

1

2 Machine Learning Identifies Signatures of Macrophage Reactivity and 3 Tolerance that Predict Disease Outcomes

4
5 **Authors:** Pradipta Ghosh^{1-3*†}, Saptarshi Sinha^{1,4}, Gajanan D. Katkar¹, Daniella Vo⁴, Sahar Taheri⁴, Dharanidhar
6 Dang⁴, Soumita Das^{3,5†} and Debashis Sahoo^{3,4,6*†}
7

8 **Affiliations:**

9 ¹Department of Cellular and Molecular Medicine, University of California San Diego.
0

1 ²Department of Medicine, University of California San Diego.

2 ³Moores Cancer Center, University of California San Diego.

3 ⁴Department of Pediatrics, University of California San Diego.

4 ⁵Department of Pathology, University of California San Diego.

5 ⁶Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San
6 Diego.
7
8

9 **One Sentence Summary:** Signatures of macrophage reactivity and tolerance (SMaRT) predict disease
0 outcomes
1
2
3

4 **Key Words:**

5

- Artificial Intelligence/Machine Learning
- Boolean Equivalent Clusters
- Macrophage
- Reactive
- Tolerant
- Innate immune response
- Outcome prediction

6

7 *Contributed Equally
8
9

10 **†Corresponding author:**

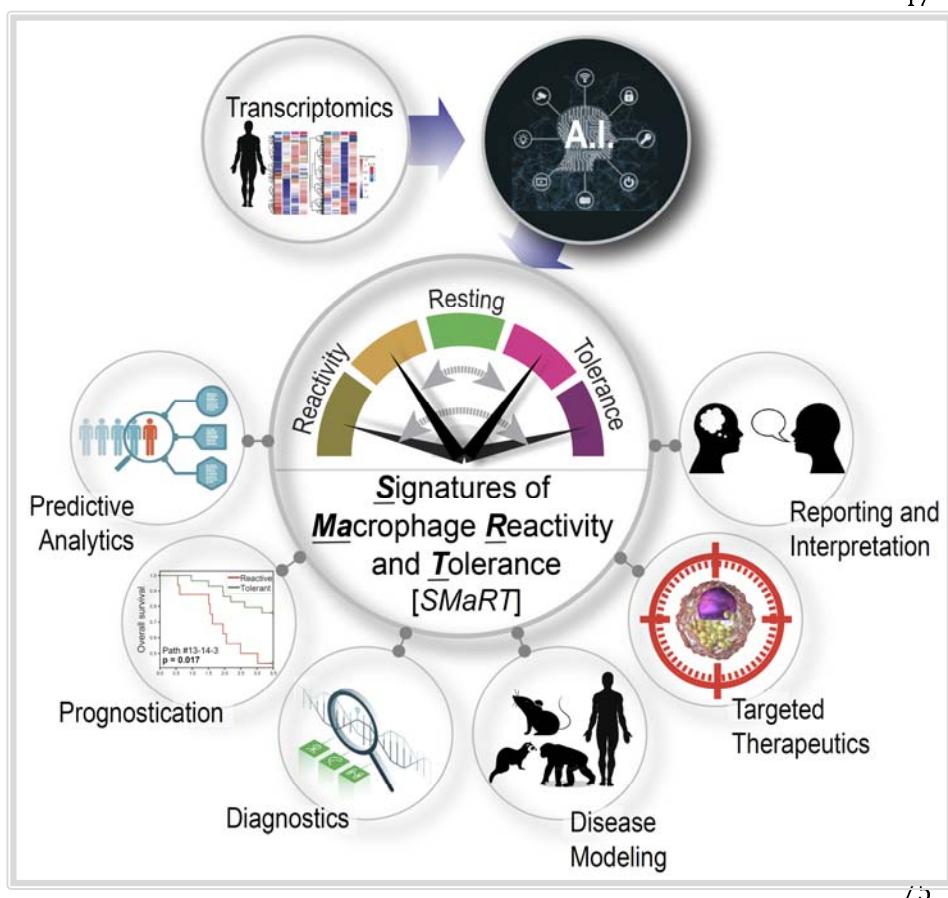
11 **Debashis Sahoo, Ph.D.**; Associate Professor, Department of Pediatrics, University of California San Diego; 9500
12 Gilman Drive, MC 0703, Leichtag Building 132; La Jolla, CA 92093-0831. **Phone:** 858-246-1803; **Fax:** 858-246-0019;
13 **Email:** dsahoo@ucsd.edu

14 **Soumita Das, Ph.D.**; Associate Professor, Department of Pathology, University of California San Diego; 9500 Gilman
15 Drive, George E. Palade Bldg, Rm 256; La Jolla, CA 92093. **Phone:** 858-246-2062; **Email:** sodas@ucsd.edu

16 **Pradipta Ghosh, M.D.**; Professor, Departments of Medicine and Cell and Molecular Medicine, University of California
17 San Diego; 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232; La Jolla, CA 92093. **Phone:** 858-822-
18 7633; **Email:** prghosh@ucsd.edu

16 **GRAPHIC ABSTRACT**

47



In Brief: The authors use machine learning approaches to identify universally relevant definition of macrophage polarization states and create a predictive framework for developing macrophage-targeted precision diagnostics and therapeutics.

37 **Summary/Abstract (n = 170)**

38 A continuum of macrophage polarization states is essential for the initiation, maintenance, and resolution
39 of inflammation. We built a network using pooled human macrophage transcriptomic datasets and used
40 machine learning algorithms to identify the path of such continuum states. One path, comprised of 338
41 genes emerged as the best; it accurately identified both physiologic and pathologic spectra of “reactivity”
42 and “tolerance”, and remained relevant across tissues, organs, species and immune cells (> 12,500 diverse
43 datasets). This 338-gene signature identified macrophage polarization states in physiology and across
44 diverse human diseases and objectively analyzed the appropriateness of mice as pre-clinical models for
45 such diseases. The signature consistently outperformed conventional signatures in the degree of
46 transcriptome-proteome overlap and in prognosticating outcomes across diverse acute and chronic
47 diseases, e.g., sepsis, liver fibrosis, aging and cancers. Crowd-sourced genetic and pharmacologic studies
48 confirmed that model-rationalized interventions trigger predictable macrophage fates. These findings
49 provide a formal and universally relevant definition of macrophage states and a predictive framework for the
50 scientific community to develop macrophage-targeted precision diagnostics and therapeutics.

51

12 INTRODUCTION

13 Macrophages are complex; as sentinel cells of the innate immune system, they are found in various organs
14 and their dysregulated activation can directly impact organ functions and the outcome of all diseases
15 ([Murray and Wynn 2011](#); [Pollard 2009](#)). Macrophages were initially classified as M1 (the classically
16 activated macrophages) and M2 (the alternatively activated macrophages) based on their functions at the
17 extremes of polarization states ([Mills et al. 2000](#)). However, the M1/M2 nomenclature is considered as too
18 simplistic; it fails to describe the diverse, polyfunctional and plastic cells, and the myriad of continuum
19 states that they adopt in the tissue at steady-state and during disease ([Amit et al. 2016](#); [Ginhoux et al.](#)
20 [2016](#); [Glass and Natoli 2016](#); [Okabe and Medzhitov 2016](#)). To cope with this degree of diversity and
21 plasticity, several definitions of macrophage subtypes have emerged, each representing specialized
22 contexts, e.g., TAMs, tumor-associated macrophages ([Qian and Pollard 2010](#)); LAMs, lipid-associated
23 macrophages in atherosclerosis ([Jaitin et al. 2019](#)); DAMs, disease-associated microglia in
24 neurodegenerative disorders ([Keren-Shaul et al. 2017](#)); SAMs, scar-associated macrophages in liver
25 fibrosis ([Duffield et al. 2005](#); [MacParland et al. 2018](#); [Ramachandran et al. 2019](#)). These definitions were
geared to identify divergent markers, spatial localization, origin, and functional pathways associated with
macrophages during disease; however, they fall short in predictive or prognostic abilities.

8 We sought to create and validate a comprehensive model of macrophage processes for defining,
9 tracking, and even predicting macrophage fate after perturbation (see **Fig 1a**, **S1A** for workflow outline).
10 We hypothesized that such a model might inspire *formal* definitions for macrophage polarization states that
11 are reflective of fundamental processes and maintain relevance across tissues, organs, diseases and
12 species. In addition, it may also rationalize diagnostics and therapeutics to detect and reset, respectively,
13 deranged macrophage states in disease. We show that such formal definition(s) of macrophage states is
14 not only possible, but also provide evidence for their usefulness in prediction and prognostication.
15

!6 RESULTS AND DISCUSSION

!7 ***A computational model of continuum states in macrophage processes***

!8 We chose a Boolean approach to build transcriptomic network ([Sahoo et al. 2008](#)); this approach has been
!9 used to create maps of evolving cellular states along any disease continuum and identify cellular states in
!10 diverse tissues and contexts with high degrees of precision (see detailed *Methods*). The Boolean approach
!11 relies on invariant relationships that are conserved despite heterogeneity in the samples used for the
!12 analysis. Invariant relationships among pairs of genes that are conserved across samples representative of
!13 maximum possible diversity, i.e., irrespective of their origin (normal or disease), laboratories/cohorts,
!14 different perturbations, are assumed to be fundamentally important for any given process.

!5 For model training and development, we used a pooled all-human microarray dataset that included
!6 197 manually annotated heterogeneous macrophage datasets from GEO ([GSE134312](#) ([Dang et al. 2020](#));
!7 **Fig 1a-c; Fig S1A-B**; see **Supplemental Information 1** for catalog of datasets). These datasets contained
!8 primary tissue-derived macrophages (both healthy and diseased tissues) and cultured macrophage cell
!9 lines (e.g., THP1), either untreated or treated with diverse sets of ligands that are known to induce either
!10 M1 (n = 13) or M2 (n = 8) polarized states (see **Table S1**).

!1 A graph (**Fig 1d; Fig S1C; Fig S2A**) is built, comprised of gene clusters (nodes) connected to each
!2 other using Boolean implication relationships (edges). The network displayed scale-free properties, as
!3 expected (**Fig S1D**). We oriented ourselves to the resultant network by querying and locating the known
!4 'M1/M2' samples; the 'M1' samples segregated towards one end, and 'M2' samples on the other, implying
!5 that the paths of connected clusters within the resultant network represent a continuum of cellular states in
!6 macrophages within the immunologic spectrum (**Fig S1E-G**). Reactome pathway analyses ([Fabregat et al.](#)
!7 [2018](#)) of each cluster along the top continuum paths revealed a multitude of cellular processes that are
!8 impacted during macrophage polarization (**Fig 1e**; Gene clusters and reactome pathways can be queried
!9 at: <http://hegemon.ucsd.edu/SMaRT/>).

!0 ***Identification of signatures of macrophage 'reactivity' and 'tolerance' (SMaRT)***

!1 Using machine learning approaches, various interconnected gene clusters (i.e., Boolean paths) were
!2 assessed for their ability to accurately classify the samples (based on the genes in the clusters and
!3 computing a weighted average of gene expression values outlined in **Fig S2B**) (**Fig 1f**). A multivariate
!4 analysis of the top five Boolean paths revealed that the path connecting clusters(C)#13→14→3 is the best
!5 (p < 0.001) at discriminating M1 (ROC-AUC 0.98) and M2 (ROC-AUC 0.99) (**Fig 1f; Fig S2C**). Path
!6 #13→14→3 was subsequently validated in five other independent datasets (**Fig 1g**). A comparative
!7 analysis of #13→14→3 path vs. other traditional approaches, e.g., Differential Expression ([Becker et al.](#)
!8 [2015](#)), Correlation Network ([Becker et al. 2015](#)), Hierarchical Clustering ([Coates et al. 2008](#)) and
!9 Differential and interactome analyzes ([Martinez et al. 2006](#)) showed the superiority of the BoNE-derived
!10 path in separating M0-M1-M2 states. The Boolean path matched differential expression in its ability to
!11 distinguish M1 state, while exceeding the remaining traditional approaches (**Fig 1h**). A heatmap of the
!12 pattern of gene expression in each cluster in M0-M1-M2 states is shown in **Fig 1i**.

54 Furthermore, C#13 predicted M1 perfectly (ROC-AUC = 1.0); the path #14→3 predicted M2 close to
55 perfection (ROC-AUC = ranging from 0.80 to 1.00) in all cohorts tested (**Fig 1j**). This indicates that while
56 the path #13→14→3 is the most accurate path across all human macrophage-derived datasets collected
57 and analyzed, C#13 and the path #14→3 carry relevant information on macrophage states independently
58 of each other. C#13 is associated with M1-like state and expression of these genes is predicted to reflect
59 the extent of “immunoreactivity” of macrophages. Path #14→3 is associated with a M2-like state and
60 expression of these genes is predicted to reflect the extent of “immunotolerance”. We define the two distinct
61 macrophage polarization states in physiology as “reactive” and “tolerant” based on basal C#13 and #14→3
62 scores, respectively (**Fig. 1k**). Four additional macrophage states could also exist, presumably in disease
63 states, i.e., hyperreactive (high C#13), hypertolerant (high #14→3), hyporeactive (low C#13), and
64 hypotolerant (low #14→3) (**Fig. 1k**). Henceforth, we refer to these genes as signatures of macrophage
65 reactivity and tolerance, abbreviated as ‘**SMaRT**’ (See <http://hegemon.ucsd.edu/SMaRT/> and
66 **Supplemental Information 2** for the list of genes).

67 We tested the independence of M1/M2 signatures using single cell RNASeq dataset [GSE150708](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150708)
68 (human), [GSE117176](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117176) (mouse), where we artificially created pseudobulk samples using various mixtures of
69 M1 and M2 cells (**Fig S2D-H**). M1 and M2 cells were categorized as both tolerant and reactive using C#13
70 and path #14-3 signatures (**Fig S2D**). Mouse single cell dataset [GSE117176](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117176) showed the same patterns
71 after revising the genes from path #14-3 as many genes were not captured by scRNASeq (**Fig S2E-H**).
72

73 **SMaRT genes are relevant across tissues, organs, species and immune cells**

74 We found that the path #13→14→3 successfully identified M1/M2-polarization states in diverse tissue-
75 resident macrophages (brain-resident microglia, the Langerhan’s cells in the skin, intestinal and lung
76 alveolar macrophages, etc.), in both humans and mice (**Fig 2a-b**). See **Supplemental Information 1** for
77 the degree of heterogeneity represented in these datasets. Surprisingly, the path could also separate
78 reactive and tolerant states of other immune cells, including lymphocytes (B/T and NK-T), natural killer (NK)
79 cells, neutrophils, dendritic, basophils, eosinophils and mast cells (**Fig 2c**). Together, these findings
80 indicate that the **SMaRT**-based definitions of ‘reactivity’ and ‘tolerance’ remain relevant in the context of
81 tissue-resident macrophages despite their adaptation to the tissue and/or organ-specific microenvironment
82 for their identity ([Gordon and Pluddemann 2017](#); [Lavin et al. 2014](#); [Stout and Suttles 2004](#)). These
83 definitions also maintain relevance in mice, whose immune system is different from ours ([Mestas and](#)
84 [Hughes 2004](#)). Findings suggest that the **SMaRT**-based definitions may reflect the *fundamental* immune-
85 reactive and tolerant gene regulatory mechanisms that are shared among diverse cells in our immune
86 system, regardless of whether they are derived from the myeloid or lymphoid lineage (**Fig 2d**).
87

88 **The network captures physiologic macrophage states and functions**

89 We found that diverse macrophage subtypes are represented within our model of macrophage processes
90 (**Fig 2e**). The classical M1 subtype was represented in C#1 and #13 on the reactive end of the model,
91 alongside TCR+ macrophages in C#1 and #12; the latter is known to release CCL2 and have high
92 phagocytic abilities ([Chavez-Galan et al. 2015](#)). On the tolerant end of the model we found the TAMs in

C#2, #5, #6 and the CD169+ macrophages in C#2, #3 and #7; both subtypes have been implicated in immunological tolerance ([Liu and Cao 2015](#); [Ravishankar et al. 2014](#); [Saunderson et al. 2014](#)). As one would anticipate, the tissue-resident macrophages (M2a-d) that are known for their plasticity of polarization states were more centrally placed in C#2 and #5. Finally, gene signatures of scar-associated non-inflammatory (ni) macrophages that restrict inflammation in liver cirrhosis (SAM B ([Ramachandran et al. 2019](#)) and SAM ni ([MacParland et al. 2018](#)), **Fig 2f**) and damage-associated microglia (DAMs ([Keren-Shaul et al. 2017](#)); **Fig 2f**) that restrict the progression of neurodegeneration significantly overlapped with the tolerant clusters C#14 and #3. A gene signature that was recently shown to be induced in monocytes and macrophages in all viral pandemics (ViP), past and present, overlapped with the reactive C#13 as expected (**Supplemental Information 2** lists all gene signatures in **Fig 2f**).

Members of the family of pattern recognition receptors (PRRs; **Table S2**), *via* which macrophages ‘sense’ its surroundings ([Zhou et al. 2015](#)), were distributed in various nodes within the model, overlapping with each other (**Fig 2g**). PRRs that sense pathogens or apoptotic cells to stimulate phagocytosis and mediate inflammation, e.g., toll-like (TLRs), nucleotide oligomerization domain (NODs) and receptor for advanced glycation end products (RAGE) were found on the ‘reactive’ side of the model. The TLRs, scavengers and C-type lectins also overlapped with path#13→14→3, but only on the tolerant end (cluster #3) of the spectrum.

