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ABSTRACT

Germline mutation is the mechanism by which genetic variation in a population is created.
Inferences derived from mutation rate models are fundamental to many population genetics
inference methods. Previous models have demonstrated that nucleotides flanking polymorphic
sites — the local sequence context — explain variation in the probability that a site is polymorphic.
However, limitations to these models exist as the size of the local sequence context window
expands. These include a lack of robustness to data sparsity at typical sample sizes, lack of
regularization to generate parsimonious models and lack of quantified uncertainty in estimated
rates to facilitate comparison between models. To address these limitations, we developed
Baymer, a regularized Bayesian hierarchical tree model that captures the heterogeneous effect
of sequence contexts on polymorphism probabilities. Baymer implements an adaptive
Metropolis-within-Gibbs Markov Chain Monte Carlo sampling scheme to estimate the posterior
distributions of sequence-context based probabilities that a site is polymorphic. We show that
Baymer accurately infers polymorphism probabilities and well-calibrated posterior distributions,
robustly handles data sparsity, appropriately regularizes to return parsimonious models, and
scales computationally at least up to 9-mer context windows. We demonstrate application of
Baymer in two ways — first, identifying differences in polymorphism probabilities between
continental populations in the 1000 Genomes Phase 3 dataset, and second, in a sparse data
setting to examine the use of polymorphism models as a proxy for de novo mutation
probabilities as a function of variant age, sequence context window size, and demographic
history. We find a shared context-dependent mutation rate architecture underlying our models,
enabling a transfer-learning inspired strategy for modeling germline mutations. In summary,
Baymer is an accurate polymorphism probability estimation algorithm that automatically adapts
to data sparsity at different sequence context levels, thereby making efficient use of the
available data.
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INTRODUCTION

Germline mutations are the primary source of genetic variation between and within species.
Quantifying where, what type, and how frequently mutations arise is therefore of fundamental
importance to population genetic inference and complex trait studies. Better estimates of mutation
rates improve tools designed to quantify population divergence times', demographic history?, and
the effects of background selection®. Moreover, models for the underlying de novo mutation rate
from which burden of mutations can be statistically assessed have enabled discovery of genes*®
and non-coding sequences®’ contributing to complex disease**%*.

Our working hypothesis is that there exists an underlying structure to the context-dependent
effects that shape the mutation rate. Here we focus on polymorphism probabilities as a proxy for
the mutation rate that we hypothesize share the same context-dependent architecture subject to
genetic drift, demography, selection, biased gene conversion, or additional phenomenon that
operate across population history. The frequency of polymorphisms varies widely across the
genome'® and correlates with several genomic features''™"3, with new mutations caused by both
exogenous and endogenous sources'. There is considerable evidence to suggest that local
nucleotide context directly relates to the probability that a nucleotide mutates. A classic example
of this is the ~14-fold higher rate of C>T ftransitions at methylated CpG sites, owing to
spontaneous deamination of 5-methylcytosine’"". Long tracts of low-complexity DNA have
higher mutation rates, which is hypothesized to be the result of slippage of DNA polymerase
during replication'®. This prior work suggests that local sequence context is integral to
understanding variation in polymorphism rates across the genome, and that the most predictive
models will be best positioned to guide elucidation of the underlying mutational mechanisms.

Our previous work demonstrated that a sequence context window of seven nucleotides (i.e., ‘7-
mer’) provided a superior model to explain patterns of genetic variation relative to smaller windows
that are commonly used (e.g., 3-mers)'®. While an advance, this model was fundamentally limited
for three reasons: scalability, reqularization, and uncertainty. First, the size of the model — which
increases by a factor of four for each additional nucleotide added — presents intrinsic limits both
computationally and in terms of statistical power. Second, while it is straightforward to assume
that every sequence context is meaningful, a more parsimonious model — informed by biological
intuition — might be that only a subset of contexts contributes meaningfully to the observed
variation in data. This is particularly important for inference of somatic and de novo mutation rates
or in other data-sparse situations. Finally, while our previous model provided a point estimate of
the mean polymorphism probability, it did not immediately emit uncertainty resulting from
multinomial variance and heterogeneity in larger sequence contexts. As sequence context sizes
are expanded, there is functionally less data and thus more uncertainty in estimates, making point
estimates even more unreliable. Quantifying uncertainty is also required for detecting differences
in probabilities across models, for example when comparing differences in rates across
populations®*?? or at functional genomic features®. Ideally, a method should scale the inferred
context length proportional to the amount of data and the biological signal that may


https://doi.org/10.1101/2022.10.14.512160
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512160; this version posted October 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

78  be present within that data while providing uncertainty in estimated parameters and underlying
79  probabilities.

80

81 Previous work has sought to address these challenges, though methods introduced to date do
82  not address all limitations simultaneously. Sparsity and scalability have been tackled through a
83  deep-learning framework* as well as an IUPAC-motif-based clustering approach® which
84  modeled polymorphism probabilities up through 9-mers. Another method explored polymorphism
85  probabilities up through 7-mers using DNA shape covariates to reduce the parameter space?. All
86 three methods are robust and effective at measuring point estimates of polymorphism
87  probabilities in expanded sequence contexts, however none explicitly estimate the uncertainty of
88 these parameters. Finally, the CIPI model?” is a Bayesian method that addresses these issues,
89  but focuses on applications with smaller context-window motifs (5-mer) in variant settings with
90 fewer mutation events (e.g., somatic mutations in cancer or mutations in viral genomes) and is
91 not obviously scalable computationally to larger size context windows and sizes of contemporary
92  population genomics data sets in humans (e.g., hundreds of millions of polymorphic sites).

93

94  Here, we develop a method that addresses all three limitations in the original model. We construct

95 a Bayesian tree-based method that integrates sequence context window size, handles sparse

96 data, and captures uncertainty in estimates of mutation probability via the posterior distribution.

97  We apply our approach in two ways. First, we quantify differences in polymorphism probabilities

98 between continental populations and place bounds on the effect sizes of potential undescribed

99  context-dependent differences in the 1000 Genomes dataset®®. Second, we explore the use of
100  polymorphism datasets to predict de novo mutations. We measure the effect of population history,
101  variant age, and sequence context size on model performance with the aim of generating a
102  meaningful proxy to estimate the germline mutation rate.

