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Abstract 
 

Recurrence of solid tumors renders patients vulnerable to a distinctly advanced, highly 

treatment-refractory disease state that has an increased mutational burden and novel oncogenic 

drivers not detected at initial diagnosis. Improving outcomes for recurrent cancers requires a 

better understanding of cancer cell populations that expand from the post-therapy, minimal 

residual disease (MRD) state. We profiled barcoded tumor stem cell populations through 

therapy at tumor initiation/engraftment, MRD and recurrence in our therapy-adapted, patient-

derived xenograft models of glioblastoma (GBM). Tumors showed distinct patterns of 

recurrence in which clonal populations exhibited either an a priori, pre-existing fitness 

advantage, or a priori equipotency fitness acquired through therapy. Characterization of the 

MRD state by single-cell and bulk RNA sequencing revealed a tumor-intrinsic 

immunomodulatory signature with strong prognostic significance at the transcriptomic level and 

in proteomic analysis of cerebrospinal fluid (CSF) collected from GBM patients at all stages of 

disease. Our results provide insight into the innate and therapy-driven dynamics of human 

GBM, and the prognostic value of interrogating the MRD state in solid cancers. 
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Introduction 
 

Intratumoral heterogeneity (ITH) as a dynamic phenomenon represents a key 

determinant of therapy failure across various solid cancers. The continual evolution of genetic, 

cellular and functional cancer heterogeneity over time and throughout therapy has confounded 

clinical management of disease1-3. The persistence of treatment-resistant subpopulations of 

cancer stem cells after initial therapy4 and their subsequent expansion may, in fact, drive a 

highly aggressive, heterogeneous and biologically distinct recurrent tumor. An archetype of ITH 

driving profound treatment resistance can be found in glioblastoma (GBM), the most common 

primary malignant brain tumor in adults5-7. Despite aggressive multimodal treatment with 

surgical resection, chemotherapy with temozolomide (TMZ) and radiotherapy, no further 

standard-of-care (SoC) treatment options exist upon recurrence, and only 10% of all GBM 

patients participate in clinical trials8. Recent genomic studies have shown that therapy can act 

as a selection pressure or bottleneck for tumor evolution from minority cell populations present 

at the time of initial tumor diagnosis9-11. Although current preclinical models fail to predict the 

recurrent tumor landscape, this roadblock may be circumvented through development of a 

biological understanding of the small subpopulation of rare, treatment-resistant cells that drive 

the emerging recurrence.  

A critical limitation to our biological understanding of GBM recurrence lies in the scarcity 

of tissue specimens to profile and study, as only 25% of progressive or recurrent patients 

undergo repeat surgical resection12. We developed methods to generate unique patient-derived 

xenograft (PDX) models of human GBM recurrence, by adapting SoC chemoradiotherapy in 

immunocompromised mice intracranially engrafted with patient-derived primary glioma stem 

cells (GSCs). This method allows for temporal profiling of the clonal and transcriptomic 

composition of cancer through different stages toward the acquisition of treatment resistance, 

and especially led to the identification of disease stage characterized as the lowest possible 

histological and radiological disease burden, which we termed “minimal residual disease” 
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(MRD). This model thus affords an unprecedented window into a highly informative stage, which 

is currently not possible to interrogate in brain tumors. As MRD has offered invaluable clinical 

insight into the management of both recurrent liquid cancers13 and solid cancers14-15, it could 

offer great therapeutic insights in anticipating the composition of GBM recurrence.  

In this work, we combine our unique models of human GBM recurrence with cell tracking 

using DNA barcodes to examine clonal GSC populations through SoC chemo- and radiotherapy 

to determine whether recurrence arises stochastically or from pre-existing resistors. Thus, we 

compare the clonal dynamics of GBM recurrence across multiple patient tumors models of 

recurrence. Through cell tracking using DNA barcodes and bulk and single-cell RNA 

sequencing (RNAseq), we characterize the MRD state in human GBM and uncover its potential 

predictive value in anticipating cancer recurrence. 

 
 
Development of xenograft model of GBM recurrence 
 

To characterize tumor evolution through therapy, we developed a therapy-adapted, 

patient-derived xenograft model to track tumor cells from five primary, treatment-naïve human 

GBMs (Supp Table 1-2). We monitored tumor growth in mice using magnetic resonance 

imaging (MRI) and began in vivo chemoradiotherapy upon visible engraftment (ENG), which led 

to an overall survival advantage (Supp Table 3). Approximately two weeks post-therapy, we 

observed improved clinical symptoms in treated mice, coupled with minimal radiographic 

evidence of disease, as is frequently observed in patients. We termed this state minimal 

residual disease (MRD), a clinically- and biologically-relevant stage of disease comprising the 

treatment-resistant pool of cells that comprises the imminent recurrence leading to disease end-

point (REC) (Fig 1a). Phenotypic assessment of tumor cells collected at REC showed increased 

stem cell frequency and sphere forming capacity after treatment (Supp Fig 1a-b), which we 

have previously shown is associated with poor clinical outcome and prognosis16-17. While 
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phenotypic assessments provide insight into the changes of bulk tumor populations through 

therapy, we sought to assess the effect of therapy on individual clonal populations over the 

course of disease. 

