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Summary/Abstract (n = 170)

A continuum of macrophage polarization states is essential for the initiation, maintenance, and resolution
of inflammation. We built a network using pooled human macrophage transcriptomic datasets and used
machine learning algorithms to identify the path of such continuum states. One path, comprised of 338
genes emerged as the best; it accurately identified both physiologic and pathologic spectra of “reactivity”
and “tolerance”, and remained relevant across tissues, organs, species and immune cells (> 12,500 diverse
datasets). This 338-gene signature identified macrophage polarization states in physiology and across
diverse human diseases and objectively analyzed the appropriateness of mice as pre-clinical models for
such diseases. The signature consistently outperformed conventional signatures in the degree of
transcriptome-proteome overlap and in prognosticating outcomes across diverse acute and chronic
diseases, e.g., sepsis, liver fibrosis, aging and cancers. Crowd-sourced genetic and pharmacologic studies
confirmed that model-rationalized interventions trigger predictable macrophage fates. These findings
provide a formal and universally relevant definition of macrophage states and a predictive framework for the
scientific community to develop macrophage-targeted precision diagnostics and therapeutics.
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INTRODUCTION

Macrophages are complex; as sentinel cells of the innate immune system, they are found in various organs
and their dysregulated activation can directly impact organ functions and the outcome of all diseases

(Murray and Wynn 2011; Pollard 2009). Macrophages were initially classified as M1 (the classically

activated macrophages) and M2 (the alternatively activated macrophages) based on their functions at the

extremes of polarization states (Mills et al. 2000). However, the M1/M2 nomenclature is considered as too

simplistic; it fails to describe the diverse, polyfunctional and plastic cells, and the myriad of continuum
states that they adopt in the tissue at steady-state and during disease (Amit et al. 2016; Ginhoux et al.
2016; Glass and Natoli 2016; Okabe and Medzhitov 2016). To cope with this degree of diversity and

plasticity, several definitions of macrophage subtypes have emerged, each representing specialized

contexts, e.g., TAMs, tumor-associated macrophages (Qian and Pollard 2010); LAMs, lipid-associated

macrophages in atherosclerosis (Jaitin et al. 2019); DAMs, disease-associated microglia in

neurodegenerative disorders (Keren-Shaul et al. 2017); SAMs, scar-associated macrophages in liver

fibrosis (Duffield et al. 2005; MacParland et al. 2018; Ramachandran et al. 2019). These definitions were

geared to identify divergent markers, spatial localization, origin, and functional pathways associated with
macrophages during disease; however, they fall short in predictive or prognostic abilities.

We sought to create and validate a comprehensive model of macrophage processes for defining,
tracking, and even predicting macrophage fate after perturbation (see Fig l1a, S1A for workflow outline).
We hypothesized that such a model might inspire formal definitions for macrophage polarization states that
are reflective of fundamental processes and maintain relevance across tissues, organs, diseases and
species. In addition, it may also rationalize diagnostics and therapeutics to detect and reset, respectively,
deranged macrophage states in disease. We show that such formal definition(s) of macrophage states is

not only possible, but also provide evidence for their usefulness in prediction and prognostication.
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RESULTS AND DISCUSSION

A computational model of continuum states in macrophage processes

We chose a Boolean approach to build transcriptomic network (Sahoo et al. 2008); this approach has been

used to create maps of evolving cellular states along any disease continuum and identify cellular states in
diverse tissues and contexts with high degrees of precision (see detailed Methods). The Boolean approach
relies on invariant relationships that are conserved despite heterogeneity in the samples used for the
analysis. Invariant relationships among pairs of genes that are conserved across samples representative of
maximum possible diversity, i.e., irrespective of their origin (normal or disease), laboratories/cohorts,
different perturbations, are assumed to be fundamentally important for any given process.

For model training and development, we used a pooled all-human microarray dataset that included

197 manually annotated heterogeneous macrophage datasets from GEO (GSE134312 (Dang et al. 2020);
Fig la-c; Fig S1A-B; see Supplemental Information 1 for catalog of datasets). These datasets contained
primary tissue-derived macrophages (both healthy and diseased tissues) and cultured macrophage cell
lines (e.g., THP1), either untreated or treated with diverse sets of ligands that are known to induce either
M1 (n = 13) or M2 (n = 8) polarized states (see Table S1).

A graph (Fig 1d; Fig S1C; Fig S2A) is built, comprised of gene clusters (nodes) connected to each
other using Boolean implication relationships (edges). The network displayed scale-free properties, as
expected (Fig S1D). We oriented ourselves to the resultant network by querying and locating the known
‘M1/M2’ samples; the ‘M1’ samples segregated towards one end, and ‘M2’ samples on the other, implying
that the paths of connected clusters within the resultant network represent a continuum of cellular states in
macrophages within the immunologic spectrum (Fig S1E-G). Reactome pathway analyses (Fabregat et al.
2018) of each cluster along the top continuum paths revealed a multitude of cellular processes that are
impacted during macrophage polarization (Fig le; Gene clusters and reactome pathways can be queried
at: http://hegemon.ucsd.edu/SMaRT)/).

Identification of signatures of macrophage ‘reactivity’ and ‘tolerance’ (SMaRT)

Using machine learning approaches, various interconnected gene clusters (i.e., Boolean paths) were
assessed for their ability to accurately classify the samples (based on the genes in the clusters and
computing a weighted average of gene expression values outlined in Fig S2B) (Fig 1f). A multivariate
analysis of the top five Boolean paths revealed that the path connecting clusters(C)#13—14—3 is the best
(p < 0.001) at discriminating M1 (ROC-AUC 0.98) and M2 (ROC-AUC 0.99) (Fig 1f; Fig S2C). Path
#13—14—3 was subsequently validated in five other independent datasets (Fig 1g). A comparative
analysis of #13—14—3 path vs. other traditional approaches, e.g., Differential Expression (Becker et al.
2015), Correlation Network (Becker et al. 2015), Hierarchical Clustering (Coates et al. 2008) and
Differential and interactome analyzes (Martinez et al. 2006) showed the superiority of the BoNE-derived

path in separating M0-M1-M2 states. The Boolean path matched differential expression in its ability to
distinguish M1 state, while exceeding the remaining traditional approaches (Fig 1h). A heatmap of the

pattern of gene expression in each cluster in MO-M1-M2 states is shown in Fig 1i.
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Furthermore, C#13 predicted M1 perfectly (ROC-AUC = 1.0); the path #14—3 predicted M2 close to

perfection (ROC-AUC = ranging from 0.80 to 1.00) in all cohorts tested (Fig 1j). This indicates that while
the path #13—14—3 is the most accurate path across all human macrophage-derived datasets collected
and analyzed, C#13 and the path #14—3 carry relevant information on macrophage states independently
of each other. C#13 is associated with M1-like state and expression of these genes is predicted to reflect
the extent of “immunoreactivity” of macrophages. Path #14—3 is associated with a M2-like state and
expression of these genes is predicted to reflect the extent of “immunotolerance”. We define the two distinct
macrophage polarization states in physiology as “reactive” and “tolerant” based on basal C#13 and #14—3
scores, respectively (Fig. 1k). Four additional macrophage states could also exist, presumably in disease
states, i.e., hyperreactive (high C#13), hypertolerant (high #14—3), hyporeactive (low C#13), and

hypotolerant (low #14—3) (Fig. 1k). Henceforth, we refer to these genes as signatures of macrophage

reactivity and tolerance, abbreviated as ‘SMaRT (See http://hegemon.ucsd.edu/SMaRT/ and
Supplemental Information 2 for the list of genes).

