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Abstract

Recurrence of solid tumors renders patients vulnerable to a distinctly advanced, highly
treatment-refractory disease state that has an increased mutational burden and novel oncogenic
drivers not detected at initial diagnosis. Improving outcomes for recurrent cancers requires a
better understanding of cancer cell populations that expand from the post-therapy, minimal
residual disease (MRD) state. We profiled barcoded tumor stem cell populations through
therapy at tumor initiation/engraftment, MRD and recurrence in our therapy-adapted, patient-
derived xenograft models of glioblastoma (GBM). Tumors showed distinct patterns of
recurrence in which clonal populations exhibited either an a priori, pre-existing fitness
advantage, or a priori equipotency fithess acquired through therapy. Characterization of the
MRD state by single-cell and bulk RNA sequencing revealed a tumor-intrinsic
immunomodulatory signature with strong prognostic significance at the transcriptomic level and
in proteomic analysis of cerebrospinal fluid (CSF) collected from GBM patients at all stages of
disease. Our results provide insight into the innate and therapy-driven dynamics of human

GBM, and the prognostic value of interrogating the MRD state in solid cancers.
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Introduction

Intratumoral heterogeneity (ITH) as a dynamic phenomenon represents a key
determinant of therapy failure across various solid cancers. The continual evolution of genetic,
cellular and functional cancer heterogeneity over time and throughout therapy has confounded
clinical management of disease'®. The persistence of treatment-resistant subpopulations of
cancer stem cells after initial therapy” and their subsequent expansion may, in fact, drive a
highly aggressive, heterogeneous and biologically distinct recurrent tumor. An archetype of ITH
driving profound treatment resistance can be found in glioblastoma (GBM), the most common
primary malignant brain tumor in adults®’. Despite aggressive multimodal treatment with
surgical resection, chemotherapy with temozolomide (TMZ) and radiotherapy, no further
standard-of-care (SoC) treatment options exist upon recurrence, and only 10% of all GBM
patients participate in clinical trials®. Recent genomic studies have shown that therapy can act
as a selection pressure or bottleneck for tumor evolution from minority cell populations present
at the time of initial tumor diagnosis®**. Although current preclinical models fail to predict the
recurrent tumor landscape, this roadblock may be circumvented through development of a
biological understanding of the small subpopulation of rare, treatment-resistant cells that drive
the emerging recurrence.

A critical limitation to our biological understanding of GBM recurrence lies in the scarcity
of tissue specimens to profile and study, as only 25% of progressive or recurrent patients
undergo repeat surgical resection*?. We developed methods to generate unique patient-derived
xenograft (PDX) models of human GBM recurrence, by adapting SoC chemoradiotherapy in
immunocompromised mice intracranially engrafted with patient-derived primary glioma stem
cells (GSCs). This method allows for temporal profiling of the clonal and transcriptomic
composition of cancer through different stages toward the acquisition of treatment resistance,
and especially led to the identification of disease stage characterized as the lowest possible

histological and radiological disease burden, which we termed “minimal residual disease”
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(MRD). This model thus affords an unprecedented window into a highly informative stage, which
is currently not possible to interrogate in brain tumors. As MRD has offered invaluable clinical

14-15

insight into the management of both recurrent liquid cancers®® and solid cancers**™*, it could

offer great therapeutic insights in anticipating the composition of GBM recurrence.

In this work, we combine our unique models of human GBM recurrence with cell tracking
using DNA barcodes to examine clonal GSC populations through SoC chemo- and radiotherapy
to determine whether recurrence arises stochastically or from pre-existing resistors. Thus, we
compare the clonal dynamics of GBM recurrence across multiple patient tumors models of
recurrence. Through cell tracking using DNA barcodes and bulk and single-cell RNA
sequencing (RNAseq), we characterize the MRD state in human GBM and uncover its potential

predictive value in anticipating cancer recurrence.

Development of xenograft model of GBM recurrence

To characterize tumor evolution through therapy, we developed a therapy-adapted,
patient-derived xenograft model to track tumor cells from five primary, treatment-naive human
GBMs (Supp Table 1-2). We monitored tumor growth in mice using magnetic resonance
imaging (MRI) and began in vivo chemoradiotherapy upon visible engraftment (ENG), which led
to an overall survival advantage (Supp Table 3). Approximately two weeks post-therapy, we
observed improved clinical symptoms in treated mice, coupled with minimal radiographic
evidence of disease, as is frequently observed in patients. We termed this state minimal
residual disease (MRD), a clinically- and biologically-relevant stage of disease comprising the
treatment-resistant pool of cells that comprises the imminent recurrence leading to disease end-
point (REC) (Fig 1a). Phenotypic assessment of tumor cells collected at REC showed increased
stem cell frequency and sphere forming capacity after treatment (Supp Fig la-b), which we

have previously shown is associated with poor clinical outcome and prognosis'®*’. While
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phenotypic assessments provide insight into the changes of bulk tumor populations through
therapy, we sought to assess the effect of therapy on individual clonal populations over the

course of disease.

GBM displays innate and therapy-driven clonal dynamics through disease progression
To investigate the clonal changes of GBM through therapy, we adapted a DNA
barcoding strategy to track individual tumor cells at multiple timepoints during the course of
disease progression and treatment (Fig 1b). Tumor cells were transduced with a high-
complexity lentiviral barcode library at low multiplicity of infection (MOI), sorted by GFP
expression (Supp Fig 1c), and expanded prior to intracranial transplantation in immunodeficient
mice to ensure accurate tracing of clonal cellular populations. All tumor samples showed high
barcode diversity at PO, ensuring many clonal GBM populations were followed. As expected,
clonal diversity decreased significantly from PO to ENG (Fig 2a-b, Sup Fig 2a-b, left panels).
Engraftment efficiency, as measured by the change in barcode abundance, ranged from 7%
(BT935) to 20% (MBTO06) and closely matched the expected GSC frequency within our GBMs,
as assessed by limiting dilution assay'’ (Sup Fig 1a-b). Across all samples, changes in clonal
diversity from ENG to REC in untreated mice (REC_CON) remained relatively constant.
However, clonal diversity of different samples responded variably to treatment, as exemplified
by BT428 and BT799. While both samples showed an overall decrease in diversity, the effect
was greater in BT428 when treated with chemoradiotherapy (REC_TR) (Fig 2a, left panel).
Treatment of BT428 tumors induced a shift towards clonality, where fewer clones comprised the
bulk of the REC_TR tumors. A mean of 11 clones comprised 98% of the treated tumors [min=3,
max=18], compared to an average of 3089 clones making up 98% of the control tumors

