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Abstract

The success of CRISPR-mediated gene perturbation studies is highly dependent on the quality of gRNAs,
and several tools have been developed to enable optimal gRNA design. However, these tools are not all
adaptable to the latest CRISPR modalities or nucleases, nor do they offer comprehensive annotation meth-
ods for advanced CRISPR applications. Here, we present a new ecosystem of R packages, called crispr-
Verse, that enables efficient gRNA design and annotation for a multitude of CRISPR technologies. This
includes CRISPR knockout (CRISPRko), CRISPR activation (CRISPRa), CRISPR interference (CRISPRi),
CRISPR base editing (CRISPRbe) and CRISPR knockdown (CRISPRkd). The core package, crisprDesign,
offers a comprehensive, user-friendly, and unified interface to add on- and off-target annotations via sev-
eral alignment methods, rich gene and SNP annotations, and a dozen on- and off-target activity scores.
These functionalities are enabled for any RNA- or DNA-targeting nucleases, including Cas9, Casl2, and
Cas13. We illustrate the general applicability of our tools by designing optimal gRNAs for three case stud-
ies: tiling CRISPRbe library for BRCA1 using the base editor BE4max, tiling RNA-targeting libraries for
CD46 and CD55 using CasRx, and activation of MMP7 using CRISPRa. The crisprVerse ecosystem is
open-source and deployed through the Bioconductor project to facilitate its use by the CRISPR community
(https://github.com/crisprVerse).

Keywords: CRISPR, Nuclease, gRNA, functional genomics, Sequence design, Bioconductor, Base Edi-
tor, Cas9, Casl2a, Cas13d, crisprVerse.

1 Main

The performance of CRISPR-based experiments depends critically on the choice of the guide RNAs (gRNAs)
used to guide the CRISPR nuclease to the target site. Variable gRNA on-target activity, as well as unintended
off-targeting effects, can lead to inconsistent phenotypic readouts in screening experiments. For the purpose of
analyzing pooled screens, many approaches attempt to model gRNA quality in the generation of gene-level scores
to improve statistical inference [Meyers et al., 2017, Kim and Hart, 2021, Dempster et al., 2021, Allen et al.,
2019, Li et al., 2015]. However, suboptimal gRNA design is only partially mitigated by analysis strategies that
sacrifice statistical power for robustness to suboptimal guides. One way to increase the signal-to-noise ratio
in screening experiments is to enrich gRNA libraries for gRNAs that have high predicted on-target activity.
Predicting on-target activity from the spacer sequence is an extensive area of research, and several algorithms
leveraging experimental data have been developed for different nucleases and contexts [Doench et al., 2016b,
2014, 2016a, Wang et al., 2019b, Kim et al., 2018, Hart et al., 2017a, Moreno-Mateos et al., 2015, Horlbeck
et al., 2016].

In addition to its sequence, the genomic context of the on- and off-target sites for each gRNA is another
important consideration for gRNA design. For example, designing gRNAs that uniquely map to the genome
can be challenging, especially for genes sharing high homology with other genomic loci, either in coding or non-
coding regions [Fortin et al., 2019]. Furthermore, knowing whether or not an off-target is located in the coding
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region of another gene can rule out the use of a given gRNA. Finally, genetic variation, such as single-nucleotide
polymorphisms (SNPs) and small indels, can have a direct impact on gRNA binding activity and on-target
specificity by altering complementarity between spacer sequences and the host cell genomic DNA [Scott and
Zhang, 2017, Lessard et al., 2017, Canver et al., 2017, Wang et al., 2018].

The rapid increase of CRISPR-based applications and technologies poses another challenge to gRNA library
design. A large variety of nucleases are now available and routinely used, including engineered nucleases that
recognize a larger set of PAM sequences [Hu et al., 2018, Nishimasu et al., 2018, Walton et al., 2020, DeWeirdt
et al., 2020] and novel classes of nucleases such as the RNA-targeting Casl3 family [Shmakov et al., 2015,
Abudayyeh et al., 2016, Konermann et al., 2018]. Each nuclease comes with its own set of gRNA design rules
and constraints. In addition, these nucleases can also be mixed and matched with different types of CRISPR
applications, increasing the complexity of gRNA design. As an example, CRISPR base editing (CRISPRbe)
[Gaudelli et al., 2017, Komor et al., 2016], which requires additional gRNA design functionalities to capture the
editing window and prediction of editing outcomes, can be combined with the Casl3 family to perform RNA
editing [Cox et al., 2017]. Finally, emerging screening modalities, such as optical pooled CRISPR screening
[Feldman et al., 2019] and gRNA pairing, require additional specialized gRNA design considerations.

Given the complexity, heterogeneity, and fast growth of the aforementioned CRISPR modalities and applications,
it is paramount to develop and maintain adaptable, modular, and robust software for gRNA design. This ensures
that the scientific community can efficiently design first-class CRISPR reagents in a timely manner for both well-
established and emerging technologies. An ideal gRNA design framework has the following qualities: (1) it offers
multiple cutting-edge methods for on-target scoring and off-target prediction based on gRNA sequences, (2) it
provides comprehensive gRNA annotation to enable consideration of the genomic context for all gRNA on-target
and off-target sites, (3) it already supports (or can be easily extended to) newer CRISPR technologies, including
an arbitrary combination of nucleases and modalities, and (4) it easily scales for designing large-scale gRNA
libraries for different screening platforms. While a multitude of web applications and command line interfaces
has been developed to enable gene- or other target-specific gRNA design [Heigwer et al., 2014, Moreno-Mateos
et al., 2015, Perez et al., 2017, Bae et al., 2014, Montague et al., 2014, Concordet and Haeussler, 2018, Stemmer
et al., 2015, McKenna and Shendure, 2018, Heigwer et al., 2016, Bhagwat et al., 2020, Zhu et al., 2014], none
of the existing tools completely satisfies the requirements listed above.

In this work, we describe a modular ecosystem of R packages, called crisprVerse, that enable the design of
CRISPR gRNAs across a variety of nucleases, genomes, and applications. The crisprBowtie and crisprBwa
packages provide comprehensive on-target and off-target search for reference genomes, transcriptomes, or any
custom sequences. The crisprScore package provides a harmonized framework to access a large array of R- and
Python-based gRNA scoring algorithms developed by the CRISPR community, for both on-target and off-target
scoring. The crisprBase package implements functionalities to describe and represent DNA- and RNA-targeting
CRISPR nucleases, nickases and base editors, as well as genomic arithmetic rules that are specific to CRISPR
design. The package crisprDesign provides a user-friendly package to design and annotate gRNAs in one
place, including gene and T'SS annotation, search for SNP overlap, addition of evolutionary conservation scores,
characterization of edited alleles for base editors, sequence-based design rules, and library design functionalities
such as ranking and platform-specific considerations. Finally, the package crisprViz allows users to visualize
gRNAs within genomic tracks, with the option of embedding additional genomic annotations such as SNPs,
repeat elements, or chromatin accessibility data. The crisprVerse ecosystem currently supports five different
CRISPR modalities: CRISPR knockout (CRISPRko), CRISPR activation (CRISPRa), CRISPR interference
(CRISPRi), CRISPR base editing (CRISPRbe) and CRISPR knockdown (CRISPRkd) using Casl3.

We illustrate the rich functionalities of our ecosystem through three case studies: designing gRNAs to edit
BRCA1 using the base editor BE4max, designing gRNAs to knock down CD55 and CD46 using CasRx, and
designing optimal gRNAs to activate MMP7 through CRISPRa for different wildtype and engineered nucleases.
We also show that our default gRNA ranking criteria yield optimal gRNAs by reanalyzing five genome-wide
fitness screening datasets. Our R packages are open-source and deployed through the Bioconductor project
[Gentleman et al., 2004, Huber et al., 2015]. This makes our tools fully interoperable with other packages,
and facilitates long-term development and maintenance of our ecosystem. Source code, tutorials, and extensive
documentation are provided on our website: https://github.com/crisprVerse.
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2 Results

2.1 crisprBase as a core infrastructure package to represent CRISPR nucleases
and base editors

The crisprBase package implements a common framework in the crisprVerse ecosystem for representing and ma-
nipulating nucleases and base editors through a set of classes and CRISPR-specific genome arithmetic functions.
The CrisprNuclease class provides a general representation of a CRISPR nuclease, encoding all of the informa-
tion necessary to perform gRNA design and other analyses involving CRISPR technologies. This includes the
PAM side with respect to the protospacer sequence, recognized PAM sequences with optional tolerance weights,
and the relative cut site. Specific CrisprNuclease instances can be easily created to represent a diversity of wild-
type and engineered CRISPR nucleases (Figure 1). We also implement a BaseEditor subclass that provides
additional base editing information such as the editing strand and a matrix of editing probabilities for possible
nucleotide substitutions.
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Figure 1. Examples of DNA- and RNA-targeting nucleases represented in crisprBase. gRNA
spacer sequences are shown in yellow. Target DNA /RNA protospacer sequences are shown in blue.
Protospacer adjacent motifs (PAMs) and protospacer flanking sequences (PFSs) are shown in orange.
Nuclease-specific cutting sites are represented by black triangles. For the C to T base editor BE4max,
on-target editing happens on the DNA strand containing the protospacer sequence. The editing window varies
by base editor. The first nucleotide of the PAM/PFS is used as the representative coordinate of a given target
sequence.

2.2 crisprDesign: a comprehensive tool to perform complex gRNA design

crisprDesign offers a comprehensive suite of methods to design and annotate gRNAs (see Table 1) and represents
the core package of the crisprVerse ecosystem. For users, the package provides a centralized and streamlined
end-to-end workflow for gRNA design, alleviating the burden of using different tools at different stages of the
design process. For developers, crisprDesign is built on top of a modular package ecosystem that implements
the gRNA design tasks (see Table 4 in the Methods section), allowing the same code to be easily re-used outside
of CRISPR applications and gRNA design.