We tested the independence of M1/M2 signatures using single cell RNASeq dataset GSE150708
(human), GSE117176 (mouse), where we atrtificially created pseudobulk samples using various mixtures of
M1 and M2 cells (Fig S2D-H). M1 and M2 cells were categorized as both tolerant and reactive using C#13
and path #14-3 signatures (Fig S2D). Mouse single cell dataset GSE117176 showed the same patterns
after revising the genes from path #14-3 as many genes were not captured by scRNASeq (Fig S2E-H).

SMaRT genes are relevant across tissues, organs, species and immune cells

We found that the path #13—14—3 successfully identified M1/M2-polarization states in diverse tissue-
resident macrophages (brain-resident microglia, the Langerhan’s cells in the skin, intestinal and lung
alveolar macrophages, etc.), in both humans and mice (Fig 2a-b). See Supplemental Information 1 for
the degree of heterogeneity represented in these datasets. Surprisingly, the path could also separate
reactive and tolerant states of other immune cells, including lymphocytes (B/T and NK-T), natural killer (NK)
cells, neutrophils, dendritic, basophils, eosinophils and mast cells (Fig 2c). Together, these findings
indicate that the SMaRT-based definitions of ‘reactivity’ and ‘tolerance’ remain relevant in the context of
tissue-resident macrophages despite their adaptation to the tissue and/or organ-specific microenvironment
for their identity (Gordon and Pluddemann 2017; Lavin et al. 2014; Stout and Suttles 2004). These
definitions also maintain relevance in mice, whose immune system is different from ours (Mestas and
Hughes 2004). Findings suggest that the SMaRT-based definitions may reflect the fundamental immune-

reactive and tolerant gene regulatory mechanisms that are shared among diverse cells in our immune

system, regardless of whether they are derived from the myeloid or lymphoid lineage (Fig 2d).

The network captures physiologic macrophage states and functions

We found that diverse macrophage subtypes are represented within our model of macrophage processes
(Fig 2e). The classical M1 subtype was represented in C#1 and #13 on the reactive end of the model,
alongside TCR+ macrophages in C#1 and #12; the latter is known to release CCL2 and have high
phagocytic abilities (Chavez-Galan et al. 2015). On the tolerant end of the model we found the TAMs in

6


https://doi.org/10.1101/2022.06.27.497783
http://creativecommons.org/licenses/by/4.0/

O 0N OU A WN RO

[

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.27.497783; this version posted June 30, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Ghosh, P, et al,, 2022
C#2, #5, #6 and the CD169+ macrophages in C#2, #3 and #7; both subtypes have been implicated in

immunological tolerance (Liu and Cao 2015; Ravishankar et al. 2014; Saunderson et al. 2014). As one

would anticipate, the tissue-resident macrophages (M2a-d) that are known for their plasticity of polarization
states were more centrally placed in C#2 and #5. Finally, gene signatures of scar-associated non-
inflammatory (ni) macrophages that restrict inflammation in liver cirrhosis (SAM B (Ramachandran et al.
2019) and SAM ni (MacParland et al. 2018), Fig 2f) and damage-associated microglia (DAMs (Keren-Shaul
et al. 2017); Fig 2f) that restrict the progression of neurodegeneration significantly overlapped with the

tolerant clusters C#14 and #3. A gene signature that was recently shown to be induced in monocytes and
macrophages in all viral pandemics (ViP), past and present, overlapped with the reactive C#13 as expected
(Supplemental Information 2 lists all gene signatures in Fig 2f).

Members of the family of pattern recognition receptors (PRRs; Table S2), via which macrophages

‘sense’ its surroundings (Zhou et al. 2015), were distributed in various nodes within the model, overlapping
with each other (Fig 2g). PRRs that sense pathogens or apoptotic cells to stimulate phagocytosis and
mediate inflammation, e.g., toll-like (TLRs), nucleotide oligomerization domain (NODs) and receptor for
advanced glycation end products (RAGE) were found on the ‘reactive’ side of the model. The TLRs,
scavengers and C-type lectins also overlapped with path#13—14—3, but only on the tolerant end (cluster
#3) of the spectrum.

The circadian genes were distributed within clusters along a path (#1—2—3—4) (Fig 2h),
intersecting at the tolerant end of the path#13—14—3, i.e., C#3. The daytime circadian genes were in the
reactive end of the model and showed an inverse high=>low Boolean relationship with night-time circadian
genes; the latter were mostly in the tolerant end of the model (Fig S3A-C). This finding is consistent with
the current belief that macrophages ‘kill' (reactive) during the day and ‘heal’ (tolerant) during the night
(Early and Curtis 2016). We also show that the performance of the tolerant signature (C#14-3) in diseases

that have an intricate relationship with circadian rhythms, such as metabolic syndrome (Eckel-Mahan and

Sassone-Corsi 2013), can be further improved by normalization based on a clock gene or clock gene

signature (Fig S4).

SMaRT genes identify pathologic polarization states in diseases

We next asked how the Boolean network-derived formal definitions perform in disease states. A plethora of
disease conditions and tissues were analyzed (Fig 3a-n; Supplemental Information 1). We computed a
composite immune response score derived from C#13 alone or C#14 and #3, which quantitatively
estimates the degree of “reactivity” and “tolerance”, respectively, and tested it in diverse conditions. An
analysis of full-thickness colon tissues representing the 2 major subtypes of inflammatory bowel disease
(IBD), ulcerative colitis (UC) and Crohn’s disease (CD) (Fig S5A) revealed that reactivity is a common
feature in both UC and CD (Fig 3a, top; Fig S5B-left). However, tolerance was enhanced only in CD (Fig
S5B-right), which is consistent with the notion that ‘alternatively’ activated tolerant macrophages may drive
the transmural nature of the inflammation, ineffective bacterial clearance, and accompanying tissue
remodeling (fibrosis, stricture, fistula), all features that are observed uniquely in CD (Cho 2008), but not UC.
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Reactivity alone could prognosticate outcome (i.e., segregate responder vs non-responder) regardless of

the heterogeneity of the UC cohorts and the diverse treatment modalities (Fig S5C-D), consistent with the

widely-accepted notion that hyperinflammatory macrophages are drivers (Steinbach and Plevy 2014) of the

disease and key targets for therapeutics (Peters et al. 2017). Insufficient datasets precluded similar

analyses in the case of CD.

We also found that “reactivity” and “tolerance” differs along the length of the colon crypt—the
surface is more reactive, whereas the stem-cell niche at the bottom is more “tolerant” (Fig 3b; Fig S5E-F).
We also found that “hypo-reactivity” [low C#13] and “complete tolerance” [high #14—3] are two states that
are progressively accentuated during colorectal carcinoma (CRC) initiation and the emergence of

chemoresistance (3c; Fig S5G-H). Consistent with the fact that most of the CRCs are found located in the

left (distal) colon and microbe-driven risk is high in that segment (Drewes et al. 2016), we found that
segment to be more tolerant than the right (proximal) segment (3d).

