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Abstract

Compensation is a defining principle of a true circadian clock, where its approximately
24-hour period length is relatively unchanged across environmental conditions. Known
compensation effectors directly regulate core clock factors to buffer the oscillator’s period length
from variables in the environment. Temperature Compensation mechanisms have been
experimentally addressed across circadian model systems, but much less is known about the
related process of Nutritional Compensation, where circadian period length is maintained across
physiologically relevant nutrient levels. Using the filamentous fungus Neurospora crassa, we
performed a genetic screen under glucose and amino acid starvation conditions to identify new
regulators of Nutritional Compensation. Our screen uncovered 16 novel mutants, and together
with 4 mutants characterized in prior work, a model emerges where Nutritional Compensation of
the fungal clock is achieved at the levels of transcription, chromatin regulation, and mRNA
stability. However, eukaryotic circadian Nutritional Compensation is completely unstudied
outside of Neurospora. To test for conservation in cultured mammalian cells, we selected the
top two hits from our fungal genetic screen, performed siRNA knockdown experiments of the
mammalian homologs, and characterized the cell lines with respect to compensation. We find
that the wild-type mammalian clock is also compensated across a large range of external
glucose concentrations, as observed in Neurospora, and that knocking down CPSF6 or SETD2
in human cells also results in nutrient-dependent period length changes. We conclude that, like
Temperature Compensation, Nutritional Compensation is a conserved circadian process in

fungal and mammalian clocks and that it may share common molecular determinants.

Introduction

Circadian clocks exist at the cellular level to allow cell types, tissues, and organisms to
properly align physiology with time of day. True circadian clocks are sensitive to the external
environment in two distinct ways. Discrete pulses of bright light, temperature, nutrients,
hormones, or other chemicals reset circadian oscillators and re-orient the clock’s phase to the
new environment (reviewed in: Johnson et al., 2003). This resetting feature of circadian clocks
is most commonly experienced when jetlagged humans travel across multiple time zones and
entrain to the destination’s light/dark cycles. On the other hand, circadian clocks are also
shielded or buffered from changes in the ambient environment within the physiological range of
an organism (Hastings and Sweeney, 1957; Pittendrigh et al., 1959). In the filamentous fungus
Neurospora crassa, circadian period length is maintained at approximately 21.5 hours when

grown at constant temperatures ranging from 16°C to 32°C (Gardner and Feldman, 1981) or
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under different nutrient conditions (Sargent and Kaltenborn, 1972). This circadian property is
known as compensation, and the molecular mechanisms underlying period length
compensation remain elusive.

At the molecular level, the circadian oscillator is a transcription-translation feedback loop
(TTFL) that is functionally conserved from fungi to animals. The positive arm of the clock is
composed of transcription factor activators (WC-1/WC-2 in fungi; BMAL1/CLOCK in mammals),
which form a heterodimeric complex, drive transcription of direct target genes, and recruit
chromatin modifiers (Crosthwaite et al., 1997; Koike et al., 2012; Menet et al., 2014). The
positive arm directly regulates the negative arm of the clock (FRQ in fungi; PERS/CRYs in
mammals) (Aronson et al., 1994; reviewed in: Dunlap, 1999; Philpott et al., 2021). Negative arm
clock components form a stable complex with Casein Kinase | (CKI) and other factors, leading
to feedback and posttranslational inhibition of the positive arm to close the circadian feedback
loop (Wang et al., 2019; Cao et al., 2021). The positive and negative arms are sufficient for
rhythmicity, although accessory feedback loops confer additional clock robustness (reviewed in:
Takahashi, 2017). Such individual cellular clocks are coordinated in a coupled network to align
organismal physiology in mammals (reviewed in: Finger et al., 2020).

Temperature Compensation was first proposed to be a circadian property in the
dinoflagellate Gonyaulax polyedra when increasing temperatures led first to period lengthening
(so-called “over-compensation”) and then to period shortening at even higher temperatures, a
result that plainly conflicted with models based on biochemical reaction rates strictly increasing
with temperature (Hastings and Sweeney, 1957). In genetic model systems like Neurospora and
Drosophila where organisms operate at ambient temperatures, and even in homeothermic
animals, cellular circadian clocks are temperature compensated (Zimmerman et al., 1968;
Gardner and Feldman, 1981; Barrett and Takahashi, 1995; Izumo et al., 2003; Tsuchiya et al.,
2003; Kidd et al., 2015). The forward and reverse genetics that have driven current models for
Temperature Compensation have led to casein kinases as central regulators across multiple
circadian model systems. In Neurospora and in plants, Casein Kinase Il (CKIll) is required for
Temperature Compensation (Mehra et al., 2009; Portolés and Mas, 2010). Neurospora CKI|
activity increases linearly with temperature and directly phosphorylates the negative arm of the
clock (Mehra et al., 2009). The tau mutant hamster (CKIe® ") was the first characterized
mammalian Temperature Compensation defect (Ralph and Menaker, 1988; Tosini and
Menaker, 1998; Lowrey et al., 2000). Recent structural work has demonstrated that CKI tau
alters both priming and progressive phosphorylation events on the negative arm of the clock

(Philpott et al., 2020), which may account for its period shortening with temperature (so-called
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“under-compensation”). Indeed, temperature-sensitive target binding has been shown for
mammalian CKI (Shinohara et al., 2017), and the interaction strength between CKI and FRQ in
Neurospora has been implicated in Temperature Compensation as well (Hu et al., 2021). Taken
together, CKI and CKIl each have temperature sensitive aspects of enzyme activity, both can
directly phosphorylate core clock components, and casein kinases appear to play a conserved
role in Temperature Compensation of fungal, plant, and animal clocks.

In contrast to Temperature Compensation, mechanisms underlying Nutritional
Compensation (also known as Metabolic or Glucose Compensation) are poorly understood in
Neurospora and completely unstudied in other eukaryotic circadian systems. Period
compensation to a variety of ATP:ADP ratios has been well described in the prokaryotic
cyanobacteria Synechococcus elongatus (reviewed in: Johnson and Egli, 2014). A handful of
Nutritional Compensation defects have arisen sporadically in Neurospora, the most developed
involving the transcription factor repressor CSP-1 (Lambreghts et al., 2009). CSP-1 directly
regulates and is regulated by the clock’s positive arm White Collar Complex (WCC), forming an
accessory negative feedback loop. In a Acsp-1 mutant, period significantly shortens as a
function of glucose concentration (Sancar et al., 2012). In fact, direct overexpression of wc-1
also causes nutritional under-compensation (Dovzhenok et al., 2015). Nutritional Compensation
is defective in the absence of the general transcription repressor RCO-1 (Olivares-Yanez et al.,
2016), likely due its normal role in preventing WCC-independent frq transcription (Zhou et al.,
2013). Over-compensation was also found in loss-of-function mutants of an RNA helicase,
PRD-1, which normally localizes to the nucleus only under high glucose conditions (Emerson et
al., 2015). Nutrient sensing and signaling pathways should presumably also play a role in
Nutritional Compensation of the clock, and RAS2 and cAMP signaling have been implicated
(Gyongyosi et al., 2017). Taken together, the current incomplete model for Nutritional
Compensation in Neurospora assembled from random hits implicates transcriptional and post-
transcriptional regulation of core clock factors by transcription factors, an RNA helicase, and
CcAMP signaling.

Since the realization of circadian compensation, the field has speculated that
Temperature and Nutritional Compensation pathways may share common regulators
(Pittendrigh and Caldarola, 1973; Roenneberg and Merrow, 1999; Johnson and Egli, 2014). We
directly test this model and find in Neurospora that previously reported compensation mutants
are specific to either Temperature or Nutritional Compensation. Given this separation of function
and relatively little mechanistic knowledge about Nutritional Compensation, we designed a

genetic screen to identify new compensation mutants in Neurospora crassa. We identify 16
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137  gene knockouts with Nutritional Compensation phenotypes, greatly expanding the list of 4

138 previously characterized mutants. We also provide the first evidence that, like Temperature
139 Compensation, Nutritional Compensation is relevant in the mammalian circadian system, and
140 confirm that knockdowns of the human genes homologous to the top two hits from our genetic
141  screen, CPSF6 and SETD2, impair the clock’s ability to maintain its period length at different
142  glucose levels. These data establish a potentially conserved genetic basis for the phenomenon
143  of circadian Nutritional Compensation and anchor the phenomenon for further genetic and

144  molecular dissection.

145

146  Results

147

148  Nutritional Compensation is distinct from Temperature Compensation in Neurospora.
149 We first set out to characterize the properties of Nutritional Compensation in wild-type
150  Neurospora. Traditional circadian experiments have utilized the ras-1° mutant, which promotes
151 the formation of circadianly-regulated distinct bands of conidial spores in a race tube assay
152 (Sargent et al., 1966; Belden et al., 2007a). However, the ras-1 gene (NCU08823) is implicated
153 in growth and regulation of reactive oxygen species. Thus to accurately profile normal

154  Nutritional Compensation, a wild-type ras-1" strain containing a frq clock box transcriptional
155 reporter was used to measure period length across glucose concentrations ranging from 0 —
156 111 mM (0 — 2% w/v). The Neurospora circadian period is slightly under-compensated to

157  nutrients (Figure 1A); under-compensation has also been observed with respect to temperature
158 (Mehra et al., 2009; Hu et al., 2021). Fungal biomass increases by orders of magnitude when
159  grown in the range of 0% — 0.75% w/v glucose (Supplementary Figure 1), and this increased
160 biomass accounts for the increased magnitude of luciferase rhythms observed at higher glucose
161 levels (Figure 1B) (Supplementary Movie 1).

162
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Figure 1. Nutritional Compensation properties of Neurospora crassa. Circadian period

1T strain cultured on race tubes,

length was determined by bioluminescent recordings of a ras-
where the fungal growth front encounters constant glucose concentrations (N = 6 race tubes per
concentration). No arginine was added to the medium. Period shortens slightly as a function of
glucose levels, which is indicated by the negative slope of the linear fit (g1m in R, Gaussian
family defaults, slope = —-0.48 = 0.12) (A). Averaged biological and technical replicates are
shown for 0 mM (0% wi/v), 5.6 mM (0.1% w/v), 27.8 mM (0.5% w/v), and 55.5 mM (1% wi/v)
glucose levels (standard deviation error bars). Period lengths are 21.9 £ 0.5, 20.8 £ 0.6, 20.8 £

1T strain can

0.2, and 20.7 = 0.6 hours, respectively (average + SD) (B). Surprisingly, the ras-
form distinct conidial bands when grown on 0% glucose starvation medium, contrasted with

constitutive conidiation seen at high glucose levels (C).

