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Abstract: Intrinsically disordered proteins (IDPs) populate a range of conformations
that are best described by a heterogeneous ensemble. Grouping an IDP ensemble into
“structurally similar” clusters for visualization, interpretation, and analysis purposes is a
much-desired but formidable task as the conformational space of IDPs is inherently high-
dimensional and reduction techniques often result in ambiguous classifications. Here, we
employ the t-distributed stochastic neighbor embedding (t-SNE) technique to generate
homogeneous clusters of IDP conformations from the full heterogeneous ensemble. We il-
lustrate the utility of t-SNE by clustering conformations of two disordered proteins, A 342,
and a C-terminal fragment of a-synuclein, in their APO states and when bound to small
molecule ligands. Our results shed light on ordered sub-states within disordered ensembles
and provide structural and mechanistic insights into binding modes that confer specificity
and affinity in IDP ligand binding. t-SNE projections preserve the local neighborhood infor-
mation and provide interpretable visualizations of the conformational heterogeneity within
each ensemble and enable the quantification of cluster populations and their relative shifts
upon ligand binding. Our approach provides a new framework for detailed investigations of
the thermodynamics and kinetics of IDP ligand binding and will aid rational drug design
for IDPs.

Significance: Grouping heterogeneous conformations of IDPs into “structurally similar”
clusters facilitates a clearer understanding of the properties of IDP conformational ensem-
bles and provides insights into ”structural ensemble: function” relationships. In this work,
we provide a unique approach for clustering IDP ensembles efficiently using a non-linear
dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), to
create clusters with structurally similar IDP conformations. We show how this can be used
for meaningful biophysical analyses such as understanding the binding mechanisms of IDPs

such as a-synuclein and Amyloid 542 with small drug molecules.

Keywords t-distributed stochastic neighbor (t-SNE), intrinsically disordered protein (IDP),
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I. Introduction

In general, knowledge of the 3-dimensional structure of a protein is the first step toward a
molecular-level mechanistic understanding of its biological function. This knowledge is also
central to activities such as the rational design of drugs, inhibitors, and vaccines and in the
broad area of protein engineering and biomolecular recognition™. With the advances made
in structure determination techniques®“® and recent transformative leaps made in computa-
tionally predicting the structure from sequence*¥, the science of structural biology is going
through paradigmatic changes where the knowledge of structure is not the biggest bottleneck
anymore?’. However, outside the realm of these structured proteins exist a "dark” proteome
of intrinsically disordered proteins (IDPs) that constitute more than 40% of all known pro-
teins and play important roles in cellular physiology and diseases* ™. An IDP can populate
a heterogeneous ensemble of conformations and is functional without taking a unique struc-
ture. In essence, IDPs are expanding the classical hypothesis of sequence-structure-function
to the sequence-disordered ensemble-function(s) paradigm. Though solution-based experi-
ments like NMR, FRET, and SAXS do provide structural information for IDPs, they gener-
ally report time and ensemble-averaged properties of IDP conformations® ™=, In the absence
of computational models, solution experiments are challenging to interpret in terms of in-
dividual atomic resolution structures that constitute IDP ensembles. In other words, IDPs
are not directly amenable to conventional high-resolution structure determination, structure-
based functional correlation, protein engineering, and drug-designing strategies that hinge

upon the knowledge of a reference 3-dimensional structure.

Computational tools, particularly those that incorporate the available experimental in-
formation, can be effectively used to generate high-resolution ensemble structures of IDPs.
Of late, several broad classes of different approaches have been developed for this purpose.
Methods based on pre-existing random coil library and simple volume exclusions (exam-
ples: Flexible Meccano®, TraDES*#, BEGR®¥) are often used to create an initial exhaustive
pool of conformations, which are further processed to produce refined ensembles upon com-
bining with experimental constraints®®#4=% These methods, though purely statistical in
nature, provide a computationally efficient approach to calculating IDP conformational en-

sembles that are consistent with experimental data. The second set of approaches utilizes
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Physics-based molecular simulations either in a coarse-grained representation (examples:
SIRAH*Y ABSINTH*, AWSEM-IDP#4 SOP-IDP**, HPS** and others) or with an all-atom
resolution 2“8 to generate initial Boltzmann-weighted conformational ensembles that can be
further refined with experimental restraints using various reweighing approaches** Y, Re-

49748 1sed in combination with

cently developed molecular mechanics force fields for IDPs
parallel tempering based enhanced sampling approaches such as Replica exchange solute
tempering (REST)?#®* and hybrid tempering (REHT)*" has also shown promise in produc-
ing atomic-resolution accurate IDP ensembles consistent with experimental solution data

without any added bias in the simulations.

While significant advances have been made in generating high-resolution IDP conforma-
tional ensembles that are consistent with experimental data, the subsequent interpretation
of these ensembles to address key biological questions related to the interactions of IDPs re-
mains extremely challenging. IDP conformational ensembles are inherently extremely high-
dimensional. That is, the phase space of IDPs consists of several thousands of features, which
may vary relatively independently, making it extremely challenging to uncover correlations
in conformational features among conformations contained in IDP ensembles. This often
makes sequence-ensemble-function relationships of IDPs very difficult to understand, even
when aided by relatively accurate IDP conformational ensembles. If one could efficiently
identify representative conformational sub-states in IDP ensembles, and quantify their rel-
ative populations in different molecular and cellular contexts, it would become significantly
easier to identify conformational features of IDPs that may be associated with specific func-
tional roles or disease states®®”. Therefore, parsing the heterogeneous ensemble data into
representative conformational states can be as critical as the generation of the ensemble itself

as it allows one to leverage conventional structural-biology analysis tools for IDPs.

The process of dividing large abstract data set into a number of subsets (or groups) based
on certain common relations such that the data points within a group are more similar to
each other and the points belonging to different groups are dissimilar is called clustering.
Due to its ability to provide better visualization and statistical insights, clustering is ubiq-
uitous in the analyses of big-data biological systems with wide-ranging applications such

GOJGT

as profiling gene expression pattern®®®! de novo structure prediction of proteins®4®? the

quantitative structure-activity relationship of chemical entities®®, docking and binding ge-
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ometry scoring®, and also in analyses of protein ensemble from molecular dynamics (MD)
trajectory®®. However, the clustering of IDP ensembles is formidable owing to their large
conformational heterogeneity and often different conformations of IDP have similar projected
collective variables (CVs). To illustrate this, we present a set of conformations from a simu-
lated IDP ensemble with the same value of R, as a CV (Fig. S1 in Supplementary Material

(SM)). It is evident from this illustration how this could lead to ambiguous classification.