103 RESULTS

104

105 A tree-based sequence-context model captures variation in polymorphism probabilities
106

107  We began by developing a model to describe the hierarchical relationship of sequence context
108 dependencies over increasing window sizes. We structured this as a rooted, tree-based graph,
109  where each type of substitution class is represented distinctly (Fig. 1A). Each level of the tree
110  represents an increasing window size of sequence considered, alternating between incorporating
111 nucleotides to the window on the 3’ end for even-sized contexts and on the 5’ end for odd-sized
112  contexts. We fold over reverse complementary contexts to reduce the parameter count
113  (Methods). To ease readability, we denote each mutation with the sequence context, the
114  nucleotide in scope bolded, and the polymorphism indicated with an arrow (e.g TCC>T represents
115 the polymorphism where the bolded cytosine has become a thymine). Each non-root edge
116  represents the log-transformed, multiplicative shift in polymorphism probability captured by
117  expanding sequence context. The root edge corresponds to an estimated base polymorphism
118  probability for a given mutation type. For a given sequence context, each node in the tree
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119  represents the probability of observing a polymorphic site in the central nucleotide (referred to
120  hereafter as polymorphism probability), and is the product of all edges, starting from the root that
121 leads to the node (Fig. 1B). As our previous work has shown for a specific level of sequence
122  context, the distribution of observed counts for each sequence context can be modelled via
123  independent multinomial distributions® facilitating likelihood calculation. The resulting multinomial
124  probability vector corresponds to the combination of individual polymorphism probability
125  estimates across each mutation type tree for each sequence context (Methods).

126

127  Within the model, we incorporate two features essential for downstream applications when
128 comparing the outputs of competing models. First, we employ a Bayesian formulation which
129 generates posterior distributions for polymorphism probabilities (Methods). This approach
130 naturally estimates parameter uncertainty which is essential for comparison of rates across
131  different tabulated models. Second, we incorporate regularization in the parameter estimation
132  procedure for tree edges. Previous sequence context models estimated parameters for all edges
133  of the tree (¢), meaning that all values of were effectively non-zero. However, our previous work
134  suggested that perhaps only a fraction of edges meaningfully contribute information®.
135 Hypothesizing that only a subset of edges is informative for the polymorphism probability shifts,
136 we regularize our tree model by incorporating a spike-and-slab prior on the ¢ parameters®. We
137  tune the model such that the slab is favored when the evidence suggests a shift greater than 10%
138 for a given context level (Fig. 1C). This value was choosen weighing the stability of model
139  convergence with the goal of inferring the largest possible effects.

140

141 Because the posterior distribution is not analytically tractable, we implemented an adaptive
142  Metropolis-within-Gibbs Markov Chain Monte Carlo (MCMC) sampling scheme® to sample from
143  and thereby estimate the posterior distribution of this model. To further aid in convergence and
144  enforce intermediate nodes to have informative polymorphism probabilities, we estimated
145  parameters of the model level-by-level rather than all simultaneously, leveraging the conditional
146  dependency structure of the hierarchical tree. Under this set-up, the unseen higher-order layers
147  are assigned ¢.p = 0 shifts until their level has been sampled. We embedded this model and
148 sampling scheme into software (named Baymer) for further testing and applications.

149

150 Evaluation of the model demonstrates robust inference of the underlying rates with

151 uncertainty

152

153 A key feature of Baymer is that it estimates posterior distributions for each parameter, allowing
154  for uncertainty in the probabilities of polymorphism at each sequence context. To evaluate the
155  coverage of the estimated posterior probabilities, we used simulations to assess how often our
156  posterior distribution captures simulated values. Using a pre-specified polymorphism probability
157  table, we tested how frequently polymorphism probabilities estimated by Baymer captured the
158 true value for each sequence context (Methods). We found that across all sequence context
159  sizes, 89%, 93%, and 97% of context simulations contained the true polymorphism probability in
160 the 90%, 95%, and 99% credible intervals, respectively (Methods, Supplementary Table 1).
161
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162 A second important feature is that regularization is embedded into the method, allowing for the
163  creation of parsimonious models that capture most of the information with the fewest non-zero
164  parameters. This part is critical to address cases where the amount of data is not large and limits
165 power, or when considering larger windows of sequence context that are rare and/or
166  uninformative. If robustly calibrated, we would expect probabilities inferred in a holdout set to
167  strongly correlate with those estimated during a test phase (i.e., minimal overfitting). To evaluate
168 the robustness of the inferred rates, we partitioned the human genome reference into two sets -
169  even and odd base-pairs - and used SNPs of allele count 2 or greater observed in the gnomAD?'
170  non-Finnish European (NFE) collection to independently train models (Methods). We compared
171  the concordance of probabilities for models with sequence context windows up to 4 flanking
172  nucleotides on either side (i.e., a 9-mer model) using the maximum likelihood estimate approach'®
173 and Baymer (Supplementary Fig. 1). For each comparison, in addition to the Spearman
174  correlation, we also calculated the root mean squared perpendicular error (RMSPE) from each
175  point to the x-y axis, as a measure of the tightness of the distribution from the true, shared value
176  (Methods). The maximum likelihood estimates of polymorphism probabilities (Fig. 2A, Spearman
177  correlation p = 0.915; RMSPE = 0.117) were less correlated and considerably less tightly
178  distributed than those for Baymer-derived models (Fig. 2B, p = 0.990; RMSPE = 0.035). This
179  result occurred even after omitting ~16,000 sequence contexts with zero mutations in either
180 dataset (odd and even base pairs) from the maximum likelihood model comparison, rendering
181 practical use of large swaths of the model useless due to substantial overfitting at the 9-mer level.
182 If zero-mutation contexts omitted from the maximum likelihood model were included, the
183  correlations would perform considerably worse (Methods, Supplementary Fig. 1D, p = 0.876;
184 RMSPE = 0.744).

185

186 We next sought to evaluate the transferability of inferred models between experimental
187  collections; while internally consistent, the above procedure could simply reflect data set specific
188  biases®. For this, we compared non-admixed, non-Finnish European (EUR) samples obtained
189  from the 1000 Genomes (1KG) Project (re-sequenced by the New York Genome Center)® with
190 the gnomAD NFE sample described above. As before, we split the data into even and odd base
191 pairs but also applied a variant down-sampling procedure to match total variant count and site-
192  frequency spectrum between both sets (Methods). By comparing variants found in the even base-
193  pair genome of gnomAD with the odd base-pair genome of 1KG, this strategy ensures no variation
194  overlapped between data sets. We observed that the probabilities estimated from both sample
195  sets were strongly correlated (p = 0.981; RMSPE = 0.064; Fig. 2C) though were slightly weaker
196 than the correlations from each internal comparison and fit less tightly (gnomAD p = 0.990;
197 RMSPE = 0.035; Fig. 2B; 1KG p = 0.986; RMSPE = 0.042; Supplementary Fig. 2). This result
198 demonstrates that some additional between-sample variation may exist, but that Baymer infers
199  probabilities of polymorphism that are broadly consistent with one another, supporting the notion
200  of model transferability.