We detected altered macrophage states during the initiation and progression of several human
other diseases, ranging from arthritis, through neurodegenerative diseases to viral pandemics (see Fig 3e-
n; Fig S6A-N, Fig S7A-E). Our definitions for “reactivity” and “tolerance” could accurately identify the
underlying pathologic macrophage states implicated in each condition. Together, these results show that
the BoNE-derived signature can detect different subsets of macrophages are essential to the pathogenesis
of many diseases. Findings also agree with the notion that disease chronicity is invariably associated with
mixed polarization states (whose detection has largely been enabled by scSeq studies) where each state
plays an opposing (balanced) role (Duffield et al. 2005; Jaitin et al. 2019; Keren-Shaul et al. 2017;
MacParland et al. 2018; Murray and Wynn 2011; Qian and Pollard 2010; Ramachandran et al. 2019).

SMaRT genes rationalize the choice of mouse models

Although mice are the preferred model species for research (Rosenthal and Brown 2007), most agree that

their innate immune systems differ (Mestas and Hughes 2004). C57BL/6J and Balb/c mice are two most

commonly used mouse strains that differ in their immune responses, giving rise to distinct disease
outcomes, which in turn rationalizes their use as pre-clinical models for human diseases (Fig 30). Our
signature successfully classified the macrophages from these two strains in three independent cohorts

(Howes et al. 2016; Link et al. 2018) (Fig 3p); C57BL/6 emerged as more reactive and Balb/c as more

tolerant (Fig 3q). These findings are consistent with the observation that BALB/c mice are more susceptible

to a variety of pathogens (Mainou-Fowler et al. 1988; Sacks and Noben-Trauth 2002; Schluter et al. 1999),

and are useful for modeling tumor initiation and progression and for making antibodies. By contrast,
C57BL/6 mice are resistant to infections and are the most common strain used for modeling inflammatory
diseases, e.g., arthritis, metabolic disorders [NASH, atherosclerosis, etc. (Champy et al. 2008; Ishida et al.

1991; Toye et al. 2005)]. We conclude that the model-derived definitions for “reactivity” and “tolerance” —(i)

capture the contrasting immunophenotypes of these two murine strains previously reported by Mills et al.,

(Mills et al. 2000) and (ii) rationalize the choice of each strain as preferred models for modeling a unique
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set of human diseases. Findings also suggest that the model-derived signatures could serve as an

objective guide for assessing the appropriateness of any species/strains/sub-strains as pre-clinical models.

SMaRT genes carry diagnostic value
Next we compared head-to-head the diagnostic and prognostic potential of the newly defined polarization

states against four traditional definitions: differential expression analysis (Becker et al. 2015) (DExp),

correlation network (Bell et al. 2016) (CorN), hierarchical clustering + fold change (Coates et al. 2008)

(HiClu), and differential + interactome analysis (Martinez et al. 2006) (Dif+Int). A composite immune

response score derived from C#13 alone, which quantitatively estimates the degree of “reactivity” was
tested on multiple datasets generated from tissues derived from patients with known clinically relevant
diagnoses. A hyper-reactive state was invariably associated with graft rejection in transplanted hearts,
livers and kidneys (Fig 3r). A ‘hyper-reactive’ state also classified IBD-afflicted children from those with
non-IBD indications (8-18 y age) with reasonable accuracy in a prospective study where the blood samples
were drawn at the time of diagnostic colonoscopy (Fig 3r). Among the critically ill patients in the ICU, a
hyper-reactive state was associated with better 28-day survival for those with ARDS on ventilators (Fig 3r)
and improved survival without the need for liver transplantation in those diagnosed with Tylenol-induced
acute liver failure (Fig 3r). While some of the four other traditional methodologies fared similar to the new
definitions in some cohorts, none performed as well, and/or as consistently. Findings suggest that the
BoNE-derived signatures may capture fundamental aspects of macrophage polarization that drive disease

states.

SMaRT genes can prognosticate outcome

We next computed a composite immune response score based on either the path #13-14-3 or C#13 alone.
When used as a composite score, a low score value represents “reactive” and high score value represent
“tolerant” states. This signature was tested on all transcriptomic datasets found on the NCBI GEO database
(as of 04/2022) originating from prospective studies, regardless of disease. Prospective studies were
chosen because they rarely have selection bias from enroliment procedures because the outcomes have
not yet occurred at the time of enrollment. In the context of cancers, “reactive” tumors carried a worse
prognosis than “tolerant” ones across a variety of solid tumor subtypes, e.g., colorectal (n = 555; Fig 4a),
breast, pancreas, prostate, glioblastoma and bladder cancers (Fig S7F). Undetectable by any of the
traditional methodologies, these findings are consistent with the well-recognized role of inflammatory cells

in the tumor microenvironment (Coussens and Werb 2002).

In a cohort of 216 patients with HCV-related liver fibrosis, overall survival was reduced among
patients with a “reactive” signature on their liver biopsies compared to those with a “tolerant” signature (Fig
4b). Again, undetectable by any of the traditional methodologies, these findings are consistent with the
known role of activated macrophages in chronic liver injury, inflammation and fibrosis (Ehling et al. 2014;
Heinrichs et al. 2011; Kazankov et al. 2014; Sunami et al. 2012).

In a cohort of 802 patients with sepsis, 28-day mortality was worse among those with a “tolerant”

signature compared to those with a “reactive” signature (Fig 4c). This finding is consistent with the notion
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that “endotoxin tolerance” during sepsis carries poor outcome (Pena et al. 2014). Two of the four traditional

models, correlation network and hierarchical clustering, also performed reasonably well in sepsis, which is
not surprising because 30% of the reactivity signature within C#13 overlaps with the ‘M1’-state definition in
some of the traditional methods.

In a cohort of 114 patients with idiopathic pulmonary fibrosis (IPF), an incurable disease that is

characterized by progressive fibrosis requiring lung transplantation (George et al. 2011), a “reactive”

signature was associated with shorter transplant-free survival (Fig 4d). Two of the four traditional models,
correlation network and differential + interactome analysis, also performed reasonably well. Results are in

keeping with the widely accepted notion that proinflammatory pulmonary macrophages are known to drive

inflammation and fibrosis in the lung (Byrne et al. 2016).
Among 517 recipients of kidney transplants, a “reactive” signature was associated with increased
graft loss in two independent cohorts (Fig 4e-f). Findings are in keeping with prior body of work implicating

inflammatory macrophages (both number and extent of activation) as culprits in both acute and chronic

allograft rejection and graft loss (Azad et al. 2018; Bergler et al. 2016; Liu et al. 2016). Two of the four
traditional models, differential expression and correlation network approaches, performed reasonably well
in one cohort (Fig 4e), but none reached significance in the other (Fig 4f).

Finally, among 151 nonagenarians in the Vitality 90+ study (Nosraty et al. 2015), a “reactive”

signature was associated with higher mortality in men (Fig 4g-left), but not women (Fig 4g-right). Results
are in keeping with the fact that the plasma levels of the ‘classical’ marker of inflammaging, i.e., interleukin-
6 (IL-6) and a pro-inflammatory gene signature in PBMCs were correlated in men, whereas no correlations

were observed in women (Nevalainen et al. 2015). None of the traditional methodologies could detect this

gender-specific difference, nor did they prognosticate survival.
These findings demonstrate a degree of robustness and consistency in the prognostic ability of the

newly defined signatures of macrophage polarization across diverse diseases and independent datasets.

