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GRAPHIC ABSTRACT 46 
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In Brief: The authors use 63 

machine learning 64 

approaches to identify 65 

universally relevant 66 

definition of macrophage 67 

polarization states and 68 

create a predictive 69 

framework for developing 70 

macrophage-targeted 71 

precision diagnostics and 72 

therapeutics. 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

Highlights: 82 

• Signatures of Macrophage Reactivity and Tolerance were identified using AI 83 

• SMaRT genes are relevant across tissues, organs, species and immune cells  84 

• SMaRT genes identify physiologic and pathologic macrophage states  85 

• SMaRT genes can prognosticate outcome and serve as therapeutic targets 86 
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Summary/Abstract (n = 170) 87 

A continuum of macrophage polarization states is essential for the initiation, maintenance, and resolution 88 

of inflammation. We built a network using pooled human macrophage transcriptomic datasets and used 89 

machine learning algorithms to identify the path of such continuum states. One path, comprised of 338 90 

genes emerged as the best; it accurately identified both physiologic and pathologic spectra of “reactivity” 91 

and “tolerance”, and remained relevant across tissues, organs, species and immune cells (> 12,500 diverse 92 

datasets). This 338-gene signature identified macrophage polarization states in physiology and across 93 

diverse human diseases and objectively analyzed the appropriateness of mice as pre-clinical models for 94 

such diseases. The signature consistently outperformed conventional signatures in the degree of 95 

transcriptome-proteome overlap and in prognosticating outcomes across diverse acute and chronic 96 

diseases, e.g., sepsis, liver fibrosis, aging and cancers. Crowd-sourced genetic and pharmacologic studies 97 

confirmed that model-rationalized interventions trigger predictable macrophage fates. These findings 98 

provide a formal and universally relevant definition of macrophage states and a predictive framework for the 99 

scientific community to develop macrophage-targeted precision diagnostics and therapeutics. 00 

 01 
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INTRODUCTION 02 

Macrophages are complex; as sentinel cells of the innate immune system, they are found in various organs 03 

and their dysregulated activation can directly impact organ functions and the outcome of all diseases 04 

(Murray and Wynn 2011; Pollard 2009). Macrophages were initially classified as M1 (the classically 05 

activated macrophages) and M2  (the alternatively activated macrophages) based on their functions at the 06 

extremes of polarization states (Mills et al. 2000). However, the M1/M2 nomenclature is considered as too 07 

simplistic; it fails to describe the diverse, polyfunctional and plastic cells, and the myriad of continuum 08 

states that they adopt in the tissue at steady-state and during disease (Amit et al. 2016; Ginhoux et al. 09 

2016; Glass and Natoli 2016; Okabe and Medzhitov 2016). To cope with this degree of diversity and 10 

plasticity, several definitions of macrophage subtypes have emerged, each representing specialized 11 

contexts, e.g., TAMs, tumor-associated macrophages (Qian and Pollard 2010); LAMs, lipid-associated 12 

macrophages in atherosclerosis (Jaitin et al. 2019); DAMs, disease-associated microglia in 13 

neurodegenerative disorders (Keren-Shaul et al. 2017); SAMs, scar-associated macrophages in liver 14 

fibrosis (Duffield et al. 2005; MacParland et al. 2018; Ramachandran et al. 2019). These definitions were 15 

geared to identify divergent markers, spatial localization, origin, and functional pathways associated with 16 

macrophages during disease; however, they fall short in predictive or prognostic abilities.  17 

We sought to create and validate a comprehensive model of macrophage processes for defining, 18 

tracking, and even predicting macrophage fate after perturbation (see Fig 1a, S1A for workflow outline). 19 

We hypothesized that such a model might inspire formal definitions for macrophage polarization states that 20 

are reflective of fundamental processes and maintain relevance across tissues, organs, diseases and 21 

species. In addition, it may also rationalize diagnostics and therapeutics to detect and reset, respectively, 22 

deranged macrophage states in disease. We show that such formal definition(s) of macrophage states is 23 

not only possible, but also provide evidence for their usefulness in prediction and prognostication. 24 

 25 
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RESULTS AND DISCUSSION 26 

A computational model of continuum states in macrophage processes  27 

We chose a Boolean approach to build transcriptomic network (Sahoo et al. 2008); this approach has been 28 

used to create maps of evolving cellular states along any disease continuum and identify cellular states in 29 

diverse tissues and contexts with high degrees of precision (see detailed Methods). The Boolean approach 30 

relies on invariant relationships that are conserved despite heterogeneity in the samples used for the 31 

analysis. Invariant relationships among pairs of genes that are conserved across samples representative of 32 

maximum possible diversity, i.e., irrespective of their origin (normal or disease), laboratories/cohorts, 33 

different perturbations, are assumed to be fundamentally important for any given process.  34 

For model training and development, we used a pooled all-human microarray dataset that included 35 

197 manually annotated heterogeneous macrophage datasets from GEO (GSE134312 (Dang et al. 2020); 36 

Fig 1a-c; Fig S1A-B; see Supplemental Information 1 for catalog of datasets).  These datasets contained  37 

primary tissue-derived macrophages (both healthy and diseased tissues) and cultured macrophage cell 38 

lines (e.g., THP1), either untreated or treated with diverse sets of ligands that are known to induce either 39 

M1 (n = 13) or M2 (n = 8) polarized states (see Table S1).  40 

A graph (Fig 1d; Fig S1C; Fig S2A) is built, comprised of gene clusters (nodes) connected to each 41 

other using Boolean implication relationships (edges). The network displayed scale-free properties, as 42 

expected (Fig S1D). We oriented ourselves to the resultant network by querying and locating the known 43 

‘M1/M2’ samples; the ‘M1’ samples segregated towards one end, and ‘M2’ samples on the other, implying 44 

that the paths of connected clusters within the resultant network represent a continuum of cellular states in 45 

macrophages within the immunologic spectrum (Fig S1E-G). Reactome pathway analyses (Fabregat et al. 46 

2018) of each cluster along the top continuum paths revealed a multitude of cellular processes that are 47 

impacted during macrophage polarization (Fig 1e; Gene clusters and reactome pathways can be queried 48 

at: http://hegemon.ucsd.edu/SMaRT/). 49 

 50 

Identification of signatures of macrophage ‘reactivity’ and ‘tolerance’ (SMaRT) 51 

Using machine learning approaches, various interconnected gene clusters (i.e., Boolean paths) were 52 

assessed for their ability to accurately classify the samples (based on the genes in the clusters and 53 

computing a weighted average of gene expression values outlined in Fig S2B) (Fig 1f). A multivariate 54 

analysis of the top five Boolean paths revealed that the path connecting clusters(C)#13→14→3 is the best 55 

(p < 0.001) at discriminating M1 (ROC-AUC 0.98) and M2 (ROC-AUC 0.99) (Fig 1f; Fig S2C). Path 56 

#13→14→3 was subsequently validated in five other independent datasets (Fig 1g). A comparative 57 

analysis of #13→14→3 path vs. other traditional approaches, e.g., Differential Expression (Becker et al. 58 

2015), Correlation Network (Becker et al. 2015), Hierarchical Clustering (Coates et al. 2008) and 59 

Differential and interactome analyzes (Martinez et al. 2006) showed the superiority of the BoNE-derived 60 

path in separating M0-M1-M2 states. The Boolean path matched differential expression in its ability to 61 

distinguish M1 state, while exceeding the remaining traditional approaches (Fig 1h). A heatmap of the 62 

pattern of gene expression in each cluster in M0-M1-M2 states is shown in Fig 1i. 63 
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Furthermore, C#13 predicted M1 perfectly (ROC-AUC = 1.0); the path #14→3 predicted M2 close to 64 

perfection (ROC-AUC = ranging from 0.80 to 1.00) in all cohorts tested (Fig 1j). This indicates that while 65 

the path #13→14→3 is the most accurate path across all human macrophage-derived datasets collected 66 

and analyzed, C#13 and the path #14→3  carry relevant information on macrophage states independently 67 

of each other. C#13 is associated with M1-like state and expression of these genes is predicted to reflect 68 

the extent of “immunoreactivity” of macrophages. Path #14→3 is associated with a M2-like state and 69 

expression of these genes is predicted to reflect the extent of “immunotolerance”. We define the two distinct 70 

macrophage polarization states in physiology as “reactive” and “tolerant” based on basal C#13 and #14→3 71 

scores, respectively (Fig. 1k). Four additional macrophage states could also exist, presumably in disease 72 

states, i.e., hyperreactive (high C#13), hypertolerant (high #14→3), hyporeactive (low C#13), and 73 

hypotolerant (low #14→3) (Fig. 1k). Henceforth, we refer to these genes as signatures of macrophage 74 

reactivity and tolerance, abbreviated as ‘SMaRT’ (See http://hegemon.ucsd.edu/SMaRT/ and 75 