Having established that the Neurospora clock displays compensation for period length
across glucose concentrations, we asked whether Temperature Compensation mutants also
have Nutritional Compensation phenotypes, and vice versa, together in the same assay. CKIl is

required for normal Temperature Compensation, and its catalytic subunit mutant cka”®* (Y43H)
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180 has an over-compensation phenotype by race tube assay (Mehra et al., 2009). The frq’

181 (G459D) point mutant is temperature under-compensated (Gardner and Feldman, 1981). The
182  frq clock box transcriptional reporter was integrated into the cka”®? and frq” mutant

183  backgrounds, and temperature over- (Q:o = 0.88) and under-compensation (Qio = 1.11)

184  phenotypes were confirmed by luciferase assay (Figure 2A). Known Nutritional Compensation
185  mutants prd-1 and Acsp-1 were also tested, and each had normal Temperature Compensation
186  profiles (Qi0 = 1.04, 1.06). The same 4 compensation mutant reporter strains were then grown
187  on race tubes containing zero or high glucose medium, and bioluminescence was recorded to
188 track period length and Nutritional Compensation phenotypes. Controls were slightly under-
189 compensated (Figure 1A, Figure 2B). Nutritional Compensation mutants prd-1 and Acsp-1

190 showed the over- and under-compensation phenotypes reported by previous studies (Sancar et
191  al., 2012; Emerson et al., 2015). Temperature Compensation mutants cka”®® and frq” have
192  normal Nutritional Compensation (Figure 2B). We conclude that Temperature and Nutritional
193 Compensation are controlled by distinct pathways in Neurospora. These data suggest that

194  further examination of available mutants defective in Temperature Compensation will not inform
195  our understanding of Nutritional Compensation, and that a separate genetic screen is

196  warranted.

197 To achieve this, we leveraged the whole genome knockout collection in Neurospora
198 crassa (Colot et al., 2006) to initiate a screen for new Nutritional Compensation regulators. Two
199 major classes of gene knockouts were selected to search for compensation phenotypes.

200 Kinases are central to many aspects of cellular processes and regulation including responses to
201 the environment (pheromones, osmotic conditions, carbon/nitrogen regulation, etc.), and a

202  collection of ~100 different kinase knockout circadian reporter strains was available from

203  previous work (Dasgupta, 2015). In addition to posttranslational modifications by kinases,

204  posttranscriptional regulation is emerging as critically important for circadian output (Hurley et
205 al., 2018). Together with the dramatic nutritional over-compensation defect seen in prd-1 RNA
206  helicase mutants (Emerson et al., 2015) (Figure 2B), we selected 351 putative RNA regulatory
207  protein knockouts to screen for compensation regulators. Our list of putative RNA-binding and
208 RNA regulatory proteins was derived from bioinformatic databases and from the literature (Ray
209 etal, 2013; Hogan et al., 2015; Zaveri et al., 2017; Basenko et al., 2018) to include proteins
210  with nucleotide-binding functional annotation but exclude known transcriptional regulators.

211  Multiple circadian period alterations were identified in a recent characterization of transcription
212  factor knockouts (Mufioz-Guzman et al., 2021), and Nutritional Compensation defects among

213 transcription factors, in addition to CSP-1 and RCO-1, will be the subject of future study. Finally,
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a handful of manually selected candidate genes were included in the compensation screen. 8
classical alleles with long or short circadian period (the series of prd mutants and frq point
mutants) were included, and 12 knockouts were manually selected based on reported roles in
nutrient sensing and signaling.

The genetic screen for Nutritional Compensation defects was divided into three phases
(Figure 2C). The 351 previously uncharacterized RNA regulatory protein knockout strains were
grown on glucose starvation race tubes (Figure 1C) to identify those with period length
differences +£1 hour as compared to internal wild-type controls (N = 2 — 8 replicate race tubes
per KO strain). Approximately 70% of the putative RNA regulatory protein knockout strains
showed normal period length on starvation medium and were eliminated in the primary screen
(Figure 2C, Supplementary Table 1). During this phase of the screen, 7 knockout strains were
found with enhanced conidial banding patterns (and variable growth rates) relative to wild-type
controls, reminiscent of the ras-1° mutant phenotype (Supplementary Figure 2). In the
secondary screen, the frq clock box transcriptional reporter was integrated into all knockouts of
interest, along with the existing kinase deletion collection (Dasgupta, 2015) and manually
selected candidate strains. This collection of more than 200 strains was screened in a high
throughput 96-well plate format using glucose and amino acid starvation medium to identify
period length differences £1 hour from internal wild-type controls (N = 6 — 12 replicate wells per
KO strain). About 77% of the candidate strains were eliminated during the secondary screen
due to normal period length on starvation medium (Figure 2C, Supplementary Table 1). The ~50
remaining knockout strains and wild-type controls were then advanced to the lowest throughput
tertiary screen: bioluminescence race tube assays directly comparing zero versus high glucose
and amino acid medium (0.5% wi/v glucose, 0.17% wi/v arginine). It should be noted here that
the race tube assay is particularly well suited for a Nutritional Compensation mutant screen
because the growth front, which produces most of the bioluminescence, always encounters
fresh medium; thus there is no complicating effect of nutrient depletion over the course of a six-
day assay (Supplementary Movie 1). Circadian period lengths were quantified to assay
Nutritional Compensation phenotypes. 16 new mutants emerged from the genetic screen
showing large period changes between zero and high nutrient conditions (Figure 2C,

Supplementary Table 1).
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245
246  Figure 2. Nutritional Compensation mutants have normal Temperature Compensation in

247 Neurospora, catalyzing a genetic screen for new mutants. 96-well plate luciferase assays
248  were used to measure the circadian period length across temperatures in constant darkness (N
249 =12 replicates per strain, per temperature). A linear model was fit to period length data from
250 each strain (g1min R), and a Q;o temperature coefficient was calculated using the model-fitted
251  period lengths at 20°C and 30°C. Shaded areas around the linear fit represent the 95%

252  confidence intervals on the slope. Error ranges on Qo values were computed from the 95% Cls
253 (A). Circadian bioluminescence was recorded from race tube cultures of the indicated

254  genotypes, as previously described (Larrondo et al., 2012) (Supplementary Movie 1). High
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nutrient medium (yellow lines) contained 0.5% w/v glucose 0.17% w/v arginine, and zero
nutrient medium (blue lines) contained 0% glucose 0% arginine. Period lengths were computed
(N = 2 — 5 biological replicates per nutrient concentration) and summarized in a bar graph (B).
Cartoon depiction of the 3-phase genetic screen for Nutritional Compensation defects among

kinase, RNA regulatory proteins, and manual candidate knockout strains (C).

MRNA stability and polyadenylation factors emerge as key regulators of circadian period
length across nutrients.

We first examined the group of 12 under-compensation mutants, where period length
shortens as a function of nutrient levels (Figure 3, Supplementary Table 1). The two most
significant hits are subunits of the nonsense-mediated decay machinery in Neurospora and
showed more dramatic nutrient-responsive period shortening than Acsp-1 (Sancar et al., 2012).
Additionally, 3 of the 12 mutants share a common function in polyadenylation of nascent RNAs.
NCU02736 (FGSC12857) is designated as an uncharacterized gene in Neurospora but is
broadly conserved in fungi. Its Saccharomyces cerevisiae homolog is a component of the
MRNA cleavage and polyadenylation factor | complex (YGL044C, RNA15). PABP-2
(NCU03946, FGSC19900) binds in poly(A) tail regions and can broadly regulate mRNA stability.
NAB2 (NCU16397, FGSC22799™") shares a common domain with the yeast gene NAB2
(YGL122C), which plays a role in mRNA export and stability. Taken together, regulation of
polyadenylation and/or mRNA stability is a common axis of period maintenance with increasing
nutrients. The other 6 under-compensation mutants did not share an obvious functional
pathway, although some of these genes do show circadian rhythms at the mRNA or protein
level and/or are regulated in response to light (Supplementary Table 2). However, given the
slight under-compensation phenotype described for the wild-type clock in Neurospora (Figure

1A, Figure 2B, Figure 3), the remaining under-compensation mutants were not pursued further.

10
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Figure 3. Nutritional under-compensation mutants are enriched for regulators of mRNA

stability. Circadian bioluminescence was recorded from race tube cultures of the indicated

deletion mutants. High nutrient medium (yellow lines) contained 0.5% w/v glucose 0.17% w/v

arginine, and zero nutrient medium (blue lines) contained 0% glucose 0% arginine. Period

lengths were computed (N > 2 biological replicate period estimates per nutrient concentration)

and summarized in a bar graph compared to controls. “Het” indicates heterokaryon strains

derived from the Neurospora whole genome deletion collection, which were maintained on

hygromycin selection medium prior to the bioluminescence race tube assays.

The nonsense-mediated decay (NMD) pathway is required for a normal circadian period

length due to its regulation of casein kinase | mMRNA levels (Kelliher et al., 2020a). We
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293  hypothesized that NMD regulation of ck-1a also underlies its nutritional under-compensation
294  defect. NMD in Neurospora can be triggered by long 3' UTR sequences, and the ck-1a 3' UTR
295 is among the longest 1% of UTRs in Neurospora (Kelliher et al., 2020a). We generated a ck-1a
296  mutant strain lacking its entire 3' UTR, decoupling ck-1a transcripts from NMD targeting. The ck-
297  1aA3'UTR strain does indeed have a short period length phenocopying that of NMD mutants;
298  however, the ck-1aA3’'UTR under-compensation phenotype is not as severe as observed in
299  NMD mutants (Supplementary Figure 3). This suggests that multiple NMD targets are required
300 for normal Nutritional Compensation. Interestingly, NMD mutants also show ~1.4-fold changes
301 inwc-2 and frh gene expression levels (Kelliher et al., 2020a: Figure 5B; Wu et al., 2017). wc-2
302 is upregulated in NMD mutants, which could easily explain the under-compensation phenotype
303  because wc-1 overexpression alone is sufficient to drive nutritional under-compensation

304  (Dovzhenok et al., 2015). Curiously, we find that frh, the obligate binding partner of the

305 disordered protein FRQ (Hurley et al., 2013), is 18-fold down-regulated in response to carbon
306  starvation in wild-type Neurospora (Wang et al., 2017) (Supplementary Figure 4). In fact, both
307 prd-1 and frh are among the top 220 genes in the entire Neurospora transcriptome that

308 decrease in expression after glucose starvation. Future work will determine whether NMD

309 regulation of ck-1a, wc-2, frh, or all transcripts explains the nutritional under-compensation
310 defect.

311 Mutations in two genes, FGSC16956 and FGSC12033, revealed unique nutritional

312 phenotypes compared to the remaining set of 11 under-compensation mutants (Figure 3).