SMaRT genes are significantly enriched in the macrophage proteome
We used Tandem Mass Tag (TMT) proteomics datasets from THP1-derived macrophages (MO, PMA) that
were polarized to M1-M2 states (see workflow Fig 5a) and asked if the BoNE-derived gene clusters are
translated to proteins. We found that the BoNE-derived SMaRT genes were induced significantly in the
THP1 proteome (Supplemental Information 3). Consistent with our hypothesis that C#13 and path
#14—3 carry independent information regarding “reactivity” and “tolerance”, we found that LPS and IFNy-
induced M1 polarization was associated with significant differential translation of genes in C#13 (Fig 5b-
top), whereas IL4-induced polarization was associated with significant differential translation of genes in
C#14 and C#3 (Fig 5b-bottom). Such differential protein translation continued to take place over 24 h (Fig
5b).

Comparative analyses showed that while the “reactivity” signatures identified by two other
conventional methodologies--Differential Expression and Correlation Network-- also reached significance;

Fig 5b-top), “tolerance” signatures derived by all other conventional approaches did not (Fig 5b-bottom).
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Heatmaps show the dynamic and opposing nature of the proteins translated by the genes within the BoNE-

derived gene signatures during polarization (Fig 5c-d).
Findings demonstrate that the gene signatures of ‘reactivity’ and ‘tolerance’ identified here are

significantly represented also in the translated proteome.

Perturbation of SMaRT genes results in predictable outcomes

We next asked if network-rationalized interventions result in predictable outcomes upon perturbation, e.g.,
gene depletion (CRISPR, shRNA, KO mice) or overexpression, expression of functionally defective
mutants, or chemical agonists/inhibitors. To this end, we carried out real-world crowdsourcing
experiments on macrophage datasets in which interventions were conducted by different groups using
diverse manipulations (Fig 6a). Depletion or pharmacologic inhibition of any gene in C#13 was predicted to
suppress reactivity and enhance tolerance, whereas overexpression or pharmacologic stimulation of the
same should have an opposite impact, i.e., enhance reactivity and suppress tolerance. Similarly,
depletion/inhibition of any gene in C#14 was predicted to enhance reactivity and suppress tolerance (Fig
6b, left; Table S3). The depletion of genes in C#3 is predicted to not have a robust impact the network
because of the Low=>Low relationship with C#14.

We began with the ENCODE portal (Davis et al. 2018), a resource that was born out of the larger

initiative called the ENCODE integrative analysis (Consortium 2012); it is an encyclopedia of large,

unbiased shRNA library screen on the human K562 chronic myeloid leukemia cell line. This

dataset contained 4 of the 137 genes in C#14 and none from C#13 (Davis et al. 2018). In all 4 cases, the

depletion of genes in C#14 resulted in the predicted outcome of enhanced reactivity and hypotolerance
(Fig 6b, right). A systematic search of the NCBI GEO database also revealed 16 other independent
datasets reporting the impact of interventions on genes in C#13 (9 datasets) and C#14 (7 datasets) (Table
S3). Regardless of the heterogeneous nature of the interventions and lab-to-lab variations in the type of
cells/tissues used, predictions matched the observed outcomes in each instance. At least in one instance
(i.e., STAT3), we could confirm the alignment of phenotypes between gene deletion and pharmacologic
inhibition, implying that both approaches must have converged on the same biology. Because such

alignment and/or convergence is seen in many instances (Weiss et al. 2007), findings suggest that the

current model can accurately guide outcome-driven pharmacologic interventions.
Together, these crowd-sourced studies rigorously and independently validate the definitions of
macrophage polarization states; the fundamental nature of these definitions appear to remain relevant

despite the thunderous heterogeneity of models and methods used by so many.
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CONCLUSIONS

The lack of consensus on how to define macrophage activation has impeded progress in multiple ways;
despite a panoply of existing descriptors, most remain contentious and/or confusing. Al-guided gene
expression signatures presented here, SMaRT, offers a set of standardized definitions of macrophage
polarization that encompasses four principles: (i) they are comprised of an unbiased collection of markers
of macrophage activation that are represented in both the transcriptome and the proteome; (ii) they remain
meaningful and relevant regardless of the source of macrophages (i.e., bone marrow, circulation, tissue-
resident); (iii) they perform well across diverse activators, both in vitro and in vivo (i.e., recombinant ligands
and cytokines, microbes, or multifactorial, as in the setting of complex disease states), and (iv) they provide
a predictive framework that can be exploited for diagnostic purposes and for outcome-rationalized
therapeutic interventions. These principles unify experimental standards for diverse experimental scenarios
and interpretations across diverse tissues and diseases.

Finaly, these SMaRT genes provide a common framework for macrophage activation
nomenclature, which should enable laboratories to detect and report a given immunophenotype of
macrophage in a standardized way. Standardization is expected to spur the development of robust
strategies to address the multitude of macrophage-related disorders. It also serves as a starting point for

the development of new diagnostics and immunomodulatory therapies.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
Pooled human macrophage array NCBI GEO (The National GSE134312
Center for Biotechnology
i Information- Gene
Ccdc88a KO peritoneal macrophages expression omnibus) GSE203423
Proteomics dataset, reanalyzed from PMID: 34731634 MassIVE repository MSV000084672

Experimental models: Organisms/strains

Ccdc88a fl/fl LysMCre/- mice

PMID: 33055214

Software and algorithms

Numpy Python https://numpy.org

Scipy Python https://scipy.org

Seaborn Python https://seaborn.pydata.org
Matplotlib Python https://matplotlib.org

Hierarchical Exploration of Gene Expression Microarrays Online

HTML, JavaScript, Python,

https://github.com/sahoo00/Hegemon

(Hegemon) PHP

Boolean Network Explorer (BoONE) Python https://github.com/sahoo00/BoNE
Other

Interactive website This paper http://hegemon.ucsd.edu/SMaRT/
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Materials and Methods

Data Collection and Annotation

Publicly available microarray and RNASeq databases were downloaded from the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) website (Barrett et al. 2005; Barrett et

al. 2013; Edgar et al. 2002). Gene expression summarization was performed by normalizing Affymetrix
platforms by RMA (Robust Multichip Average) (Irizarry et al. 2003a; Irizarry et al. 2003b) and RNASeq

platforms by computing TPM (Transcripts Per Millions) (Li and Dewey 2011: Pachter 2011) values
whenever normalized data were not available in GEO. We used log2(TPM) if TPM > 1 and (TPM — 1) if

TPM < 1 as the final gene expression value for analyses. We also used log2(TPM + 1) in some datasets.
We also used publicly data normalized using RPKM (Mortazavi et al. 2008), FPKM (Trapnell et al. 2009;
Trapnell et al. 2010), TPM (Li et al. 2010; Wagner et al. 2012), and CPM (Law et al. 2016; Robinson et al.
2010). In the context of Affymetrix microarray data we believe that RMA works better than MAS 5.0
(Pandey and Sahoo 2019).