Theoretically well-grounded dimensionality reduction (DR) techniques are now commonly
being used in protein conformation analysis to extract the latent low dimensional features
and the quantum of information lost during the projection depends heavily on the kind of
data set under consideration®®?. For example, a highly heterogeneous data set that lies
on a high-dimensional manifold as in the case of IDPs is best handled with the non-linear
dimension reduction (NLDR) techniques, which generally attempt to keep the nearest neigh-
bors close together. While methods such as ISOMAP and Local Linear Embedding are best
suited to unroll or unfold a single continuous manifold, the recently developed t-Distributed
Stochastic Neighbor Embedding (t-SNE) method may be more suitable for clustering IDP
conformations as it helps to disentangle multiple manifolds in the high-dimensional data
concurrently by focusing on the local structure of the data to extract clustered local groups
of samples. Consequently, t-SNE tends to perform better in separating clusters and avoiding
crowding. Here, we show that t-SNE is particularly well-suited for clustering seemingly dis-
parate IDPs conformations into homogeneous subgroups since it is designed to conserve the
local neighborhood when reducing the dimension, which ensures similar data points remain
equivalently similar and dissimilar data points remain equivalently dissimilar in the low di-

3

mensional and high dimensional space™. Due to its ability to provide a very informative

visualization of heterogeneity in the data, t-SNE is being increasingly employed in several

T4HTT

applications such as clustering data from single cell transcriptomics , mass spectrometry

imaging™, and mass cytometry™®U, Lately, t-SNE has also been used for depicting the MD

trajectories of folded proteins®l™s?

and for interpretation of mass-spectrometry based exper-
imental data on IDPs by juxtaposing with classical GROMOS-based conformation clusters

from the corresponding molecular simulation trajectories of the IDP under consideration®.

In this paper, we demonstrate the effectiveness of t-SNE (in combination with K-

means clustering) for identifying and visualizing representative conformational substates
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in IDP ensembles. We investigate the small molecule binding properties of Amyloid [42
(Ap42) and a-synuclein (aS), proteins involved in the neurodegenerative proteinopathies
like Alzheimer’s and Parkinson’s diseases, respectively. Therapeutic interventions by seques-
tering the monomeric state of these IDPs have recently been explored using state-of-the-art

SO0 A set of repur-

biophysical experiments and long timescale molecular simulations
posed small molecules such as the c-Myc inhibitor-G5 (benzofurazan N-([1,1-biphenyl]-2-
yl)-7T-nitrobenzo|c|[1,2,5]oxadiazol-4-amine (10074-G5)) and a Rho kinase inhibitor - Fasudil
(along with the high-affinity Fasudil variant Ligand-47) have been identified as promising
agents against the monomers of AB42 and asS, respectively. Since the monomeric states of
these IDPs are extremely heterogeneous, it is not fully understood how the different con-
formations form viable complexes with these small molecules and what molecular features
derive their affinity and specificity. This insight is obscured by inefficient clustering of the
IDP structures using the classical clustering tools. Here we revisit the molecular trajectories
of AB42 (a total of 56 usecs) and aS (total of 573 usecs) using t-SNE (in combination with
K-Means clustering). This exercise has improved our knowledge of the binding mechanism
of small molecules to such IDPs and also provides us with strategies for designing specific
inhibitors with high-affinity binding. Additionally, our clustering analysis provides valuable
insight for understanding the conformational landscape of APO and ligand-bound IDPs,
which are otherwise hard to obtain. We believe that the method presented here is general in
nature and can be used to cluster and visualize IDP ensembles across systems with varying
degrees of structural heterogeneity and assist in detailed structural, thermodynamics, and

kinetics analyses of IDP conformations in APO and bound states.

II. Results and Discussion

We aim to cluster the heterogeneous mixture of disordered protein conformations into
a subset of unique and homogeneous conformations. To do this, as a first step, we employ
t-SNE that projects the large dimensional data in lower dimensions. We then apply K-means
clustering on the projections to identify the clusters in the reduced space. Before we illustrate
the power of this algorithm as a faithful clustering tool for realistic IDP ensembles, we use

a simple alanine-dipeptide (ADP) toy model to provide physical intuition into how t-SNE
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works. Please see Fig. S2 and the subsection titled ”Physical intuition into t-SNE-based
clustering algorithm using alanine dipeptide” in SM. We use this model system to introduce
the role of the critical hyper-parameter perplexity in the t-SNE algorithm, and prescribe a
strategy to determine its optimal value for effective clustering. We then apply the method
for the analyses of IDP ensembles of complex systems such as Af42 and aS, each in the
presence and absence of small-molecule inhibitors. We list all the systems under consideration
in Table I below. We represent the conformations within AS42 and aS ensembles by the
inter-residue Lennard-Jones contact energies and the Cartesian coordinates of heavy atoms,
respectively. These measures were chosen for consistency with previous analyses performed
on these trajectories®® ! to enable faithful comparisons. t-SNE was performed based on the
pairwise RMSD of Lennard-Jones contact energies among conformations of A542, and the

pairwise backbone RMSDs among conformations of asS.

TABLE I: Information on systems and trajectories used in this study

S.No Description Simulation scale #snapshots Reference
1 Alanine-dipeptide 10 (ns) 2500 20
2 AB42 APO 27.8 (us) 35,000 8
3 AB42-G5 bound 28.2 (us) 35,000 9
4 AB42 apo + G5 bound - 70,000 &
5 aS C-terminus in apo 100 (us) 55,545 =
6 aS C-term + Fasudil 200 (us) 55,045 200
7 aS C-term + Ligand-47 200 (us) 55,545 200
8 aS C-term + Fasudil + Lig47 - 166,135 )
9 a8 full-length APO 73 (us) 36,562 40

A. Prescription for choosing optimal parameters for t-SNE clustering of IDPs

The results of t-SNE depend largely on the choice of perplexity. Since the objective crite-

92 commonly

rion here is to maximize clustering, we adopt the well-known Silhouette score,
used for optimizing the number of clusters (K) in K-means clustering, for tuning the per-
plexity values as well. As shown through the formulation in the method section below, the
Silhouette score computes the average of every point’s distance to its own cluster (cohesive-

ness) than to the other clusters (separateness) and is defined such that its value lies in the

range of -1 to 1. A score of 1 is most desirable indicating perfectly separated clusters with
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clearly distinguishable features. A positive value generally indicates acceptable clustering
while negative values are unacceptable for distinguishable clustering. The cohesiveness and
separateness of clusters are generally measured based on Euclidean distance. Since the clus-
ters here are identified on a reduced low dimensional t-SNE space, computing the score on
this space (S;;) alone may be misleading. This is particularly true when using sub-optimal
parameters that often clump the points randomly during the dimensional reduction step
by t-SNE. Therefore, it is important to measure the quality of clustering with respect to
the original distance in the high dimensional space (Sh4), in addition to that in the low
dimensional space. The integrated score (S;; * Spq), therefore, adds value to the estimated

clustering efficiency in terms of reliability.

B. t-SNE for clustering A/542 conformational ensembles
1. t-SNEF identifies the clustering pattern intrinsic to the A542 ensemble

We apply our algorithm on APO and G5-bound A542 all-atom MD simulations trajecto-
ries obtained from the Vendruscolo group®™. We have used an identical set of representative
frames for clustering as in the original work (35000 frames from each ensemble) where each
system was simulated for 27.8 (us). Furthermore, to be consistent, we represent the con-
formations similarly by inter-residue Lennard-Jones contact energies. We used the distance
between all pairs of conformations from the RMSD of the contact energies and feed that
into our t-SNE pipeline. In the case of Ag42 (APO and Gb5-bound), the calculated Sil-
houette score for a range of K and perplexities indicates a positive value with respect to
both the distances at the low dimensional space (S;4) as well as at the high dimensional
space (Spq) (Table S1 & S2) suggesting reliable clustering. This can be compared against
the large negative score (-0.6) with respect to the high dimensional distance, obtained for
the classical GROMOS-based clustering, which indicates that the conformations are grouped
into wrong clusters. In Fig. (a,b), we report the integrated score (Sps*S;q) as measured
for the clusters in APO and G5-bound ensembles of Af42. In both cases, the Silhouette
score clearly identifies an optimal cluster size (30 in the case of APO trajectory and 40 in
Gb bound trajectory). The identification of clear minima in this parameter space suggests

the t-SNE is able to identify a clustering pattern that is intrinsic to the underlying ensemble

8
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structure and corresponds to the true number of metastable structures. At these optimal
values, we find that the low-dimensional t-SNE map shows discrete clusters in both APO
and G5-bound ensemble Fig. [I(c,d) Whereas at sub-optimal values, the identified clusters
either encompass different pieces together in a single cluster (for example at P=>50; K=20 in
APO) or break into multiple clusters of similar conformations (at P=350, K=100 in APO

system).