313 FGSC16956 (ANCU02152) had the shortest period phenotype observed in the entire primary
314  and secondary screens (Supplementary Table 1). NCU02152 was undescribed in the

315 Neurospora literature but contains protein domain homology to the mammalian Cleavage &
316  Polyadenylation Specificity Factor subunit 6 (CPSF6). CPSF6 is a member of the CFIm

317 complex, which binds in the 3’ end of nascent mMRNAs and facilitates cleavage and poly(A) tail
318 placement. The CFIm complex also contains a second essential component CPSF5. Using the
319 human CPSF5 protein sequence, NCU09014 was confidently identified as its Neurospora

320 homolog (reciprocal BLAST e-values = 1e"?/ 3e”"*). The single mutant FGSC12033

321 (ANCUO09014 / Acpsf5) had the same short period length as Acpsf6 (Supplementary Table 1),
322  which indicates an obligate multimeric complex as with the mammalian CFIm complex. In the
323 tertiary screen, Acpsf5 and Acpsf6 mutants showed progressive period shortening after ~60
324  hours into the circadian free run, specifically when grown on high nutrient medium. Recalling the
325 prd-1 region-specific Nutritional Compensation phenotype where period defects were seen at

326 the growth front encountering fresh medium, but not at the point of inoculation where nutrients
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were depleted (Emerson et al., 2015), we checked period length from old/aging tissue
surrounding the point of fungal inoculation in Acpsf5 and Acpsf6é mutants. An ~18-hour short
period length was observed in the old tissue region of Acpsf5 and Acpsfé mutants grown on high
arginine (Figure 4A), compared to a ~20-hour period length on zero nutrient medium
(Supplementary Table 1). This result indicates that Acpsf5 and Acpsf6 mutants must undergo a
transition from high-to-low amino acid levels in old tissue to reveal the 18-hour period defect
(Supplementary Movie 2). The Acpsf5 and Acpsf6é mutants differ from other under-compensation
mutants (Figure 3) because the short period defect was induced by amino acids, not by glucose,

and because the Nutritional Compensation phenotype is specific to old tissue (Figure 4A).

The Alternative Polyadenylation (APA) landscape is altered in Nutritional Compensation
mutants.

Given the large period defect observed in Acpsf5 and Acpsf6é mutants (Figure 4A) and
other under-compensation mutants related to polyadenylation (Figure 3), we hypothesized that
poly(A) tail maintenance and concurrently the stability of a core clock mMRNA(S) is required for
Nutritional Compensation. To assay the biochemistry of Acpsf mutants, we required a solid
medium growth regime to carefully control nutrient levels and to confidently compare results to
our genetic screen for Nutritional Compensation phenotypes. Neurospora biochemistry is
traditionally accomplished using extracts from liquid-grown cultures (Nakashima, 1981; Kelliher
et al., 2020b), where nutrient consumption rates are less well defined and less relevant to the
ecological niche of the organism. A cellophane petri plate assay was developed to harvest
biomolecules from solid medium cultures of Neurospora (Materials and Methods). We confirmed
that the circadian clock is equally functional on cellophane plates and in liquid cultures
(Supplementary Figure 5). We next generated a Acpsf5 Acpsf6 double mutant strain (hereafter
referred to as ACFIm) and confirmed that its period length and Nutritional Compensation
phenotype matched results from race tube assays (Supplementary Figure 5). Biological
duplicate wild-type control and ACFIm mutant cellophane plates were grown at 25°C under
constant light for 3 days on high nutrient medium (containing 0.25% wi/v glucose 0.17% wi/v
arginine; high-to-low nutrient transition will occur in aged tissue before 72 hours growth), and
total RNA was extracted for 3' End Sequencing (Materials and Methods).

Nascent mRNA transcripts can contain multiple sites for polyadenylation to occur, which
is known as Alternative Polyadenylation (APA). APA events generate mRNA isoforms with

variable 3’ UTR lengths and nucleotide sequences (reviewed in: Mayr, 2017). Along with other
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factors involved in mMRNA 3’ end cleavage and polyadenylation, CFIm mutants have been
shown to alter APA patterns genome wide (Kubo et al., 2006; Martin et al., 2012; Zhu et al.,
2018). Changes in APA have been directly linked to RNA stability in yeast and in mammals
(Mayr and Bartel, 2009; Mogtaderi et al., 2022). We first sought to identify normal instances of
APA in wild-type Neurospora 3' UTRs by comparing our 3' End Sequencing dataset to an
existing 2P-Seq dataset (Zhou et al., 2018) (Materials and Methods). 843 consensus genes
(>10% of Neurospora 3’ UTRs) contain multiple poly(A) sites after applying a strict intersection
cutoff for identification in all 4 wild-type datasets (Supplementary Table 3), which is a lower
genome-wide estimate than >60% APA in mammals. Next comparing ACFIm and controls, we
found 193 examples of APA events in controls collapsing to a single poly(A) peak in mutants
(21%), 123 examples of a single poly(A) peak in controls expanding to multiple APA events in
mutants (13%), and 155 examples of APA events in both control and mutant where the location
of the predominant poly(A) peak was significantly changed in mutants (16%) (Supplementary
Table 4). Taken together, ~50% of the APA landscape is altered in Neurospora ACFIm mutants.
Knockdown of the mammalian CFIm complex causes global 3' UTR shortening, as proximal
poly(A) sites become preferred over distal poly(A) sites (Kubo et al., 2006; Martin et al., 2012;
Zhu et al., 2018). In Neurospora, we find that a distal-to-proximal shift occurs in a majority (63%)
of the 155 altered APA events in the ACFIm mutant.

Nine core clock and compensation genes are among the consensus list of 3' UTRs with
APA events: ck-1a (NCU00685), frq (NCU02265), upf1”®® (NCU04242), ckb-1 (NCU05485),
rco-1 (NCU06205), pkac-1 (NCU06240), NCU06565, prd-1 (NCU07839), and nab2 (NCU16397)
(Supplementary Table 3). Given the strict cutoff for consensus APA, we added 7 additional
genes after visual inspection: set-2 (NCU00269), wc-2 (NCU00902), set-1 (NCU01206), csp-1
(NCU02713), cka™®® (NCU03124), frh (NCU03363), and pabp-2 (NCU03946). 3' UTR regions
containing APA events were visualized in a heatmap (Figure 4B). 2 out of 16 genes of interest,
ckb-1 and pabp-2, are among the list of genes with altered APA patterns in the ACFIm mutant
(Supplementary Table 4; Figure 4B asterisks *). poly(A) read pileups were visualized for 3’
UTRs of ckb-1 and pabp-2 to confirm significant re-organization of poly(A) tail locations in the
ACFIm mutant (Figure 4C). Following our original hypothesis, altered 3’ UTR length in ACFIm
should lead to altered mRNA stability and changes in gene expression compared to control
samples. An extremely slight and statistically non-significant increase (t-test, p = 0.5) was
observed for both ckb-1 and pabp-2 gene expression levels (Figure 4D). ckb-1 encodes the
regulatory subunit of Neurospora Casein Kinase Il (CKIll), and interestingly, the catalytic alpha

subunit of CKII (cka”™?) increased significantly in the ACFIm mutant, despite no visible changes
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394 in 3 UTR poly(A) sequence coverage for cka”®>

(Figure 4B). In addition, ck-1a gene expression
395 levels are modestly (1.2 fold) but significantly decreased in ACFIm (Figure 4D), a result that is
396  counterintuitive given the mutant’s short period length phenotype (Kelliher et al., 2020a). Future
397  work will determine whether overexpression of CKIl underlies the ACFIm short period length
398 and Nutritional Compensation phenotypes.
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401 Figure 4. The Neurospora CFIm complex is involved in Alternative Polyadenylation

402 (APA), and a subset of core clock and compensation-relevant genes are altered in ACFIm
403 mutants. Circadian bioluminescence was recorded from race tube cultures of the indicated

404  strains grown in high amino acid race tube medium (0.17% w/v arginine, 0% glucose).

405 Luciferase signal was acquired from the entire race tube of fungal growth (yellow lines) or from
406 an old tissue region of the race tube (blue lines) (see: Supplementary Movie 2). Circadian period
407  lengths were computed for each region (Materials and Methods; N = 4 race tubes per genotype;
408 standard deviation error bars): control: 21.7 + 0.2 hrs (whole tube), 21.4 + 0.3 hrs (old tissue);
409  Acpsf5: 19.0 £ 0.5 hrs (whole tube), 17.2 £ 0.2 hrs (old tissue); Acpsf6: 19.4 + 0.3 hrs (whole
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tube), 17.3 £ 0.3 hrs (old tissue) (A). Wild-type control and Acpsf5 Acpsf6 double mutant
cellophane plate cultures were grown in constant light at 25°C for 72 hours on high nutrient
medium (0.25% wi/v glucose, 0.17% w/v arginine). Total RNA was extracted, and 3’ End
Sequencing was performed (N = 2 biological replicates per genotype). 16 core clock and
compensation genes of interest were selected, read pileup data from 3' UTR regions were
extracted, biological duplicate samples averaged together, and heatmaps were generated.
Read count pileups are depicted as log,-fold changes, and both color scales are normalized to
mean counts in the wild-type dataset. Each point along the x-axis represents nucleotide
coordinates from the STOP codon for each mRNA (where data from any negative / Crick strand
genes are shown in reverse orientation), and genes are ordered along the y-axis by increasing
3’ UTR lengths. Asterisks (*) indicate two genes, ckb-1 and pabp-2, with significantly altered
APA patterns between control and mutant (B). Genomic tracks were generated using the Gviz
package in R to visualize poly(A) read pileups in the 3' UTR regions of ckb-1 and pabp-2. In the
ACFIm mutant, poly(A) tail locations are significantly changed for ckb-1 and pabp-2 (C). Gene
expression levels of core clock and compensation genes were measured by normalizing total
read counts for each gene (Materials and Methods). Log,-transformed read counts are shown.
Asterisks indicate p < 0.05 (*) by student’s t-test comparing mutant to control levels. The cka”®?

transcript is 1.34-fold upregulated, and the ck-1a transcript is 1.2-fold down-regulated in ACFIm
(D).

Chromatin modifiers emerge as key regulators of circadian period length across
nutrients.