Supplemental Information 2 for the list of genes). 76 

We tested the independence of M1/M2 signatures using single cell RNASeq dataset GSE150708 77 

(human), GSE117176 (mouse), where we artificially created pseudobulk samples using various mixtures of 78 

M1 and M2 cells (Fig S2D-H). M1 and M2 cells were categorized as both tolerant and reactive using C#13 79 

and path #14-3 signatures (Fig S2D).  Mouse single cell dataset GSE117176 showed the same patterns 80 

after revising the genes from path #14-3 as many genes were not captured by scRNASeq (Fig S2E-H).  81 

 82 

SMaRT genes are relevant across tissues, organs, species and immune cells  83 

We found that the path #13→14→3 successfully identified M1/M2-polarization states in diverse tissue-84 

resident macrophages (brain-resident microglia, the Langerhan’s cells in the skin, intestinal and lung 85 

alveolar macrophages, etc.), in both humans and mice (Fig 2a-b). See Supplemental Information 1 for 86 

the degree of heterogeneity represented in these datasets. Surprisingly, the path could also separate 87 

reactive and tolerant states of other immune cells, including lymphocytes (B/T and NK-T), natural killer (NK) 88 

cells, neutrophils, dendritic, basophils, eosinophils and mast cells (Fig 2c). Together, these findings 89 

indicate that the SMaRT-based definitions of ‘reactivity’ and ‘tolerance’ remain relevant in the context of 90 

tissue-resident macrophages despite their adaptation to the tissue and/or organ-specific microenvironment 91 

for their identity (Gordon and Pluddemann 2017; Lavin et al. 2014; Stout and Suttles 2004). These 92 

definitions also maintain relevance in mice, whose immune system is different from ours (Mestas and 93 

Hughes 2004). Findings suggest that the SMaRT-based definitions may reflect the fundamental immune-94 

reactive and tolerant gene regulatory mechanisms that are shared among diverse cells in our immune 95 

system, regardless of whether they are derived from the myeloid or lymphoid lineage (Fig 2d).   96 

 97 

The network captures physiologic macrophage states and functions 98 

We found that diverse macrophage subtypes are represented within our model of macrophage processes 99 

(Fig 2e). The classical M1 subtype was represented in C#1 and #13 on the reactive end of the model, 00 

alongside TCR+ macrophages in C#1 and #12; the latter is known to release CCL2 and have high 01 

phagocytic abilities (Chavez-Galan et al. 2015). On the tolerant end of the model we found the TAMs in 02 
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C#2, #5, #6 and the CD169+ macrophages in C#2, #3 and #7; both subtypes have been implicated in 03 

immunological tolerance (Liu and Cao 2015; Ravishankar et al. 2014; Saunderson et al. 2014). As one 04 

would anticipate, the tissue-resident macrophages (M2a-d) that are known for their plasticity of polarization 05 

states were more centrally placed in C#2 and #5. Finally, gene signatures of scar-associated non-06 

inflammatory (ni) macrophages that restrict inflammation in liver cirrhosis (SAM B (Ramachandran et al. 07 

2019) and SAM ni (MacParland et al. 2018), Fig 2f) and damage-associated microglia (DAMs (Keren-Shaul 08 

et al. 2017); Fig 2f) that restrict the progression of neurodegeneration significantly overlapped with the 09 

tolerant clusters C#14 and #3. A gene signature that was recently shown to be induced in monocytes and 10 

macrophages in all viral pandemics (ViP), past and present, overlapped with the reactive C#13 as expected 11 

(Supplemental Information 2 lists all gene signatures in Fig 2f).   12 

Members of the family of pattern recognition receptors (PRRs; Table S2), via which macrophages 13 

‘sense’ its surroundings (Zhou et al. 2015), were distributed in various nodes within the model, overlapping 14 

with each other (Fig 2g). PRRs that sense pathogens or apoptotic cells to stimulate phagocytosis and 15 

mediate inflammation, e.g., toll-like (TLRs), nucleotide oligomerization domain (NODs) and receptor for 16 

advanced glycation end products (RAGE) were found on the ‘reactive’ side of the model. The TLRs, 17 

scavengers and C-type lectins also overlapped with path#13→14→3, but only on the tolerant end (cluster 18 

#3) of the spectrum.  19 

 The circadian genes were distributed within clusters along a path (#1→2→3→4) (Fig 2h), 20 

intersecting at the tolerant end of the path#13→14→3, i.e., C#3. The daytime circadian genes were in the 21 

reactive end of the model and showed  an inverse high=>low Boolean relationship with night-time circadian 22 

genes; the latter were mostly in the tolerant end of the model (Fig S3A-C). This finding is consistent with 23 

the current belief that macrophages ‘kill’ (reactive) during the day and ‘heal’ (tolerant) during the night 24 

(Early and Curtis 2016). We also show that the performance of the tolerant signature (C#14-3) in diseases 25 

that have an intricate relationship with circadian rhythms, such as metabolic syndrome (Eckel-Mahan and 26 

Sassone-Corsi 2013), can be further improved by normalization based on a clock gene or clock gene 27 

signature (Fig S4). 28 

 29 

 30 

SMaRT genes identify pathologic polarization states in diseases 31 

We next asked how the Boolean network-derived formal definitions perform in disease states. A plethora of 32 

disease conditions and tissues were analyzed (Fig 3a-n; Supplemental Information 1). We computed a 33 

composite immune response score derived from C#13 alone or C#14 and #3, which quantitatively 34 

estimates the degree of “reactivity” and “tolerance”, respectively, and tested it in diverse conditions. An 35 

analysis of full-thickness colon tissues representing the 2 major subtypes of inflammatory bowel disease 36 

(IBD), ulcerative colitis (UC) and Crohn’s disease (CD) (Fig S5A) revealed that reactivity is a common 37 

feature in both UC and CD (Fig 3a, top; Fig S5B-left). However, tolerance was enhanced only in CD (Fig 38 

S5B-right), which is consistent with the notion that ‘alternatively’ activated tolerant macrophages may drive 39 

the transmural nature of the inflammation, ineffective bacterial clearance, and accompanying tissue 40 

remodeling (fibrosis, stricture, fistula), all features that are observed uniquely in CD (Cho 2008), but not UC. 41 
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Reactivity alone could prognosticate outcome (i.e., segregate responder vs non-responder) regardless of 42 

the heterogeneity of the UC cohorts and the diverse treatment modalities (Fig S5C-D), consistent with the 43 

widely-accepted notion that hyperinflammatory macrophages are drivers (Steinbach and Plevy 2014) of the 44 

disease and key targets for therapeutics (Peters et al. 2017). Insufficient datasets precluded similar 45 

analyses in the case of CD.  46 

 We also found that “reactivity” and “tolerance” differs along the length of the colon crypt—the 47 

surface is more reactive, whereas the stem-cell niche at the bottom is more “tolerant” (Fig 3b; Fig S5E-F). 48 

We also found that “hypo-reactivity” [low C#13] and “complete tolerance” [high #14→3] are two states that 49 

are progressively accentuated during colorectal carcinoma (CRC) initiation and the emergence of 50 

chemoresistance (3c; Fig S5G-H). Consistent with the fact that most of the CRCs are found located in the 51 

left (distal) colon and microbe-driven risk is high in that segment (Drewes et al. 2016), we found that 52 

segment to be more tolerant than the right (proximal) segment (3d).  53 

We detected altered macrophage states during the initiation and progression of several human 54 

other diseases, ranging from arthritis, through neurodegenerative diseases to viral pandemics (see Fig 3e-55 

n;  Fig S6A-N, Fig S7A-E). Our definitions for “reactivity” and “tolerance” could accurately identify the 56 

underlying pathologic macrophage states implicated in each condition. Together, these results show that 57 

the BoNE-derived signature can detect different subsets of macrophages are essential to the pathogenesis 58 

of many diseases. Findings also agree with the notion that disease chronicity is invariably associated with 59 

mixed polarization states (whose detection has largely been enabled by scSeq studies) where each state 60 

plays an opposing (balanced) role (Duffield et al. 2005; Jaitin et al. 2019; Keren-Shaul et al. 2017; 61 

