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Abstract: Intrinsically disordered proteins (IDPs) populate a range of conformations

that are best described by a heterogeneous ensemble. Grouping an IDP ensemble into

“structurally similar” clusters for visualization, interpretation, and analysis purposes is a

much-desired but formidable task as the conformational space of IDPs is inherently high-

dimensional and reduction techniques often result in ambiguous classifications. Here, we

employ the t-distributed stochastic neighbor embedding (t-SNE) technique to generate

homogeneous clusters of IDP conformations from the full heterogeneous ensemble. We il-

lustrate the utility of t-SNE by clustering conformations of two disordered proteins, Aβ42,

and a C-terminal fragment of α-synuclein, in their APO states and when bound to small

molecule ligands. Our results shed light on ordered sub-states within disordered ensembles

and provide structural and mechanistic insights into binding modes that confer specificity

and affinity in IDP ligand binding. t-SNE projections preserve the local neighborhood infor-

mation and provide interpretable visualizations of the conformational heterogeneity within

each ensemble and enable the quantification of cluster populations and their relative shifts

upon ligand binding. Our approach provides a new framework for detailed investigations of

the thermodynamics and kinetics of IDP ligand binding and will aid rational drug design

for IDPs.

Significance: Grouping heterogeneous conformations of IDPs into “structurally similar”

clusters facilitates a clearer understanding of the properties of IDP conformational ensem-

bles and provides insights into ”structural ensemble: function” relationships. In this work,

we provide a unique approach for clustering IDP ensembles efficiently using a non-linear

dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), to

create clusters with structurally similar IDP conformations. We show how this can be used

for meaningful biophysical analyses such as understanding the binding mechanisms of IDPs

such as α-synuclein and Amyloid β42 with small drug molecules.

Keywords t-distributed stochastic neighbor (t-SNE), intrinsically disordered protein (IDP),

conformations clustering, drug design, machine learning
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I. Introduction

In general, knowledge of the 3-dimensional structure of a protein is the first step toward a

molecular-level mechanistic understanding of its biological function. This knowledge is also

central to activities such as the rational design of drugs, inhibitors, and vaccines and in the

broad area of protein engineering and biomolecular recognition1–7. With the advances made

in structure determination techniques8–16 and recent transformative leaps made in computa-

tionally predicting the structure from sequence17–19, the science of structural biology is going

through paradigmatic changes where the knowledge of structure is not the biggest bottleneck

anymore20. However, outside the realm of these structured proteins exist a ”dark” proteome

of intrinsically disordered proteins (IDPs) that constitute more than 40% of all known pro-

teins and play important roles in cellular physiology and diseases21–27. An IDP can populate

a heterogeneous ensemble of conformations and is functional without taking a unique struc-

ture. In essence, IDPs are expanding the classical hypothesis of sequence-structure-function

to the sequence-disordered ensemble-function(s) paradigm. Though solution-based experi-

ments like NMR, FRET, and SAXS do provide structural information for IDPs, they gener-

ally report time and ensemble-averaged properties of IDP conformations28–30. In the absence

of computational models, solution experiments are challenging to interpret in terms of in-

dividual atomic resolution structures that constitute IDP ensembles. In other words, IDPs

are not directly amenable to conventional high-resolution structure determination, structure-

based functional correlation, protein engineering, and drug-designing strategies that hinge

upon the knowledge of a reference 3-dimensional structure.

Computational tools, particularly those that incorporate the available experimental in-

formation, can be effectively used to generate high-resolution ensemble structures of IDPs.

Of late, several broad classes of different approaches have been developed for this purpose.

Methods based on pre-existing random coil library and simple volume exclusions (exam-

ples: Flexible Meccano31, TraDES32, BEGR33) are often used to create an initial exhaustive

pool of conformations, which are further processed to produce refined ensembles upon com-

bining with experimental constraints30,34–39. These methods, though purely statistical in

nature, provide a computationally efficient approach to calculating IDP conformational en-

sembles that are consistent with experimental data. The second set of approaches utilizes
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Physics-based molecular simulations either in a coarse-grained representation (examples:

SIRAH40, ABSINTH41, AWSEM-IDP42, SOP-IDP43, HPS44 and others) or with an all-atom

resolution,45–48 to generate initial Boltzmann-weighted conformational ensembles that can be

further refined with experimental restraints using various reweighing approaches49–51. Re-

cently developed molecular mechanics force fields for IDPs45–48 used in combination with

parallel tempering based enhanced sampling approaches such as Replica exchange solute

tempering (REST)52–55 and hybrid tempering (REHT)56 has also shown promise in produc-

ing atomic-resolution accurate IDP ensembles consistent with experimental solution data

without any added bias in the simulations.

While significant advances have been made in generating high-resolution IDP conforma-

tional ensembles that are consistent with experimental data, the subsequent interpretation

of these ensembles to address key biological questions related to the interactions of IDPs re-

mains extremely challenging. IDP conformational ensembles are inherently extremely high-

dimensional. That is, the phase space of IDPs consists of several thousands of features, which

may vary relatively independently, making it extremely challenging to uncover correlations

in conformational features among conformations contained in IDP ensembles. This often

makes sequence-ensemble-function relationships of IDPs very difficult to understand, even

when aided by relatively accurate IDP conformational ensembles. If one could efficiently

identify representative conformational sub-states in IDP ensembles, and quantify their rel-

ative populations in different molecular and cellular contexts, it would become significantly

easier to identify conformational features of IDPs that may be associated with specific func-

tional roles or disease states57–59. Therefore, parsing the heterogeneous ensemble data into

representative conformational states can be as critical as the generation of the ensemble itself

as it allows one to leverage conventional structural-biology analysis tools for IDPs.

The process of dividing large abstract data set into a number of subsets (or groups) based

on certain common relations such that the data points within a group are more similar to

each other and the points belonging to different groups are dissimilar is called clustering.

Due to its ability to provide better visualization and statistical insights, clustering is ubiq-

uitous in the analyses of big-data biological systems with wide-ranging applications such

as profiling gene expression pattern60,61, de novo structure prediction of proteins62,63, the

quantitative structure-activity relationship of chemical entities64, docking and binding ge-
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ometry scoring65, and also in analyses of protein ensemble from molecular dynamics (MD)

trajectory66. However, the clustering of IDP ensembles is formidable owing to their large

conformational heterogeneity and often different conformations of IDP have similar projected

collective variables (CVs). To illustrate this, we present a set of conformations from a simu-

lated IDP ensemble with the same value of Rg as a CV (Fig. S1 in Supplementary Material

(SM)). It is evident from this illustration how this could lead to ambiguous classification.

Theoretically well-grounded dimensionality reduction (DR) techniques are now commonly

being used in protein conformation analysis to extract the latent low dimensional features

and the quantum of information lost during the projection depends heavily on the kind of

data set under consideration67–72. For example, a highly heterogeneous data set that lies

on a high-dimensional manifold as in the case of IDPs is best handled with the non-linear

dimension reduction (NLDR) techniques, which generally attempt to keep the nearest neigh-

bors close together. While methods such as ISOMAP and Local Linear Embedding are best

suited to unroll or unfold a single continuous manifold, the recently developed t-Distributed

Stochastic Neighbor Embedding (t-SNE) method may be more suitable for clustering IDP

conformations as it helps to disentangle multiple manifolds in the high-dimensional data

concurrently by focusing on the local structure of the data to extract clustered local groups

of samples. Consequently, t-SNE tends to perform better in separating clusters and avoiding

crowding. Here, we show that t-SNE is particularly well-suited for clustering seemingly dis-

parate IDPs conformations into homogeneous subgroups since it is designed to conserve the

local neighborhood when reducing the dimension, which ensures similar data points remain

equivalently similar and dissimilar data points remain equivalently dissimilar in the low di-

mensional and high dimensional space73. Due to its ability to provide a very informative

visualization of heterogeneity in the data, t-SNE is being increasingly employed in several

applications such as clustering data from single cell transcriptomics74–77, mass spectrometry

imaging78, and mass cytometry79,80. Lately, t-SNE has also been used for depicting the MD

trajectories of folded proteins81–87 and for interpretation of mass-spectrometry based exper-

imental data on IDPs by juxtaposing with classical GROMOS-based conformation clusters

from the corresponding molecular simulation trajectories of the IDP under consideration88.

