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ABSTRACT 10 

 11 
Germline mutation is the mechanism by which genetic variation in a population is created. 12 
Inferences derived from mutation rate models are fundamental to many population genetics 13 
inference methods. Previous models have demonstrated that nucleotides flanking polymorphic 14 
sites – the local sequence context – explain variation in the probability that a site is polymorphic. 15 
However, limitations to these models exist as the size of the local sequence context window 16 
expands. These include a lack of robustness to data sparsity at typical sample sizes, lack of 17 
regularization to generate parsimonious models and lack of quantified uncertainty in estimated 18 
rates to facilitate comparison between models. To address these limitations, we developed 19 
Baymer, a regularized Bayesian hierarchical tree model that captures the heterogeneous effect 20 
of sequence contexts on polymorphism probabilities. Baymer implements an adaptive 21 
Metropolis-within-Gibbs Markov Chain Monte Carlo sampling scheme to estimate the posterior 22 
distributions of sequence-context based probabilities that a site is polymorphic. We show that 23 
Baymer accurately infers polymorphism probabilities and well-calibrated posterior distributions, 24 
robustly handles data sparsity, appropriately regularizes to return parsimonious models, and 25 
scales computationally at least up to 9-mer context windows. We demonstrate application of 26 
Baymer in two ways – first, identifying differences in polymorphism probabilities between 27 
continental populations in the 1000 Genomes Phase 3 dataset, and second, in a sparse data 28 
setting to examine the use of polymorphism models as a proxy for de novo mutation 29 
probabilities as a function of variant age, sequence context window size, and demographic 30 
history. We find a shared context-dependent mutation rate architecture underlying our models, 31 
enabling a transfer-learning inspired strategy for modeling germline mutations. In summary, 32 
Baymer is an accurate polymorphism probability estimation algorithm that automatically adapts 33 
to data sparsity at different sequence context levels, thereby making efficient use of the 34 
available data.  35 
  36 
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INTRODUCTION 37 

Germline mutations are the primary source of genetic variation between and within species. 38 
Quantifying where, what type, and how frequently mutations arise is therefore of fundamental 39 
importance to population genetic inference and complex trait studies. Better estimates of mutation 40 
rates improve tools designed to quantify population divergence times1, demographic history2, and 41 
the effects of background selection3. Moreover, models for the underlying de novo mutation rate 42 
from which burden of mutations can be statistically assessed have enabled discovery of genes4,5 43 
and non-coding sequences6,7 contributing to complex disease4,5,8,9. 44 
 45 
Our working hypothesis is that there exists an underlying structure to the context-dependent 46 
effects that shape the mutation rate. Here we focus on polymorphism probabilities as a proxy for 47 
the mutation rate that we hypothesize share the same context-dependent architecture subject to 48 
genetic drift, demography, selection, biased gene conversion, or additional phenomenon that 49 
operate across population history. The frequency of polymorphisms varies widely across the 50 
genome10 and correlates with several genomic features11–13, with new mutations caused by both 51 
exogenous and endogenous sources14. There is considerable evidence to suggest that local 52 
nucleotide context directly relates to the probability that a nucleotide mutates. A classic example 53 
of this is the ~14-fold higher rate of C>T transitions at methylated CpG sites, owing to 54 
spontaneous deamination of 5-methylcytosine15–17. Long tracts of low-complexity DNA have 55 
higher mutation rates, which is hypothesized to be the result of slippage of DNA polymerase 56 
during replication18. This prior work suggests that local sequence context is integral to 57 
understanding variation in polymorphism rates across the genome, and that the most predictive 58 
models will be best positioned to guide elucidation of the underlying mutational mechanisms. 59 
 60 
Our previous work demonstrated that a sequence context window of seven nucleotides (i.e., ‘7-61 
mer’) provided a superior model to explain patterns of genetic variation relative to smaller windows 62 
that are commonly used (e.g., 3-mers)19. While an advance, this model was fundamentally limited 63 
for three reasons: scalability, regularization, and uncertainty. First, the size of the model – which 64 
increases by a factor of four for each additional nucleotide added – presents intrinsic limits both 65 
computationally and in terms of statistical power. Second, while it is straightforward to assume 66 
that every sequence context is meaningful, a more parsimonious model – informed by biological 67 
intuition – might be that only a subset of contexts contributes meaningfully to the observed 68 
variation in data. This is particularly important for inference of somatic and de novo mutation rates 69 
or in other data-sparse situations. Finally, while our previous model provided a point estimate of 70 
the mean polymorphism probability, it did not immediately emit uncertainty resulting from 71 
multinomial variance and heterogeneity in larger sequence contexts. As sequence context sizes 72 
are expanded, there is functionally less data and thus more uncertainty in estimates, making point 73 
estimates even more unreliable. Quantifying uncertainty is also required for detecting differences 74 
in probabilities across models, for example when comparing differences in rates across 75 
populations20–22 or at functional genomic features23. Ideally, a method should scale the inferred 76 
context length proportional to the amount of data and the biological signal that may 77 
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be present within that data while providing uncertainty in estimated parameters and underlying 78 
probabilities.  79 
 80 
Previous work has sought to address these challenges, though methods introduced to date do 81 
not address all limitations simultaneously. Sparsity and scalability have been tackled through a 82 
deep-learning framework24 as well as an IUPAC-motif-based clustering approach25 which 83 
modeled polymorphism probabilities up through 9-mers. Another method explored polymorphism 84 
probabilities up through 7-mers using DNA shape covariates to reduce the parameter space26. All 85 
three methods are robust and effective at measuring point estimates of polymorphism 86 
probabilities in expanded sequence contexts, however none explicitly estimate the uncertainty of 87 
these parameters. Finally, the CIPI model27 is a Bayesian method that addresses these issues, 88 
but focuses on applications with smaller context-window motifs (5-mer) in variant settings with 89 
fewer mutation events (e.g., somatic mutations in cancer or mutations in viral genomes) and is 90 
not obviously scalable computationally to larger size context windows and sizes of contemporary 91 
population genomics data sets in humans (e.g., hundreds of millions of polymorphic sites). 92 
 93 
Here, we develop a method that addresses all three limitations in the original model. We construct 94 
a Bayesian tree-based method that integrates sequence context window size, handles sparse 95 
data, and captures uncertainty in estimates of mutation probability via the posterior distribution. 96 
We apply our approach in two ways. First, we quantify differences in polymorphism probabilities 97 
between continental populations and place bounds on the effect sizes of potential undescribed 98 
context-dependent differences in the 1000 Genomes dataset28. Second, we explore the use of 99 
polymorphism datasets to predict de novo mutations. We measure the effect of population history, 100 
variant age, and sequence context size on model performance with the aim of generating a 101 
meaningful proxy to estimate the germline mutation rate. 102 