We next examined the 4 over-compensation mutants identified in our genetic screen,
where period lengthens as a function of nutrient levels (Figure 5A, Supplementary Table 1). The
wild-type Neurospora clock is slightly under-compensated (Figures 1 — 3), and therefore this
group of over-compensation mutants, together with prd-1 (Figure 2B) (Emerson et al., 2015),
represent clear and bona fide Nutritional Compensation defects. Protein Kinase A (pkac-1)
shows extended compensation, or approximately the same period length at zero and high
nutrients (Figure 5A). The effect of loss of PKA on Nutritional Compensation is subtle and likely
due to its regulation of RCM-1 and WCC-independent frq transcription—RCM-1 normally acts
as a general transcription co-repressor with RCO-1 and prevents frq transcription in a Awc-1 or
Awc-2 background (Zhou et al., 2013; Liu et al., 2015); however, a Arcm-1 mutant did have
normal Nutritional Compensation in our screen (Supplementary Table 1). FGSC16412

(ANCUO02961, Arbg-28) is a broadly conserved ribosome biogenesis factor in fungi, currently
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uncharacterized in the Neurospora literature but homologous to RNH70 (YGR276C) in S.
cerevisiae. Rnh70p (Rex1p) is a 3’-to-5’ exonuclease involved in 5S and 5.8S rRNA processing
(Van Hoof et al., 2000). The completely arrhythmic phenotype of Arbg-28 on high nutrients
(Figure 5A) is intriguing and implicates translational machinery in Nutritional Compensation for
the first time (see Discussion).

Half of the novel over-compensation mutants are involved in chromatin regulation, and
both contain SET domains (reviewed in: Freitag, 2017). SET-1 (NCU01206) is a histone H3
lysine 4 (K4) methyltransferase and the catalytic subunit of the COMPASS complex in
Neurospora. Aset-1 was previously reported to be arrhythmic (Raduwan et al., 2013), but here
we find an increasing period length as a function of glucose levels (Figure 5A). SET-1 was
convincingly shown to regulate methylation levels and transcriptional repression at the frq locus
(Raduwan et al., 2013; Zhu et al., 2019), and upon re-analysis of the Aset-1 transcriptome, frq is
the only core clock gene significantly altered in the Aset-1 mutant due to loss of repression
(Figure 5B). The Aset-1 nutritional over-compensation phenotype is consistent with loss of
chromatin repression on frq—as glucose levels increase, more cellular energy is available for
transcription/translation, and circadian period is lengthened due to high frq levels and prolonged
negative feedback. This SET-1 nutritional mechanism is analogous to CKIlI's role in regulating
the larger pool of FRQ protein at higher temperatures in Temperature Compensation (Mehra et
al., 2009).

SET-2 (NCU00269) is a histone H3 K36 methyltransferase in Neurospora, which
deposits inhibitory chromatin marks in actively transcribed regions via a physical association
with RNA Polymerase Il and prevents improper transcription initiation inside coding regions
(Adhvaryu et al., 2005; Bicocca et al., 2018). Aset-2 was also previously reported to be
arrhythmic (Zhou et al., 2013; Sun et al., 2016), but here we find that Aset-2 rhythms are
completely intact with a short period length on nutrient starvation medium (Figure 5A). SET-2 is
required to maintain H3K36me2 and H3K36me3 marks across the frq locus, and the Aset-2
mutant results in hyper-acetylation of frq, improper activation of WCC-independent frq
transcription, constitutively high frg expression levels, and, presumably, the arrhythmic clock
phenotype observed under high nutrients (Zhou et al., 2013; Sun et al., 2016). Our result
indicates for the first time that WCC-independent frq transcription is nutrient dependent and only
reaches levels sufficient for arrhythmicity at high nutrient levels. However, low WCC-
independent frq transcription does not explain the short period length of the Aset-2 mutant in

zero nutrient medium (Figure 5A), as low WCC expression results in lengthened periods (Cheng
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et al., 2001). Curiously, upon mining existing data for the Aset-2 transcriptome, frg levels were
not significantly increased, and instead frh levels were down-regulated (Figure 5C). frh is among
the top down-regulated genes during glucose starvation (Supplementary Figure 4), and perhaps
Aset-2 further affects frh transcription, leading to a circadian period change. Future work using
cellophane plate assays (Supplementary Figure 5) will determine whether SET-2 regulation of
frh or another gene expression program explains its short period length on nutrient starvation
medium. Notably, two RNA helicases physically associated with the mammalian negative arm
complex, DDX5 and DHX9, show a short period length upon siRNA knockdown (Padmanabhan
et al., 2012), and so decreased levels of the frh helicase in Aset-2 could potentially explain its
short period phenotype. Taken together, our genetic screen revealed mRNA stability,
polyadenylation, and chromatin modifier pathways converging on gene expression regulation to

enact circadian Nutritional Compensation in fungi.
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490
491  Figure 5. Nutritional over-compensation mutants are enriched for chromatin regulators.

492  Circadian bioluminescence was recorded from race tube cultures of the indicated deletion

493  mutants. High nutrient medium (yellow lines) contained 0.5% w/v glucose 0.17% w/v arginine,
494  and zero nutrient medium (blue lines) contained 0% glucose 0% arginine. Period lengths are
495 indicated as insets (N = 2 biological replicates per nutrient concentration) (A). RNA-Sequencing
496  data were mined from a previous study (Zhu et al., 2019) (Materials and Methods), where 2%
497  (high) glucose liquid cultures were harvested at circadian time point DD24. Log,-transformed
498 FPKM values are shown for core clock gene expression levels (N = 2 biological replicates per

499  genotype). The asterisk indicates p = 0.05 (*) by student’s t-test comparing mutant to control
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500 levels. The frg transcript is 1.78-fold more abundant in Aset-1 (B). RNA-Sequencing data were
501 mined from a previous study (Bicocca et al., 2018) (Materials and Methods), where 1.5% (high)
502  sucrose liquid cultures were sampled. Log,-transformed FPKM values are shown for core clock
503 gene expression levels (N = 2 biological replicates for Aset-2, and N = 6 biological replicates for
504  controls). The asterisk indicates p < 0.05 (*) by student’s t-test comparing mutant to control
505 levels. The frh transcript is 1.61-fold less abundant in Aset-2 (C).

506

507  Nutritional Compensation also functions in a mammalian circadian system.

508 Compensation is a defining principle of circadian oscillators. Temperature Compensation
509 mechanisms are active in mammalian tissue culture (Izumo et al., 2003; Tsuchiya et al., 2003),
510 despite long evolutionary timescales in homeothermic organisms. Thus, we hypothesized that
511 Nutritional Compensation is also a conserved feature between the fungal and mammalian

512  circadian clocks. Four previous studies hinted that Nutritional Compensation mechanisms may
513  be actively maintaining circadian period length across physiologically relevant nutrient

514  environments.

515 Inhibiting transcription using a-amanitin or actinomycin D against RNA Polymerase I
516 activity led to dose-dependent shortening of the NIH3T3 period length (Dibner et al., 2009). In
517  other words, the mammalian circadian oscillator is over-compensated with respect to

518 transcription rates, reminiscent of temperature over-compensation observed in Gonyaulax

519 (Hastings and Sweeney, 1957). Similarly, induction of autophagy and amino acid starvation
520 shortens period length in MEFs (Beesley et al., 2020), once again indicating an over-

521 compensation phenotype to amino acid levels in mammals. Varying levels of FBS do not alter
522  the circadian period length in NIH3T3 cells (Matsumura et al., 2014) despite substantial

523 changes in cell growth rate. Rhythms at the single-cell level of MEFs grown in microfluidic

524  devices show slight period shortening when cells were given fresh medium every hour

525 compared to a single medium supply at the beginning of the experiment, suggesting instead
526 nutritional under-compensation (Gagliano et al., 2021). Thus, preliminary evidence is consistent
527  with functional Nutritional Compensation in the mammalian circadian system.

528 We used a U20S Bmall-dLuc reporter cell line to compare rhythms in high versus low
529  glucose medium and found a slight under-compensation phenotype (Supplementary Figure 6),
530 similar to the single-cell rhythms report (Gagliano et al., 2021). Period length was 0.5 hours
531 shorter in 25 mM (high) glucose compared to 5.56 mM (low) glucose, trending in the same

532  direction as the ~1.5-hour period shortening seen for the wild-type Neurospora clock across

533 glucose concentrations (Figures 1 — 3). In this circadian assay, Bmall-dLuc cells have reached
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534  confluency and are no longer actively dividing, but metabolism and drug responses of cultured
535 cells are reported to be significantly different in high versus low glucose tissue culture medium
536  (reviewed in: Abbas et al., 2021).

537 Maintenance of circadian period length between high and low glucose medium and a
538 small amount of literature precedent does not, however, prove the relevance of Nutritional

539 Compensation to the mammalian clock. A mutant phenotype showing nutrient-dependent period
540 changes (i.e. defective Nutritional Compensation) would provide much stronger evidence for the
541 biological relevance of compensation. Therefore, we selected two of the most significant

542  compensation phenotypes from our fungal genetic screen—Acpsfé (NCU02152) and Aset-2
543  (NCU00269)—and identified the homologous human genes CPSF6 and SETD?2 (reciprocal
544  BLAST e-values = 7e® / 7e® for Cpsf6 and 4.4e®' / 5.7e? for Set-2). If the circadian functions
545  of CPSF6 or SETD2 are indeed conserved with Neurospora, we expected to observe a period
546 length change as well as a Nutritional Compensation defect. CPSF6 and SETD2 were not

547  among the hits from a genome-wide screen for period length defects using U20S cells (Zhang
548 etal, 2009) or tested in a kinase/phosphatase siRNA screen (Maier et al., 2009); however,

549 visual inspection of the genome-wide screen data confirmed that a subset of the pooled siRNAs
550 did show period effects after CPSF6 or SETD2 knockdown (source: BioGPS database,

551  “Circadian Genomics Screen” plugin).