The circadian genes were distributed within clusters along a path (#1→2→3→4) (**Fig 2h**), intersecting at the tolerant end of the path#13→14→3, i.e., C#3. The daytime circadian genes were in the reactive end of the model and showed an inverse high=>low Boolean relationship with night-time circadian genes; the latter were mostly in the tolerant end of the model (**Fig S3A-C**). This finding is consistent with the current belief that macrophages ‘kill’ (reactive) during the day and ‘heal’ (tolerant) during the night ([Early and Curtis 2016](#)). We also show that the performance of the tolerant signature (C#14-3) in diseases that have an intricate relationship with circadian rhythms, such as metabolic syndrome ([Eckel-Mahan and Sassone-Corsi 2013](#)), can be further improved by normalization based on a clock gene or clock gene signature (**Fig S4**).

SMaRT genes identify pathologic polarization states in diseases

We next asked how the Boolean network-derived *formal* definitions perform in disease states. A plethora of disease conditions and tissues were analyzed (**Fig 3a-n**; **Supplemental Information 1**). We computed a composite immune response score derived from C#13 alone or C#14 and #3, which quantitatively estimates the degree of “reactivity” and “tolerance”, respectively, and tested it in diverse conditions. An analysis of full-thickness colon tissues representing the 2 major subtypes of inflammatory bowel disease (IBD), ulcerative colitis (UC) and Crohn’s disease (CD) (**Fig S5A**) revealed that reactivity is a common feature in both UC and CD (**Fig 3a, top**; **Fig S5B-left**). However, tolerance was enhanced only in CD (**Fig S5B-right**), which is consistent with the notion that ‘alternatively’ activated tolerant macrophages may drive the transmural nature of the inflammation, ineffective bacterial clearance, and accompanying tissue remodeling (fibrosis, stricture, fistula), all features that are observed uniquely in CD ([Cho 2008](#)), but not UC.

1 Reactivity alone could prognosticate outcome (i.e., segregate responder vs non-responder) regardless of
2 the heterogeneity of the UC cohorts and the diverse treatment modalities (**Fig S5C-D**), consistent with the
3 widely-accepted notion that hyperinflammatory macrophages are drivers ([Steinbach and Plevy 2014](#)) of the
4 disease and key targets for therapeutics ([Peters et al. 2017](#)). Insufficient datasets precluded similar
5 analyses in the case of CD.

6 We also found that “reactivity” and “tolerance” differs along the length of the colon crypt—the
7 surface is more reactive, whereas the stem-cell niche at the bottom is more “tolerant” (**Fig 3b**; **Fig S5E-F**).
8 We also found that “hypo-reactivity” [low C#13] and “complete tolerance” [high #14→3] are two states that
9 are progressively accentuated during colorectal carcinoma (CRC) initiation and the emergence of
10 chemoresistance (**3c**; **Fig S5G-H**). Consistent with the fact that most of the CRCs are found located in the
11 left (distal) colon and microbe-driven risk is high in that segment ([Drewes et al. 2016](#)), we found that
12 segment to be more tolerant than the right (proximal) segment (**3d**).

13 We detected altered macrophage states during the initiation and progression of several human
14 other diseases, ranging from arthritis, through neurodegenerative diseases to viral pandemics (see **Fig 3e-n**;
15 **Fig S6A-N**, **Fig S7A-E**). Our definitions for “reactivity” and “tolerance” could accurately identify the
16 underlying pathologic macrophage states implicated in each condition. Together, these results show that
17 the *BoNE*-derived signature can detect different subsets of macrophages are essential to the pathogenesis
18 of many diseases. Findings also agree with the notion that disease chronicity is invariably associated with
19 mixed polarization states (whose detection has largely been enabled by scSeq studies) where each state
20 plays an opposing (balanced) role ([Duffield et al. 2005](#); [Jaitin et al. 2019](#); [Keren-Shaul et al. 2017](#);
21 [MacParland et al. 2018](#); [Murray and Wynn 2011](#); [Qian and Pollard 2010](#); [Ramachandran et al. 2019](#)).

22

23

24 **SMaRT genes rationalize the choice of mouse models**

25 Although mice are the preferred model species for research ([Rosenthal and Brown 2007](#)), most agree that
26 their innate immune systems differ ([Mestas and Hughes 2004](#)). C57BL/6J and Balb/c mice are two most
27 commonly used mouse strains that differ in their immune responses, giving rise to distinct disease
28 outcomes, which in turn rationalizes their use as pre-clinical models for human diseases (**Fig 3o**). Our
29 signature successfully classified the macrophages from these two strains in three independent cohorts
30 ([Howes et al. 2016](#); [Link et al. 2018](#)) (**Fig 3p**); C57BL/6 emerged as more reactive and Balb/c as more
31 tolerant (**Fig 3q**). These findings are consistent with the observation that BALB/c mice are more susceptible
32 to a variety of pathogens ([Mainou-Fowler et al. 1988](#); [Sacks and Noben-Trauth 2002](#); [Schluter et al. 1999](#)),
33 and are useful for modeling tumor initiation and progression and for making antibodies. By contrast,
34 C57BL/6 mice are resistant to infections and are the most common strain used for modeling inflammatory
35 diseases, e.g., arthritis, metabolic disorders [NASH, atherosclerosis, etc. ([Champy et al. 2008](#); [Ishida et al.](#)
36 [1991](#); [Toye et al. 2005](#))]. We conclude that the model-derived definitions for “reactivity” and “tolerance”—(i)
37 capture the contrasting immunophenotypes of these two murine strains previously reported by Mills et al.,
38 ([Mills et al. 2000](#)) and (ii) rationalize the choice of each strain as preferred models for modeling a unique

30 set of human diseases. Findings also suggest that the model-derived signatures could serve as an
31 objective guide for assessing the appropriateness of any species/strains/sub-strains as pre-clinical models.
32

33 **SMaRT genes carry diagnostic value**

34 Next we compared head-to-head the diagnostic and prognostic potential of the newly defined polarization
35 states against four traditional definitions: differential expression analysis ([Becker et al. 2015](#)) (DExp),
36 correlation network ([Bell et al. 2016](#)) (CorN), hierarchical clustering + fold change ([Coates et al. 2008](#))
37 (HiClu), and differential + interactome analysis ([Martinez et al. 2006](#)) (Dif+Int). A composite immune
38 response score derived from C#13 alone, which quantitatively estimates the degree of “reactivity” was
39 tested on multiple datasets generated from tissues derived from patients with known clinically relevant
40 diagnoses. A hyper-reactive state was invariably associated with graft rejection in transplanted hearts,
41 livers and kidneys ([Fig 3r](#)). A ‘hyper-reactive’ state also classified IBD-afflicted children from those with
42 non-IBD indications (8-18 y age) with reasonable accuracy in a prospective study where the blood samples
43 were drawn at the time of diagnostic colonoscopy ([Fig 3r](#)). Among the critically ill patients in the ICU, a
44 hyper-reactive state was associated with better 28-day survival for those with ARDS on ventilators ([Fig 3r](#))
45 and improved survival without the need for liver transplantation in those diagnosed with Tylenol-induced
46 acute liver failure ([Fig 3r](#)). While some of the four other traditional methodologies fared similar to the new
47 definitions in some cohorts, none performed as well, and/or as consistently. Findings suggest that the
48 BoNE-derived signatures may capture fundamental aspects of macrophage polarization that drive disease
49 states.

50

51 **SMaRT genes can prognosticate outcome**

52 We next computed a composite immune response score based on either the path #13-14-3 or C#13 alone.
53 When used as a composite score, a low score value represents “reactive” and high score value represent
54 “tolerant” states. This signature was tested on all transcriptomic datasets found on the NCBI GEO database
55 (as of 04/2022) originating from prospective studies, regardless of disease. Prospective studies were
56 chosen because they rarely have selection bias from enrollment procedures because the outcomes have
57 not yet occurred at the time of enrollment. In the context of cancers, “reactive” tumors carried a worse
58 prognosis than “tolerant” ones across a variety of solid tumor subtypes, e.g., colorectal (n = 555; [Fig 4a](#)),
59 breast, pancreas, prostate, glioblastoma and bladder cancers ([Fig S7F](#)). Undetectable by any of the
60 traditional methodologies, these findings are consistent with the well-recognized role of inflammatory cells
61 in the tumor microenvironment ([Coussens and Werb 2002](#)).

62 In a cohort of 216 patients with HCV-related liver fibrosis, overall survival was reduced among
63 patients with a “reactive” signature on their liver biopsies compared to those with a “tolerant” signature ([Fig
64 4b](#)). Again, undetectable by any of the traditional methodologies, these findings are consistent with the
65 known role of activated macrophages in chronic liver injury, inflammation and fibrosis ([Ehling et al. 2014;
66 Heinrichs et al. 2011; Kazankov et al. 2014; Sunami et al. 2012](#)).

67 In a cohort of 802 patients with sepsis, 28-day mortality was worse among those with a “tolerant”
68 signature compared to those with a “reactive” signature ([Fig 4c](#)). This finding is consistent with the notion

9 that “endotoxin tolerance” during sepsis carries poor outcome ([Pena et al. 2014](#)). Two of the four traditional
10 models, correlation network and hierarchical clustering, also performed reasonably well in sepsis, which is
11 not surprising because 30% of the reactivity signature within C#13 overlaps with the ‘M1’-state definition in
12 some of the traditional methods.

13 In a cohort of 114 patients with idiopathic pulmonary fibrosis (IPF), an incurable disease that is
14 characterized by progressive fibrosis requiring lung transplantation ([George et al. 2011](#)), a “reactive”
15 signature was associated with shorter transplant-free survival ([Fig 4d](#)). Two of the four traditional models,
16 correlation network and differential + interactome analysis, also performed reasonably well. Results are in
17 keeping with the widely accepted notion that proinflammatory pulmonary macrophages are known to drive
18 inflammation and fibrosis in the lung ([Byrne et al. 2016](#)).

19 Among 517 recipients of kidney transplants, a “reactive” signature was associated with increased
20 graft loss in two independent cohorts ([Fig 4e-f](#)). Findings are in keeping with prior body of work implicating
21 inflammatory macrophages (both number and extent of activation) as culprits in both acute and chronic
22 allograft rejection and graft loss ([Azad et al. 2018](#); [Bergler et al. 2016](#); [Liu et al. 2016](#)). Two of the four
23 traditional models, differential expression and correlation network approaches, performed reasonably well
24 in one cohort ([Fig 4e](#)), but none reached significance in the other ([Fig 4f](#)).

25 Finally, among 151 nonagenarians in the Vitality 90+ study ([Nosratty et al. 2015](#)), a “reactive”
26 signature was associated with higher mortality in men ([Fig 4g-left](#)), but not women ([Fig 4g-right](#)). Results
27 are in keeping with the fact that the plasma levels of the ‘classical’ marker of inflammaging, i.e., interleukin-
28 6 (IL-6) and a pro-inflammatory gene signature in PBMCs were correlated in men, whereas no correlations
29 were observed in women ([Nevalainen et al. 2015](#)). None of the traditional methodologies could detect this
30 gender-specific difference, nor did they prognosticate survival.

31 These findings demonstrate a degree of robustness and consistency in the prognostic ability of the
32 newly defined signatures of macrophage polarization across diverse diseases and independent datasets.

33

34

35 **SMaRT genes are significantly enriched in the macrophage proteome**

36 We used Tandem Mass Tag (TMT) proteomics datasets from THP1-derived macrophages (M0, PMA) that
37 were polarized to M1-M2 states (see workflow [Fig 5a](#)) and asked if the *BoNE*-derived gene clusters are
38 translated to proteins. We found that the *BoNE*-derived SMaRT genes were induced significantly in the
39 THP1 proteome ([Supplemental Information 3](#)). Consistent with our hypothesis that C#13 and path
40 #14→3 carry independent information regarding “reactivity” and “tolerance”, we found that LPS and IFNγ-
41 induced M1 polarization was associated with significant differential translation of genes in C#13 ([Fig 5b-top](#)),
42 whereas IL4-induced polarization was associated with significant differential translation of genes in
43 C#14 and C#3 ([Fig 5b-bottom](#)). Such differential protein translation continued to take place over 24 h ([Fig
44 5b](#)).

45 Comparative analyses showed that while the “reactivity” signatures identified by two other
46 conventional methodologies--Differential Expression and Correlation Network-- also reached significance;
47 [Fig 5b-top](#)), “tolerance” signatures derived by all other conventional approaches did not ([Fig 5b-bottom](#)).

8 Heatmaps show the dynamic and opposing nature of the proteins translated by the genes within the *BoNE*-
9 derived gene signatures during polarization (**Fig 5c-d**).

10 Findings demonstrate that the gene signatures of ‘reactivity’ and ‘tolerance’ identified here are
11 significantly represented also in the translated proteome.
12

13 **Perturbation of SMaRT genes results in predictable outcomes**

14 We next asked if network-rationalized interventions result in predictable outcomes upon perturbation, e.g.,
15 gene depletion (CRISPR, shRNA, KO mice) or overexpression, expression of functionally defective
16 mutants, or chemical agonists/inhibitors. To this end, we carried out real-world crowdsourcing
17 experiments on macrophage datasets in which interventions were conducted by different groups using
18 diverse manipulations (**Fig 6a**). Depletion or pharmacologic inhibition of any gene in C#13 was predicted to
19 suppress reactivity and enhance tolerance, whereas overexpression or pharmacologic stimulation of the
20 same should have an opposite impact, i.e., enhance reactivity and suppress tolerance. Similarly,
21 depletion/inhibition of any gene in C#14 was predicted to enhance reactivity and suppress tolerance (**Fig**
22 **6b, left**; **Table S3**). The depletion of genes in C#3 is predicted to not have a robust impact the network
23 because of the Low=>Low relationship with C#14.

24 We began with the ENCODE portal ([Davis et al. 2018](#)), a resource that was born out of the larger
25 initiative called the ENCODE integrative analysis ([Consortium 2012](#)); it is an encyclopedia of large,
26 unbiased shRNA library screen on the human K562 chronic myeloid leukemia cell line. This
27 dataset contained 4 of the 137 genes in C#14 and none from C#13 ([Davis et al. 2018](#)). In all 4 cases, the
28 depletion of genes in C#14 resulted in the predicted outcome of enhanced reactivity and hypotolerance
29 (**Fig 6b, right**). A systematic search of the NCBI GEO database also revealed 16 other independent
30 datasets reporting the impact of interventions on genes in C#13 (9 datasets) and C#14 (7 datasets) (**Table**
31 **S3**). Regardless of the heterogeneous nature of the interventions and lab-to-lab variations in the type of
32 cells/tissues used, predictions matched the observed outcomes in each instance. At least in one instance
33 (i.e., STAT3), we could confirm the alignment of phenotypes between gene deletion and pharmacologic
34 inhibition, implying that both approaches must have converged on the same biology. Because such
35 alignment and/or convergence is seen in many instances ([Weiss et al. 2007](#)), findings suggest that the
36 current model can accurately guide outcome-driven pharmacologic interventions.

37 Together, these crowd-sourced studies rigorously and independently validate the definitions of
38 macrophage polarization states; the fundamental nature of these definitions appear to remain relevant
39 despite the thunderous heterogeneity of models and methods used by so many.
40

1 CONCLUSIONS

2 The lack of consensus on how to define macrophage activation has impeded progress in multiple ways;
3 despite a panoply of existing descriptors, most remain contentious and/or confusing. AI-guided gene
4 expression signatures presented here, *SMaRT*, offers a set of standardized definitions of macrophage
5 polarization that encompasses four principles: (i) they are comprised of an unbiased collection of markers
6 of macrophage activation that are represented in both the transcriptome and the proteome; (ii) they remain
7 meaningful and relevant regardless of the source of macrophages (i.e., bone marrow, circulation, tissue-
8 resident); (iii) they perform well across diverse activators, both in vitro and in vivo (i.e., recombinant ligands
9 and cytokines, microbes, or multifactorial, as in the setting of complex disease states), and (iv) they provide
10 a predictive framework that can be exploited for diagnostic purposes and for outcome-rationalized
11 therapeutic interventions. These principles unify experimental standards for diverse experimental scenarios
12 and interpretations across diverse tissues and diseases.

13 Finally, these *SMaRT* genes provide a common framework for macrophage activation
14 nomenclature, which should enable laboratories to detect and report a given immunophenotype of
15 macrophage in a standardized way. Standardization is expected to spur the development of robust
16 strategies to address the multitude of macrophage-related disorders. It also serves as a starting point for
17 the development of new diagnostics and immunomodulatory therapies.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

16 **Acknowledgements**

17 We thank Gordon Gill and Christopher K. Glass for critiques and suggestions during manuscript
18 preparation. This work was supported by the National Institutes for Health (NIH) grant R01-AI155696 (to
19 PG, DS and SD). Other sources of support include: R01-GM138385 (to DS), R01-AI141630, CA100768
20 and CA160911 (to P.G), R01-DK107585 (to S.D) and UG3TR002968 (to D.S., S.D and P.G). D.S was also
21 supported by two Padres Pedal the Cause awards (Padres Pedal the Cause/RADY #PTC2017 and San
22 Diego NCI Cancer Centers Council (C3) #PTC2017). D.S, P.G and S.D were also supported by the Leona
23 M. and Harry B. Helmsley Charitable Trust.