RESULTS 103 

 104 
A tree-based sequence-context model captures variation in polymorphism probabilities 105 
 106 
We began by developing a model to describe the hierarchical relationship of sequence context 107 
dependencies over increasing window sizes. We structured this as a rooted, tree-based graph, 108 
where each type of substitution class is represented distinctly (Fig. 1A). Each level of the tree 109 
represents an increasing window size of sequence considered, alternating between incorporating 110 
nucleotides to the window on the 3′ end for even-sized contexts and on the 5′ end for odd-sized 111 
contexts. We fold over reverse complementary contexts to reduce the parameter count 112 
(Methods). To ease readability, we denote each mutation with the sequence context, the 113 
nucleotide in scope bolded, and the polymorphism indicated with an arrow (e.g TCC>T represents 114 
the polymorphism where the bolded cytosine has become a thymine). Each non-root edge 115 
represents the log-transformed, multiplicative shift in polymorphism probability captured by 116 
expanding sequence context. The root edge corresponds to an estimated base polymorphism 117 
probability for a given mutation type. For a given sequence context, each node in the tree 118 
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represents the probability of observing a polymorphic site in the central nucleotide (referred to 119 
hereafter as polymorphism probability), and is the product of all edges, starting from the root that 120 
leads to the node (Fig. 1B). As our previous work has shown for a specific level of sequence 121 
context, the distribution of observed counts for each sequence context can be modelled via 122 
independent multinomial distributions19 facilitating likelihood calculation. The resulting multinomial 123 
probability vector corresponds to the combination of individual polymorphism probability 124 
estimates across each mutation type tree for each sequence context (Methods).  125 
 126 
Within the model, we incorporate two features essential for downstream applications when 127 
comparing the outputs of competing models. First, we employ a Bayesian formulation which 128 
generates posterior distributions for polymorphism probabilities (Methods). This approach 129 
naturally estimates parameter uncertainty which is essential for comparison of rates across 130 
different tabulated models. Second, we incorporate regularization in the parameter estimation 131 
procedure for tree edges. Previous sequence context models estimated parameters for all edges 132 
of the tree (ϕ), meaning that all values of were effectively non-zero. However, our previous work 133 
suggested that perhaps only a fraction of edges meaningfully contribute information19. 134 
Hypothesizing that only a subset of edges is informative for the polymorphism probability shifts, 135 
we regularize our tree model by incorporating a spike-and-slab prior on the ϕ	parameters29. We 136 
tune the model such that the slab is favored when the evidence suggests a shift greater than 10% 137 
for a given context level (Fig. 1C). This value was choosen weighing the stability of model 138 
convergence with the goal of inferring the largest possible effects. 139 
 140 
Because the posterior distribution is not analytically tractable, we implemented an adaptive 141 
Metropolis-within-Gibbs Markov Chain Monte Carlo (MCMC) sampling scheme30 to sample from 142 
and thereby estimate the posterior distribution of this model. To further aid in convergence and 143 
enforce intermediate nodes to have informative polymorphism probabilities, we estimated 144 
parameters of the model level-by-level rather than all simultaneously, leveraging the conditional 145 
dependency structure of the hierarchical tree. Under this set-up, the unseen higher-order layers 146 
are assigned ϕa,b	=	0 shifts until their level has been sampled. We embedded this model and 147 
sampling scheme into software (named Baymer) for further testing and applications.   148 
 149 
Evaluation of the model demonstrates robust inference of the underlying rates with 150 
uncertainty 151 
 152 
A key feature of Baymer is that it estimates posterior distributions for each parameter, allowing 153 
for uncertainty in the probabilities of polymorphism at each sequence context. To evaluate the 154 
coverage of the estimated posterior probabilities, we used simulations to assess how often our 155 
posterior distribution captures simulated values. Using a pre-specified polymorphism probability 156 
table, we tested how frequently polymorphism probabilities estimated by Baymer captured the 157 
true value for each sequence context (Methods). We found that across all sequence context 158 
sizes, 89%, 93%, and 97% of context simulations contained the true polymorphism probability in 159 
the 90%, 95%, and 99% credible intervals, respectively (Methods, Supplementary Table 1). 160 
 161 
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A second important feature is that regularization is embedded into the method, allowing for the 162 
creation of parsimonious models that capture most of the information with the fewest non-zero 163 
parameters. This part is critical to address cases where the amount of data is not large and limits 164 
power, or when considering larger windows of sequence context that are rare and/or 165 
uninformative. If robustly calibrated, we would expect probabilities inferred in a holdout set to 166 
strongly correlate with those estimated during a test phase (i.e., minimal overfitting). To evaluate 167 
the robustness of the inferred rates, we partitioned the human genome reference into two sets - 168 
even and odd base-pairs - and used SNPs of allele count 2 or greater observed in the gnomAD31 169 
non-Finnish European (NFE) collection to independently train models (Methods). We compared 170 
the concordance of probabilities for models with sequence context windows up to 4 flanking 171 
nucleotides on either side (i.e., a 9-mer model) using the maximum likelihood estimate approach19 172 
and Baymer (Supplementary Fig. 1). For each comparison, in addition to the Spearman 173 
correlation, we also calculated the root mean squared perpendicular error (RMSPE) from each 174 
point to the x-y axis, as a measure of the tightness of the distribution from the true, shared value 175 
(Methods). The maximum likelihood estimates of polymorphism probabilities (Fig. 2A, Spearman 176 
correlation ρ = 0.915; RMSPE = 0.117) were less correlated and considerably less tightly 177 
distributed than those for Baymer-derived models (Fig. 2B, ρ = 0.990; RMSPE = 0.035). This 178 
result occurred even after omitting ~16,000 sequence contexts with zero mutations in either 179 
dataset (odd and even base pairs) from the maximum likelihood model comparison, rendering 180 
practical use of large swaths of the model useless due to substantial overfitting at the 9-mer level. 181 
If zero-mutation contexts omitted from the maximum likelihood model were included, the 182 
correlations would perform considerably worse (Methods, Supplementary Fig. 1D, ρ = 0.876; 183 
RMSPE = 0.744). 184 
 185 
We next sought to evaluate the transferability of inferred models between experimental 186 
collections; while internally consistent, the above procedure could simply reflect data set specific 187 
biases32. For this, we compared non-admixed, non-Finnish European (EUR) samples obtained 188 
from the 1000 Genomes (1KG) Project (re-sequenced by the New York Genome Center)33 with 189 
the gnomAD NFE sample described above. As before, we split the data into even and odd base 190 
pairs but also applied a variant down-sampling procedure to match total variant count and site-191 
frequency spectrum between both sets (Methods). By comparing variants found in the even base-192 
pair genome of gnomAD with the odd base-pair genome of 1KG, this strategy ensures no variation 193 
overlapped between data sets. We observed that the probabilities estimated from both sample 194 
sets were strongly correlated (ρ = 0.981; RMSPE = 0.064; Fig. 2C) though were slightly weaker 195 
than the correlations from each internal comparison and fit less tightly (gnomAD ρ = 0.990; 196 
RMSPE = 0.035; Fig. 2B; 1KG ρ = 0.986; RMSPE = 0.042; Supplementary Fig. 2). This result 197 