552 CPSF6 and SETD2 were knocked down using siRNAs in Bmall-dLuc cells, and period
553 length was measured from high and low glucose medium (Figure 6). AllStars Negative Control
554  siRNA, which does not target any known mammalian transcript, was used as an internal control
555 for each biological replicate assay, and CRY2 siRNA knockdown was used as a positive control
556 for a known long period phenotype (Baggs et al., 2009; Lee et al., 2019). Control Bmall-dLuc
557  cells had a slight under-compensation phenotype (Figure 6A), matching preliminary results

558 (Supplementary Figure 6). CRY2 knockdown lengthened period by ~4 hours in both high and
559 low glucose conditions, indicating no effect on Nutritional Compensation (Figure 6A). CPSF6
560  knockdown lengthened period by ~1.5 hours in high glucose and further lengthened period by
561 ~3hours in low glucose, indicating an under-compensation phenotype compared to control cells
562  (Figure 6A). The long period observed in CPSF6 knockdowns was the opposite of the short
563  period phenotype in Neurospora (Figure 4A). Most interestingly, SETD2 knockdown drastically
564 increased the amplitude of the Bmall-dLuc transcriptional reporter compared to controls. As
565  with Neurospora, SETD2 knockdown rhythms were less robust (Figures 5A & 6A). SETD2

566  knockdown lengthened period by ~2.5 hours in high glucose but only lengthened period by ~1

567  hourin low glucose (Figure 6A). To further validate nutritional over-compensation in SETD2
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knockdowns, Bmall-dLuc cells were compared across higher concentrations of glucose with
more robust rhythms (Figure 6B). Just like Neurospora, SETD2 mutants show a nutritional over-
compensation phenotype. This genetic evidence strongly suggests that Nutritional
Compensation mechanisms also regulate the mammalian circadian clock in physiologically

relevant environments.
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Figure 6. CPSF6 and SETD2 are required for normal Nutritional Compensation of U20S
Bmall-dLuc cells cultured in high versus low glucose. U20S cells were transfected with the
indicated siRNAs (15 pmol total), incubated for 2 days, and Bmall-dLuc rhythms were
measured for 5 — 6 days following dexamethasone synchronization. Knocked-down cells were
assayed in either MEM high glucose (yellow lines) or MEM low glucose (blue lines) medium.
Averaged luciferase traces are shown for each glucose concentration without detrending or
further data manipulation (N = 6 biological / technical replicates for AllStars negative controls; N
= 4 biological / technical replicates for other SIRNA knockdowns per nutrient concentration;
standard deviation error bars). siRNA knockdown efficiency was measured using RT-qPCR
relative to non-transfected control samples (Materials and Methods). ~90% knockdown was

achieved for CPSF6, and ~70% knockdown for SETD2 under these experimental conditions (N
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= 2 biological replicate samples each with N = 3 technical replicate RT-gPCR reactions). Period
lengths were calculated and averaged for all replicates (A). sSiRNA knocked-down cells were
assayed in either DMEM 30 mM glucose (yellow lines) or DMEM 10 mM glucose (blue lines)
medium. One representative luciferase trace is shown (N = 7 — 10 biological / technical
replicates per nutrient concentration). Period lengths were calculated and averaged for all
replicates and plotted as boxplots (B). Average period lengths were: 23.2 £ 1.1 hrs (low glucose
control) and 23.5 + 0.6 hrs (high glucose control); 23.6 £ 1.1 hrs (low glucose SETD2
knockdown) and 25.2 + 1.8 hrs (high glucose SETD2 knockdown) (* p < 0.05, student’s t-test).

Discussion

We present the largest genetic screen to date for mutants displaying altered circadian
Nutritional Compensation (Supplementary Tables 1 & 2, Figure 2C). Together with a recent
survey of 177 transcription factor knockouts (Mufioz-Guzman et al., 2021), circadian functional
genomics is well underway utilizing the Neurospora deletion collection (Colot et al., 2006). In
this study, 16 new Nutritional Compensation mutants were identified and characterized along
with the 4 previously characterized mutants (Acsp-1, prd-1, Arco-1, and Aras2)—fungal
Nutritional Compensation occurs at the level of gene regulation and involves transcription
factors, RNA helicases, chromatin modifiers, and polyadenylation machinery. Nutritional
Compensation effectors are responsible for directly regulating the core oscillator to maintain the
circadian period length across different nutrient levels. In high nutrient environments, CSP-1
forms a negative feedback loop on WCC expression and activity by inhibiting wc-1
overexpression and preventing nutritional under-compensation (Sancar et al., 2012; Dovzhenok
et al., 2015). RCO-1, SET-2, and possibly PKA are required to block WCC-independent frq
transcription in high nutrient conditions (Figure 5) (Zhou et al., 2013; Olivares-Yanez et al.,
2016; Sun et al., 2016). More broadly, repressive chromatin marks at the frq locus, including
those regulated by SET-2, SET-1, and the COMPASS complex, are required to maintain
Nutritional Compensation, especially in high nutrients (Figure 5). The nonsense-mediated decay
machinery is required for circadian function through its regulation of ck-1a expression (Kelliher
et al., 2020a), and ck-1a transcript stability appears to undergo additional, nutrient-dependent
regulation because deletion of the ck-1a 3’ UTR (its NMD-targeting sequence) causes nutritional
under-compensation (Figure 3, Supplementary Figure 3). The alternative polyadenylation (APA)
landscape in Neurospora is dynamic across nutrient conditions and requires CFIm complex

activity (Figure 4).
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This screen and associated candidates have opened up several avenues for further
work on Nutritional Compensation mechanisms in Neurospora. For instance, PRD-1 RNA
helicase target genes under high glucose conditions are completely unknown. In this study, we
provide some evidence that CKIl activity is altered in ACFIm mutants (Figure 4), but the effect of
CKIll overexpression on both circadian period length and Nutritional Compensation remains to
be tested. Genetic screens extending from this work can examine both transcription factor and
chromatin modifier knockouts for Nutritional Compensation phenotypes. Curiously, the subset of
chromatin readers and writers that have been screened to date (using standard medium
conditions) have an unusually high ~15% hit rate for circadian period defects (Belden et al.,
2007b; Wang et al., 2014). In this study, chromatin modifiers not only regulate chromatin state
at the frq locus, but dynamic expression of frh across nutrient levels may also be involved in
compensation, potentially mediated by SET-2 (Figure 5C). Intriguingly, quantitative modeling
has suggested that nutrient-dependent FRH sequestration away from the negative arm complex
is a plausible mechanism for Nutritional Compensation (Upadhyay et al., 2019). Mechanistic
work in prokaryotes has indicated that Nutritional Compensation can be derived from the same
core clock enzyme, KaiC, through its protein domains with equal and opposite balancing
reaction rates (Phong et al., 2013; Hong et al., 2020). In fungi and perhaps other eukaryotic
clocks, Nutritional Compensation appears to be maintained through regulation of multiple
different core clock factors. Nutritional Compensation mechanisms very likely extend to other
physiological environmental variables such as nitrogen sources and levels (Huberman et al.,
2021), vitamins, and soil pH (Ruoff et al., 2000).

The work establishes Nutritional Compensation in the mammalian circadian clock for the
first time, and its clinical relevance may be high. There is a direct link between pancreatic clock
function and risk for type 2 diabetes (Marcheva et al., 2010). Fasting glucose concentration in
human serum is approximately 5 mM in healthy controls, but glucose levels can increase by 3+
orders of magnitude in type 2 diabetic hyperglycemia (Shapiro et al., 1991; Radziuk and Pye,
2006). Thus, deleterious SNPs in Nutritional Compensation-relevant genes could exacerbate
disease outcomes when cellular clocks encounter nutrients outside of the physiological range.
In addition to Nutritional Compensation, there is a large body of quality literature describing the
set of metabolites and metabolic enzymes that can directly feed back and affect circadian
function, including adenosine monophosphate (AMP) and AMP kinase, nicotinamide adenine
dinucleotide (NAD+) and SIRT1 activity, acetylglucosamine (O-GIcNAc) (Liu et al., 2021), and
MTOR activity (Ramanathan et al., 2018) (reviewed in: Bass and Takahashi, 2010; Sancar and
Brunner, 2014; Asher and Sassone-Corsi, 2015; Dibner and Schibler, 2015). In Neurospora,
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653 extensive metabolic rhythms are also present (Hurley et al., 2018; Baek et al., 2019), and

654  rhythmic metabolic reaction fluxes likely function similarly to the mammalian clock (Krishnaiah et
655 al., 2017; Thurley et al., 2017; Collins et al., 2021). For the mammalian clock, it will be critical to
656  define “physiologically relevant” nutrient levels, which could vary by organ or even cell type. A
657 high fat diet has been shown to lengthen circadian behavioral rhythms by ~0.5 hours (Kohsaka
658 etal, 2007), suggesting an over-compensation phenotype. In this study, we observed nutritional
659 under-compensation in U20S osteosarcoma cells (Figure 6). Does a high fat diet push cells out
660 of the physiological range of compensation for the circadian oscillator, or are different

661 mammalian cell types differentially over- or under-compensated to nutrients? Notably, time-

662 restricted feeding has been shown to alleviate circadian disruption and some metabolic

663 consequences of a high fat diet (Hatori et al., 2012; Wehrens et al., 2017). Future work will

664 implement more metabolically relevant cell types, such as hepatocytes and adipocytes

665 (Ramanathan et al., 2014), to answer these questions about mammalian clock compensation.
666 Circadian control of polyadenylation is an emerging topic. Modern transcriptomic

667 approaches have identified hundreds of rhythmic Alternative Polyadenylation (APA) events in
668 mice and in plants (Liu et al., 2013; Gendreau et al., 2018; Greenwell et al., 2020; Yang et al.,
669 2020). We and others have begun to define the set of APA events in Neurospora (Zhou et al.,
670 2018) (Supplementary Table 3), which can be extended to circadian APA events. Two cleavage
671 and polyadenylation factors (CPSF1 and 7) were found to physically interact with the negative
672 arm complex in mice (Ju et al., 2020), and CPSF6 oscillates at the transcriptional level in mouse
673  kidney and brain (Zhang et al., 2014). During preparation of this manuscript, circadian

674  colleagues reported the long period length of CPSF6 knockdown (Schmal et al., 2021), which
675  our results further support (Figure 6A). Interestingly, CPSF6 knockdown cells showed a

676 temperature under-compensation defect, and multi-omics identified EIF2S1 as the key effector
677  gene upon CPSF6 knockdown (Schmal et al., 2021). The Neurospora homolog of EIF2S1 is
678  elF2a/NCU08277 (reciprocal BLAST e-values = 6e°" / 1e®), which is a central hub of rhythmic
679 translation initiation peaking in the subjective evening (Karki et al., 2020). We identified a

680 ribosome biogenesis exonuclease, RBG-28, which is required for rhythmicity under high nutrient
681 conditions (Figure 5). Transcription, RNA processing reactions (such as nonsense-mediated
682 decay, splicing, and polyadenylation), and translation are tightly coupled processes. In fact,

683  rhythmic polyadenylation of rRNAs has been linked to translational rhythms in mouse liver

684  (Sinturel et al., 2017). Nutritional Compensation pathways likely occur at multiple steps in the

685 gene expression of multiple core clock components.
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By suggesting CPSF6 and SETD2 as targets, Neurospora functional genetics has again
informed mammalian-relevant circadian mechanisms (reviewed in: Loros, 2020), and the over-
compensation defect of SETD2 provides affirming evidence of eukaryotic Nutritional
Compensation outside of Neurospora (Figure 6). A handful of previous studies have implicated
histone methyltransferases in mammalian circadian function, including both activating (Katada
and Sassone-Corsi, 2010; Valekunja et al., 2013) and repressive chromatin marks (Etchegaray
et al., 2006). SETD2 joins a growing list of circadianly-relevant histone methyltransferases and
chromatin modifiers. In fact, recent work has demonstrated a novel function for a key histone
methyltransferase in the circadian transcription-translation feedback loop (TRITHORAX in
insect, MLL1 in mammals), further highlighting the utility of circadian model systems for

understanding the mammalian clock (Zhang et al., 2022).