[min=1774, max=5202] (Fig 2a, right panel). However, despite a slight decrease in barcode
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diversity in BT799 (Fig 2b, left panel), we did not observe a similar concomitant decrease in
total barcodes after treatment. BT799 control tumors had an average of 110 clones making up
98% of the tumor [min=46, max=207], while treated tumors had an average of 89 clones [min=3,
max=254]. Assessment of clonal frequency revealed only slight differences between control
and treated samples at recurrence (Fig 2b, right panel). While BT428 tumors had higher
diversity and clonal composition in untreated relative to treated samples, the clonal composition
of BT799 was similar irrespective of treatment. Closer inspection of the barcode distributions
before and after treatment suggests that BT428 has a more heterogeneous makeup, with a
larger number of treatment-sensitive clones that are lost due to treatment, and a smaller fraction
of treatment-refractory barcoded cells. In contrast, there is litle change observed in the
distributions of BT799 untreated and treated populations, supporting a more homogenous
treatment-refractory population.

We next sought to define whether clonal composition at MRD could predict patterns of
recurrence. Assessment of clonal diversity in BT428 showed an opposing trend at MRD in
which treated samples showed significantly increased clonal diversity in comparison to
untreated samples (MRD_TR vs MRD_CON, p=0.0078, Welch Two Sample t-test, N = 3
biologically independent replicates) (Fig 2c, left panel). Thus, BT428 at MRD showed high
clonal diversity even after treatment, while untreated samples showed slight enrichment of low
abundance barcodes. Barcode diversity in BT799 showed little change with treatment at MRD
(MRD_CON vs MRD_TR, p=0.73, Welch Two-sample t-test) (Fig 2d, left panel). Untreated and
treated samples showed comparable diversity to that observed at engraftment, suggesting
similar clonal kinetics irrespective of treatment. A similar trend was observed with re-
transplantation of CON BT799 at endpoint, and subsequent treatment in which the same clonal
kinetics were reproducibly observed (Supp Fig 2d). Unlike BT428, BT799 showed a shift to

clonality at MRD in both treated and time-matched untreated samples, which was similar to
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what was observed at REC (Fig 2d, right panel). Thus, while BT428 and BT799 at REC
showed reduced diversity and highly clonal populations with treatment, BT428 appeared to have
acquired this diversity between MRD and REC. This suggested that clones that would
eventually dominate acquired treatment-resistance, and then rapidly expanded to recurrence.
This observation was bolstered by re-transplantation of BT428 REC_TR, which upon additional
chemoradiotherapy, revealed little change in clonal composition, suggesting an acquired-
treatment resistance and tumorigenicity (Supp Fig 2e). In contrast, BT799 appeared to
consistently display clonal dominance that was slightly enriched with treatment and
retransplantation (BT799_CON_TR)

The quantitative observations of clonal complexity and expansion from MRD to REC
suggested two possible mechanisms of recurrence — one in which a non-reproducible, low
abundance clone rapidly expands post-treatment (hereafter referred to as a priori equipotency),
or one in which a pre-existing clone of high abundance remains abundant through disease
progression, survives treatment, and continues to expand thereafter (hereafter referred to as a
priori fitness). To assess these hypotheses, we qualitatively tracked independent clones at MRD
and REC. Bubble plots, in which each bubble represents a unique barcode, showed little
similarity between replicates across all timepoints in BT428 (Fig 3a). In the absence of
treatment, few distinct barcodes were reproducibly enriched from ENG to MRD or REC.
Similarly, treatment did not reproducibly select distinct barcodes, and barcodes of high
abundance at MRD did not remain so at REC (Fig 3c). Additionally, abundant clones at ENG
did not remain abundant, suggesting against the possibility of clones with pre-existing
tumorigenic and treatment-resistant potential. Thus, when combined with the quantitative
assessments, these data suggest that clones in BT428 were stochastically enriched from MRD
to REC, and that their abundance at MRD did not predict their subsequent expansion.

In contrast, BT799 reproducibly showed selection of a few subsets of clones at MRD and

REC (Fig 3b, d). Clones that were enriched prior to injection (P0O) remained abundant from ENG
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to MRD to REC. While highly abundant clones could have maintained their abundance from in
vitro expansion simply due to tumor growth in vivo, their continued dominance through
treatment suggests a pre-existing potential to survive not only in vitro conditions (as
demonstrated by abundance at PO) but also in vivo chemoradiotherapy. Unlike BT428, the
clonal composition of BT799 at MRD in both treated and untreated samples later predicted
clonal composition at REC. While quantitative assessment of BT799 at REC revealed a slight
shift towards clonality with treatment, examination of barcode identity suggests that this was
likely due to elimination of lower-abundance, treatment-sensitive clones (Fig 3b, d).