Macrophage datasets used for network analysis

Previously published pooled macrophage dataset from GEO (GSE134312, n = 197) assayed on the Human
U133 Plus 2.0 (GPL570), Human U133A 2.0 (GPL571) and Human U133A (GPL96) platforms were used to
perform macrophage network analysis. This dataset was manually annotated with MO, M1 or M2
phenotypes. Accession numbers for the MO, M1 and M2 phenotypes are presented in table S4. Five
validation datasets are used to test the macrophage gene signature: GSE35449 (7 MO, 7 M1, 7 M2),
GSE46903 (64 MO, 29 M1, 40 M2), GSE61298 (6 M0, 6 M1, 6 M2), GSE55536 human peripheral blood
mononuclear cell-derived macrophage (6 MO, 6 M1, 6 M2), GSE55536 iPSC derived macrophages (3 MO,

3 M1, 3 M2). See Supplementary Information 1 for all datasets analyzed in this work.

Computational Approaches
StepMiner Analysis

StepMiner is a computational tool that identifies step-wise transitions in a time-series data (Sahoo et al.
2007). StepMiner performs an adaptive regression scheme to identify the best possible step up or down
based on sum-of-square errors. The steps are placed between time points at the sharpest change between
low expression and high expression levels, which gives insight into the timing of the gene expression-
switching event. To fit a step function, the algorithm evaluates all possible step positions, and for each
position, it computes the average of the values on both sides of the step for the constant segments. An
adaptive regression scheme is used that chooses the step positions that minimize the square error with the

fitted data. Finally, a regression test statistic is computed as follows:

=K - 0/ (m-1)

Fotat = S X~ X)2/(n—m)
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Where X; fori = 1ton are the values, X, fori = 1ton are fitted values. m is the degrees of freedom used

for the adaptive regression analysis. X is the average of all the values: X = %* Yj=1X;. For a step position
at k, the fitted values X, are computed by using % * Y Xjfori=1tok and ﬁ * Nigm Xjfori=k+1

ton.

Boolean Analysis

Boolean logic is a simple mathematic relationship of two values, i.e., high/low, 1/0, or positive/negative.
The Boolean analysis of gene expression data requires the conversion of expression levels into two
possible values. The StepMiner algorithm is reused to perform Boolean analysis of gene expression data

(Sahoo et al. 2008). The Boolean analysis is a statistical approach which creates binary logical inferences

that explain the relationships between phenomena. Boolean analysis is performed to determine the
relationship between the expression levels of pairs of genes. The StepMiner algorithm is applied to gene
expression levels to convert them into Boolean values (high and low). In this algorithm, first the expression
values are sorted from low to high and a rising step function is fitted to the series to identify the threshold.
Middle of the step is used as the StepMiner threshold. This threshold is used to convert gene expression
values into Boolean values. A noise margin of 2-fold change is applied around the threshold to determine
intermediate values, and these values are ignored during Boolean analysis. In a scatter plot, there are four
possible quadrants based on Boolean values: (low, low), (low, high), (high, low), (high, high). A Boolean
implication relationship is observed if any one of the four possible quadrants or two diagonally opposite
guadrants are sparsely populated. Based on this rule, there are six kinds of Boolean implication
relationships. Two of them are symmetric: equivalent (corresponding to the positively correlated genes),
opposite (corresponding to the highly negatively correlated genes). Four of the Boolean relationships are
asymmetric, and each corresponds to one sparse quadrant: (low => low), (high => low), (low => high), (high
=> high). BooleanNet statistics (Fig. 2a) is used to assess the sparsity of a quadrant and the significance of

the Boolean implication relationships (Sahoo et al. 2008; Sahoo et al. 2010). Given a pair of genes A and

B, four quadrants are identified by using the StepMiner thresholds on A and B by ignoring the Intermediate
values defined by the noise margin of 2 fold change (+/- 0.5 around StepMiner threshold). Number of
samples in each quadrant are defined as ag, ao1, a10, and a;; (Figure 1A) which is different from X in the
previous equation of F stat. Total number of samples where gene expression values for A and B are low is

computed using the following equations.

NApw = (Ago + ap1),MBiow = (ago + ayo),

Total number of samples considered is computed using following equation.
tOtal = aoo + a01 + alo + all

Expected number of samples in each quadrant is computed by assuming independence between A and B.

For example, expected number of samples in the bottom left quadrant e,y = 71 is computed as probability of
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A low ((ago + api)/total) multiplied by probability of B low ((ag + aip)/total) multiplied by total number of

samples. Following equation is used to compute the expected number of samples.
n= ay, i = (nd,y/total * nBy,, /total) = total

To check whether a quadrant is sparse, a statistical test for (eqo > ago) or (7 > n) is performed by computing
Soo and pgo using following equations. A quadrant is considered sparse if Sgo is high (2 > n) and pgo is

small.

Poo = 1 ( Qoo n Qoo )
%7 2 \(ago + a01)  (@oo + a10)

A suitable threshold is chosen for Spo > sThr and pg < pThr to check sparse quadrant. A Boolean

implication relationship is identified when a sparse quadrant is discovered using following equation.
Boolean Implication = (S;; > sThr, p; < pThr)

A relationship is called Boolean equivalent if top-left and bottom-right quadrants are sparse.
Equivalent = (Sy; > sThr, Py; < pThr,S;o > sThr,Py < pThr)

Boolean opposite relationships have sparse top-right (a;1) and bottom-left (ag) quadrants.
Opposite = (Syg > sThr, Pyo < pThr,S;; > sThr,P;; < pThr)

Boolean equivalent and opposite are symmetric relationship because the relationship from A to B is same
as from B to A. Asymmetric relationship forms when there is only one quadrant sparse (A low => B low:
top-left; A low => B high: bottom-left; A high=> B high: bottom-right; A high => B low: top-right). These
relationships are asymmetric because the relationship from A to B is different from B to A. For example, A

low => B low and B low => A low are two different relationships.

A low => B high is discovered if the bottom-left (ag) quadrant is sparse and this relationship satisfies

following conditions.

A low => B high = (S > sThr, Pyy < pThr)

Similarly, A low => B low is identified if the top-left (ap1) quadrant is sparse.
Alow => B low = (S4; > sThr, Py; < pThr)

A high => B high Boolean implication is established if the bottom-right (a;0) quadrant is sparse as described

below.
A high => B high = (S, > sThr, P,y < pThr)

Boolean implication A high => B low is found if the top-right (a;;) quadrant is sparse using following

equation.

A high => B low = (S§;; > sThr, P;; < pThr)
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For each quadrant a statistic S; and an error rate p; is computed. S; > sThr and p; < pThr are the thresholds

used on the BooleanNet statistics to identify Boolean implication relationships.

Boolean analyses in the test dataset GSE134312 uses a threshold of sThr = 3 and pThr = 0.1. These
thresholds are exactly same as the previously used thresholds sThr = 3 and pThr = 0.1 for BooleanNet
(Dabydeen et al. 2019; Pandey and Sahoo 2019; Sahoo et al. 2008).

Boolean Network Explorer (BoNE)

Boolean network explorer (BoNE) provides an integrated platform for the construction, visualization and
guerying of a network of progressive changes underlying a disease or a biological process in three steps
(Fig S1A): First, the expression levels of all genes in these datasets were converted to binary values (high
or low) using the StepMiner algorithm. Second, gene expression relationships between pairs of genes were
classified into one-of-six possible Boolean Implication Relationships (BIRs), two symmetric and four
asymmetric, and expressed as Boolean implication statements. This offers a distinct advantage from
conventional computational methods (Bayesian, Differential, etc.) that rely exclusively on symmetric linear
relationships in networks. The other advantage of using BIRs is that they are robust to the noise of sample
heterogeneity (i.e., healthy, diseased, genotypic, phenotypic, ethnic, interventions, disease severity) and
every sample follows the same mathematical equation, and hence is likely to be reproducible in
independent validation datasets. Third, genes with similar expression architectures, determined by sharing
at least half of the equivalences among gene pairs, were grouped into clusters and organized into a
network by determining the overwhelming Boolean relationships observed between any two clusters. In the
resultant Boolean implication network, clusters of genes are the nodes, and the BIR between the clusters
are the directed edges; BoNE enables their discovery in an unsupervised way while remaining agnostic to

the sample type.