 

GBM displays innate and therapy-driven clonal dynamics through disease progression 

To investigate the clonal changes of GBM through therapy, we adapted a DNA 

barcoding strategy to track individual tumor cells at multiple timepoints during the course of 

disease progression and treatment (Fig 1b). Tumor cells were transduced with a high-

complexity lentiviral barcode library at low multiplicity of infection (MOI), sorted by GFP 

expression (Supp Fig 1c), and expanded prior to intracranial transplantation in immunodeficient 

mice to ensure accurate tracing of clonal cellular populations. All tumor samples showed high 

barcode diversity at P0, ensuring many clonal GBM populations were followed. As expected, 

clonal diversity decreased significantly from P0 to ENG (Fig 2a-b, Sup Fig 2a-b, left panels). 

Engraftment efficiency, as measured by the change in barcode abundance, ranged from 7% 

(BT935) to 20% (MBT06) and closely matched the expected GSC frequency within our GBMs, 

as assessed by limiting dilution assay17 (Sup Fig 1a-b). Across all samples, changes in clonal 

diversity from ENG to REC in untreated mice (REC_CON) remained relatively constant. 

However, clonal diversity of different samples responded variably to treatment, as exemplified 

by BT428 and BT799. While both samples showed an overall decrease in diversity, the effect 

was greater in BT428 when treated with chemoradiotherapy (REC_TR) (Fig 2a, left panel). 

Treatment of BT428 tumors induced a shift towards clonality, where fewer clones comprised the 

bulk of the REC_TR tumors. A mean of 11 clones comprised 98% of the treated tumors [min=3, 

max=18], compared to an average of 3089 clones making up 98% of the control tumors 

[min=1774, max=5202] (Fig 2a, right panel). However, despite a slight decrease in barcode 
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diversity in BT799 (Fig 2b, left panel), we did not observe a similar concomitant decrease in 

total barcodes after treatment.  BT799 control tumors had an average of 110 clones making up 

98% of the tumor [min=46, max=207], while treated tumors had an average of 89 clones [min=3, 

max=254].  Assessment of clonal frequency revealed only slight differences between control 

and treated samples at recurrence (Fig 2b, right panel). While BT428 tumors had higher 

diversity and clonal composition in untreated relative to treated samples, the clonal composition 

of BT799 was similar irrespective of treatment. Closer inspection of the barcode distributions 

before and after treatment suggests that BT428 has a more heterogeneous makeup, with a 

larger number of treatment-sensitive clones that are lost due to treatment, and a smaller fraction 

of treatment-refractory barcoded cells. In contrast, there is little change observed in the 

distributions of BT799 untreated and treated populations, supporting a more homogenous 

treatment-refractory population. 

We next sought to define whether clonal composition at MRD could predict patterns of 

recurrence. Assessment of clonal diversity in BT428 showed an opposing trend at MRD in 

which treated samples showed significantly increased clonal diversity in comparison to 

untreated samples (MRD_TR vs MRD_CON, p=0.0078, Welch Two Sample t-test, N = 3 

biologically independent replicates) (Fig 2c, left panel). Thus, BT428 at MRD showed high 

clonal diversity even after treatment, while untreated samples showed slight enrichment of low 

abundance barcodes. Barcode diversity in BT799 showed little change with treatment at MRD 

(MRD_CON vs MRD_TR, p=0.73, Welch Two-sample t-test) (Fig 2d, left panel). Untreated and 

treated samples showed comparable diversity to that observed at engraftment, suggesting 

similar clonal kinetics irrespective of treatment. A similar trend was observed with re-

transplantation of CON BT799 at endpoint, and subsequent treatment in which the same clonal 

kinetics were reproducibly observed (Supp Fig 2d). Unlike BT428, BT799 showed a shift to 

clonality at MRD in both treated and time-matched untreated samples, which was similar to 
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what was observed at REC (Fig 2d, right panel). Thus, while BT428 and BT799 at REC 

showed reduced diversity and highly clonal populations with treatment, BT428 appeared to have 

acquired this diversity between MRD and REC. This suggested that clones that would 

eventually dominate acquired treatment-resistance, and then rapidly expanded to recurrence. 