To define patterns of recurrence in BT428 and BT799 after treatment, we analyzed
barcode identity temporally throughout disease progression. By combining identity and
abundance, we assessed correlation of each replicate tumor sample against one another
collected at the sample time point and with samples from other timepoints (ex: PO vs ENG, ENG
vs ENG). BT428 and BT799 showed highly correlated starting populations between replicate
tumor samples, indicating that downstream changes were due to differential clonal behaviour in
vivo (PO vs PO) (Fig 3e-f). At ENG, both BT428 and BT799 showed a drop in similarity from the
initial starting population, likely due to elimination of clones without tumorigenic potential.
However, correlations of samples from ENG onwards confirmed earlier hypotheses of clonal
composition through time in BT428 and BT799. BT799 showed high correlation of replicates
between each other at ENG and between ENG and MRD (Fig 3f). This phenomenon of high
intra- and intertemporal correlation was also observed between MRD and REC (p < 10%?),
respectively. In contrast, there was a lower correlation between BT428 samples at ENG, and
between ENG and MRD, suggesting inconsistent clonal expansion prior to treatment (Fig 3e).
Interestingly, BT428 samples at MRD were highly correlated across replicate tumor samples,
likely due to reproducible elimination of treatment-sensitive clones. However, weak correlation
between samples from MRD and REC and between REC samples suggests differential

selection of the remaining treatment-resistant clones. These observations were confirmed in a
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separate analysis using only highly abundant, resistant clones in BT428 and BT799 between
replicates and timepoints, in which dominant resistant clones were highly correlated in BT799
and weakly correlated in BT428 across timepoints (Supp Fig 3j-k). These results suggest that
BT799 consists of pre-existing, highly fit and treatment-resistant oligoclonal populations that
dominate through disease progression, while BT428 may have clones of equipotent expansion
potential that are sporadically selected after treatment and acquire treatment resistance.

These two patterns were observed in our other patient-derived samples, where BT935
and MBTO6 displayed similar dynamics to BT799, and BT954 was most similar to BT428 (Supp
Fig 2-3). Interestingly, initial analysis of BT954 suggested a small subset of clones exhibited
increased a priori fithess, as they remained highly abundant throughout disease progression.
However, closer inspection of the barcode identities revealed inconsistent clonal selection
between replicates (Supp Fig 3-1c,d), suggesting that numerous clonal subpopulations may
have had elevated pre-existing fitness and were randomly selected at ENG.

Taken together, we identified two patterns of GBM recurrence within a cohort of
barcoded patient-derived GBMs subjected to our adapted mouse treatment protocol, one in
which MRD can predict clonal selection due to a priori fitness, and one in which clones exhibit a
priori equipotency. While these may be distinct patterns of recurrence, observations in BT954
suggest that a priori fithess and a priori equipotency may exist on a spectrum. We next sought
to define whether profiling the biology of MRD could provide further clinical and therapeutic
insights.

Single-cell sequencing of MRD reveals differential transcriptional signatures and
intertumoral heterogeneity

To characterize the MRD stage, we performed single-cell RNA sequencing on in vivo-
modelled, patient-derived lines MBT06 and BT799. While these samples displayed similar

clonal kinetics, MBT06 and BT799 represented tumors derived from patients with the best and
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worst disease outcomes in our cohort (>43 months and 3-month survival, respectively). Thus,
we sought to explore differences with therapeutic and/or prognostic relevance.

We profiled the transcriptome of 2,454 tumor cells using scRNAseq from control or
treated MBT06 and BT799 mice (Fig 4a; BT799_MRD_CON: 1147 cells, BT799 MRD_TR: 126
cells, MBT06_MRD_CON: 628 cells, MBT06_MRD_TR: 553 cells). Comparison of the
scRNAseq data with a more stringent subset obtained by high gene recovery (>3000 genes/cell)
and low mitochondrial content (<10%) filters (Supp Fig 4a) and also with bulk RNAseq profiles
(Supp Fig 4b) confirmed the high quality of data used for subsequent analyses.

Uniform Manifold Approximation and Projection (UMAP)-based embedding revealed
three major cellular populations (Fig 4a, Supp Fig 4c). The first two distinct populations
represented control and treated MBT06 samples (green and orange populations, respectively)
and showed pronounced treatment-induced differences in higher dimensional transcriptomic
space (Fig 4a) and by differential expression analysis (Fig 4b), whereas the third population
representing control and treated BT799 cells co-clustered, suggesting a less pronounced
response to treatment. These profiles were in agreement with our barcode analysis.

To assess intratumoral heterogeneity, we classified cells into mesenchymal (MES)-,
astrocyte (AC)-, oligodendrocyte progenitor (OPC) and neuronal progenitor (NPC)-like
subtypes®™. We found that at least three of four GBM-subtypes were represented in each
sample; however, the relative abundance of each subtype was more stable in BT799 compared
to MBTO6 following treatment (Fig 4b, Supp Fig 4d). In untreated BT799 samples, AC-like cells
were the most abundant, and the proportion of each state was not significantly affected
following treatment (p=0.982, x* test). In contrast, the untreated MBT06 sample was
predominantly composed of AC- and NPC-like cells, and treatment induced a significant shift
towards the MES-like state (p<0.001, x? test). We also scored control and treated cells using
pan-cancer cell-state gene sets’ (Supp Fig 4e). Notably, treated MBT06 samples were

associated with upregulation of quiescence, apoptosis, inflammation and hypoxia signatures,

10
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and downregulation of cell cycle and proliferation signatures. By comparison, treatment of
BT799 was associated with negligible changes in cancer state activities, corroborating the lack
of treatment-induced transcriptomic changes observed in BT799 samples at the global UMAP
level.