MacParland et al. 2018; Murray and Wynn 2011; Qian and Pollard 2010; Ramachandran et al. 2019). 62 

 63 

 64 

SMaRT genes rationalize the choice of mouse models  65 

Although mice are the preferred model species for research (Rosenthal and Brown 2007), most agree that 66 

their innate immune systems differ (Mestas and Hughes 2004). C57BL/6J and Balb/c mice are two most 67 

commonly used mouse strains that differ in their immune responses, giving rise to distinct disease 68 

outcomes, which in turn rationalizes their use as pre-clinical models for human diseases (Fig 3o). Our 69 

signature successfully classified the macrophages from these two strains in three independent cohorts 70 

(Howes et al. 2016; Link et al. 2018) (Fig 3p); C57BL/6 emerged as more reactive and Balb/c as more 71 

tolerant (Fig 3q). These findings are consistent with the observation that BALB/c mice are more susceptible 72 

to a variety of pathogens (Mainou-Fowler et al. 1988; Sacks and Noben-Trauth 2002; Schluter et al. 1999), 73 

and are useful for modeling tumor initiation and progression and for making antibodies. By contrast, 74 

C57BL/6 mice are resistant to infections and are the most common strain used for modeling inflammatory 75 

diseases, e.g., arthritis, metabolic disorders [NASH, atherosclerosis, etc. (Champy et al. 2008; Ishida et al. 76 

1991; Toye et al. 2005)]. We conclude that the model-derived definitions for “reactivity” and “tolerance” —(i) 77 

capture the contrasting immunophenotypes of these two murine strains previously reported by Mills et al., 78 

(Mills et al. 2000) and (ii) rationalize the choice of each strain as preferred models for modeling a unique 79 
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set of human diseases. Findings also suggest that the model-derived signatures could serve as an 80 

objective guide for assessing the appropriateness of any species/strains/sub-strains as pre-clinical models. 81 

 82 

SMaRT genes carry diagnostic value  83 

Next we compared head-to-head the diagnostic and prognostic potential of the newly defined polarization 84 

states against four traditional definitions: differential expression analysis (Becker et al. 2015) (DExp), 85 

correlation network (Bell et al. 2016) (CorN), hierarchical clustering + fold change (Coates et al. 2008) 86 

(HiClu), and differential + interactome analysis (Martinez et al. 2006) (Dif+Int). A composite immune 87 

response score derived from C#13 alone, which quantitatively estimates the degree of “reactivity” was 88 

tested on multiple datasets generated from tissues derived from patients with known clinically relevant 89 

diagnoses. A hyper-reactive state was invariably associated with graft rejection in transplanted hearts, 90 

livers and kidneys (Fig 3r). A ‘hyper-reactive’ state also classified IBD-afflicted children from those with 91 

non-IBD indications (8-18 y age) with reasonable accuracy in a prospective study where the blood samples 92 

were drawn at the time of diagnostic colonoscopy (Fig 3r). Among the critically ill patients in the ICU, a 93 

hyper-reactive state was associated with better 28-day survival for those with ARDS on ventilators (Fig 3r) 94 

and improved survival without the need for liver transplantation in those diagnosed with Tylenol-induced 95 

acute liver failure (Fig 3r). While some of the four other traditional methodologies fared similar to the new 96 

definitions in some cohorts, none performed as well, and/or as consistently. Findings suggest that the 97 

BoNE-derived signatures may capture fundamental aspects of macrophage polarization that drive disease 98 

states.   99 

 00 

SMaRT genes can prognosticate outcome  01 

We next computed a composite immune response score based on either the path #13-14-3 or C#13 alone. 02 

When used as a composite score, a low score value represents “reactive” and high score value represent 03 

“tolerant” states. This signature was tested on all transcriptomic datasets found on the NCBI GEO database 04 

(as of 04/2022) originating from prospective studies, regardless of disease. Prospective studies were 05 

chosen because they rarely have selection bias from enrollment procedures because the outcomes have 06 

not yet occurred at the time of enrollment. In the context of cancers, “reactive” tumors carried a worse 07 

prognosis than “tolerant” ones across a variety of solid tumor subtypes, e.g., colorectal (n = 555; Fig 4a), 08 

breast, pancreas, prostate, glioblastoma and bladder cancers (Fig S7F). Undetectable by any of the 09 

traditional methodologies, these findings are consistent with the well-recognized role of inflammatory cells 10 

in the tumor microenvironment (Coussens and Werb 2002).  11 

In a cohort of 216 patients with HCV-related liver fibrosis, overall survival was reduced among 12 

patients with a “reactive” signature on their liver biopsies compared to those with a “tolerant” signature (Fig 13 

4b). Again, undetectable by any of the traditional methodologies, these findings are consistent with the 14 

known role of activated macrophages in chronic liver injury, inflammation and fibrosis (Ehling et al. 2014; 15 

Heinrichs et al. 2011; Kazankov et al. 2014; Sunami et al. 2012).  16 

In a cohort of 802 patients with sepsis, 28-day mortality was worse among those with a “tolerant” 17 

signature compared to those with a “reactive” signature (Fig 4c). This finding is consistent with the notion 18 
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that “endotoxin tolerance” during sepsis carries poor outcome (Pena et al. 2014). Two of the four traditional 19 

models, correlation network and hierarchical clustering, also performed reasonably well in sepsis, which is 20 

not surprising because 30% of the reactivity signature within C#13 overlaps with the ‘M1’-state definition in 21 

some of the traditional methods. 22 

In a cohort of 114 patients with idiopathic pulmonary fibrosis (IPF), an incurable disease that is 23 

characterized by progressive fibrosis requiring lung transplantation (George et al. 2011), a “reactive” 24 

signature was associated with shorter transplant-free survival (Fig 4d). Two of the four traditional models, 25 

correlation network and differential + interactome analysis, also performed reasonably well. Results are in 26 

keeping with the widely accepted notion that proinflammatory pulmonary macrophages are known to drive 27 

inflammation and fibrosis in the lung (Byrne et al. 2016). 28 

Among 517 recipients of kidney transplants, a “reactive” signature was associated with increased 29 

graft loss in two independent cohorts (Fig 4e-f). Findings are in keeping with prior body of work implicating 30 

inflammatory macrophages (both number and extent of activation) as culprits in both acute and chronic 31 

allograft rejection and graft loss (Azad et al. 2018; Bergler et al. 2016; Liu et al. 2016). Two of the four 32 

traditional models, differential expression and correlation network approaches, performed reasonably well 33 

in one cohort (Fig 4e), but none reached significance in the other (Fig 4f).  34 

 Finally, among 151 nonagenarians in the Vitality 90+ study (Nosraty et al. 2015), a “reactive” 35 

signature was associated with higher mortality in men (Fig 4g-left), but not women (Fig 4g-right). Results 36 

are in keeping with the fact that the plasma levels of the ‘classical’ marker of inflammaging, i.e., interleukin-37 

6 (IL-6) and a pro-inflammatory gene signature in PBMCs were correlated in men, whereas no correlations 38 

were observed in women (Nevalainen et al. 2015). None of the traditional methodologies could detect this 39 

gender-specific difference, nor did they prognosticate survival.  40 

These findings demonstrate a degree of robustness and consistency in the prognostic ability of the 41 

newly defined signatures of macrophage polarization across diverse diseases and independent datasets.  42 

 43 

 44 

SMaRT genes are significantly enriched in the macrophage proteome 45 

We used Tandem Mass Tag (TMT) proteomics datasets from THP1-derived macrophages (M0, PMA) that 46 

were polarized to M1-M2 states (see workflow Fig 5a) and asked if the BoNE-derived gene clusters are 47 

translated to proteins. We found that the BoNE-derived SMaRT genes were induced significantly in the 48 