In this paper, we demonstrate the effectiveness of t-SNE (in combination with K-

means clustering) for identifying and visualizing representative conformational substates
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in IDP ensembles. We investigate the small molecule binding properties of Amyloid β42

(Aβ42) and α-synuclein (αS), proteins involved in the neurodegenerative proteinopathies

like Alzheimer’s and Parkinson’s diseases, respectively. Therapeutic interventions by seques-

tering the monomeric state of these IDPs have recently been explored using state-of-the-art

biophysical experiments and long timescale molecular simulations89,90. A set of repur-

posed small molecules such as the c-Myc inhibitor-G5 (benzofurazan N-([1,1-biphenyl]-2-

yl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (10074-G5)) and a Rho kinase inhibitor - Fasudil

(along with the high-affinity Fasudil variant Ligand-47) have been identified as promising

agents against the monomers of Aβ42 and αS, respectively. Since the monomeric states of

these IDPs are extremely heterogeneous, it is not fully understood how the different con-

formations form viable complexes with these small molecules and what molecular features

derive their affinity and specificity. This insight is obscured by inefficient clustering of the

IDP structures using the classical clustering tools. Here we revisit the molecular trajectories

of Aβ42 (a total of 56 µsecs) and αS (total of 573 µsecs) using t-SNE (in combination with

K-Means clustering). This exercise has improved our knowledge of the binding mechanism

of small molecules to such IDPs and also provides us with strategies for designing specific

inhibitors with high-affinity binding. Additionally, our clustering analysis provides valuable

insight for understanding the conformational landscape of APO and ligand-bound IDPs,

which are otherwise hard to obtain. We believe that the method presented here is general in

nature and can be used to cluster and visualize IDP ensembles across systems with varying

degrees of structural heterogeneity and assist in detailed structural, thermodynamics, and

kinetics analyses of IDP conformations in APO and bound states.

II. Results and Discussion

We aim to cluster the heterogeneous mixture of disordered protein conformations into

a subset of unique and homogeneous conformations. To do this, as a first step, we employ

t-SNE that projects the large dimensional data in lower dimensions. We then apply K-means

clustering on the projections to identify the clusters in the reduced space. Before we illustrate

the power of this algorithm as a faithful clustering tool for realistic IDP ensembles, we use

a simple alanine-dipeptide (ADP) toy model to provide physical intuition into how t-SNE
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works. Please see Fig. S2 and the subsection titled ”Physical intuition into t-SNE-based

clustering algorithm using alanine dipeptide” in SM. We use this model system to introduce

the role of the critical hyper-parameter perplexity in the t-SNE algorithm, and prescribe a

strategy to determine its optimal value for effective clustering. We then apply the method

for the analyses of IDP ensembles of complex systems such as Aβ42 and αS, each in the

presence and absence of small-molecule inhibitors. We list all the systems under consideration

in Table I below. We represent the conformations within Aβ42 and αS ensembles by the

inter-residue Lennard-Jones contact energies and the Cartesian coordinates of heavy atoms,

respectively. These measures were chosen for consistency with previous analyses performed

on these trajectories89,91 to enable faithful comparisons. t-SNE was performed based on the

pairwise RMSD of Lennard-Jones contact energies among conformations of Aβ42, and the

pairwise backbone RMSDs among conformations of αS.

TABLE I: Information on systems and trajectories used in this study

S.No Description Simulation scale #snapshots Reference
1 Alanine-dipeptide 10 (ns) 2500 56

2 Aβ42 APO 27.8 (µs) 35,000 89

3 Aβ42-G5 bound 28.2 (µs) 35,000 89

4 Aβ42 apo + G5 bound - 70,000 89

5 αS C-terminus in apo 100 (µs) 55,545 90

6 αS C-term + Fasudil 200 (µs) 55,045 90

7 αS C-term + Ligand-47 200 (µs) 55,545 90

8 αS C-term + Fasudil + Lig47 - 166,135 90

9 αS full-length APO 73 (µs) 36,562 46

A. Prescription for choosing optimal parameters for t-SNE clustering of IDPs

The results of t-SNE depend largely on the choice of perplexity. Since the objective crite-

rion here is to maximize clustering, we adopt the well-known Silhouette score,92 commonly

used for optimizing the number of clusters (K) in K-means clustering, for tuning the per-

plexity values as well. As shown through the formulation in the method section below, the

Silhouette score computes the average of every point’s distance to its own cluster (cohesive-

ness) than to the other clusters (separateness) and is defined such that its value lies in the

range of -1 to 1. A score of 1 is most desirable indicating perfectly separated clusters with
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clearly distinguishable features. A positive value generally indicates acceptable clustering

while negative values are unacceptable for distinguishable clustering. The cohesiveness and

separateness of clusters are generally measured based on Euclidean distance. Since the clus-

ters here are identified on a reduced low dimensional t-SNE space, computing the score on

this space (Sld) alone may be misleading. This is particularly true when using sub-optimal

parameters that often clump the points randomly during the dimensional reduction step

by t-SNE. Therefore, it is important to measure the quality of clustering with respect to

the original distance in the high dimensional space (Shd), in addition to that in the low

dimensional space. The integrated score (Sld ∗ Shd), therefore, adds value to the estimated

clustering efficiency in terms of reliability.

B. t-SNE for clustering Aβ42 conformational ensembles

1. t-SNE identifies the clustering pattern intrinsic to the Aβ42 ensemble

We apply our algorithm on APO and G5-bound Aβ42 all-atom MD simulations trajecto-

ries obtained from the Vendruscolo group89. We have used an identical set of representative

frames for clustering as in the original work (35000 frames from each ensemble) where each

system was simulated for 27.8 (µs). Furthermore, to be consistent, we represent the con-

formations similarly by inter-residue Lennard-Jones contact energies. We used the distance

between all pairs of conformations from the RMSD of the contact energies and feed that

into our t-SNE pipeline. In the case of Aβ42 (APO and G5-bound), the calculated Sil-

houette score for a range of K and perplexities indicates a positive value with respect to

both the distances at the low dimensional space (Sld) as well as at the high dimensional

space (Shd) (Table S1 & S2) suggesting reliable clustering. This can be compared against

the large negative score (-0.6) with respect to the high dimensional distance, obtained for

the classical GROMOS-based clustering, which indicates that the conformations are grouped

into wrong clusters. In Fig. 1(a,b), we report the integrated score (Shd*Sld) as measured

for the clusters in APO and G5-bound ensembles of Aβ42. In both cases, the Silhouette

score clearly identifies an optimal cluster size (30 in the case of APO trajectory and 40 in

G5 bound trajectory). The identification of clear minima in this parameter space suggests

the t-SNE is able to identify a clustering pattern that is intrinsic to the underlying ensemble
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structure and corresponds to the true number of metastable structures. At these optimal

values, we find that the low-dimensional t-SNE map shows discrete clusters in both APO

and G5-bound ensemble Fig. 1(c,d) Whereas at sub-optimal values, the identified clusters

either encompass different pieces together in a single cluster (for example at P=50; K=20 in

APO) or break into multiple clusters of similar conformations (at P=350, K=100 in APO

system).

2. Clustering reveals ordered sub-states within disordered Aβ42 ensemble

Once the optimal number of clusters for a given data set is decided using the prescrip-

tions described above, we inspect the uniqueness and homogeneity of individual clusters by

back-mapping to the conformations in the bound and unbound ensembles. Fig. 2 shows

the conformations within each cluster of Aβ42 ensemble indicating unique topology and sec-

ondary structural architecture. To quantify this observation, we plotted the distance maps

between conformations before and after clustering. Please see Fig. S3-S5 and subsection

titled ”Estimation of homogeneity” in SM). The results show that the clusters obtained with

optimal parameters indeed yield better homogeneity than that obtained with sub-optimal

parameters.