24

25 **Author Contributions:**

26 Conceptualization: D.S, P.G, S.D
27 Methodology: D.S, S.S, D.V., S.T., D.D.
28 Investigation: D.S, S.S, P.G
29 Visualization: D.S, P.G, S.S, G.D.K, D.V.
30 Funding acquisition: D.S, S.D, P.G
31 Project administration: D.S, S.D, P.G
32 Supervision: D.S, P.G
33 Writing – original draft: D.S, P.G
34 Writing – review & editing: D.S, P.G., S.D, G.D.K, S.S

35
36 **Competing interests:**

37 Authors declare that they have no competing interests.

38

39 **Data and materials availability:**

40 All data are available in the main text or the supplementary materials. A website
41 (<http://hegemon.ucsd.edu/SMaRT/>) of the macrophage network is built to support interactive query.

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Deposited data		
Pooled human macrophage array	NCBI GEO (The National Center for Biotechnology Information- Gene expression omnibus)	GSE134312
<i>Ccdc88a</i> KO peritoneal macrophages		GSE203423
Proteomics dataset, reanalyzed from PMID: 34731634	MassIVE repository	MSV000084672
Experimental models: Organisms/strains		
<i>Ccdc88a</i> fl/fl LysMCre/- mice	PMID: 33055214	
Software and algorithms		
Numpy	Python	https://numpy.org
Scipy	Python	https://scipy.org
Seaborn	Python	https://seaborn.pydata.org
Matplotlib	Python	https://matplotlib.org
Hierarchical Exploration of Gene Expression Microarrays Online (Hegemon)	HTML, JavaScript, Python, PHP	https://github.com/sahoo00/Hegemon
Boolean Network Explorer (BoNE)	Python	https://github.com/sahoo00/BoNE
Other		
Interactive website	This paper	http://hegemon.ucsd.edu/SMaRT/

1 **Materials and Methods**

2
3 **Data Collection and Annotation**

4 Publicly available microarray and RNASeq databases were downloaded from the National Center for
5 Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) website ([Barrett et al. 2005](#); [Barrett et](#)
6 [al. 2013](#); [Edgar et al. 2002](#)). Gene expression summarization was performed by normalizing Affymetrix
7 platforms by RMA (Robust Multichip Average) ([Irizarry et al. 2003a](#); [Irizarry et al. 2003b](#)) and RNASeq
8 platforms by computing TPM (Transcripts Per Millions) ([Li and Dewey 2011](#); [Pachter 2011](#)) values
9 whenever normalized data were not available in GEO. We used $\log_2(\text{TPM})$ if $\text{TPM} > 1$ and $(\text{TPM} - 1)$ if
0 $\text{TPM} < 1$ as the final gene expression value for analyses. We also used $\log_2(\text{TPM} + 1)$ in some datasets.
1 We also used publicly data normalized using RPKM ([Mortazavi et al. 2008](#)), FPKM ([Trapnell et al. 2009](#);
2 [Trapnell et al. 2010](#)), TPM ([Li et al. 2010](#); [Wagner et al. 2012](#)), and CPM ([Law et al. 2016](#); [Robinson et al.](#)
3 [2010](#)). In the context of Affymetrix microarray data we believe that RMA works better than MAS 5.0
4 ([Pandey and Sahoo 2019](#)).
5

6 *Macrophage datasets used for network analysis*

7 Previously published pooled macrophage dataset from GEO (GSE134312, n = 197) assayed on the Human
8 U133 Plus 2.0 (GPL570), Human U133A 2.0 (GPL571) and Human U133A (GPL96) platforms were used to
9 perform macrophage network analysis. This dataset was manually annotated with M0, M1 or M2
0 phenotypes. Accession numbers for the M0, M1 and M2 phenotypes are presented in table S4. Five
1 validation datasets are used to test the macrophage gene signature: GSE35449 (7 M0, 7 M1, 7 M2),
2 GSE46903 (64 M0, 29 M1, 40 M2), GSE61298 (6 M0, 6 M1, 6 M2), GSE55536 human peripheral blood
3 mononuclear cell-derived macrophage (6 M0, 6 M1, 6 M2), GSE55536 iPSC derived macrophages (3 M0,
4 3 M1, 3 M2). See **Supplementary Information 1** for all datasets analyzed in this work.
5

6 **Computational Approaches**

7 *StepMiner Analysis*

8 StepMiner is a computational tool that identifies step-wise transitions in a time-series data ([Sahoo et al.](#)
9 [2007](#)). StepMiner performs an adaptive regression scheme to identify the best possible step up or down
0 based on sum-of-square errors. The steps are placed between time points at the sharpest change between
1 low expression and high expression levels, which gives insight into the timing of the gene expression-
2 switching event. To fit a step function, the algorithm evaluates all possible step positions, and for each
3 position, it computes the average of the values on both sides of the step for the constant segments. An
4 adaptive regression scheme is used that chooses the step positions that minimize the square error with the
5 fitted data. Finally, a regression test statistic is computed as follows:

$$F \text{ stat} = \frac{\sum_{i=1}^n (\hat{X}_i - \bar{X})^2 / (m - 1)}{\sum_{i=1}^n (X_i - \hat{X}_i)^2 / (n - m)}$$

36 Where X_i for $i = 1$ to n are the values, \hat{X}_i for $i = 1$ to n are fitted values. m is the degrees of freedom used
37 for the adaptive regression analysis. \bar{X} is the average of all the values: $\bar{X} = \frac{1}{n} * \sum_{j=1}^n X_j$. For a step position
38 at k , the fitted values \hat{X}_i are computed by using $\frac{1}{k} * \sum_{j=1}^n X_j$ for $i = 1$ to k and $\frac{1}{(n-k)} * \sum_{j=k+1}^n X_j$ for $i = k + 1$
39 to n .

40

41 Boolean Analysis

42 **Boolean logic** is a simple mathematic relationship of two values, i.e., high/low, 1/0, or positive/negative.
43 The Boolean analysis of gene expression data requires the conversion of expression levels into two
44 possible values. The **StepMiner** algorithm is reused to perform Boolean analysis of gene expression data
45 ([Sahoo et al. 2008](#)). The **Boolean analysis** is a statistical approach which creates binary logical inferences
46 that explain the relationships between phenomena. Boolean analysis is performed to determine the
47 relationship between the expression levels of pairs of genes. The **StepMiner** algorithm is applied to gene
48 expression levels to convert them into Boolean values (high and low). In this algorithm, first the expression
49 values are sorted from low to high and a rising step function is fitted to the series to identify the threshold.
50 Middle of the step is used as the StepMiner threshold. This threshold is used to convert gene expression
51 values into Boolean values. A noise margin of 2-fold change is applied around the threshold to determine
52 intermediate values, and these values are ignored during Boolean analysis. In a scatter plot, there are four
53 possible quadrants based on Boolean values: (low, low), (low, high), (high, low), (high, high). A Boolean
54 implication relationship is observed if any one of the four possible quadrants or two diagonally opposite
55 quadrants are sparsely populated. Based on this rule, there are six kinds of Boolean implication
56 relationships. Two of them are symmetric: equivalent (corresponding to the positively correlated genes),
57 opposite (corresponding to the highly negatively correlated genes). Four of the Boolean relationships are
58 asymmetric, and each corresponds to one sparse quadrant: (low \Rightarrow low), (high \Rightarrow low), (low \Rightarrow high), (high
59 \Rightarrow high). BooleanNet statistics (**Fig. 2a**) is used to assess the sparsity of a quadrant and the significance of
60 the Boolean implication relationships ([Sahoo et al. 2008](#); [Sahoo et al. 2010](#)). Given a pair of genes A and
61 B, four quadrants are identified by using the StepMiner thresholds on A and B by ignoring the Intermediate
62 values defined by the noise margin of 2 fold change (+/- 0.5 around StepMiner threshold). Number of
63 samples in each quadrant are defined as a_{00} , a_{01} , a_{10} , and a_{11} (Figure 1A) which is different from X in the
64 previous equation of F stat. Total number of samples where gene expression values for A and B are low is
65 computed using the following equations.

66 $nA_{low} = (a_{00} + a_{01})$, $nB_{low} = (a_{00} + a_{10})$,

67

68 Total number of samples considered is computed using following equation.

69 $total = a_{00} + a_{01} + a_{10} + a_{11}$

70 Expected number of samples in each quadrant is computed by assuming independence between A and B.

71 For example, expected number of samples in the bottom left quadrant $e_{00} = \hat{n}$ is computed as probability of

'2 A low $((a_{00} + a_{01})/\text{total})$ multiplied by probability of B low $((a_{00} + a_{10})/\text{total})$ multiplied by total number of
'3 samples. Following equation is used to compute the expected number of samples.

'4 $n = a_{ij}, \hat{n} = (nA_{low}/\text{total} * nB_{low}/\text{total}) * \text{total}$

'5 To check whether a quadrant is sparse, a statistical test for $(e_{00} > a_{00})$ or $(\hat{n} > n)$ is performed by computing
'6 S_{00} and p_{00} using following equations. A quadrant is considered sparse if S_{00} is high ($\hat{n} > n$) and p_{00} is
'7 small.

$$S_{ij} = \frac{\hat{n} - n}{\sqrt{\hat{n}}}$$

$$p_{00} = \frac{1}{2} \left(\frac{a_{00}}{(a_{00} + a_{01})} + \frac{a_{00}}{(a_{00} + a_{10})} \right)$$

'8 A suitable threshold is chosen for $S_{00} > sThr$ and $p_{00} < pThr$ to check sparse quadrant. A Boolean
'9 implication relationship is identified when a sparse quadrant is discovered using following equation.

'10 **Boolean Implication** = $(S_{ij} > sThr, p_{ij} < pThr)$

'11 A relationship is called Boolean equivalent if top-left and bottom-right quadrants are sparse.

'12 **Equivalent** = $(S_{01} > sThr, P_{01} < pThr, S_{10} > sThr, P_{10} < pThr)$

'13 Boolean opposite relationships have sparse top-right (a_{11}) and bottom-left (a_{00}) quadrants.

'14 **Opposite** = $(S_{00} > sThr, P_{00} < pThr, S_{11} > sThr, P_{11} < pThr)$

'15 Boolean equivalent and opposite are symmetric relationship because the relationship from A to B is same
'16 as from B to A. Asymmetric relationship forms when there is only one quadrant sparse (A low => B low:
'17 top-left; A low => B high: bottom-left; A high=> B high: bottom-right; A high => B low: top-right). These
'18 relationships are asymmetric because the relationship from A to B is different from B to A. For example, A
'19 low => B low and B low => A low are two different relationships.

'20 A low => B high is discovered if the bottom-left (a_{00}) quadrant is sparse and this relationship satisfies
'21 following conditions.

'22 **A low => B high** = $(S_{00} > sThr, P_{00} < pThr)$

'23 Similarly, A low => B low is identified if the top-left (a_{01}) quadrant is sparse.

'24 **A low => B low** = $(S_{01} > sThr, P_{01} < pThr)$

'25 A high => B high Boolean implication is established if the bottom-right (a_{10}) quadrant is sparse as described
'26 below.

'27 **A high => B high** = $(S_{10} > sThr, P_{10} < pThr)$

'28 Boolean implication A high => B low is found if the top-right (a_{11}) quadrant is sparse using following
'29 equation.

'30 **A high => B low** = $(S_{11} > sThr, P_{11} < pThr)$

)1 For each quadrant a statistic S_{ij} and an error rate p_{ij} is computed. $S_{ij} > sThr$ and $p_{ij} < pThr$ are the thresholds
.)2 used on the BooleanNet statistics to identify Boolean implication relationships.
.)3 Boolean analyses in the test dataset GSE134312 uses a threshold of $sThr = 3$ and $pThr = 0.1$. These
.)4 thresholds are exactly same as the previously used thresholds $sThr = 3$ and $pThr = 0.1$ for BooleanNet
.)5 ([Dabydeen et al. 2019](#); [Pandey and Sahoo 2019](#); [Sahoo et al. 2008](#)).

)6

)7 *Boolean Network Explorer (BoNE)*

)8 Boolean network explorer (BoNE) provides an integrated platform for the construction, visualization and
.)9 querying of a network of progressive changes underlying a disease or a biological process in three steps
.0 (**Fig S1A**): First, the expression levels of all genes in these datasets were converted to binary values (high
.1 or low) using the StepMiner algorithm. Second, gene expression relationships between pairs of genes were
.2 classified into one-of-six possible Boolean Implication Relationships (BIRs), two symmetric and four
.3 asymmetric, and expressed as Boolean implication statements. This offers a distinct advantage from
.4 conventional computational methods (Bayesian, Differential, etc.) that rely exclusively on symmetric linear
.5 relationships in networks. The other advantage of using BIRs is that they are robust to the noise of sample
.6 heterogeneity (i.e., healthy, diseased, genotypic, phenotypic, ethnic, interventions, disease severity) and
.7 every sample follows the same mathematical equation, and hence is likely to be reproducible in
.8 independent validation datasets. Third, genes with similar expression architectures, determined by sharing
.9 at least half of the equivalences among gene pairs, were grouped into clusters and organized into a
.0 network by determining the overwhelming Boolean relationships observed between any two clusters. In the
.1 resultant Boolean implication network, clusters of genes are the nodes, and the BIR between the clusters
.2 are the directed edges; BoNE enables their discovery in an unsupervised way while remaining agnostic to
.3 the sample type.

)4

)5 *Statistical Analyses*

)6 Gene signature is used to classify sample categories and the performance of the multi-class classification
.)7 is measured by ROC-AUC (Receiver Operating Characteristics Area Under The Curve) values. A color-
.)8 coded bar plot is combined with a density or violin+swarm plot to visualize the gene signature-based
.)9 classification. All statistical tests were performed using R version 3.2.3 (2015-12-10). Standard t-tests were
.)0 performed using python `scipy.stats.ttest_ind` package (version 0.19.0) with Welch's Two Sample t-test
.)1 (unpaired, unequal variance (`equal_var=False`), and unequal sample size) parameters. Multiple hypothesis
.)2 corrections were performed by adjusting p values with `statsmodels.stats.multitest.multipletests` (`fdr_bh`:
.)3 Benjamini/Hochberg principles). The results were independently validated with R statistical software (R
.)4 version 3.6.1; 2019-07-05). Pathway analysis of gene lists were carried out via the Reactome database and
.)5 algorithm ([Fabregat et al. 2018](#)). Reactome identifies signaling and metabolic molecules and organizes
.)6 their relations into biological pathways and processes. Kaplan-Meier analysis is performed using lifelines
.)7 python package version 0.14.6.

38

39 *Boolean implication network construction*

40 A Boolean implication network (BIN) is created by identifying all significant pairwise Boolean implication
41 relationships (BIRs) for GSE134312 datasets (**Fig S1A**). The Boolean implication network contains the six
42 possible Boolean relationships between genes in the form of a directed graph with nodes as genes and
43 edges as the Boolean relationship between the genes. The nodes in the BIN are genes and the edges
44 correspond to BIRs. Equivalent and Opposite relationships are denoted by undirected edges and the other
45 four types (low => low; high => low; low => high; high => high) of BIRs are denoted by having a directed
46 edge between them. The network of equivalences seems to follow a scale-free trend; however, other
47 asymmetric relations in the network do not follow scale-free properties. BIR is strong and robust when the
48 sample sizes are usually more than 200. However, it is also possible to build BIN for smaller dataset such
49 as the selected macrophage GSE134312 dataset ($n = 197$). The macrophage dataset GSE134312 was
50 prepared for Boolean analysis by filtering genes that had a reasonable dynamic range of expression
51 values. When the dynamic range of expression values was small, it was difficult to distinguish if the values
52 were all low or all high or there were some high and some low values. Thus, it was determined to be best to
53 ignore them during Boolean analysis. The filtering step was performed by analyzing the fraction of high and
54 low values identified by the StepMiner algorithm ([Sahoo et al. 2007](#)). Any probe set or genes which
55 contained less than 5% of high or low values were dropped from the analysis.

56

57 *Clustered Boolean Implication network*

58 Clustering was performed in the Boolean implication network to dramatically reduce the complexity of the
59 network (**Fig S1C**). A clustered Boolean implication network (CBIN) was created by clustering nodes in the
60 original BIN by following the equivalent BIRs. One approach is to build connected components in a
61 undirected graph of Boolean equivalences. However, because of noise the connected components become
62 internally inconsistent e.g. two genes opposite to each other becomes part of the same connected
63 component. In order to avoid such situation, we need to break the component by removing the weak links.
64 To identify the weakest links, we first computed a minimum spanning tree for the graph and computed
65 Jaccard similarity coefficient for every edge in this tree. Ideally if two members are part of the same cluster
66 they should share as many connections as possible. If they share less than half of their total individual
67 connections (Jaccard similarity coefficient less than 0.5) the edges are dropped from further analysis. Thus,
68 many weak equivalences were dropped using the above algorithm leaving the clusters internally consistent.
69 We removed all edges that have Jaccard similarity coefficient less than 0.5 and built the connected
70 components with the rest. The connected components were used to cluster the BIN which is converted to
71 the nodes of the CBIN. The distribution of cluster sizes was plotted in a log-log scale to observe the
72 characteristic of the Boolean network (**Fig S1C**). The clusters sizes were distributed along a straight line in
73 a log-log plot suggesting scale-free properties (**Fig S1D**). A new graph was built that connected the
74 individual clusters to each other using Boolean relationships. Link between two clusters (A, B) was
75 established by using the top representative node from A that was connected to most of the member of A

'6 and sampling 6 nodes from cluster B and identifying the overwhelming majority of BIRs between the nodes
'7 from each cluster.