2. Clustering reveals ordered sub-states within disordered A(42 ensemble

Once the optimal number of clusters for a given data set is decided using the prescrip-
tions described above, we inspect the uniqueness and homogeneity of individual clusters by
back-mapping to the conformations in the bound and unbound ensembles. Fig. [2| shows
the conformations within each cluster of A342 ensemble indicating unique topology and sec-
ondary structural architecture. To quantify this observation, we plotted the distance maps
between conformations before and after clustering. Please see Fig. S3-S5 and subsection
titled ”Estimation of homogeneity” in SM). The results show that the clusters obtained with
optimal parameters indeed yield better homogeneity than that obtained with sub-optimal

parameters.

More interestingly, though the G5 bound conformational ensemble was clustered only
based on the similarities of protein conformations, the ligand is shown to have a specific
binding orientation with the protein within each cluster (Fig. [2(b)). This result sheds light
on the hidden ordered features in a disordered IDP ensemble, which can confer specificity
for ligand binding. The ability of t-SNE to cluster a seemingly disordered ensemble into
substates with distinct structural features and ligand binding modes suggests that one could
reduce a library of tens of thousands of A542 conformations to a small number of structures
to screen for potential interacting ligands. This will aid in a high throughput structural and
statistical analysis of IDP ensemble data and greatly aid our fundamental understanding of

disorder-function relationships and in the design of therapeutic drugs for IDP molecules.
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FIG. 1: Hyperparameter optimization based on integrated Silhouette score for the (a)
APO, and (b) G5-bound ensembles of Ag42. The t-SNE maps obtained with selected
optimal (green and cyan squares) and sub-optimal (Red, Black, Pink, and Orange squares)
values of the perplexity and number of clusters K are shown in (¢) and (d) for APO and
G5 bound ensembles. The maps illustrate how these parameters affect clustering efficiency.
In t-SNE projections with sub-optimal parameter values that lead to too few clusters (Red
and Pink squares), we observe clearly distinguishable groups of points merged into single
cluster assignments. In t-SNE projections with sub-optimal parameter values that lead to
too many clusters (Black and Orange squares), we observe indistinguishable groups of
points merged into different cluster assignments.
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FIG. 2: t-SNE based conformational clustering of A342 ensembles in the absence and
presence of G5 in a and b respectively. The cluster-wise population statistics is shown in
Fig 2¢ and d.

3. Insights into the binding properties of AB42 with G5

The cluster-based population statistics of different metastable conformations have been
analyzed and shown in Fig. [f(c,d). The results indicate that the distributions are more
equally probable in the case of the ligand-bound ensemble than in the APO state. From this
population distribution of different metastable conformations, we have estimated that the
Gibbs conformational entropy (—> (p In p)) of the G5-bound ensemble is larger than the
APO ensemble (Fig. S6 in SM). The number of optimal unique conformations (30 in APO
versus 40 in G5-bound ) and their respective Silhouette score (in high dimension space, 0.21
versus 0.15) (Table S1 and S2) also suggest consistent observation. Taken together, these

results further corroborate the entropic expansion on ligand binding as deduced from the
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earlier studies®™. Though the ligand has very specific binding geometry within each cluster,
they vary significantly across the different clusters. We show the contact probabilities of
G5 with individual protein residues in Fig. (a) for individual clusters. We also plot the
residue-wise contact probabilities using the total trajectory, which provides averages without
clusters (Fig. S7in SM). As indicated by the figures, the G5 preferentially binds to aromatic
residues such as Tyr/Phe (residue numbers 10, 19, 20) and hydrophobic residues such as
Ile/Val/Met (residue numbers 31, 32, 35, 36). The interactions of G5 with these aromatic
and hydrophobic residues potentially disrupt tertiary contacts between these residues in the
A[B42 ensemble, thus limiting the stabilization of transiently ordered Af42 conformations
and increasing the heterogeneity and conformational entropy of the ensemble. To further
quantify how the contacts of G5 at diverse locations affect the interaction strength, we applied
a high throughput numerical technique called molecular mechanics with generalized Born
and surface area solvation (MM /GBSA) to estimate the free energy of the binding of ligands
to proteins”**. Our MMGBSA-derived binding scores are shown in Fig. (b) We see that
the G5 binds at relatively equal strength in multiple clusters. But interestingly, we also
noted a few of the clusters (cluster numbers 14, 29, and 30) that show statistically stronger
binding than the others. More interestingly, these same clusters consist of a relatively larger
population in the ensemble than the other conformers. The protein residues involved in
binding in these selected clusters along with their energy contributions to the total energy
as plotted in Fig. (c) and the conformational binding-geometry for the cluster that exhibits
the most favorable MM/GBSA binding is shown in Fig. 3d,e). In Fig. S8 in SM, we also
show the same data (binding geometries and residue-wise interactions) for the two other
clusters, which show the second and the third-best MM /GBSA scores. Our analyses reveal
that ligands interact with multiple favorable sites simultaneously, which indicates that even a
partially collapsed or ordered state of an IDP can provide a specific binding pocket for small
molecule interactions. These unique insights gained as a result of high-fidelity clustering can
be leveraged for future IDP-drug designing with conventional strategies utilized to target

ordered binding sites in folded proteins.
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FIG. 3: Cluster-wise inter molecular contact probabilities and their respective binding
energy as measured using MMGBSA analysis are shown in (a) and (b) respectively. For
the cluster that shows the most favorable binding (cluster no: 14)), we have shown the

residue-wise decomposed energy contribution in (c¢) with error bars representing 99%

confidence interval of the estimated mean. The superposition of ten central conformations
from this specific cluster is shown in (d) and the interacting residues are shown in stick
representation in (e)

C. t-SNE for clustering a-synuclein conformational ensembles

1. t-SNEF reveals distinct conformation sub-states despite extreme structural

plasticity

Next, we apply our clustering algorithm to characterize the conformational ensemble

of the prototypical IDP a-synulcein (aS). oS is a longer IDP than A$42, consisting of 140
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amino acids, and has a substantially less ordered, or more ”fuzzy”, conformational landscape
with virtually no experimentally detectable residual secondary structure propensity. We also
apply our t-SNE clustering algorithm to cluster the conformations of a C-terminal fragment
of aS, containing residues 121-140, which we refer to as "aS C-term”. These residues were
shown to have the highest affinity to a family of small molecule ligands based on the structure
of the Rho protein kinase inhibitor Fasudil by both NMR experiments and unbiased MD
simulations of a full-length aS construct®”. The t-SNE projection of full length aS produces
a crowded map, with only a few segregated clusters of points visible(Fig. S9a). In the case
of aS C-term, t-SNE projections produce a single continuous grouping, or "blob”, of points,
with no clearly distinguishable subsets of data points regardless of the perplexity value
used, suggesting extreme heterogeneity and almost no detectable order in its conformational
landscape (Fig. S9b). This distribution of points in the low dimensional t-SNE projection
suggests oS C-term may be described by a broad and relatively flat energy surface with very

few barriers or local minima. This is in stark contrast to the substantially more discernible

t-SNE projections data of A42 seen in Fig.