Materials and Methods

Neurospora strains, growth conditions, and genetic screen.

Strains used in this study were derived from the wild-type background (FGSC2489 mat
A), ras-1°? background (87-3 mat a or 328-4 mat A), or the Fungal Genetics Stock Center
(FGSC) knockout collection as indicated (Supplementary Table 1). Strains were constructed by
transformation or by sexual crosses using standard Neurospora methods
(http://www.fgsc.net/Neurospora/NeurosporaProtocolGuide.htm). The frq clock box
transcriptional reporter was transformed and used as previously described (Kelliher et al.,
2020a). The fungal biomass reporter gene (Supplementary Figure 1) is composed of 430 bp of
the gpd promoter from Cochliobolus heterostrophus driving constitutive levels of codon
optimized luciferase and integrated at the csr-1 (NCU00726) locus (Bartholomai, 2021).

All race tubes contain a base medium of 1X Vogel's Salts, 1.5% w/v Noble agar (Thermo
Fisher # J10907), and 50 ng/ml biotin. Noble agar was used instead of standard bacteriological
agar (Thermo Fisher # J10906) because impurities in bacteriological agar can be metabolized
by Neurospora and interfere with accurate quantification of Nutritional Compensation
phenotypes (Emerson et al., 2015). Glucose and arginine were supplemented into race tube
medium as indicated. High glucose was defined as 0.5% wi/v (27.8 mM) based on literature
precedent (Sancar et al., 2012; Olivares-Yanez et al., 2016) and based on growth rate and
period length similarity to higher glucose concentrations (Figure 1A, Supplementary Figure 1G).
High arginine was defined as 0.17% w/v because concentrations higher than 0.5% w/v interfere

with circadian banding in race tube assays (Sargent and Kaltenborn, 1972). To optimally
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720 visualize and quantify the circadian banding pattern in the primary genetic screen (Figure 2C),
721  screen medium contained: 1X Vogel's Salts, 1.5% Noble agar, 50 ng/ml biotin, and 0.17%

722  arginine. To quantify period lengths in carbon and nitrogen starvation conditions, the secondary
723  screen medium contained: 1X Vogel's Salts, 1.5% Noble agar, 50 ng/ml biotin, and 25 uM

724  luciferin (GoldBio # 115144-35-9). The tertiary screen medium contained: 1X Vogel's Salts,

725  1.5% Noble agar, 50 ng/ml biotin, 25 uM luciferin, and glucose/arginine levels as indicated

726  (Figures 3 — 5). For Temperature Compensation 96-well plate experiments (Figure 2A), the

727  standard medium recipe contained: 1X Vogel's Salts, 1.5% bacteriological agar, 50 ng/ml biotin,
728 25 uM luciferin, 0.03% w/v glucose, and 0.05% w/v arginine.

729 Liguid medium cultures were grown from fungal plugs in Bird Medium + 1.8% wi/v

730  glucose (Supplementary Figure 5) as previously described (Kelliher et al., 2020b). Solid medium
731  cultures were implemented to determine mRNA (or protein) levels from Nutritional

732  Compensation mutants of interest. Medium was poured into 100-mm petri plates and cooled to
733  solidify (~20 ml per plate; 1X Vogel's Salts, 1.5% Noble agar, 50 ng/ml biotin, 25 uM luciferin,
734  and glucose/arginine levels as indicated). Cellophane (Idea Scientific # 1080) paper discs were
735 cut to the size of 100-mm plates, and autoclaved to sterilize. A sterile cellophane disc was then
736  placed on top of the solidified medium. Conidia from strains of interest were resuspended in 100
737  ul of sterile water, vortexed to mix, pipetted on top of the cellophane disc, and spread with a
738  sterile plate spreader (in order to maintain approximately the same conidial age across the

739 cellophane plate). Inoculated plates were then covered with a Breathe-Easy strip for gas

740 exchange (USA Scientific # 9123-6100). After growing tissue on cellophane plates for the

741 indicated amount of time, mycelia and conidia were harvested from atop the cellophane layer by
742  scraping with a 1000 pl pipette tip. Harvested fungal tissue (approximately the size of one US
743  quarter per each 100-mm cellophane plate) was rapidly hand dried using paper towels and an
744  Eppendorf tube rack, and flash frozen in liquid nitrogen for storage before biochemical

745  extraction.

746 Most strains were genotyped by growth on selective medium (5 pug/ml cyclosporine A
747  and/or 200-300 ug/ml Hygromycin). Key strains were genotyped by PCR as previously

748  described (Kelliher et al., 2020a) using genotyping primers:

749 ck-1a"°"®-VHFA3'UTR::hyg® (NCU00685 A3'UTR): 5 GCTGCTGCTCGTAAGGAC 3’
750 and 5 CATCAGCTCATCGAGAGCCTG 3’
751 Acpsf5::hyg® (FGSC KO mutant): 5’ CTCTGGTCGAGAACACTGCG 3’ and 5’

752 CAGGCTCTCGATGAGCTGATG 3’
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Acpsf6::hygR (FGSC KO mutant): 5 CACCAACCCTAACCCGTGAT 3’ and 5’
CAGGCTCTCGATGAGCTGATG 3’

Aset-2::hyg® (FGSC KO mutant): 5 GACGTCATCGGTGTTGAGAC 3’ and 5’
CAGGCTCTCGATGAGCTGATG 3

Neurospora luciferase reporter detection and data analysis.

96-well plates were inoculated with conidial suspensions and entrained in 12 hour
light:dark cycles for 2 days in a Percival incubator at 25°C. Temperature inside the Percival
incubator was monitored using a HOBO logger device (Onset # MX2202) during entrainment
and free run. Race tubes were entrained in constant light at 25°C for 3 — 24 hours (mean
entrainment time for all experiments was 14 hours in LL / overnight). Entrained 96-well plates or
race tubes were then transferred into constant darkness to initiate the circadian free run.
Individual race tubes were separated by ~3 cm tall strips of 6-ply black railroad board paper to
prevent contamination of light signal between cultures. Luminescence was recorded using a
Pixis 1024B CCD camera (Princeton Instruments). Bioluminescent signal was acquired for 10 —
15 minutes every hour using LightField software (Princeton Instruments, 64-bit version 6.10.1).

The average bioluminescent intensity of each 96-well or race tube was determined using
a custom ImageJ Macro with background correction for each image (Larrondo et al., 2012,
2015). Most race tube period lengths reported in this study were derived from luciferase signal
measurements across the entire race tube (Figures 1, 3, and 5). However, the long period
defect in the prd-1 mutant only occurs at the growth front (i.e. high nutrients) region of fungal
tissue (Emerson et al., 2015). For the prd-1 strain, an ImageJ macro was modified to quantify
only the fungal growth front (Figure 2B). On the other hand, the Acpsf5 and Acpsf6 mutants
showed additional period shortening in aged tissue (Figure 4A) (Supplementary Movie 2). For
the cpsf mutants, an ImageJ macro was maodified to quantify only the old tissue region. Custom
ImageJ Macros to quantify the growth front or old tissue regions of race tubes from Princeton
*.spe image files are available at: https://github.com/cmk35.

To calculate the circadian period length, background-corrected luminescence traces
were run through two different algorithms and averaged as previously described (Kelliher et al
2020 eLife). Race tubes period lengths were measured using ChronOSX 2.1 software. For
Temperature Compensation experiments, the Q1o temperature coefficient was calculated using

0°C) ] [ 10°C / (30°C - 20°C)

the formula: [ (frequency of clock at 30°C) / (frequency of clock at 2 I where

frequency = period length™.
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Neurospora RNA isolation and 3' End Sequencing analyses.

Frozen Neurospora tissue was ground in liquid nitrogen with a mortar and pestle. Total
RNA was extracted with TRIzol (Invitrogen # 15596026) and the Direct-zol RNA MicroPrep kit
(Zymo Research # R2060) according to the manufacturer’s instructions and including the on-
column DNAse | treatment step (Roche # 04 716 728 001, 10 U/ul stock, 30 U used per
sample). Total RNA samples were prepared for Northern Blotting, 3' End Sequencing, or stored
at -80°C.

Northern blotting was performed as previously described (Kelliher et al., 2020a) with
slight modifications. Equal amounts of total RNA (7 ug) were loaded per lane of a 0.8% w/v
agarose gel (Supplementary Figure 5). For blot visualization, anti-Digoxigenin-AP Fab
fragments was purchased from Sigma (Roche # 11 093 274 910) and used at 1:10,000 (75
mu/ml).

Total RNA was submitted to the Dartmouth Genomics Shared Resource (GSR) for 3’
end library preparation and sequencing. 75 bp single-end (SE) strand-specific libraries were
prepared using the Lexogen QuantSeq 3’ REV kit, multiplexed, and sequenced on an lllumina
Mini-Seq. 6.92 + 0.30 million reads were obtained for each sample, and read quality was
confirmed using FastQC. Raw FASTQ files were aligned to the Neurospora crassa OR74A
NC12 genome (FungiDB version 45 accessed October 25, 2019) using STAR (Dobin et al.,
2013). 91.5 — 93.5% of the reads mapped uniquely to the NC12 genome. Because 3’ end
libraries generate only 1 sequencing read at the extreme 3’ end of a given mRNA transcript
(directly before its poly(A) tail), gene expression was quantified by counting reads assigned to
each genetic locus using HTSeqg-count (Anders et al., 2015). Gene count normalization by
library size between samples was performed using a custom R script. 3' End Sequencing data
have been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE201901.

RNA-Sequencing datasets from 4 other studies were mined in the analyses presented.
To examine wild-type Neurospora gene expression under carbon starvation (Supplementary
Figure 4, Supplementary Table 2), RNA-seq data were taken from a study where liquid cultures
(25°C, LL) were grown for 16 hours in 1X Vogel's 2% sucrose minimal medium and shifted to
either 0% or 2% glucose 1X Vogel's medium for 60 minutes (Wang et al., 2017) (GSE78952).
To examine gene expression in the Aset-1 mutant background (Figure 5B), RNA-seq data were
taken from a study where liquid cultures (25°C, DD24) were grown in 2% glucose Liquid Culture
Medium for 48 hours of total growth (Zhu et al., 2019) (GSE121356). To examine gene

expression in the Aset-2 mutant (Figure 5C), RNA-seq data were taken from a study where
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liquid cultures (32°C) were grown in 1X Vogel's 1.5% sucrose medium (Bicocca et al., 2018)
(GSE82222 and GSE118495). These three RNA-Seq datasets were re-processed exactly as
previously described (Kelliher et al., 2020a), and FPKM gene expression values were used in
the analyses presented. To examine and compare wild-type poly(A) tail locations
(Supplementary Table 3), 2P-Seq data were taken from a previous study where nuclear
fractions were isolated from 1X Vogel's 2% glucose liquid medium (Zhou et al., 2018) (SRA
PRJNA419320). Raw 2P-Seq data were filtered according to custom a Perl script from the
original study (“Step 1": https://github.com/elifesciences-publications/poly-A-seq). After read
filtering, duplicate 2P-Seq FASTQ files were processed in exactly the same manner as the new
3’ End Sequencing dataset generated in this study.