To identify innate tumor-specific differences at MRD, we performed differential
expression analysis of control MBT06 and BT799 cells. MBT06 was enriched for tumor-specific
immune signalling including antigen presentation, whereas BT799 was enriched for translation
initiation and rRNA processing. To compare the regulation of these pathways and evaluate their
clinical utility, we developed an immunomodulatory (Im) and translation-initiating (Ti) signature
composed of 13 and 12 genes, respectively, that were differentially expressed between the two

samples and coherent across independent GBM datasets™® %

, including scRNAseq profiles
obtained in the current study (Fig 4d, Supp Fig5a, b). The Im signature consisted of genes
comprising the MHC class | protein complex, while the Ti signature was primarily composed of
genes expressing large ribosomal subunit (Supp Fig 5c). Furthermore, the Im signature was
correlated with the expression of mesenchymal-like and injury-response signatures whereas the
Ti signature is correlated with the expression of developmental-like signatures (Supp Fig 5d).
While these signatures were derived from untreated samples, treated MBT06 and BT799
samples consistently responded with an increased expression of the immunomodulatory
signature and suppression of the translation-promoting signature (Fig 4e).
Immunomodulatory signature predicts survival in GBM

We next sought to determine whether our immunomodulatory and translation-promoting
signatures had prognostic value, as they were derived from the differential pathway activities of
tumors associated with the best and worst disease outcomes in our cohort. We evaluated the
prognostic value of our signatures using 4 independent GBM transcriptomic datasets [MRD

mouse models (N = 5; current study), public TCGA-GBM data (N = 162 patients),

immunotherapy-responder (N = 13) and non-responder (N = 12) GBM patient data®®, and

11
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adjuvant (N = 15) or neo-adjuvant (N = 13) therapy-treated GBM patient data®* and 1 GBM
proteomic dataset obtained by profiling the cerebrospinal fluid (CSF) obtained from GBM
patients (N = 24; current study). Intriguingly, despite the Im signature being derived from a

High status

sample (MBTO06) associated with the best survival outcome (Supp Fig 5e), the Im
were consistently associated with worse prognoses in TCGA samples (Fig 4f [top left], p =
0.0096; Supp Fig 6), immunotherapy non-responders (Fig 4f [top right], p = 0.046), adjuvant-
treated patients (Fig 4f [bottom left], p = 0.2) and CSF samples (Fig 4f [bottom right], p =
0.082). Importantly, among patients that responded to immunotherapy or those that received
neo-adjuvant therapy, the Im signature offered to further prognostic value (p = 0.56 and 0.50,
respectively; Supp Fig 7). In those datasets we also found that the Im signature was expressed
at similar levels in immunotherapy responders and non-responders (Supp Fig 7b), and in those
treated with adjuvant and neoadjuvant therapy (Supp Fig 7e). Unlike the immunomodulatory
signature, the translation-initiating signature was not associated with survival in any of the
validation sets (Supp Fig 5e, Supp Fig 6a, b). The incongruity between Im signature being
derived from best surviving MBT06 sample and prognosticating poor-survival in larger GBM
cohorts may be due to the presence and absence of intact immune system in GBM patients and
PDX models, respectively, resulting in differential interaction between Im transcriptomic program
and survival.

To further validate the prognostic value of our signatures, we applied our signatures to a
comparable single-cell RNAseq dataset from post-treatment, patient-derived melanoma
xenografts profiled at MRD™. Although clinical data was lacking, we found that MRD melanoma
xenograft models that were matched to our control and treated MRD GBM samples (see
methods for details) exhibited comparable increases and decreases in immunomodulatory and
translation-initiation signatures, respectively, which was consistent with the treatment-response
patterns identified in our own GBM samples (Supp Fig 5f). Finally, despite GBM being widely

recognized as an immunologically “cold” tumor, we found that 45% of cells in melanoma, which

12


https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478232; this version posted February 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

are considered immunologically “hot” tumors, mapped onto the control MBT06 transcriptomic
space, suggesting that MBT06 samples exhibit characteristics of an immunologically “hot”
tumor, and further validates our immunomodulatory signature which was derived from MBT06
and not BT799 (Fig 49).

Taken together, Im-dependent signalling offers a reliable biomarker in GBM across all
stages of disease at the bulk and single-cell transcriptomic, and CSF proteomic level, and
putatively in other solid cancers.

Discussion

In this study, we used a high-complexity barcoding library to assess differential patterns
of recurrence in response to SoC therapy using five patient-derived GBM xenograft models. Our
findings suggest that treatment imposes a selective pressure that enriches for clones that
eventually dominate recurrent tumors. Single clone tracking from engraftment through to
recurrence provided insight into intratumoral variations of clonal expansion, particularly from
MRD to recurrence. Previous study on GBM clonal dynamics in response to chemotherapy
alone showed that pre-existing chemo-resistant clones facilitate GBM recurrence®. Since then,
studies have demonstrated that treatment itself can induce changes in cell populations that then
give rise to treatment-resistant tumors'*®. Our findings expands on this work and suggest that
patterns of GBM recurrence following combined chemoradiotherapy exist on a spectrum
between a priori fithess, whereby distinct pre-existing clones remain abundant from engraftment
through to recurrence, and a priori equipotency of clones, whereby treatment-derived subclonal
events dominate clonal composition at each timepoint.

To investigate inter-tumoral heterogeneity observed in clonal dynamics from engraftment
to recurrence, we used our therapy-adapted, patient-derived xenograft model to capture MRD,

which after pruning of cellular subpopulations by therapy, emerged as the least heterogeneous
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state with the lowest possible clonal diversity across different patient samples. Single-cell RNA
sequencing of MRD samples from the longest and shortest surviving patients in our sample
cohort revealed profound cellular ITH in signalling and cell states, independent of treatment. We
observed regulation of distinct molecular pathways in each sample, and we derived a prognostic
immunomodulatory (Im) signature that was validated across five independent datasets (four
transcriptomic and one proteomic). Importantly, the Im signature was found to have significant
prognostic value when applied to the TCGA GBM dataset, and datasets published by Zhao et

al.?® and Cloughesy et al.?* as Im™9"

transcriptomes were associated with worse overall survival.
While promising, the requirement for surgically-resected tissues and transcriptomic profiling
might limit the clinical utility of our Im signature. Therefore, we assessed the prognostic value of
the Im signature in CSF proteomes from GBM patients, and in this independent cohort of 24
patients found the signature predicted worse survival. Finally, we compared our thirteen-gene

signature to recently published work by Richards et al.?