More interestingly, though the G5 bound conformational ensemble was clustered only

based on the similarities of protein conformations, the ligand is shown to have a specific

binding orientation with the protein within each cluster (Fig. 2(b)). This result sheds light

on the hidden ordered features in a disordered IDP ensemble, which can confer specificity

for ligand binding. The ability of t-SNE to cluster a seemingly disordered ensemble into

substates with distinct structural features and ligand binding modes suggests that one could

reduce a library of tens of thousands of Aβ42 conformations to a small number of structures

to screen for potential interacting ligands. This will aid in a high throughput structural and

statistical analysis of IDP ensemble data and greatly aid our fundamental understanding of

disorder-function relationships and in the design of therapeutic drugs for IDP molecules.
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FIG. 1: Hyperparameter optimization based on integrated Silhouette score for the (a)
APO, and (b) G5-bound ensembles of Aβ42. The t-SNE maps obtained with selected

optimal (green and cyan squares) and sub-optimal (Red, Black, Pink, and Orange squares)
values of the perplexity and number of clusters K are shown in (c) and (d) for APO and

G5 bound ensembles. The maps illustrate how these parameters affect clustering efficiency.
In t-SNE projections with sub-optimal parameter values that lead to too few clusters (Red
and Pink squares), we observe clearly distinguishable groups of points merged into single
cluster assignments. In t-SNE projections with sub-optimal parameter values that lead to
too many clusters (Black and Orange squares), we observe indistinguishable groups of

points merged into different cluster assignments.
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FIG. 2: t-SNE based conformational clustering of Aβ42 ensembles in the absence and
presence of G5 in a and b respectively. The cluster-wise population statistics is shown in

Fig 2c and d.

3. Insights into the binding properties of Aβ42 with G5

The cluster-based population statistics of different metastable conformations have been

analyzed and shown in Fig. 2(c,d). The results indicate that the distributions are more

equally probable in the case of the ligand-bound ensemble than in the APO state. From this

population distribution of different metastable conformations, we have estimated that the

Gibbs conformational entropy (−
∑

(p ln p)) of the G5-bound ensemble is larger than the

APO ensemble (Fig. S6 in SM). The number of optimal unique conformations (30 in APO

versus 40 in G5-bound ) and their respective Silhouette score (in high dimension space, 0.21

versus 0.15) (Table S1 and S2) also suggest consistent observation. Taken together, these

results further corroborate the entropic expansion on ligand binding as deduced from the
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earlier studies89. Though the ligand has very specific binding geometry within each cluster,

they vary significantly across the different clusters. We show the contact probabilities of

G5 with individual protein residues in Fig. 3(a) for individual clusters. We also plot the

residue-wise contact probabilities using the total trajectory, which provides averages without

clusters (Fig. S7 in SM). As indicated by the figures, the G5 preferentially binds to aromatic

residues such as Tyr/Phe (residue numbers 10, 19, 20) and hydrophobic residues such as

Ile/Val/Met (residue numbers 31, 32, 35, 36). The interactions of G5 with these aromatic

and hydrophobic residues potentially disrupt tertiary contacts between these residues in the

Aβ42 ensemble, thus limiting the stabilization of transiently ordered Aβ42 conformations

and increasing the heterogeneity and conformational entropy of the ensemble. To further

quantify how the contacts of G5 at diverse locations affect the interaction strength, we applied

a high throughput numerical technique called molecular mechanics with generalized Born

and surface area solvation (MM/GBSA) to estimate the free energy of the binding of ligands

to proteins93,94. Our MMGBSA-derived binding scores are shown in Fig. 3(b). We see that

the G5 binds at relatively equal strength in multiple clusters. But interestingly, we also

noted a few of the clusters (cluster numbers 14, 29, and 30) that show statistically stronger

binding than the others. More interestingly, these same clusters consist of a relatively larger

population in the ensemble than the other conformers. The protein residues involved in

binding in these selected clusters along with their energy contributions to the total energy

as plotted in Fig. 3(c) and the conformational binding-geometry for the cluster that exhibits

the most favorable MM/GBSA binding is shown in Fig. 3(d,e). In Fig. S8 in SM, we also

show the same data (binding geometries and residue-wise interactions) for the two other

clusters, which show the second and the third-best MM/GBSA scores. Our analyses reveal

that ligands interact with multiple favorable sites simultaneously, which indicates that even a

partially collapsed or ordered state of an IDP can provide a specific binding pocket for small

molecule interactions. These unique insights gained as a result of high-fidelity clustering can

be leveraged for future IDP-drug designing with conventional strategies utilized to target

ordered binding sites in folded proteins.
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FIG. 3: Cluster-wise inter molecular contact probabilities and their respective binding
energy as measured using MMGBSA analysis are shown in (a) and (b) respectively. For
the cluster that shows the most favorable binding (cluster no: 14)), we have shown the
residue-wise decomposed energy contribution in (c) with error bars representing 99%

confidence interval of the estimated mean. The superposition of ten central conformations
from this specific cluster is shown in (d) and the interacting residues are shown in stick

representation in (e)

C. t-SNE for clustering α-synuclein conformational ensembles

1. t-SNE reveals distinct conformation sub-states despite extreme structural

plasticity

Next, we apply our clustering algorithm to characterize the conformational ensemble

of the prototypical IDP α-synulcein (αS). αS is a longer IDP than Aβ42, consisting of 140
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amino acids, and has a substantially less ordered, or more ”fuzzy”, conformational landscape

with virtually no experimentally detectable residual secondary structure propensity. We also

apply our t-SNE clustering algorithm to cluster the conformations of a C-terminal fragment

of αS, containing residues 121-140, which we refer to as ”αS C-term”. These residues were

shown to have the highest affinity to a family of small molecule ligands based on the structure

of the Rho protein kinase inhibitor Fasudil by both NMR experiments and unbiased MD

simulations of a full-length αS construct91. The t-SNE projection of full length αS produces

a crowded map, with only a few segregated clusters of points visible(Fig. S9a). In the case

of αS C-term, t-SNE projections produce a single continuous grouping, or ”blob”, of points,

with no clearly distinguishable subsets of data points regardless of the perplexity value

used, suggesting extreme heterogeneity and almost no detectable order in its conformational

landscape (Fig. S9b). This distribution of points in the low dimensional t-SNE projection

suggests αS C-term may be described by a broad and relatively flat energy surface with very

few barriers or local minima. This is in stark contrast to the substantially more discernible

t-SNE projections data of Aβ42 seen in Fig. 1.

In order to obtain a better sense of the conformational diversity of αS and αS C-term, we

examined the pairwise RMSD between conformations in both ensembles in Fig S10. Here,

we observe that the conformational states rapidly exchange among themselves, which in

turn creates a very cluttered distance map of the original trajectory. This is shown in the

first subplot for full αS in Fig. S10(a) and for the C-terminal (C-term) peptide in Fig.

S10(b). This suggests there are very few intrinsic groupings of these conformations in the

high dimensional space, which is consistent with the t-SNE projections seen in Fig. S9. When

we apply our t-SNE clustering approach and scan values of perplexity and cluster size, we

observe substantially worse Silhouette scores relative to those obtained for Aβ42, with values

very close to 0, indicating poor clusterability of these ensembles. However, we find that in this

relatively continuous distribution of conformations, we still observe some positive Silhouette

scores, though with very small magnitudes, suggesting some limited success in projecting

onto a lower dimensional manifold. A small magnitude positive Silhouette score can indicate

that most data points are on or very close to the decision boundaries between neighboring

clusters. In such cases, scanning values of Silhouette scores as a function of perplexity values

and the number of clusters may not locate a clear maximum in this parameter space (Fig
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S11). In the case of full-length αS we observe that the Silhouette score continues to increase

with a number of clusters beyond an undesirably large number of clusters (over 100) that

becomes difficult to structurally interpret. In the case of αS C-term, where we see almost no

separation of points in lower dimensional t-SNE projection, we observe that the Silhouette

score is at a maximum with two clusters, and decays to zero as the number of clusters

increases beyond 2. We, therefore, observe that our procedure for scanning the parameter

space of perplexity and cluster size is less successful for the substantially more continuous

distribution of conformations observed in simulations of αS and αS C-term.