This observation was bolstered by re-transplantation of BT428_REC_TR, which upon additional 

chemoradiotherapy, revealed little change in clonal composition, suggesting an acquired-

treatment resistance and tumorigenicity (Supp Fig 2e). In contrast, BT799 appeared to 

consistently display clonal dominance that was slightly enriched with treatment and 

retransplantation (BT799_CON_TR) 

The quantitative observations of clonal complexity and expansion from MRD to REC 

suggested two possible mechanisms of recurrence – one in which a non-reproducible, low 

abundance clone rapidly expands post-treatment (hereafter referred to as a priori equipotency), 

or one in which a pre-existing clone of high abundance remains abundant through disease 

progression, survives treatment, and continues to expand thereafter (hereafter referred to as a 

priori fitness). To assess these hypotheses, we qualitatively tracked independent clones at MRD 

and REC. Bubble plots, in which each bubble represents a unique barcode, showed little 

similarity between replicates across all timepoints in BT428 (Fig 3a). In the absence of 

treatment, few distinct barcodes were reproducibly enriched from ENG to MRD or REC. 

Similarly, treatment did not reproducibly select distinct barcodes, and barcodes of high 

abundance at MRD did not remain so at REC (Fig 3c). Additionally, abundant clones at ENG 

did not remain abundant, suggesting against the possibility of clones with pre-existing 

tumorigenic and treatment-resistant potential. Thus, when combined with the quantitative 

assessments, these data suggest that clones in BT428 were stochastically enriched from MRD 

to REC, and that their abundance at MRD did not predict their subsequent expansion. 

In contrast, BT799 reproducibly showed selection of a few subsets of clones at MRD and 

REC (Fig 3b, d). Clones that were enriched prior to injection (P0) remained abundant from ENG 
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to MRD to REC. While highly abundant clones could have maintained their abundance from in 

vitro expansion simply due to tumor growth in vivo, their continued dominance through 

treatment suggests a pre-existing potential to survive not only in vitro conditions (as 

demonstrated by abundance at P0) but also in vivo chemoradiotherapy. Unlike BT428, the 

clonal composition of BT799 at MRD in both treated and untreated samples later predicted 

clonal composition at REC. While quantitative assessment of BT799 at REC revealed a slight 

shift towards clonality with treatment, examination of barcode identity suggests that this was 

likely due to elimination of lower-abundance, treatment-sensitive clones (Fig 3b, d).  

 To define patterns of recurrence in BT428 and BT799 after treatment, we analyzed 

barcode identity temporally throughout disease progression. By combining identity and 

abundance, we assessed correlation of each replicate tumor sample against one another 

collected at the sample time point and with samples from other timepoints (ex: P0 vs ENG, ENG 

vs ENG). BT428 and BT799 showed highly correlated starting populations between replicate 

tumor samples, indicating that downstream changes were due to differential clonal behaviour in 

vivo (P0 vs P0) (Fig 3e-f). At ENG, both BT428 and BT799 showed a drop in similarity from the 

initial starting population, likely due to elimination of clones without tumorigenic potential. 

However, correlations of samples from ENG onwards confirmed earlier hypotheses of clonal 

composition through time in BT428 and BT799. BT799 showed high correlation of replicates 

between each other at ENG and between ENG and MRD (Fig 3f). This phenomenon of high 

intra- and intertemporal correlation was also observed between MRD and REC (ρ < 10-2.5), 

respectively. In contrast, there was a lower correlation between BT428 samples at ENG, and 

between ENG and MRD, suggesting inconsistent clonal expansion prior to treatment (Fig 3e). 

Interestingly, BT428 samples at MRD were highly correlated across replicate tumor samples, 

likely due to reproducible elimination of treatment-sensitive clones. However, weak correlation 

between samples from MRD and REC and between REC samples suggests differential 

selection of the remaining treatment-resistant clones. These observations were confirmed in a 
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separate analysis using only highly abundant, resistant clones in BT428 and BT799 between 

replicates and timepoints, in which dominant resistant clones were highly correlated in BT799 

and weakly correlated in BT428 across timepoints (Supp Fig 3j-k). These results suggest that 

BT799 consists of pre-existing, highly fit and treatment-resistant oligoclonal populations that 

dominate through disease progression, while BT428 may have clones of equipotent expansion 

potential that are sporadically selected after treatment and acquire treatment resistance.  

These two patterns were observed in our other patient-derived samples, where BT935 

and MBT06 displayed similar dynamics to BT799, and BT954 was most similar to BT428 (Supp 

Fig 2-3). Interestingly, initial analysis of BT954 suggested a small subset of clones exhibited 

increased a priori fitness, as they remained highly abundant throughout disease progression. 