demonstrates that some additional between-sample variation may exist, but that Baymer infers 198 
probabilities of polymorphism that are broadly consistent with one another, supporting the notion 199 
of model transferability. 200 
 201 
We next aimed to quantify how well the model selects meaningful context features. We expected 202 
more proximal bases to the focal site to have a greater impact on polymorphism probabilities for 203 
two reasons, (i) due to data richness, and (ii) that proximity to the polymorphic site would suggest 204 
more direct impacts on mutability, e.g., the CpG context. Baymer estimates the fraction of 205 
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posterior samples in the slab, implying a non-zero effect on polymorphism probabilities, and in 206 
the spike, which implies no effect. Thus, the probability of an edge being included in the slab is 207 
the equivalent of the posterior inclusion probability (PIP) for our model. Consistent with 208 
expectation, the fraction of sequence contexts with a PIP > 0.95 monotonically decreases as the 209 
sequence context size is increased (Fig. 2D).  210 
 211 
Larger contexts best explain patterns of variation genome-wide 212 
 213 
We note that over 61% of all sequence contexts with a PIP > 0.95 are found in the 8-mer and 9-214 
mer levels of our model of polymorphism observed in the gnomAD NFE data. While fewer than 215 
2% of 9-mer sequence contexts meaningfully impact the final estimates, they still account for the 216 
most total absolute contexts (7189 total contexts > 0.95 PIP). This observation holds even after 217 
filters for data sparsity (Methods, Fig. 2E). This implies a considerable impact on polymorphism 218 
probabilities in extended sequence contexts, consistent with previous work19,23–25. This general 219 
trend is similarly consistent across mutation types (Fig. 2F). We thus evaluated the overall 220 
improvement in likelihood by expanding window sizes up to 9-mers. Compared to lower context 221 
models (e.g., 3-mer, 5-mer, or 7-mer) on holdout data, 9-mer Baymer models substantially 222 
improved the likelihood and best fit to the data (Methods, Supplementary Table 2).  223 
 224 
Frequency of polymorphism across populations do not differ substantially across levels 225 
of sequence context 226 
 227 
Prior work has centered around evaluating whether mutation rates have changed over 228 
evolutionary time by evaluating differences in the proportions of sequence-context-dependent 229 
polymorphism between human populations21,22,34–36. To determine whether polymorphism 230 
probabilities differ across human populations, we analyzed individuals from the NYGC 231 
resequencing of 1KG Phase III representing continental European, African, East Asian, and South 232 
Asian groups. We extracted variants private to these continental groups, down-sampling to match 233 
site-frequency spectra bins and overall sample sizes (Methods). We then applied Baymer to each 234 
individual dataset to model probabilities up to a 9-mer window of sequence context. We compared 235 
estimates of polymorphism probabilities in each population by assessing the degree to which the 236 
posterior distribution of each population’s model parameters overlapped. The fraction overlap of 237 
each distribution is a proxy for the probability that the underlying polymorphism probabilities are 238 
the same. Due to the implicit tree structure of sequence context models, polymorphism probability 239 
shifts in edges will affect all edges downstream of the context in question. Therefore, we identified 240 
edges where both the estimated polymorphism probability and the immediate shift, 𝜙!,#$ , were 241 
both considered very likely to be different. 242 
 243 
Specifically, we identified contexts whose polymorphism probabilities and shifts both overlapped 244 
less than 1% in pairwise comparisons between the four populations (Supplementary Table 3). 245 
This included all the most notable previously reported 3-mer shifts across continental groups, 246 
including the increase in TCC>C mutations found in European relative to Non-European ancestry 247 
populations20–22,34,36. We also discovered a nested context within the classic TCC>T context, 248 
namely CC>T, as being very likely to differ between populations. This could simply be a trickle-249 
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down signal from the TCC>C, ACC>C, and CCC>C effects implicated by Harris21. However, all 250 
four contexts from this 3-mer family have evidence of elevated polymorphisms probabilities in 251 
Europeans vs Africans, which might suggest a more parsimonious explanation of a second 252 
contributing signal, possibly with the same underlying mechanism. 253 
 254 
We next focused on the remainder of 3-mer and wider extended sequence contexts (Table 1). 255 
While a handful of such sequence contexts have been implicated34, these results are confounded 256 
by batch effects in the original 1KG sequencing data37. In our results, we observed the presence 257 
of nucleotide repeats, e.g., TA / CG dinucleotides; poly-C / poly-A in several of the divergent 258 
contexts, which could be explained by polymerase slippage18.  259 
 260 
While the population-specific polymorphism probabilities estimated and polymorphism counts are 261 
identical between each pairwise comparison and thus correlated, we still note that 15/28 pairwise 262 
differences are specific to a single continental group. Of these, only the two canonical European 263 
context mutation differences (TCC>T and TCT>T) are in 3-mer contexts, otherwise all are found 264 
in 5-mer and greater mer-levels. In South Asian samples, we find that the mean CTATA>T 265 
polymorphism probabilities are approximately 1.6 times higher than the remaining populations 266 
and in Africans TATATATC>G is approximately 1.9 times higher. The largest population-specific 267 
effect was discovered in East Asians where ATACCTC>A polymorphism probabilities are roughly 268 
2.7 times higher than in European, African, or South Asian models. None of these effects have 269 
been explicitly documented before. 270 
 271 
Taken collectively, we observed relatively few instances of shifts that were quantifiably different 272 
across continental groups, and those that were observed were largely confined to relatively small 273 
windows of context where we might have anticipated well powered tests (e.g., 3- and 5-mers). To 274 
quantify the power of our procedure and the sample size necessary to identify true shifts in 275 
polymorphism probabilities, we performed simulations where true effect differences were ‘spiked-276 
in’ between two populations over a range of weak to stronger effects and across a sampling of 277 
different sequence contexts (Methods). Shifts for this experiment are defined as the natural log 278 
of the polymorphism probabilities ratio (NLPPR) between each simulated population. This allowed 279 
us to construct credible sets of effects that we were reasonably well powered (>80%) to discover 280 
(Table 2). Unsurprisingly, the power scaled proportional to the number of context instances, 281 
simulated mutations in the dataset, and the size of the spiked-in differences (Supplementary 282 
Figure 3). Notably, extremely subtle shifts (NLPPR <= 0.01; 0.99 – 1.01 fold change) were not 283 
detectable at any sequence context size. On the opposite side of the spectrum, we found that we 284 
were reasonably powered to identify shift differences where NLPPR > 1.0 (fold decrease <= 0.37 285 
or fold increase >= 2.72) up through 5-mers and in 6-mers with large sample sizes. For reference, 286 
the TCC>T polymorphism has an NLPPR = 0.291 (~1.34 fold increase) – the largest difference 287 
of any 3-mer by our calculation.  288 
 289 
In contrast, our experiment had essentially no power to discover 9-mer shifts and extremely 290 
limited power for 8-mers, even for large shifts. Thus, there may exist large shifts at these sizes 291 
that we could not reliably capture. These results are consistent with our comparisons in the real 292 
data (Table 1), as only differences within the detectable range at each mer-level were implicated. 293 
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These power calculations suggest that, given the experiment we performed grouping all mutations 294 