Nevertheless, we attempted to determine if t-SNE projections of the conformational en-

sembles of αS and αS C-term onto a lower dimensional space can provide interpretable

structural insights into these ensembles. Due to the nature of the projection data, we do not

use the usual for an optimal Silhouette score. Instead, we focused on a tractable number of

clusters and manually choose the perplexity and number of clusters in an effort to achieve a

reasonable degree of structural homogeneity within cluster assignments. To assess the inter-

pretability of t-SNE projections with low Silhouette scores, we have examined the structural

properties of clusters generated with K=50 and perplexity=400 for full-length αS and K=20

and perplexity=1800 for αS C-term (Fig. 4, Fig. S11). The clusters produced with these

values effectively divide the continuous distribution of points in the t-SNE projection space

into contiguous regions with no clear separations in the lower dimensional projection. We

then inspect the conformational homogeneity of the structures in each cluster to determine

if this discretization provides interpretable structural insights. Despite the lower Silhouette

scores, we observe substantial conformational homogeneity within these cluster assignments

as assessed by the visualization of the conformational states (Fig 4) and pairwise RMSD be-

tween clusters (Fig S10). This suggests that our t-SNE low dimensional projection preserves

local structural properties of IDPs well even when distinct clusters of data points are not

apparent based on the low dimensional t-SNE projections and Silhouette scores.

Visual representations of the conformations in the 50 clusters of full-length αS system

and 20 clusters of apo C-term αS system are shown in Fig. 4(a,b). In spite of the extreme

heterogeneity of the conformational space of the αS and αS C-term ensembles, and relatively

continuous distribution of points in the low dimensional t-SNE projections, we find that our

clustering method clearly partitions αS and αS C-term conformations into clusters with
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unique and relatively homogeneous conformations. While the conformations do not contain

any secondary structure and do not collapse to form rigid pockets as in the case of the Aβ42,

we still observe substantial order within each of the clusters. Interestingly, we find that the

conformations of C-term αS peptide span a range of conformational states that vary from

fully-extended rod-like shapes to acutely bent hairpin-like conformations (4(b)) and presents

all intermediate bending angles between these two extremes. To illustrate this feature,

we have presented the clusters in a sequence, arranged based on the average bend angle

measured between the Cα atoms of residues 121, 131, and 140 (Fig. 5(a-c)), which make up

the C-terminal, middle and N-terminal residues of the peptide, respectively. Henceforth, we

will refer to this simply as the ”bend angle”. We have plotted the distribution of the bend

angles observed in each cluster in Fig. 5(c). An interesting and valuable by-product of this

high-fidelity clustering is that it seems to inform a single collective variable that uniquely

defines the various conformations across clusters. This collective variable may be useful for

running computationally efficient biased simulations of this system.

2. Characterization of ligand bound ensembles of the C-terminal αS peptide

We next used our t-SNE clustering approach to quantify the effects of small molecule

ligand binding on the conformational ensemble of αS C-term. We have chosen to analyze

the effects of binding two ligands, the small molecule Fasudil and a previously identified

higher affinity αS ligand (ligand 47), on the conformational ensemble of αS C-term. We first

generated t-SNE maps for all conformations of αS C-term in the presence of fasudil or ligand

47 for different values of perplexity as shown in Fig. S12. Similar to the low dimensional

projection of conformations observed in the APO simulation of αS C-term, we observed that

the t-SNE projections of both ligand-bound ensembles produce a continuous distribution

of points with no clearly distinct subsets of points. We then clustered the conformations

using the same number of clusters K=20, and selected perplexity values for each ligand-

bound ensemble that achieved the maximal silhouette score for K=20 (perplexity=1200 and

perplexity=1100 for the fasudil bound ensemble and ligand 47 bound ensemble respectively)

(Figure 5d-e and 5g-h). As was the case with the APO ensemble, we find that these clusters

partition conformations of αS C-term by the previously defined bend angle between the Cα
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FIG. 4: t-SNE based conformational clustering of (a) full-length α-synuclein (140 residues)
and (b) a 20 residue C-terminal fragment of α-synuclein.
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atoms of residues 121, 131, and 140 (Figure 5f and i).

Unlike the localized binding of G5 with individual metastable states of Aβ42, the binding

of fasudil and ligand 47 is not localized to a specific region of the peptide within each

cluster (Fig. 5(e,h). We quantified the inter-molecular contacts between fasudil and ligand

47 with αS C-term in figure 6a,b. We also quantified the fraction of specific interactions

in each cluster where a protein residue forms a hydrophobic contact, an aromatic stacking

interaction, a charge-charge contact, or a hydrogen bonding interaction with the ligand

utilizing reported geometric criteria (Figure S13 and S14)91.

For both ligands, we observe that the maximum contact probability with any residue

is only 0.5. We note that the contact analyses are carried out with the full trajectory

of bound+unbound frames, which could be the factor for lower values. Interestingly, we

observe the same trend even when we analyzed only the bound frames of the αS C-term

trajectories in all the clusters (Fig. S15). Further, we observe relatively similar intermolec-

ular interaction profiles across clusters, with relatively smaller deviations, and the contacts

are primarily centered around the three aromatic residues of αS C-term (Y125, Y133, and

Y136) illustrating that the same sets of intermolecular interactions are accessible regardless

of the distribution of bend angles in each cluster. We do not observe any specific sets of

intermolecular interactions, such as specific charge-charge contacts or aromatic stacking in-

teractions, that are only present in a subset of clusters. These relatively lesser contacts at

any specific residue and similar interaction profiles across clusters are consistent with the

previously proposed ”dynamic shuttling” mechanism of IDP small-molecule binding, where

small molecule ligands transition among a heterogenous ensemble of binding modes based

on the geometric proximity potential sidechain and backbone pharmacophores91.

Examining the intermolecular interaction profiles of the two ligands, we observe that

ligand 47 appears to have substantially higher fractions of aromatic charge contacts (Fig.

S13 vs Fig. S14) than Fasudil. Surprisingly, the population of aromatic stacking interactions

seems to be dependent on the bend angle of αS C-term in both the ligands. The clusters with

acutely bent conformations mostly have higher aromatic stacking propensity. The Pearson

correlation between the cluster-wise average bend angle and total aromatic stacking is very

high ( -0.7), as shown in Fig. 6c and f. To us, this was a very unique and non-obvious

observation that manifested itself due to our clustering exercise. To obtain more detailed
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insight into the binding modes of Fasudil and ligand 47 we examined the relative affinity of

the ligands to each cluster. Considering both apo and bound frames in clustering enabled

us to calculate the fraction of bound frames in each cluster, and report simulated KD values

for each cluster as reported previously91 (Figure S16). The KD values of Fasudil and ligand

47 range from 6.5mM-8.5mM and 3.5-5.5mM across clusters, respectively. Though there

are only small deviations in the KD values across the clusters, we notice that the KD is

significantly lesser in clusters with acutely bent conformations and high aromatic stacking

propensity (Fig 6d,e,g,h). The strong correlation between these values suggests that the

bent conformations provide substantially more compatibility toward binding by orienting

the aromatic residues (Y125, Y133, and Y136). Representative snapshots from the top 5

bent clusters of Fasudil and Ligand 47 bound αS C-term are shown in Fig. 6i and j. This

is a very exciting result to us since it provides a relationship between the relative curvature

of the αS C-term backbone and the accessibility of specific intermolecular interactions. This

relationship is much stronger in the higher affinity ligand 47, suggesting that exploiting a

coupling between conformational substates and the accessibility of specific intermolecular

interactions such as aromatic stacking may be useful for designing higher affinity ligands for

disordered IDP ensembles.

Since the conformational ensembles of αS C-term were obtained from unbiased MD sim-

ulations, we can assess the kinetic stability of the conformations in the reported clusters by

calculating the transition probabilities between clusters at different lag times (Fig. S17).

Here we observe that most clusters in the APO αS C-term are not well defined in terms of

kinetic stability. Even at these short timescales, for bend angles greater than 70o there is

little memory of cluster assignment in the trajectory, and no noticeable pattern of transition

probabilities between clusters. This pattern of transition probabilities is consistent with the

notion of a broad and flat free energy surface with few local minima. We notice that there

seems to be elevated kinetic stability for αS C-term conformations with small bend angles

(¡70o) at short lag times. This suggests a slightly more rugged conformational free energy

surface for hairpin-like conformations, which are likely stabilized by sidechain interactions

between residues more distant in sequence. We observe however that the kinetic stability of

hairpin-like conformations of apo αS C-term is not observed at longer timescales, suggesting

that the local free energy minima of hairpin conformations are fairly shallow. We observe a
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similar pattern of kinetic stability of αS C-term clusters observed in the presence of fasudil

and ligand 47.