THP1 proteome (Supplemental Information 3). Consistent with our hypothesis that C#13 and path 49 

#14→3 carry independent information regarding “reactivity” and “tolerance”, we found that LPS and IFNγ-50 

induced M1 polarization was associated with significant differential translation of genes in C#13 (Fig 5b-51 

top), whereas IL4-induced polarization was associated with significant differential translation of genes in 52 

C#14 and C#3 (Fig 5b-bottom). Such differential protein translation continued to take place over 24 h (Fig 53 

5b).  54 

Comparative analyses showed that while the “reactivity” signatures identified by two other 55 

conventional methodologies--Differential Expression and Correlation Network-- also reached significance; 56 

Fig 5b-top), “tolerance” signatures derived by all other conventional approaches did not (Fig 5b-bottom). 57 
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Heatmaps show the dynamic and opposing nature of the proteins translated by the genes within the BoNE-58 

derived gene signatures during polarization (Fig 5c-d).  59 

Findings demonstrate that the gene signatures of ‘reactivity’ and ‘tolerance’ identified here are 60 

significantly represented also in the translated proteome. 61 

 62 

Perturbation of SMaRT genes results in predictable outcomes 63 

We next asked if network-rationalized interventions result in predictable outcomes upon perturbation, e.g., 64 

gene depletion (CRISPR, shRNA, KO mice) or overexpression, expression of functionally defective 65 

mutants, or chemical agonists/inhibitors. To this end, we carried out real-world crowdsourcing 66 

experiments on macrophage datasets in which interventions were conducted by different groups using 67 

diverse manipulations (Fig 6a). Depletion or pharmacologic inhibition of any gene in C#13 was predicted to 68 

suppress reactivity and enhance tolerance, whereas overexpression or pharmacologic stimulation of the 69 

same should have an opposite impact, i.e., enhance reactivity and suppress tolerance. Similarly, 70 

depletion/inhibition of any gene in C#14 was predicted to enhance reactivity and suppress tolerance (Fig 71 

6b, left; Table S3). The depletion of genes in C#3 is predicted to not have a robust impact the network 72 

because of the Low=>Low relationship with C#14.    73 

We began with the ENCODE portal (Davis et al. 2018), a resource that was born out of the larger 74 

initiative called the ENCODE integrative analysis (Consortium 2012); it is an encyclopedia of large, 75 

unbiased shRNA library screen on the human K562 chronic myeloid leukemia cell line. This 76 

dataset contained 4 of the 137 genes in C#14 and none from C#13 (Davis et al. 2018).  In all 4 cases, the 77 

depletion of genes in C#14 resulted in the predicted outcome of enhanced reactivity and hypotolerance 78 

(Fig 6b, right). A systematic search of the NCBI GEO database also revealed 16 other independent 79 

datasets reporting the impact of interventions on genes in C#13 (9 datasets) and C#14 (7 datasets) (Table 80 

S3). Regardless of the heterogeneous nature of the interventions and lab-to-lab variations in the type of 81 

cells/tissues used, predictions matched the observed outcomes in each instance. At least in one instance 82 

(i.e., STAT3), we could confirm the alignment of phenotypes between gene deletion and pharmacologic 83 

inhibition, implying that both approaches must have converged on the same biology. Because such 84 

alignment and/or convergence is seen in many instances (Weiss et al. 2007), findings suggest that the 85 

current model can accurately guide outcome-driven pharmacologic interventions.  86 

Together, these crowd-sourced studies rigorously and independently validate the definitions of 87 

macrophage polarization states; the fundamental nature of these definitions appear to remain relevant 88 

despite the thunderous heterogeneity of models and methods used by so many.   89 

 90 
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CONCLUSIONS 91 

The lack of consensus on how to define macrophage activation has impeded progress in multiple ways; 92 

despite a panoply of existing descriptors, most remain contentious and/or confusing. AI-guided gene 93 

expression signatures presented here, SMaRT, offers a set of standardized definitions of macrophage 94 

polarization that encompasses four principles: (i) they are comprised of an unbiased collection of markers 95 

of macrophage activation that are represented in both the transcriptome and the proteome; (ii) they remain 96 

meaningful and relevant regardless of the source of macrophages (i.e., bone marrow, circulation, tissue-97 

resident); (iii) they perform well across diverse activators, both in vitro and in vivo (i.e., recombinant ligands 98 

and cytokines, microbes, or multifactorial, as in the setting of complex disease states), and (iv) they provide 99 

a predictive framework that can be exploited for diagnostic purposes and for outcome-rationalized 00 

therapeutic interventions. These principles unify experimental standards for diverse experimental scenarios 01 

and interpretations across diverse tissues and diseases. 02 

 Finaly, these SMaRT genes provide a  common framework for macrophage activation 03 

nomenclature, which should enable laboratories to detect and report a given immunophenotype of 04 

macrophage in a standardized way. Standardization is expected to spur the development of robust 05 

strategies to address the multitude of macrophage-related disorders. It also serves as a starting point for 06 

the development of new diagnostics and immunomodulatory therapies.   07 

 08 

 09 

 10 

 11 

 12 

 13 
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 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited data 

Pooled human macrophage array NCBI GEO (The National 
Center for Biotechnology 
Information- Gene 
expression omnibus) 

GSE134312 

Ccdc88a KO peritoneal macrophages GSE203423 

Proteomics dataset, reanalyzed from PMID: 34731634 MassIVE repository MSV000084672 

Experimental models: Organisms/strains 

Ccdc88a fl/fl LysMCre/- mice  PMID: 33055214  

   

Software and algorithms 

Numpy Python https://numpy.org  

Scipy Python https://scipy.org  

Seaborn Python https://seaborn.pydata.org  

Matplotlib Python https://matplotlib.org  

Hierarchical Exploration of Gene Expression Microarrays Online 
(Hegemon) 

HTML, JavaScript, Python, 
PHP 

https://github.com/sahoo00/Hegemon 

Boolean Network Explorer (BoNE) Python https://github.com/sahoo00/BoNE  

Other 

Interactive website  This paper http://hegemon.ucsd.edu/SMaRT/  
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Materials and Methods 1 

 2 
Data Collection and Annotation 3 

Publicly available microarray and RNASeq databases were downloaded from the National Center for 4 

Biotechnology Information (NCBI) Gene Expression Omnibus (GEO)  website (Barrett et al. 2005; Barrett et 5 

al. 2013; Edgar et al. 2002). Gene expression summarization was performed by normalizing Affymetrix 6 

platforms by RMA (Robust Multichip Average) (Irizarry et al. 2003a; Irizarry et al. 2003b) and RNASeq 7 

platforms by computing TPM (Transcripts Per Millions) (Li and Dewey 2011; Pachter 2011) values 8 

whenever normalized data were not available in GEO. We used log2(TPM) if TPM > 1 and (TPM – 1) if 9 

TPM < 1 as the final gene expression value for analyses. We also used log2(TPM + 1) in some datasets. 10 

We also used publicly data normalized using RPKM (Mortazavi et al. 2008), FPKM (Trapnell et al. 2009; 11 

Trapnell et al. 2010), TPM (Li et al. 2010; Wagner et al. 2012), and CPM (Law et al. 2016; Robinson et al. 12 

2010). In the context of Affymetrix microarray data we believe that RMA works better than MAS 5.0 13 

(Pandey and Sahoo 2019). 14 

 15 

Macrophage datasets used for network analysis 16 

Previously published pooled macrophage dataset from GEO (GSE134312, n = 197) assayed on the Human 17 

U133 Plus 2.0 (GPL570), Human U133A 2.0 (GPL571) and Human U133A (GPL96) platforms were used to 18 

perform macrophage network analysis. This dataset was manually annotated with M0, M1 or M2 19 

phenotypes. Accession numbers for the M0, M1 and M2 phenotypes are presented in table S4. Five 20 

validation datasets are used to test the macrophage gene signature: GSE35449 (7 M0, 7 M1, 7 M2), 21 

GSE46903 (64 M0, 29 M1, 40 M2), GSE61298 (6 M0, 6 M1, 6 M2), GSE55536 human peripheral blood 22 

mononuclear cell-derived macrophage (6 M0, 6 M1, 6 M2), GSE55536 iPSC derived macrophages (3 M0, 23 