together (agnostic to allele frequency or age, see Discussion), if any 3-mer differences greater 295 
than the TCC>T shift exist, we would have discovered these effects for a broad range of modest 296 
to very strong effects across a range of sequence contexts window sizes. This effectively sets 297 
bounds on the differences possible for this analysis scheme in this data. 298 
 299 
A sequence context model that captures variability in de novo mutational rates  300 
 301 
Given its formulation in handling data sparsity, we next sought to apply Baymer to develop a 302 
model that best captures rates of de novo mutations across the genome. We took advantage of 303 
a recent collection of 2,976 WGS Icelandic trios that identified 200,435 de novo events38 and, 304 
analogous to the above, we partitioned de novo variants into even (for training) and odd (for 305 
testing) base pairs. We observed substantial improvement in the overall likelihood in the testing 306 
set for 5-mer size windows compared to 3-mers (3-mer vs 5-mer, delta-LL = 2,144), but only 307 
minimal improvement for increasing windows sizes further (5-mer vs 9-mer, delta-LL = 265). 308 
Indeed, Baymer did not select any sequence context feature beyond the 5-mer level with PIP > 309 
0.95. This is not unexpected given our approach to regularization, as the number of events in 310 
larger sequence contexts is increasingly sparse, it is desirable to only include informative contexts 311 
to avoid overfitting. 312 
 313 
We next used Baymer to improve upon this baseline model. Previous work has demonstrated that 314 
inference of de novo mutational probabilities can be captured via rare variant polymorphism data 315 
obtained from population sets as a proxy23. We hypothesized that a partitioned set of 316 
polymorphism data based on: (i) larger sample sizes that (ii) closely matched the ancestry of the 317 
de novo set and (iii) focused on rare variants as a proxy to capture the most recent mutation 318 
events would generate the most transferrable model and robust rate estimates. To build variant 319 
partitions, we used variant call set data from gnomAD, focused on either a population-matched 320 
proxy (i.e., NFE, the non-Finnish European subset) or variant calls from all samples in gnomAD 321 
regardless of ancestry (i.e., ALL). For each of these, we created three partitions focused (i) 322 
exclusively on variants with one allele count (i.e., singletons; labeled POP-1), (ii) exclusively on 323 
variants with two allele counts (i.e., doubletons; labeled POP-2), and (iii) variants with allele count 324 
of two or greater (labeled POP-2+). Beyond this, we also identified a set of putatively derived 325 
substitutions in the human lineage by comparing the GRCh38 human reference genome with 326 
ancestral sequences obtained from primates39.  327 
 328 
We applied Baymer to each variant set independently, comparing the likelihoods of each model 329 
to explain rates of de novo mutation in the test set after downscaling probabilities proportional to 330 
the sample size. First, we observed that for 3-mer sequence context models, the set of variants 331 
obtained from the de novo training set outperformed all other models despite there being 102 to 332 
1,377 times fewer variants contributing to them than the polymorphism datasets (Fig. 3A, 333 
Supplementary Table 4). In contrast, for larger windows of context (i.e., 7-mer and 9-mer), 334 
several of the polymorphism partitions explained the data better than one trained directly from de 335 
novo events. This result indicates that increased sample size is required to detect meaningful 336 
shifts in polymorphism probabilities in larger sequence context windows. 337 
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 338 
Despite evidence to suggest singleton datasets should best recapitulate de novo variation4,23,31, 339 
we were surprised to observe that models that trained exclusively on singletons and ALL-2 340 
performed considerably worse than the rest across all windows of sequence context (Fig. 3A, 341 
Supplementary Table 4). This is particularly surprising for larger windows of sequence context, 342 
given the prior intuition that larger numbers of variants would have provided better rate estimates. 343 
Although we only used variants that passed gnomAD quality control checks, this filter still included 344 
a large proportion of variants with a negative log-odds ratio of being a true variant (AS_VQSLOD 345 
< 0; Supplementary Fig. 4). This pattern was also evident for other variant allele counts but were 346 
most striking in singletons and the ALL-2 variant groups. Stricter quality filters (AS_VQSLOD > 5-347 
10) considerably improved model performance, but still did not surpass the de novo training model 348 
at the 3-mer level (Supplementary Table 4). Our NFE singleton Baymer model trained on the 349 
strictest quality filter tested (AS_VQSLOD > 10) nearly equaled our best performing model, NFE-350 
2+, with ~ 1/30th the number of variants, but came up just short. In summary, we observed that 351 
training from a population matched sample which excluded singletons, NFE-2+, best predicted 352 
rates of de novo mutations in 5-mer or larger contexts, better than training on de novo events 353 
directly. 354 
 355 
Next, we sought to determine which sample set best modelled the de novo test set adjusting for 356 
the total number of variants within the partition. To control for sample size differences, we down-357 
sampled each partition to match the number of variants observed in the de novo training set 358 
(n=70,364) five times. After down-sampling and when considering 9-mer context models, we 359 
observed that the partitions which included NFE exclusively (noted in green, Fig. 3B) performed 360 
on average better than using the entirety of gnomAD, “ALL” (noted in orange in Fig. 3B), which 361 
included a more diverse panel of individuals within Europe (e.g., Finnish) but also beyond Europe 362 
(e.g., East and South Asian, African and African American). This is consistent with prior belief 363 
that, after controlling for the total sample size, variants that derive from samples where ancestries 364 
more closely match are the most informative. 365 
 366 
A grafted tree approach provides superior estimates of de novo mutational probabilities 367 
 368 
Given the observations that de novo models only outperform polymorphism-based models when 369 
either small sequence contexts are used (Fig. 3A) or the sample size is controlled (Fig. 3B), we 370 
next sought to explore a transfer learning-inspired40 strategy to improve upon our model 371 
performance. Transfer learning has previously been employed in a sequence context modelling 372 
setting24. We hypothesized that regularization means that de novo models have reduced 373 
performance with expanded sequence contexts due to low sample sizes. Indeed, our de novo 374 
model did not have the power necessary to confidently (PIP > 0.95) include any non-zero shifts 375 
in sequence contexts larger than 5-mers in the model (Fig. 4A). The larger polymorphism 376 
datasets, however, were well-powered to detect shifts in every level of the tree (Fig. 4A). 377 
 378 
The nested tree structure of our polymorphism probability models provides a natural strategy 379 
where specific branches of the estimated trees can be interchanged, i.e., a “grafted” tree. We 380 
asked how similar estimates for edges in expanded sequence contexts are between our de novo 381 
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model and the best-performing polymorphism model, NFE-2+. In edges in 2-mer and greater 382 
levels where the de novo training model is powered enough to detect shifts (PIP > 0.95), the mean 383 
posterior estimates of shifts are highly correlated (Fig. 4B). This suggests a grafted tree approach 384 
is feasible, leveraging the polymorphism datasets for those edges the de novo model is incapable 385 
of estimating properly due to sparsity (Fig. 4C). Therefore, we built a grafted tree model using 1- 386 
to 3-mer edges estimated in the de novo training data model, and 4- to 9-mer edges estimated 387 
using the NFE-2+ data model. The resulting combined model had a greater fit to the holdout de 388 
novo data than either the NFE-2+ model or de novo model alone (Fig. 4D, Methods). 389 