'8 A CBIN was created using the selected GSE134312 datasets. Each cluster was associated with
'9 healthy or disease samples based on where these gene clusters were highly expressed. The edges
'0 between the clusters represented the Boolean relationships that are color-coded as follows: orange for **low**
'1 => **high**, dark blue for **low => low**, green for **high => high**, red for **high => low**, light blue for **equivalent** and
'2 black for opposite.

'3

'4 *Boolean paths*

'5 The asymmetric BIRs provide a unique dimension to the network that is fundamentally different from any
'6 other gene expression networks in the literature. Traversing a set of nodes in a directed graph of the
'7 Boolean network constitutes a Boolean path that can be interpreted as follows. A simple Boolean path
'8 involves two nodes and the directed edge between them. This simple Boolean path can be interpreted as
'9 shown in the supplementary figure (**Fig S1E**). For the nodes X and Y with X low => Y low only quadrant #1
'0 is sparse; the other quadrants #0, #2, and #3 are filled with samples (**Fig S1E**). Assuming monotonicity in X
'1 and Y, the quadrants can be ordered in two possible ways: 0-2-3 and 3-2-0. The path corresponds to 0-2-3
'2 begins with X low and Y low. This is interpreted as X turns on first and then Y turns on along a hypothetical
'3 biological path defined by the sample order. Similarly, Y turns off first and then X turns off in the path 3-2-0.
'4 A complex path in the Boolean network involves more than one Boolean implication relationship (**Fig S1F**).
'5 Three Boolean implication relationships can be used to group samples into five bins and the bins can be
'6 ordered in two possible ways (**Fig S1F**, forward, reverse). Another example of a path is illustrated in
'7 supplementary figure (**Fig S1G**).
'8

'9 *Discovery of Paths in Clustered Boolean Implication network*

'0 Discovery of paths start with a node that represents the biggest cluster in the CBIN. Since a path of
'1 high=>high, high=>low, and low=>low can be used to order samples as shown in **Fig S1G**, we try to
'2 identify paths of this type that intersects the big clusters in the network. We developed a simple, intuitive
'3 algorithm that traverses the nodes of the CBIN starting with the biggest cluster and greedily chooses next
'4 big cluster connected to the nodes visited in sequence. The emphasis on cluster sizes comes from the
'5 fundamental assumption that size determines importance and relevance. Therefore, we start from a big
'6 cluster (A1) and identify other clusters that form a chain of low => low. Further, we identify other clusters
'7 that are either opposite to A1 or they have high=>low relationship with A1, and the biggest cluster (A2)
'8 among these clusters were chosen. In addition, a chain of low=> low relationship from A2 is identified. In
'9 each subsequent step, again the biggest cluster among the different choices was greedily chosen. Finally
'0 equivalence relationship from each cluster is used to gather more genes in each cluster and the whole path
'1 is clustered based on equivalence relationships. Depth-first traversal (DFS) was used to follow the path of
'2 low => low where bigger clusters are visited first. The search was performed until a cluster was reached for
'3 which there is no low => low relationships. For example, starting with cluster S, the search will return S low
'4 => A1 low, A1 low => A2 low, and A2 low => A3 low if A3 doesn't have any low => low relationships.

.5 Similarly, a new starting point is considered S2 such that S2 is the biggest cluster X that has either S high
.6 => X low or S Opposite X. From cluster S2 another DFS was performed to retrieve the longest possible
.7 path of low => low. The search may return S2 low => B1 low, B1 low => B2 low if B2 doesn't have any low
.8 => low relationships. In summary, the most prominent Boolean path was discovered by starting with the
.9 largest cluster and then exploring edges that connected to the next largest cluster in a greedy manner. This
.0 process was repeated to explore paths that connect the big clusters in the network.

!1

!2 *Scoring Boolean path for sample order*

!3 A score was computed for a specified Boolean path that can be used to order the sample which was
!4 consistent with the logical order. To compute the final score, first the genes present in each cluster were
!5 normalized and averaged. Gene expression values were normalized according to a modified Z-score
!6 approach centered around StepMiner threshold (formula = (expr - SThr)/3*stddev; **Fig S2B**). Weighted
!7 linear combination of the averages from the clusters of a Boolean path was used to create a score for each
!8 sample. The weights along the path either monotonically increased or decreased to make the sample order
!9 consistent with the logical order based on BIR. The samples were ordered based on the final weighted and
!0 linearly combined score (**Fig S2C**). The direction of the path was derived from the connection from a
!1 reactive cluster to a tolerant cluster. The sample order is visualized by a color-coded bar plot and a
!2 violin+swarm plot (**Fig S2C**).

!3

!4 *Summary of genes in the clusters*

!5 Reactome pathway analysis of each cluster along the top continuum paths was performed to identify the
!6 enriched pathways ([Fabregat et al. 2018](#)). The pathway description was used to summarize at a high-level
!7 what kind of biological processes are enriched in a particular cluster.

!8

!9 *Signatures of macrophage reactivity and tolerance (S-Ma-R-T) computation*

!0 BoNE uses Boolean implication network on macrophage dataset to build a signature of macrophage
!1 polarization. Selected clusters by size connected by high => high (green arrow), high => low (red arrows)
!2 and low => low (blue arrows) Boolean implication relationships. Reactome analysis of each clusters shows
!3 the biological processes the genes are involved in (**Fig S2A**). A path is selected in the network that is used
!4 to test M1/M2 states classification. This process is demonstrated by using a path #13-14-3 on GSE134312
!5 (**Fig S2B-C**).

!6

!7 *Normalization of gene expression based on circadian rhythm*

!8 Since the state of macrophage swings from reactive to tolerant from day to night, it is important to control
!9 for this variation during analysis of macrophage polarization. To start the normalization process, clock
!0 genes (such as DBP, ARNTL, etc.) or gene signatures that capture circadian rhythm is used to adjust the
!1 BoNE score (**Fig S4**). First, both the BoNE score (**Fig S4B**) and the clock gene expression are scaled for
!2 each sample type based on their dynamic range of expression values (min – max). For example, the
!3 dataset GSE98895 contains two sample types: C (Control), and MetS (Metabolic Syndrome). Let's take

one sample from the MetS group (x, y) where x is the clock gene expression value and y is the original BoNE score (**Fig S4C**). Bounding box for the MetS group demonstrates the range of values for both the BoNE score (S1) and the clock gene expression (S2). Average of BoNE scores and the clock gene expression is shown using an orange diamond. The distance of (x, y) from the orange diamond (S3, S4) is used to scale both values: $(x - S3 * (S2 + 1) / (S1 + 1), y + S4 * (S1 + 1) / (S2 + 1))$. This process is repeated using control (C) samples using the green diamond. Linear regression is used to compute the trend between the transformed BoNE score and clock gene expression ($y = mx + c$; **Fig S4D**). The trend is subtracted from the transformed BoNE score to compute the final normalized BoNE score ($y - mx - c$). Samples are now rank ordered based on the final normalized BoNE score to visualize the effect of normalization process.

4

5 *Proteomics analysis*

6 A multiplexed TMT (tandem mass tags) quantitative proteomics dataset has been obtained from He, L. et al
7 ([He et al. 2021](#)) (see *Key Resource Table*). To generate this dataset, authors had differentiated human
8 THP-1 cells with phorbol myristate acetate (PMA) for 24 h into macrophages (M0 state). The M0 cells were
9 subsequently treated with IL4 for M2 polarization and with LPS and IFNy for M1 polarization over a 24-h
0 time-period. Samples were processed for quantitative mass spectrometry at 1 h, 4 h, 8 h and 24 h. Ratio of
1 raw intensity values has been compared between M1 and M2 states to obtain the list of induced proteins at
2 various time points (see **Supplemental Information 3**). To obtain the list of proteins induced in M1 state,
3 the cut-off used for induction of proteins when comparing the raw intensity ratio for LPS/IFNy over IL4
4 stimulation for all time points was ≥ 2 . To obtain the list of proteins induced in M2 state, the cut-off used for
5 induction of proteins when comparing the raw intensity ratio for IL4 over LPS/IFNy stimulation for all time
6 points was ≥ 1.5 .

7 To assess the differential enrichment of proteins across different signatures for both M1 and M2
8 polarization states at various time points, we used the following equation to calculate the z-test of
9 proportions,

10

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)(n_1 + n_2)}}$$

11

12 Here, p_1 is sample proportion (x_1/n_1) of proteins translated from the “reactive” signature that were
13 induced ≥ 2 fold upon LPS stimulation. And p_2 is the sample proportion (x_2/n_2) of proteins
14 translated from the “tolerance” signature that were induced ≥ 1.5 fold upon IL4 stimulation. Here, $p =$
15 $(x_1+x_2)/(n_1+n_2)$.

16

17

9 **Supplementary materials:**

10 • Figures S1 to S7
11 • Table S1 to S3

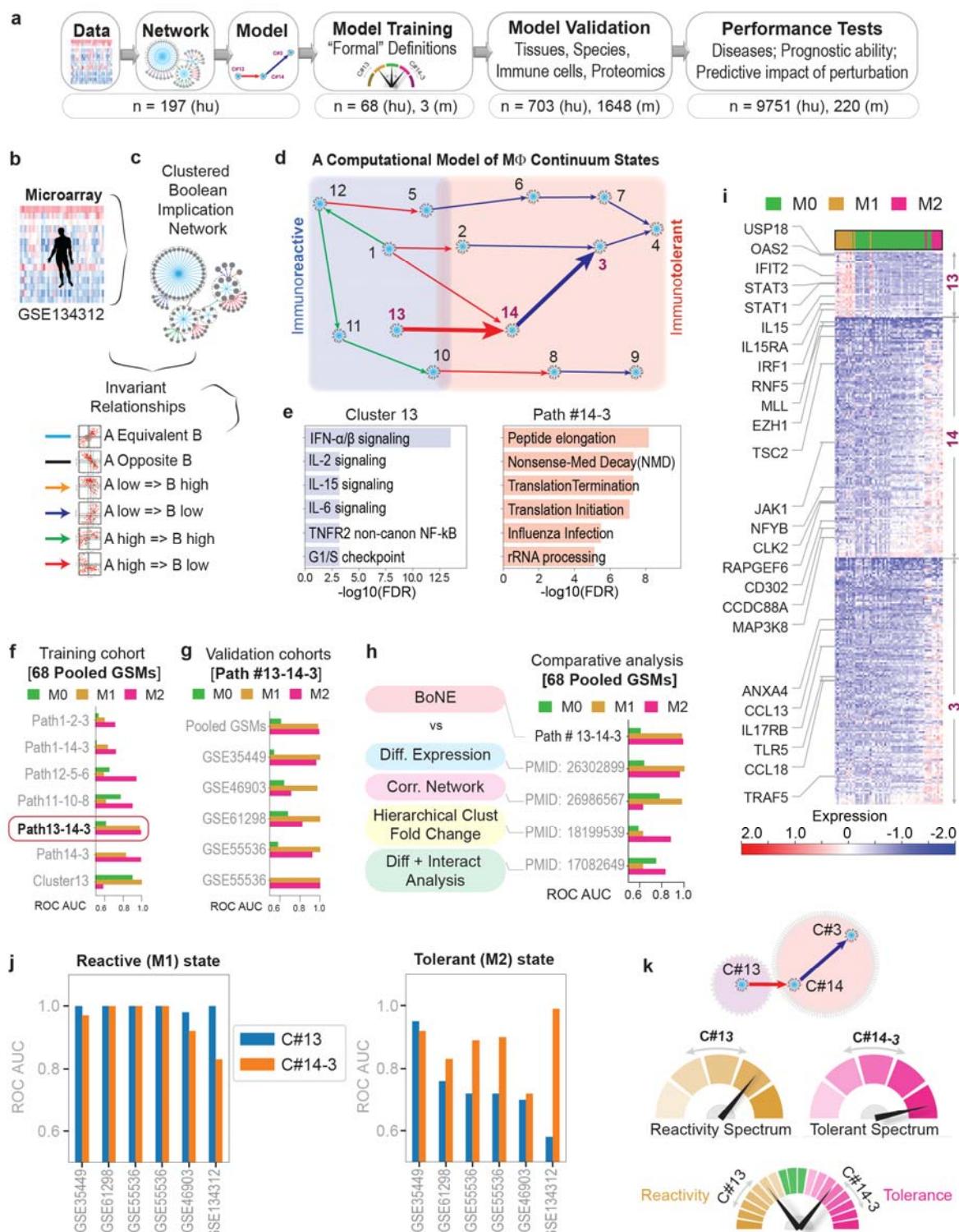
12

13 **Supplemental Information** (excel datasheets uploaded separately) 1 to 3.

14

15 • **Supplemental Information 1:** Excel datasheet with an inventory of all publicly available gene
16 expression datasets analyzed in this work.
17
18 • **Supplemental Information 2:** Excel datasheet with an inventory of all previously published gene
19 signatures cited in this work.
20
21 • **Supplemental Information 3:** Excel datasheet with list of proteins translated by genes in clusters
22 #13 and 14+3 at various time points after ligand stimulation of THP1 cells.

3 **Figures and legends**



4
5 **Figure 1: BoNE-assisted formulation of formal definitions of macrophage polarization.**

6 a) Overview of workflow and approach used in this work.

7 b-c) A pooled dataset of diverse human transcriptomes (b; n = 197) was used to build a Boolean

8 implication network (c-top) and visualized as gene clusters (nodes, comprised of genes that are equivalent

9 to each other) that are interconnected based on one of the six overwhelming Boolean implication
0 relationship between the clusters (directed edges; **c-bottom**).
1 **d)** Display of the major Boolean paths within the network prioritized based on the cluster size. Annotations
2 of “immunoreactive” and “immunotolerant” ends of the spectrum are based on the expression profile of the
3 gene clusters in 68 samples within the pooled dataset that were stimulated *in vitro* as M1 and M2,
4 respectively.
5 **e)** Reactome pathway analysis of each cluster along the top continuum paths was performed to identify the
6 enriched pathways (for other clusters see <http://hegemon.ucsd.edu/SMaRT/>).
7 **f-g)** Training (**f**) was performed on the 68 pooled samples using machine-learning approaches; the best-
8 performing Boolean path, #13-14-3 was then validated (**g**) in multiple independent human macrophage
9 datasets. For a list of datasets used see **Table S1**. The performance was measured by computing *ROC*
10 *AUC* for a logistic regression model.
11 **h)** Comparative analysis of performance of the *BoNE*-derived *versus* other traditional approaches in
12 segregating M0/M1/M2 polarization states.
13 **i)** Heatmap displaying the pattern of gene expression in C#13, 14 and 3. Selective genes are labelled.
14 **j)** Validation studies assessing the ability of the genes in either C#13 alone or C#14-3 alone to classify
15 M0/M1/M2 polarization states in multiple human macrophage datasets.
16 **k)** Top: Schematic summarizing the model-derived formal definitions of macrophage polarization states
17 based on the levels of expression of genes in C#13 (hypo to hyper- “reactivity” spectrum) and those in
18 C#14+3 (hypo to hyper- “tolerant” spectrum). Bottom: A composite score of the entire range of physiologic
19 and pathologic response can be assessed via the *BoNE*-derived path #13→14→3.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