However, closer inspection of the barcode identities revealed inconsistent clonal selection 

between replicates (Supp Fig 3-1c,d), suggesting that numerous clonal subpopulations may 

have had elevated pre-existing fitness and were randomly selected at ENG. 

Taken together, we identified two patterns of GBM recurrence within a cohort of 

barcoded patient-derived GBMs subjected to our adapted mouse treatment protocol, one in 

which MRD can predict clonal selection due to a priori fitness, and one in which clones exhibit a 

priori equipotency. While these may be distinct patterns of recurrence, observations in BT954 

suggest that a priori fitness and a priori equipotency may exist on a spectrum. We next sought 

to define whether profiling the biology of MRD could provide further clinical and therapeutic 

insights. 

Single-cell sequencing of MRD reveals differential transcriptional signatures and 

intertumoral heterogeneity 

To characterize the MRD stage, we performed single-cell RNA sequencing on in vivo-

modelled, patient-derived lines MBT06 and BT799. While these samples displayed similar 

clonal kinetics, MBT06 and BT799 represented tumors derived from patients with the best and 
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worst disease outcomes in our cohort (>43 months and 3-month survival, respectively).  Thus, 

we sought to explore differences with therapeutic and/or prognostic relevance. 

We profiled the transcriptome of 2,454 tumor cells using scRNAseq from control or 

treated MBT06 and BT799 mice (Fig 4a; BT799_MRD_CON: 1147 cells, BT799_MRD_TR: 126 

cells, MBT06_MRD_CON: 628 cells, MBT06_MRD_TR: 553 cells). Comparison of the 

scRNAseq data with a more stringent subset obtained by high gene recovery (>3000 genes/cell) 

and low mitochondrial content (<10%) filters (Supp Fig 4a) and also with bulk RNAseq profiles 

(Supp Fig 4b) confirmed the high quality of data used for subsequent analyses.  

Uniform Manifold Approximation and Projection (UMAP)-based embedding revealed 

three major cellular populations (Fig 4a, Supp Fig 4c). The first two distinct populations 

represented control and treated MBT06 samples (green and orange populations, respectively) 

and showed pronounced treatment-induced differences in higher dimensional transcriptomic 

space (Fig 4a) and by differential expression analysis (Fig 4b), whereas the third population 

representing control and treated BT799 cells co-clustered, suggesting a less pronounced 

response to treatment.  These profiles were in agreement with our barcode analysis.    

To assess intratumoral heterogeneity, we classified cells into mesenchymal (MES)-, 

astrocyte (AC)-, oligodendrocyte progenitor (OPC) and neuronal progenitor (NPC)-like 

subtypes18. We found that at least three of four GBM-subtypes were represented in each 

sample; however, the relative abundance of each subtype was more stable in BT799 compared 

to MBT06 following treatment (Fig 4b, Supp Fig 4d). In untreated BT799 samples, AC-like cells 

were the most abundant, and the proportion of each state was not significantly affected 

following treatment (p=0.982, χ
2 test). In contrast, the untreated MBT06 sample was 

predominantly composed of AC- and NPC-like cells, and treatment induced a significant shift 

towards the MES-like state (p<0.001, χ2 test). We also scored control and treated cells using 

pan-cancer cell-state gene sets19 (Supp Fig 4e). Notably, treated MBT06 samples were 

associated with upregulation of quiescence, apoptosis, inflammation and hypoxia signatures, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2022.01.28.478232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

and downregulation of cell cycle and proliferation signatures. By comparison, treatment of 

BT799 was associated with negligible changes in cancer state activities, corroborating the lack 

of treatment-induced transcriptomic changes observed in BT799 samples at the global UMAP 

level.   

To identify innate tumor-specific differences at MRD, we performed differential 

expression analysis of control MBT06 and BT799 cells. MBT06 was enriched for tumor-specific 

immune signalling including antigen presentation, whereas BT799 was enriched for translation 

initiation and rRNA processing. To compare the regulation of these pathways and evaluate their 

clinical utility, we developed an immunomodulatory (Im) and translation-initiating (Ti) signature 

composed of 13 and 12 genes, respectively, that were differentially expressed between the two 

samples and coherent across independent GBM datasets18, 20, including scRNAseq profiles 

obtained in the current study (Fig 4d, Supp Fig5a, b). The Im signature consisted of genes 

comprising the MHC class I protein complex, while the Ti signature was primarily composed of 

genes expressing large ribosomal subunit (Supp Fig 5c). Furthermore, the Im signature was 

correlated with the expression of mesenchymal-like and injury-response signatures whereas the 

Ti signature is correlated with the expression of developmental-like signatures (Supp Fig 5d).   

While these signatures were derived from untreated samples, treated MBT06 and BT799 

samples consistently responded with an increased expression of the immunomodulatory 

signature and suppression of the translation-promoting signature (Fig 4e). 