DISCUSSION 390 

Here, we present Baymer, a Bayesian method to model mutation rate variation that 391 
computationally scales to large windows of nucleotide sequence context, robustly manages 392 
sparse data through an efficient regularization strategy, and emits posterior probabilities that 393 
capture uncertainty in estimated probabilities. Consistent with previous studies24–26, we show that 394 
expanded sequence context models in most current human datasets are overfit with classic 395 
empirical methods but considerably improve model performance when properly regularized. As a 396 
result, this method allows for renewed evaluation of experiments that originally were statistically 397 
limited to polymorphism probability models with small sequence context windows. 398 
 399 
We examined differences in polymorphism probabilities between the continental populations in 400 
the 1KG project. While differences in 3-mer polymorphism probabilities have been well-401 
documented20–22 and expansions up to 7-mers have been tested34, both methods rely on empirical 402 
models with frequentist measures of uncertainty. Here, we expanded the search space out to 9-403 
mer windows and leverage the uncertainty estimated in the model to directly quantify differences 404 
in these populations. We note that many of the differences discovered contain poly-nucleotide 405 
repeats. There is some prior literature on the mechanism of slippage in polymerases during 406 
replication of such sequences18, so differential efficiencies of these enzymes across populations 407 
could conceivably result in these patterns. However, it is also very possible that artifacts from 408 
sequencing errors with differential effects across populations could explain the differences. 409 
 410 
Despite being well-powered to identify a large range of differences in 3-mer and smaller contexts 411 
we identified very few contexts that differ with high probability between the populations tested. 412 
This implies that if large-scale population differences in the mutation spectrum do exist at these 413 
window context sizes, they are most likely comprised of numerous subtle shifts rather than a few 414 
large changes, in agreement with conclusions from prior work22. 415 
 416 
We also explicitly placed bounds on the magnitude of differences that could possibly exist in this 417 
dataset without being detected, quantifying what differences we can expect to be discovered 418 
given the way variants are grouped in this experiment. Even though the 1KG project is relatively 419 
small compared to current datasets, the number of sequence contexts available for modeling is 420 
dataset-independent and inherently limited by the sequence diversity of the human genome. 421 
Thus, while more polymorphism data could lead to the discovery of additional smaller shifts in the 422 
future, bigger datasets will not improve the power to detect larger shifts in this allele frequency 423 
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agnostic setting. In fact, for very large samples, polymorphisms in some contexts can become 424 
saturated,41 reducing the information content in a similar manner as overly sparse data. Thus, 425 
both to increase power and to improve modeling resolution, it will become necessary to partition 426 
the data (e.g., by allele frequency or variant age35, or other genomic features). 427 
 428 
It remains a challenge to disentangle the contribution of demography20,36,42 versus changes in the 429 
underlying mutation rate on the mutation spectrum. Here, we control for the site frequency 430 
spectrum of variants included, but the next stage of this model will need to incorporate more 431 
sophisticated demographic features. Integrating Baymer-derived trees with a joint mutation 432 
spectrum and demographic history method, such as mushi36, is a promising future direction. 433 
 434 
Next, we asked to what degree polymorphism datasets could be used to approximate the de novo 435 
mutation rate. Currently, true de novo mutation datasets are limited in size, which place bounds 436 
on the scope of inference for adequate sequence context modeling. We demonstrate that 437 
polymorphism datasets are accurate proxies for de novo mutation models and largely share the 438 
same context-dependent mutability shifts, though in contrast to reports in the literature4,23,31, the 439 
focus exclusively on singleton variants (at least, using gnomAD calls) performed poorly relative 440 
to all other considered models. Indeed, our experiment indicates that it is preferable to use 441 
germline mutation models based on large polymorphism datasets that can estimate shifts through 442 
the 9-mer level than it is to use the largest 3-mer de novo dataset, as is frequently the norm4,5,31. 443 
Including exclusively variants from either polymorphism data or de novo data was also 444 
suboptimal, however, as the best possible model we built for estimating de novo mutation rates 445 
used de novo mutations in concert with polymorphism datasets. The success of this experiment 446 
implies a general context-dependent mutability shift structure that underlies the human mutation 447 
spectrum. The similarity of the derived dataset, which in theory represents the oldest subset of 448 
variants tested, to the de novo variation further strengthens this argument and suggests that 449 
although there have been some well-documented small changes in context-dependent mutation 450 
rates, the general architecture remains largely conserved during modern human history. 451 
 452 
One limitation of the model is the treatment of multi-allelic sites. Currently, multi-allelic sites are 453 
treated as separate polymorphisms which violates assumptions of the multinomial model, where 454 
only one outcome is possible for each locus.  When we excluded multi-allelic sites, we observed 455 
biases in the rates of CpG>A and CpG>G mutations, which are disproportionately filtered as a 456 
side-effect of sharing the same sequence contexts with CpG>T mutations. A more nuanced 457 
approach that models multiallelic and biallelic sites separately and then integrates jointly would 458 
deal with this issue, though multiple mutations at the same nucleotide position with the same 459 
allele change would require additional effort43. 460 
 461 
Finally, although we can identify regions of the tree where polymorphism probabilities diverge and 462 
thus infer critical points in the tree, this model is tailored towards polymorphism probability 463 
estimation rather than explicitly for motif discovery27. Our objective is to estimate polymorphism 464 
probabilities rather than finding those contexts with the largest effect sizes. Adding one nucleotide 465 
at a time pseudo-symmetrically for tree generation reduces the computational sampling load but 466 
makes for more awkward interpretation of the resulting mono-nucleotide impacts. 467 
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 468 
In all of our experiments, we focused on the entirety of the accessible, non-coding genome. That 469 
said, Baymer can easily be applied to any genomic features of interest for both polymorphism 470 
probability estimates and comparisons of feature-dependent sequence context shifts. Our 471 
approach does not currently incorporate genomic features in the model, but given genomic area 472 
bounds, polymorphism probabilities can be tailored to a biological question of interest. Addressing 473 
questions regarding the impact of genomic features on observed polymorphisms will be enhanced 474 
with well-regularized models, as smaller genomic areas or specific variant conditions can induce 475 
considerable data sparsity by reducing the number of contexts and/or polymorphisms available. 476 
Therefore, Baymer paves the way for exciting possibilities to study the effects of genomic 477 
features, variant age, and smaller subpopulations on sequence context-dependent mutation rate 478 
variation. 479 