Statistical Analyses

Gene signature is used to classify sample categories and the performance of the multi-class classification
is measured by ROC-AUC (Receiver Operating Characteristics Area Under The Curve) values. A color-
coded bar plot is combined with a density or violin+swarm plot to visualize the gene signature-based
classification. All statistical tests were performed using R version 3.2.3 (2015-12-10). Standard t-tests were
performed using python scipy.stats.ttest_ind package (version 0.19.0) with Welch's Two Sample t-test
(unpaired, unequal variance (equal_var=False), and unequal sample size) parameters. Multiple hypothesis
corrections were performed by adjusting p values with statsmodels.stats.multitest.multipletests (fdr_bh:
Benjamini/Hochberg principles). The results were independently validated with R statistical software (R
version 3.6.1; 2019-07-05). Pathway analysis of gene lists were carried out via the Reactome database and

algorithm (Fabregat et al. 2018). Reactome identifies signaling and metabolic molecules and organizes

their relations into biological pathways and processes. Kaplan-Meier analysis is performed using lifelines

python package version 0.14.6.
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Boolean implication network construction

A Boolean implication network (BIN) is created by identifying all significant pairwise Boolean implication
relationships (BIRs) for GSE134312 datasets (Fig S1A). The Boolean implication network contains the six
possible Boolean relationships between genes in the form of a directed graph with nodes as genes and
edges as the Boolean relationship between the genes. The nodes in the BIN are genes and the edges
correspond to BIRs. Equivalent and Opposite relationships are denoted by undirected edges and the other
four types (low => low; high => low; low => high; high => high) of BIRs are denoted by having a directed
edge between them. The network of equivalences seems to follow a scale-free trend; however, other
asymmetric relations in the network do not follow scale-free properties. BIR is strong and robust when the
sample sizes are usually more than 200. However, it is also possible to build BIN for smaller dataset such
as the selected macrophage GSE134312 dataset (n = 197). The macrophage dataset GSE134312 was
prepared for Boolean analysis by filtering genes that had a reasonable dynamic range of expression
values. When the dynamic range of expression values was small, it was difficult to distinguish if the values
were all low or all high or there were some high and some low values. Thus, it was determined to be best to
ignore them during Boolean analysis. The filtering step was performed by analyzing the fraction of high and

low values identified by the StepMiner algorithm (Sahoo et al. 2007). Any probe set or genes which

contained less than 5% of high or low values were dropped from the analysis.

Clustered Boolean Implication network

Clustering was performed in the Boolean implication network to dramatically reduce the complexity of the
network (Fig S1C). A clustered Boolean implication network (CBIN) was created by clustering nodes in the
original BIN by following the equivalent BIRs. One approach is to build connected components in a
undirected graph of Boolean equivalences. However, because of noise the connected components become
internally inconsistent e.g. two genes opposite to each other becomes part of the same connected
component. In order to avoid such situation, we need to break the component by removing the weak links.
To identify the weakest links, we first computed a minimum spanning tree for the graph and computed
Jaccard similarity coefficient for every edge in this tree. Ideally if two members are part of the same cluster
they should share as many connections as possible. If they share less than half of their total individual
connections (Jaccard similarity coefficient less than 0.5) the edges are dropped from further analysis. Thus,
many weak equivalences were dropped using the above algorithm leaving the clusters internally consistent.
We removed all edges that have Jaccard similarity coefficient less than 0.5 and built the connected
components with the rest. The connected components were used to cluster the BIN which is converted to
the nodes of the CBIN. The distribution of cluster sizes was plotted in a log-log scale to observe the
characteristic of the Boolean network (Fig S1C). The clusters sizes were distributed along a straight line in
a log-log plot suggesting scale-free properties (Fig S1D). A new graph was built that connected the
individual clusters to each other using Boolean relationships. Link between two clusters (A, B) was

established by using the top representative node from A that was connected to most of the member of A
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and sampling 6 nodes from cluster B and identifying the overwhelming majority of BIRs between the nodes

from each cluster.

A CBIN was created using the selected GSE134312 datasets. Each cluster was associated with
healthy or disease samples based on where these gene clusters were highly expressed. The edges
between the clusters represented the Boolean relationships that are color-coded as follows: orange for low
=> high, dark blue for low => low, green for high => high, red for high => low, light blue for equivalent and

black for opposite.

Boolean paths

The asymmetric BIRs provide a unique dimension to the network that is fundamentally different from any
other gene expression networks in the literature. Traversing a set of nodes in a directed graph of the
Boolean network constitutes a Boolean path that can be interpreted as follows. A simple Boolean path
involves two nodes and the directed edge between them. This simple Boolean path can be interpreted as
shown in the supplementary figure (Fig S1E). For the nodes X and Y with X low => Y low only quadrant #1
is sparse; the other quadrants #0, #2, and #3 are filled with samples (Fig S1E). Assuming monotonicity in X
and Y, the quadrants can be ordered in two possible ways: 0-2-3 and 3-2-0. The path corresponds to 0-2-3
begins with X low and Y low. This is interpreted as X turns on first and then Y turns on along a hypothetical
biological path defined by the sample order. Similarly, Y turns off first and then X turns off in the path 3-2-0.
A complex path in the Boolean network involves more than one Boolean implication relationship (Fig S1F).
Three Boolean implication relationships can be used to group samples into five bins and the bins can be
ordered in two possible ways (Fig S1F, forward, reverse). Another example of a path is illustrated in

supplementary figure (Fig S1G).

Discovery of Paths in Clustered Boolean Implication network

Discovery of paths start with a node that represents the biggest cluster in the CBIN. Since a path of
high=>high, high=>low, and low=>low can be used to order samples as shown in Fig S1G, we try to
identify paths of this type that intersects the big clusters in the network. We developed a simple, intuitive
algorithm that traverses the nodes of the CBIN starting with the biggest cluster and greedily chooses next
big cluster connected to the nodes visited in sequence. The emphasis on cluster sizes comes from the
fundamental assumption that size determines importance and relevance. Therefore, we start from a big
cluster (A1) and identify other clusters that form a chain of low => low. Further, we identify other clusters
that are either opposite to Al or they have high=>low relationship with Al, and the biggest cluster (A2)
among these clusters were chosen. In addition, a chain of low=> low relationship from A2 is identified. In
each subsequent step, again the biggest cluster among the different choices was greedily chosen. Finally
equivalence relationship from each cluster is used to gather more genes in each cluster and the whole path
is clustered based on equivalence relationships. Depth-first traversal (DFS) was used to follow the path of
low => low where bigger clusters are visited first. The search was performed until a cluster was reached for
which there is no low => low relationships. For example, starting with cluster S, the search will return S low

=> Al low, Al low => A2 low, and A2 low => A3 low if A3 doesn’t have any low => low relationships.
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Similarly, a new starting point is considered S2 such that S2 is the biggest cluster X that has either S high

=> X low or S Opposite X. From cluster S2 another DFS was performed to retrieve the longest possible
path of low => low. The search may return S2 low => B1 low, B1 low => B2 low if B2 doesn’t have any low
=> low relationships. In summary, the most prominent Boolean path was discovered by starting with the
largest cluster and then exploring edges that connected to the next largest cluster in a greedy manner. This

process was repeated to explore paths that connect the big clusters in the network.