3 M1, 3 M2). See Supplementary Information 1 for all datasets analyzed in this work. 24 

 25 

Computational Approaches 26 

StepMiner Analysis 27 

StepMiner is a computational tool that identifies step-wise transitions in a time-series data (Sahoo et al. 28 

2007). StepMiner performs an adaptive regression scheme to identify the best possible step up or down 29 

based on sum-of-square errors. The steps are placed between time points at the sharpest change between 30 

low expression and high expression levels, which gives insight into the timing of the gene expression-31 

switching event. To fit a step function, the algorithm evaluates all possible step positions, and for each 32 

position, it computes the average of the values on both sides of the step for the constant segments. An 33 

adaptive regression scheme is used that chooses the step positions that minimize the square error with the 34 

fitted data. Finally, a regression test statistic is computed as follows: 35 

� ���� �  ∑ �	�

  � 	�
��

��� �� � 1
⁄
∑ �	� � 	�


 
��
��� �� � �
⁄   
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Where 	�  for � � 1 to �  are the values, 	�

  for � � 1 to �  are fitted values. m is the degrees of freedom used 36 

for the adaptive regression analysis. 	� is the average of all the values: 	� �  �
�

� ∑ 	��
��� . For a step position 37 

at k, the fitted values 	�

  are computed by using 

�

	
� ∑ 	��

���  for � � 1 to �  and 
�


��	�
� ∑ 	��

��	
�  for � � � � 1 38 

to �. 39 

 40 

Boolean Analysis 41 

Boolean logic is a simple mathematic relationship of two values, i.e., high/low, 1/0, or positive/negative. 42 

The Boolean analysis of gene expression data requires the conversion of expression levels into two 43 

possible values. The StepMiner algorithm is reused to perform Boolean analysis of gene expression data 44 

(Sahoo et al. 2008). The Boolean analysis is a statistical approach which creates binary logical inferences 45 

that explain the relationships between phenomena. Boolean analysis is performed to determine the 46 

relationship between the expression levels of pairs of genes. The StepMiner algorithm is applied to gene 47 

expression levels to convert them into Boolean values (high and low). In this algorithm, first the expression 48 

values are sorted from low to high and a rising step function is fitted to the series to identify the threshold. 49 

Middle of the step is used as the StepMiner threshold. This threshold is used to convert gene expression 50 

values into Boolean values. A noise margin of 2-fold change is applied around the threshold to determine 51 

intermediate values, and these values are ignored during Boolean analysis. In a scatter plot, there are four 52 

possible quadrants based on Boolean values: (low, low), (low, high), (high, low), (high, high). A Boolean 53 

implication relationship is observed if any one of the four possible quadrants or two diagonally opposite 54 

quadrants are sparsely populated. Based on this rule, there are six kinds of Boolean implication 55 

relationships. Two of them are symmetric: equivalent (corresponding to the positively correlated genes), 56 

opposite (corresponding to the highly negatively correlated genes). Four of the Boolean relationships are 57 

asymmetric, and each corresponds to one sparse quadrant: (low => low), (high => low), (low => high), (high 58 

=> high). BooleanNet statistics (Fig. 2a) is used to assess the sparsity of a quadrant and the significance of 59 

the Boolean implication relationships (Sahoo et al. 2008; Sahoo et al. 2010). Given a pair of genes A and 60 

B, four quadrants are identified by using the StepMiner thresholds on A and B by ignoring the Intermediate 61 

values defined by the noise margin of 2 fold change (+/- 0.5 around StepMiner threshold). Number of 62 

samples in each quadrant are defined as a00, a01, a10, and a11 (Figure 1A) which is different from X in the 63 

previous equation of F stat. Total number of samples where gene expression values for A and B are low is 64 

computed using the following equations. 65 

����� �  ���� � ���
, ����� �  ���� � ���
, 66 

 67 

Total number of samples considered is computed using following equation. 68 

 ����� �  ��� � ��� � ��� � ��� 69 

Expected number of samples in each quadrant is computed by assuming independence between A and B. 70 

For example, expected number of samples in the bottom left quadrant e00  = �� is computed as probability of 71 
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A low ((a00 + a01)/total) multiplied by probability of B low ((a00 + a10)/total) multiplied by total number of 72 

samples. Following equation is used to compute the expected number of samples. 73 

� �  ��� , �� �  ������ �����⁄ �  ����� �����⁄ 
 � ����� 74 

To check whether a quadrant is sparse, a statistical test for (e00 > a00) or (�� � �
 is performed by computing 75 

S00 and p00 using following equations. A quadrant is considered sparse if S00 is high (�� � �
 and p00 is 76 

small. 77 

��� �  �� � �
√��  

 �� �  1
2 " ���

���� �  ���
 � ���
���� � ���
# 

A suitable threshold is chosen for S00 > sThr and p00 < pThr to check sparse quadrant. A Boolean 78 

implication relationship is identified when a sparse quadrant is discovered using following equation. 79 

Boolean Implication = (Sij > sThr, pij < pThr) 80 

A relationship is called Boolean equivalent if top-left and bottom-right quadrants are sparse.  81 

Equivalent �  ���� �  �$%&,   '�� (   $%&, ��� �  �$%&, '�� (   $%&
 82 

Boolean opposite relationships have sparse top-right (a11) and bottom-left (a00) quadrants.  83 

Opposite �  ���� �  �$%&,   '�� (   $%&, ��� �  �$%&, '�� (   $%&
 84 

Boolean equivalent and opposite are symmetric relationship because the relationship from A to B is same 85 

as from B to A. Asymmetric relationship forms when there is only one quadrant sparse (A low => B low: 86 

top-left; A low => B high: bottom-left; A high=> B high: bottom-right; A high => B low: top-right). These 87 

relationships are asymmetric because the relationship from A to B is different from B to A. For example, A 88 

low => B low and B low => A low are two different relationships. 89 

A low => B high is discovered if the bottom-left (a00) quadrant is sparse and this relationship satisfies 90 

following conditions. 91 

A low => B high = (��� �  �$%&,   '�� (   $%&) 92 

Similarly, A low => B low is identified if the top-left (a01) quadrant is sparse. 93 

A low => B low = (��� �  �$%&,   '�� (   $%&) 94 

A high => B high Boolean implication is established if the bottom-right (a10) quadrant is sparse as described 95 

below. 96 

A high => B high = (��� �  �$%&,   '�� (   $%&) 97 

Boolean implication A high => B low is found if the top-right (a11) quadrant is sparse using following 98 

equation. 99 

A high => B low = (��� �  �$%&,   '�� (   $%&) 00 
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For each quadrant a statistic Sij and an error rate pij is computed. Sij > sThr and pij < pThr are the thresholds 01 

used on the BooleanNet statistics to identify Boolean implication relationships. 02 

Boolean analyses in the test dataset GSE134312 uses a threshold of sThr = 3 and pThr = 0.1. These 03 

thresholds are exactly same as the previously used thresholds sThr = 3 and pThr = 0.1 for BooleanNet 04 

(Dabydeen et al. 2019; Pandey and Sahoo 2019; Sahoo et al. 2008). 05 

 06 

Boolean Network Explorer (BoNE) 07 

Boolean network explorer (BoNE) provides an integrated platform for the construction, visualization and 08 

querying of a network of progressive changes underlying a disease or a biological process in three steps 09 

(Fig S1A): First, the expression levels of all genes in these datasets were converted to binary values (high 10 

or low) using the StepMiner algorithm. Second, gene expression relationships between pairs of genes were 11 

classified into one-of-six possible Boolean Implication Relationships (BIRs), two symmetric and four 12 

asymmetric, and expressed as Boolean implication statements. This offers a distinct advantage from 13 

conventional computational methods (Bayesian, Differential, etc.) that rely exclusively on symmetric linear 14 

relationships in networks. The other advantage of using BIRs is that they are robust to the noise of sample 15 

heterogeneity (i.e., healthy, diseased, genotypic, phenotypic, ethnic, interventions, disease severity) and 16 

every sample follows the same mathematical equation, and hence is likely to be reproducible in 17 

independent validation datasets. Third, genes with similar expression architectures, determined by sharing 18 

at least half of the equivalences among gene pairs, were grouped into clusters and organized into a 19 

network by determining the overwhelming Boolean relationships observed between any two clusters. In the 20 

resultant Boolean implication network, clusters of genes are the nodes, and the BIR between the clusters 21 

are the directed edges; BoNE enables their discovery in an unsupervised way while remaining agnostic to 22 

the sample type.   23 

 24 

Statistical Analyses 25 

Gene signature is used to classify sample categories and the performance of the multi-class classification 26 

is measured by ROC-AUC (Receiver Operating Characteristics Area Under The Curve) values. A color-27 

coded bar plot is combined with a density or violin+swarm plot to visualize the gene signature-based 28 

classification. All statistical tests were performed using R version 3.2.3 (2015-12-10). Standard t-tests were 29 

performed using python scipy.stats.ttest_ind package (version 0.19.0) with Welch’s Two Sample t-test 30 