Lastly, we compare the shift in the populations of conformational states of αS C-term and

Aβ42 in the presence and absence of small molecule ligands by projecting the conformational

ensembles of apo simulations and simulations in the presence of ligands onto a single t-

SNE projection for each protein (Fig S18). In the case of αS C-term, we observe that the

ligand-bound and apo ensembles are nearly indistinguishable in the lower dimensional t-SNE

projection. This is in severe contrast to the behavior exhibited by Aβ42 APO and ligand-

bound t-SNE projections as shown in Fig. S18 (b). The map in Fig. S18 (b) clearly shows

that the APO and bound Aβ42 ensembles have clusters that are distinct with only a few

regions showing overlapping projections.

D. Scope and limitations of t-SNE method with IDP-clustering

Unlike the commonly used projection techniques such as PCA and MDS, t-SNE optimiza-

tion is non-convex in nature with random initialization that produces different sub-optimal

visual representations at different runs. While the physical interpretation of t-SNE projec-

tions seems daunting, this affects mainly the global geometry and hierarchical positioning

of the clusters and not the local clustering pattern. We illustrate the consistency in local

clustering upon different runs with different random initialization by quantifying the Sil-

houette score and mutual information of clusters in Table S4. Moreover, finding a single

optimal global geometry of the IDP dataset is often not possible owing to their extreme

heterogeneity with almost equal transition probability between different clusters. However,

if one necessitates the global preservation, tuning the perplexity95, and other parameters

like Early exaggeration and Learning rate, initializing with PCA and Multi-scale similarities

could be helpful75,96. In addition, some of the variations of t-SNE methods such as h-SNE

can also be helpful97.

Another factor that should be considered while using t-SNE on ultra-large datasets is the

associated computational cost. Analyzing large data sets with t-SNE (beyond n ≫ 106) is

not only computationally expensive (scales with O(n2)), but also suffers from slow conver-

gence and fragmented clusters. If the computational cost becomes formidable, one could use
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FIG. 5: t-SNE based conformational clustering of APO, fasudil-bound and ligand47-bound
ensembles of a C-terminal fragment of α-synuclein are shown in Top, middle and bottom
respectively. The conformational subspace of the t-SNE projections is subdivided into 20
clusters (Fig 5a, 5d and 5g). The structure of these conformations within each cluster
shows a relatively homogenous distribution of structures (b,e and h). The clusters of
conformations are arranged based on the bend angle calculated on the Cα atoms of
residues 121, 131, and 140 and displayed in order of a decreasing bend angle. The

distribution of the bend angle in each cluster is shown as a box plot (in c,f, and i) for the
apo, Fasudil-bound, and Ligand47-bound ensembles.
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FIG. 6: Per-residue intermolecular contact probabilities between αSC−term and fasudil and
αSC−term and ligand 47 observed in each cluster are shown in (a) and (b) respectively. The
clusters are sorted in the decreasing order of bend angle and the actual cluster indices are
indicated in the alternate Y-axis in red. Figures 6c-h represent the correlations among the
average bend angle, total aromatic stacking propensity, and dissociation constant, (KD),
measured from individual clusters. The corresponding Pearson correlation coefficient is
indicated within each plot. Representative snapshots from the top 5 clusters containing
acutely bent hairpin-like conformations of Ligand bound αSC−term illustrating how the
bent conformations orient the aromatic side chains of Tyr-125, Tyr-133, and Tyr-136

towards better stacking interaction with Fasudil (i) and Ligand 47 (j) that in turn lead to
better inter-molecular affinity. The snapshots from left to right were taken from cluster

numbers 4, 6, 19, 9, and 2 in the case of Fasudil-bound αSC−term (i) and cluster numbers 1,
7, 10, 8, and 11 in case of Ligand-bound αSC−term (j).

methods such as Barnes-Hut approximation98 and the FIT-SNE method to accelerate the

computation. In short, Barnes-Hut approximation considers a subset of nearest neighbors

for modeling the attractive forces, and the FIT-SNE method relies on a fast Fourier transfor-

mation, which reduces the computational complexity to O(NlogN) and O(N), respectively.

To mitigate the slow convergence and fragmentation of clusters, it is often desirable to run t-

SNE on a sub-sample of the trajectory that includes all unique populations and then projects
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the rest of the points onto the existing map.

In line with discussing the possible pitfalls of the t-SNE method, it is also understood that

adding a new data point onto the existing t-SNE map can lead to erroneous interpretation

as the method is essentially non-parametric and does not directly construct any mapping

function between the high dimensional and low-dimensional space. Recent extensions of the

method in combination with deep neural networks allow for parametric mapping75,99 and

could be tried if such a situation can not be avoided. Moreover, the possibility of out-of-

sample mapping with parametric t-SNE can be explored further for driving simulations from

one state to another and to match experimentally known values. For instance, in such cases,

the similarities can be obtained from NMR chemical shifts or from SAXS intensities. From

that perspective, t-SNE as an integrative modeling tool looks very promising.

III. Conclusion

In spite of the well-established knowledge of the inherent conformational heterogeneity in

an IDP ensemble and despite advances made in accurately determining the ensemble con-

formations using integrative approaches, successful application of IDPs to drug targeting is

limited. The main reason behind this is the lack of accurate classifications of the conforma-

tional ensemble. Our algorithm provides that tool where several thousands of structures can

be grouped into representative sets of the distinct and tractable conformational library, with

unprecedented quality and performance. We introduced new metrics for choosing optimal

hyper-parameters of the algorithm and for validating the homogeneity in the resultant clus-

ters. The accessibility and generality of the framework enable faithful clustering for broader

applications without requiring expert domain knowledge of the underlying data.

We demonstrated the approach on aβ42 and αS ensembles under free and ligand-bound

contexts. Our results provide important insights into the ordered meta-stable structures

present in the IDP ensembles and their binding mechanism to small molecule ligands. The

two IDPs studied here exhibits vastly different mechanism of small molecule recognition:

while the Abeta42 has distinct binding pockets in different metastable structures that bind

uniquely with the G5 molecule, the binding of Fasudil and ligand 47 with αS C-term fol-

lows the ”dynamic shuttling” within all the metastable states. Yet the residue preference

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.11.11.516231doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516231
http://creativecommons.org/licenses/by-nc-nd/4.0/


across the two ligands with αS and the G5 with the Aβ-42 is strikingly similar for the aro-

matic residues. This was also observed in another recent study for small molecule binding in

p27100. Designing ligands that target these residues could be a common strategy for IDPs.

The results of t-SNE based clustering exercise on α-S reveal one of the most interesting and

non-obvious learning about the emergence of the possible role of peptide local curvatures,

besides the weak chemical specificity, as sites of ligand binding. Our tool also makes it very

convenient to generate sub-groups of similar conformations for long IDPs, whose full confor-

mational ensemble is highly intractable for structural biophysical analyses. For example, we

applied our algorithm to study how the long disordered regions of FUS protein interact with

RNA molecules101 and this t-SNE tool allowed us to illustrate the complex RNA binding be-

havior of the long disordered FUS RGG repeats in an interpretable manner. Taken together,

these learnings will invariably aid in carrying out in silico functional and drug screening

studies in a rational manner, a critical next step for curing many incurable IDP-induced

diseases. Identification of functionally and pathologically relevant substructure of an IDP

would also open ways for reverse engineering of IDPs with functions useful in biotechnology

and medicine.

IV. Materials and Method

A. Input for t-SNE analysis

The systems details about the trajectories of alanine-dipeptide, Aβ42, and αS ensembles

are reported in Table 1. The conformations of the trajectories were represented by backbone

dihedral angle, inter-residue LJ-interaction potential, and atomic coordinates of heavy atoms

for alanine-dipeptide, Aβ, and αS ensembles, respectively.