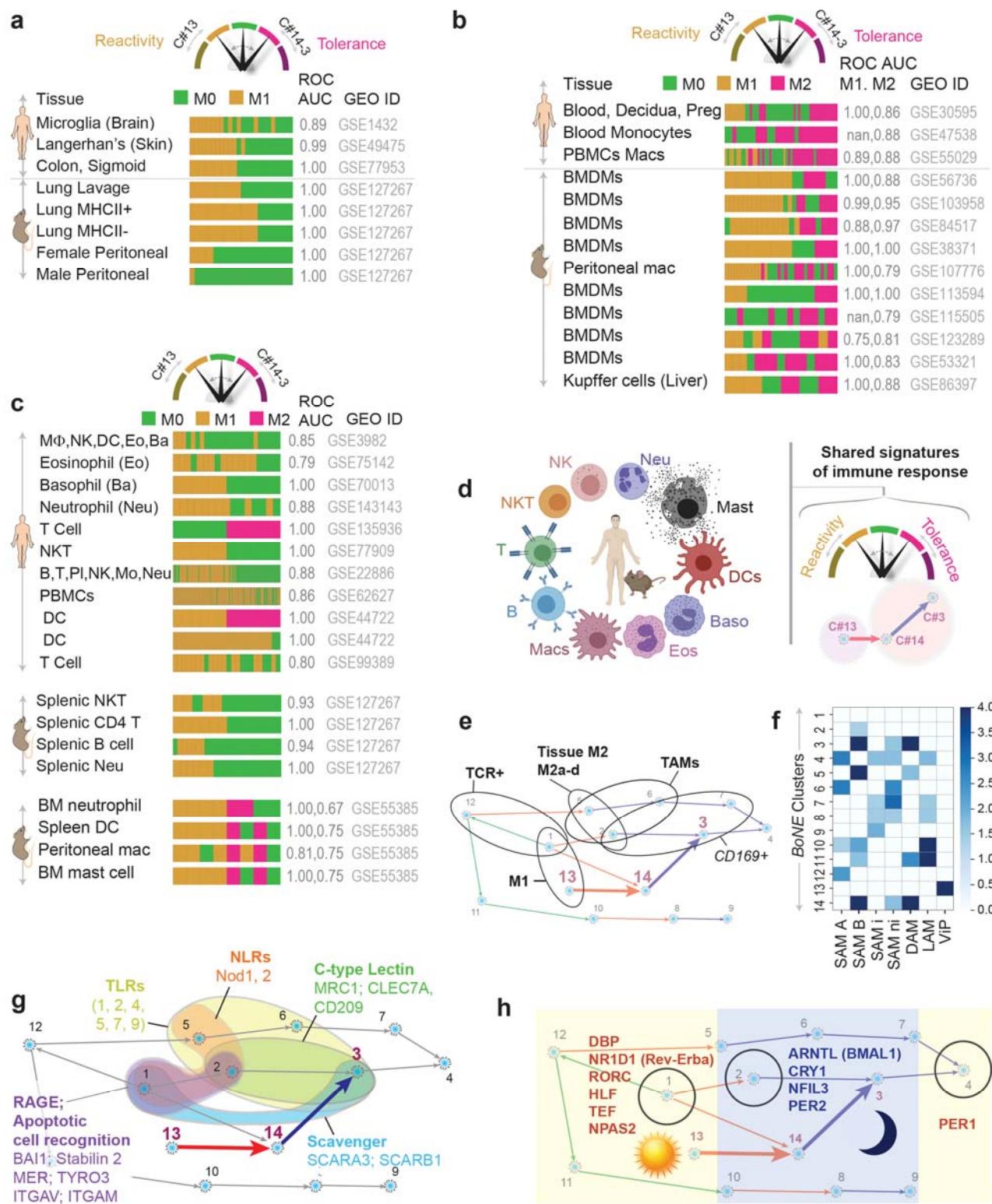
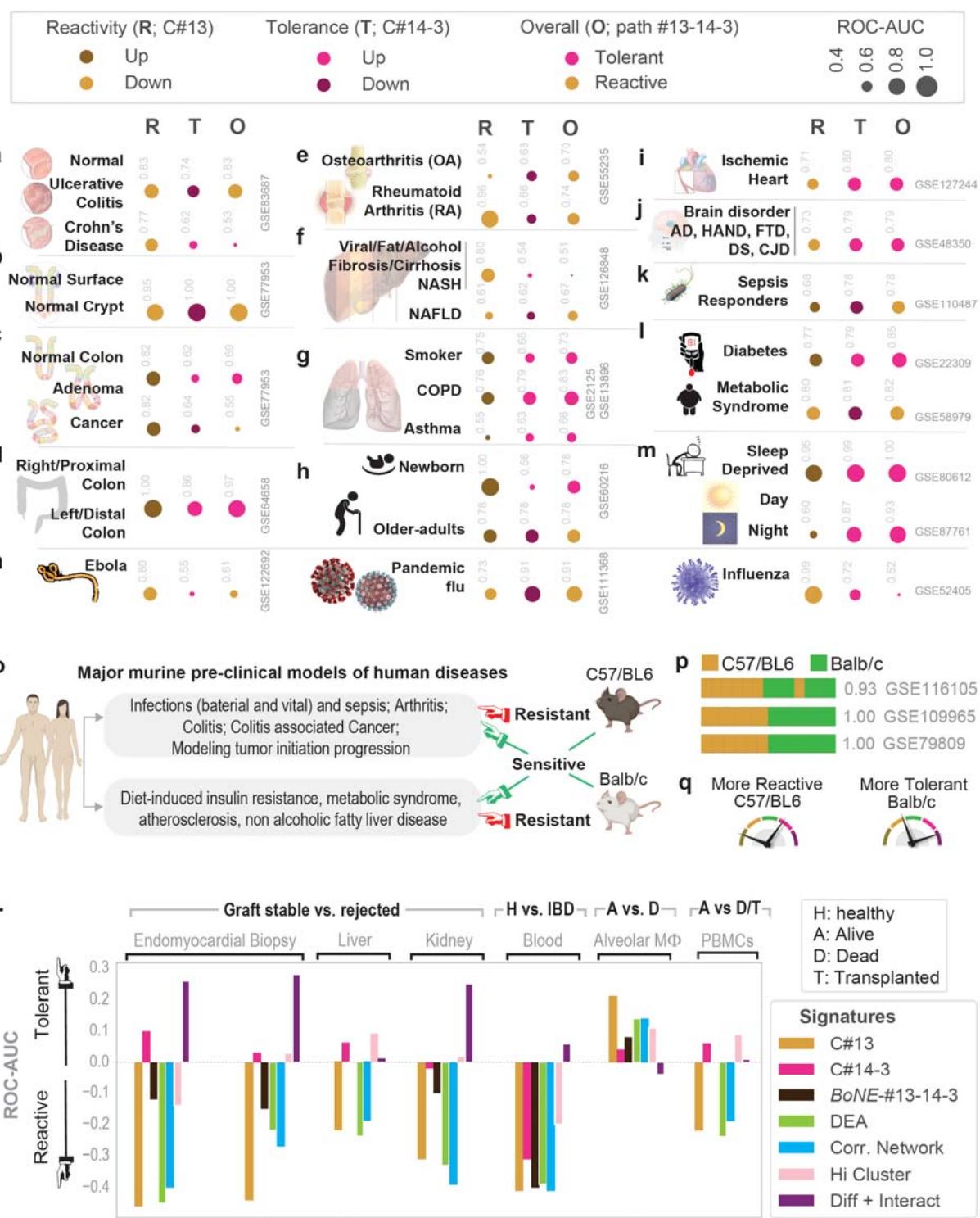


Figure 2. Definitions of “reactivity” and “tolerance” are conserved across tissues, organs, species and diverse immune cell types.

a-b) Validation studies assessing the ability of *SMaRT* genes to classify diverse tissue-resident macrophage datasets from both humans and mice. Performance is measured by computing *ROC AUC* for a logistic regression model.

i2 **c-d)** Validation studies (c) assessing the ability of SMaRT genes to classify active vs inactive states of
i3 diverse immune cell types in both humans and mice. The schematic (d) summarizes findings in c.
i4 **e)** Known macrophage subtypes, as defined by marker genes, are projected on the Boolean map of
i5 macrophage processes.
i6 **f)** Published disease-associated macrophage gene signatures (see **Supplemental Information 2**) are are
i7 analyzed for significant overlaps with various gene clusters in the Boolean map of macrophage processes.
i8 Results are displayed as heatmaps of -Log10(p) values as determined by a hypergeometric test.
i9 **g)** The distribution of pattern recognition receptors (PRRs) [see **Table S2**] within various gene clusters of
i0 the Boolean map of macrophage processes is displayed.
i1 **h)** The positions of key circadian genes that are present in the network are shown on the Boolean map of
i2 macrophage processes. See also **Fig S4**.

i3
i4
i5
i6
i7
i8
i9
i0
i1
i2
i3
i4
i5
i6
i7
i8
i9
i0



11 **Figure 3. Definitions of “reactivity” and “tolerance” detects pathologic macrophage states in**
12 **disease.**
13 Tissue immune microenvironment is visualized (in panels a-n) as bubble plots of ROC-AUC values (radii of
14 circles are based on the ROC-AUC; Key on top) demonstrating the direction of gene regulation (Up vs
15

16 Down; Key on top) for the classification of samples using BoNE-derived gene signatures of either reactive
17 (R; C#13) or tolerant (T; C#14-3) or overall (O; path #13→14→3) in columns. The ROC-AUC values are
18 provided next to the bubble. Sample diversity and sizes are as follows:
19 **a)** IBD; GSE83687, n = 134; 60 Normal, 32 Ulcerative Colitis, 42 Crohn's Disease.
20 **b)** Colon crypt; GSE77953, 6 Normal Surface vs. 7 Normal Crypt base. **c**; Colon cancer: Pooled colon
21 dataset from NCBI GEO; n=170 Normal, 68 Adenomas, 1662 CRCs.
22 **d)** Colon anatomy: Proximal (right) vs distal (left) normal colon from mouse (GSE64423, n = 6) and human
23 (GSE20881, n = 75). See **Figure S5** for violin plots.
24 **e)** Arthritis; GSE55235, GSE55457 and GSE55584, n = 79; 20 Normal, 33 Rheumatoid Arthritis, 26
25 Osteoarthritis.
26 **f)** Hepatitis: GSE89632, n=63; 20 fatty liver, 19 Non-alcoholic steatohepatitis (NASH) and 24 healthy,
27 alcoholic liver disease (GSE94417, GSE94397 and GSE94399, n = 195; 109 Healthy, 13 Alcoholic
28 Hepatitis, 6 Alcoholic fatty liver (AFL), 67 Alcoholic cirrhosis (AC) and viral hepatitis (GSE70779, n=18; 9
29 Pre-treatment, 9 Post-treatment with direct-acting anti-virals).
30 **g)** Chronic lung disease; GSE2125 and GSE13896, n = 115; 39 Non-smoker, 49 Smoker, 15 Asthma, 12,
31 Chronic Obstructive Pulmonary Disease (COPD).
32 **h)** Aging process; GSE60216, n = 9; 3 Newborn babies, 3 Adults, 3 Old-adults.
33 **i)** Cardiomyopathy (CM), ischemic and non-ischemic (I/NI); GSE104423, n = 25 human samples; 14 NICM,
34 11 ICM; GSE127244, n = 24 mouse samples, 16 NICM, 8 ICM.
35 **j)** Neurodegenerative brain disorders; GSE118553 (n = 401) and GSE48350 (n = 253), Alzheimer's disease
36 (AD); GSE35864, HIV-associated neurocognitive disorder (HAND; n = 72); GSE13162, frontotemporal
37 dementia (FTD; n = 56); GSE59630, Down's Syndrome (DS; n = 116); GSE124571, Creutzfeldt-Jakob
38 Disease (CJD; n = 21).
39 **k)** Systemic inflammatory response syndrome (SIRS) and sepsis; GSE63042 (n = 129); GSE110487 (n =
40 31).
41 **l)** Type 2 diabetes and metabolic syndrome; GSE22309 (n = 110), Pre- and post- insulin treatment muscle
42 biopsies from 20 insulin sensitive, 20 insulin resistant, 15 T2DM; GSE98895 (n = 40), PBMCs from 20
43 control, 20 metabolic syndrome.
44 **m)** Sleep deprivation and circadian rhythm; GSE9444, n = 131 mouse brain and liver samples; GSE80612,
45 twin, n = 22 human peripheral blood leukocytes; GSE98582, n = 555 human blood samples; GSE104674, n
46 = 48, 24 healthy and 24 T2DM.
47 **n)** Viral pandemics, such as SARS, MERS, Ebola and others [**N**; numerous datasets, see **Figure S7E**].
48 See **Figure S6** and **S7** for violin plots relevant to panel **e-n**.
49 **o-q)** Schematic (o) summarizes the use of two major mouse strains (C57/B6 and Balb/c) commonly used
50 for modeling two broad categories of human diseases. Bar plots (p) showing sample classification of
51 genetically diverse macrophage datasets based on expression levels of genes in C#13. Schematic (q)
52 summarizes findings.

33 r) The diagnostic potential of various indicated gene signatures were tested on multiple datasets generated
34 from tissues derived from patients with the known clinically relevant outcome, as indicated. In each case,
35 BoNE-derived signatures were compared against four traditional approaches.

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

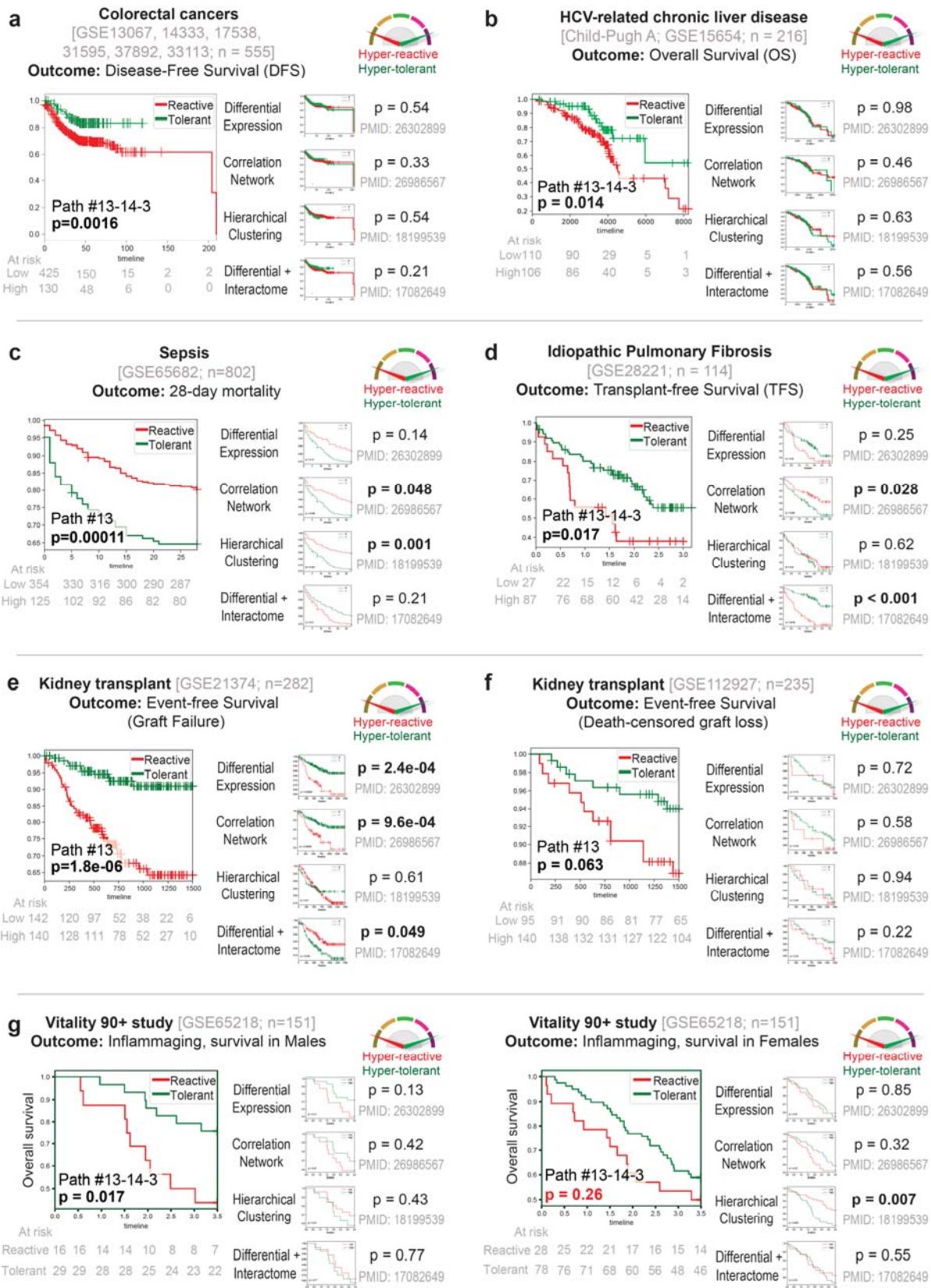


Figure 4. Comparison of the prognostic and diagnostic potentials of *BoNE* vs. other traditional approaches.

a-g) The prognostic performance of the *BoNE*-derived *SMaRT* genes is compared head-to-head with signatures derived from four other traditional approaches across diverse disease conditions (colon cancer,

Ghosh, P., et al., 2022

'7 a; liver fibrosis, b; sepsis, c; idiopathic pulmonary fibrosis, d; kidney transplantation, e-f; inflammaging, g).
'8 Results are displayed as Kaplan Meier (KM) curves with significance (p values) as assessed by log-rank-
'9 test. A composite immune response score is computed using Boolean path #13→14→3 or C#13 alone, as
30 indicated within each KM plot. Low score = “reactive”; high score = “tolerant”. A threshold is computed
31 using StepMiner on the immune score to separate these two states. See also **Fig S7F** for other cancers.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
00
01
02
03
04
05