In order to obtain a better sense of the conformational diversity of aS and oS C-term, we
examined the pairwise RMSD between conformations in both ensembles in Fig S10. Here,
we observe that the conformational states rapidly exchange among themselves, which in
turn creates a very cluttered distance map of the original trajectory. This is shown in the
first subplot for full @S in Fig. S10(a) and for the C-terminal (C-term) peptide in Fig.
S10(b). This suggests there are very few intrinsic groupings of these conformations in the
high dimensional space, which is consistent with the t-SNE projections seen in Fig. S9. When
we apply our t-SNE clustering approach and scan values of perplexity and cluster size, we
observe substantially worse Silhouette scores relative to those obtained for A542, with values
very close to 0, indicating poor clusterability of these ensembles. However, we find that in this
relatively continuous distribution of conformations, we still observe some positive Silhouette
scores, though with very small magnitudes, suggesting some limited success in projecting
onto a lower dimensional manifold. A small magnitude positive Silhouette score can indicate
that most data points are on or very close to the decision boundaries between neighboring
clusters. In such cases, scanning values of Silhouette scores as a function of perplexity values

and the number of clusters may not locate a clear maximum in this parameter space (Fig
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S11). In the case of full-length S we observe that the Silhouette score continues to increase
with a number of clusters beyond an undesirably large number of clusters (over 100) that
becomes difficult to structurally interpret. In the case of S C-term, where we see almost no
separation of points in lower dimensional t-SNE projection, we observe that the Silhouette
score is at a maximum with two clusters, and decays to zero as the number of clusters
increases beyond 2. We, therefore, observe that our procedure for scanning the parameter
space of perplexity and cluster size is less successful for the substantially more continuous

distribution of conformations observed in simulations of &S and aS C-term.

Nevertheless, we attempted to determine if t-SNE projections of the conformational en-
sembles of aS and aS C-term onto a lower dimensional space can provide interpretable
structural insights into these ensembles. Due to the nature of the projection data, we do not
use the usual for an optimal Silhouette score. Instead, we focused on a tractable number of
clusters and manually choose the perplexity and number of clusters in an effort to achieve a
reasonable degree of structural homogeneity within cluster assignments. To assess the inter-
pretability of t-SNE projections with low Silhouette scores, we have examined the structural
properties of clusters generated with K=50 and perplexity=400 for full-length oS and K=20
and perplexity=1800 for oS C-term (Fig. 4, Fig. S11). The clusters produced with these
values effectively divide the continuous distribution of points in the t-SNE projection space
into contiguous regions with no clear separations in the lower dimensional projection. We
then inspect the conformational homogeneity of the structures in each cluster to determine
if this discretization provides interpretable structural insights. Despite the lower Silhouette
scores, we observe substantial conformational homogeneity within these cluster assignments
as assessed by the visualization of the conformational states (Fig 4) and pairwise RMSD be-
tween clusters (Fig S10). This suggests that our t-SNE low dimensional projection preserves
local structural properties of IDPs well even when distinct clusters of data points are not

apparent based on the low dimensional t-SNE projections and Silhouette scores.

Visual representations of the conformations in the 50 clusters of full-length oS system
and 20 clusters of apo C-term a$S system are shown in Fig. [{(a,b). In spite of the extreme
heterogeneity of the conformational space of the aS and aS C-term ensembles, and relatively
continuous distribution of points in the low dimensional t-SNE projections, we find that our

clustering method clearly partitions aS and aS C-term conformations into clusters with
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unique and relatively homogeneous conformations. While the conformations do not contain
any secondary structure and do not collapse to form rigid pockets as in the case of the A 342,
we still observe substantial order within each of the clusters. Interestingly, we find that the
conformations of C-term aS peptide span a range of conformational states that vary from
fully-extended rod-like shapes to acutely bent hairpin-like conformations (4{(b)) and presents
all intermediate bending angles between these two extremes. To illustrate this feature,
we have presented the clusters in a sequence, arranged based on the average bend angle
measured between the Ca atoms of residues 121, 131, and 140 (Fig. 5(a-c)), which make up
the C-terminal, middle and N-terminal residues of the peptide, respectively. Henceforth, we
will refer to this simply as the "bend angle”. We have plotted the distribution of the bend
angles observed in each cluster in Fig. 5(c). An interesting and valuable by-product of this
high-fidelity clustering is that it seems to inform a single collective variable that uniquely
defines the various conformations across clusters. This collective variable may be useful for

running computationally efficient biased simulations of this system.

2. Characterization of ligand bound ensembles of the C-terminal oS peptide

We next used our t-SNE clustering approach to quantify the effects of small molecule
ligand binding on the conformational ensemble of aS C-term. We have chosen to analyze
the effects of binding two ligands, the small molecule Fasudil and a previously identified
higher affinity aS ligand (ligand 47), on the conformational ensemble of S C-term. We first
generated t-SNE maps for all conformations of aS C-term in the presence of fasudil or ligand
47 for different values of perplexity as shown in Fig. S12. Similar to the low dimensional
projection of conformations observed in the APO simulation of aS C-term, we observed that
the t-SNE projections of both ligand-bound ensembles produce a continuous distribution
of points with no clearly distinct subsets of points. We then clustered the conformations
using the same number of clusters K=20, and selected perplexity values for each ligand-
bound ensemble that achieved the maximal silhouette score for K=20 (perplexity=1200 and
perplexity=1100 for the fasudil bound ensemble and ligand 47 bound ensemble respectively)
(Figure 5d-e and 5g-h). As was the case with the APO ensemble, we find that these clusters

partition conformations of aS C-term by the previously defined bend angle between the Ca
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FIG. 4: t-SNE based conformational clustering of (a) full-length a-synuclein (140 residues)
and (b) a 20 residue C-terminal fragment of a-synuclein.
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atoms of residues 121, 131, and 140 (Figure 5f and i).

Unlike the localized binding of G5 with individual metastable states of A542, the binding
of fasudil and ligand 47 is not localized to a specific region of the peptide within each
cluster (Fig. [F[e,h). We quantified the inter-molecular contacts between fasudil and ligand
47 with aS C-term in figure 6a,b. We also quantified the fraction of specific interactions
in each cluster where a protein residue forms a hydrophobic contact, an aromatic stacking
interaction, a charge-charge contact, or a hydrogen bonding interaction with the ligand

utilizing reported geometric criteria (Figure S13 and S14)%L.