While we found similarity with their
>4000 gene injury response signature characterized by inflammation and immune cell
activation, we suggest the thirteen-gene signature would be more accessible for clinical
application.

It was intriguing to find that Im"o"

GBM cells (MBT06 samples) closely resemble
melanoma cells profiled at the MRD stage (Fig. 4i). This finding suggests that tumors with high
immunoregulatory signalling may resemble immunologically “hot” tumors, like melanoma, and
may represent a subset of GBMs that have developed mechanisms to overcome their
immunosuppressive niche?”?*, Taken together, Im-dependent signalling is a useful biomarker in

GBM across all stages of disease at the bulk, single-cell transcriptomic and proteomic level, and

putatively in other solid cancers.
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Profiling the state of MRD has added immeasurable value to the predictive and
personalized management of liquid cancers such as Acute Myeloid Leukemia (AML), where
sequential molecular MRD monitoring has been used to anticipate relapse, refine clinical
decision making and personalize treatment plans®®. Whole-genome sequencing and mutational
integration of plasma cell-free DNA allow ultra-sensitive detection of mutations in MRD to be
achieved even in patients with low-burden solid cancers to guide clinical interventions®.
Characterization of MRD through liquid biopsy, and in the case of brain tumors through
interrogation of the CSF?’, may help to define which solid cancer patients are at risk of relapse
after surgery and warrant prophylactic adjuvant treatment®®, and clinical trials are underway to
determine if the predictive value of MRD for recurrent disease guides therapy choices that
reduce the risk of recurrence of solid cancers® *°. Excitingly, patients enrolled in certain clinical
trials for recurrent GBM are now given intraventricular reservoirs to bypass the blood-brain

barrier and allow for locoregional delivery of new immunotherapies®" 3

, which could present
exceptional opportunities to survey the CSF of patients after completion of SoC therapy, at the
presumed point of MRD, and interrogate prognostic markers, like the Im signature reported

here, to inform post-SoC management. For example, patients with Im"""

signatures could be
stratified to ongoing immunotherapy trials (NCT04201873).

Advantages to treating patients at MRD rather than waiting for clinical relapse to initiate
further therapy include the fact that a cancer characterized by vast ITH will be at its most
homogeneous state and potentially targetable by a tailored drug regimen against a rare minority
of cancer stem-like cells that are now enriched at MRD. In addition, patients are generally

clinically well at MRD, and more capable of tolerating drugs with significant side effects

compared to a time when they are weakened by fulminant relapse.
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Our work applies barcoding and single-cell sequencing technologies toward the first
functional, evolutionary and cell state characterization of MRD in GBM, unlocking a new means
of predictive and personalized profiling that has, until now, been impossible to interrogate in the
course of natural history and disease progression of GBM in patients. Application of our
findings through CSF surveillance in clinical trials going forward could aim to implement iterative
detection, profiling and targeting of MRD in patients with recurrence of solid cancers, which

could anticipate and even lead to prevention of solid cancer recurrence.

Figure Legends

Figure 1. Human-mouse glioblastoma xenograft modeling through chemoradiotherapy
regimens.

a. Experimental timepoints tracking glioblastoma volume through magnetic resonance imaging.
b. Schematic of tracking glioblastoma evolution through barcoding and serial retransplantation.
Briefly, five patient tumors were cultured and infected with the BCLA barcode library. Barcoded
cells were sorted by flow cytometry for GFP+ and expanded prior to engraftment (P0). Cells
were engrafted into NSG mice, which were culled at the MRD timepoint, or at recurrence after
undergoing chemoradiotherapy or placebo treatment (N=3, each arm). Recurrent control and
treated tumors of BT799 and BT428, respectively, were extracted and transplanted into a new
cohort of mice upon which they completed a second round of in vivo expansion with or without
treatment for barcode analysis.

Figure 2. Tracking subclonal frequency of GBM through chemoradiotherapy selective
pressures.

a-b. For BT428 (a) and BT799 (b), shannon Index (left) displays relative diversity of barcodes
through timepoints of in vivo modeling and clonal frequency (right) at the time of recurrence in
response to chemoradiotherapy (blue) and time-matched controls (red). Each curve represents
an independent experimental replicate (N=3 for all except N=2 for BT799 PO0). P-values
determined using Welch Two Sample t-test.

c-d. For BT428 (c) and BT799 (d), shannon Index (left) displays relative diversity of barcodes
through timepoints of in vivo modeling and clonal frequency (right) at the time of minimal
residual disease (MRD) in response to chemoradiotherapy (blue) and time-matched controls
(red). Each curve represents an independent experimental replicate (N=3 for all except N=2 for
BT799 P0). P-values determined using Welch Two Sample t-test.
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Figure 3. Subclonal frequency of GBMs change over time in response to
chemoradiotherapy.

a-b. Bubble plot displaying frequency of barcodes in (a) BT428 and (b) BT799 at the time of
recurrence. Barcodes that enrich in more than one sample (>1%) are colored while barcodes
enriched in a single sample are represented in grey. Each vertical line represents an
independent experimental replicate for the timepoint (N=3 for all except N=2 for BT799 PO0).
c-d. Bubble plot displaying frequency of barcodes in (c) BT428 and (d) BT799 at the minimal
residual disease (MRD) timepoint. Barcodes that enrich in more than one sample (>1%) are
colored while barcodes enriched in a single sample are represented in grey. Each vertical line
represents an independent experimental replicate for the timepoint (N=3 for all except N=2 for
BT799 PO).

e-f. Barcode correlation of timepoints throughout in vivo chemoradiotherapy regimens in (e)
BT428 and (f) BT799.