Table 1 includes a comparison to ten commonly-used gRNA design softwares: multicrispr [Bhagwat et al., 2020],
CRISPRseek [Zhu et al., 2014], CHOPCHOP [Montague et al., 2014], CRISPOR [Concordet and Haeussler,
2018], CCTop [Stemmer et al., 2015], GUIDES [Meier et al., 2017], Cas-Designer [Park et al., 2015], FlashFry
[McKenna and Shendure, 2018], E-CRISP [Heigwer et al., 2014] and CRISPick; see the Methods section for
a detailed description of the criteria used for benchmarking. While several of the features implemented in
crisprDesign are also available in other tools, crisprDesign provides the most complete gRNA design solution
across nucleases and modalities. Unlike crisprDesign, many of the other tools do not provide informative on-
and off-target annotations, limiting their use for optimal gRNA selection. In the following sections, we describe
each of the gRNA design components and functionalities that are available in crisprDesign.
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2.3 Representation of gRNAs using the GuideSet container

The genomic coordinates of gRNA protospacer sequences in a target genome can be represented using genomic
ranges. The Bioconductor project [Gentleman et al., 2004, Huber et al., 2015] provides a robust and well-
developed core data structure, called GRanges [Lawrence et al., 2013, Aboyoun et al., 2012]), to efficiently
represent genomic intervals. We provide in crisprDesign an extension of the GRanges class to represent and
annotate gRNA sequences: the GuideSet container. Briefly, the container extends the GRanges object to store
additional project-specific metadata information, such as the CRISPR nuclease employed and target mRNA
or DNA sequences (if different from a reference genome), as well as rich gRNA-level annotation columns such
as on- and off-target alignments tables and gene context annotations. In Figure 2, we show an example of a
GuideSet storing information about gRNAs targeting the coding sequence of KRAS using SpCas9.

2.4 crisprScore implements state-of-the-art scoring methods

Predicting on-target binding and cutting efficiency of gRNAs is an extensive area of research. Many algorithms
have been developed to tackle this problem, basing their prediction on a variety of features: sequence com-
position of the spacer sequence and flanking regions, including nucleotide content and melting temperature,
cell type-specific chromatin accessibility data, and distance to transcription starting site (TSS). Unfortunately,
the heterogeneity in the algorithm implementations hinders the practical use of those algorithms: some meth-
ods are implemented in Python 2 [Doench et al., 2016a, Kim et al., 2018, Horlbeck et al., 2016, Kim et al.,
2019], in Python 3 [Chen et al., 2019, Wang et al., 2019b, DeWeirdt et al., 2020], or in R [Doench et al., 2014,
Wessels et al., 2020, Moreno-Mateos et al., 2015, Labuhn et al., 2018]. In addition, the required inputs, data
structures, and terminology are not consistent across software and algorithms, increasing the likelihood of user
error. Finally, several of the algorithms are currently not bundled up into easy-to-use packages, limiting their
accessibility and therefore their usage.

To resolve this, we created a general and harmonized framework for on-target and off-target prediction of
gRNAs, implemented in our R package crisprScore. The philosophy behind crisprScore is to abstract away
from the user the language, implementation, and complexity of the different algorithms used for prediction. It
uses the Bioconductor package basilisk [Lun, 2021] to seamlessly integrate and manage incompatible Python
modules in one user session. This enables crisprScore to centralize all Python-based scoring algorithms together
with R-based prediction algorithms, reporting all scores in a single data frame for convenient inspection. By
providing a harmonized user interface, our framework facilitates methods comparison.

We note that while the package provides a harmonized framework from a user perspective, it also allows each
scoring algorithm to be implemented with its own sets of parameters and inputs. We have included as many
methods as possible (Table 2), with the goal of democratizing the use of different scoring algorithms in an
unbiased manner. Developers can easily contribute new methods to the crisprScore package as they become
available.

2.5 crisprDesign enables fast characterization and annotation of off-targets

Off-targeting effects can occur when a spacer sequence maps with perfect or imperfect complementarity to a
genomic locus other than the primary on-target. Given that nucleases can still bind and cut in the presence of
nucleotide mismatches between spacer sequences and target DNA sequences [Fu et al., 2013, Hsu et al., 2013b,
Pattanayak et al., 2013], it is paramount to obtain and characterize all putative mismatch-mediated off-targets.

The off-target functionalities in crisprDesign are divided into two parts: off-target search (alignment) and
off-target characterization (genomic context and scoring). For the off-target search, we offer three different
alignment methods: Bowtie [Langmead et al., 2009], the BWA-backtrack algorithm in BWA [Li and Durbin,
2009] and the Aho-Corasick exact string matching method implemented in Biostrings [Aho and Corasick, 1975,
Pages et al., 2016]. We developed two independent R packages to implement the Bowtie and BWA alignment
methods: crisprBowtie and crisprBwa. Notably, the packages were developed to work with any nucleases,
and for both DNA and RNA target spaces (reference genomes and transcriptomes, respectively). While the
maximum number of mismatches for Bowtie is limited to 3, there is no limit for BWA.

Given the short nature of gRNA spacer sequences, both Bowtie and BWA are ideal tools for off-target search
and provide ultrafast results. On the other hand, the alignment method based on the Bioconductor package
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Biostrings does not need the creation of a genome index, and is particularly useful for off-target search in short
custom sequences. All methods can be invoked via the addSpacerAlignments function, which returns the on-
and off-target alignments as a GRanges object in the GuideSet metadata.

To add genomic context to the on- and off-targets, a TxDb object can be provided to the addSpacerAlignments
function. The TzDb object is a standard Bioconductor object to store information about a gene model, and
can easily be made from transcript annotations available as GFF3 or GTF files. Gene annotation columns are
added to the off-target table for different contexts: 5> UTRs, 3’ UTRs, CDS, exons, and introns. Finally, users
can add the MIT and CDF off-target specificity scores [Hsu et al., 2013a, Doench et al., 2016a] implemented in
crisprScore to characterize the likelihood of nuclease cleavage at the off-targets.

Comparison of the off-target alignment methods

We first compared the accuracy of the three alignment methods implemented in crisprDesign. Bhagwat et al.
[2020] reported that Bowtie misses a large number of double-mismatch and triple-mismatch off-targets in com-
parison to the gold-standard complete string matching algorithm. To investigate this, we repeated the PAM-
agnostic on- and off-target alignment of the 10 spacer sequences described in Bhagwat et al. [2020] to the
GRCh38 reference genome using all three alignment methods. In contrast to Bhagwat et al. [2020], all three
alignment methods implemented in crisprDesign return an identical list of off-targets (see Table S1). This indi-
cates that, contrary to previous reports, both BWA and Bowtie provide a complete on- and off-target search. It
appears that the missing off-targets in Bhagwat et al. [2020] are located on unlocalized and unplaced GRCh38
sequences.

Next, we evaluated the run times of four configurations offered in crisprDesign for alignment: Bowtie, BWA,
an iterative version of Bowtie (bowtie-int) and an iterative version of BWA (bwa-int). We developed iterative
versions of the Bowtie and BWA alignments to avoid situations where gRNAs are mapping to hundreds of loci
in the genome, considerably slowing down the off-target search when a higher number of mismatches is allowed.
The iterative strategy starts by aligning spacer sequences with no mismatches allowed. Then, it sequentially
performs the alignment with a higher number of mismatches only for sequences that have a low number of
off-targets at the previous step, thus avoiding the cost of extra searches for low-quality sequences that already
have many off-targets. We performed the evaluation on three sets of gRNAs targeting the human genome, each
with a different size (see Methods). For all three sets, the Bowtie and BWA gRNA alignments have comparable
run times. (Figure S1). For ZNF101, which contains several non-specific gRNAs overlapping a repeat element,
our iterative versions of the alignment methods shows substantial gain in speed.

Finally, we compared run times for designing SpCas9 gRNAs and performing a genome-wide off-target search
for the following tools: CCTop, CHOPCHOP, multicrispr, FlashFry, and crisprDesign. Other tools were not
included for reasons discussed in the Methods section. To perform the evaluation, we generated six random
subsets of protein-coding exons located on chromosome 1 with the following sizes: 100, 200, 400, 800, 1600 and
3200 exons. For each tool and each subset, we ran the off-target alignment against the human reference genome
(GRCh38 build) using a maximum of 2 mismatches. We included the alignment parameters used for each tool
in the Methods section. Both FlashFry and the iterative Bowtie alignment implemented in crisprDesign show
a substantial speed gain in comparison to other methods (Figure S2).

2.6 Accounting for human genetic variation by adding SNP annotation

Genetic variation, such as SNPs and small indels, can have a direct impact on gRNA binding productivity and
on-target specificity by altering complementarity between spacer sequences and the target DNA or RNA [Scott
and Zhang, 2017, Lessard et al., 2017, Canver et al., 2017, Wang et al., 2018]. In crisprDesign, users can apply
the function addSNPAnnotation to annotate gRNAs for which the target protospacer sequence overlaps a SNP.
This enables users to discard or flag undesirable gRNAs that are likely to have variable activity across different
human genomes.

Given that the current human reference genome was built using only a small number of individuals, the allele
represented in the human reference genome at a particular locus does not always correspond to the major allele
in a population of interest. Inspired by the major-allele reference genome indices provided by the Bowtie team
(see https://github.com/BenLangmead/bowtie-majref), we created two new human genomes to be used
throughout our ecosystem that represent the major allele and the minor allele using dbSNP151 (see Methods).
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Figure 2. Example of a GuideSet container for gRNAs targeting KRAS using SpCas9. a The
blue box stores the genomic coordinates in GRCh38 to represent the target protospacer sequences using a
GRanges object. By convention, we use the first nucleotide of the PAM sequence (in the 5’ to 3’ direction) as
the representative genomic coordinate of protospacer sequences. The pink box stores sequence information of
the protospacers and PAMs. The yellow box represents global metadata used for creating the GuideSet,
including a formal CrisprNuclease object, the reference genome of the target protospacers, and gene model
used for annotation. The grey boxes are examples of optional gRNA-level metadata columns that store
information about enzyme restriction sites, spacer sequence features such as GC content, and on- and
off-target scores. The green boxes represent optional per-gRNA annotations for SNP overlap, on- and
off-target alignments, and gene context; each annotation stores a detailed table (2 dimensions) for each gRNA
(3rd dimension). b Selected annotations for gRNA 1 corresponding to the row highlighted in the green boxes
of a. ¢ The first genomic track represents the four annotated protein-coding isoforms of human gene KRAS in
GRCh38 coordinates. The second track shows the 4 gRNAs shown in the blue box of a.