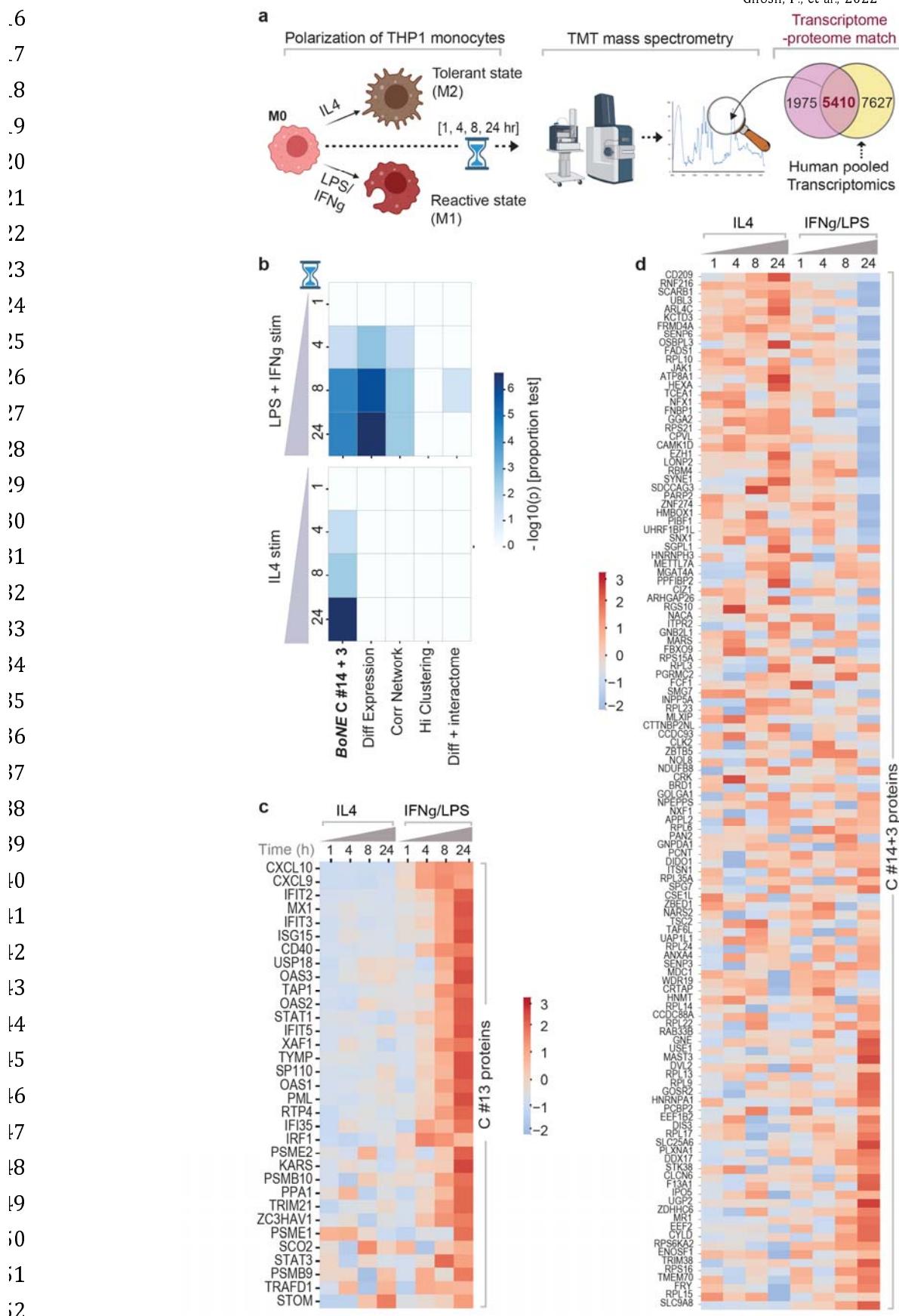
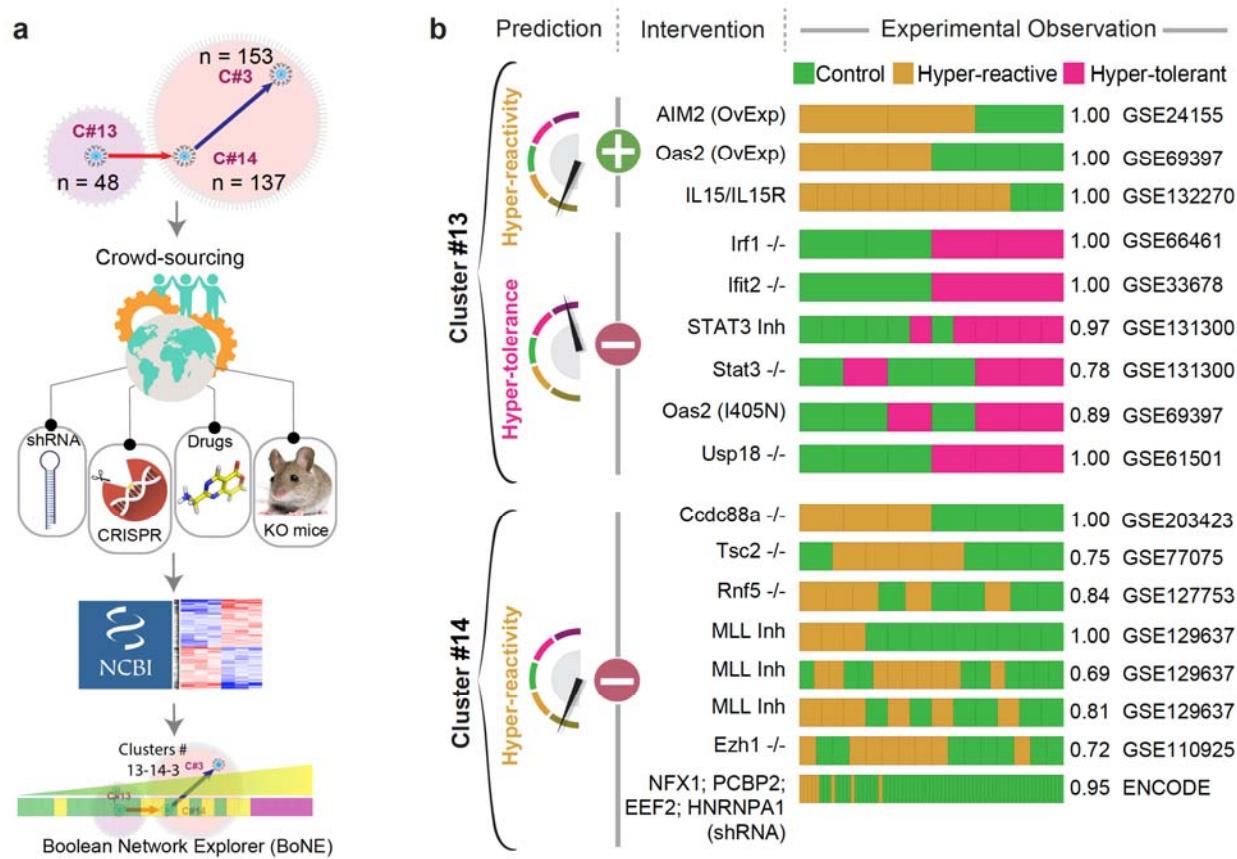


Figure 5. SMaRT genes are differentially translated in polarized macrophages

4 a) Overview of the experimental design. PMA-treated human THP-1 cell lines (M0) are polarized to M1
5 (with LPS and IFNg) or M2 (with IL4), followed by multiplexed mass spectrometry at indicated time points.
6 The fraction of the global macrophage transcriptome (from the pooled 197 macrophage datasets) that is
7 represented in the global macrophage proteome is subsequently assessed for induction (or not) of proteins
8 that are translated by various gene signatures.
9 b) Selectivity of induction of proteins upon LPS and IFNg (top) or IL4 (bottom) stimulation at various
10 timepoints was assessed across different signatures using z-test of proportions and -log(10)p values are
11 displayed as heatmaps.
12 c-d) z normalized Log of intensities of proteins (**Supplemental Information 3**) translated at different time
13 points by genes in C#13 (c) and C#14+3 (d) are displayed as heatmaps.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42



13

14 **Figure 6. Crowd-sourced assessment of the predictive potential of the SMaRT genes.**

15 **a** Overview of our workflow and approach for crowd-sourced validation. Publicly available transcriptomic
 16 datasets reporting the outcome of intervention studies (genetic or pharmacologic manipulations) on
 17 macrophages/monocytes targeting any of the 185 genes in C#13 and C#14 were analyzed using the *BoNE*
 18 platform for macrophage states.
 19 **b** Predicted impact of positive (+, either overexpression [OvExp] or agonist stimulations) or negative (-;
 20 genetic $^{-/-}$ models, shRNA or chemical inhibitors) interventions and observed macrophage polarization
 21 states are shown. Performance is measured by computing *ROC AUC* for a logistic regression model. See
 22 **Table S3.**

23

14 **References**

15 Amit, I., Winter, D.R., and Jung, S. (2016). The role of the local environment and epigenetics in shaping
16 macrophage identity and their effect on tissue homeostasis. *Nat Immunol* 17, 18-25.
17
18 Azad, T.D., Donato, M., Heylen, L., Liu, A.B., Shen-Orr, S.S., Sweeney, T.E., Maltzman, J.S., Naesens, M.,
19 and Khatri, P. (2018). Inflammatory macrophage-associated 3-gene signature predicts subclinical allograft
20 injury and graft survival. *JCI Insight* 3.
21
22 Barrett, T., Suzek, T.O., Troup, D.B., Wilhite, S.E., Ngau, W.C., Ledoux, P., Rudnev, D., Lash, A.E.,
23 Fujibuchi, W., and Edgar, R. (2005). Ncbi geo: Mining millions of expression profiles--database and tools.
24 *Nucleic Acids Res* 33, D562-566.
25
26 Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy,
27 K.H., Sherman, P.M., Holko, M., et al. (2013). Ncbi geo: Archive for functional genomics data sets--update.
28 *Nucleic Acids Res* 41, D991-995.
29
30 Becker, M., De Bastiani, M.A., Parisi, M.M., Guma, F.T., Markoski, M.M., Castro, M.A., Kaplan, M.H.,
31 Barbe-Tuana, F.M., and Klamt, F. (2015). Integrated transcriptomics establish macrophage polarization
32 signatures and have potential applications for clinical health and disease. *Sci Rep* 5, 13351.
33
34 Bell, L.C., Pollara, G., Pascoe, M., Tomlinson, G.S., Lehloenya, R.J., Roe, J., Meldau, R., Miller, R.F.,
35 Ramsay, A., Chain, B.M., et al. (2016). In vivo molecular dissection of the effects of hiv-1 in active
36 tuberculosis. *PLoS Pathog* 12, e1005469.
37
38 Bergler, T., Jung, B., Bourier, F., Kuhne, L., Banas, M.C., Rummele, P., Wurm, S., and Banas, B. (2016).
39 Infiltration of macrophages correlates with severity of allograft rejection and outcome in human kidney
40 transplantation. *PLoS One* 11, e0156900.
41
42 Byrne, A.J., Maher, T.M., and Lloyd, C.M. (2016). Pulmonary macrophages: A new therapeutic pathway in
43 fibrosing lung disease? *Trends Mol Med* 22, 303-316.
44
45 Champy, M.F., Selloum, M., Zeitler, V., Caradec, C., Jung, B., Rousseau, S., Pouilly, L., Sorg, T., and
46 Auwerx, J. (2008). Genetic background determines metabolic phenotypes in the mouse. *Mamm Genome*
47 19, 318-331.
48
49 Chavez-Galan, L., Olleros, M.L., Vesin, D., and Garcia, I. (2015). Much more than m1 and m2
50 macrophages, there are also cd169(+) and tcr(+) macrophages. *Front Immunol* 6, 263.
51
52 Cho, J.H. (2008). The genetics and immunopathogenesis of inflammatory bowel disease. *Nat Rev Immunol*
53 8, 458-466.
54
55 Coates, P.J., Rundle, J.K., Lorimore, S.A., and Wright, E.G. (2008). Indirect macrophage responses to
56 ionizing radiation: Implications for genotype-dependent bystander signaling. *Cancer Res* 68, 450-456.
57
58 Consortium, E.P. (2012). An integrated encyclopedia of DNA elements in the human genome. *Nature* 489,
59 57-74.
60
61 Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. *Nature* 420, 860-867.
62
63 Dabydeen, S.A., Desai, A., and Sahoo, D. (2019). Unbiased boolean analysis of public gene expression
64 data for cell cycle gene identification. *Mol Biol Cell* 30, 1770-1779.
65
66 Dang, D., Taheri, S., Das, S., Ghosh, P., Prince, L.S., and Sahoo, D. (2020). Computational approach to
67 identifying universal macrophage biomarkers. *Frontiers in Physiology* 11.
68
69 Davis, C.A., Hitz, B.C., Sloan, C.A., Chan, E.T., Davidson, J.M., Gabdank, I., Hilton, J.A., Jain, K.,
70 Baymuradov, U.K., Narayanan, A.K., et al. (2018). The encyclopedia of DNA elements (encode): Data
71 portal update. *Nucleic Acids Res* 46, D794-D801.
72
73 Drewes, J.L., Housseau, F., and Sears, C.L. (2016). Sporadic colorectal cancer: Microbial contributors to
74 disease prevention, development and therapy. *Br J Cancer* 115, 273-280.
75
76 Duffield, J.S., Forbes, S.J., Constandinou, C.M., Clay, S., Partolina, M., Vuthoori, S., Wu, S., Lang, R., and
77 Iredale, J.P. (2005). Selective depletion of macrophages reveals distinct, opposing roles during liver injury
78 and repair. *J Clin Invest* 115, 56-65.
79

'0 Early, J.O., and Curtis, A.M. (2016). Immunometabolism: Is it under the eye of the clock? *Semin Immunol* 28, 478-490.
'1
'2
'3 Eckel-Mahan, K., and Sassone-Corsi, P. (2013). Metabolism and the circadian clock converge. *Physiol Rev* 93, 107-135.
'4
'5
'6 Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene expression omnibus: Ncbi gene expression and
'7 hybridization array data repository. *Nucleic Acids Res* 30, 207-210.
'8
'9 Ehling, J., Bartneck, M., Wei, X., Gremse, F., Fech, V., Mockel, D., Baeck, C., Hittatiya, K., Eulberg, D.,
'0 Luedde, T., et al. (2014). Ccl2-dependent infiltrating macrophages promote angiogenesis in progressive
'1 liver fibrosis. *Gut* 63, 1960-1971.
'2
'3 Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B.,
'4 Korninger, F., May, B., et al. (2018). The reactome pathway knowledgebase. *Nucleic Acids Res* 46, D649-
'5 D655.
'6
'7 George, T.J., Arnaoutakis, G.J., and Shah, A.S. (2011). Lung transplant in idiopathic pulmonary fibrosis.
'8 *Arch Surg* 146, 1204-1209.
'9
'10 Ginhoux, F., Schultze, J.L., Murray, P.J., Ochando, J., and Biswas, S.K. (2016). New insights into the
'11 multidimensional concept of macrophage ontogeny, activation and function. *Nat Immunol* 17, 34-40.
'12
'13 Glass, C.K., and Natoli, G. (2016). Molecular control of activation and priming in macrophages. *Nat
'14 Immunol* 17, 26-33.
'15
'16 Gordon, S., and Pluddemann, A. (2017). Tissue macrophages: Heterogeneity and functions. *BMC Biol* 15,
'17 53.
'18
'19 He, L., Jhong, J.H., Chen, Q., Huang, K.Y., Strittmatter, K., Kreuzer, J., DeRan, M., Wu, X., Lee, T.Y.,
'20 Slavov, N., et al. (2021). Global characterization of macrophage polarization mechanisms and identification
'21 of m2-type polarization inhibitors. *Cell Rep* 37, 109955.
'22
'23 Heinrichs, D., Knauel, M., Offermanns, C., Berres, M.L., Nellen, A., Leng, L., Schmitz, P., Bucala, R.,
'24 Trautwein, C., Weber, C., et al. (2011). Macrophage migration inhibitory factor (mif) exerts antifibrotic
'25 effects in experimental liver fibrosis via cd74. *Proceedings of the National Academy of Sciences of the
'26 United States of America* 108, 17444-17449.
'27
'28 Howes, A., Taubert, C., Blankley, S., Spink, N., Wu, X., Graham, C.M., Zhao, J., Saraiva, M., Ricciardi-
'29 Castagnoli, P., Bancroft, G.J., et al. (2016). Differential production of type i ifn determines the reciprocal
'30 levels of il-10 and proinflammatory cytokines produced by c57bl/6 and balb/c macrophages. *J Immunol*
'31 197, 2838-2853.
'32
'33 Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., and Speed, T.P. (2003a). Summaries of
'34 affymetrix genechip probe level data. *Nucleic Acids Res* 31, e15.
'35
'36 Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., and Speed, T.P.
'37 (2003b). Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
'38 *Biostatistics* 4, 249-264.
'39
'40 Ishida, B.Y., Blanche, P.J., Nichols, A.V., Yashar, M., and Paigen, B. (1991). Effects of atherogenic diet
'41 consumption on lipoproteins in mouse strains c57bl/6 and c3h. *J Lipid Res* 32, 559-568.
'42
'43 Jaitin, D.A., Adlung, L., Thaiss, C.A., Weiner, A., Li, B., Descamps, H., Lundgren, P., Bleriot, C., Liu, Z.,
'44 Deczkowska, A., et al. (2019). Lipid-associated macrophages control metabolic homeostasis in a trem2-
'45 dependent manner. *Cell* 178, 686-698.e614.
'46
'47 Kazankov, K., Barrera, F., Moller, H.J., Bibby, B.M., Vilstrup, H., George, J., and Gronbaek, H. (2014).
'48 Soluble cd163, a macrophage activation marker, is independently associated with fibrosis in patients with
'49 chronic viral hepatitis b and c. *Hepatology* 60, 521-530.
'50
'51 Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., David, E.,
'52 Baruch, K., Lara-Astaiso, D., Toth, B., et al. (2017). A unique microglia type associated with restricting
'53 development of alzheimer's disease. *Cell* 169, 1276-1290.e1217.
'54

Ghosh, P., et al., 2022

5 Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., Jung, S., and Amit, I.
6 (2014). Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. *Cell*
7 159, 1312-1326.

9 Law, C.W., Alhamdoosh, M., Su, S., Dong, X., Tian, L., Smyth, G.K., and Ritchie, M.E. (2016). Rna-seq
10 analysis is easy as 1-2-3 with limma, glimma and edger. *F1000Res* 5.

12 Li, B., and Dewey, C.N. (2011). Rsem: Accurate transcript quantification from rna-seq data with or without a
13 reference genome. *BMC Bioinformatics* 12, 323.

15 Li, B., Ruotti, V., Stewart, R.M., Thomson, J.A., and Dewey, C.N. (2010). Rna-seq gene expression
16 estimation with read mapping uncertainty. *Bioinformatics* 26, 493-500.