(unpaired, unequal variance (equal_var=False), and unequal sample size) parameters. Multiple hypothesis 31 

corrections were performed by adjusting p values with statsmodels.stats.multitest.multipletests (fdr_bh: 32 

Benjamini/Hochberg principles). The results were independently validated with R statistical software (R 33 

version 3.6.1; 2019-07-05). Pathway analysis of gene lists were carried out via the Reactome database and 34 

algorithm (Fabregat et al. 2018). Reactome identifies signaling and metabolic molecules and organizes 35 

their relations into biological pathways and processes. Kaplan-Meier analysis is performed using lifelines 36 

python package version 0.14.6. 37 
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 38 

Boolean implication network construction 39 

A Boolean implication network (BIN) is created by identifying all significant pairwise Boolean implication 40 

relationships (BIRs) for GSE134312 datasets (Fig S1A). The Boolean implication network contains the six 41 

possible Boolean relationships between genes in the form of a directed graph with nodes as genes and 42 

edges as the Boolean relationship between the genes. The nodes in the BIN are genes and the edges 43 

correspond to BIRs. Equivalent and Opposite relationships are denoted by undirected edges and the other 44 

four types (low => low; high => low; low => high; high => high) of BIRs are denoted by having a directed 45 

edge between them. The network of equivalences seems to follow a scale-free trend; however, other 46 

asymmetric relations in the network do not follow scale-free properties. BIR is strong and robust when the 47 

sample sizes are usually more than 200. However, it is also possible to build BIN for smaller dataset such 48 

as the selected macrophage GSE134312 dataset (n = 197). The macrophage dataset GSE134312 was 49 

prepared for Boolean analysis by filtering genes that had a reasonable dynamic range of expression 50 

values. When the dynamic range of expression values was small, it was difficult to distinguish if the values 51 

were all low or all high or there were some high and some low values. Thus, it was determined to be best to 52 

ignore them during Boolean analysis. The filtering step was performed by analyzing the fraction of high and 53 

low values identified by the StepMiner algorithm (Sahoo et al. 2007). Any probe set or genes which 54 

contained less than 5% of high or low values were dropped from the analysis. 55 

 56 

Clustered Boolean Implication network 57 

Clustering was performed in the Boolean implication network to dramatically reduce the complexity of the 58 

network (Fig S1C). A clustered Boolean implication network (CBIN) was created by clustering nodes in the 59 

original BIN by following the equivalent BIRs. One approach is to build connected components in a 60 

undirected graph of Boolean equivalences. However, because of noise the connected components become 61 

internally inconsistent e.g. two genes opposite to each other becomes part of the same connected 62 

component. In order to avoid such situation, we need to break the component by removing the weak links. 63 

To identify the weakest links, we first computed a minimum spanning tree for the graph and computed 64 

Jaccard similarity coefficient for every edge in this tree. Ideally if two members are part of the same cluster 65 

they should share as many connections as possible. If they share less than half of their total individual 66 

connections (Jaccard similarity coefficient less than 0.5) the edges are dropped from further analysis. Thus, 67 

many weak equivalences were dropped using the above algorithm leaving the clusters internally consistent. 68 

We removed all edges that have Jaccard similarity coefficient less than 0.5 and built the connected 69 

components with the rest. The connected components were used to cluster the BIN which is converted to 70 

the nodes of the CBIN. The distribution of cluster sizes was plotted in a log-log scale to observe the 71 

characteristic of the Boolean network (Fig S1C). The clusters sizes were distributed along a straight line in 72 

a log-log plot suggesting scale-free properties (Fig S1D). A new graph was built that connected the 73 

individual clusters to each other using Boolean relationships. Link between two clusters (A, B) was 74 

established by using the top representative node from A that was connected to most of the member of A 75 
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and sampling 6 nodes from cluster B and identifying the overwhelming majority of BIRs between the nodes 76 

from each cluster.   77 

A CBIN was created using the selected GSE134312 datasets. Each cluster was associated with 78 

healthy or disease samples based on where these gene clusters were highly expressed. The edges 79 

between the clusters represented the Boolean relationships that are color-coded as follows: orange for low 80 

=> high, dark blue for low => low, green for high => high, red for high => low, light blue for equivalent and 81 

black for opposite. 82 

 83 

Boolean paths  84 

The asymmetric BIRs provide a unique dimension to the network that is fundamentally different from any 85 

other gene expression networks in the literature. Traversing a set of nodes in a directed graph of the 86 

Boolean network constitutes a Boolean path that can be interpreted as follows. A simple Boolean path 87 

involves two nodes and the directed edge between them. This simple Boolean path can be interpreted as 88 

shown in the supplementary figure (Fig S1E). For the nodes X and Y with X low => Y low only quadrant #1 89 

is sparse; the other quadrants #0, #2, and #3 are filled with samples (Fig S1E). Assuming monotonicity in X 90 

and Y, the quadrants can be ordered in two possible ways: 0-2-3 and 3-2-0. The path corresponds to 0-2-3 91 

begins with X low and Y low. This is interpreted as X turns on first and then Y turns on along a hypothetical 92 

biological path defined by the sample order. Similarly, Y turns off first and then X turns off in the path 3-2-0. 93 

A complex path in the Boolean network involves more than one Boolean implication relationship (Fig S1F). 94 

Three Boolean implication relationships can be used to group samples into five bins and the bins can be 95 

ordered in two possible ways (Fig S1F, forward, reverse). Another example of a path is illustrated in 96 

supplementary figure (Fig S1G). 97 

 98 

Discovery of Paths in Clustered Boolean Implication network   99 

Discovery of paths start with a node that represents the biggest cluster in the CBIN. Since a path of 00 

high=>high, high=>low, and low=>low can be used to order samples as shown in Fig S1G, we try to 01 

identify paths of this type that intersects the big clusters in the network. We developed a simple, intuitive 02 

algorithm that traverses the nodes of the CBIN starting with the biggest cluster and greedily chooses next 03 

big cluster connected to the nodes visited in sequence. The emphasis on cluster sizes comes from the 04 

fundamental assumption that size determines importance and relevance. Therefore, we start from a big 05 

cluster (A1) and identify other clusters that form a chain of low => low. Further, we identify other clusters 06 

that are either opposite to A1 or they have high=>low relationship with A1, and the biggest cluster (A2) 07 

among these clusters were chosen. In addition, a chain of low=> low relationship from A2 is identified. In 08 

each subsequent step, again the biggest cluster among the different choices was greedily chosen. Finally 09 

equivalence relationship from each cluster is used to gather more genes in each cluster and the whole path 10 

is clustered based on equivalence relationships. Depth-first traversal (DFS) was used to follow the path of 11 

low => low where bigger clusters are visited first. The search was performed until a cluster was reached for 12 

which there is no low => low relationships. For example, starting with cluster S, the search will return S low 13 

=> A1 low, A1 low => A2 low, and A2 low => A3 low if A3 doesn’t have any low => low relationships. 14 
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Similarly, a new starting point is considered S2 such that S2 is the biggest cluster X that has either S high 15 

=> X low or S Opposite X. From cluster S2 another DFS was performed to retrieve the longest possible 16 

path of low => low. The search may return S2 low => B1 low, B1 low => B2 low if B2 doesn’t have any low 17 

=> low relationships. In summary, the most prominent Boolean path was discovered by starting with the 18 

largest cluster and then exploring edges that connected to the next largest cluster in a greedy manner. This 19 

process was repeated to explore paths that connect the big clusters in the network. 20 