7


https://doi.org/10.1101/2022.04.21.488824
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.21.488824; this version posted September 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Nuclease Variant Method Type Reference
wT RuleSet1 On-target efficiency Doench et al. [2014]
WT Azimuth On-target efficiency Doench et al. [2016a]
WT RuleSet3 On-target efficiency DeWeirdt et al. [2022]
wT CRISPRscan | On-target efficiency | Moreno-Mateos et al. [2015]
WT CRISPRai On-target efficiency Horlbeck et al. [2016]
SpCas9 WT DeepHF On-target efficiency Wang et al. [2019D]
HiFi DeepHF On-target efficiency Wang et al. [2019D]
WT Lindel On-target efficiency Chen et al. [2019]
WT DeepSpCas9 | On-target efficiency Kim et al. [2019]
WT CRISPRater | On-target efficiency Labuhn et al. [2018]
WT MIT Off-target cutting Hsu et al. [2013a]
wWT CFD Off-target cutting Doench et al. [2016b]
AsCasl2a WT DeepCpfl On-target efficiency Kim et al. [2018]
Enhanced | enPAM+GB | On-target efficiency DeWeirdt et al. [2020]
RixCas13d WT CasRx-RF On-target efficiency Wessels et al. [2020]
WT CasRx-CFD Off-target cutting Fortin and Lun [2022]

Table 2. On-target and off-target scoring methods currently available in crisprScore.

Both genomes are available in Bioconductor as BSgenome packages. Both packages can be used in our ecosystem
to improve gRNA design by designing gRNAs against either the minor or major allele genome, and searching
for off-targets in both the major and minor allele genomes.

2.7 Comprehensive gene and functional annotations

The genomic context of the on-target sites is paramount for optimally selecting gRNAs in most, if not all,
CRISPR applications. crisprDesign includes the addGeneAnnotation and addTssAnnotation functions, which
report comprehensive transcript- and promoter-specific context for each gRNA target site, respectively. Users
simply need to provide a standard Bioconductor TzDb object to specify which gene model should be used to
annotate on- and off-targets.

For CRISPRko applications, addGeneAnnotation annotates which isoforms of a given gene are targeted. It
also adds spatial information about the relative cut site within the coding sequence of each isoform, which has
been shown to contribute to gRNA activity [Doench et al., 2016a]. Since translation reinitiation can result in
residual protein expression [Smits et al., 2019], addGeneAnnotation reports whether or not the gRNA cut site
precedes any downstream in-frame ATG sequences, following the rules of Cohen et al. [2019]. Additionally,
to maximize gene knockout based on protein domains [He et al., 2019], we include Pfam domain annotation
[Bateman et al., 2004] via the biomarRt package [Durinck et al., 2005]. For CRISPRa and CRISPRi applications,
addTssAnnotation indicates which promoter regions are targeted by each gRNA, as well as the location of the
target cut site relative to the TSS. This allows the user to easily select guides in the optimal targeting window.

To further put the gRNA targets into biological context, users can access thousands of genomic annotation
datasets through the Bioconductor AnnotationHub resource. The resource includes common sources such as
Ensembl, ENCODE, dbSNP and UCSC. Where appropriate, those annotations are in the GenomicRanges for-
mat, which make them directly compatible with the GuideSet object used to represent gRNAs in our ecosystem.
By leveraging overlap operations on GenomicRanges, users can identify which gRNAs are present or absent in
a given set of annotated features by using a few lines of code. For example, users can ask AnnotationHub
whether a gRNA is targeting repeat elements to avoid cutting-induced toxicity, or whether a gRNA targets the
region upstream of an annotated Cap Analysis of Gene Expression (CAGE) peak for CRISPRa applications.
Additionally, the rtracklayer Bioconductor package [Lawrence et al., 2009] provides functionalities to easily read
genome annotations that are stored in the commonly-used WIG, BED, bigWig and bedGraph formats. Utilizing
rtracklayer, crisprDesign provides the function addConservationScores to annotate gRNAs with evolutionary
conservation scores obtained from the UCSC genome browser (see Methods).
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2.8 Advanced functionalities for designing screening libraries

Efficient cleavage can be disrupted by certain features of the gRNA sequence, such as very low or high percent
GC content [Chen et al., 2018, Doench et al., 2014, Wang et al., 2014], homopolymers of four nucleotides or longer
[Gilbert et al., 2014, Veeneman et al., 2020], and self-complementarity conducive to hairpin formation [Thyme
et al., 2016, Labun et al., 2016]. When gRNAs are expressed from a U6 promoter, thymine homopolymers
(TTTT) are particularly undesirable as they signal transcription termination. The addSequenceFeatures function
flags all gRNAs that contain such undesirable sequence features. Another consideration in designing gRNA
libraries is to exclude spacer sequences that are not compatible with the oligonucleotide cloning strategy. gRNAs
that contain restriction sites of the enzymes used to clone the spacer sequences into a lentiviral vector should
be excluded. The addRestrictionEnzymes function flags all gRNAs that contain restriction enzyme recognition
motifs.

Optical pooled screening (OPS) is a promising novel screening modality that combines image-based in situ
sequencing of gRNAs and optical phenotyping on the same physical wells [Feldman et al., 2019]. This enables
linking genomic perturbations with high-content imaging at large scale. In such experiments, gRNA spacer
sequences are partially sequenced. This translates to additional gRNA design constraints to ensure sufficient
dissimilarity of the truncated spacer sequences. crisprDesign contains a suite of design functions that take into
account OPS constraints, while ensuring that the final OPS library is enriched for gRNAs with best predicted
activity.

To assist with the design of complex libraries, we developed the package crisprViz to visualize gRNAs. The
package uses the Bioconductor package Guiz [Hahne and Ivanek, 2016] to offer a flexible and integrated visual-
ization of gRNAs along genomic coordinates. Users can visually inspect gRNAs within a genomic track with the
option of adding annotation tracks such as transcript models, SNP annotations, repeat elements, and nucleotide
sequences.

2.9 Functional annotations in crisprDesign improve gRNA selection

We illustrate how functional annotations implemented in crisprDesign can improve gRNA selection by focusing
on two functionalities: addConservationScores and addGeneAnnotation. We assessed the addConservationScores
function using the large-scale CRISPRko fitness screening dataset from Project Achilles [Meyers et al., 2017).
We obtained normalized log fold changes (LFCs) measuring gRNA dropout over time (see Methods). In fitness
screens, gRNAs targeting essential genes should deplete over time, and are therefore expected to have negative
LFCs. Therefore, gRNAs targeting essential genes can be used to investigate determinants of gRNA activity.
We downloaded basewise phyloP scores [Pollard et al., 2010] from the UCSC genome browser. Scores were
calculated from a phylogenic alignment of 30 vertebrate species (see Methods). Positive and negative scores
represent evolutionary conservation and acceleration, respectively. In Figure S3a, we show the correlation
between LFCs and conservation scores obtained using different window sizes, for gRNAs targeting a reference
set of essential genes [Hart et al., 2014]. The data suggest an optimal window of 18 nucleotides around the cut
site, which is our recommended window size in crisprDesign. In Figure S3b, we present LFC distributions of
gRNAs targeting essential genes, split by the sign of the gRNA conservation score. gRNAs targeting conserved
regions (positive score, red line) show greater activity than less conserved regions (negative score, black line) as
observed by greater gRNA dropout. This is in line with previous results [Schoonenberg et al., 2018, DeWeirdt
et al., 2022, Veeneman et al., 2020]. gRNAs targeting non-essential genes serve as negative controls and show
no dropout, irrespective of the conservation scores, as expected (Figure S3c).

Next, we sought to understand how gRNA position within the CDS of the target gene impacts gRNA activity.
Given that most gRNAs in Project Achilles were located in the first 50% of the target CDS by design, we
obtained a different screening dataset; we downloaded data from a genome-wide fitness screen performed in
HCT116 cells (Hart2015 dataset, see Methods). We used the addGeneAnnotation function in crisprDesign to
annotate gRNAs with a position percentage of the target CDS. We used the Ensembl canonical transcript of the
target gene as the representative CDS. In Figure S3d, we show the relationship between LFCs and % CDS for
gRNAs targeting essential genes. gRNAs located beyond the first 85% of the CDS (to the right of the vertical
line) show a progressive decline in activity. The results agree with the litterature [Doench et al., 2016a]. gRNAs
targeting non-essential genes serve as negative controls and behave as expected (Figure S3e).

Based on these results, both functional annotations help selecting more active gRNAs; we recommend in
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Dataset gRNA library | Cell Line | Number of gRNAs Reference
Achilles Avana (many) 67,816 Meyers et al. [2017]
Hart2015 TKOv1 HCT116 164,576 Hart et al. [2015]
Hart2017 TKOv3 HAP1 81,967 Hart et al. [2017b]
Wang2015 Sabatini K562 166, 855 Wang et al. [2015]
Tzelepis2016 Yusa HL60 85,192 Tzelepis et al. [2016]

Table 3. Genome-wide human CRISPRko screen datasets used for comparing SpCas9 gRNA
rankings

crisprDesign to prioritize gRNAs with positive conservation scores, and located in the first 85% of the target
CDS. Those recommended parameters are implemented as the default parameters in the crisprDesign gRNA
ranking procedure discussed next.

3 Case studies

3.1 gRNA ranking from crisprDesign returns optimized gRNAs

To complement gRNA annotation and assist in library design, crisprDesign provides a gRNA ranking function
called rankSpacers. The function implements our recommended ranking parameters for the nucleases SpCas9,
enCasl2a, and CasRx, effectively enabling library design automation across targets. It is designed to optimize
both on-target activity and minimize off-targeting effects, and includes the functional annotations described in
the previous section. Details are provided in the Methods section.

We compared our default gRNA ranking procedure to other tools listed in Table 1 that provide gRNA rankings:
CHOPCHOP, CCTop, FlashFry and CRISPick. To perform the evaluation, we designed and ranked SpCas9
gRNAs for all human protein-coding genes (Ensembl release 104) using each tool separately (see Methods). Next,
we obtained and processed 5 human genome-wide fitness screen datasets from published studies (Table 3), each
performed using a different gRNA library. For each dataset and gRNA, a LFC between later and earlier time
point samples was calculated to quantify gRNA dropout over time.

gRNAs targeting essential genes are expected to drop out and can be used for benchmarking purposes. To
investigate the relationship between gRNA activity and gRNA ranking, we considered for each gRNA library
the subset of gRNAs targeting a common reference set of essential genes [Hart et al., 2014]. For each gene and
tool, we identified the top 15 ranked gRNAs based on the tool-specific in silico ranking. In Figure 3a, we show
the distributions of LFCs in the Hart2015 dataset based on two groups: red lines show the distributions of the
top 15 ranked gRNAs across genes, and green lines show the distributions of remaining gRNAs. Top ranked
gRNAs from CRISPick and crisprDesign show greater activity than lower ranked gRNAs, as indicated by a
negative shift in the red distributions with respect to the green distributions.