1. t-SNE based dimensional reduction

Given a number of observations (conformations) n and with d dimensional input features

in the original space defined as X = {x1, x2, . . . , xn} ∈ Rd, t-SNE maps a smaller s dimen-

sional embedding of the data that we denote here by Y = {y1, y2, . . . , yn} ∈ Rs. Here s ≪ d

and typically s = 2 or 3. This projection is based on the similarity and dissimilarity between
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conformations. The similarity or dissimilarity between the conformations in the high dimen-

sional space is computed based on Euclidean or RMS distances. t-SNE aims to preserve the

local neighborhood such that the points that are close together in the original space remain

closer in the embedded space. In the original space, the likelihood of a point xj to be the

neighborhood of xi instead of every other point xk is modeled as a conditional probability

p(j|i) assuming the Gaussian distribution centered at point xi with a standard deviation of

σi.

p(j|i) =
exp(−∥xi−xj∥2

2σ2 )∑
k ̸=i exp(−

∥xi−xk∥2
2σ2 )

(1)

Similarly, the conditional probability in the embedded space (q(j|i)), with the same n

points initialized randomly, is computed but now based on a t-distribution. Having a longer

tail than Gaussian, the t-distribution moves dissimilar points farther away to ensure less

crowding in the reduced space.

q(j|i) =
(1+ ∥ yi − yj ∥2)−1∑
k ̸=i(∥ yi − yk ∥2)−1

(2)

To ensure symmetry in the pairwise similarities, the joint probability is calculated from

the conditional probability as follows:

pij = (p(j|i) + p(i|j)/2n (3)

Finally, the difference between the two probability distributions, calculated as Kullback-

Leibler (KL) divergence is then minimized by iteratively rearranging the points in the low

dimensional space using gradient descent optimization.

C = KL(P |Q) =
∑
i

∑
j

pij log
pji
qji

(4)

where P and Q are the joint probability distributions in the high and low dimensional space

over all the data points.
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The major tunable hyperparameters in t-SNE are the perplexity, learning rate and the

number of iterations. The perplexity value, P defines the Gaussian width, σi, in Equation

1 above such that, log2P = H(Pi) = −
∑

j pj|i log2 pj|i for all i. Loosely, this parameter

controls the number of nearest neighbors each point is attracted to and therefore balances

the preservation of similarities at a local versus global scale. Typically, low perplexity values

tend to preserve the finer local scale and high perplexity values project a global view. To

optimize perplexity, we ran the algorithm with varying values of perplexities and chose the

one that yields a high silhouette score. The other two parameters such as the learning rate

and the number of iterations control the gradient descent optimization. While we chose the

default value of 200 for the learning rate, the number of iterations was chosen to be 3500,

which is large enough for avoiding random fragmentation of clusters as suggested in the

literature.96

B. Kmeans clustering of data on the reduced space obtained from t-SNE

Kmeans clustering is the simplest unsupervised clustering algorithm that partitions the

data into non-overlapping clusters. The algorithm starts by grouping data points randomly

into K clusters, as specified by the user. Then it iterates through computing the cluster

centroids and reassigning data points to the nearest cluster centroid until no improvements

are possible. The parameter, K, is optimized by running at various values and chosen based

on the maximized clustering efficiency.

C. Optimizating the hyperparameters (Perp in t-SNE and K in k-means )

using Silhouette score

Silhouette score for a datapoint i is measured by,

Si =
(bi − ai)

max(bi − ai)
(5)

where ai is the intra-cluster distance defined as the average distance to all other points in

the cluster to which it belongs. bi represents the inter-cluster distance measured as the

average distance to the closest cluster of datapoint i except for that it’s a part of. Typically
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the Silhouette score ranges between 1 and -1, where a high value indicates good clustering,

and values closer to 0 indicate poor clustering. A negative value indicates the clustering

configuration is wrong/inappropriate.

The distance between points is usually measured in terms of the Euclidean distance met-

ric. Since the clusters, in our case are identified in a reduced representation with t-SNE,

computing the score based only on the distances in the reduced space (Sld) may be mislead-

ing, if the points are wrongly put together during the dimensional reduction step by t-SNE.

Therefore, it is important to measure the goodness of clustering with respect to the original

distance in the high dimensional space (Shd), in addition to that in the low dimensional

space. The integrated score (Sld ∗ Shd), therefore, adds value to the estimated clustering

efficiency in terms of reliability.

D. Cluster-wise conformational analysis and visualization

The conformations corresponding to each cluster are extracted using Gromacs based on

the cluster indices. All the conformations were used for estimating the contact probability,

binding energy, and homogeneity within individual clusters. Whereas, for visualization pur-

poses, we extracted ten representative conformations from each cluster that is closest to the

corresponding cluster centroid (as identified using KD-tree based nearest neighbor search

algorithm). The conformations are rendered using VMD.

Our current implementation of the model is available on the GitHub repository:

https://github.com/codesrivastavalab/tSNE-IDPClustering.
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35Pau Bernadó, Laurence Blanchard, Peter Timmins, Dominique Marion, Rob W. H.

Ruigrok, and Martin Blackledge. A structural model for unfolded proteins from residual

dipolar couplings and small-angle x-ray scattering. Proceedings of the National Academy

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.11.11.516231doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516231
http://creativecommons.org/licenses/by-nc-nd/4.0/


of Sciences, 102(47):17002–17007, 2005.
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59Stefano Gianni, Maŕıa Inés Freiberger, Per Jemth, Diego U. Ferreiro, Peter G. Wolynes,

and Monika Fuxreiter. Fuzziness and frustration in the energy landscape of protein folding,

function, and assembly. Accounts of Chemical Research, 54(5):1251–1259, 2021. PMID:

33550810.

60Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Botstein. Cluster analysis

and display of genome-wide expression patterns. Proceedings of the National Academy of

Sciences, 95(25):14863–14868, 1998.

61Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish, Suzanne Ybarra, Daniel Mack,

and Arnold J Levine. Broad patterns of gene expression revealed by clustering analysis

of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the

National Academy of Sciences, 96(12):6745–6750, 1999.

62CA Floudas, HK Fung, SR McAllister, M Mönnigmann, and R Rajgaria. Advances in
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FIG. S1: Snapshots of several conformations of Aβ42 with the same Rg values (1.10 nm)
but have different structures altogether. It is evident from this illustration how the use of

such low-dimension collective variables (CVs) could lead to ambiguous classification.
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A. Physical intuition into t-SNE-based clustering algorithm using alanine

dipeptide as a model system

We first employ the t-SNE method on the alanine dipeptide (ADP) trajectory where we

compare the results with the well-known 2D Ramachandran plot using dihedral distance

as dissimilarity score. Ramachandran plot is also called ϕ − ψmap due to the backbone

dihedral angles along the peptide bond1,2. Here, we can fix the number of clusters to four

(K = 4) based on the four known sub-regions of the Ramachandran plot namely beta-sheet,

PPII, right-handed α helix, and left-handed α helix (Fig. S2(a)). The left-handed α helix

region lies separately in the second half of the ϕ dihedral axis whereas the beta-sheet and

the right-handed α helical regions occupy the first half of the ϕ dihedral axis. To quantify

the goodness of clustering, we calculate the Silhouette score3 on the raw data and arrive at a

score of 0.55 for the 2D map. Of note, when the numbers of clusters are not known a priory

unlike the ADP system, we have a prescription that makes use of silhouette score with the

t-SNE perplexity values to find the optimum number of clusters.

The second feature of t-SNE is a tuneable parameter called “perplexity,” which (loosely)

dictates how to balance attention between local and global aspects of your data. The pa-

rameter is, in a sense, a guess about the number of close neighbors each point has. The

perplexity value has a complex effect on the resulting pictures. The original paper says,

“The performance of SNE is fairly robust to changes in the perplexity, and typical values are

between 5 and 50.” But the story is more nuanced than that. Getting the most from t-SNE

may mean analyzing multiple plots with different perplexities.

In the Ramachandran plot, low dimensional projection of data along any one of the

projections (ϕ or ψ), yields overlap of different conformations onto each other. We show this

at the bottom and left of Fig. S2 (a) for projection along ϕ and ψ, respectively. PCA, the

most common dimensional reduction method, fails to achieve clear separation and has a very

low Silhouette score of 0.154 (see Fig. S2(b)). This is because PCA tries to linearly transform

the data along an axis of maximal variation, which is the ψ axis in the Ramachandran plot

and hence cannot capture the distinction between L-helix and other conformers. On the

other hand, the t-SNE projections provide more faithful representations of the clusters. In

Fig. S2 (c), we plot the t-SNE projections for a range of perplexity values. For a certain
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FIG. S2: Dimensional reduction of Ramachandran map of alanine di-peptide: a) The 2D
Ramachandran map color-coded by the subregions. Simple 1-dimensional projections along
the X and Y axes are shown. Results of 1D transformation of RC-map using b) PCA and

c) t-SNE with different perplexities.

perplexity value (Perp =400), t-SNE clearly separates out the 4 sub-regions as in the original

space with a much improved Silhouette score of 0.50. At low perplexities, t-SNE focuses on

the local variations and tries to preserve the closest neighbors as much as possible in the

original space. However, very low perplexity yields too many clusters with single or very few

conformations per cluster, which nullifies the advantages of clustering in the first place. On

the other hand, t-SNE essentially degrades to PCA at very high perplexities and leads to

overcrowding as greater variations are tolerated at high perplexity scores. With perplexity as

a tuneable parameter to balance the degree of local preservation on one hand and minimize

the overcrowding on the other, t-SNE offers an exciting possibility to meaningfully cluster

and visualize complex and heterogeneous high-dimensional IDPs datasets.
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B. Estimation of homogeneity within cluster

To quantify the homogeneity of conformations within a cluster, we first reorder the con-

formations based on the cluster indices and plot their pairwise similarity/distances. Fig. S3

and Fig. S4 show the results for the APO and the G5 bound Aβ42 ensemble, respectively.