For both ligands, we observe that the maximum contact probability with any residue
is only 0.5. We note that the contact analyses are carried out with the full trajectory
of bound+unbound frames, which could be the factor for lower values. Interestingly, we
observe the same trend even when we analyzed only the bound frames of the aS C-term
trajectories in all the clusters (Fig. S15). Further, we observe relatively similar intermolec-
ular interaction profiles across clusters, with relatively smaller deviations, and the contacts
are primarily centered around the three aromatic residues of S C-term (Y125, Y133, and
Y136) illustrating that the same sets of intermolecular interactions are accessible regardless
of the distribution of bend angles in each cluster. We do not observe any specific sets of
intermolecular interactions, such as specific charge-charge contacts or aromatic stacking in-
teractions, that are only present in a subset of clusters. These relatively lesser contacts at
any specific residue and similar interaction profiles across clusters are consistent with the
previously proposed ”"dynamic shuttling” mechanism of IDP small-molecule binding, where
small molecule ligands transition among a heterogenous ensemble of binding modes based

on the geometric proximity potential sidechain and backbone pharmacophores™*.

Examining the intermolecular interaction profiles of the two ligands, we observe that
ligand 47 appears to have substantially higher fractions of aromatic charge contacts (Fig.
S13 vs Fig. S14) than Fasudil. Surprisingly, the population of aromatic stacking interactions
seems to be dependent on the bend angle of @S C-term in both the ligands. The clusters with
acutely bent conformations mostly have higher aromatic stacking propensity. The Pearson
correlation between the cluster-wise average bend angle and total aromatic stacking is very
high ( -0.7), as shown in Fig. 6c¢c and f. To us, this was a very unique and non-obvious

observation that manifested itself due to our clustering exercise. To obtain more detailed
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insight into the binding modes of Fasudil and ligand 47 we examined the relative affinity of
the ligands to each cluster. Considering both apo and bound frames in clustering enabled
us to calculate the fraction of bound frames in each cluster, and report simulated Kp values
for each cluster as reported previously™ (Figure S16). The Kp values of Fasudil and ligand
47 range from 6.5mM-8.5mM and 3.5-5.5mM across clusters, respectively. Though there
are only small deviations in the Kp values across the clusters, we notice that the Kp is
significantly lesser in clusters with acutely bent conformations and high aromatic stacking
propensity (Fig 6d,e,g,h). The strong correlation between these values suggests that the
bent conformations provide substantially more compatibility toward binding by orienting
the aromatic residues (Y125, Y133, and Y136). Representative snapshots from the top 5
bent clusters of Fasudil and Ligand 47 bound oS C-term are shown in Fig. 6i and j. This
is a very exciting result to us since it provides a relationship between the relative curvature
of the aS C-term backbone and the accessibility of specific intermolecular interactions. This
relationship is much stronger in the higher affinity ligand 47, suggesting that exploiting a
coupling between conformational substates and the accessibility of specific intermolecular
interactions such as aromatic stacking may be useful for designing higher affinity ligands for

disordered IDP ensembles.

Since the conformational ensembles of aS C-term were obtained from unbiased MD sim-
ulations, we can assess the kinetic stability of the conformations in the reported clusters by
calculating the transition probabilities between clusters at different lag times (Fig. S17).
Here we observe that most clusters in the APO aS C-term are not well defined in terms of
kinetic stability. Even at these short timescales, for bend angles greater than 70° there is
little memory of cluster assignment in the trajectory, and no noticeable pattern of transition
probabilities between clusters. This pattern of transition probabilities is consistent with the
notion of a broad and flat free energy surface with few local minima. We notice that there
seems to be elevated kinetic stability for aS C-term conformations with small bend angles
(j70°) at short lag times. This suggests a slightly more rugged conformational free energy
surface for hairpin-like conformations, which are likely stabilized by sidechain interactions
between residues more distant in sequence. We observe however that the kinetic stability of
hairpin-like conformations of apo aS C-term is not observed at longer timescales, suggesting

that the local free energy minima of hairpin conformations are fairly shallow. We observe a
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similar pattern of kinetic stability of aS C-term clusters observed in the presence of fasudil

and ligand 47.

Lastly, we compare the shift in the populations of conformational states of S C-term and
A 542 in the presence and absence of small molecule ligands by projecting the conformational
ensembles of apo simulations and simulations in the presence of ligands onto a single t-
SNE projection for each protein (Fig S18). In the case of aS C-term, we observe that the
ligand-bound and apo ensembles are nearly indistinguishable in the lower dimensional t-SNE
projection. This is in severe contrast to the behavior exhibited by Ag42 APO and ligand-
bound t-SNE projections as shown in Fig. S18 (b). The map in Fig. S18 (b) clearly shows
that the APO and bound Af42 ensembles have clusters that are distinct with only a few

regions showing overlapping projections.

D. Scope and limitations of t-SNE method with IDP-clustering

Unlike the commonly used projection techniques such as PCA and MDS, t-SNE optimiza-
tion is non-convex in nature with random initialization that produces different sub-optimal
visual representations at different runs. While the physical interpretation of t-SNE projec-
tions seems daunting, this affects mainly the global geometry and hierarchical positioning
of the clusters and not the local clustering pattern. We illustrate the consistency in local
clustering upon different runs with different random initialization by quantifying the Sil-
houette score and mutual information of clusters in Table S4. Moreover, finding a single
optimal global geometry of the IDP dataset is often not possible owing to their extreme
heterogeneity with almost equal transition probability between different clusters. However,
if one necessitates the global preservation, tuning the perplexity”®, and other parameters
like Early exaggeration and Learning rate, initializing with PCA and Multi-scale similarities
could be helpful®. In addition, some of the variations of t-SNE methods such as h-SNE

can also be helpful®”.

Another factor that should be considered while using t-SNE on ultra-large datasets is the
associated computational cost. Analyzing large data sets with t-SNE (beyond n > 10°) is
not only computationally expensive (scales with O(n?)), but also suffers from slow conver-

gence and fragmented clusters. If the computational cost becomes formidable, one could use
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FIG. 6: Per-residue intermolecular contact probabilities between aS¢_ern and fasudil and

aSc_term and ligand 47 observed in each cluster are shown in (a) and (b) respectively. The

clusters are sorted in the decreasing order of bend angle and the actual cluster indices are

indicated in the alternate Y-axis in red. Figures 6¢-h represent the correlations among the
average bend angle, total aromatic stacking propensity, and dissociation constant, (Kp),
measured from individual clusters. The corresponding Pearson correlation coefficient is
indicated within each plot. Representative snapshots from the top 5 clusters containing
acutely bent hairpin-like conformations of Ligand bound aS¢_ e, illustrating how the

bent conformations orient the aromatic side chains of Tyr-125, Tyr-133, and Tyr-136

towards better stacking interaction with Fasudil (i) and Ligand 47 (j) that in turn lead to
better inter-molecular affinity. The snapshots from left to right were taken from cluster

numbers 4, 6, 19, 9, and 2 in the case of Fasudil-bound aS¢c_em (1) and cluster numbers 1,

7,10, 8, and 11 in case of Ligand-bound aSc_serm (j)-

methods such as Barnes-Hut approximation® and the FIT-SNE method to accelerate the
computation. In short, Barnes-Hut approximation considers a subset of nearest neighbors
for modeling the attractive forces, and the FIT-SNE method relies on a fast Fourier transfor-
mation, which reduces the computational complexity to O(NlogN) and O(N), respectively.
To mitigate the slow convergence and fragmentation of clusters, it is often desirable to run t-

SNE on a sub-sample of the trajectory that includes all unique populations and then projects
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the rest of the points onto the existing map.