We repeated the analysis for each dataset, and summarized the performance of the top ranked gRNAs at
discriminating active gRNAs by calculating the difference in means between the green and red distributions (A
LFC). Results are shown in Figure 3b. Higher A LFCs indicate better performance, and results indicate that
both CRISPick and crisprDesign perform well across all datasets.

3.2 Designing gRNAs targeting BRCA1 for the base editor BE4max

CRISPR base editors are deaminases fused to CRISPR nickases to introduce mutations at loci targeted by the
gRNAs without introducing double-stranded breaks (DSBs) [Gaudelli et al., 2017, Komor et al., 2016]. A recent
study showed high heterogeneity and complexity of the editing outcomes across eight popular base editors,
motivating the need of robust but flexible software to design gRNAs for base editing applications [Arbab et al.,
2020]. In particular, this includes functionalities for listing and characterizing potential edited alleles introduced
by gRNAs to inform the phenotypic readouts created by those gRNAs.

To illustrate the functionalities of our ecosystem for designing base editor gRNAs, we designed and characterized
all possible gRNAs targeting the coding sequence of BRCA1 for the cytidine base editor BE4max [Koblan et al.,
2018]. The design workflow is shown in Figure 4.
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Figure 3. Comparison of CRISPRko Cas9 gRNA rankings for protein-coding human genes. We
designed and ranked gRNAs targeting all protein-coding human genes (Ensembl release 104) using tools that
provide gRNA rankings: CCTop, CHOPCHOP, FlashFry, CRISPick and crisprDesign. To compare gRNA
ranking performance across tools, we obtained gRNA LFCs from 5 genome-wide CRISPRko fitness screening
datasets, listed in Table 3. In these fitness screens, active gRNAs targeting essential genes are expected to
drop out and show negative LFCs. To investigate the relationship between gRNA activity and gRNA ranking,
we considered for each gRNA library the subset of gRNAs targeting a common reference set of essential genes
[Hart et al., 2014]. For each gene and tool, we identified the top 15 ranked gRNAs based on the tool-specific in
silico ranking. a LFC distributions in the Hart2015 dataset for gRNAs targeting essential genes (solid lines)
and gRNAs targeting non-essential genes (dotted lines). Red lines show the distributions of the top 15 ranked
gRNAs across genes, and green lines show the distributions of remaining gRNAs. For essential genes, top
ranked gRNAs from CRISPick and crisprDesign show greater activity than lower ranked gRNAs (red
distributions are negatively skewed). As expected, there are no differences for gRNAs targeting non-essential
genes. b We repeated the analysis described in a for each dataset. We summarized the performance of the top
ranked gRNAs by calculating the difference in means between the green and red distributions (A LFC), for
essential genes only. A higher A LFC indicates better performance. For each method and dataset, a t-test was
performed to quantify the difference in LFCs between the top ranked gRNAs and the remaining gRNAs.
Corresponding p-values are reported above the bars (x: p-value < 0.05; #*: p-value < 0.01; % * %: p-value

< 0.001.)
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The first step consisted of designing all possible guides targeting BRCA1 using the findSpacers function in
crisprDesign. The BE4max BaseFEditor object from crisprBase was used to store nucleotide- and position-
specific editing probabilities (see Figure 4a), which inform the editing window of interest for each of the gRNA
targets. Next, using the function getEditedAlleles, we generated and stored all possible editing events at each
gRNA (see Figure 4b). The function also adds a score for each edited allele that quantifies the likelihood of
editing to occur based on the editing probabilities stored in the BaseEditor object (see Methods). In addition,
each edited allele is annotated for its predicted functional consequence: silent, missense, or nonsense mutation.
In case several mutations occur in a given edited allele, the most consequential mutation is used to label the
allele (nonsense over missense, and missense over silent). For each gRNA, and for each mutation type, we then
generated a gRNA-level score by aggregating the likelihood scores across all possible alleles (see Methods). The
score represents the likelihood of a gRNA to induce a given mutation type (see Figure 4c, left plot).

To show how our gRNA annotations can be used to understand the phenotypic effects observed in screening
data, we obtained data from a negative selection pooled screen performed in MelJuSo using a base editing library
tiling the BRCA1 gene [Hanna et al., 2021]. Given that loss-of-function mutations in BRCAI reduce cell fitness
[Findlay et al., 2018], gRNAs introducing nonsense mutations are expected to drop out. We created Receiver
Operating Characteristic (ROC) curves to measure how well gRNA dropout can separate positive controls from
other gRNAs. We used LFCs in gRNA abundance between the later time point and the plasmid DNA (pDNA)
library as a measure of gRNA dropout (see Methods). We used several thresholds of the nonsense mutation
score to label gRNAs as positive controls or not. We observed that gRNA dropout in the screen can separate
positive controls well from all other gRNAs, and that performance is improved when using positive controls
defined by higher nonsense mutation scores (Figure 4c).

We also characterized gRNAs for off-targeting effects using crisprBowtie, added sequence features using crisprDe-
sign, and added on-target scores using crisprScore. We asked whether or not the magnitude of gRNA dropout
in the screen associates with predicted on-target activity for the SpCas9 nuclease. In Figure 4d, we show
gRNA dropout as a function of different predicted gRNA efficacy scores: Rule Set 1, Azimuth, and DeepHF.
gRNAs predicted to induce nonsense mutations are shown in red, and grey otherwise. Despite the fact that
each algorithm was trained on data using a SpCas9 nuclease with intact endonuclease activity, gRNA dropout
and predicted gRNA efficacy correlate for all methods (r = —0.30 for Rule Set 1, r = —0.20 for Azimuth, and
r = —0.17 for DeepHF). Overall, the different functionalities implemented in our ecosystem provides a set of
informative annotations for base editor gRNAs and facilitate the interpretation of experimental data obtained
from base editor screens.

3.3 Annotating and scoring gRNAs for gene knockdown using CasRx

One of the challenges in designing gRNAs specific to RNA-targeting nucleases is to enable on-target and off-
target characterization to be performed in a transcriptome space, as opposed to a reference genome. This requires
strand-specific functionalities, transcriptome-specific alignment indexes, as well as additional gene annotation
functionalities to capture isoform-specific targeting.

Here, we describe a workflow for designing gRNAs targeting CD46 and CD55 using the RNA-targeting nuclease
CasRx (RfxCas13d) [Konermann et al., 2018] (Figure 5). The workflow takes into consideration the aforemen-
tioned issues. To validate our design process, we obtained CasRx pooled screening data performed in HEK 293
cells with gRNA libraries tiling the human genes CD46 and CD55 from Wessels et al. [2020]. Since both genes
encode for cell-surface proteins, the authors used fluorescence-activated cell sorting (FACS) to sort cells with
high and low expression. Their data can be used to investigate gRNA knockdown efficacy based on the change
in relative abundance of high- and low-expressing cells for each targeted gene (see Methods).

We first extracted mRNA sequences of both genes using the function getMrnaSequence from crisprDesign.
The mRNA sequences, together with the CrisprNuclease object CasRx from crisprBase, served as inputs to
create a Guideset. Next, we predicted on-target activity of the gRNAs using our implementation of the CasRx-
RF method [Wessels et al., 2020] available in crisprScore (see Methods). The normalized LFCs in the screen
correlate well with the CasRx-RF score (Figure 5a). We then added a transcript annotation to each gRNA using
an Ensembl TxDb object as input. This adds a list of targeted isoforms to each gRNA, as well as transcript
context (CDS, 5'UTR, or 3'UTR). We observed in the screen that gRNAs targeting a higher number of isoforms,
and gRNAs located in CDS, lead to higher activity (Figure 5b, and Figure S4).
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Figure 4. crisprDesign workflow to design gRNAs tiling BRCA1 using the base editor BE4max.
On the left: schematic showing the major steps involved in designing BE4max gRNAs targeting BRCAI. Two
inputs are required: DNA sequences of BRCA1 exons and a BaseEditor object from crisprBase. a Editing
weights for the BE4max base editor from crisprBase. b 10 top predicted edited alleles for one selected gRNA
as returned by crisprDesign. The wildtype allele and the protospacer sequence are positioned at the top of the
first column, with the PAM sequence highlighted in bold. Edited nucleotides are highlighted in red (C to T)
and blue (C to G). Editing scores, variant annotations, and protein product of the edited alleles are also
shown. ¢ On the left, gRNA-level nonsense mutation score as calculated by crisprDesign. Colors represent
variant classification: nonsense in red, missense in blue, silent in grey. The size of the dot is proportional to the
on-target efficiency DeepHF score. On the right, ROC curves for classifying gRNA mutation type (nonsense or
not) based on gRNA dropout from the BRCA! BE4max dataset (see Methods). Different thresholds of the
nonsense score were used to label a gRNA as nonsense or not. d Relationships between gRNA dropout from
the BRCA1 BE4max dataset and several on-target activity scores. gRNAs that are not predicted to induce a
nonsense mutation are colored in grey, and the size of the dots is proportional to the magnitude of the
mutation score. The horizontal dotted lines at -0.5 represent a cutoff to classify a gRNA as active or not. For
each method, a score cutoff was determined to classify active versus non-active gRNAs (vertical dotted line).
Red and blue dots correspond to gRNAs that are correctly and incorrectly classified, respectively.
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We performed an off-target search using crisprBowtie to the human transcriptome by providing a Bowtie index
built on mRNA sequences. We extended the CFD off-target scoring algorithm implemented in crisprScore
to work with CasRx by estimating mismatch tolerance weights on the GFP tiling screen data from Wessels
et al. [2020] (see Methods). The off-target CFD-CasRx score performs well at predicting gRNA activity of
single-mismatch and double-mismatch gRNAs in the CD55 screen (Figure 5c¢, and see Methods).

Finally, we added sequence features, and ranked gRNAs for targeting CD55 and CD/6 based on (1) high on-
target score, (2) low number of off-targets, and (3) high number of targeted isoforms. If we select gRNAs that
target a common exon and that have high on-target score, we enrich for highly active gRNAs in the screening
data (Figure 5d).

3.4 Designing optimal gRNAs to activate MMP7 using CRISPRa using different
nucleases

Designing gRNAs for either CRISPRa and CRISPRI applications requires additional considerations. This
includes choosing an optimal target region based on chromatin accessibility data and TSS data, and selecting
gRNAs based on their positioning with respect to the TSS.