NC12 mapped reads from 3' End Sequencing (this study) and 2P-Seq (Zhou et al.,
2018) data were sorted and indexed using Samtools (BAM file outputs) and then visualized
using IGV. Read pileups denoted the location of poly(A) tails in both datasets. To map locations
of poly(A) tails genome wide, the ChlP-Seq peak calling algorithm MACS2 was re-purposed
(Zhang et al., 2008). The relevant MACS2 parameters used to identify poly(A) peaks were:
effective genome size (-g 4.014e7), retention of duplicate reads in pileups (--keep-dup all),
summit and subpeak identification (--call-summits), fragment size estimation and shifting turned
off (--nomodel --extsize 75), and a false discovery rate cutoff for significant peaks (-q 0.01).
MACS?2 peaks were assigned to the corresponding gene 3’ UTR region using a custom R script.
The Neurospora crassa NC12 transcriptome annotation remains partially incomplete with only
7,793 out of 10,591 unique NCU IDs having 3’ UTRs annotated. As a result, ~14-18% of all
MACS?2 peaks were pruned from consideration due to missing annotations. Importantly, there
are also examples of under-annotated 3’ UTR regions, where the poly(A) read pileup signal is
clearly located outside of the 3’ UTR annotation. One such critical example occurs at the
frequency locus (positive / Watson strand gene), where the predominant poly(A) peak is
centered at LG VII coordinate 3,136,633, and its longest 3' UTR annotation ends at coordinate
3,136,464. The Neurospora NC12 transcriptome annotation was last updated in March 2015
before migration from the Broad Institute to the FungiDB database (Basenko et al., 2018). The
3’ End Sequencing analyses presented here can be updated upon release of an improved
transcriptome annotation. Furthermore, there are 621 instances of overlapping coordinates
within the 3' UTRs of tail-to-tail oriented genes, and any poly(A) peaks falling in these gene
assignment ambiguous regions were also removed from consideration (~9% of MACS2 peaks).
The remaining MACS2 peaks (~6,600 unique poly(A) peaks per sample) were assigned to the

corresponding gene 3' UTR region and analyzed using custom R scripts. Alternative
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Polyadenylation (APA) events were defined as instances of more than one distinct MACS2 peak
assigned to a single 3' UTR region. poly(A) tail read pileups from genes of interest were
extracted using the igvtools count function, and genome coordinate plots were generated using
the R Bioconductor package Gviz (Figure 4C). 3' UTR heatmaps were generated using a
custom R script (Figure 4B). All custom R scripts for gene expression analyses and alternative

polyadenylation analyses are available at: https://github.com/cmk35.

Mammalian cell culture, synchronization, and siRNA knockdown reagents.

U20S cells were stably transfected under puromycin selection using a construct
containing the mouse BMAL1 promoter (Sato et al., 2006; Gamsby et al., 2009) driving
destabilized luciferase (Ueda et al., 2002). U20S-mBMAL1-dLuc-Puro (referred to as: Bmall-
dLuc) cells were maintained at 37°C and 6% CO, in 25 mM (high) glucose DMEM (Thermo
Fisher # 11995-065 with 1 mM sodium pyruvate; or Thermo Fisher # 11965-092 without
pyruvate) supplemented with 10% v/v FBS (Thermo Fisher # 10437-036, LOT # 2199672RP)
and 1.5 ug/ml of puromycin (Sigma # P9620, 10 mg/ml stock).

For control Nutritional Compensation assays (Supplementary Figure 6), Bmall-dLuc
cells were subcultured from the same 100-mm dish and grown to 95-100% confluence in 35-mm
dishes (Corning # 430165) containing 2 ml of DMEM 25 mM glucose, 10% FBS, and puromycin.
Confluent cells were washed once in warm 1X PBS pH 7.4 (Corning # 21-040-CV). The medium
was changed to either 2 ml of DMEM 25 mM high glucose (Thermo Fisher # 11995-065 with 1
mM sodium pyruvate) or 2 ml of DMEM 5.56 mM low glucose (Thermo Fisher # 11885-084 with
1 mM sodium pyruvate). Both synchronization-release medium formulations were pre-warmed
and each contained: 10% v/v FBS, 1.5 pug/ml puromycin, 0.1 mM luciferin (GoldBio, 0.1 M
stock), and 0.1 uM dexamethasone (Sigma # D2915, 1 mM stock). Dexamethasone is used to
reset cells to the same circadian phase and initiate the circadian free run for recording.

For siRNA knockdown assays (Figure 6), Bmall-dLuc cells were subcultured from the
same 100-mm dish and grown to 60-80% confluence in 35-mm dishes containing DMEM 25 mM
glucose, 10% FBS, and puromycin. Cells were washed once in 1X PBS, and the medium was
changed to 2 ml of Opti-MEM (Thermo Fisher # 31985-070) with 5% v/v FBS. Cells were
transfected with the indicated siRNAs (15 pmol of total SIRNA per 35-mm dish) (Baggs et al.,
2009) using the Lipofectamine 3000 transfection reagent (Thermo Fisher # L3000) and
according to the manufacturer’s instructions for 6-well plates. Although the Opti-MEM medium
formulation is not publicly available, one study reported the Opti-MEM glucose concentration as
2.5g/L or 13.88 mM (Young et al., 2004). siRNAs were obtained from Qiagen: AllStars Negative
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889  Control siRNA (Qiagen # 1027280); human SETD2 siRNA (Qiagen # 1027416, FlexTube

890 GeneSolution GS29072, 4x siRNAs used at 3.75 pmol each); human CPSF6 siRNA (Qiagen #
891 1027416, FlexTube GeneSolution GS11052, 4x siRNAs used at 3.75 pmol each); human CRY2
892 siRNA (Qiagen # 1027416, FlexTube GeneSolution GS1408, 4x siRNAs used at 3.75 pmol
893 each) (Lee et al., 2019). Cells were incubated for 2 days before removing the siRNA

894  transfection medium and proceeding with RNA extraction or with circadian recordings.

895 RT-gPCR was used to validate siRNA knockdown efficiencies. 2-day transfected cells
896  were washed once in 1 ml of ice-cold 1X PBS. Cells were harvested by scraping in 1 ml of

897  TRIzol (Invitrogen), and total RNA extraction was performed according to the manufacturer’s
898 instructions. 500 ng of MRNA was converted into cDNA using the oligo(dT) method from the
899  SuperScript IV First-Strand synthesis kit (Invitrogen # 18091-050). RT-gPCR was performed
900 using SYBR green master mix (Qiagen # 204054) and a StepOne Plus Real-Time PCR System
901 (Applied Biosystems). C; values were determined using StepOne software (Life Technologies)
902 and normalized to the GAPDH gene (AC,). The AAC, method was used to determine mRNA
903 levels relative to non-transfected negative control samples. Relevant RT-qPCR primer

904 sequences are: hGAPDH: 5 TGCACCACCAACTGCTTAGC 3’ and &’

905 ACAGTCTTCTGGGTGGCAGTG 3'. hCPSF6: 5 GATGTGGGTAAAGGAGCAG 3’ and 5’

906 CTTCATCTGTTGTCCACCA 3. hSETD2: 5 CTTTCTGTCCCACCCCTGTC 3’ and &’

907 CCTTGCACCTCTGATGGCTT 3.

908 2-day transfected cells were washed in warm 1X PBS and prepared for circadian

909 synchronization. Synchronization-release medium was pre-warmed and contained 1% v/v FBS,
910 1.5 pg/ml puromycin, 0.1 mM luciferin, and 0.1 uM dexamethasone. siRNA assays in DMEM
911  were conducted using 2 ml of DMEM (Thermo Fisher # 11966-025) supplemented with 10 mM
912  (low glucose) or 30 mM (high glucose) from a D-glucose stock solution (Sigma # G8644, 100
913  g/L stock). DMEM base medium contains more total nutrients than MEM—approximately 2-fold
914  higher levels of the 13 essential amino acids, about 4-fold higher levels of the 8 vitamins, and
915  includes the non-essential amino acids (Gly and Ser) in its formulation. siRNA assays in MEM
916  were conducted using 2 ml of MEM (Thermo Fisher # 11095-080) containing 5.56 mM (low
917  glucose) or supplemented up to 25 mM (high glucose) from a D-glucose stock solution (Sigma).
918  Unlike Neurospora, complete glucose starvation medium did not support cell viability in

919  preliminary experiments using DMEM medium containing 10% v/v FBS but zero additional

920 glucose. “Low” 5 — 10 mM glucose was defined by manufacturer formulations as well as

921 physiological levels of fasting serum glucose in humans.

922
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Mammalian luciferase reporter detection and period length calculations.

Immediately prior to bioluminescent recording, Bmall-dLuc cells in 35-mm dishes were
covered with 40-mm circular microscope cover glass (Fisher Scientific # 22038999 40CIR-1)
and sealed using high-vacuum silicone grease (Dow Corning # Z273554). Luciferase data were
collected in a LumiCycle 32 (ActiMetrics) luminometer every 10 minutes for 5 — 6 days. Raw
luciferase traces in bioluminescence counts / second units were exported using LumiCycle
analysis software (ActiMetrics, version 2.56). Data from individual plates were manually
combined and converted to hours post synchronization using Microsoft Excel. Period lengths for
each luciferase trace were calculated using 3 different methods and averaging the period results
with equal weights. For the first method, signal peaks and troughs were extracted from days 1 —
3 of raw data, and period was estimated by subtracting consecutive peaks or troughs as
described (Chen et al., 2020). Second, the WaveClock algorithm was implemented in R (Price
et al., 2008). Finally, the suite of Neurospora period length tools was used as previously
described (Kelliher et al., 2020a). For Bmall-dLuc luciferase trace data visualization purposes
(Figure 6, Supplementary Figure 6), raw counts per second values sampled within the same
hour were averaged together (i.e. data were down-sampled from 10-minute measurement

intervals to 1-hour measurement intervals).

Data visualization.

All figures were plotted in R, output as scalable vector graphics, formatted using
Inkscape, and archived in R markdown format. Data represent the mean of at least three
biological replicates with standard deviation error bars, unless otherwise indicated. All statistical

tests were performed in R.