In line with discussing the possible pitfalls of the t-SNE method, it is also understood that
adding a new data point onto the existing t-SNE map can lead to erroneous interpretation
as the method is essentially non-parametric and does not directly construct any mapping
function between the high dimensional and low-dimensional space. Recent extensions of the

7599 and

method in combination with deep neural networks allow for parametric mapping
could be tried if such a situation can not be avoided. Moreover, the possibility of out-of-
sample mapping with parametric t-SNE can be explored further for driving simulations from
one state to another and to match experimentally known values. For instance, in such cases,

the similarities can be obtained from NMR chemical shifts or from SAXS intensities. From

that perspective, t-SNE as an integrative modeling tool looks very promising.

ITII. Conclusion

In spite of the well-established knowledge of the inherent conformational heterogeneity in
an IDP ensemble and despite advances made in accurately determining the ensemble con-
formations using integrative approaches, successful application of IDPs to drug targeting is
limited. The main reason behind this is the lack of accurate classifications of the conforma-
tional ensemble. Our algorithm provides that tool where several thousands of structures can
be grouped into representative sets of the distinct and tractable conformational library, with
unprecedented quality and performance. We introduced new metrics for choosing optimal
hyper-parameters of the algorithm and for validating the homogeneity in the resultant clus-
ters. The accessibility and generality of the framework enable faithful clustering for broader

applications without requiring expert domain knowledge of the underlying data.

We demonstrated the approach on af42 and aS ensembles under free and ligand-bound
contexts. Our results provide important insights into the ordered meta-stable structures
present in the IDP ensembles and their binding mechanism to small molecule ligands. The
two IDPs studied here exhibits vastly different mechanism of small molecule recognition:
while the Abeta42 has distinct binding pockets in different metastable structures that bind
uniquely with the G5 molecule, the binding of Fasudil and ligand 47 with aS C-term fol-

lows the ”"dynamic shuttling” within all the metastable states. Yet the residue preference

23


https://doi.org/10.1101/2022.11.11.516231
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516231; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

across the two ligands with aS and the G5 with the A$-42 is strikingly similar for the aro-
matic residues. This was also observed in another recent study for small molecule binding in
p271 Designing ligands that target these residues could be a common strategy for IDPs.
The results of t-SNE based clustering exercise on a-S reveal one of the most interesting and
non-obvious learning about the emergence of the possible role of peptide local curvatures,
besides the weak chemical specificity, as sites of ligand binding. Our tool also makes it very
convenient to generate sub-groups of similar conformations for long IDPs; whose full confor-
mational ensemble is highly intractable for structural biophysical analyses. For example, we
applied our algorithm to study how the long disordered regions of FUS protein interact with
RNA molecules™ and this t-SNE tool allowed us to illustrate the complex RNA binding be-
havior of the long disordered FUS RGG repeats in an interpretable manner. Taken together,
these learnings will invariably aid in carrying out in silico functional and drug screening
studies in a rational manner, a critical next step for curing many incurable IDP-induced
diseases. Identification of functionally and pathologically relevant substructure of an IDP
would also open ways for reverse engineering of IDPs with functions useful in biotechnology

and medicine.

IV. Materials and Method
A. Input for t-SNE analysis

The systems details about the trajectories of alanine-dipeptide, A542, and oS ensembles
are reported in Table 1. The conformations of the trajectories were represented by backbone
dihedral angle, inter-residue LJ-interaction potential, and atomic coordinates of heavy atoms

for alanine-dipeptide, A5, and aS ensembles, respectively.

1. t-SNFE based dimensional reduction

Given a number of observations (conformations) n and with d dimensional input features
in the original space defined as X = {x1,2s,...,2,} € R t-SNE maps a smaller s dimen-
sional embedding of the data that we denote here by Y = {y1,42,...,y,} € R*. Here s < d

and typically s = 2 or 3. This projection is based on the similarity and dissimilarity between
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conformations. The similarity or dissimilarity between the conformations in the high dimen-
sional space is computed based on Euclidean or RMS distances. t-SNE aims to preserve the
local neighborhood such that the points that are close together in the original space remain
closer in the embedded space. In the original space, the likelihood of a point z; to be the
neighborhood of x; instead of every other point x; is modeled as a conditional probability

Py assuming the Gaussian distribution centered at point x; with a standard deviation of

0;.
fli—;|2
E.Tp( T)
P(ile) = p——T (1)
> i cxp(— 12

Similarly, the conditional probability in the embedded space (g(jj;y), with the same n
points initialized randomly, is computed but now based on a t-distribution. Having a longer
tail than Gaussian, the t-distribution moves dissimilar points farther away to ensure less

crowding in the reduced space.

d = At [y =y P~
T sy = )

(2)

To ensure symmetry in the pairwise similarities, the joint probability is calculated from

the conditional probability as follows:

piy = (pdli) + pilj)/2n (3)

Finally, the difference between the two probability distributions, calculated as Kullback-
Leibler (KL) divergence is then minimized by iteratively rearranging the points in the low

dimensional space using gradient descent optimization.
Pji
C = KL(P|Q) = }j}jpu log 2 (4)

where P and Q are the joint probability distributions in the high and low dimensional space

over all the data points.
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The major tunable hyperparameters in t-SNE are the perplexity, learning rate and the
number of iterations. The perplexity value, P defines the Gaussian width, o;, in Equation
1 above such that, logsP = H(P;) = —Zj pjjilogy pji for all 7. Loosely, this parameter
controls the number of nearest neighbors each point is attracted to and therefore balances
the preservation of similarities at a local versus global scale. Typically, low perplexity values
tend to preserve the finer local scale and high perplexity values project a global view. To
optimize perplexity, we ran the algorithm with varying values of perplexities and chose the
one that yields a high silhouette score. The other two parameters such as the learning rate
and the number of iterations control the gradient descent optimization. While we chose the
default value of 200 for the learning rate, the number of iterations was chosen to be 3500,
which is large enough for avoiding random fragmentation of clusters as suggested in the

literature.26

B. Kmeans clustering of data on the reduced space obtained from t-SNE

Kmeans clustering is the simplest unsupervised clustering algorithm that partitions the
data into non-overlapping clusters. The algorithm starts by grouping data points randomly
into K clusters, as specified by the user. Then it iterates through computing the cluster
centroids and reassigning data points to the nearest cluster centroid until no improvements
are possible. The parameter, K, is optimized by running at various values and chosen based

on the maximized clustering efficiency.

C. Optimizating the hyperparameters (Perp in t-SNE and K in k-means )

using Silhouette score

Silhouette score for a datapoint i is measured by,

(bi — a;)

mazx(b; — a;)

5 = (5)

where a; is the intra-cluster distance defined as the average distance to all other points in
the cluster to which it belongs. b; represents the inter-cluster distance measured as the

average distance to the closest cluster of datapoint ¢ except for that it’s a part of. Typically
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the Silhouette score ranges between 1 and -1, where a high value indicates good clustering,
and values closer to 0 indicate poor clustering. A negative value indicates the clustering

configuration is wrong/inappropriate.