To demonstrate the utility of our ecosystem functionalities for CRISPRa and CRISPRI, we designed gRNAs for
CRISPRa using the human gene MMP7 as an example target (Figure 6). CRISPRI is discussed at the end of
this section. One CRISPRa-specific design consideration is the limited number of candidate gRNAs available
for a given gene due to the narrow window of optimal activation. Engineered nucleases with less constrained
PAM sequences can improve CRISPRa applicability by expanding the set of candidate gRNAs. To investigate
this, we designed gRNAs for the promoter region of MMP7 using four nucleases in parallel: SpCas9, AsCasl2a,
and the more PAM-flexible versions SpGCas9 [Walton et al., 2020] and enAsCasl2a [DeWeirdt et al., 2020].

The first step of the gRNA design was to specify the target region for MMP7. We used AnnotationHub to find
CAGE peaks in the promoter region of MMP7 to specify the TSS position. We used the CAGE data to identify
TSSs instead of RefSeq or Ensembl as the former provides more accurate annotations for designing CRISPRi
and CRISPRa gRNAs [Radzisheuskaya et al., 2016]. The 5" end of the CAGE peak was used as the TSS to
define the coordinates of the optimal window of activation (75 and 150 nucleotides upstream of the TSS, as
recommended by Sanson et al. [2018]).

Next, we designed all possible gRNAs for the four nucleases using the findSpacers function in crisprDesign, and
stored the gRNAs in four separate GuideSet containers. We annotated each GuideSet for overlap with DNase
I hypersensitivity sites (DHS) from consolidated epigenomes from the Roadmap Epigenomics Project [Kundaje
et al., 2015] using AnnotationHub. Open-chromatin regions are favorable for the binding of the catalytically
inactive Cas9 (dCas9) used in both CRISPRa and CRISPRI [Kuscu et al., 2014, Wu et al., 2014]. We then added
sequence features using crisprDesign, on-target scores using crisprScore, and off-target sites using crisprBowtie
for each nuclease. Finally, we added overlapping SNPs information using the addSNPAnnotation function and
using dbSNP151. The end-to-end workflow is presented in Figure 6a.

The designed gRNAs are presented in Figure 6b. With crisprDesign, it is straightforward to select candidate
gRNAs in the most promising genomic regions - in this case, lying inside both the annotated DHS and the
optimal activation window for MMP7. One can immediately appreciate that both nuclease variants (SpGCas9
and enAsCasl2a) yield substantially more available gRNAs in the optimal window activation. In particular,
enAsCasl2a offers several gRNAs with high predicted on-target activity, making it a better candidate for
gene activation of MMP7. One SNP was also found in the region of interest, and overlapping one gRNA for
enAsCasl2a that should be avoided. Altogether, our ecosystem provides an easy and comprehensive workflow
to enable users to design optimal gRNAs for CRISPRa across nucleases.

Designing gRNAs for CRISPRI applications using crisprDesign is nearly identical, with the exception that the
preferred target region for interference is located downstream of the TSS. The CRISPRai scoring algorithm
from Horlbeck et al. [2016], available through crisprScore, can be used to select optimal gRNAs for each TSS
separately, taking into account both gRNA positioning and sequence content to maximize on-target inhibition.
For both CRISPRa and CRISPRIi, our gRNA design workflow is also applicable to non-coding regulatory
elements, for instance long non-coding RNAs (IncRNAs) as it was done in Liu et al. [2017]. Overall, crisprDesign
provides end-to-end functionalities that are well-suited for a large array CRISPRa and CRISPRi applications.
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Figure 5. crisprDesign workflow to design gRNAs tiling CD55 and CD46 using CasRx. On the
left: schematic showing the major steps involved in designing CasRx gRNAs targeting CD55 and CD46. Two
inputs are required: mRNA sequences of CD55 and CD/6 and a CrisprNuclease object from crisprBase. a
Relationship between on-target CasRx-RF score calculated in crisprScore and LFCs from the pooled FACS
tiling CasRx screening data (see Methods). A higher LFC indicates higher gRNA activity. b Relationship
between LFCs from the CasRx screening data and gRNA context for CD46 and CD55: gRNAs targeting 5’
UTR and 3’ UTR for the canonical transcript, and guides targeting a low and high number of isoforms for
each of the genes. gRNAs targeting more isoforms show higher enrichment in the screening data. The full
isoform annotation is stored in the GuideSet objects. ¢ Left: relationship between observed LFCs of on-target
gRNAs in the CD55 screen and predicted LFCs of single-mismatch gRNAs using the off-target CFD-CasRx
score implemented in crisprScore (see Methods). Right: same as left, but for double-mismatch gRNAs. d
gRNAs selected in the CD46 screen for high on-target activity (CasRx-RF score) and targeting a common
exon across all protein-coding isoforms enrich for high gRNA activity.
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Figure 6. Design of CRISPRa gRNAs for human gene MMP7 for different CRISPR nucleases.
a Schematic showing the steps involved in designing CRISPRa gRNAs targeting the promoter region of
MMP7. A gene model and a list of CAGE peaks are used to define the optimal window for gene activation. A
GuideSet is created separately for each CRISPR nuclease. DNase I hypersensitive site (DHS) information is
obtained from AnnotationHub and added to the gRNA annotation. b The top track shows the promoter region
of human gene MMP7 on chromosome 11, including part of the 5 UTR of MMP7 (yellow). The DHS and
CAGE peak grey boxes were obtained using AnnotationHub (see Methods). The light pink region corresponds
to the optimal region of activation based on Sanson et al. [2018], corresponding to a region [75,150]bp upstream
of the 5’ end of the CAGE peak. For each of the four selected nucleases, all canonical PAM sites located
within the optimal region are shown. PAM sites are colored by their on-target score: DeepHF for SpCas9,
DeepCpfl for AsCasl2a, and enPAM+GB for enAsCasl12a. No on-target scoring algorithm was available at
time of publication for SpGCas9. The last track corresponds to common SNPs obtained from dbSNP151.
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4 Discussion

In this work, we introduced a new suite of R packages to perform comprehensive end-to-end gRNA design for
a multitude of CRISPR technologies and applications. Our ecosystem, named the crisprVerse, enables users
to perform gRNA design for diverse nucleases such as PAM-free nucleases and RNA-targeting nucleases, and
for several applications beyond CRISPRko such as RNA and DNA base editing and CRISPRa/i. All design
functionalities are available from a core package, crisprDesign. This eliminates the need to use multiple tools to
obtain the necessary information for selecting optimal gRNAs, which is both time consuming and error prone.
We demonstrated the diversity of our framework by applying it in three case studies involving different CRISPR
technologies with their own specific design considerations.

We were able to show that creating rich gRNA annotations can help investigate gRNA variability and biases
observed in experimental data generated from newer CRISPR technologies. To do so, we obtained public pooled
screening data from two published studies, a tiling base editor screen of BRCA1, and a tiling CasRx screen of
CD46 and CD55, and show how some of the gRNA features derived from crisprDesign can explain some of the
variability in gRNA activity observed in both screens. We also showed that our default gRNA ranking criteria
implemented in crisprDesign yield optimal gRNAs by reanalyzing five genome-wide fitness screening datasets.

The modular architecture of the crisprVerse enables nucleases, base editors, scoring methods and annotations
to be combined depending on the needs of the user. As a result, our design framework can easily adapt to new
CRISPR technologies by swapping out the necessary components. For instance, a recent study has shown that
the resolution of base editor screens can be greatly increased by combining existing base editors with PAM-
extended Cas9 variants [Sangree et al., 2021], while another study shows that RNA-targeting Casl3 nucleases
can be combined with deaminases to form RNA base editors [Cox et al., 2017]. Both applications can be readily
supported by our ecosystem without the need for further development.

Our ecosystem is completely implemented within the Bioconductor project, which provides robust and feature-
rich data structures, high-quality documentation and workflows, and seamless interoperability between packages.
Data structures defined in crisprBase can be reused to facilitate the analysis of CRISPR-based editing events in
other packages, such as ampliCan [Labun et al., 2019], GUIDEseq [Zhu et al., 2017] and CrisprRVariants [Lind-
say et al., 2016]. GuideSet gRNA containers can be integrated with packages that provide analysis workflows
for pooled screening data [Wang et al., 2019a, Imkeller et al., 2020, Bainer et al., 2021] to investigate biases
and filter out undesirable gRNAs. Finally, the crisprBowtie and crisprBwa packages provide general functions
that can be used to map any short sequences, including small-hairpin RNAs and short-interfering RNAs. We
are continuously extending our suite of tools to make available the latest developments for gRNA design, such
as prime editing [Anzalone et al., 2019] and combinatorial libraries [Replogle et al., 2020]

5 Methods

Reference genomes, gene models, and genome indexes

The FASTA file for the human reference genome (GRCh38.p13 assembly) was obtained from UCSC to build
Bowtie and BWA indexes via the Rbowtie (v1.37) [Hahne et al., 2012] and Rbwa (v1.1) R packages, respectively.
The packages use Bowtie v1.3 and BWA Release 0.7.17, respectively. The gene model used throughout the
manuscript was obtained from Ensembl (release 104) using the R package GenomicFeatures (v1.49.6). Common
SNPs were obtained from NCBI dbSNP build 151 (https://ftp.ncbi.nlm.nih.gov/snp/).

CAGE peak and DNAse I hypersensitivity data

RIKEN/ENCODE CAGE peaks were obtained from AnnotationHub (v3.5) using accession number AH5084
[Djebali et al., 2012]. Genomic coordinates were lifted over from hgl9 to hg38 using the R package rtracklayer
(v1.57). DNAse I hypersensitive sites were obtained from AnnotationHub using accession number AH30743. The
narrow DNase peaks were obtained using MACS2 on consolidated epigenomes from the Roadmap Epigenomics
Project (E116-DNase.macs2.narrowPeak.gz) [Kundaje et al., 2015]. Genomic coordinates were lifted over from
hgl9 to hg38 using the R package rtracklayer.
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On-target scoring

We implemented several commonly-used algorithms for Cas9, Cas12 and Casl13 nucleases in crisprScore. For
predicting on-target activity of the wildtype SpCas9 nuclease, we implemented the popular Rule Set 1 [Doench
et al., 2014] and Azimuth algorithms [Doench et al., 2016a] (iteration of the popular Rule Set 2 algorithm by
the same authors), and the sequence-only Rule Set 3 [DeWeirdt et al., 2022]. The package also provides the
deep learning-based algorithms Deep WT and DeepHF, developed to predict cutting efficiency of the wildtype
SpCas9 and SpCas9-High Fidelity (SpCas9-HF1) nucleases, respectively [Wang et al., 2019b], and the DeepSp-
Cas9 algorithm [Kim et al., 2019]. We also included the CRISPRscan algorithm [Moreno-Mateos et al., 2015]
for predicting on-target activity of SpCas9 gRNAs expressed from a T7 promoter, as well as the CRISPRater
algorithm [Labuhn et al., 2018]. For the wildtype AsCasl2a, crisprScore offers the deep-learning based pre-
diction method DeepCpfl [Kim et al., 2018]. For the enhanced AsCasl2a (enAsCasl12a), crisprScore offers the
enPAM+GB algorithm [DeWeirdt et al., 2020]. For CasRx (RfxCas13d), we adapted the code from the random
forest model developed in Wessels et al. [2020]; we referred to the method as CasRz-RF.