METHODS 480 

Sample Data Sources 481 
We sourced samples from the 1KG Phase III New York Genome Center resequencing project33, 482 
gnomADv3.031, and trios from Halldorsson et al36. The genomic area for all sample sources was 483 
condensed to only include coordinates included within the 1KG accessibility mask28 and outside 484 
of RefSeq coding regions to approximate the mappable non-coding genome. Only non-indel 485 
SNVs designated as “PASS” by the data source were retained. Based on confidence calls within 486 
the FASTA sequence files, high-confidence ancestral states (designated as those sites where all 487 
sequences agree on ancestral state) were inferred for all variants and contexts within the genomic 488 
area specified, where data allowed. Otherwise, variants and sites were omitted39. Ancestral allele 489 
counts were used for partitioning variants into different count brackets. Variants with allele 490 
frequency greater than 0.85 were removed to control for ancestral state misidentification44. We 491 
also compiled all sites where the high-confidence ancestral state and GRCh38 reference genome 492 
disagree, treating this collection as a call-set of derived variants. See Data Accessibility section 493 
for URLs for all data sources. 494 
 495 
Baymer Model Description 496 
In Baymer, increasing windows of sequence context are modeled as nested trees where each 497 
sequence context has 4 children – one for each of the four nucleotides added to expand the 498 
window size. For even-sized contexts, nucleotides are added to the 5′ end, and for odd-sized 499 
contexts, to the 3′ end. In this way, sequence context trees can be iteratively constructed to a 500 
given window size. We build one such tree for every reverse-complement folded 1-mer mutation 501 
type (i.e. A>C, A>G, A>T, C>A, C>G, C>T). Note that we designate the polymorphic nucleotide 502 
in focus in bold. For a given mutation type tree, m, let every edge be parameterized by	𝜙!,#$ 	where 503 
a denotes the edge’s tree level and b the edge index. Edges in the first level of the tree represent 504 
the baseline A>* and C>* polymorphism probabilities (i.e., ‘1-mer’) and center the polymorphism 505 
probabilities. These edges can take any value between zero and one and are given uninformative 506 
priors 𝜙%,&$ 	~ Uniform(0,1). All edges beyond the first levels represent the log-transformed 507 
multiplicative shifts in polymorphism probability from their respective parent nodes. The 508 
polymorphism probability for any node is therefore given by the product of the edge log-509 
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transformed multiplicative shifts leading to that node and the root node in the tree corresponding 510 
to mutation type m. 511 
 512 

𝑝!,#$ = 𝜙%,&$ ∏ exp	(𝜙!∗,#∗$ )!∗,#∗       (1) 513 
 514 
where a* and b* represent the level and index of exclusively those edges leading to the context 515 
in question. For every leaf context, i, where the mer-level, a, is equal to the maximum sequence 516 
context size considered, we let pi denote the multinomial probabilities. Stated more explicitly:  517 
 518 

𝒑( = [𝑝!,#
$! , 𝑝!,#

$" , 𝑝!,#
$# , 1 − ∑ 𝑝!,#$∗$∗ ]	      (2) 519 

 520 
where m1-3 denote the three mutation types possible for this context. The corresponding 521 
outcomes, xi, for these probabilities is a length four vector for each of the three mutation types 522 
and the number of non-polymorphic context sites. We let ni denote the total number of 523 
occurrences of leaf context i in the genomic area specified. Over k leaf nodes, the likelihood for 524 
the model can be calculated as: 525 
 526 

𝑝(𝑦|𝝓) = 	∏ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝑛( , 𝒑𝒊, 𝒙𝒊)*
(           (3)  527 

 528 
To provide regularization for the edges that are included in the model, we placed a spike-and-529 
slab29 prior on 𝜙22: 530 
 531 

𝜙!,#$ 	~	A 	𝑁
(0, 𝑐+𝜎!+)			𝑤. 𝑝.		1 − 𝛼!

	𝑁(0, 𝜎!	+ )								𝑤. 𝑝.										𝛼!
        (4) 532 

 533 
where aa is the mixture probability that a given edge in mer level a belongs to the spike or slab. 534 
We use an uninformative prior for aa ~ Uniform(0, 1). Both the slab and spike distribution are 535 
specified to be Gaussian with a hyperparameter, c, representing the ratio between each 536 
distribution’s standard deviation. The variance of the slab distribution for each level, 𝜎!+, is a 537 
prespecified hyperparameter. For our models, we set this variance to ensure that the slab is 538 
favored when the evidence suggests a shift greater than 10% for a given context level (c = 500; 539 
𝜎!+ 	= 0.729). These chosen hyperparameters were informed by our prior biological intuition for 540 
meaningful effect sizes and a balanced ratio between the spike and slab distributions. These 541 
hyperparameters are at the discretion of the user, but a value of c less than or equal to 10000 is 542 
recommended45. 543 
 544 
Finally, we define a latent variable, I, that specifies whether a given edge belongs to the spike 545 
(I=0) or slab distribution (I=1). This yields the joint posterior distribution of the model: 546 
 547 

𝑝H𝝓, 𝑰, 𝜶, 𝝈𝟐L𝑦M ∝ 𝑝(𝑦|𝜙)𝑝(𝜙|𝐼, 𝜎+)𝑝(𝐼|𝛼)𝑝(𝛼)𝑝(𝜎+)           (5) 548 
 549 
To estimate the posterior distribution above, we use an adaptive Metropolis-within-Gibbs MCMC 550 
sampling scheme30. Every level of the tree is estimated in ascending order, setting higher-order 551 
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levels (i.e., larger windows of sequence context) to have uninformative shifts to aid convergence 552 
and enforce intermediate nodes to have informative polymorphism probabilities. 553 
 554 
Our MCMC sampling scheme follows this approach. For the level-by-level sampling scheme, 555 
edges in levels higher, a′, than the level currently being sampled, a, are set to have no impact on 556 
the ultimate probabilities estimated, i.e., 𝜙!$,∗

$ = 0. 557 
For the first layer of the tree: 558 
1. Initialize all 𝜙%,&$ 	 with a random value drawn from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) for iteration x = 0. 559 
2. Sample new values of each 𝜙%,&,.$  for this iteration x, from 𝑁𝑜𝑟𝑚𝑎𝑙(𝜙%,&,./%$ , τ%,&,./%$ ) using 560 
a Metropolis step46, where τ%,&,./%$ 	 represents the variance of the normal proposal density for 561 
𝜙%,&,./%$  at the previous iteration x-1. 562 
3. Repeat step 2 until algorithm convergence. 563 
 564 
For each subsequent level, a > 1: 565 
1. Draw initial values (x=0) for parameters 𝝓𝒂,𝒃

𝒎 , 𝑰𝒂,𝒃𝒎 , 𝛼!  566 
a. 𝝓𝒂,𝒃

𝒎  is drawn from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.7,0.7), such that the total multinomial probabilities 567 
sum to 1 568 

b. 𝑰𝒂,𝒃𝒎  is drawn from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 569 
c. 𝛼!is drawn from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 570 

2. Sample new values of 𝜙!,#,.$  from 𝑁𝑜𝑟𝑚𝑎𝑙(𝜙!,#,./%$ , τ!,#,./%$ ) using a Metropolis step 571 
3. Sample new values of 𝐼!,#,.$  using a Gibbs sampling step:  572 

𝐼!,#,.$ 	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 Y
3(56%|8%,',(

) ,9%,(,:%,()
3(56%|8%,',(

) ,9%,(,:%,()<3(56&|8%,',(
) ,9%,(,:%,()	