201

202  We next aimed to quantify how well the model selects meaningful context features. We expected
203  more proximal bases to the focal site to have a greater impact on polymorphism probabilities for
204 tworeasons, (i) due to data richness, and (ii) that proximity to the polymorphic site would suggest
205 more direct impacts on mutability, e.g., the CpG context. Baymer estimates the fraction of
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206  posterior samples in the slab, implying a non-zero effect on polymorphism probabilities, and in
207  the spike, which implies no effect. Thus, the probability of an edge being included in the slab is
208 the equivalent of the posterior inclusion probability (PIP) for our model. Consistent with
209 expectation, the fraction of sequence contexts with a PIP > 0.95 monotonically decreases as the
210 sequence context size is increased (Fig. 2D).

211

212  Larger contexts best explain patterns of variation genome-wide

213

214 We note that over 61% of all sequence contexts with a PIP > 0.95 are found in the 8-mer and 9-
215  mer levels of our model of polymorphism observed in the gnomAD NFE data. While fewer than
216 2% of 9-mer sequence contexts meaningfully impact the final estimates, they still account for the
217  most total absolute contexts (7189 total contexts > 0.95 PIP). This observation holds even after
218 filters for data sparsity (Methods, Fig. 2E). This implies a considerable impact on polymorphism
219  probabilities in extended sequence contexts, consistent with previous work'®2*-2°_ This general
220 trend is similarly consistent across mutation types (Fig. 2F). We thus evaluated the overall
221 improvement in likelihood by expanding window sizes up to 9-mers. Compared to lower context
222  models (e.g., 3-mer, 5-mer, or 7-mer) on holdout data, 9-mer Baymer models substantially
223  improved the likelihood and best fit to the data (Methods, Supplementary Table 2).

224

225 Frequency of polymorphism across populations do not differ substantially across levels
226  of sequence context

227

228  Prior work has centered around evaluating whether mutation rates have changed over
229  evolutionary time by evaluating differences in the proportions of sequence-context-dependent
230  polymorphism between human populations®'?>*43¢ To determine whether polymorphism
231 probabilities differ across human populations, we analyzed individuals from the NYGC
232  resequencing of 1KG Phase lll representing continental European, African, East Asian, and South
233  Asian groups. We extracted variants private to these continental groups, down-sampling to match
234  site-frequency spectra bins and overall sample sizes (Methods). We then applied Baymer to each
235 individual dataset to model probabilities up to a 9-mer window of sequence context. We compared
236  estimates of polymorphism probabilities in each population by assessing the degree to which the
237  posterior distribution of each population’s model parameters overlapped. The fraction overlap of
238 each distribution is a proxy for the probability that the underlying polymorphism probabilities are
239 the same. Due to the implicit tree structure of sequence context models, polymorphism probability
240  shifts in edges will affect all edges downstream of the context in question. Therefore, we identified
241 edges where both the estimated polymorphism probability and the immediate shift, ¢z, were
242  both considered very likely to be different.

243

244  Specifically, we identified contexts whose polymorphism probabilities and shifts both overlapped
245  less than 1% in pairwise comparisons between the four populations (Supplementary Table 3).
246  This included all the most notable previously reported 3-mer shifts across continental groups,
247  including the increase in TCC>C mutations found in European relative to Non-European ancestry
248  populations?®2%343 We also discovered a nested context within the classic TCC>T context,
249 namely CC>T, as being very likely to differ between populations. This could simply be a trickle-
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250 down signal from the TCC>C, ACC>C, and CCC>C effects implicated by Harris?'. However, all
251  four contexts from this 3-mer family have evidence of elevated polymorphisms probabilities in
252  Europeans vs Africans, which might suggest a more parsimonious explanation of a second
253  contributing signal, possibly with the same underlying mechanism.

254

255  We next focused on the remainder of 3-mer and wider extended sequence contexts (Table 1).
256  While a handful of such sequence contexts have been implicated®, these results are confounded
257 by batch effects in the original 1KG sequencing data®’. In our results, we observed the presence
258  of nucleotide repeats, e.g., TA / CG dinucleotides; poly-C / poly-A in several of the divergent
259  contexts, which could be explained by polymerase slippage’®.

260

261  While the population-specific polymorphism probabilities estimated and polymorphism counts are
262 identical between each pairwise comparison and thus correlated, we still note that 15/28 pairwise
263  differences are specific to a single continental group. Of these, only the two canonical European
264  context mutation differences (TCC>T and TCT>T) are in 3-mer contexts, otherwise all are found
265 in 5-mer and greater mer-levels. In South Asian samples, we find that the mean CTATA>T
266  polymorphism probabilities are approximately 1.6 times higher than the remaining populations
267 and in Africans TATATATC>G is approximately 1.9 times higher. The largest population-specific
268  effect was discovered in East Asians where ATACCTC>A polymorphism probabilities are roughly
269 2.7 times higher than in European, African, or South Asian models. None of these effects have
270  been explicitly documented before.

271

272  Taken collectively, we observed relatively few instances of shifts that were quantifiably different
273  across continental groups, and those that were observed were largely confined to relatively small
274  windows of context where we might have anticipated well powered tests (e.g., 3- and 5-mers). To
275 quantify the power of our procedure and the sample size necessary to identify true shifts in
276  polymorphism probabilities, we performed simulations where true effect differences were ‘spiked-
277 in’ between two populations over a range of weak to stronger effects and across a sampling of
278  different sequence contexts (Methods). Shifts for this experiment are defined as the natural log
279  of the polymorphism probabilities ratio (NLPPR) between each simulated population. This allowed
280 us to construct credible sets of effects that we were reasonably well powered (>80%) to discover
281 (Table 2). Unsurprisingly, the power scaled proportional to the number of context instances,
282  simulated mutations in the dataset, and the size of the spiked-in differences (Supplementary
283  Figure 3). Notably, extremely subtle shifts (NLPPR <= 0.01; 0.99 — 1.01 fold change) were not
284  detectable at any sequence context size. On the opposite side of the spectrum, we found that we
285  were reasonably powered to identify shift differences where NLPPR > 1.0 (fold decrease <= 0.37
286  orfold increase >= 2.72) up through 5-mers and in 6-mers with large sample sizes. For reference,
287  the TCC>T polymorphism has an NLPPR = 0.291 (~1.34 fold increase) — the largest difference
288  of any 3-mer by our calculation.

289
290 In contrast, our experiment had essentially no power to discover 9-mer shifts and extremely
291 limited power for 8-mers, even for large shifts. Thus, there may exist large shifts at these sizes

292  that we could not reliably capture. These results are consistent with our comparisons in the real
293 data (Table 1), as only differences within the detectable range at each mer-level were implicated.
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294  These power calculations suggest that, given the experiment we performed grouping all mutations
295  together (agnostic to allele frequency or age, see Discussion), if any 3-mer differences greater
296 than the TCC>T shift exist, we would have discovered these effects for a broad range of modest
297  to very strong effects across a range of sequence contexts window sizes. This effectively sets
298  bounds on the differences possible for this analysis scheme in this data.