For predicting gRNA activity for CRISPRa and CRISPRi, we implemented the prediction method used to
design the commonly-used Weissman CRISPRa and CRISPRi v2 genome-wide libraries for human and mouse
[Horlbeck et al., 2016]. This method predicts CRISPRa (or CRISPRi) gRNA activity based on the distance to
the transcription starting site (TSS), spacer sequence-derived features, as well as chromatin accessibility data
and nucleosome positioning using DNase-Seq, MNase-Seq, and FAIRE-Seq data. The chromatin data in hg38
coordinates are available on Zenodo (DOI: 10.5281/zenodo.6716721).

The function addCompositeScores from crisprDesign creates an aggregate score from a specified list of on-
target scoring methods. It takes the average of the specified scores after performing a rank transformation.
More specifically, consider s;; to be the score value for gRNA ¢ and method j. The composite score S; for
gRNA i is

S — Zjvzl rank(s;;) )
N

where N is the total number of user-specified on-target scoring methods, and rank(s;;) is the ranked score within
method j. Importantly, if the number of missing values varies across on-target scoring methods, we ensure that
the scale of the rank-transformed values are comparable across methods by simply scaling the ranks so that
highest ranked value is equal across all methods. Missing values are uncommon but can happen when designing
gRNAs targeting custom sequences. Indeed, several scoring algorithms require nucleotide context around the
protospacer sequences, and this is not possible for gRNAs located near the end of the user-provided custom
sequences.

On-target prediction of frameshift-causing indels using Lindel

In crisprScore, we implemented Lindel [Chen et al., 2019], a logistic regression model that was trained to use
local sequence context to predict the distribution of mutational outcomes for CRISPR/Cas9. The Lindel final
score reported in crisprScore is the proportion of “frameshifting” indels, that is the frequency of indels predicted
to introduce frameshift mutations. By chance, assuming a random distribution of indel lengths, gRNAs should
have a frameshifting proportion of 0.66. A Lindel score higher than 0.66 indicates that a given gRNA is more
likely to cause a frameshift mutation than by chance.

Off-target scoring of individual off-targets

The exact formula that we use to calculate the CFD score in crisprScore is

CFD = H wp(xRNA,xDNA) (2)
peEM

where M is the set of positions for which there is a mismatch between the gRNA spacer sequence and the
off-target sequence. wy(zrNA,TDNA) is an experimentally-derived mismatch tolerance weight at position p
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depending on the RNA nucleotide 2gna and the DNA nucleotide xpna (see Doench et al. [2016b] for more
details).

The exact formula that we use to calculate the MIT score in crisprScore was obtained from the MIT design
website (crispr.mit.edu):

1 1
MIT(H CP)XL—dXQ (3)
peM Tx4+1 m

where M is the set of positions for which there is a mismatch between the gRNA spacer sequence and the
off-target sequence, ¢, is an experimentally-derived mismatch tolerance weight at position p, d is the average
distance between mismatches, m is the total number of mismatches, and L is the spacer length. The spacer
length used in Hsu et al. [2013a] is 19. As the number of mismatches increases, the cutting likelihood decreases.

Composite off-target score for gRNA specificity

To create a gRNA-level composite specificity score, individual off-target cutting scores are aggregated using the
following inverse summation formula:

(4)

SpeCIﬁCIty = 1_'_2:7”0
=1

where C; is the cutting likelihood score (either using the MIT or the CFD method) for the i** putative off-target.
A higher composite score indicates higher specificity, which decreases with more off-targets and/or a greater
likelihood of cleavage at each off-target. A gRNA with no putative off-targets have a composite score of 1. A
¢RNA with 2 on-targets, that is a gRNA targeting two genomic loci with perfect complementarity, will have a
composite score of 0.5.

Evolutionary conservation scores

The function addConservationScores in crisprDesign annotates gRNAs with evolutionary conservation scores.
It requires bigWig files containing basewise conservation scores, which can be easily obtained from the UCSC
genome browser database [Karolchik et al., 2003] at the following link: https://hgdownload.soe.ucsc.edu/
downloads.html. The gRNA score is calculated as the average conservation score of a region centered around
the predicted cut site of the gRNA. By default, the width of the region is 18 nucleotides, but can be changed
by users. For our analysis of human protein-coding genes, we used the phyloP score from an alignment of 29
genome sequences to the human genome available at https://hgdownload.soe.ucsc.edu/goldenPath/hg38/
phyloP30way/. Positive phyloP scores indicate conserved regions, while negative scores indicate evolution faster
than expected under neutral drift.

Base editing scoring

The behavior of a base editor can be quantified in a 3-dimensional array of editing probabilities. Let p be
the genomic position relative to the PAM site; let nuc, be the original nucleotide; and let nuc, be the edited
nucleotide. Denote ¢(p, nuc,, nuc.) as the probability that nuc, is edited to nuc, at position p. Experimental
editing weights can be used, possibly after some adequate transformation, to obtain those probabilities.

To score the likelihood of each edited allele, we assume independence of editing events with respect to nucleotide
position. Specifically, consider a wildtype allele U = (up,, Up,, ..., up, ) and an edited allele V' = (vp, , Vp, , ..., Up,, )
where u,, and v, are the nucleotides at position p; relative to the PAM site for the wildtype and edited allele,
respectively. The parameter n is chosen by the user, and should be large enough so that all nucleotides within
the editing window of the chosen base editor are represented. We calculate the editing score for the edited allele
V (with respect to the wildtype allele U) as follows:

n

S, V) =[] awi up.,vp,) (5)

i=1
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For a given edited allele V', we classify the functional consequence of editing as either a silent, missense, or
nonsense mutation. We use f(V) to label the mutation. In case an edited allele results in more than one
mutation, we choose the most consequential mutation as the label (nonsense over missense, and missense over
silent). For a given gRNA targeting the wildtype allele U, and the set of all possible edited alleles V;, we
calculate an aggregated score for each mutation type by summing the editing scores across alleles for each
mutation type. For instance, the aggregated score for silent mutations is calculated as follows:
N
Ssitent(U) =Y _ S(U, V;)1(f(V5) = silent) (6)

j=1

where NN is the total number of possible edited alleles V;.

Creation of major and minor allele human genomes

We built major and minor allele genomes for the hg38 build using common SNPs from the dbSNP151 RefSNP
database. The “common” category is based on germline origin and a minor allele frequency (MAF) of >= 0.01
in at least one major population, with at least two unrelated individuals having the minor allele. See the dbSNP
website https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/ for more information. We
excluded indels, and only considered SNPs that have MAF greater than 1% in the 1000 Genomes Project
population. We then injected major alleles and minor alleles into the reference genome hg38 sequence to create
“major allele” and “minor allele” genomes, respectively. Both resulting genomes are provided as standard
FASTA files. We generated Bowtie and BWA indexes for the two genomes. All results files are available on
Zenodo (DOI: 10.5281/zenodo.6862556). The two allele genomes are also available from Bioconductor via their
respective packages:

e BSgenome.Hsapiens.UCSC.hg38.dbSNP151.major [Fortin, 2021a]
e BSgenome.Hsapiens.UCSC.hg38.dbSNP151.minor [Fortin, 2021b]

Base editing pooled screen data analysis

Fitness screen data in the MelJuSo cell line using a gRNA library tiling BRCA1 were obtained from the
supplementary material of Hanna et al. [2021]. We normalized the raw counts by scaling by the total number of
reads, and logs-transformed the data. We filtered out low-abundance gRNAs that were further than 3 standard
deviations below the mean in the plasmid (pDNA) sample. From the later timepoint samples, we subtracted
from the pDNA sample log counts to obtain LFCs, and averaged the LFCs across replicates. We filtered out
gRNAs targeting multiple loci, and gRNAs with off-targets (with up to 2 mismatches) located in genes other
than BRCA1.

CasRx pooled screen data analysis

CasRx FACS pooled screening data tiling CD55, CD46 and GF'P were obtained from Wessels et al. [2020], includ-
ing processed and normalized LFCs for each gRNA https://gitlab.com/sanjanalab/cas13. We redesigned
all possible gRNAs targeting any of the isoforms of CD55 and CD/46 using crisprDesign, and considered only
¢RNAs also present in the pooled screening data for downstream analyses. We annotated all gRNAs with
gene information (Ensembl release 104) and obtained off-targets with up to 3 mismatches for all gRNAs using
crisprBowtie. We obtained CasRx-RF on-target activity scores using crisprScore. The transcripts annotated as
canonical by Ensembl (ENST00000367042 for CD46, and ENST00000367064 for CD55) were used to visualize
LFCs.

For each gRNA, we quantified the abundance of its target gene by summing transcript per million (TPM) counts
in HEK-293 cells for all transcripts targeted by the gRNA. Transcript-level RNA quantification for HEK-293
cells was obtained from the Protein Atlas web portal https://www.proteinatlas.org, on March 5 2022. Data
are based on The Human Protein Atlas version 21.0 and Ensembl version 103 . We averaged TPM counts across
the two replicates.
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We used the single-mismatch (SM) gRNA constructs from the GFP tiling screen to estimate position-dependent
probabilities of mismatch tolerance by the CasRx nuclease. To do so, we first calculated differences in LFC
(ALFC) between SM gRNAs and their corresponding perfect-match (PM) gRNAs. We then fitted a LOESS
curve with respect to the nucleotide position to obtain an average ALFC at each spacer position (Figure Sba).
We transformed the LOESS fitted values to a scale between 0 and 1 to represent them as percentages of activity
with respect to the median activity of the PM gRNAs tiling GFP (Figure S5b). Given the sparsity of the
data, specifying a nucleotide-specific weight at each position was not possible. We adapted in crisprScore the
CFD off-targeting scoring method to CasRx by using those probabilities as scoring weights. The corresponding
scoring algorithm is named CFD-CasRx.