Figure 4. scRNAseq reveals prognostic immunomodulatory signature in GBM patients.

a. UMAP of MBT06 and BT799 samples at minimal residual disease (MRD) timepoint in
response to chemoradiotherapy (TR; along with time-matched controls, CON).

b. Venn diagram of differentially-expressed genes between control and treated BT799 and
MBTO6 cells.

c. Relative abundance of GBM Subtypes.

d. Expression heatmap of immunomodulatory (Im) and translation-promoting (Ti) gene panels.
e. UMAP of Im and Ti activities (top) and signhature activity heatmap stratified by MRD sample
(bottom)

f. Kaplan-Meier survival analysis, stratified into Im"®" and Im'®" groups, for (top left) TCGA GBM
transcriptomic data, (top right) Zhao et al.*® immunotherapy non-responders transcriptomic data,
(bottom left) Cloughesy et al.** adjuvant-therapy treated patient transcriptomic data and (bottom
right) CSF GBM proteomic data. Dashed lines are median survival times.

g. Mapping of melanoma samples onto GBM UMAP space using transfer-learning based
method. Melanoma samples are highlighted in color; Colors represent which GBM sample the
melanoma cells show the highest degree of similarity to.

Supplementary Figure 1. In vitro stem cells functional assays of GBM cell lines in
response to chemoradiotherapy.

a. Sphere forming frequency of five patient derived GBM samples (N=5, mean + SEM).

b. Limiting dilution assay to determine stem cell frequency in five patient derived GBM samples.
Each point represents a technical replicate (N=3).

c. Representative flow plot for gating strategy on the sorting of GFP+ cells from GBM cell lines
transduced with barcode library.

Supplementary Figure 2.

a-c. Shannon Index (left) displays relative diversity of barcodes in three patient derived GBM
cell lines, BT935 (a), BT954 (b), and MBTO06(c), through timepoints of in vivo modeling and
clonal frequency (middle) at the time of recurrence and (right) at MRD in response to
chemoradiotherapy. Each curve represents an independent experimental replicate (N=3).

d. Visual representation of the clonal frequency of barcodes in BT428 at the time of recurrence
endpoint to be retransplanted and subjected to an additional regimen of chemoradiotherapy.

e. Visual representation of the clonal frequency of barcodes in BT799 at the time of control
endpoint retransplanted and subjected to an additional regimen of chemoradiotherapy.
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Supplementary Figure 3.

a-b. Bubble plot displaying frequency of barcodes in BT935 at the recurrence (a) and MRD (b)
timepoints. Each vertical line represents an independent experimental replicate for the timepoint
(N=3)

c-d. Bubble plot displaying frequency of barcodes in BT954 at the recurrence (c) and MRD (d)
timepoints. Each vertical line represents an independent experimental replicate for the timepoint
(N=3)

e-f. Bubble plot displaying frequency of barcodes in MBTOQ6 at the recurrence (e) and MRD (f)
timepoints. Each vertical line represents an independent experimental replicate for the timepoint
(N=3)

g. Barcode correlation of timepoints throughout in vivo chemoradiotherapy regimens in BT935.
h. Barcode correlation of timepoints throughout in vivo chemoradiotherapy regimens in BT954.

i. Barcode correlation of timepoints throughout in vivo chemoradiotherapy regimens in MBTO06.

j- Correlation of barcode abundance among different timepoints of chemoradiotherapy in BT428.
k. Correlation of barcode abundance among different timepoints of chemoradiotherapy in
BT799.

Supplementary Figure 4.

a. UMAP representation of scRNAseq GBM at MRD using lenient filters (left; gene/cell > 200,
mitochondrial content < 60%) and stringent filters (middle; gene/cell > 3000, mitochondrial
content < 10%). Right: Cells that passed stringent filter are highlighted in UMAP derived from
cells that passed lenient filter.

b. Comparison of pseudobulk scRNAseq and bulk RNAseq expression profiles across all
profiled GBM samples. Dashed line: line of equality; solid line: loess curve.

UMAP representation of sScRNAseq GBM at MRD data, stratified by cluster.

c. UMAP representation of GBM at MRD cell clusters.

d. BT799 and MBT06 GBM subtype representation plot, colored by treatment status.

e. Heatmap of CancerSEA cell state activities in MBT06 and BT799 samples at MRD.

Supplementary Figure 5.

a-b. Correlation of genes with signature scores at each iteration of Im signature derivation. 31
genes were nominated for Im signature based on FDR = 5% and logFC > 1.5 differential
expression between control MBT06 and BT799 samples and were subsequently pruned to 14
genes following iteration 1 (a) and 13 genes following iteration 2 (b). Left, middle and right plots
represent correlation plots for scRNAseq data from current study, Neftel et al.'®, and Richards et
al.?°, respectively. Red dashed line: coherence threshold = 0.1; black dashed line: Pearson
correlation = 0.

c. Hypergeometric overrepresentation analysis of Im and Ti gene signatures using GO
biological process (top), cellular compartment (middle) and molecular function (bottom) gene
panels.

d. Correlation heatmap showing similarity between Im and Ti signatures and GBM-related
signatures from Neftel et al.'®* (AC; astrocyte-like; MES: mesenchymal-like, OPC;
oligodendrocyte-progenitor-like, NPC; neuroprogenitor-like), Richards et al.*° and Verhaak et al.
2010 using expression profiles from current study (left), Neftel et al.'® 2019 (middle) and
Richards et al.?° (right).

e. Correlation between bulk RNA-estimated Im (left) and Ti (right) GSVA scores and survival for
five GBM PDX models.

f. Progression of Im (left) and Ti (right) gene signatures between control and treated GBM and
melanoma samples.
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Supplementary Figure 6.

a-b. Kaplan-Meier survival analysis, stratified into Ti"" and Ti® groups, for (a) TCGA GBM
transcriptomic data, and (b) CSF GBM proteomic data. Dashed lines are median survival times.
c. Survival sensitivity analysis for Im signature using TCGA dataset. For each gene comprising
Im signature, Kaplan-Meier survival analysis was performed stratifying GBM samples into
gene™" and ge.neLOW groups to evaluate the prognostic value of each individual gene, and
alternatively Im™9" and Im*°" statuses were computed in the absence of the gene to determine
the influence of the gene on the overall prognostic value of the signature.