299

300 A sequence context model that captures variability in de novo mutational rates

301

302 Given its formulation in handling data sparsity, we next sought to apply Baymer to develop a
303 model that best captures rates of de novo mutations across the genome. We took advantage of
304 a recent collection of 2,976 WGS Icelandic trios that identified 200,435 de novo events®® and,
305 analogous to the above, we partitioned de novo variants into even (for training) and odd (for
306 testing) base pairs. We observed substantial improvement in the overall likelihood in the testing
307  set for 5-mer size windows compared to 3-mers (3-mer vs 5-mer, delta-LL = 2,144), but only
308 minimal improvement for increasing windows sizes further (5-mer vs 9-mer, delta-LL = 265).
309 Indeed, Baymer did not select any sequence context feature beyond the 5-mer level with PIP >
310 0.95. This is not unexpected given our approach to regularization, as the number of events in
311 larger sequence contexts is increasingly sparse, it is desirable to only include informative contexts
312  to avoid overfitting.

313

314  We next used Baymer to improve upon this baseline model. Previous work has demonstrated that
315 inference of de novo mutational probabilities can be captured via rare variant polymorphism data
316 obtained from population sets as a proxy®>. We hypothesized that a partitioned set of
317  polymorphism data based on: (i) larger sample sizes that (ii) closely matched the ancestry of the
318 de novo set and (iii) focused on rare variants as a proxy to capture the most recent mutation
319  events would generate the most transferrable model and robust rate estimates. To build variant
320 partitions, we used variant call set data from gnomAD, focused on either a population-matched
321 proxy (i.e., NFE, the non-Finnish European subset) or variant calls from all samples in gnomAD
322 regardless of ancestry (i.e., ALL). For each of these, we created three partitions focused (i)
323  exclusively on variants with one allele count (i.e., singletons; labeled POP-1), (ii) exclusively on
324  variants with two allele counts (i.e., doubletons; labeled POP-2), and (iii) variants with allele count
325  of two or greater (labeled POP-2+). Beyond this, we also identified a set of putatively derived
326  substitutions in the human lineage by comparing the GRCh38 human reference genome with
327  ancestral sequences obtained from primates®.

328

329 We applied Baymer to each variant set independently, comparing the likelihoods of each model
330 to explain rates of de novo mutation in the test set after downscaling probabilities proportional to
331 the sample size. First, we observed that for 3-mer sequence context models, the set of variants
332 obtained from the de novo training set outperformed all other models despite there being 102 to
333 1,377 times fewer variants contributing to them than the polymorphism datasets (Fig. 3A,
334  Supplementary Table 4). In contrast, for larger windows of context (i.e., 7-mer and 9-mer),
335  several of the polymorphism partitions explained the data better than one trained directly from de
336  novo events. This result indicates that increased sample size is required to detect meaningful
337  shifts in polymorphism probabilities in larger sequence context windows.
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338

339 Despite evidence to suggest singleton datasets should best recapitulate de novo variation
340 we were surprised to observe that models that trained exclusively on singletons and ALL-2
341 performed considerably worse than the rest across all windows of sequence context (Fig. 3A,
342  Supplementary Table 4). This is particularly surprising for larger windows of sequence context,
343  given the prior intuition that larger numbers of variants would have provided better rate estimates.
344  Although we only used variants that passed gnomAD quality control checks, this filter still included
345  alarge proportion of variants with a negative log-odds ratio of being a true variant (AS_VQSLOD
346 < O0; Supplementary Fig. 4). This pattern was also evident for other variant allele counts but were
347  most striking in singletons and the ALL-2 variant groups. Stricter quality filters (AS_VQSLOD > 5-
348  10) considerably improved model performance, but still did not surpass the de novo training model
349  at the 3-mer level (Supplementary Table 4). Our NFE singleton Baymer model trained on the
350 strictest quality filter tested (AS_VQSLOD > 10) nearly equaled our best performing model, NFE-
351 2+, with ~ 1/30" the number of variants, but came up just short. In summary, we observed that
352  training from a population matched sample which excluded singletons, NFE-2+, best predicted
353 rates of de novo mutations in 5-mer or larger contexts, better than training on de novo events
354  directly.

355

356  Next, we sought to determine which sample set best modelled the de novo test set adjusting for
357  the total number of variants within the partition. To control for sample size differences, we down-
358 sampled each partition to match the number of variants observed in the de novo training set
359 (n=70,364) five times. After down-sampling and when considering 9-mer context models, we
360 observed that the partitions which included NFE exclusively (noted in green, Fig. 3B) performed
361  on average better than using the entirety of gnomAD, “ALL” (noted in orange in Fig. 3B), which
362 included a more diverse panel of individuals within Europe (e.g., Finnish) but also beyond Europe
363 (e.g., East and South Asian, African and African American). This is consistent with prior belief
364 that, after controlling for the total sample size, variants that derive from samples where ancestries
365 more closely match are the most informative.

366

367 A grafted tree approach provides superior estimates of de novo mutational probabilities
368

369  Given the observations that de novo models only outperform polymorphism-based models when
370 either small sequence contexts are used (Fig. 3A) or the sample size is controlled (Fig. 3B), we
371 next sought to explore a transfer learning-inspired*® strategy to improve upon our model
372  performance. Transfer learning has previously been employed in a sequence context modelling
373  setting®*. We hypothesized that regularization means that de novo models have reduced
374  performance with expanded sequence contexts due to low sample sizes. Indeed, our de novo
375 model did not have the power necessary to confidently (PIP > 0.95) include any non-zero shifts
376 in sequence contexts larger than 5-mers in the model (Fig. 4A). The larger polymorphism
377  datasets, however, were well-powered to detect shifts in every level of the tree (Fig. 4A).

378

379 The nested tree structure of our polymorphism probability models provides a natural strategy
380 where specific branches of the estimated trees can be interchanged, i.e., a “grafted” tree. We
381 asked how similar estimates for edges in expanded sequence contexts are between our de novo

4,23,31
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382 model and the best-performing polymorphism model, NFE-2+. In edges in 2-mer and greater
383 levels where the de novo training model is powered enough to detect shifts (PIP > 0.95), the mean
384  posterior estimates of shifts are highly correlated (Fig. 4B). This suggests a grafted tree approach
385 isfeasible, leveraging the polymorphism datasets for those edges the de novo model is incapable
386  of estimating properly due to sparsity (Fig. 4C). Therefore, we built a grafted tree model using 1-
387 to 3-mer edges estimated in the de novo training data model, and 4- to 9-mer edges estimated
388 using the NFE-2+ data model. The resulting combined model had a greater fit to the holdout de
389  novo data than either the NFE-2+ model or de novo model alone (Fig. 4D, Methods).