18 Link, V.M., Duttke, S.H., Chun, H.B., Holtman, I.R., Westin, E., Hoeksema, M.A., Abe, Y., Skola, D.,
19 Romanoski, C.E., Tao, J., et al. (2018). Analysis of genetically diverse macrophages reveals local and
20 domain-wide mechanisms that control transcription factor binding and function. *Cell* 173, 1796-1809 e1717.

22 Liu, Y., and Cao, X. (2015). The origin and function of tumor-associated macrophages. *Cell Mol Immunol*
23 12, 1-4.

25 Liu, Y., Kloc, M., and Li, X.C. (2016). Macrophages as effectors of acute and chronic allograft injury. *Curr
26 Transplant Rep* 3, 303-312.

28 MacParland, S.A., Liu, J.C., Ma, X.Z., Innes, B.T., Bartczak, A.M., Gage, B.K., Manuel, J., Khuu, N.,
29 Echeverri, J., Linares, I., et al. (2018). Single cell rna sequencing of human liver reveals distinct intrahepatic
30 macrophage populations. *Nat Commun* 9, 4383.

32 Mainou-Fowler, T., MacGowan, A.P., and Postlethwaite, R. (1988). Virulence of listeria spp.: Course of
33 infection in resistant and susceptible mice. *J Med Microbiol* 27, 131-140.

35 Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the human
36 monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression.
37 *J Immunol* 177, 7303-7311.

39 Mestas, J., and Hughes, C.C. (2004). Of mice and not men: Differences between mouse and human
40 immunology. *J Immunol* 172, 2731-2738.

42 Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J., and Hill, A.M. (2000). M-1/m-2 macrophages and the
43 th1/th2 paradigm. *J Immunol* 164, 6166-6173.

45 Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying
46 mammalian transcriptomes by rna-seq. *Nat Methods* 5, 621-628.

48 Murray, P.J., and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. *Nat Rev
49 Immunol* 11, 723-737.

51 Nevalainen, T., Kananen, L., Marttila, S., Jylha, M., Hervonen, A., Hurme, M., and Jylhava, J. (2015).
52 Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: The
53 vitality 90+ study. *Age (Dordr)* 37, 9814.

55 Nosratty, L., Enroth, L., Raitanen, J., Hervonen, A., and Jylha, M. (2015). Do successful agers live longer?
56 The vitality 90+ study. *J Aging Health* 27, 35-53.

58 Okabe, Y., and Medzhitov, R. (2016). Tissue biology perspective on macrophages. *Nat Immunol* 17, 9-17.

60 Pachter, L. (2011). Models for transcript quantification from rna-seq. In *arXiv e-prints*.

62 Pandey, S., and Sahoo, D. (2019). Identification of gene expression logical invariants in arabidopsis. *Plant
63 Direct* 3, e00123.

65 Pena, O.M., Hancock, D.G., Lyle, N.H., Linder, A., Russell, J.A., Xia, J., Fjell, C.D., Boyd, J.H., and
66 Hancock, R.E. (2014). An endotoxin tolerance signature predicts sepsis and organ dysfunction at initial
67 clinical presentation. *EBioMedicine* 1, 64-71.

69 Peters, L.A., Perrigoue, J., Mortha, A., Iuga, A., Song, W.M., Neiman, E.M., Llewellyn, S.R., Di Narzo, A.,
70 Kidd, B.A., Telesco, S.E., et al. (2017). A functional genomics predictive network model identifies regulators
71 of inflammatory bowel disease. *Nat Genet* 49, 1437-1449.

3 Pollard, J.W. (2009). Trophic macrophages in development and disease. *Nat Rev Immunol* 9, 259-270.
4

5 Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis.
6 *Cell* 141, 39-51.
7

8 Ramachandran, P., Dobie, R., Wilson-Kanamori, J.R., Dora, E.F., Henderson, B.E.P., Luu, N.T., Portman,
9 J.R., Matchett, K.P., Brice, M., Marwick, J.A., et al. (2019). Resolving the fibrotic niche of human liver
0 cirrhosis at single-cell level. *Nature* 575, 512-518.
1

2 Ravishankar, B., Shinde, R., Liu, H., Chaudhary, K., Bradley, J., Lemos, H.P., Chandler, P., Tanaka, M.,
3 Munn, D.H., Mellor, A.L., et al. (2014). Marginal zone cd169+ macrophages coordinate apoptotic cell-driven
4 cellular recruitment and tolerance. *Proceedings of the National Academy of Sciences of the United States
5 of America* 111, 4215-4220.
6

7 Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). Edger: A bioconductor package for differential
8 expression analysis of digital gene expression data. *Bioinformatics* 26, 139-140.
9

10 Rosenthal, N., and Brown, S. (2007). The mouse ascending: Perspectives for human-disease models. *Nat
11 Cell Biol* 9, 993-999.
12

13 Sacks, D., and Noben-Trauth, N. (2002). The immunology of susceptibility and resistance to leishmania
14 major in mice. *Nat Rev Immunol* 2, 845-858.
15

16 Sahoo, D., Dill, D.L., Gentles, A.J., Tibshirani, R., and Plevritis, S.K. (2008). Boolean implication networks
17 derived from large scale, whole genome microarray datasets. *Genome Biol* 9, R157.
18

19 Sahoo, D., Dill, D.L., Tibshirani, R., and Plevritis, S.K. (2007). Extracting binary signals from microarray
20 time-course data. *Nucleic Acids Res* 35, 3705-3712.
1

22 Sahoo, D., Seita, J., Bhattacharya, D., Inlay, M.A., Weissman, I.L., Plevritis, S.K., and Dill, D.L. (2010).
23 Midreg: A method of mining developmentally regulated genes using boolean implications. *Proc Natl Acad
24 Sci U S A* 107, 5732-5737.
25

26 Saunderson, S.C., Dunn, A.C., Crocker, P.R., and McLellan, A.D. (2014). Cd169 mediates the capture of
27 exosomes in spleen and lymph node. *Blood* 123, 208-216.
28

29 Schluter, D., Deckert-Schluter, M., Lorenz, E., Meyer, T., Rollinghoff, M., and Bogdan, C. (1999). Inhibition
30 of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in toxoplasma gondii-
31 susceptible c57bl/6 mice but does not reactivate the latent disease in t. Gondii-resistant balb/c mice. *J
32 Immunol* 162, 3512-3518.
33

34 Steinbach, E.C., and Plevy, S.E. (2014). The role of macrophages and dendritic cells in the initiation of
35 inflammation in ibd. *Inflamm Bowel Dis* 20, 166-175.
36

37 Stout, R.D., and Suttles, J. (2004). Functional plasticity of macrophages: Reversible adaptation to changing
38 microenvironments. *J Leukoc Biol* 76, 509-513.
39

40 Sunami, Y., Leithauser, F., Gul, S., Fiedler, K., Guldiken, N., Espenlaub, S., Holzmann, K.H., Hipp, N.,
41 Sindilaru, A., Luedde, T., et al. (2012). Hepatic activation of ikk/nfkappab signaling induces liver fibrosis via
42 macrophage-mediated chronic inflammation. *Hepatology* 56, 1117-1128.
43

44 Toye, A.A., Lippiat, J.D., Proks, P., Shimomura, K., Bentley, L., Hugill, A., Mijat, V., Goldsworthy, M., Moir,
45 L., Haynes, A., et al. (2005). A genetic and physiological study of impaired glucose homeostasis control in
46 c57bl/6j mice. *Diabetologia* 48, 675-686.
47

48 Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). Tophat: Discovering splice junctions with rna-seq.
49 *Bioinformatics* 25, 1105-1111.
50

51 Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold,
52 B.J., and Pachter, L. (2010). Transcript assembly and quantification by rna-seq reveals unannotated
53 transcripts and isoform switching during cell differentiation. *Nat Biotechnol* 28, 511-515.
54

55 Wagner, G.P., Kin, K., and Lynch, V.J. (2012). Measurement of mrna abundance using rna-seq data: Rpkm
56 measure is inconsistent among samples. *Theory Biosci* 131, 281-285.
57

58 Weiss, W.A., Taylor, S.S., and Shokat, K.M. (2007). Recognizing and exploiting differences between rnai
59 and small-molecule inhibitors. *Nat Chem Biol* 3, 739-744.
60

Ghosh, P., et al., 2022

'1 Zhou, L., Cao, X., Fang, J., Li, Y., and Fan, M. (2015). Macrophages polarization is mediated by the
'2 combination of prr ligands and distinct inflammatory cytokines. *Int J Clin Exp Pathol* 8, 10964-10974.
'3
'4
'5

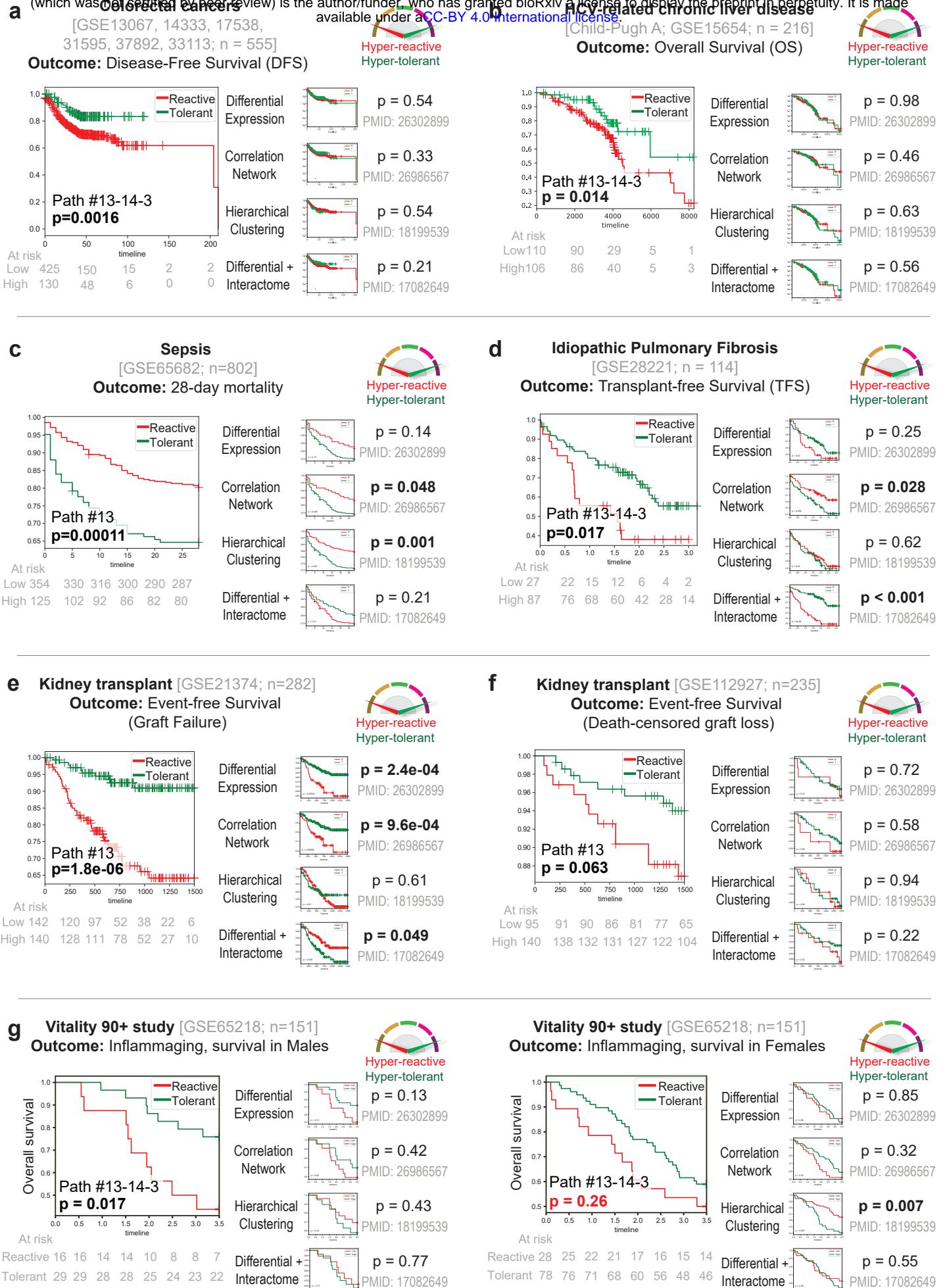
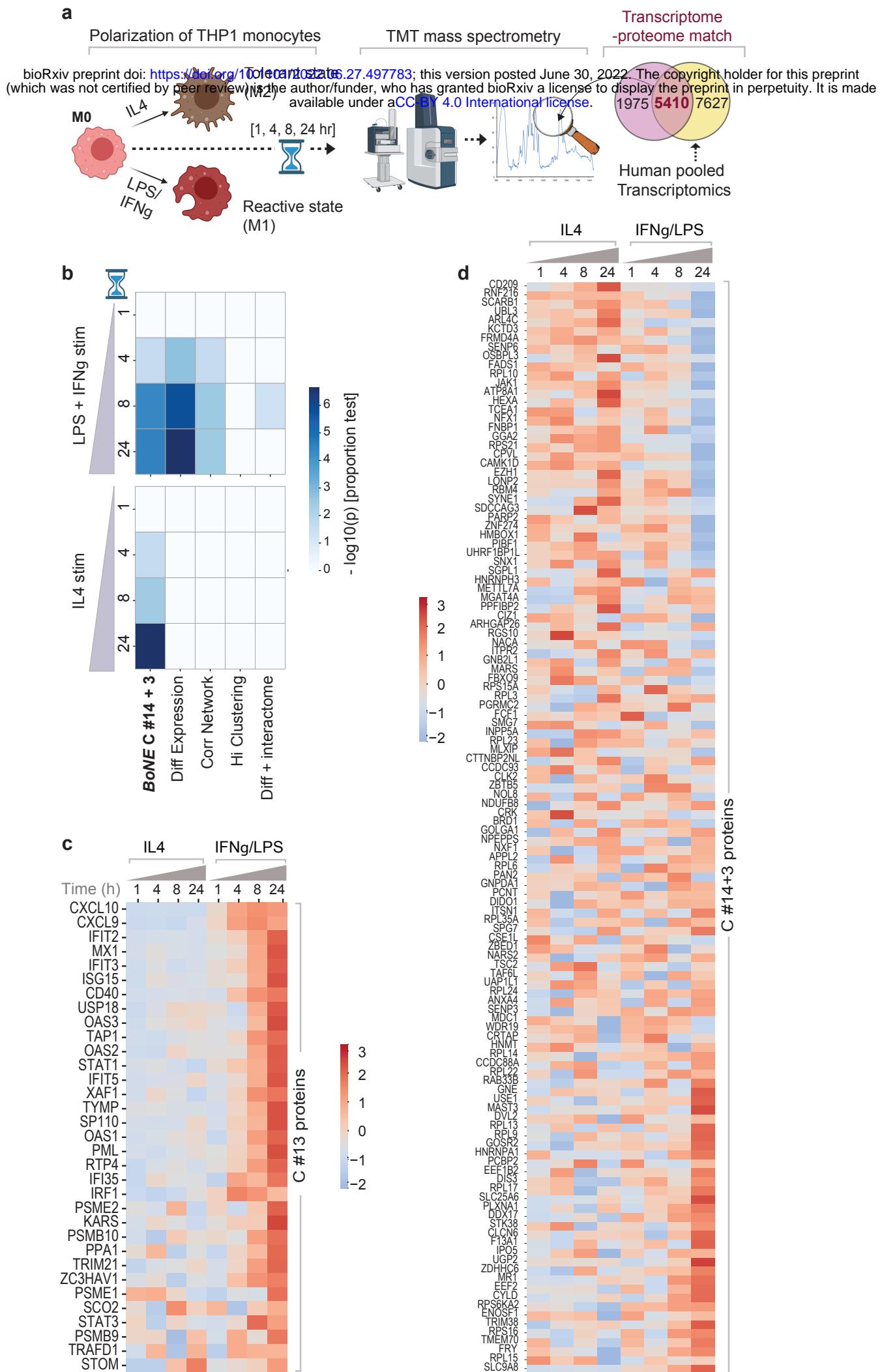
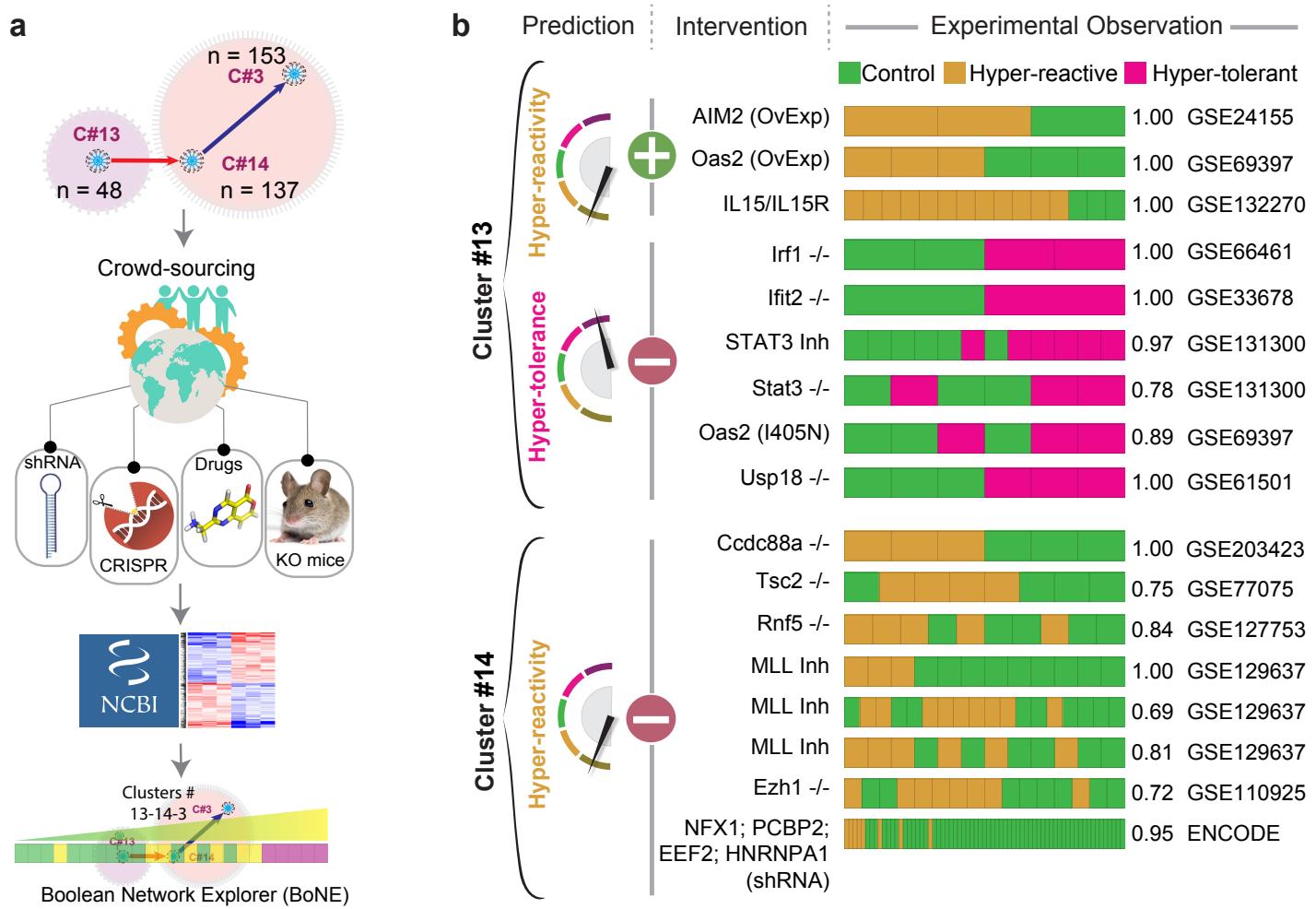
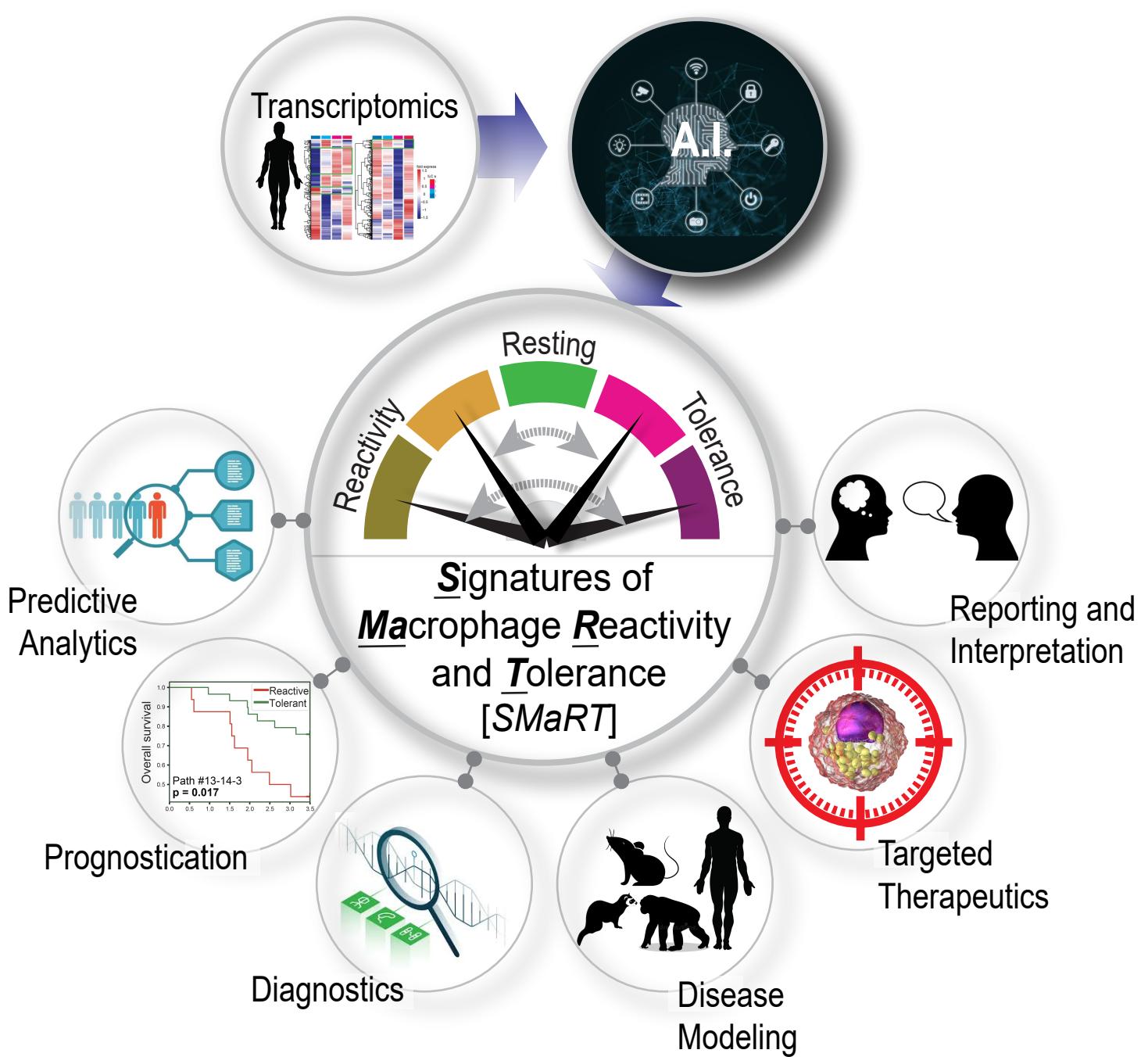