Supplementary Figure 7.

a. Venn diagram evaluating overlap between differentially-expressed genes in Responder vs.
Non-responder transcriptomic profiles (Zhao et al.*®) and Im signature.

b. Relative proportion of immunotherapy responders and non-responders stratified by Im status
(high vs. low).

c. Kaplan-Meier survival analysis of immunotherapy responders (Zhao et al.?®) stratified into
Ag"" and Ag" groups. Dashed lines represent median survival times.

d.zllm signature expression stratified by therapy type (adjuvant vs. neoadjuvant; Cloughesy et
al.=).

e. Kaplan-Meier survival analysis of neoadjuvant-treated patients (Cloughesy et al.?*) stratified
into Ag™®" and Ag"™ groups. Dashed lines represent median survival times.

References

1. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity.
Nature 501, 328-337, doi:10.1038/nature12624 (2013).

2. Burrell, R. A, McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences
of genetic heterogeneity in cancer evolution. Nature 501, 338-345,
doi:10.1038/nature12625 (2013).

3. Swanton, C. Cancer evolution constrained by mutation order. N Engl J Med 372, 661-
663, doi:10.1056/NEJMe1414288 (2015).

4. Phi, L. T. H. et al. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic
Implications  in Cancer  Treatment. Stem Cells Int 2018, 5416923,
doi:10.1155/2018/5416923 (2018).

5. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the
Central Nervous System: a summary. Acta Neuropathol 131, 803-820,
doi:10.1007/s00401-016-1545-1 (2016).

6. Stupp, R., van den Bent, M. J. & Hegi, M. E. Optimal role of temozolomide in the
treatment of malignant gliomas. Curr Neurol Neurosci Rep 5, 198-206,
doi:10.1007/s11910-005-0047-7 (2005).

7. Ostrom, Q. T. et al. CBTRUS Statistical Report: Primary Brain and Other Central
Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro Oncol 18,
v1-v75, doi:10.1093/neuonc/now207 (2016).

19


https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478232; this version posted February 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8. Vanderbeek, A. M. et al. The clinical trials landscape for glioblastoma: is it adequate to
develop new treatments? Neuro Oncol 20, 1034-1043, doi:10.1093/neuonc/noy027
(2018).

9. Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution
of recurrent glioma. Science 343, 189-193, doi:10.1126/science.1239947 (2014).

10. Korber, V. et al. Evolutionary Trajectories of IDH(WT) Glioblastomas Reveal a Common
Path of Early Tumorigenesis Instigated Years ahead of Initial Diagnosis. Cancer Cell 35,
692-704 €612, doi:10.1016/j.ccell.2019.02.007 (2019).

11. Touat, M. et al. Mechanisms and therapeutic implications of hypermutation in gliomas.
Nature 580, 517-523, d0i:10.1038/s41586-020-2209-9 (2020).

12. Weller, M., Cloughesy, T., Perry, J. R. & Wick, W. Standards of care for treatment of
recurrent  glioblastoma--are we  there vyet? Neuro Oncol 15, 4-27,
doi:10.1093/neuonc/nos273 (2013).

13. Dillon, R., Potter, N., Freeman, S. & Russell, N. How we use molecular minimal residual
disease (MRD) testing in acute myeloid leukaemia (AML). Br J Haematol,
doi:10.1111/bjh.17185 (2020).

14. Rambow, F. et al. Toward Minimal Residual Disease-Directed Therapy in Melanoma.
Cell 174, 843-855 €819, doi:10.1016/j.cell.2018.06.025 (2018).

15. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in
early breast cancer. Sci Transl Med 7, 302ral33, doi:10.1126/scitransimed.aab0021
(2015).

16. Venugopal, C. et al. Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor-
Initiating Cells. Clin Cancer Res 21, 5324-5337, do0i:10.1158/1078-0432.CCR-14-3147
(2015).

17. Richichi, C. et al. Tumor-initiating cell frequency is relevant for glioblastoma
aggressiveness. Oncotarget 7, 71491-71503, doi:10.18632/oncotarget.11600 (2016).

18. Neftel, C. et al. An Integrative Model of Cellular States, Plasticity, and Genetics for
Glioblastoma. Cell 178, 835-849 €821, d0i:10.1016/j.cell.2019.06.024 (2019).

19. Yuan, H. et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res 47,
D900-D908, doi:10.1093/nar/gky939 (2019).

20. Richards, L.M., Whitley, O.K.N., MacLeod, G. et al. Gradient of Developmental and
Injury Response transcriptional states defines functional vulnerabilities underpinning
glioblastoma heterogeneity. Nat Cancer 2, 157-173 (2021).

21. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival
benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat
Med 25, 477-486, doi:10.1038/s41591-018-0337-7 (2019).

22. Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune
microenvironment  in resectable  glioblastoma. Nat Med 25, 470-476,
doi:10.1038/s41591-018-0339-5 (2019).

23. Zhao, J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy
in glioblastoma. Nat Med 25, 462-469, do0i:10.1038/s41591-019-0349-y (2019).

24. Lan, X. et al. Fate mapping of human glioblastoma reveals an invariant stem cell
hierarchy. Nature 549, 227-232 (2017).

20


https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478232; this version posted February 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

25. Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs.
Nature 596, 576-582 (2021).

26. Zviran, A. et al. Genome-wide cell-free DNA mutational integration enables ultra-
sensitive cancer monitoring. Nat Med 26, 1114-1124, do0i:10.1038/s41591-020-0915-3
(2020).

27. Miller, A. M. et al. Tracking tumour evolution in glioma through liquid biopsies of
cerebrospinal fluid. Nature 565, 654-658, doi:10.1038/s41586-019-0882-3 (2019).