390 DISCUSSION

391 Here, we present Baymer, a Bayesian method to model mutation rate variation that
392 computationally scales to large windows of nucleotide sequence context, robustly manages
393 sparse data through an efficient regularization strategy, and emits posterior probabilities that
394  capture uncertainty in estimated probabilities. Consistent with previous studies®*~2°, we show that
395 expanded sequence context models in most current human datasets are overfit with classic
396 empirical methods but considerably improve model performance when properly regularized. As a
397  result, this method allows for renewed evaluation of experiments that originally were statistically
398 limited to polymorphism probability models with small sequence context windows.

399

400 We examined differences in polymorphism probabilities between the continental populations in
401 the 1KG project. While differences in 3-mer polymorphism probabilities have been well-
402  documented?®?? and expansions up to 7-mers have been tested®, both methods rely on empirical
403 models with frequentist measures of uncertainty. Here, we expanded the search space out to 9-
404  mer windows and leverage the uncertainty estimated in the model to directly quantify differences
405 in these populations. We note that many of the differences discovered contain poly-nucleotide
406 repeats. There is some prior literature on the mechanism of slippage in polymerases during
407 replication of such sequences'®, so differential efficiencies of these enzymes across populations
408 could conceivably result in these patterns. However, it is also very possible that artifacts from
409 sequencing errors with differential effects across populations could explain the differences.

410

411 Despite being well-powered to identify a large range of differences in 3-mer and smaller contexts
412  we identified very few contexts that differ with high probability between the populations tested.
413  This implies that if large-scale population differences in the mutation spectrum do exist at these
414  window context sizes, they are most likely comprised of numerous subtle shifts rather than a few
415 large changes, in agreement with conclusions from prior work??.

416

417  We also explicitly placed bounds on the magnitude of differences that could possibly exist in this
418  dataset without being detected, quantifying what differences we can expect to be discovered
419  given the way variants are grouped in this experiment. Even though the 1KG project is relatively
420 small compared to current datasets, the number of sequence contexts available for modeling is
421 dataset-independent and inherently limited by the sequence diversity of the human genome.
422  Thus, while more polymorphism data could lead to the discovery of additional smaller shifts in the
423  future, bigger datasets will not improve the power to detect larger shifts in this allele frequency
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424  agnostic setting. In fact, for very large samples, polymorphisms in some contexts can become
425  saturated,*' reducing the information content in a similar manner as overly sparse data. Thus,
426  both to increase power and to improve modeling resolution, it will become necessary to partition
427  the data (e.g., by allele frequency or variant age®, or other genomic features).

428

429 It remains a challenge to disentangle the contribution of demography versus changes in the
430 underlying mutation rate on the mutation spectrum. Here, we control for the site frequency
431  spectrum of variants included, but the next stage of this model will need to incorporate more
432  sophisticated demographic features. Integrating Baymer-derived trees with a joint mutation
433  spectrum and demographic history method, such as mushi®, is a promising future direction.

434

435 Next, we asked to what degree polymorphism datasets could be used to approximate the de novo
436 mutation rate. Currently, true de novo mutation datasets are limited in size, which place bounds
437 on the scope of inference for adequate sequence context modeling. We demonstrate that
438 polymorphism datasets are accurate proxies for de novo mutation models and largely share the
439  same context-dependent mutability shifts, though in contrast to reports in the literature*#>!, the
440 focus exclusively on singleton variants (at least, using gnomAD calls) performed poorly relative
441 to all other considered models. Indeed, our experiment indicates that it is preferable to use
442  germline mutation models based on large polymorphism datasets that can estimate shifts through
443  the 9-mer level than it is to use the largest 3-mer de novo dataset, as is frequently the norm*°3",
444  Including exclusively variants from either polymorphism data or de novo data was also
445  suboptimal, however, as the best possible model we built for estimating de novo mutation rates
446  used de novo mutations in concert with polymorphism datasets. The success of this experiment
447  implies a general context-dependent mutability shift structure that underlies the human mutation
448  spectrum. The similarity of the derived dataset, which in theory represents the oldest subset of
449 variants tested, to the de novo variation further strengthens this argument and suggests that
450  although there have been some well-documented small changes in context-dependent mutation
451 rates, the general architecture remains largely conserved during modern human history.

452

453  One limitation of the model is the treatment of multi-allelic sites. Currently, multi-allelic sites are
454  treated as separate polymorphisms which violates assumptions of the multinomial model, where
455  only one outcome is possible for each locus. When we excluded multi-allelic sites, we observed
456  biases in the rates of CpG>A and CpG>G mutations, which are disproportionately filtered as a
457  side-effect of sharing the same sequence contexts with CpG>T mutations. A more nuanced
458 approach that models multiallelic and biallelic sites separately and then integrates jointly would
459  deal with this issue, though multiple mutations at the same nucleotide position with the same
460 allele change would require additional effort*?.

461

462 Finally, although we can identify regions of the tree where polymorphism probabilities diverge and
463 thus infer critical points in the tree, this model is tailored towards polymorphism probability
464  estimation rather than explicitly for motif discovery?”. Our objective is to estimate polymorphism
465  probabilities rather than finding those contexts with the largest effect sizes. Adding one nucleotide
466  at a time pseudo-symmetrically for tree generation reduces the computational sampling load but
467 makes for more awkward interpretation of the resulting mono-nucleotide impacts.

20,36,42
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468

469 In all of our experiments, we focused on the entirety of the accessible, non-coding genome. That
470 said, Baymer can easily be applied to any genomic features of interest for both polymorphism
471 probability estimates and comparisons of feature-dependent sequence context shifts. Our
472  approach does not currently incorporate genomic features in the model, but given genomic area
473  bounds, polymorphism probabilities can be tailored to a biological question of interest. Addressing
474  questions regarding the impact of genomic features on observed polymorphisms will be enhanced
475  with well-regularized models, as smaller genomic areas or specific variant conditions can induce
476  considerable data sparsity by reducing the number of contexts and/or polymorphisms available.
477  Therefore, Baymer paves the way for exciting possibilities to study the effects of genomic
478 features, variant age, and smaller subpopulations on sequence context-dependent mutation rate
479  variation.

480 METHODS

481 Sample Data Sources

482  We sourced samples from the 1KG Phase |ll New York Genome Center resequencing project®,
483  gnomADv3.0*', and trios from Halldorsson et al®®. The genomic area for all sample sources was
484  condensed to only include coordinates included within the 1KG accessibility mask®® and outside
485 of RefSeq coding regions to approximate the mappable non-coding genome. Only non-indel
486  SNVs designated as “PASS” by the data source were retained. Based on confidence calls within
487  the FASTA sequence files, high-confidence ancestral states (designated as those sites where all
488 sequences agree on ancestral state) were inferred for all variants and contexts within the genomic
489  area specified, where data allowed. Otherwise, variants and sites were omitted®®. Ancestral allele
490 counts were used for partitioning variants into different count brackets. Variants with allele
491  frequency greater than 0.85 were removed to control for ancestral state misidentification*. We
492  also compiled all sites where the high-confidence ancestral state and GRCh38 reference genome
493 disagree, treating this collection as a call-set of derived variants. See Data Accessibility section
494  for URLs for all data sources.