Z       (6) 573 

4. Sample new values of aa using a Gibbs sampling step, 574 
𝛼!,.	~	𝐵𝑒𝑡𝑎(1 + ∑ 𝐼!,#,.$=

$,(6% , 1 + 𝑗 − ∑ 𝐼!,#,.$=
$,(6% )          (7) 575 

where j represents the total number of edges in the current level. 576 
5. Repeat steps 2-4 until algorithm convergence. 577 
 578 
 579 
Posterior coverage estimation simulations 580 
Polymorphism probabilities for our simulations were set using the mean of the posterior 581 
distribution estimated with Baymer when applied to private European variant data with minimal 582 
jitter added to avoid over-regularized estimates while still maintaining realistic human context-583 
dependent polymorphism probability patterns. Jitter was added by sampling every 9-mer 584 
polymorphism probability, 𝑝!,#$ , from 𝑁𝑜𝑟𝑚𝑎𝑙(𝑝!,#$ , (𝑝!,#$ )%.?), where the variance was set to scale 585 
to the underlying polymorphism probability. This dataset was chosen as it had the property of 586 
reaching sparsity limits at the 7-mer level and beyond. Thus, simulations evaluated up to 7-mers 587 
would provide a mixture of sparse and data-rich sequence contexts, providing a representative 588 
proxy for larger datasets run up through the 9-mer level. Using these polymorphism probabilities, 589 
new datasets were simulated by sampling from the multinomial distribution for each 9-mer 590 
sequence context. After applying Baymer to each individual dataset, we calculated the frequency 591 
that the true polymorphism probabilities were included in different sized credible sets. 2000 592 
simulations were run for every sequence context up until 7-mers. Equal-tailed intervals were used 593 
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to assign the credible intervals. Note that to aid computational tractability of this number of 594 
contexts and simulations, the alpha mixing parameter was sampled by using the posterior 595 
distributions for each level of the underlying base probability model used to generate simulated 596 
data. 597 
 598 
Model comparisons for even/odd base-pair subsets 599 
All non-Finnish European (NFE) variants with a derived allele count greater than or equal to 2 in 600 
the filtered gnomAD dataset were collected. Variants were next partitioned according to genomic 601 
coordinate parity (even/odd base pairs) to evenly divide the two groups as randomly as possible. 602 
Baymer was run on even and odd sets independently and the mean posterior estimates of 603 
polymorphism probability parameters were returned. 604 
 605 
The root mean squared perpendicular error (RMSPE) was calculated by measuring the 606 
perpendicular distance between each point (estimated polymorphism probability) and the x=y line, 607 
that assumes each estimate is identical between models. 608 
 609 
For transferability experiments, all European samples, excluding Finnish samples, from the 1KG 610 
Phase III designated as non-admixed28 were aggregated and trimmed to only include sites with a 611 
minimum of 2 derived alleles and again partitioned according to genomic position parity. Opposite 612 
parities between 1KG and gnomAD datasets were grouped together. For each dataset, 100 613 
equally-sized allele frequency bins between the minimum allele frequency in the two datasets and 614 
1.0 were set. Each dataset was randomly down-sampled to ensure the same number of variants 615 
in each allele frequency bin. Baymer was applied to each down-sampled dataset and mean 616 
posterior estimates were compared. 617 
 618 
Extended Sequence Context Likelihood Estimation 619 
The gnomAD NFE data was partitioned into even and odd base pairs as described above. For 620 
each split, models were estimated using Baymer up through 9-mers. Smaller models correspond 621 
to the Baymer tree with all edges in larger sequence contexts not being considered assigned 622 
uninformative shifts (𝜙!,#$ = 0). We calculated likelihoods using the mean posterior probability 623 
estimate at the 9-mer level on the opposite parity polymorphism count data. 624 
 625 
Data Sparsity Filters 626 
To distinguish the degree to which estimates of PIP are simply a byproduct of data sparsity, we 627 
filtered out all sequence contexts with fewer than 50,000 total instances or fewer than 50 628 
mutations in the non-coding genomic area considered. 629 
 630 
Private Variant Analyses 631 
All continental populations without substantial recent admixture (African, European, South Asian, 632 
East Asian) from the NYGC 1KG phase III resequencing dataset were filtered to only include 633 
variants private to each continental group. Each population was trimmed to only include variants 634 
with a minimum allele count of 2 and then down-sampled and site frequency spectra-matched to 635 
match the smallest variant counts across the four continental groups. Baymer was then applied 636 
to each resulting dataset. The resulting posterior distributions of the polymorphism probabilities 637 
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and 𝜙 shifts of each model were then pairwise compared by calculating the fraction overlap of the 638 
distributions, as a proxy for the probability they are the same. Distributions are parameterized 639 
using a Gaussian kernel density estimate on the posterior samples. 640 
 641 
Power Estimates 642 
Truth polymorphism probabilities used in our simulations to estimate power were set using the 643 
same model as the variance calibration experiments. For a given sequence context mutation, we 644 
tested the discoverability of a spectrum of deviations from the “truth” model. We simulated 1000 645 
9-mer count tables using polymorphism probabilities from both the “truth” model and the deviated 646 
model. Both count tables were modeled using Baymer and the resulting posterior distributions 647 
used to assess the fraction overlap for the context mutation in focus. A shift is considered 648 
discovered if the degree of fraction overlap is less than 1%. As running this experiment for all 649 
context mutations was intractable, we tested at most 100 CpG and 100 non-CpG contexts at each 650 
mer-level. Contexts were chosen to give an even spread across the sample size spectrum, as 651 
dictated by total contexts. 652 
 653 
Grafted Tree Scheme 654 
Baymer models were built independently on de novo even data and gnomAD NFE polymorphism 655 
data  with allele count greater than or equal to 2. The de novo model parameter estimates were 656 
used up through 3-mers. For the remaining levels (for 5-mers and larger windows), NFE-2+ 657 
parameter mean point estimates were used in place of the equivalent de novo edges. Thus, the 658 
grafted tree polymorphism parameters were the product of the point estimates for each branch of 659 
the tree, given the data source described above. The multinomial likelihood of the resulting model 660 
was calculated on the odd de novo holdout data, as before. 661 
 662 

Data and Code Accessibility 663 

All data analyzed here are publicly available at the following websites: 664 
NYGC resequencing of 1KG Phase III data: 665 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working666 
/20190425_NYGC_GATK/ 667 
gnomADv3.0: 668 
https://gnomad.broadinstitute.org/downloads 669 
Halldorsson et al. trio data: 670 
https://science.sciencemag.org/highwire/filestream/721792/field_highwire_adjunct_files/7/aau10671 
43_DataS5_revision1.tsv 672 
1KG accessibility mask: 673 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/2016674 
0622_genome_mask_GRCh38/PilotMask/20160622.allChr.pilot_mask.bed 675 
RefSeq coding regions: 676 
http://www.ensembl.org/biomart/ 677 
Ancestral FASTA: 678 
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Table 1. Baymer modeled 1KG private continental context mutations with extreme polymorphism 
probability differences 

Population 
Comparison 

Context 
Mutation 

log(Poly. 
Prob. 