Scoring Boolean path for sample order

A score was computed for a specified Boolean path that can be used to order the sample which was
consistent with the logical order. To compute the final score, first the genes present in each cluster were
normalized and averaged. Gene expression values were normalized according to a modified Z-score
approach centered around StepMiner threshold (formula = (expr - SThr)/3*stddev; Fig S2B). Weighted
linear combination of the averages from the clusters of a Boolean path was used to create a score for each
sample. The weights along the path either monotonically increased or decreased to make the sample order
consistent with the logical order based on BIR. The samples were ordered based on the final weighted and
linearly combined score (Fig S2C). The direction of the path was derived from the connection from a
reactive cluster to a tolerant cluster. The sample order is visualized by a color-coded bar plot and a

violin+swarm plot (Fig S2C).

Summary of genes in the clusters
Reactome pathway analysis of each cluster along the top continuum paths was performed to identify the

enriched pathways (Fabregat et al. 2018). The pathway description was used to summarize at a high-level

what kind of biological processes are enriched in a particular cluster.

Signatures of macrophage reactivity and tolerance (S-Ma-R-T) computation

BoNE uses Boolean implication network on macrophage dataset to build a signature of macrophage
polarization. Selected clusters by size connected by high => high (green arrow), high => low (red arrows)
and low => low (blue arrows) Boolean implication relationships. Reactome analysis of each clusters shows
the biological processes the genes are involved in (Fig S2A). A path is selected in the network that is used
to test M1/M2 states classification. This process is demonstrated by using a path #13-14-3 on GSE134312
(Fig S2B-C).

Normalization of gene expression based on circadian rhythm

Since the state of macrophage swings from reactive to tolerant from day to night, it is important to control
for this variation during analysis of macrophage polarization. To start the normalization process, clock
genes (such as DBP, ARNTL, etc.) or gene signatures that capture circadian rhythm is used to adjust the
BoNE score (Fig S4). First, both the BoNE score (Fig S4B) and the clock gene expression are scaled for
each sample type based on their dynamic range of expression values (min — max). For example, the

dataset GSE98895 contains two sample types: C (Control), and MetS (Metabolic Syndrome). Let's take

8


https://doi.org/10.1101/2022.06.27.497783
http://creativecommons.org/licenses/by/4.0/

37
i8

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.27.497783; this version posted June 30, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Ghosh, P, et al,, 2022
one sample from the MetS group (X, y) where x is the clock gene expression value and y is the original

BoNE score (Fig S4C). Bounding box for the MetS group demonstrates the range of values for both the
BoNE score (S1) and the clock gene expression (S2). Average of BoONE scores and the clock gene
expression is shown using an orange diamond. The distance of (X, y) from the orange diamond (S3, S4) is
used to scale both values: (x = S3*(S2+1)/(S1+ 1),y + S4*(S1 + 1) /(S2 + 1)). This process is
repeated using control (C) samples using the green diamond. Linear regression is used to compute the
trend between the transformed BoNE score and clock gene expression (y = mx + ¢; Fig S4D). The trend is
subtracted from the transformed BoNE score to compute the final normalized BoNE score (y — mx - ¢).
Samples are now rank ordered based on the final normalized BoNE score to visualize the effect of

normalization process.

Proteomics analysis

A multiplexed TMT (tandem mass tags) quantitative proteomics dataset has been obtained from He, L. et al

(He et al. 2021) (see Key Resource Table). To generate this dataset, authors had differentiated human
THP-1 cells with phorbol myristate acetate (PMA) for 24 h into macrophages (MO state). The MO cells were
subsequently treated with IL4 for M2 polarization and with LPS and IFNy for M1 polarization over a 24-h
time-period. Samples were processed for quantitative mass spectrometry at 1 h, 4 h, 8 h and 24 h. Ratio of
raw intensity values has been compared between M1 and M2 states to obtain the list of induced proteins at
various time points (see Supplemental Information 3). To obtain the list of proteins induced in M1 state,
the cut-off used for induction of proteins when comparing the raw intensity ratio for LPS/IFNy over IL4
stimulation for all time points was >=2. To obtain the list of proteins induced in M2 state, the cut-off used for
induction of proteins when comparing the raw intensity ratio for IL4 over LPS/IFNy stimulation for all time
points was >=1.5.

To assess the differential enrichment of proteins across different signatures for both M1 and M2
polarization states at various time points, we used the following equation to calculate the z-test of

proportions,

z=pl-p2p(1-p)(1nl+ 1n2) - —\z= p1-p2p(1-p)(1ni+ 1n2)

Here, p1 is sample proportion (x1/n1) of proteins translated from the “reactive” signature that were
induced >=2 fold upon LPS stimulation. And p2 is the sample proportion (x2/n2) of proteins
translated from the “tolerance” signature that were induced >=1.5 fold upon IL4 stimulation. Here, p =

(x1+x2)/(n1+n2).
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}J9  Supplementary materials:

10 e Figures S1to S7

1 e Table S1to S3

12

13 Supplemental Information (excel datasheets uploaded separately) 1 to 3.

14

15 e Supplemental Information 1: Excel datasheet with an inventory of all publicly available gene
16 expression datasets analyzed in this work.

17

18 e Supplemental Information 2: Excel datasheet with an inventory of all previously published gene
19 signatures cited in this work.

)0

1 e Supplemental Information 3: Excel datasheet with list of proteins translated by genes in clusters
)2 #13 and 14+3 at various time points after ligand stimulation of THP1 cells.
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to each other) that are interconnected based on one of the six overwhelming Boolean implication

relationship between the clusters (directed edges; c-bottom).

d) Display of the major Boolean paths within the network prioritized based on the cluster size. Annotations
of “immunoreactive” and “immunotolerant” ends of the spectrum are based on the expression profile of the
gene clusters in 68 samples within the pooled dataset that were stimulated in vitro as M1 and M2,
respectively.

e) Reactome pathway analysis of each cluster along the top continuum paths was performed to identify the

enriched pathways (for other clusters see http://hegemon.ucsd.edu/SMaRT/).

f-g) Training (f) was performed on the 68 pooled samples using machine-learning approaches; the best-
performing Boolean path, #13-14-3 was then validated (g) in multiple independent human macrophage
datasets. For a list of datasets used see Table S1. The performance was measured by computing ROC
AUC for a logistic regression model.

h) Comparative analysis of performance of the BoNE-derived versus other traditional approaches in
segregating MO/M1/M2 polarization states.

i) Heatmap displaying the pattern of gene expression in C#13, 14 and 3. Selective genes are labelled.

j) Validation studies assessing the ability of the genes in either C#13 alone or C#14-3 alone to classify
MO/M1/M2 polarization states in multiple human macrophage datasets.