495

496 Baymer Model Description

497 In Baymer, increasing windows of sequence context are modeled as nested trees where each
498 sequence context has 4 children — one for each of the four nucleotides added to expand the
499  window size. For even-sized contexts, nucleotides are added to the 5’ end, and for odd-sized
500 contexts, to the 3' end. In this way, sequence context trees can be iteratively constructed to a
501 given window size. We build one such tree for every reverse-complement folded 1-mer mutation
502 type (i.e. A>C, A>G, A>T, C>A, C>G, C>T). Note that we designate the polymorphic nucleotide
503 infocus in bold. For a given mutation type tree, m, let every edge be parameterized by ¢.", where
504 adenotes the edge’s tree level and b the edge index. Edges in the first level of the tree represent
505 the baseline A>* and C>* polymorphism probabilities (i.e., ‘1-mer’) and center the polymorphism
506 probabilities. These edges can take any value between zero and one and are given uninformative
507  priors ¢7, ~ Uniform(0,1). All edges beyond the first levels represent the log-transformed
508 multiplicative shifts in polymorphism probability from their respective parent nodes. The
509 polymorphism probability for any node is therefore given by the product of the edge log-
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510 transformed multiplicative shifts leading to that node and the root node in the tree corresponding
511  to mutation type m.

512

513 Pg,lb = ¢¥,lo [la.p-€xp ((I)Zi,b*) (1)
514

515 where a* and b* represent the level and index of exclusively those edges leading to the context
516 in question. For every leaf context, i, where the mer-level, a, is equal to the maximum sequence
517  context size considered, we let p; denote the multinomial probabilities. Stated more explicitly:
518

519 Pi = [Pg: PatrPair 1 — L D5 ] (2)
520

521 where mys.; denote the three mutation types possible for this context. The corresponding
522  outcomes, x;, for these probabilities is a length four vector for each of the three mutation types
523 and the number of non-polymorphic context sites. We let n; denote the total number of
524  occurrences of leaf context i in the genomic area specified. Over k leaf nodes, the likelihood for
525  the model can be calculated as:

526

527 pl¢) = II¥ Multinom(n;, py, %;) (3)
528

529  To provide regularization for the edges that are included in the model, we placed a spike-and-
530  slab® prior on ¢

531

m _ (N, c?af) w.p. 1-a,
532 Pab {N(O, g2)  w.p. ag “)
533

534  where a, is the mixture probability that a given edge in mer level a belongs to the spike or slab.
535 We use an uninformative prior for aa ~ Uniform(0, 1). Both the slab and spike distribution are
536 specified to be Gaussian with a hyperparameter, ¢, representing the ratio between each
537 distribution’s standard deviation. The variance of the slab distribution for each level, ¢Z, is a
538 prespecified hyperparameter. For our models, we set this variance to ensure that the slab is
539 favored when the evidence suggests a shift greater than 10% for a given context level (c = 500;
540 02 = 0.729). These chosen hyperparameters were informed by our prior biological intuition for
541 meaningful effect sizes and a balanced ratio between the spike and slab distributions. These
542  hyperparameters are at the discretion of the user, but a value of ¢ less than or equal to 10000 is
543  recommended®.

544

545  Finally, we define a latent variable, /, that specifies whether a given edge belongs to the spike
546  (1=0) or slab distribution (I=1). This yields the joint posterior distribution of the model:

547

548 p(e.1,a,0%|y) « pylp)p($l1, 0?)pUla)p(@)p(o?) (5)
549

550 To estimate the posterior distribution above, we use an adaptive Metropolis-within-Gibbs MCMC
551 sampling scheme®. Every level of the tree is estimated in ascending order, setting higher-order
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552 levels (i.e., larger windows of sequence context) to have uninformative shifts to aid convergence
553  and enforce intermediate nodes to have informative polymorphism probabilities.

554

555 Our MCMC sampling scheme follows this approach. For the level-by-level sampling scheme,
556 edges in levels higher, &', than the level currently being sampled, a, are set to have no impact on
557 the ultimate probabilities estimated, i.e., 4);’%’*:

558  For the first layer of the tree:

559 1. Initialize all ¢, with a random value drawn from Uniform(0,1) for iteration x = 0.

560 2. Sample new values of each ¢T , for this iteration x, from Normal(¢1 x—1, T/ x—1) USINg
561 a Metropolis step*®, where T10x—1 Fepresents the variance of the normal proposal density for
562 ¢ -1 at the previous iteration x-1.

563 3. Repeat step 2 until algorithm convergence.
564
565 For each subsequent level, a > 1:
566 1. Draw initial values (x=0) for parameters ¢z}, Iy, aq
567 a. ¢g} is drawn from Uniform(—0.7,0.7), such that the total multinomial probabilities
568 sum to 1
569 b. Iy} is drawn from Bernoulli(0.5)
570 C. agis drawn from Uniform(0,1)
571 2. Sample new values of ¢, , from Normal(¢pg'y 1, Tgpx—1) USING @ Metropolis step
572 3. Sample new values of I, , using a Gibbs sampling step:
. PU=1l$gpxTaxax
573 labzx ~ Bernoulli <p<1=1|¢;7b,x,cfa,x,aa,xiip<z=o|¢g}i,x.oa,x,aa.x)) ©)
574 4. Sample new values of a, using a Gibbs sampling step,
575 Qg ~Beta(U+ X0 Iy 1+ =20 I 7)
576 where j represents the total number of edges in the current level.
577 5. Repeat steps 2-4 until algorithm convergence.
578
579

580 Posterior coverage estimation simulations

581 Polymorphism probabilities for our simulations were set using the mean of the posterior
582  distribution estimated with Baymer when applied to private European variant data with minimal
583 jitter added to avoid over-regularized estimates while still maintaining realistic human context-
584  dependent polymorphism probability patterns. Jitter was added by sampling every 9-mer
585  polymorphism probability, pj,, from Normal(py,, (pi)"°), where the variance was set to scale
586 to the underlying polymorphism probability. This dataset was chosen as it had the property of
587  reaching sparsity limits at the 7-mer level and beyond. Thus, simulations evaluated up to 7-mers
588  would provide a mixture of sparse and data-rich sequence contexts, providing a representative
589  proxy for larger datasets run up through the 9-mer level. Using these polymorphism probabilities,
590 new datasets were simulated by sampling from the multinomial distribution for each 9-mer
591  sequence context. After applying Baymer to each individual dataset, we calculated the frequency
592  that the true polymorphism probabilities were included in different sized credible sets. 2000
593  simulations were run for every sequence context up until 7-mers. Equal-tailed intervals were used
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594 to assign the credible intervals. Note that to aid computational tractability of this number of
595 contexts and simulations, the alpha mixing parameter was sampled by using the posterior
596 distributions for each level of the underlying base probability model used to generate simulated
597  data.