Immunomodulatory signature predicts survival in GBM 

We next sought to determine whether our immunomodulatory and translation-promoting 

signatures had prognostic value, as they were derived from the differential pathway activities of 

tumors associated with the best and worst disease outcomes in our cohort. We evaluated the 

prognostic value of our signatures using 4 independent GBM transcriptomic datasets [MRD 

mouse models (N = 5; current study), public TCGA-GBM data (N = 162 patients), 

immunotherapy-responder (N = 13) and non-responder (N = 12) GBM patient data23, and 
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adjuvant (N = 15) or neo-adjuvant (N = 13) therapy-treated GBM patient data21 and 1 GBM 

proteomic dataset obtained by profiling the cerebrospinal fluid (CSF) obtained from GBM 

patients (N = 24; current study). Intriguingly, despite the Im signature being derived from a 

sample (MBT06) associated with the best survival outcome (Supp Fig 5e), the ImHigh status 

were consistently associated with worse prognoses in TCGA samples (Fig 4f [top left], p = 

0.0096; Supp Fig 6), immunotherapy non-responders (Fig 4f [top right], p = 0.046), adjuvant-

treated patients (Fig 4f [bottom left], p = 0.2) and CSF samples (Fig 4f [bottom right], p = 

0.082). Importantly, among patients that responded to immunotherapy or those that received 

neo-adjuvant therapy, the Im signature offered to further prognostic value (p = 0.56 and 0.50, 

respectively; Supp Fig 7).  In those datasets we also found that the Im signature was expressed 

at similar levels in immunotherapy responders and non-responders (Supp Fig 7b), and in those 

treated with adjuvant and neoadjuvant therapy (Supp Fig 7e). Unlike the immunomodulatory 

signature, the translation-initiating signature was not associated with survival in any of the 

validation sets (Supp Fig 5e, Supp Fig 6a, b). The incongruity between Im signature being 

derived from best  surviving  MBT06 sample and prognosticating poor-survival in larger GBM 

cohorts may be due to the presence and absence of intact immune system in GBM patients and 

PDX models, respectively, resulting in differential interaction between Im transcriptomic program 

and survival.  

To further validate the prognostic value of our signatures, we applied our signatures to a 

comparable single-cell RNAseq dataset from post-treatment, patient-derived melanoma 

xenografts profiled at MRD14. Although clinical data was lacking, we found that MRD melanoma 

xenograft models that were matched to our control and treated MRD GBM samples (see 

methods for details) exhibited comparable increases and decreases in immunomodulatory and 

translation-initiation signatures, respectively, which was consistent with the treatment-response 

patterns identified in our own GBM samples (Supp Fig 5f). Finally, despite GBM being widely 

recognized as an immunologically “cold” tumor, we found that 45% of cells in melanoma, which 
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are considered immunologically “hot” tumors, mapped onto the control MBT06 transcriptomic 

space, suggesting that MBT06 samples exhibit characteristics of an immunologically “hot” 

tumor, and further validates our immunomodulatory signature which was derived from MBT06 

and not BT799 (Fig 4g). 

Taken together, Im-dependent signalling offers a reliable biomarker in GBM across all 

stages of disease at the bulk and single-cell transcriptomic, and CSF proteomic level, and 

putatively in other solid cancers. 

Discussion 

In this study, we used a high-complexity barcoding library to assess differential patterns 

of recurrence in response to SoC therapy using five patient-derived GBM xenograft models. Our 

findings suggest that treatment imposes a selective pressure that enriches for clones that 

eventually dominate recurrent tumors. Single clone tracking from engraftment through to 

recurrence provided insight into intratumoral variations of clonal expansion, particularly from 

MRD to recurrence. Previous study on GBM clonal dynamics in response to chemotherapy 

alone showed that pre-existing chemo-resistant clones facilitate GBM recurrence24. Since then, 

studies have demonstrated that treatment itself can induce changes in cell populations that then 

give rise to treatment-resistant tumors11,25. Our findings expands on this work and suggest that 

patterns of GBM recurrence following combined chemoradiotherapy exist on a spectrum 

between a priori fitness, whereby distinct pre-existing clones remain abundant from engraftment 

through to recurrence, and a priori equipotency of clones, whereby treatment-derived subclonal 

events dominate clonal composition at each timepoint. 

