blood Oxygenation Level De-
pendent (BOLD) signal is associated with neuronal synchronization across EEG fre-
quency bands (i.e., neurovascular coupling). The powers of the alpha (8-12 Hz) and beta
(12-30 Hz) bands correlate negatively with BOLD signal magnitude, while the gamma
band (> 30 Hz) power correlates positively with BOLD signal magnitude [24, 52–54].
Thus, after computing the significant fMRI activation map, the association between
the fMRI BOLD signal with neuronal synchronization across EEG frequency bands
(i.e., neurovascular coupling) could be used as an extra filter for specifying fMRI-based
weights added to the EEG inverse problem.

In summary, for most EEG inverse modeling methods, recovering deep sources is
problematic and challenging as dipoles located at the brain surface with low-intensity
power are privileged. The proposed approach adds information from the EMD-based
fMRI’s high spatial frequency components as a weight to the EEG inverse modeling
to solve the bias against deep brain sources and accurately image dynamic neural ac-
tivity with higher spatial resolution. Higher spatial and temporal resolution maps of
neural activity improve our brain function knowledge. Precise brain activity localization
helps us find more effective treatments for brain diseases such as ADHD and epilepsy
by providing substantial information about the source of the epileptogenic process and
distinguishing patterns of ADHD [1, 38, 55].
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