The distance between points is usually measured in terms of the Euclidean distance met-
ric. Since the clusters, in our case are identified in a reduced representation with t-SNE,
computing the score based only on the distances in the reduced space (S;d) may be mislead-
ing, if the points are wrongly put together during the dimensional reduction step by t-SNE.
Therefore, it is important to measure the goodness of clustering with respect to the original
distance in the high dimensional space (Spd), in addition to that in the low dimensional
space. The integrated score (S;d % Spd), therefore, adds value to the estimated clustering

efficiency in terms of reliability.

D. Cluster-wise conformational analysis and visualization

The conformations corresponding to each cluster are extracted using Gromacs based on
the cluster indices. All the conformations were used for estimating the contact probability,
binding energy, and homogeneity within individual clusters. Whereas, for visualization pur-
poses, we extracted ten representative conformations from each cluster that is closest to the
corresponding cluster centroid (as identified using KD-tree based nearest neighbor search

algorithm). The conformations are rendered using VMD.

Our current implementation of the model is available on the GitHub repository:

https://github.com/codesrivastavalab/t SNE-IDPClustering.
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FIG. S1: Snapshots of several conformations of A342 with the same Rg values (1.10 nm)
but have different structures altogether. It is evident from this illustration how the use of
such low-dimension collective variables (CVs) could lead to ambiguous classification.
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A. Physical intuition into t-SNE-based clustering algorithm using alanine

dipeptide as a model system

We first employ the t-SNE method on the alanine dipeptide (ADP) trajectory where we
compare the results with the well-known 2D Ramachandran plot using dihedral distance
as dissimilarity score. Ramachandran plot is also called ¢ — v¥map due to the backbone
dihedral angles along the peptide bond!?. Here, we can fix the number of clusters to four
(K = 4) based on the four known sub-regions of the Ramachandran plot namely beta-sheet,
PPII, right-handed « helix, and left-handed « helix (Fig. S2(a)). The left-handed « helix
region lies separately in the second half of the ¢ dihedral axis whereas the beta-sheet and
the right-handed « helical regions occupy the first half of the ¢ dihedral axis. To quantify
the goodness of clustering, we calculate the Silhouette score® on the raw data and arrive at a
score of 0.55 for the 2D map. Of note, when the numbers of clusters are not known a priory
unlike the ADP system, we have a prescription that makes use of silhouette score with the

t-SNE perplexity values to find the optimum number of clusters.

The second feature of t-SNE is a tuneable parameter called “perplexity,” which (loosely)
dictates how to balance attention between local and global aspects of your data. The pa-
rameter is, in a sense, a guess about the number of close neighbors each point has. The
perplexity value has a complex effect on the resulting pictures. The original paper says,
“The performance of SNE is fairly robust to changes in the perplexity, and typical values are
between 5 and 50.” But the story is more nuanced than that. Getting the most from t-SNE

may mean analyzing multiple plots with different perplexities.

In the Ramachandran plot, low dimensional projection of data along any one of the
projections (¢ or ), yields overlap of different conformations onto each other. We show this
at the bottom and left of Fig. S2 (a) for projection along ¢ and 1, respectively. PCA; the
most common dimensional reduction method, fails to achieve clear separation and has a very
low Silhouette score of 0.154 (see Fig. S2(b)). This is because PCA tries to linearly transform
the data along an axis of maximal variation, which is the ¢ axis in the Ramachandran plot
and hence cannot capture the distinction between L-helix and other conformers. On the
other hand, the t-SNE projections provide more faithful representations of the clusters. In

Fig. S2 (c), we plot the t-SNE projections for a range of perplexity values. For a certain
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FIG. S2: Dimensional reduction of Ramachandran map of alanine di-peptide: a) The 2D
Ramachandran map color-coded by the subregions. Simple 1-dimensional projections along
the X and Y axes are shown. Results of 1D transformation of RC-map using b) PCA and

¢) t-SNE with different perplexities.

perplexity value (Perp =400), t-SNE clearly separates out the 4 sub-regions as in the original
space with a much improved Silhouette score of 0.50. At low perplexities, t-SNE focuses on
the local variations and tries to preserve the closest neighbors as much as possible in the
original space. However, very low perplexity yields too many clusters with single or very few
conformations per cluster, which nullifies the advantages of clustering in the first place. On
the other hand, t-SNE essentially degrades to PCA at very high perplexities and leads to
overcrowding as greater variations are tolerated at high perplexity scores. With perplexity as
a tuneable parameter to balance the degree of local preservation on one hand and minimize
the overcrowding on the other, t-SNE offers an exciting possibility to meaningfully cluster

and visualize complex and heterogeneous high-dimensional IDPs datasets.
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B. Estimation of homogeneity within cluster

To quantify the homogeneity of conformations within a cluster, we first reorder the con-
formations based on the cluster indices and plot their pairwise similarity/distances. Fig. S3
and Fig. S4 show the results for the APO and the G5 bound A(42 ensemble, respectively.
We also report the distance map before clustering for comparison. The conformational dis-
tance is measured based on the RMSD of inter-residue LJ energies. To further accentuate
the homogeneity illustrations, we have also plotted the respective RMSD of Cartesian co-
ordinates. Please note that for the clustering with t-SNE, only the RMSD of LJ energies
was used. For the input maps (Fig S3a and S4a), we ordered the conformations sequentially
in the X and Y axes. For the maps generated after clustering, the frames are sorted based
on the cluster indices and placed from 0™ cluster to N cluster (S3-S4, b-d for both the
upper and lower panel in Fig. S3 and Fig. S4, respectively). As indicated by the figures, the
input distance maps of these ensembles show a certain level of conformational memory across
the contiguous frames (the Red blocks/grids at the diagonal band) as the trajectories are
generated from a history-dependent metadynamics approach. Nevertheless, the clustering
obtained with sub-optimal parameters adversely affects even this intrinsically clustered data
and several off-diagonal Red patches appear in the plot indicating either wrong groupings
or broken clusters. On the other hand, with the optimal parameters, the algorithm yields
better clustering. This can be seen clearly when we remove the input bias by shuffling the
frames randomly and subjecting them to t-SNE. The resultant clustering on the shuffled
data with optimal parameters indicates the proper grouping of conformations with diagonal
Red blocks and no off-diagonal Red patches (Compare Figure S3 and Figure S5). Also the
resultant cluster assignments with both unshuffled and shuffled data are consistent with a
mutual information score of 0.96, indicating faithful clustering irrespective of the order of

input, upon using optimal parameters.
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FIG. S3: Pairwise RMSD map of apo AB42 conformations: Row-1 and Row-2 represents
the RMSD map generated on the inter-residue LJ energies and on the heavy atom
coordinates of conformations, respectively. The map generated on the raw trajectory
(before clustering) is shown in a and e. The plots made after clustering is shown in b-d and
f-h, where the frames are reordered according to the cluster indices (from the Oth cluster to
the Nth cluster). The P and K values used for the clustering is indicated.
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FIG. S4: Pairwise RMSD map of G5-bound AS42 ensemble: Row-1 and Row-2 represents
the RMSD map generated on the inter-residue L.J energies and on heavy atom coordinates
of the conformations, respectively. The map generated on the raw trajectory (before
clustering) is shown in a and e. The plots made after clustering is shown in b-d and f-h,
where the frames are reordered according to the cluster indices (from the Oth cluster to the
Nth cluster). The P and K values used for the clustering are indicated.
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FIG. S5: a) Pairwise RMSD map of apo Af42 conformations shuffled randomly. b)
Pairwise RMSD map generated after clustering with optimal parameter set (P=300;
K=30). The RMSD between conformations is calculated on the inter-residue LJ energies.
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30~