To investigate inter-tumoral heterogeneity observed in clonal dynamics from engraftment 

to recurrence, we used our therapy-adapted, patient-derived xenograft model to capture MRD, 

which after pruning of cellular subpopulations by therapy, emerged as the least heterogeneous 
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state with the lowest possible clonal diversity across different patient samples. Single-cell RNA 

sequencing of MRD samples from the longest and shortest surviving patients in our sample 

cohort revealed profound cellular ITH in signalling and cell states, independent of treatment. We 

observed regulation of distinct molecular pathways in each sample, and we derived a prognostic 

immunomodulatory (Im) signature that was validated across five independent datasets (four 

transcriptomic and one proteomic). Importantly, the Im signature was found to have significant 

prognostic value when applied to the TCGA GBM dataset, and datasets published by Zhao et 

al.23 and Cloughesy et al.21 as ImHigh transcriptomes were associated with worse overall survival. 

While promising, the requirement for surgically-resected tissues and transcriptomic profiling 

might limit the clinical utility of our Im signature. Therefore, we assessed the prognostic value of 

the Im signature in CSF proteomes from GBM patients, and in this independent cohort of 24 

patients found the signature predicted worse survival.  Finally, we compared our thirteen-gene 

signature to recently published work by Richards et al.20 While we found similarity with their 

>4000 gene injury response signature characterized by inflammation and immune cell 

activation, we suggest the thirteen-gene signature would be more accessible for clinical 

application.  

It was intriguing to find that ImHigh GBM cells (MBT06 samples) closely resemble 

melanoma cells profiled at the MRD stage (Fig. 4i).  This finding suggests that tumors with high 

immunoregulatory signalling may resemble immunologically “hot” tumors, like melanoma, and 

may represent a subset of GBMs that have developed mechanisms to overcome their 

immunosuppressive niche22-23. Taken together, Im-dependent signalling is a useful biomarker in 

GBM across all stages of disease at the bulk, single-cell transcriptomic and proteomic level, and 

putatively in other solid cancers. 
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Profiling the state of MRD has added immeasurable value to the predictive and 

personalized management of liquid cancers such as Acute Myeloid Leukemia (AML), where 

sequential molecular MRD monitoring has been used to anticipate relapse, refine clinical 

decision making and personalize treatment plans13. Whole-genome sequencing and mutational 

integration of plasma cell-free DNA allow ultra-sensitive detection of mutations in MRD to be 

achieved even in patients with low-burden solid cancers to guide clinical interventions24. 

Characterization of MRD through liquid biopsy, and in the case of brain tumors through 

interrogation of the CSF27, may help to define which solid cancer patients are at risk of relapse 

after surgery and warrant prophylactic adjuvant treatment28, and clinical trials are underway to 

determine if the predictive value of MRD for recurrent disease guides therapy choices that 

reduce the risk of recurrence of solid cancers29, 30. Excitingly, patients enrolled in certain clinical 

trials for recurrent GBM are now given intraventricular reservoirs to bypass the blood-brain 

barrier and allow for locoregional delivery of new immunotherapies31, 32, which could present 

exceptional opportunities to survey the CSF of patients after completion of SoC therapy, at the 

presumed point of MRD, and interrogate prognostic markers, like the Im signature reported 

here, to inform post-SoC management. For example, patients with ImHigh signatures could be 

stratified to ongoing immunotherapy trials (NCT04201873). 

Advantages to treating patients at MRD rather than waiting for clinical relapse to initiate 

further therapy include the fact that a cancer characterized by vast ITH will be at its most 

homogeneous state and potentially targetable by a tailored drug regimen against a rare minority 

of cancer stem-like cells that are now enriched at MRD. In addition, patients are generally 

clinically well at MRD, and more capable of tolerating drugs with significant side effects 

compared to a time when they are weakened by fulminant relapse.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2022.01.28.478232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

Our work applies barcoding and single-cell sequencing technologies toward the first 

functional, evolutionary and cell state characterization of MRD in GBM, unlocking a new means 

of predictive and personalized profiling that has, until now, been impossible to interrogate in the 

course of natural history and disease progression of GBM in patients.  Application of our 

findings through CSF surveillance in clinical trials going forward could aim to implement iterative 

detection, profiling and targeting of MRD in patients with recurrence of solid cancers, which 

could anticipate and even lead to prevention of solid cancer recurrence.  

 

 

Figure Legends 

Figure 1. Human-mouse glioblastoma xenograft modeling through chemoradiotherapy 
regimens.    
a. Experimental timepoints tracking glioblastoma volume through magnetic resonance imaging.   
b. Schematic of tracking glioblastoma evolution through barcoding and serial retransplantation. 
Briefly, five patient tumors were cultured and infected with the BCLA barcode library. Barcoded 
cells were sorted by flow cytometry for GFP+ and expanded prior to engraftment (P0). Cells 
were engrafted into NSG mice, which were culled at the MRD timepoint, or at recurrence after 
undergoing chemoradiotherapy or placebo treatment (N=3, each arm). Recurrent control and 
treated tumors of BT799 and BT428, respectively, were extracted and transplanted into a new 
cohort of mice upon which they completed a second round of in vivo expansion with or without 
treatment for barcode analysis.  
  