598

599 Model comparisons for even/odd base-pair subsets

600  All non-Finnish European (NFE) variants with a derived allele count greater than or equal to 2 in
601 the filtered gnomAD dataset were collected. Variants were next partitioned according to genomic
602 coordinate parity (even/odd base pairs) to evenly divide the two groups as randomly as possible.
603 Baymer was run on even and odd sets independently and the mean posterior estimates of
604  polymorphism probability parameters were returned.

605

606 The root mean squared perpendicular error (RMSPE) was calculated by measuring the
607  perpendicular distance between each point (estimated polymorphism probability) and the x=y line,
608 that assumes each estimate is identical between models.

609

610  For transferability experiments, all European samples, excluding Finnish samples, from the 1KG
611 Phase Il designated as non-admixed?® were aggregated and trimmed to only include sites with a
612  minimum of 2 derived alleles and again partitioned according to genomic position parity. Opposite
613 parities between 1KG and gnomAD datasets were grouped together. For each dataset, 100
614  equally-sized allele frequency bins between the minimum allele frequency in the two datasets and
615 1.0 were set. Each dataset was randomly down-sampled to ensure the same number of variants
616 in each allele frequency bin. Baymer was applied to each down-sampled dataset and mean
617  posterior estimates were compared.

618

619 Extended Sequence Context Likelihood Estimation

620 The gnomAD NFE data was partitioned into even and odd base pairs as described above. For
621  each split, models were estimated using Baymer up through 9-mers. Smaller models correspond
622 to the Baymer tree with all edges in larger sequence contexts not being considered assigned
623  uninformative shifts (¢4, = 0). We calculated likelihoods using the mean posterior probability
624  estimate at the 9-mer level on the opposite parity polymorphism count data.

625

626  Data Sparsity Filters

627  To distinguish the degree to which estimates of PIP are simply a byproduct of data sparsity, we
628 filtered out all sequence contexts with fewer than 50,000 total instances or fewer than 50
629  mutations in the non-coding genomic area considered.

630

631 Private Variant Analyses

632  All continental populations without substantial recent admixture (African, European, South Asian,
633 East Asian) from the NYGC 1KG phase Il resequencing dataset were filtered to only include
634  variants private to each continental group. Each population was trimmed to only include variants
635  with a minimum allele count of 2 and then down-sampled and site frequency spectra-matched to
636 match the smallest variant counts across the four continental groups. Baymer was then applied
637 to each resulting dataset. The resulting posterior distributions of the polymorphism probabilities
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638 and ¢ shifts of each model were then pairwise compared by calculating the fraction overlap of the
639 distributions, as a proxy for the probability they are the same. Distributions are parameterized
640 using a Gaussian kernel density estimate on the posterior samples.

641

642 Power Estimates

643  Truth polymorphism probabilities used in our simulations to estimate power were set using the
644 same model as the variance calibration experiments. For a given sequence context mutation, we
645 tested the discoverability of a spectrum of deviations from the “truth” model. We simulated 1000
646  9-mer count tables using polymorphism probabilities from both the “truth” model and the deviated
647 model. Both count tables were modeled using Baymer and the resulting posterior distributions
648 used to assess the fraction overlap for the context mutation in focus. A shift is considered
649  discovered if the degree of fraction overlap is less than 1%. As running this experiment for all
650 context mutations was intractable, we tested at most 100 CpG and 100 non-CpG contexts at each
651 mer-level. Contexts were chosen to give an even spread across the sample size spectrum, as
652 dictated by total contexts.

653

654  Grafted Tree Scheme

655 Baymer models were built independently on de novo even data and gnomAD NFE polymorphism
656 data with allele count greater than or equal to 2. The de novo model parameter estimates were
657 used up through 3-mers. For the remaining levels (for 5-mers and larger windows), NFE-2+
658 parameter mean point estimates were used in place of the equivalent de novo edges. Thus, the
659 grafted tree polymorphism parameters were the product of the point estimates for each branch of
660 the tree, given the data source described above. The multinomial likelihood of the resulting model
661 was calculated on the odd de novo holdout data, as before.

662

663 Data and Code Accessibility

664  All data analyzed here are publicly available at the following websites:

665 NYGC resequencing of 1KG Phase Il data:

666  http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504 high_coverage/working
667 /20190425 NYGC_GATK/

668 gnomADv3.0:

669 https://gnomad.broadinstitute.org/downloads

670 Halldorsson et al. trio data:

671 https://science.sciencemag.org/highwire/filestream/721792/field_highwire_adjunct_files/7/aau10
672 43 DataS5 revision1.tsv

673 1KG accessibility mask:

674  http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/2016
675 0622 _genome_mask GRCh38/PilotMask/20160622.allChr.pilot_mask.bed

676 RefSeq coding regions:

677  http://www.ensembl.org/biomart/

678  Ancestral FASTA:
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ftp://ftp.ensembl.org/pub/release97/fasta/ancestral_alleles’/homo_sapiens_ancestor GRCh38.ta
r.gz

Code Accessibility

We have implemented our Baymer method into software that is freely available as a python
package. This can be accessed on the Voight Lab GitHub repository:
https://github.com/bvoightlab/Baymer
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Table 1. Baymer modeled 1KG private continental context mutations with extreme polymorphism
probability differences

log(Poly. Poly. Prob. Shift
Population Context Prob. Fraction Shift Fraction Population
Comparison Mutation Fraction) Overlap Difference Overlap Specificity
TCC>T 0.291 0 -0.174 1.4E-157 European
Europeanv TCT>T 0.136 1.6E-18 -0.116 8.5E-16 European
African GCAATTA>G 0.569 4.7E-03 -0.668 2.4E-03
____________________ TATATATC>G  -0660  7.26:03 0730 56603 African
TCC>T 0.112 1.2E-09 -0.059 2.7E-03 European
Europeanv TCT>T 0.063 5.0E-03 -0.066 2.9E-03 European
South Asian  CTATA>T -0.587 2.9E-03 0.493 7.3E-03 South Asian
____________________ ATCTTC>G  -0606  7.66:03  0.668 54803
ccesT 0.081 1.4E-03 0.075 6.6E-04
TCC>T 0.312 0 -0.156 2.4E-97 European
Europeanv GCT>T -0.064 5.7E-03 0.095 6.1E-05
East Asian TCT>T 0.133 3.0E-19 -0.102 9.6E-06 European
GCAACCA>G 1.056 5.3E-03 -1.104 5.0E-03
____________________ ATACCTC>A  -1029 42603 0830 50603 EastAsian
TCC>T -0.179 1.7E-118 0.115 3.4E-12
Africanv  CTATA>ST -0.507 6.1E-03 0.482 7.4E-03 South Asian
South Asian CCCCCAG>G -0.818 2.6E-03 0.767 2.7E-03
____________________ TATATATC>G 0668 33603 -0.738 22603 African
GCT>T -0.063 9.1E-03 0.074 2.2E-03
i CTCGCG>T 1.240 2.8E-03 -1.243 3.6E-03
African v
East Asian TAAAATA>T -1.160 3.9E-03 1.135 4.8E-03
ATACCTC>A -1.061 4.6E-03 0.829 5.7E-03 East Asian
____________________ TATATATC>G 0712 39E04  -0748 13604 African
TCC>T -0.200 2.4E-155 0.097 5.4E-05
) CTATA>T -0.519 5.3E-03 0.479 7.8E-03 South Asian
Fast Aslan V- (e GeasT 1.244 2.0E-03 1.247 2.7E-03
South Asian
ATACCTC>A 0.906 8.5E-03 -0.819 9.1E-03 East Asia
CCCCCAG>G -0.819 3.8E-03 0.764 4.4E-03
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Table 2. Power estimates for 1KG continental private polymorphism probabilities.