Fraction) 

Poly. Prob. 
Fraction 
Overlap 

Shift 
Difference 

Shift 
Fraction 
Overlap 

Population 
Specificity 

European v 
African 

TCC>T 0.291 0 -0.174 1.4E-157 European 
TCT>T 0.136 1.6E-18 -0.116 8.5E-16 European 
GCAATTA>G 0.569 4.7E-03 -0.668 2.4E-03  
TATATATC>G -0.660 7.2E-03 0.730 5.6E-03 African 

European v 
South Asian 

TCC>T 0.112 1.2E-09 -0.059 2.7E-03 European 
TCT>T 0.063 5.0E-03 -0.066 2.9E-03 European 
CTATA>T -0.587 2.9E-03 0.493 7.3E-03 South Asian 
ATCTTC>G -0.606 7.6E-03 0.668 5.4E-03   

European v 
East Asian 

CCC>T 0.081 1.4E-03 0.075 6.6E-04   
TCC>T 0.312 0 -0.156 2.4E-97 European 
GCT>T -0.064 5.7E-03 0.095 6.1E-05  
TCT>T 0.133 3.0E-19 -0.102 9.6E-06 European 
GCAACCA>G 1.056 5.3E-03 -1.104 5.0E-03  
ATACCTC>A -1.029 4.2E-03 0.830 5.0E-03 East Asian 

African v 
South Asian 

TCC>T -0.179 1.7E-118 0.115 3.4E-12  
CTATA>T -0.507 6.1E-03 0.482 7.4E-03 South Asian 
CCCCCAG>G -0.818 2.6E-03 0.767 2.7E-03  
TATATATC>G 0.668 3.3E-03 -0.738 2.2E-03 African 

African v 
East Asian 

GCT>T -0.063 9.1E-03 0.074 2.2E-03   
CTCGCG>T 1.240 2.8E-03 -1.243 3.6E-03  
TAAAATA>T -1.160 3.9E-03 1.135 4.8E-03  
ATACCTC>A -1.061 4.6E-03 0.829 5.7E-03 East Asian 
TATATATC>G 0.712 3.9E-04 -0.748 1.3E-04 African 

East Asian v 
South Asian 

TCC>T -0.200 2.4E-155 0.097 5.4E-05  
CTATA>T -0.519 5.3E-03 0.479 7.8E-03 South Asian 
CTCGCG>T -1.244 2.0E-03 1.247 2.7E-03  
ATACCTC>A 0.906 8.5E-03 -0.819 9.1E-03 East Asia 
CCCCCAG>G -0.819 3.8E-03 0.764 4.4E-03   
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Table 2. Power estimates for 1KG continental private polymorphism probabilities.   
abs(log(adj. poly. 
prob / null poly. 

prob.)) 
# contexts sample 

size percentile 

fraction of contexts with >80% power at each mer level  

3mers 4mers 5mers 6mers 7mers  8mers 9mers 

0.01 

0-25% 0 0 0 0 0 0 0 
26-50% 0 0 0 0 0 0 0 
51-75% 0 0 0 0 0 0 0 
76-100% 0 0 0 0 0 0 0 

0.1 

0-25% 0.44 0.11 0 0 0 0 0 
26-50% 0.63 0.04 0 0 0 0 0 
51-75% 0.73 0.03 0 0 0 0 0 
76-100% 0.58 0.10 0 0 0 0 0 

0.5 

0-25% 1.00 0.92 0.30 0.21 0.01 0 0 
26-50% 1.00 1.00 0.68 0.15 0.01 0 0 
51-75% 1.00 1.00 0.76 0.27 0.02 0 0 
76-100% 1.00 1.00 0.87 0.20 0.03 0 0 

1 

0-25% 1.00 0.99 0.81 0.34 0.20 0.02 0 
26-50% 1.00 1.00 1.00 0.73 0.23 0.06 0 
51-75% 1.00 1.00 1.00 0.87 0.24 0.04 0 
76-100% 1.00 1.00 1.00 0.87 0.37 0.08 0 

1.5 

0-25% 1.00 1.00 0.96 0.61 0.25 0.08 0 
26-50% 1.00 1.00 1.00 0.91 0.39 0.18 0.02 
51-75% 1.00 1.00 1.00 0.99 0.59 0.20 0 
76-100% 1.00 1.00 1.00 0.99 0.69 0.26 0 
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Figure 1. Hierarchical relationship of sequence contexts and key algorithmic elements of Baymer. (A) Each 
mutation type is represented by a separate sequence context tree, related by the shared mer level parameters 
and joint multinomial likelihood distribution. Each sequence context tree has a nested structure where 
information is partially pooled across each shared parent. (B) Polymorphism probabilities are parameterized as 
the product of the series of edges that lead to the sequence context of interest. (C) Sequence context trees are 
regularized using a spike-and-slab prior distribution.  
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Figure 2. Baymer model validation, transferability, and regularization in gnomAD non-Finnish European (NFE) 
polymorphisms with derived allele count greater than or equal to 2 in non-coding accessible regions. (A) 
Empirical 9mer polymorphism probabilities for context mutations with at least 1 occurrence in both datasets 
(15910 omitted context mutations) are plotted against one another (Spearman correlation 0.915; p < 10-100; 
RMSPE = 0.12). (B) Baymer mean posterior estimates for 9mer polymorphism estimates in even and odd bp 
datasets (Spearman correlation 0.990; p < 10-100; RMSPE = 0.035). (C) Baymer mean posterior estimates for 
9mer polymorphism estimates in odd bp non-Finnish European gnomAD data and even bp NYGC 1KGPIII 
data, down-sampled to match total number of polymorphisms and site frequency spectrum (Spearman 
correlation 0.981; p < 10-100; RMSPE = 0.063). (D) Fraction of edges in the NFE model with a PIP > 0.95 in 
each sequence context window layer. Absolute count of edges above bars. (E) For high-data contexts with at 
least 100,000 total instances in the non-coding genome and 50 total mutations, fraction of edges at each 
sequence context window size across PIP bins. (F) Proportion of high-data contexts within each mutation type 
at each sequence context window size with PIP>0.95.  
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Figure 3. Modeling de novo mutation probabilities using polymorphism datasets. Even bp Halldorsson et al. de 
novo training data modeled by Baymer is compared to Baymer-modelled polymorphism datasets partitioned by 
allele count. (A) Multinomial likelihoods for each model are calculated on odd de novo bp test data at various 
sequence context sizes. Polymorphism probability estimates were linearly scaled to match the mean 
polymorphism probability of the holdout dataset. (B) Polymorphism datasets were down-sampled to match the 
size of the even bp de novo data (70,364 variants) and multinomial likelihoods were calculated on odd de novo 
bp data. Each dataset was down-sampled using 5 different random seeds. The LL of the 9mer de novo training 
model is indicated with the blue dotted line. 
 
  

A B
de novo Train
Derived NFE-2

NFE-1

NFE-2+
ALL-2
ALL-1

ALL-2+

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.14.512160doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512160
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 4. Tree grafting strategy to share information between Baymer models. (A) For each de novo proxy 
model, we calculated the fraction of context polymorphism probability shifts with a PIP > 0.95 in 2-mer – 9-mer 
mer-levels as a proxy for the degree of regularization in each model. (B) Polymorphism probability shifts in the 
de novo training model that are included with high-confidence (PIP>0.95) are very similar in magnitude and 
direction to their equivalents in the best-performing proxy model, NFE-2+, in 2-mer – 9-mer levels, implying a 
shared polymorphism probability shift structure. (C) Proposed tree-grafting schema for modeling de novo 
mutations that leverages mer-levels where de novo data is plentiful (1-mer – 3-mers) and uses polymorphism 
data to model the remainder of each model in larger mer-levels (4-mer – 9-mers) where the de novo model is 
underpowered. (D) The grafted tree method outperforms the previously best-performing model, NFE-2+. 
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