  
Figure 2. Tracking subclonal frequency of GBM through chemoradiotherapy selective 
pressures.  
a-b. For BT428 (a) and BT799 (b), shannon Index (left) displays relative diversity of barcodes 
through timepoints of in vivo modeling and clonal frequency (right) at the time of recurrence in 
response to chemoradiotherapy (blue) and time-matched controls (red). Each curve represents 
an independent experimental replicate (N=3 for all  except N=2 for BT799 P0). P-values 
determined using Welch Two Sample t-test. 
 
c-d. For BT428 (c) and BT799 (d), shannon Index (left) displays relative diversity of barcodes 
through timepoints of in vivo modeling and clonal frequency (right) at the time of minimal 
residual disease (MRD) in response to chemoradiotherapy (blue) and time-matched controls 
(red). Each curve represents an independent experimental replicate (N=3 for all  except N=2 for 
BT799 P0).  P-values determined using Welch Two Sample t-test. 
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Figure 3. Subclonal frequency of GBMs change over time in response to 
chemoradiotherapy.  
a-b. Bubble plot displaying frequency of barcodes in (a) BT428 and (b) BT799 at the time of 
recurrence. Barcodes that enrich in more than one sample (>1%) are colored while barcodes 
enriched in a single sample are represented in grey. Each vertical line represents an 
independent experimental replicate for the timepoint (N=3 for all  except N=2 for BT799 P0). 
c-d. Bubble plot displaying frequency of barcodes in (c) BT428 and (d) BT799 at the minimal 
residual disease (MRD) timepoint. Barcodes that enrich in more than one sample (>1%) are 
colored while barcodes enriched in a single sample are represented in grey. Each vertical line 
represents an independent experimental replicate for the timepoint (N=3 for all  except N=2 for 
BT799 P0). 
e-f. Barcode correlation of timepoints throughout in vivo chemoradiotherapy regimens in (e) 
BT428 and (f) BT799. 
 
Figure 4. scRNAseq reveals prognostic immunomodulatory signature in GBM patients.    
a. UMAP of MBT06 and BT799 samples at minimal residual disease (MRD) timepoint in 
response to chemoradiotherapy (TR; along with time-matched controls, CON). 
b. Venn diagram of differentially-expressed genes between control and treated BT799 and 
MBT06 cells.  
c. Relative abundance of GBM Subtypes. 
d. Expression heatmap of immunomodulatory (Im) and translation-promoting (Ti) gene panels.   
e. UMAP of Im and Ti activities (top) and signature activity heatmap stratified by MRD sample 
(bottom) 
f. Kaplan-Meier survival analysis, stratified into Imhigh and Imlow groups, for (top left) TCGA GBM 
transcriptomic data, (top right) Zhao et al.23 immunotherapy non-responders transcriptomic data, 
(bottom left) Cloughesy et al.21 adjuvant-therapy treated patient transcriptomic data and (bottom 
right) CSF GBM proteomic data. Dashed lines are median survival times. 
g. Mapping of melanoma samples onto GBM UMAP space using transfer-learning based 
method. Melanoma samples are highlighted in color; Colors represent which GBM sample the 
melanoma cells show the highest degree of similarity to. 
 
 
Supplementary Figure 1. In vitro stem cells functional assays of GBM cell lines in 
response to chemoradiotherapy.   
a. Sphere forming frequency of five patient derived GBM samples (N=5, mean + SEM).    
b. Limiting dilution assay to determine stem cell frequency in five patient derived GBM samples. 
Each point represents a technical replicate (N=3). 
c. Representative flow plot for gating strategy on the sorting of GFP+ cells from GBM cell lines 
transduced with barcode library. 
  