abs(log(adj. poly.
prob / null poly.

# contexts sample

fraction of contexts with >80% power at each mer level

prob.)) size percentile 3mers 4mers 5mers 6mers 7mers 8mers 9mers

0-25% 0 0 0 0 0 0 0

0.01 26-50% 0 0 0 0 0 0 0
51-75% 0 0 0 0 0 0 0

76-100% 0 0 0 0 0 0 0

0-25% 0.44 0.11 0 0 0 0 0

01 26-50% 0.63 0.04 0 0 0 0 0
51-75% 0.73 0.03 0 0 0 0 0

76-100% 0.58 0.10 0 0 0 0 0

0-25% 1.00 0.92 0.30 0.21 0.01 0 0

0.5 26-50% 1.00 1.00 0.68 0.15 0.01 0 0
51-75% 1.00 1.00 0.76 0.27 0.02 0 0

76-100% 1.00 1.00 0.87 0.20 0.03 0 0

0-25% 1.00 099 081 034 020 0.02 0

1 26-50% 1.00 1.00 1.00 0.73 0.23 0.06 0
51-75% 1.00 1.00 1.00 087 0.24 0.04 0

76-100% 1.00 1.00 1.00 087 037 0.08 0

0-25% 1.00 1.00 096 0.61 0.25 0.08 0

15 26-50% 1.00 1.00 1.00 0091 0.39 0.18 0.02
51-75% 1.00 1.00 1.00 099 059 0.20 0

76-100% 1.00 1.00 1.00 099 0.69 0.26 0



https://doi.org/10.1101/2022.10.14.512160
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512160; this version posted October 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
A A>C Tree

A>G Tree

GAG>C GAGG>C GGAGG>C GGAGGC>C CGGAGGC>C

7 Qe @@y @ @@ @

A>T Tree C>ATree C>G Tree C>T Tree
CpG>T
%
=4
|7 € :
g,,a, 0,,0q, 0,,0q, (pm m: Mutational Tree
4-mer  3-mer 2-mer 1-mer ab a: Context Window Size
Level Level Level Level Oa: 0y b: Index for Edge
FFHER
o IWW//// A>C AG>C

o

i
ol

Pi = PICGGAGGC>C] = ¢y []exp@??)

Variable Selection via Spike and Slab

>

2 .

(pm N(O, ¢ Oza)wnh prob. 1-a,
ab | N(O, 0‘2) with prob. a_

Figure 1. Hierarchical relationship of sequence contexts and key algorithmic elements of Baymer. (A) Each
mutation type is represented by a separate sequence context tree, related by the shared mer level parameters
and joint multinomial likelihood distribution. Each sequence context tree has a nested structure where
information is partially pooled across each shared parent. (B) Polymorphism probabilities are parameterized as
the product of the series of edges that lead to the sequence context of interest. (C) Sequence context trees are
regularized using a spike-and-slab prior distribution.
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Figure 2. Baymer model validation, transferability, and regularization in gnomAD non-Finnish European (NFE)
polymorphisms with derived allele count greater than or equal to 2 in non-coding accessible regions. (A)
Empirical 9mer polymorphism probabilities for context mutations with at least 1 occurrence in both datasets
(15910 omitted context mutations) are plotted against one another (Spearman correlation 0.915; p < 107%;
RMSPE = 0.12). (B) Baymer mean posterior estimates for 9mer polymorphism estimates in even and odd bp
datasets (Spearman correlation 0.990; p < 107'%; RMSPE = 0.035). (C) Baymer mean posterior estimates for
9mer polymorphism estimates in odd bp non-Finnish European gnomAD data and even bp NYGC 1KGPIII
data, down-sampled to match total number of polymorphisms and site frequency spectrum (Spearman
correlation 0.981; p < 107%; RMSPE = 0.063). (D) Fraction of edges in the NFE model with a PIP > 0.95 in
each sequence context window layer. Absolute count of edges above bars. (E) For high-data contexts with at
least 100,000 total instances in the non-coding genome and 50 total mutations, fraction of edges at each
sequence context window size across PIP bins. (F) Proportion of high-data contexts within each mutation type
at each sequence context window size with PIP>0.95.
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Figure 3. Modeling de novo mutation probabilities using polymorphism datasets. Even bp Halldorsson et al. de
novo training data modeled by Baymer is compared to Baymer-modelled polymorphism datasets partitioned by
allele count. (A) Multinomial likelihoods for each model are calculated on odd de novo bp test data at various
sequence context sizes. Polymorphism probability estimates were linearly scaled to match the mean
polymorphism probability of the holdout dataset. (B) Polymorphism datasets were down-sampled to match the
size of the even bp de novo data (70,364 variants) and multinomial likelihoods were calculated on odd de novo
bp data. Each dataset was down-sampled using 5 different random seeds. The LL of the 9mer de novo training
model is indicated with the blue dotted line.
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Figure 4. Tree grafting strategy to share information between Baymer models. (A) For each de novo proxy
model, we calculated the fraction of context polymorphism probability shifts with a PIP > 0.95 in 2-mer — 9-mer
mer-levels as a proxy for the degree of regularization in each model. (B) Polymorphism probability shifts in the
de novo training model that are included with high-confidence (PIP>0.95) are very similar in magnitude and
direction to their equivalents in the best-performing proxy model, NFE-2+, in 2-mer — 9-mer levels, implying a
shared polymorphism probability shift structure. (C) Proposed tree-grafting schema for modeling de novo
mutations that leverages mer-levels where de novo data is plentiful (1-mer — 3-mers) and uses polymorphism
data to model the remainder of each model in larger mer-levels (4-mer — 9-mers) where the de novo model is
underpowered. (D) The grafted tree method outperforms the previously best-performing model, NFE-2+.
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