FIG. S9: (a) Representative t-SNE maps generated with three different perplexity values
(100, 1000 and 2000) for the full length apo a-synuclein ensemble (b) Representative t-SNE
maps generated with three different perplexity values (100, 1000 and 2000) for the apo
c-terminus a-synuclein ensemble
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FIG. S10: Pairwise RMSD map of (a) full-length apo and (b) c-terminus oS apo ensemble:
The RMSD between each pair of conformation is measured based on the heavy atom
coordinates. The map generated on the raw trajectory (before clustering) is shown in a.
The plots made after clustering is shown in b-d, where the frames are reordered according
to the cluster indices (from the Oth cluster to the Nth cluster). The P and K values used
for the clustering are indicated.
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FIG. S11: Hyperparameter optimization based on integrated Silhouette score for the (a)
apo full-length and (b) apo c-terminal a-synuclein ensembles.
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FIG. S12: Representative t-SNE maps were generated with three different perplexity values
(100, 1000, and 2000) for the (a) Fasudil-bound and (b) Lig47-bound c-terminus
a-synuclein ensemble
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FIG. 13: Fraction of specific inter-molecular interactions such as hydrophobic contact,
aromatic stacking interaction, charge-charge contact and hydrogen bonding interaction
between fasudil and each residue of &S C-term. The subplots are arranged based on
descending order of average bend angle of clusters.
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FIG. 14: Fraction of specific inter-molecular interactions such as hydrophobic contact,
aromatic stacking interaction, charge-charge contact and hydrogen bonding interaction
between ligand-47 and each residue of aS C-term. The subplots are arranged based on
descending order of average bend angle of clusters.
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FIG. 15: Per-residue inter molecular contact probabilities calculated after clustering the
bound frames alone. The contacts between aS¢_sern and fasudil and aS¢_ser, and ligand
47 observed in each cluster are shown in (a) and (b) respectively. The clusters are sorted in
the decreasing order of bend angle. Note: The obtained clusters had similar bend profiles
(data not shown).
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FIG. 16: Estimated Kp values of fasudil and ligand 47 across different clusters. The
clusters are sorted in descending order of their average bend angle.
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fa] -

Lag time (3.6 ns)

FIG. 17: Cluster-wise transition probability of (a) apo, (b) fasudil bound and (c) ligand 47
bound a-synuclein C-terminal peptide conformations at a lag time of 3.6 ns.
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FIG. 18: a) t-SNE map of collated ensembles of a-synuclein C-terminal peptide simulated
in the presence and absence of Fasudil or ligand-47. The reduced coordinates of apo,
Fasudil-bound, and Ligand-47 bound data are color coded in Black, Red, and Green

respectively. b) t-SNE map of collated ensembles of A342 protein simulated in the presence

(red dots) and absence of G5 (black dots). The map shows mostly non-overlapping clusters

between the two ensembles except for a very few clusters that consist of conformations
from both apo and bound ensembles. These similar and overlapped conformations from the
two ensembles are rendered and superposed in the inset with cyan indicating apo and red
indicating G5-bound AS42 ensembles. We also mapped the conformational clusters that
showed the highest binding affinity with G5 molecules (cluster numbers 14, 29, and 30) as
predicted from Fig. 3 in the main text and indicate them on the collated map with blue
arrows. It is evident that these high-affinity conformations from the G5-bound ensemble do
not have closely related conformers in the APO state.
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TABLE S1: Mean Silhouette score for the apo AfB42 ensemble calculated based on the

distances in the low S;; and high dimensional space Sp4. Spq values are given in the bracket

|

\20 30 40 20 60 70 80 90 100

50 0424 0498 0546 0576  0.583 0598 0593 0589  0.583
(0.087) (0.148) (0.171) (0.157) (0.139) (0.13)  (0.119) (0.109) (0.108)

100 0.505  0.586  0.64 0.642  0.633 0611 0598 0584  0.582
(0.141)  (0.177)  (0.189) (0.163) (0.139) (0.125) (0.116) (0.11)  (0.107)

150 0.543  0.626  0.686  0.658  0.639  0.625  0.598 0581  0.574
(0.15)  (0.211)  (0.194) (0.166) (0.141) (0.13)  (0.119) (0.112)  (0.109)

200 0579  0.666  0.711  0.665  0.62 0616 0599 0581  0.558
(0.166) (0.197) (0.195) (0.164) (0.133) (0.13)  (0.124) (0.116) (0.107)

250 0.617  0.689  0.706  0.658  0.653  0.605  0.588 0572  0.553
(0.174)  (0.212)  (0.193) (0.161) (0.151) (0.129) (0.121) (0.116) (0.108)

300 0.638  0.709  0.712  0.66 0.617 0594 0569  0.57 0.545
(0.178)  (0.211)  (0.193) (0.164) (0.144) (0.132) (0.117) (0.116) (0.107)

350 0.662  0.718  0.699  0.637  0.616 0593 057 0563  0.543
(0.188)  (0.205) (0.192) (0.157) (0.141) (0.133) (0.119) (0.114) (0.105)

TABLE S2: Mean Silhouette score for the G5-bound A (542 ensemble calculated based on
the distances in the low Sy and high dimensional space Sj4. Spg values are given in the
bracket

20 30 40 50 60 70 80 90 100

50 0418 0464 0513 0543 0554 0577 0578 0567  0.584
(0.057)  (0.097) (0.131) (0.132) (0.13)  (0.127) (0.127) (0.116) (0.123)

100 0.473 0555  0.612  0.63 0.616  0.618  0.581  0.57 0.556
(0.072)  (0.118) (0.149) (0.145) (0.141) (0.139) (0.122) (0.121) (0.119)

150 0.487 0587  0.652  0.645  0.627  0.604 0577 0553  0.554
(0.082) (0.126) (0.148) (0.145) (0.14)  (0.14)  (0.128) (0.124) (0.128)

200 0.495  0.605  0.667  0.66 0.635 0598 0573 0518  0.509
(0.081)  (0.129) (0.149) (0.149) (0.146) (0.137) (0.137) (0.12)  (0.121)

250 0.508  0.615  0.662  0.643  0.61 0.604 0545 0516  0.491
(0.089) (0.13)  (0.149) (0.148) (0.146) (0.144) (0.128) (0.125) (0.121)

300 0.517  0.596  0.649  0.63 0.604 0531 0527  0.51 0.474
(0.094) (0.126) (0.151) (0.151) (0.147) (0.131) (0.127) (0.127) (0.119)

350 0.509  0.591  0.633  0.622 0592 0522 0492 0489  0.48
(0.093) (0.129) (0.146) (0.15)  (0.151) (0.124) (0.125) (0.124) (0.12)
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TABLE S3: Consistent local clustering in the apo A342 trajectory upon different runs with
different random initializations. We have noted that there is neither change in the choice of
optimal perplexity and K values, nor the clustering pattern (measured by normalized
mutual information score) upon rerunning.

S.No|Sw Shd Normalized mutual information
1 0.7086(0.2105
2 [0.7158(0.2102 0.9755
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