We also report the distance map before clustering for comparison. The conformational dis-

tance is measured based on the RMSD of inter-residue LJ energies. To further accentuate

the homogeneity illustrations, we have also plotted the respective RMSD of Cartesian co-

ordinates. Please note that for the clustering with t-SNE, only the RMSD of LJ energies

was used. For the input maps (Fig S3a and S4a), we ordered the conformations sequentially

in the X and Y axes. For the maps generated after clustering, the frames are sorted based

on the cluster indices and placed from 0th cluster to Nth cluster (S3-S4, b-d for both the

upper and lower panel in Fig. S3 and Fig. S4, respectively). As indicated by the figures, the

input distance maps of these ensembles show a certain level of conformational memory across

the contiguous frames (the Red blocks/grids at the diagonal band) as the trajectories are

generated from a history-dependent metadynamics approach. Nevertheless, the clustering

obtained with sub-optimal parameters adversely affects even this intrinsically clustered data

and several off-diagonal Red patches appear in the plot indicating either wrong groupings

or broken clusters. On the other hand, with the optimal parameters, the algorithm yields

better clustering. This can be seen clearly when we remove the input bias by shuffling the

frames randomly and subjecting them to t-SNE. The resultant clustering on the shuffled

data with optimal parameters indicates the proper grouping of conformations with diagonal

Red blocks and no off-diagonal Red patches (Compare Figure S3 and Figure S5). Also the

resultant cluster assignments with both unshuffled and shuffled data are consistent with a

mutual information score of 0.96, indicating faithful clustering irrespective of the order of

input, upon using optimal parameters.
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FIG. S3: Pairwise RMSD map of apo Aβ42 conformations: Row-1 and Row-2 represents
the RMSD map generated on the inter-residue LJ energies and on the heavy atom

coordinates of conformations, respectively. The map generated on the raw trajectory
(before clustering) is shown in a and e. The plots made after clustering is shown in b-d and
f-h, where the frames are reordered according to the cluster indices (from the 0th cluster to

the Nth cluster). The P and K values used for the clustering is indicated.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.11.11.516231doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516231
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIG. S4: Pairwise RMSD map of G5-bound Aβ42 ensemble: Row-1 and Row-2 represents
the RMSD map generated on the inter-residue LJ energies and on heavy atom coordinates

of the conformations, respectively. The map generated on the raw trajectory (before
clustering) is shown in a and e. The plots made after clustering is shown in b-d and f-h,

where the frames are reordered according to the cluster indices (from the 0th cluster to the
Nth cluster). The P and K values used for the clustering are indicated.
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FIG. S5: a) Pairwise RMSD map of apo Aβ42 conformations shuffled randomly. b)
Pairwise RMSD map generated after clustering with optimal parameter set (P=300;

K=30). The RMSD between conformations is calculated on the inter-residue LJ energies.
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FIG. S6: Estimation of Gibbs conformational entropy (S = −
∑

(pi ln pi)) in the apo and
G5-bound Abeta42 ensembles. pi is the fractional occupancy of each cluster, weighted by

the metadynamics weights obtained from4.
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FIG. S7: Residue-wise Propensity of contacts made by Aβ42 with G5 calculated from the
total trajectory.
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FIG. S8: Residue-wise decomposition of total binding energy from the other two favorable
bound geometries (cluster29 in (a) and cluster 30 in (b))
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(a)

(b)

FIG. S9: (a) Representative t-SNE maps generated with three different perplexity values
(100, 1000 and 2000) for the full length apo α-synuclein ensemble (b) Representative t-SNE
maps generated with three different perplexity values (100, 1000 and 2000) for the apo

c-terminus α-synuclein ensemble
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(a)

(b)

FIG. S10: Pairwise RMSD map of (a) full-length apo and (b) c-terminus αS apo ensemble:
The RMSD between each pair of conformation is measured based on the heavy atom

coordinates. The map generated on the raw trajectory (before clustering) is shown in a.
The plots made after clustering is shown in b-d, where the frames are reordered according
to the cluster indices (from the 0th cluster to the Nth cluster). The P and K values used

for the clustering are indicated.
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FIG. S11: Hyperparameter optimization based on integrated Silhouette score for the (a)
apo full-length and (b) apo c-terminal α-synuclein ensembles.
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(a)

(b)

FIG. S12: Representative t-SNE maps were generated with three different perplexity values
(100, 1000, and 2000) for the (a) Fasudil-bound and (b) Lig47-bound c-terminus

α-synuclein ensemble

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.11.11.516231doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516231
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.1

0.2

0.3
Pr

ob
ab

ilit
y

KD : 8.41±0.35
avg : 150.85o

AroTotal : 0.25

Cluster : 7
Hydrophobic Contacts
Hydrogen Bond
Charge Contacts
Aromatic Stacking

KD : 7.98±0.32
avg : 148.22o

AroTotal : 0.25

Cluster : 14
KD : 7.89±0.32

avg : 138.62o

AroTotal : 0.24

Cluster : 0
KD : 8.02±0.35

avg : 126.56o

AroTotal : 0.26

Cluster : 18

0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

KD : 7.7±0.33
avg : 126.26o

AroTotal : 0.23

Cluster : 15
KD : 6.75±0.38

avg : 116.73o

AroTotal : 0.24

Cluster : 8
KD : 7.93±0.37

avg : 111.95o

AroTotal : 0.25

Cluster : 5
KD : 7.43±0.37

avg : 110.09o

AroTotal : 0.28

Cluster : 10

0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

KD : 7.83±0.34
avg : 99.91o

AroTotal : 0.25

Cluster : 3
KD : 7.19±0.3

avg : 96.17o

AroTotal : 0.22

Cluster : 11
KD : 7.01±0.33

avg : 92.39o

AroTotal : 0.27

Cluster : 13
KD : 7.42±0.42

avg : 89.54o

AroTotal : 0.25

Cluster : 12

0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

KD : 6.9±0.39
avg : 88.19o

AroTotal : 0.3

Cluster : 16
KD : 6.65±0.31

avg : 73.57o

AroTotal : 0.32

Cluster : 1
KD : 7.68±0.35

avg : 70.32o

AroTotal : 0.25

Cluster : 17
KD : 7.3±0.4

avg : 61.67o

AroTotal : 0.29

Cluster : 4

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

13
7

13
9

14
1

Protein Residues

0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

KD : 6.54±0.36
avg : 54.48o

AroTotal : 0.35

Cluster : 6

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

13
7

13
9

14
1

Protein Residues

KD : 7.0±0.44
avg : 51.75o

AroTotal : 0.33

Cluster : 19

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

13
7

13
9

14
1

Protein Residues

KD : 7.69±0.49
avg : 43.87o

AroTotal : 0.34

Cluster : 9

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

13
7

13
9

14
1

Protein Residues

KD : 8.18±0.47
avg : 38.71o

AroTotal : 0.29

Cluster : 2

FIG. 13: Fraction of specific inter-molecular interactions such as hydrophobic contact,
aromatic stacking interaction, charge-charge contact and hydrogen bonding interaction
between fasudil and each residue of αS C-term. The subplots are arranged based on

descending order of average bend angle of clusters.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.11.11.516231doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516231
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.1