Supplementary Figure 2.  
a-c. Shannon Index (left) displays relative diversity of barcodes in three patient derived GBM 
cell lines, BT935 (a), BT954 (b), and MBT06(c), through timepoints of in vivo modeling and 
clonal frequency (middle) at the time of recurrence and (right) at MRD in response to 
chemoradiotherapy. Each curve represents an independent experimental replicate (N=3).  
d. Visual representation of the clonal frequency of barcodes in BT428 at the time of recurrence 
endpoint to be retransplanted and subjected to an additional regimen of chemoradiotherapy.   
e. Visual representation of the clonal frequency of barcodes in BT799 at the time of control 
endpoint retransplanted and subjected to an additional regimen of chemoradiotherapy.   
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Supplementary Figure 3.   
a-b. Bubble plot displaying frequency of barcodes in BT935 at the recurrence (a) and MRD (b) 
timepoints. Each vertical line represents an independent experimental replicate for the timepoint 
(N=3) 
c-d. Bubble plot displaying frequency of barcodes in BT954 at the recurrence (c) and MRD (d) 
timepoints. Each vertical line represents an independent experimental replicate for the timepoint 
(N=3) 
e-f. Bubble plot displaying frequency of barcodes in MBT06 at the recurrence (e) and MRD (f) 
timepoints. Each vertical line represents an independent experimental replicate for the timepoint 
(N=3) 
g. Barcode correlation of timepoints throughout in vivo chemoradiotherapy regimens in BT935.    
h. Barcode correlation of timepoints throughout in vivo chemoradiotherapy regimens in BT954.    
i. Barcode correlation of timepoints throughout in vivo chemoradiotherapy regimens in MBT06.    
j. Correlation of barcode abundance among different timepoints of chemoradiotherapy in BT428.   
k. Correlation of barcode abundance among different timepoints of chemoradiotherapy in 
BT799.   
  
  
Supplementary Figure 4.   
a. UMAP representation of scRNAseq GBM at MRD using lenient filters (left; gene/cell > 200, 
mitochondrial content < 60%) and stringent filters (middle; gene/cell > 3000, mitochondrial 
content < 10%). Right: Cells that passed stringent filter are highlighted in UMAP derived from 
cells that passed lenient filter.  
b. Comparison of pseudobulk scRNAseq and bulk RNAseq expression profiles across all 
profiled GBM samples. Dashed line: line of equality; solid line: loess curve.  
UMAP representation of scRNAseq GBM at MRD data, stratified by cluster.  
c. UMAP representation of GBM at MRD cell clusters.  
d. BT799 and MBT06 GBM subtype representation plot, colored by treatment status.  
e. Heatmap of CancerSEA cell state activities in MBT06 and BT799 samples at MRD.  
 
 
Supplementary Figure 5.   
a-b. Correlation of genes with signature scores at each iteration of Im signature derivation. 31 
genes were nominated for Im signature based on FDR = 5% and logFC > 1.5 differential 
expression between control MBT06 and BT799 samples and were subsequently pruned to 14 
genes following iteration 1 (a) and 13 genes following iteration 2 (b). Left, middle and right plots 
represent correlation plots for scRNAseq data from current study, Neftel et al.18, and Richards et 
al.20, respectively. Red dashed line: coherence threshold = 0.1; black dashed line: Pearson 
correlation = 0.  
c. Hypergeometric overrepresentation analysis of Im and Ti gene signatures using GO 
biological process (top), cellular compartment (middle) and molecular function (bottom) gene 
panels. 
d. Correlation heatmap showing similarity between Im and Ti signatures and GBM-related 
signatures from Neftel et al.18 (AC; astrocyte-like; MES; mesenchymal-like, OPC; 
oligodendrocyte-progenitor-like, NPC; neuroprogenitor-like), Richards et al.20 and Verhaak et al. 
2010 using expression profiles from current study (left), Neftel et al.18 2019 (middle) and 
Richards et al.20 (right).  
e. Correlation between bulk RNA-estimated Im (left) and Ti (right) GSVA scores and survival for 
five GBM PDX models.   
f. Progression of Im (left) and Ti (right) gene signatures between control and treated GBM and 
melanoma samples. 
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Supplementary Figure 6.   
a-b. Kaplan-Meier survival analysis, stratified into Tihigh and Tilow groups, for (a) TCGA GBM 
transcriptomic data, and (b) CSF GBM proteomic data. Dashed lines are median survival times. 
c. Survival sensitivity analysis for Im signature using TCGA dataset. For each gene comprising 
Im signature, Kaplan-Meier survival analysis was performed stratifying GBM samples into 
geneHigh and geneLow groups to evaluate the prognostic value of each individual gene, and 
alternatively ImHigh and ImLow statuses were computed in the absence of the gene to determine 
the influence of the gene on the overall prognostic value of the signature.  
 
Supplementary Figure 7.   
a. Venn diagram evaluating overlap between differentially-expressed genes in Responder vs. 
Non-responder transcriptomic profiles (Zhao et al.23) and Im signature. 
b. Relative proportion of immunotherapy responders and non-responders stratified by Im status 
(high vs. low).  
c.  Kaplan-Meier survival analysis of immunotherapy responders (Zhao et al.23) stratified into 
Aghigh and Aglow groups. Dashed lines represent median survival times. 
d. Im signature expression stratified by therapy type (adjuvant vs. neoadjuvant; Cloughesy et 
al.21).  
e. Kaplan-Meier survival analysis of neoadjuvant-treated patients (Cloughesy et al.21) stratified 
into Aghigh and Aglow groups. Dashed lines represent median survival times. 
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