 21 

Scoring Boolean path for sample order 22 

A score was computed for a specified Boolean path that can be used to order the sample which was 23 

consistent with the logical order. To compute the final score, first the genes present in each cluster were 24 

normalized and averaged. Gene expression values were normalized according to a modified Z-score 25 

approach centered around StepMiner threshold (formula = (expr - SThr)/3*stddev; Fig S2B). Weighted 26 

linear combination of the averages from the clusters of a Boolean path was used to create a score for each 27 

sample. The weights along the path either monotonically increased or decreased to make the sample order 28 

consistent with the logical order based on BIR. The samples were ordered based on the final weighted and 29 

linearly combined score (Fig S2C). The direction of the path was derived from the connection from a 30 

reactive cluster to a tolerant cluster. The sample order is visualized by a color-coded bar plot and a 31 

violin+swarm plot (Fig S2C). 32 

 33 

Summary of genes in the clusters 34 

Reactome pathway analysis of each cluster along the top continuum paths was performed to identify the 35 

enriched pathways (Fabregat et al. 2018). The pathway description was used to summarize at a high-level 36 

what kind of biological processes are enriched in a particular cluster. 37 

 38 

Signatures of macrophage reactivity and tolerance (S-Ma-R-T) computation 39 

BoNE uses Boolean implication network on macrophage dataset to build a signature of macrophage 40 

polarization. Selected clusters by size connected by high => high (green arrow), high => low (red arrows) 41 

and low => low (blue arrows) Boolean implication relationships. Reactome analysis of each clusters shows 42 

the biological processes the genes are involved in (Fig S2A). A path is selected in the network that is used 43 

to test M1/M2 states classification. This process is demonstrated by using a path #13-14-3 on GSE134312 44 

(Fig S2B-C). 45 

 46 

Normalization of gene expression based on circadian rhythm  47 

Since the state of macrophage swings from reactive to tolerant from day to night, it is important to control 48 

for this variation during analysis of macrophage polarization. To start the normalization process, clock 49 

genes (such as DBP, ARNTL, etc.) or gene signatures that capture circadian rhythm is used to adjust the 50 

BoNE score (Fig S4). First, both the BoNE score (Fig S4B) and the clock gene expression are scaled for 51 

each sample type based on their dynamic range of expression values (min – max). For example, the 52 

dataset GSE98895 contains two sample types: C (Control), and MetS (Metabolic Syndrome). Let’s take 53 
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one sample from the MetS group (x, y) where x is the clock gene expression value and y is the original 54 

BoNE score (Fig S4C). Bounding box for the MetS group demonstrates the range of values for both the 55 

BoNE score (S1) and the clock gene expression (S2). Average of BoNE scores and the clock gene 56 

expression is shown using an orange diamond. The distance of (x, y) from the orange diamond (S3, S4) is 57 

used to scale both values: (x – S3 * (S2 + 1) / (S1 + 1) , y + S4 * (S1 + 1) /(S2 + 1)). This process is 58 

repeated using control (C) samples using the green diamond. Linear regression is used to compute the 59 

trend between the transformed BoNE score and clock gene expression (y = mx + c; Fig S4D). The trend is 60 

subtracted from the transformed BoNE score to compute the final normalized BoNE score (y – mx - c). 61 

Samples are now rank ordered based on the final normalized BoNE score to visualize the effect of 62 

normalization process. 63 

 64 

Proteomics analysis  65 

A multiplexed TMT (tandem mass tags) quantitative proteomics dataset has been obtained from He, L. et al 66 

(He et al. 2021) (see Key Resource Table). To generate this dataset, authors had differentiated human 67 

THP-1 cells with phorbol myristate acetate (PMA) for 24 h into macrophages (M0 state). The M0 cells were 68 

subsequently treated with IL4 for M2 polarization and with LPS and IFNγ for M1 polarization over a 24-h 69 

time-period. Samples were processed for quantitative mass spectrometry at 1 h, 4 h, 8 h and 24 h. Ratio of 70 

raw intensity values has been compared between M1 and M2 states to obtain the list of induced proteins at 71 

various time points (see Supplemental Information 3). To obtain the list of proteins induced in M1 state, 72 

the cut-off used for induction of proteins when comparing the raw intensity ratio for LPS/IFNγ over IL4 73 

stimulation for all time points was >=2. To obtain the list of proteins induced in M2 state, the cut-off used for 74 

induction of proteins when comparing the raw intensity ratio for IL4 over LPS/IFNγ stimulation for all time 75 

points was >=1.5.  76 

To assess the differential enrichment of proteins across different signatures for both M1 and M2 77 

polarization states at various time points, we used the following equation to calculate the z-test of 78 

proportions,  79 

  80 

z= p1−p2p(1−p)(1n1+ 1n2)−−−−−−−−−−−−−−−√z= p1−p2p(1−p)(1n1+ 1n2) 81 

   82 

Here, p1 is sample proportion (x1/n1) of proteins translated from the “reactive” signature that were 83 

induced >=2 fold upon LPS stimulation. And p2 is the sample proportion (x2/n2) of proteins 84 

translated from the “tolerance” signature that were induced >=1.5 fold upon IL4 stimulation. Here, p = 85 

(x1+x2)/(n1+n2).  86 

 87 
  88 
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Supplementary materials: 89 

• Figures S1 to S7 90 

• Table S1 to S3 91 

 92 

Supplemental Information (excel datasheets uploaded separately) 1 to 3. 93 
 94 

• Supplemental Information 1: Excel datasheet with an inventory of all publicly available gene 95 
expression datasets analyzed in this work. 96 
  97 

• Supplemental Information 2: Excel datasheet with an inventory of all previously published gene 98 
signatures cited in this work.   99 
 00 

• Supplemental Information 3: Excel datasheet with list of proteins translated by genes in clusters 01 
#13 and 14+3 at various time points after ligand stimulation of THP1 cells.   02 
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Figures and  legends 03 

04 
Figure 1: BoNE-assisted formulation of formal definitions of macrophage polarization.  05 

a) Overview of workflow and approach used in this work.  06 

b-c) A pooled dataset of diverse human transcriptomes (b; n = 197) was used to build a Boolean 07 

implication network (c-top) and visualized as gene clusters (nodes, comprised of genes that are equivalent 08 
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to each other) that are interconnected based on one of the six overwhelming Boolean implication 09 

relationship between the clusters (directed edges; c-bottom).  10 

d) Display of the major Boolean paths within the network prioritized based on the cluster size. Annotations 11 

of “immunoreactive” and “immunotolerant” ends of the spectrum are based on the expression profile of the 12 

gene clusters in 68 samples within the pooled dataset that were stimulated in vitro as M1 and M2, 13 

respectively.  14 

e) Reactome pathway analysis of each cluster along the top continuum paths was performed to identify the 15 

enriched pathways (for other clusters see http://hegemon.ucsd.edu/SMaRT/).  16 

f-g) Training (f) was performed on the 68 pooled samples using machine-learning approaches; the best-17 

performing Boolean path, #13-14-3 was then validated (g) in multiple independent human macrophage 18 

datasets. For a list of datasets used see Table S1. The performance was measured by computing ROC 19 

AUC for a logistic regression model.  20 

h) Comparative analysis of performance of the BoNE-derived versus other traditional approaches in 21 

segregating M0/M1/M2 polarization states.  22 

i) Heatmap displaying the pattern of gene expression in C#13, 14 and 3. Selective genes are labelled.   23 

j) Validation studies assessing the ability of the genes in either C#13 alone or C#14-3 alone to classify 24 

M0/M1/M2 polarization states in multiple human macrophage datasets.   25 

k) Top: Schematic summarizing the model-derived formal definitions of macrophage polarization states 26 

based on the levels of expression of genes in C#13 (hypo to hyper- “reactivity” spectrum) and those in 27 