0.2

0.3

0.4
Pr

ob
ab

ilit
y

KD : 4.6±0.28
avg : 149.5o

AroTotal : 0.41

Cluster : 13
Hydrophobic Contacts
Hydrogen Bond
Charge Contacts
Aromatic Stacking

KD : 5.09±0.26
avg : 147.17o

AroTotal : 0.4

Cluster : 3
KD : 4.5±0.29

avg : 128.33o

AroTotal : 0.39

Cluster : 0
KD : 4.51±0.23

avg : 125.72o

AroTotal : 0.38

Cluster : 6

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

KD : 4.29±0.22
avg : 118.67o

AroTotal : 0.43

Cluster : 9
KD : 4.21±0.28

avg : 115.52o

AroTotal : 0.45

Cluster : 18
KD : 4.42±0.25

avg : 113.44o

AroTotal : 0.42

Cluster : 12
KD : 4.29±0.24

avg : 99.63o

AroTotal : 0.39

Cluster : 16

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

KD : 4.88±0.27
avg : 92.13o

AroTotal : 0.42

Cluster : 2
KD : 4.46±0.29

avg : 87.85o

AroTotal : 0.43

Cluster : 5
KD : 4.37±0.26

avg : 83.14o

AroTotal : 0.42

Cluster : 17
KD : 3.79±0.25

avg : 80.53o

AroTotal : 0.56

Cluster : 19

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

KD : 4.39±0.27
avg : 76.07o

AroTotal : 0.48

Cluster : 15
KD : 4.34±0.24

avg : 67.05o

AroTotal : 0.46

Cluster : 14
KD : 5.51±0.48

avg : 61.62o

AroTotal : 0.44

Cluster : 4
KD : 3.44±0.26

avg : 60.98o

AroTotal : 0.61

Cluster : 1

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

13
7

13
9

14
1

Protein Residues

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

KD : 3.4±0.46
avg : 55.76o

AroTotal : 0.72

Cluster : 7

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

13
7

13
9

14
1

Protein Residues

KD : 4.2±0.48
avg : 53.3o

AroTotal : 0.51

Cluster : 10

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

13
7

13
9

14
1

Protein Residues

KD : 3.41±0.24
avg : 51.43o

AroTotal : 0.58

Cluster : 8

12
1

12
3

12
5

12
7

12
9

13
1

13
3

13
5

13
7

13
9

14
1

Protein Residues

KD : 4.02±0.37
avg : 32.85o

AroTotal : 0.61

Cluster : 11

FIG. 14: Fraction of specific inter-molecular interactions such as hydrophobic contact,
aromatic stacking interaction, charge-charge contact and hydrogen bonding interaction
between ligand-47 and each residue of αS C-term. The subplots are arranged based on

descending order of average bend angle of clusters.
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FIG. 15: Per-residue inter molecular contact probabilities calculated after clustering the
bound frames alone. The contacts between αSC−term and fasudil and αSC−term and ligand
47 observed in each cluster are shown in (a) and (b) respectively. The clusters are sorted in
the decreasing order of bend angle. Note: The obtained clusters had similar bend profiles

(data not shown).
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FIG. 16: Estimated KD values of fasudil and ligand 47 across different clusters. The
clusters are sorted in descending order of their average bend angle.
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FIG. 17: Cluster-wise transition probability of (a) apo, (b) fasudil bound and (c) ligand 47
bound α-synuclein C-terminal peptide conformations at a lag time of 3.6 ns.
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FIG. 18: a) t-SNE map of collated ensembles of α-synuclein C-terminal peptide simulated
in the presence and absence of Fasudil or ligand-47. The reduced coordinates of apo,
Fasudil-bound, and Ligand-47 bound data are color coded in Black, Red, and Green

respectively. b) t-SNE map of collated ensembles of Aβ42 protein simulated in the presence
(red dots) and absence of G5 (black dots). The map shows mostly non-overlapping clusters
between the two ensembles except for a very few clusters that consist of conformations

from both apo and bound ensembles. These similar and overlapped conformations from the
two ensembles are rendered and superposed in the inset with cyan indicating apo and red
indicating G5-bound Aβ42 ensembles. We also mapped the conformational clusters that
showed the highest binding affinity with G5 molecules (cluster numbers 14, 29, and 30) as
predicted from Fig. 3 in the main text and indicate them on the collated map with blue

arrows. It is evident that these high-affinity conformations from the G5-bound ensemble do
not have closely related conformers in the APO state.
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TABLE S1: Mean Silhouette score for the apo Aβ42 ensemble calculated based on the
distances in the low Sld and high dimensional space Shd. Shd values are given in the bracket

20 30 40 50 60 70 80 90 100
50 0.424

(0.087)
0.498
(0.148)

0.546
(0.171)

0.576
(0.157)

0.583
(0.139)

0.598
(0.13)

0.593
(0.119)

0.589
(0.109)

0.583
(0.108)

100 0.505
(0.141)

0.586
(0.177)

0.64
(0.189)

0.642
(0.163)

0.633
(0.139)

0.611
(0.125)

0.598
(0.116)

0.584
(0.11)

0.582
(0.107)

150 0.543
(0.15)

0.626
(0.211)

0.686
(0.194)

0.658
(0.166)

0.639
(0.141)

0.625
(0.13)

0.598
(0.119)

0.581
(0.112)

0.574
(0.109)

200 0.579
(0.166)

0.666
(0.197)

0.711
(0.195)

0.665
(0.164)

0.62
(0.133)

0.616
(0.13)

0.599
(0.124)

0.581
(0.116)

0.558
(0.107)

250 0.617
(0.174)

0.689
(0.212)

0.706
(0.193)

0.658
(0.161)

0.653
(0.151)

0.605
(0.129)

0.588
(0.121)

0.572
(0.116)

0.553
(0.108)

300 0.638
(0.178)

0.709
(0.211)

0.712
(0.193)

0.66
(0.164)

0.617
(0.144)

0.594
(0.132)

0.569
(0.117)

0.57
(0.116)

0.545
(0.107)

350 0.662
(0.188)

0.718
(0.205)

0.699
(0.192)

0.637
(0.157)

0.616
(0.141)

0.593
(0.133)

0.57
(0.119)

0.563
(0.114)

0.543
(0.105)

TABLE S2: Mean Silhouette score for the G5-bound Aβ42 ensemble calculated based on
the distances in the low Sld and high dimensional space Shd. Shd values are given in the

bracket

20 30 40 50 60 70 80 90 100
50 0.418

(0.057)
0.464
(0.097)

0.513
(0.131)

0.543
(0.132)

0.554
(0.13)

0.577
(0.127)

0.578
(0.127)

0.567
(0.116)

0.584
(0.123)

100 0.473
(0.072)

0.555
(0.118)

0.612
(0.149)

0.63
(0.145)

0.616
(0.141)

0.618
(0.139)

0.581
(0.122)

0.57
(0.121)

0.556
(0.119)

150 0.487
(0.082)

0.587
(0.126)

0.652
(0.148)

0.645
(0.145)

0.627
(0.14)

0.604
(0.14)

0.577
(0.128)

0.553
(0.124)

0.554
(0.128)

200 0.495
(0.081)

0.605
(0.129)

0.667
(0.149)

0.66
(0.149)

0.635
(0.146)

0.598
(0.137)

0.573
(0.137)

0.518
(0.12)

0.509
(0.121)

250 0.508
(0.089)

0.615
(0.13)

0.662
(0.149)

0.643
(0.148)

0.61
(0.146)

0.604
(0.144)

0.545
(0.128)

0.516
(0.125)

0.491
(0.121)

300 0.517
(0.094)

0.596
(0.126)

0.649
(0.151)

0.63
(0.151)

0.604
(0.147)

0.531
(0.131)

0.527
(0.127)

0.51
(0.127)

0.474
(0.119)

350 0.509
(0.093)

0.591
(0.129)

0.633
(0.146)

0.622
(0.15)

0.592
(0.151)

0.522
(0.124)

0.492
(0.125)

0.489
(0.124)

0.48
(0.12)
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TABLE S3: Consistent local clustering in the apo Aβ42 trajectory upon different runs with
different random initializations. We have noted that there is neither change in the choice of

optimal perplexity and K values, nor the clustering pattern (measured by normalized
mutual information score) upon rerunning.

S.No Sld Shd Normalized mutual information
1 0.7086 0.2105

0.9755
2 0.7158 0.2102
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