k) Top: Schematic summarizing the model-derived formal definitions of macrophage polarization states
based on the levels of expression of genes in C#13 (hypo to hyper- “reactivity” spectrum) and those in
C#14+3 (hypo to hyper- “tolerant” spectrum). Bottom: A composite score of the entire range of physiologic

and pathologic response can be assessed via the BoNE-derived path #13—14—3.
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Figure 2. Definitions of “reactivity” and “tolerance” are conserved across tissues, organs, species

and diverse immune cell types.
a-b) Validation studies assessing the ability of SMaRT

genes to classify diverse tissue-resident

macrophage datasets from both humans and mice. Performance is measured by computing ROC AUC for

a logistic regression model.
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c-d) Validation studies (c) assessing the ability of SMaRT genes to classify active vs inactive states of

diverse immune cell types in both humans and mice. The schematic (d) summarizes findings in c.

e) Known macrophage subtypes, as defined by marker genes, are projected on the Boolean map of
macrophage processes.

f) Published disease-associated macrophage gene signatures (see Supplemental Information 2) are are
analyzed for significant overlaps with various gene clusters in the Boolean map of macrophage processes.
Results are displayed as heatmaps of -Log10(p) values as determined by a hypergeometric test.

g) The distribution of pattern recognition receptors (PRRs) [see Table S2] within various gene clusters of
the Boolean map of macrophage processes is displayed.

h) The positions of key circadian genes that are present in the network are shown on the Boolean map of

macrophage processes. See also Fig S4.
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Figure 3. Definitions of “reactivity” and “tolerance” detects pathologic macrophage states in

disease.

Tissue immune microenvironment is visualized (in panels a-n) as bubble plots of ROC-AUC values (radii of

circles are based on the ROC-AUC; Key on top) demonstrating the direction of gene regulation (Up vs
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Down; Key on top) for the classification of samples using BoNE-derived gene signatures of either reactive

(R; C#13) or tolerant (T; C#14-3) or overall (O; path #13—14—3) in columns. The ROC-AUC values are
provided next to the bubble. Sample diversity and sizes are as follows:

a) IBD; GSE83687, n = 134; 60 Normal, 32 Ulcerative Colitis, 42 Crohn’s Disease.

b) Colon crypt; GSE77953, 6 Normal Surface vs. 7 Normal Crypt base. c¢; Colon cancer: Pooled colon
dataset from NCBI GEO; n=170 Normal, 68 Adenomas, 1662 CRCs.

d) Colon anatomy: Proximal (right) vs distal (left) normal colon from mouse (GSE64423, n = 6) and human
(GSE20881, n = 75). See Figure S5 for violin plots.

e) Arthritis; GSE55235, GSE55457 and GSE55584, n = 79; 20 Normal, 33 Rheumatoid Arthritis, 26
Osteoarthritis.

f) Hepatitis: GSE89632, n=63; 20 fatty liver, 19 Non-alcoholic steatohepatitis (NASH) and 24 healthy,
alcoholic liver disease (GSE94417, GSE94397 and GSE94399, n = 195; 109 Healthy, 13 Alcoholic
Hepatitis, 6 Alcoholic fatty liver (AFL), 67 Alcoholic cirrhosis (AC) and viral hepatitis (GSE70779, n=18; 9
Pre-treatment, 9 Post-treatment with direct-acting anti-virals).

g) Chronic lung disease; GSE2125 and GSE13896, n = 115; 39 Non-smoker, 49 Smoker, 15 Asthma, 12,
Chronic Obstructive Pulmonary Disease (COPD).

h) Aging process; GSE60216, n = 9; 3 Newborn babies, 3 Adults, 3 Old-adults.

i) Cardiomyopathy (CM), ischemic and non-ischemic (I/NI); GSE104423, n = 25 human samples; 14 NICM,
11 ICM; GSE127244, n = 24 mouse samples, 16 NICM, 8 ICM.

j) Neurodegenerative brain disorders; GSE118553 (n = 401) and GSE48350 (n = 253), Alzheimer’s disease
(AD); GSE35864, HIV-associated neurocognitive disorder (HAND; n = 72); GSE13162, frontotemporal
dementia (FTD; n = 56); GSE59630, Down’s Syndrome (DS; n = 116); GSE124571, Creutzfeldt-Jakob
Disease (CJD; n = 21).

k) Systemic inflammatory response syndrome (SIRS) and sepsis; GSE63042 (n = 129); GSE110487 (n =
31).

[) Type 2 diabetes and metabolic syndrome; GSE22309 (n = 110), Pre- and post- insulin treatment muscle
biopsies from 20 insulin sensitive, 20 insulin resistant, 15 T2DM; GSE98895 (n = 40), PBMCs from 20
control, 20 metabolic syndrome.

m) Sleep deprivation and circadian rhythm; GSE9444, n = 131 mouse brain and liver samples; GSE80612,
twin, n = 22 human peripheral blood leukocytes; GSE98582, n = 555 human blood samples; GSE104674, n
=48, 24 healthy and 24 T2DM.

n) Viral pandemics, such as SARS, MERS, Ebola and others [N; numerous datasets, see Figure S7E].

See Figure S6 and S7 for violin plots relevant to panel e-n.

0-g) Schematic (0) summarizes the use of two major mouse strains (C57/B6 and Balb/c) commonly used
for modeling two broad categories of human diseases. Bar plots (p) showing sample classification of
genetically diverse macrophage datasets based on expression levels of genes in C#13. Schematic (q)

summarizes findings.
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i3 r) The diagnostic potential of various indicated gene signatures were tested on multiple datasets generated

4 from tissues derived from patients with the known clinically relevant outcome, as indicated. In each case,

35  BoNE-derived signatures were compared against four traditional approaches.
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a; liver fibrosis, b; sepsis, c; idiopathic pulmonary fibrosis, d; kidney transplantation, e-f; inflammaging, g).

Results are displayed as Kaplan Meier (KM) curves with significance (p values) as assessed by log-rank-
test. A composite immune response score is computed using Boolean path #13—14—3 or C#13 alone, as
indicated within each KM plot. Low score = “reactive”; high score = “tolerant”. A threshold is computed

using StepMiner on the immune score to separate these two states. See also Fig S7F for other cancers.
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a) Overview of the experimental design. PMA-treated human THP-1 cell lines (MO) are polarized to M1

(with LPS and IGNg) or M2 (with IL4), followed by multiplexed mass spectrometry at indicated time points.
The fraction of the global macrophage transcriptome (from the pooled 197 macrophage datasets) that is
represented in the global macrophage proteome is subsequently assessed for induction (or not) of proteins
that are translated by various gene signatures.

b) Selectivity of induction of proteins upon LPS and IFNg (top) or IL4 (bottom) stimulation at various
timepoints was assessed across different signatures using z-test of proportions and -log(10)p values are
displayed as heatmaps.

c-d) z normalized Log of intensities of proteins (Supplemental Information 3) translated at different time

points by genes in C#13 (c) and C#14+3 (d) are displayed as heatmaps.
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Figure 6. Crowd-sourced assessment of the predictive potential of the SMaRT genes.

a) Overview of our workflow and approach for crowd-sourced validation. Publicly available transcriptomic
datasets reporting the outcome of intervention studies (genetic or pharmacologic manipulations) on
macrophages/monocytes targeting any of the 185 genes in C#13 and C#14 were analyzed using the BoNE
platform for macrophage states.

b) Predicted impact of positive (+, either overexpression [OvVExp] or agonist stimulations) or negative (-;
genetic -/- models, shRNA or chemical inhibitors) interventions and observed macrophage polarization
states are shown. Performance is measured by computing ROC AUC for a logistic regression model. See
Table S3.
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