C#14+3 (hypo to hyper- “tolerant” spectrum). Bottom: A composite score of the entire range of physiologic 28 

and pathologic response can be assessed via the BoNE-derived path #13→14→3. 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 
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46 
Figure 2. Definitions of “reactivity” and “tolerance” are conserved across tissues, organs, species 47 

and diverse immune cell types.  48 

a-b) Validation studies assessing the ability of SMaRT genes to classify diverse tissue-resident 49 

macrophage datasets from both humans and mice. Performance is measured by computing ROC AUC for 50 

a logistic regression model.  51 
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c-d) Validation studies (c) assessing the ability of SMaRT genes to classify active vs inactive states of 52 

diverse immune cell types in both humans and mice. The schematic (d) summarizes findings in c.  53 

e) Known macrophage subtypes, as defined by marker genes, are projected on the Boolean map of 54 

macrophage processes.  55 

f)  Published disease-associated macrophage gene signatures (see Supplemental Information 2) are are 56 

analyzed for significant overlaps with various gene clusters in the Boolean map of macrophage processes. 57 

Results are displayed as heatmaps of -Log10(p) values as determined by a hypergeometric test.  58 

g) The distribution of pattern recognition receptors (PRRs) [see Table S2] within various gene clusters of 59 

the Boolean map of macrophage processes is displayed.  60 

h) The positions of key circadian genes that are present in the network are shown on the Boolean map of 61 

macrophage processes. See also Fig S4. 62 

 63 
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91 
Figure 3. Definitions of “reactivity” and “tolerance” detects pathologic macrophage states in 92 

disease.  93 

Tissue immune microenvironment is visualized (in panels a-n) as bubble plots of ROC-AUC values (radii of 94 

circles are based on the ROC-AUC; Key on top) demonstrating the direction of gene regulation (Up vs 95 
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Down; Key on top) for the classification of samples using BoNE-derived gene signatures of either reactive 96 

(R; C#13) or tolerant (T; C#14-3) or overall (O; path #13→14→3) in columns. The ROC-AUC values are 97 

provided next to the bubble. Sample diversity and sizes are as follows:  98 

a) IBD; GSE83687, n = 134; 60 Normal, 32 Ulcerative Colitis, 42 Crohn’s Disease.  99 

b) Colon crypt; GSE77953, 6 Normal Surface vs. 7 Normal Crypt base. c; Colon cancer: Pooled colon 00 

dataset from NCBI GEO; n=170 Normal, 68 Adenomas, 1662 CRCs.  01 

d) Colon anatomy: Proximal (right) vs distal (left) normal colon from mouse (GSE64423, n = 6) and human 02 

(GSE20881, n = 75). See Figure S5 for violin plots.  03 

e) Arthritis; GSE55235, GSE55457 and GSE55584, n = 79; 20 Normal, 33 Rheumatoid Arthritis, 26 04 

Osteoarthritis.  05 

f) Hepatitis: GSE89632, n=63; 20 fatty liver, 19 Non-alcoholic steatohepatitis (NASH) and 24 healthy, 06 

alcoholic liver disease (GSE94417, GSE94397 and GSE94399, n = 195; 109 Healthy, 13 Alcoholic 07 

Hepatitis, 6 Alcoholic fatty liver (AFL), 67 Alcoholic cirrhosis (AC) and viral hepatitis (GSE70779, n=18; 9 08 

Pre-treatment, 9 Post-treatment with direct-acting anti-virals).  09 

g) Chronic lung disease; GSE2125 and GSE13896, n = 115; 39 Non-smoker, 49 Smoker, 15 Asthma, 12, 10 

Chronic Obstructive Pulmonary Disease (COPD).  11 

h) Aging process; GSE60216, n = 9; 3 Newborn babies, 3 Adults, 3 Old-adults.  12 

i) Cardiomyopathy (CM), ischemic and non-ischemic (I/NI); GSE104423, n = 25 human samples; 14 NICM, 13 

11 ICM; GSE127244, n = 24 mouse samples, 16 NICM, 8 ICM.  14 

j) Neurodegenerative brain disorders; GSE118553 (n = 401) and GSE48350 (n = 253), Alzheimer’s disease 15 

(AD); GSE35864, HIV-associated neurocognitive disorder (HAND; n = 72); GSE13162, frontotemporal 16 

dementia (FTD; n = 56); GSE59630, Down’s Syndrome (DS; n = 116); GSE124571, Creutzfeldt-Jakob 17 

Disease (CJD; n = 21).  18 

k) Systemic inflammatory response syndrome (SIRS) and sepsis; GSE63042 (n = 129); GSE110487 (n = 19 

31).  20 

l) Type 2 diabetes and metabolic syndrome; GSE22309 (n = 110), Pre- and post- insulin treatment muscle 21 

biopsies from 20 insulin sensitive, 20 insulin resistant, 15 T2DM; GSE98895 (n = 40), PBMCs from 20 22 

control, 20 metabolic syndrome.  23 

m) Sleep deprivation and circadian rhythm; GSE9444, n = 131 mouse brain and liver samples; GSE80612, 24 

twin, n = 22 human peripheral blood leukocytes; GSE98582, n = 555 human blood samples; GSE104674, n 25 

= 48, 24 healthy and 24 T2DM.  26 

n) Viral pandemics, such as SARS, MERS, Ebola and others [N; numerous datasets, see Figure S7E].  27 

See Figure S6 and S7 for violin plots relevant to panel e-n.  28 

o-q) Schematic (o) summarizes the use of two major mouse strains (C57/B6 and Balb/c) commonly used 29 

for modeling two broad categories of human diseases. Bar plots (p) showing sample classification of 30 

genetically diverse macrophage datasets based on expression levels of genes in C#13. Schematic (q) 31 

summarizes findings.  32 
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r) The diagnostic potential of various indicated gene signatures were tested on multiple datasets generated 33 

from tissues derived from patients with the known clinically relevant outcome, as indicated. In each case, 34 

BoNE-derived signatures were compared against four traditional approaches. 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497783doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497783
http://creativecommons.org/licenses/by/4.0/


    Ghosh, P., et al., 2022 

 18

72 
Figure 4. Comparison of the prognostic and diagnostic potentials of BoNE vs. other traditional 73 

approaches. 74 

a-g) The prognostic performance of the BoNE-derived SMaRT genes is compared head-to-head with 75 

signatures derived from four other traditional approaches across diverse disease conditions (colon cancer, 76 
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a; liver fibrosis, b; sepsis, c; idiopathic pulmonary fibrosis, d; kidney transplantation, e-f; inflammaging, g). 77 

Results are displayed as Kaplan Meier (KM) curves with significance (p values) as assessed by log-rank-78 

test. A composite immune response score is computed using Boolean path #13→14→3 or C#13 alone, as 79 

indicated within each KM plot. Low score = “reactive”; high score = “tolerant”. A threshold is computed 80 

using StepMiner on the immune score to separate these two states. See also Fig S7F for other cancers.  81 
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 52 

Figure 5. SMaRT genes are differentially translated in polarized macrophages  53 
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a) Overview of the experimental design. PMA-treated human THP-1 cell lines (M0) are polarized to M1 54 

(with LPS and IGNg) or M2 (with IL4), followed by multiplexed mass spectrometry at indicated time points. 55 

The fraction of the global macrophage transcriptome (from the pooled 197 macrophage datasets) that is 56 

represented in the global macrophage proteome is subsequently assessed for induction (or not) of proteins 57 

that are translated by various gene signatures.  58 

b) Selectivity of induction of proteins upon LPS and IFNg (top) or IL4 (bottom) stimulation at various 59 

timepoints was assessed across different signatures using z-test of proportions and -log(10)p values are 60 

displayed as heatmaps.  61 

c-d) z normalized Log of intensities of proteins (Supplemental Information 3) translated at different time 62 

points by genes in C#13 (c) and C#14+3 (d) are displayed as heatmaps.  63 
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 93 

Figure 6. Crowd-sourced assessment of the predictive potential of the SMaRT genes. 94 

a) Overview of our workflow and approach for crowd-sourced validation. Publicly available transcriptomic 95 

datasets reporting the outcome of intervention studies (genetic or pharmacologic manipulations) on 96 

macrophages/monocytes targeting any of the 185 genes in C#13 and C#14 were analyzed using the BoNE 97 

platform for macrophage states.  98 

b) Predicted impact of positive (+, either overexpression [OvExp] or agonist stimulations) or negative (-; 99 

genetic -/- models, shRNA or chemical inhibitors) interventions and observed macrophage polarization 00 

states are shown. Performance is measured by computing ROC AUC for a logistic regression model. See 01 

Table S3.  02 
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