To evaluate the performance of the CFD-CasRx score on an independent dataset, we calculated CFD-CasRx
off-target scores on all SM and double-mismatch (DM) gRNAs included in the CD55 tiling screen. To predict
LFCs of the DM gRNAs, we multiplied their respective PM gRNA LFCs with the CFD-CasRx on-target scores.

Evaluation of the off-target alignment methods within crisprDesign

For comparing runtimes of the off-target alignment methods, the following sets of gRNAs were chosen: (1)
gRNAs targeting the coding sequence of KRAS, for a total of 52 gRNAs; (2) gRNAs targeting the coding
sequence of EGFR, for a total of 645 gRNAs, and (3) gRNAs targeting the coding sequence of ZNF101, for
a total of 152 gRNAs. The KRAS and EGFR cases represent small- and medium-sized sets of gRNAs. For
ZNF101, a few gRNAs overlap a repeat element, and therefore have a high number of on- and off-targets.
Alignment was performed to the GRCh38.p13 genome. The Bowtie and Biostrings alignment methods were
evaluated using 0 to 3 mismatches, and the BWA alignment methods were evaluated using 0 to 5 mismatches.
Run times were collected on a Macbook Pro with an Intel Core i7 CPU (2.6GHz, 6 cores, 16 GB memory).

Comparison of off-target alignments across tools

We compared computing times for designing SpCas9 gRNAs and performing a genome-wide off-target search
for the following tools: CCTop, CHOPCHOP, multicrispr, FlashFry, and crisprDesign. The following tools were
excluded from the comparison: CRISPick as it does not provide a standalone software; CRISPRseck as we were
not able to complete the search within a reasonable time; Cas-Designer due to its requirement for specialized
software that we were not able to install on our machines; E-CRISP as it was not possible to run their command
line interface on customs DNA sequences or exons.

To perform the comparison, we generated six random subsets of protein-coding exons located on chrl with the
following sizes:100, 200, 400, 800, 1600 and 3200 exons. Off-target alignment was performed against the human
reference genome (GRCh38 build) using a maximum of 2 mismatches for all methods. Run times were collected
on a Macbook Pro with an Intel Core i7 CPU (2.6GHz, 6 cores, 16 GB memory). For each tool, parameters
optimized for speed were chosen based on available documentation. In particular, the following parameters
were used. For CCTop, we used --totalMM 2 --coreMM 2 --max0T 100000. For CHOPCHOP, we used:
--fasta -G HG38 -t WHOLE -v 2. For FlashFry, we used: ——-maximumOffTargets 100000 --forceLinear -
-maxMismatch 2. For multicrispr, we used Bowtie with 2 mismatches, with no on-target scoring. For crisprDe-
sign, we used the function addSpacerAlignmentsiterative with the Bowtie and BWA aligners with 2 mismatches.

Processing of genome-wide screen datasets

Achilles dataset: CRISPRko fitness screening gRNA-level LFCs from Project Achilles (22Q2 release) were down-
loaded from the DepMap portal https://depmap.org/portal/download/all/. Processed LFCs representing
changes in gRNA abundances between the last time point of the fitness screen and the plasmid DNA were
available for 957 human cell lines. Reference lists of essential and non-essential genes were downloaded from
Hart et al. [2014]. For each cell line, we first centered LFCs using the median value of the set of non-essential
genes, and then scaled LFCs using the median value of the set of essential genes. This enables normalized LFCs
to be comparable across cell lines. For each gRNA, we then summarized gRNA activity by averaging LFCs
across cell lines.

Hart2015 dataset: Processed data from a genome-wide screen performed in HCT116 cells using the Toronto
Knockout vl (TKOv1) library [Hart et al., 2015] were downloaded from http://tko.ccbr.utoronto.ca/. We
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computed LFCs between Day 18 and Day 0.

Hart2017 dataset: Processed data from a genome-wide screen performed in HAP1 cells using the Toronto
Knockout v3 (TKOv3) library [Hart et al., 2017b] were downloaded from http://tko.ccbr.utoronto.ca/.
We obtained available LFCs between Day 18 and Day 0.

Wang2015 dataset: Processed data from a genome-wide screen performed in K562 cells were obtained from the
supplementary material of Wang et al. [2015]. LFCs were calculated between the final and initial timepoints.

Tzelepis2016 dataset: Processed LFCs from a genome-wide screen performed in HL60 cells were obtained from
the supplementary material of Tzelepis et al. [2016].

LFCs for the Hart2015, Hart2017, Wang2015 and Tzelepis2016 were further standardized using the approach
used for the Achilles dataset, with the same sets of non-essential and essential genes. For each dataset, gRNAs
were mapped to the set of human protein-coding genes found in the Ensembl release 104, and unmapped gRNAs
were filtered out. Given that gRNAs with multiple on- and off-targets can confound the analysis of fitness screens
[Fortin et al., 2019], we removed gRNAs that map to multiple loci in the GRCh38 genome, as well as gRNAs
with 1- and 2-mismatch off-targets located in coding regions other than the intended target. The final numbers
of gRNAs further considered for analysis are presented in Table 3.

Default gRNA rankings implemented in crisprDesign

For each nuclease, we rank gRNAs based on several rounds of priority. For SpCas9, gRNAs with unique target
sequences and without one- or two-mismatch off-targets located in coding regions are placed into the first round.
Then, gRNAs with a small number of one- or two-mismatch off-targets (less than 5) are placed into the second
round. Remaining gRNAs are placed into the third round. Finally, any gRNAs overlapping a common SNP
(human only), containing a polyT stretch, or with extreme GC content (below 20% or above 80%) are placed
into the fourth round. For CRISPRko applications, within each round of selection, gRNAs targeting the first
85% of the coding sequence of the canonical Ensembl isoform, as well as gRNAs targeting conserved regions
(phyloP conservation score greater than 0), are prioritized first. gRNAs with the same priority are then ranked
by a composite on-target activity rank to further prioritize active gRNAs. Based on the consistently reliable
performance performance and generalization of the methods DeepHF and DeepSpCas9 shown in Konstantakos
et al. [2022], Wang et al. [2019Db], Kim et al. [2019], the composite on-target activity rank is calculated by taking
the average rank across the DeepHF and DeepSpCas9 scores. For CRISPRa and CRISPRI applications, the
CRISPRai on-target score is used instead of the composite score.

The process is identical for enAsCasl2a, with the exception that the enPAM+GB method is used as the
composite score given that it is the only method available for the enAsCas12a nuclease. For CasRx, gRNAs
targeting at least 75% of the isoforms of a given gene, with no one- or two-mismatch off-targets, are placed into
the first round. gRNAs targeting at least 50% of the isoforms of a given gene, with no one- or two-mismatch
off-targets, are placed into the second round, and remaining gRNAs are placed into the third round. Finally,
any gRNAs containing a polyT stretch, or with extreme GC content (below 20% or above 80%) are placed into
the fourth round. Within each round of selection, gRNAs are further ranked by the CasRxRF on-target score,
using the canonical Ensembl isoform for scoring.

Generation of gRNA rankings from other tools

In addition to crisprDesign, we designed and ranked SpCas9 gRNAs for all human protein-coding (Ensembl
release 104) using four additional tools. For CHOPCHOP (v3), we used the command line interface (CLI)
available at https://bitbucket.org/valenlab/chopchop with default parameters. For CCTop (v1.0.0), we
used the CLI available at https://bitbucket.org/juanlmateo/cctop_standalone with default parameters.
For FlashFry (v1.15), we used the CLI available at https://github.com/mckennalab/FlashFry with default
parameters. For CRISPick, due to the lack of a CLI, we submitted batch query jobs through the portal https:
//portals.broadinstitute.org/gppx/crispick/public (accessed on July 27 2022) with default parameters
for the Hsu (2013) tracrRNA sequence using the Rule Set 3.
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Criteria used to compare feature availability across gRNA design tools

The following gRNA design tools were used for comparison in Table 1: multicrispr (v1.7.0), CRISPRseck
(v1.37.2), CHOPCHOP (v3), CRISPOR (website v5.01), CCTop (v1.0.0), Guides (v1.0), Cas-Designer (v3.0),
FlashFry (v1.15), E-CRISP (v5.4) and CRISPick (no version, accessed on July 27 2022). The criteria listed
below were used for assessing feature availability.

Nuclease section: a check mark indicates support for the corresponding nuclease, and Limited indicates that
only a subset of custom nucleases are available. Modalities section: a check mark indicates that the software
offers at least one specific functionality for that modality. Target space section: for the Reference genomes row,
a check mark indicates that the software supports gRNA design against reference genomes; for this row, Limited
indicates that the versions of the reference genomes are outdated. For the Custom sequences row, a check mark
indicates that the software supports the design of gRNAs targeting custom DNA sequences.

The Off-target aligner section indicates which alignment methods are available in each tool. The Off-target op-
tions section describes which off-target alignment functionalities are implemented: genomic coordinates of the
off-targets are available to the user (Genomic coordinates row), off-target alignment to custom sequences (Cus-
tom sequences row), concurrent off-target alignment to multiple organisms (cross-reactivity row), and alignment
to major or minor allele genomes (Minor/major alleles row). The On-target and Off-target scoring sections
indicate which scoring methods are implemented in the software.

The Annotations section indicates whether or not users have access to several annotations in the gRNA outputs.
Off-target annotation refers to gene context annotation of the off-targets; Isoform specification refers to infor-
mation about which gene isoforms are targeted by a given gRNA; Reinitiation sites refers to gRNAs annotated
as being upstream of potential reinitiation sites; Pfam domains refers to information about which Pfam domains
are targeted by a given gRNA; SNP annotation refers to an annotation of gRNAs overlapping common SNPs;
TSS annotation refers to whether or not gRNAs are annotated to fall into the promoter region of knows TSSs;
Conservation refers to evolutionary conservation annotation.

The Library design section indicates which library design features are available in each of the tools. Restriction
sites indicates whether or not gRNAs can be filtered for restriction sites of common enzymes. PolyT signal
indicates if PolyT stretch filtering is available. GC' content indicates filtering based on percentage GC content.
Hairpin loops indicates filtering based on potential self-complementarity. Paired gRNAs indicates whether or
not design of paired gRNAs is enabled. Ranking indicates if the software returns a gRNA rank for user selection.