Supplementary Figures, Tables, and Movies
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949
950 Supplementary Figure 1. Additional properties of Nutritional Compensation in

951 Neurospora crassa. A fungal biomass control was implemented to ask whether the amplitude
952  of the core clock transcriptional reporter changes with glucose levels (e.g. Figure 1B). The gpd
953 promoter from Cochliobolus heterostrophus driving constitutive luciferase was used as a

954  reporter for fungal biomass. Not surprisingly, biomass increases as a function of glucose (N = 3
955 race tubes per glucose concentration). Many traces showed a decrease in bioluminescence at
956  ~100 hours, and this correlates with the fungal growth front reaching and surpassing the end of
957  the device’s recording area (A) (see: Supplementary Movie 1B). Averaged replicates are shown
958 for the frq clock box transcriptional reporter across all glucose levels (N = 6; expanded Figure
959 1B) (B). Detrended clock reporter traces were plotted on a circadian time (CT) scale to

960 normalize for the slight period differences (Figure 1A). Circadian phase is consistent across
961 glucose levels (C). Amplitude was computed for each individual biomass reporter trace using
962  data from hours 25 — 108 (amplitude calculation: [maximum value — minimum value] / 2) (D).
963 Average amplitude was computed for each individual core clock reporter trace using data from
964 days 2 — 5 (hours 25 — 112) to extract 4 peak and 4 trough values. The first day (hours 0 — 24)

965 was omitted due to low fungal biomass and consequently low luciferase signal during the first
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recording day (E). Core clock amplitudes were normalized to biomass by computing the
amplitude ratio at the respective glucose concentrations. There is no clear increasing or
decreasing trend of normalized core clock amplitude as a function of glucose, and therefore the
higher magnitude oscillations observed at high glucose concentrations are most likely a function
of increased biomass only (F). Growth rates were computed from biomass reporter experiments
by estimating the linear growth rate at 5 consecutive 12-hour intervals from 36 — 84 hours in
constant darkness (G). No arginine was added to the race tube medium for any experiment

shown.

2489 ras-1"'T
(0% glucose)

87-3 ras-1"
(0% glucose)

FGSC15333
(ANCUO06565)

FGSC15849
(ANCU00158)

FGSC17400
(ANCU00188)

FGSC19009
(ANCU01817)

FGSC19174
(ANCU05266)

FGSC19577
(ANCU07735)

FGSC21738
(ANCU09071)

Supplementary Figure 2. A subset of FGSC knockout strains were identified with strong
conidial banding phenotypes on glucose starvation medium. A representative race tube
from the primary genetic screen is shown. 6 out of 7 knockout strains with strong banding
phenotypes have a wild-type circadian period length and normal compensation, except for
FGSC15333 (Figure 3). Like the ras-1™ (NCU08823) point mutant, all knockout strains have a
reduced linear growth rate compared to the wild-type control FGSC2489.
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983
984  Supplementary Figure 3. Deletion of the casein kinase | 3' UTR phenocopies the short

985 period length of nonsense-mediated decay (NMD) mutants, and partially explains the

986 nutritional under-compensation phenotype of NMD mutants. The CKI 3' UTR mutant was
987  constructed by C-terminal epitope-tagging (V5-6xHis-3xFLAG) the LONG isoform of NCU00685
988  at the endogenous locus and displacing 1,543 bps of the annotated 3' UTR region. Mutant strain
989  construction is shown with a cartoon diagram to scale (A). Circadian bioluminescence was

990 recorded from race tube cultures of the indicated genotypes. High nutrient medium (yellow lines)
991 contained 0.5% w/v glucose 0.17% w/v arginine, and zero nutrient medium (blue lines)

992  contained 0% glucose 0% arginine. Period lengths were computed (N = 3 - 4 biological

993 replicates per nutrient concentration) and summarized in a bar graph (B).

994
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995
996 Supplementary Figure 4. Core clock and compensation gene expression upon glucose
997 starvation. RNA-Sequencing data were mined from a previous study (Wang et al., 2017)
998 (Materials and Methods), where liquid cultures were either maintained in 2% glucose or shifted
999  to glucose starvation for 60 minutes. Duplicate transcriptomes from the 2% glucose condition
1000  were compared to 0% glucose starvation replicates, Z-scores were computed for the 8,796
1001 expressed genes in the dataset, and prd-1 (NCU07839) and frh (NCU03363) were found among
1002 the top 220 genes (top 2.5%) in the entire transcriptome down-regulated after glucose
1003 starvation.
1004
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Supplementary Figure 5. Solid medium cellophane plate cultures maintain circadian
function and recapitulate Nutritional Compensation phenotypes of interest. Liquid cultures
containing wild-type fungal plugs (1.8% glucose) and cellophane plate cultures inoculated with
wild-type conidia (0.5% wi/v glucose, 0.17% wi/v arginine) were set up concurrently. Liquid and
solid cultures were entrained in constant light at 25°C for at least 16 hours, and serial light-to-
dark transfers were performed to sample 1.5 cycles of circadian time points from DD4 to DD28
(4-hour sampling density, 44 — 48 hour total culture ages). Total RNA was isolated from each
time course sample, and frg mRNA rhythms were examined by Northern blot (N = 1 time course
replicate). RNA levels were quantified using ImageJ densitometry, normalized, and plotted as
line graphs. The circadian clock is clearly functional in both growth regimes (A). Circadian
bioluminescence was recorded from cellophane plate cultures of the indicated genotypes grown
on high nutrient medium (0.25% wi/v glucose, 0.17% w/v arginine). One representative
luciferase trace is shown from N = 2 biological replicates per strain. Period lengths were
calculated, and results agree with Nutritional Compensation phenotypes derived from the race
tube screen (Supplementary Table 1): control: 20.6 £ 0.3 hrs; Acpsf5 Acpsfé double mutant:
17.5 £ 0.4 hrs (B). Circadian bioluminescence was recorded from cellophane plate cultures of
the indicated genotypes grown on zero nutrient medium (0% glucose, 0% arginine). One
representative luciferase trace is shown from N = 2 biological replicates per strain. Period

lengths were calculated, and results agree with Nutritional Compensation phenotypes derived
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1025 from the race tube screen (Supplementary Table 1): control: 22.0 + 0.6 hrs; Aset-2: 20.5 + 0.1
1026  hrs (C).

1027
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1029  Supplementary Figure 6. Bmall-dLuc cells are slightly under-compensated from 5.56 mM
1030 low glucose to 25 mM high glucose. U20S cells were synchronized using dexamethasone
1031 and released into DMEM low or high glucose medium. Representative luciferase traces are
1032  shown from one biological replicate with N = 4 technical replicates per glucose concentration
1033 (standard deviation error bars) (A). Period lengths were calculated for 25 — 26 total replicates
1034  per glucose concentration and plotted as a boxplot. As observed in Neurospora, the human
1035 circadian period length is under-compensated and shortens slightly with increasing glucose (p <
1036  0.01, student’s t-test). Average period lengths were: 24.5 + 0.7 hrs (low glucose) and 24.0 + 0.4
1037  hrs (high glucose) (B).

1038

1039 Supplementary Table 1. Genetic screen for Nutritional Compensation defects. Results are
1040 presented from the 3-phase genetic screen for Nutritional Compensation defects among

1041  Neurospora knockout strains. Period lengths are shown for each knockout strain. Knockout
1042 strains were retained through each phase of the screen if circadian period changes were

1043 observed relative to the wild-type control. Nutritional under-compensation mutants were defined
1044 by ratios of high-to-zero glucose period lengths < 0.90 (pink font). Nutritional over-compensation
1045 mutants had period length ratios > 1.02 (green font).

1046

1047  Supplementary Table 2. Informatic description of Neurospora genes screened for

1048 Nutritional Compensation defects. Circadian rhythmicity at the gene and protein level among
1049  knockouts screened was determined from previous studies (Hurley et al., 2014, 2018). Promoter

1050 binding by the WCC positive arm transcription factors was determined from previous studies
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(Smith et al., 2010; Hurley et al., 2014; Sancar et al., 2015). Light-regulated gene activation or
repression was determined from previous studies (Chen et al., 2009; Wu et al., 2014; Sancar et
al., 2015). Gene expression Z-scores from carbon starvation conditions were also reported

(Wang et al., 2017) (Supplementary Figure 4).

Supplementary Table 3. Consensus list of Neurospora genes with Alternative
Polyadenylation (APA) in 3' UTRs. 843 genes contain multiple poly(A) sites within 3' UTR
regions from the intersection of this study and previous work (Zhou et al., 2018). 9 / 843 genes
with 3" UTR APA are highlighted as core clock genes or compensation screen hits. Annotated
MACS2 poly(A) peak results are shown for the 843 genes with Alternative Polyadenylation from

each dataset as individual tabs.

Supplementary Table 4. Alternative Polyadenylation (APA) events altered in the ACFIm
knockout mutant compared to controls. 1,447 total genes contain multiple poly(A) sites
within 3" UTR regions in wild-type control and/or ACFIm mutant data from this study. 940 / 1,447
genes display APA in all 4 datasets. 123 / 1,447 instances are recorded where a single poly(A)
peak in control expands to multiple APA events in mutant (dark green highlight). 193 / 1,447
instances are reported of a single poly(A) peak in mutant expanding to multiple APA events in
wild-type controls (light green highlight). 155 / 1,447 APA events occur where the location of the
predominant poly(A) peak was significantly changed in the mutant background (orange
highlight). Annotated MACS2 poly(A) peak results are shown for the APA genes from each

dataset as individual tabs.

Supplementary Movie 1. Nutritional Compensation properties of wild-type Neurospora
crassa. Circadian bioluminescence of exemplar wild-type race tubes (Figure 1) is shown for
zero nutrient medium (blue line; 0% glucose 0% arginine) (A) compared to high nutrient medium
(yellow line; 0.5% wi/v glucose 0% arginine) (B). Average period lengths are 21.9 + 0.5 hours for

0% glucose and 20.8 £ 0.2 hours for 0.5% wi/v glucose (average + SD).

Supplementary Movie 2. Nutritional Compensation defect in the Acpsf6 mutant. Circadian
bioluminescence of one exemplar Acpsf6 race tube (Figure 4A) is shown for whole-tube
guantification of high amino acid medium growth (yellow line; 0% glucose 0.17% w/v arginine;

average period = 19.4 + 0.3 hrs) (A) compared to old tissue quantification (blue line; 0% glucose
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0.17% wilv arginine; period = 17.3 £ 0.3 hrs) (B). This ~2-hour period difference indicates that
Acpsf mutants must undergo a transition from high-to-low amino acid levels to reveal the

Nutritional Compensation defect.
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