Figure 4







Graphic Abstract

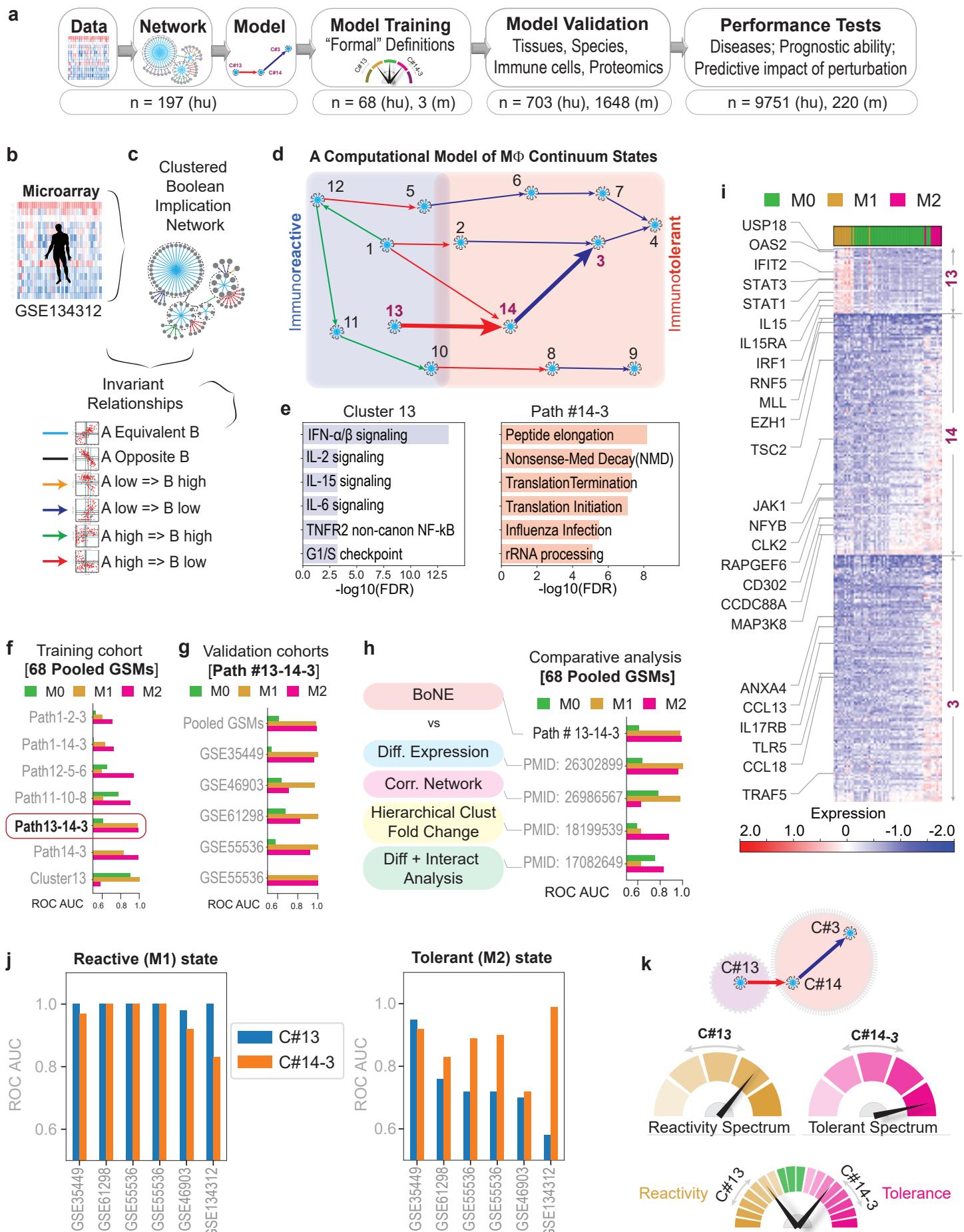


Figure 1

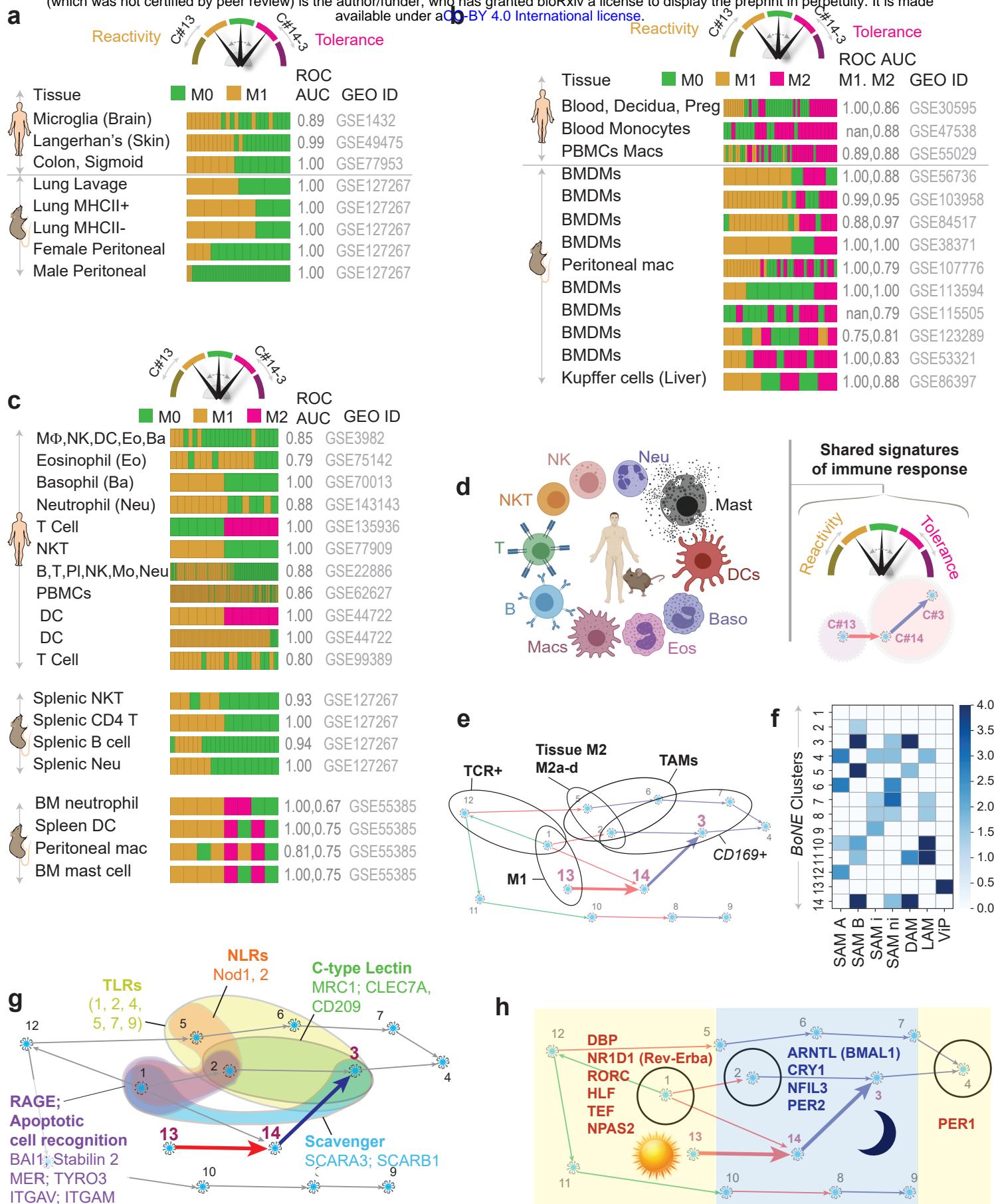


Figure 2

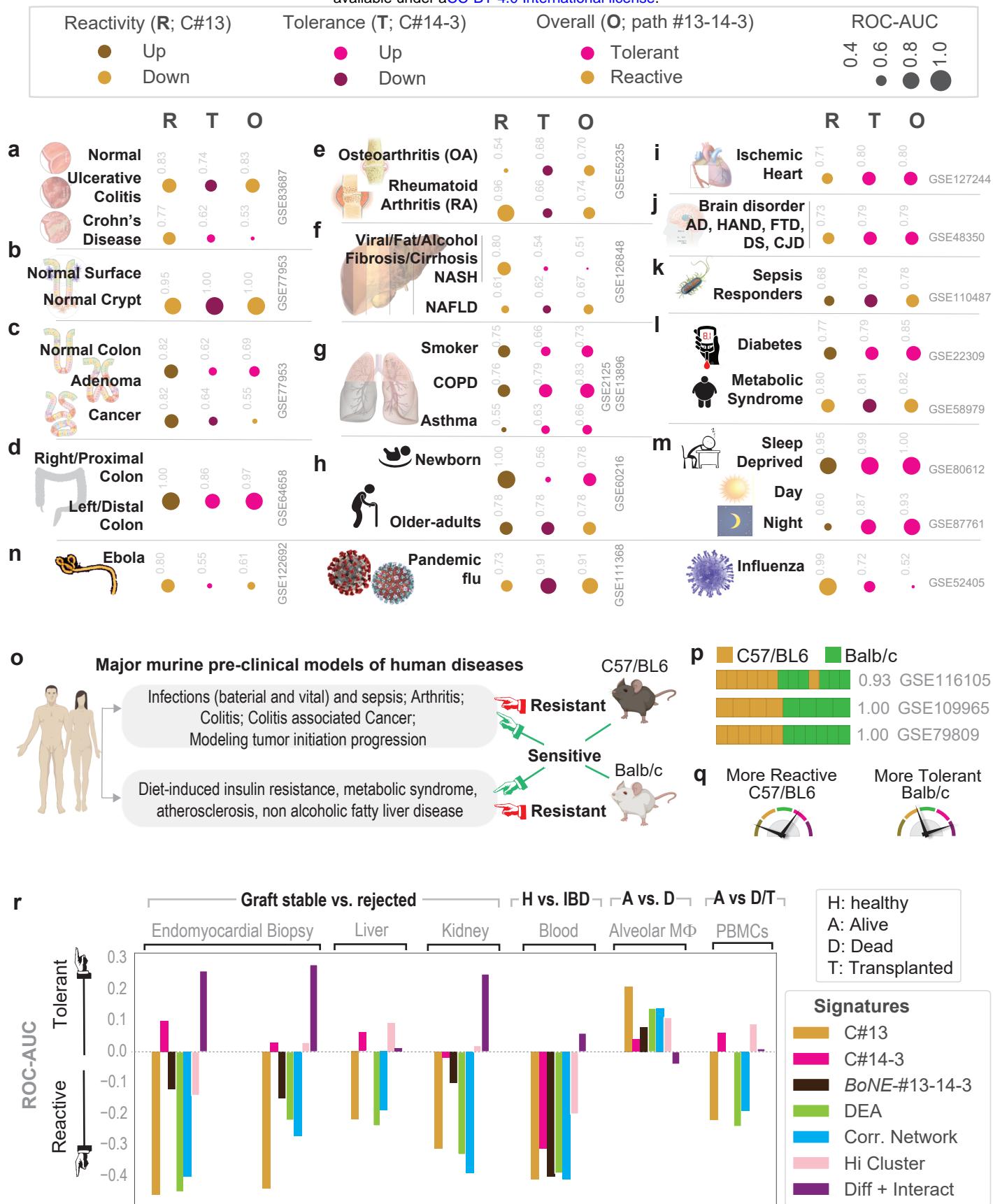


Figure 3