Figure generation

All figures were made in R (4.2.1), with the exception of the following figures that were made in Microsoft
PowerPoint (v16.64): Figure 1, Figure 2a-b, and the workflow diagrams of Figure 4, Figure 5 and Figure 6.
Figure 2¢ and Figure 6b were made using the R package Guiz (v1.41.1). Figure 3, Figure 4, Figure 5, Figure S1,
Figure S3, Figure S4 and Figure S5 were made using base plotting functions in R. Reproducible code to generate
all figures can be found in our GitHub manuscript repository.

Data availability

Chromatin accessibility data from Horlbeck et al. [2016] necessary for the CRISPRai on-target algorithm are
available on Zenodo (DOI: 10.5281/zenodo.6716721). Fasta files, Bowtie indexes and BWA indexes for the
major and minor alleles of hg38 using dbSNP151 are available on Zenodo (DOI: 10.5281/zenodo.6862556). We
precomputed and fully annotated gRNAs for human and mouse protein-coding genes using crisprDesign for the
following nucleases: SpCas9, enAsCasl2a, and CasRx. Ensembl release 104 and Ensembl release 102 were used to
define genes for human and mouse, respectively. Separate datasets were generated for the CRISPRko, CRISPRa,
CRISPRI, and CRISPRkd modalities. All files are available on Zenodo (DOI: 10.5281/zenodo.7042164).

Software and code availability

All crisprVerse packages are open-source and available on GitHub (Table 4). At time of publication, all packages
were accepted at Bioconductor and available on the development branch of Bioconductor. Because of its
size, the data package crisprDesignData is hosted on GitHub only. Reproducible code of all analyses can be
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R package | Description

crisprVerse | Easily install of the crisprVerse ecosystem
crisprDesign | Core package for gRNA design

crisprBase | Nuclease specification and gRNA arithmetics
crisprBowtie | gRNA spacer alignment with Bowtie

crisprBwa | gRNA spacer alignment with BIWA

crisprScore | On- and off-target scoring algorithms for gRNAs

crisprViz | Visualization of gRNAs using genomic tracks
Rbwa | R wrapper for BWA aligner
crisprScoreData | Pre-trained machine learning models for crisprScore
crisprDesignData | Pre-computed data for the crisprVerse ecosystem (human and mouse)

Table 4. R packages in the crisprVerse ecosystem.

found at https://github.com/crisprVerse/crisprDesignPaper. A list of extensive tutorials can be found
at https://github.com/crisprVerse/Tutorials.

The analyses included in this paper were produced using the following package versions: crisprDesign (v0.99.134),
crisprScore (v1.1.14), crisprScoreData (v1.1.3), crisprBowtie (v1.1.1), crisprBase v(1.1.5), crisprVerse v(0.99.8),
crisprBwa (v1.1.3), Rbwa (v1.1.0), crisprDesignData (0.99.17), crisprViz (0.99.18)

We also offer a Docker container encapsulating the latest crisprVerse ecosystem on our DockerHub page. Doc-
umentation about the installation and usage of the container can be found here.

Abbreviations

e ABE: adenine base editor

e BWA: Burrows-Wheeler Aligner

e CAGE: Cap Analysis of Gene Expression
e CBE: cytosine base editor

e CCLE: cancer cell line encyclopedia

e CDS: coding DNA sequence

e CFD: cutting frequency determination

e CLI: command line interface

e CRISPR: clustered regularly interspaced short palindromic repeats
e CRISPRa: CRISPR activation

e CRISPRbe: CRISPR base editing

e CRISPRi: CRISPR interference

e DHS: DNAse I hypersensitive site

e DSB: DNA double-strand break

e FACS: fluorescence-activated cell sorting
e LFC: log-fold change

e IncRNAs: long non-coding RNAs

e MAF: minor allele frequency

e OPS: optical pooled screening
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e PAM: protospacer adjacent motif

e PE: prime editing

e pegRNA: prime editing guide RNA

e PFS: protospacer flanking sequence

e RNAi: RNA interference

e gRNA: single-guide RNA

e SNP: single-nucleotide polymorphism

e TSS: transcription starting site
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Supplementary Tables and Figures

Target Spacer specification Number of mismatches
. 0 1 2 3

Gene | Coordinate Spacer PAM | 5¢— B0 BW [AC BO BW |AC BO BW | AC BO BW

CFTR chr7:117559595 ATTAAAGAAAATATCATCTT TGG 1 1 1 7 7 7 145 145 145 | 2,314 2314 2314
chr7:117559605 TCTGTATCTATATTCATCAT AGG 1 1 1 7 7 7 125 125 125 | 1,704 1,704 1,704

HBB chr11:5227002 CATGGTGCATCTGACTCCTG  AGG 2 2 2 0 0 0 14 14 14 210 210 210
chr11:5227004 GTAACGGCAGACTTCTCCTC AGG 1 1 1 0 0 0 7 7 7 83 83 83

HEXA chr15:72346571 TGTAGAAATCCTTCCAGTCA GGG 1 1 1 0 0 0 25 25 25 298 298 298
chr15:72346578 ATCCTTCCAGTCAGGGCCAT  AGG 1 1 1 0 0 0 6 6 6 203 203 203
chr20:4699588  AGCAGCTGGGGCAGTGGTGG GGG 1 1 1 2 2 2 96 96 96 909 909 909

PRNP chr20:4699589 GCAGCTGGGGCAGTGGTGGG GGG 1 1 1 12 12 12 100 100 100 | 1,052 1,052 1,052
chr20:4699595 GGGGCAGTGGTGGGGGGCCT  TGG 1 1 1 2 2 2 56 56 56 860 860 860
chr20:4699598 GCAGTGGTGGGGGGCCTTGG  CGG 1 1 1 0 0 0 32 32 32 421 421 421

Supplementary Table S1. Table of on- and off-target alignments in the GRCh38.p13 for the 10 spacer
sequences reported in Bhagwat et al. [2020] using a PAM-agnostic approach. Number of mismatches between
0 and 3 were considered for 3 different aligners: Aho-Corasick exact string matching as implemented in
Biostrings (AC), Bowtie aligner via the crisprBowtie package (BO), and BWA aligner via the crisprBwa
package (BW). All 3 alignment methods agree.
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Supplementary Figure S1. Comparison of computing times for off-target alignment methods
implemented in crisprDesign. We compare computing time for the four different off-target methods
available via the addSpacerAligmments function in crisprDesign: Bowtie, via the crisprBowtie package
(Bowtie), BWA, via the crisprBwa package (bwa), and an iterative version of both algorithms to diminish the
impact of highly non-specific gRNAs on computing time (bowtie-iter and bwa-iter).
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Supplementary Figure S2. Comparison of computing times for subsets of human protein-coding
exons. We compared computing times across tools to design gRNAs and perform a genome-wide off-target
search in the human genome. Six random subsets of protein-coding exons located on chrl were used to perform
the comparison. The sizes of the subsets were 100, 200, 400, 800, 1600 and 3200 exons. The x-axis shows the
total size in nucleotides of the DNA target space formed by each subset, and the y-axis shows computing times
in seconds. Details about the alignment parameters for each method can be found in the Methods section.

33


https://doi.org/10.1101/2022.04.21.488824
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.21.488824; this version posted September 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Conservation window b Essential genes Cc Non-essential genes

Q

-0.10

—— Neg conservation score —— Neg conservation score
—— Pos conservation score —— Pos conservation score

2
1

Pearson correlation
-0.15
L
Relative frequency
Relative frequency

0.0

-0.20
1
)

T T T T T T T T T T T T T T
0 20 40 60 80 100 -2 -1 0 1 -2 -1 0 1

Window size (nucleotides) gRNA log-fold change gRNA log-fold change

d Essential genes Non-essential genes

(']

(] ()]
& &
% o 'g © T e
i) ie]
s - &~ | gt e RS
< N < §
=4 =4
oc o
%0 o 0 m
I 7 |-
‘,f i ——— LOWESS curve ﬁr ] —— LOWESS curve
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
% CDS % CDS

Supplementary Figure S3. Influence of evolutionary conservation and gene target position on
gRINA activity. a-c We annotated each gRNA present in Project Achilles with a conservation score using
the function addConservationScores implemented in crisprDesign (see Methods). The gRNA conservation
score is taken as the average DNA conservation score across nucleotides in a user-specified window around the
gRNA cut site. In a, we show the correlation between observed gRNA activity and the conservation scores for
different window sizes for essential genes. The data suggest an optimal window of 18 nucleotides around the
cut site. b Distributions of the observed gRNA log-fold changes (LFCs) based on whether or not gRNAs are
targeting regions of high conservation (positive gRNA conservation score) or regions of low conservation
(negative gRNA conservation score), for gRNAs targeting essential genes. ¢ Same as b, but for gRNAs
targeting non-essential genes. d Relationship between gRNA activity and gRNA position within the target
coding sequence (CDS) for gRNAs targeting essential genes in the Hart2015 dataset. The Ensembl canonical
transcript was used as the target CDS for each gene. The red curve represents a LOWESS trend. gRNAs
located beyond the first 85% of the CDS (to the right of the the vertical line) show a progressive decline in
activity. e Same as d, but for gRNAs targeting non-essential genes.
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Supplementary Figure S4. CasRx tiling screens of CD55 and CD/6. Pooled FACS tiling screening
data of genes CD55 and CD46 performed in HEK 294 cells using CasRx (RfrCasl3d). Processed and
normalized logy fold changes were obtained from Wessels et al. [2020]. Both screens are represented using the
canonical Ensembl isoforms. We remapped and reannotated all gRNA sequences using crisprDesign; isoform
annotation, on-target activity score using CasRx-RF as implemented in crisprScore, and off-target alignments
were added to each gRNA. The color of the dots indicates the number of isoforms targeted by each gRNA.
The size of the dots is proportional to the on-target activity score. The coding sequence (CDS) is highlighted
in grey. LOESS regression curves are shown as solid lines. For both genes, transcript per million (TPM)
counts in HEK 293 cells summed across all isoforms overlapping a given nucleotide position are shown below
the log-fold change panels.
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Supplementary Figure S5. Probability weights used for off-target scoring of CasRx gRNAs a
Boxplots of the differences in log2 fold change (ALFC) between single-mismatch (SM) gRNAs and their
corresponding perfect-match (PM) gRNAs in the GFP tiling screen. X-axis represents the mismatch position
within the spacer sequence, with 1 being the position next to the direct repeat. The smooth curve was
obtained using LOESS regression. The dotted line represents the average log-fold change of all PM gRNAs
after multiplying by -1. b CasRx mismatch tolerance probabilities estimated from (a) and used in the CFD
scoring method in crisprScore.
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