28. Sidaway, P. Tracing evolution reveals new biomarkers. Nat Rev Clin Oncol 17, 5 (2020).
https://doi.org/10.1038/s41571-019-0295-0

29. Schraa, S. J. et al. Circulating tumor DNA guided adjuvant chemotherapy in stage Il
colon cancer (MEDOCC-CrEATE): study protocol for a trial within a cohort study. BMC
Cancer 20, 790, d0i:10.1186/s12885-020-07252-y (2020).

30. AbdulJabbar, K. et al. Geospatial immune variability illuminates differential evolution of
lung adenocarcinoma. Nat Med 26, 1054-1062, doi:10.1038/s41591-020-0900-x (2020).

31. Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T
cell journey. Nat Med 25, 1341-1355, d0i:10.1038/s41591-019-0564-6 (2019).

32. Brown, C. E. et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell
Therapy. N Engl J Med 375, 2561-2569, doi:10.1056/NEJM0a1610497 (2016).

21


https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1

®
e
/T
N
sy
A\

- K
Timepoint 1 Timepoint 2 Timepoint 3 Timepoint 4
Intracranial Injection Engraftment Treatment  Minimal Residual Disease Endpoint
(PO) (ENG) v (MRD) (REC)

O O O O

MRI

H&E

oy 5 B

ENG MRD_TR REC_TR

Unique Barcode

MOI<0.3 1
O O
oo Barcode Library (BCLA)

@ -+

—
¢ GFP+ Sort Extracted
e 4 (GFP+)
® o 18 MRD_CON REC_CON
—>
ENG ~ S T~
TR_RETRANS > ‘ S
“ or Extracted
CON_RETRANS (GFP+)
MRD_TR REC_TR

!

:‘.i' — MROORNAK —»

Isolated tumour cells gDNA Extraction

from each timepoint and barcode amplification Sequencing Analysis


https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/

BT428 Recurrence

154 p=0.05
1
p=0.92
p=0.00092
1
£10
>
®
2
o
f =
2
c 5_ (]
@
2 = $
.j
0_
- " . r
g 2 g =
w [&]
BT799 Recurrence
p=0.24
1
p=0.75
7.5 p=0.0057
1
5<) ———
el
£
2
250
=
[=) . °
5 —=
8 °
f=
s L]
& 2.5
0.0 °
- . . .
g 9 z &
w (&)
BT428 MRD
154
p=0.0078
p=0.24
p=0.00092
% ————
3
£ 10
2 .
2
o
c
o
E 5l
s t:‘—Tl .
® i:
0_
- " . .
g 2 g =
w [&]
BT799 MRD
81 p=0.73
p=045 ———————
p=0.0057 ———————
——t—
5°1
el
£
2
2
S .
f=4
f=
@
<
%) 2
0.
S : z o
g 2 3 =
w (6]

100004

10004

Clones> f

Clones> f

1004

BT428 Recurrence

Figure 2

Sample Group

— REC_CON
—REC_TR

1000

100

BT799 Recurrence

4

2 0
Clonal Frequency (log10{x})

Sample Group

—REC_CON
—REC_TR

10000

Clones> f

Clones> f

1000

-
o
o

10

1000

100

. .
-4 2 0

-6
Clonal Frequency (log10{x})
BT428 MRD
Sample Group
—MRD_CON
—MRD_TR
% 9 % ;
Clonal Frequency (log10{x})
BT799 MRD

Sample Group

—MRD_CON
—MRD_TR

-4 -2
Clonal Frequency (log10{x})

o


https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/

Correlation

BT428 Recurrence

BT799 Recurrence

Figure 3

e r 6 -~
Abundance
(] (3 (] @ (] ° » 3 ; 0
: ERERET IR LIPS
£ £ @ o
X X
g s . 20%
14 14
. >30%
PO ENG CON TR PO ENG CON TR
Cc BT428 MRD d BT799 MRD
w - )
Abundance
0
® 5%
g ol R N N o & ‘. Q® 1%
P c | o o & o, @ o, @ - .
< < @ -
c C
& & . >30%
PO ENG CON TR PO ENG CON TR
e BT428 f BT799
10°7 e 10°4 o '
[ ] °
1074 1074
1024 . . 1024
[ ]
[ ] c
10° 4 £ 10%
©
°
-a | ‘5 -4 |
10 8 10
10”4 10
10° 4 104
107 T T T T T T T 107 T T T T T T T
PO PO ENG ENG MRD MRD REC PO PO ENG ENG MRD MRD REC
PO ENG ENG MRD MRD REC REC PO ENG ENG MRD MRD REC REC


https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/

UMAP 2

b

Figure 4

UMAP Number of DEGs
CON vs TR: 5480 (MBT06), 228 (BT799) Subtypes
76 overla
P BT799_MRD MBT06_MRD
) MBTO06 [ ] BT799
44 % 1.004 1.00 |
o
P b 3 .':. . . MRD sample
3 \ oe % MBT06_CON § 0.754 § 0754 subtype
P k MBT06_TR S S AC
of % q BT799_CON & & MES
e 19) 9] NPC
BT799_TR et hed
P - L 0504 L= 0.50 opC
vy o 5
b" e 2 =
v © ©
44 *.u 2 3
o 0.254 Y 0.25-
o |
-10 -5 0 5 0.00 0.00
UMAP CON TR CON TR
d e Sample Sample
3
[ ] subtype subtype
_ | sample AC GBM
LPL ol 2 MES Im
o NPC
MGP 2l |4 oPC ‘$
o o
RPL39 2 > Y
2. sample A
RPL35 (| |0 MBTO06_CON S
RPLI2Z  © MBTO6 TR 0 P line
mpos 3 - TN Y E BT799_MRD
RPL18 » - s MBT06_MRD
set D
RPL18A m
RPL13A -3 D Ti ,
TTYH Activity
L
BCAN . . . . 25 05
SCRG1 -10 -5 0 5 20 s
UMAP 1
_|: CD63 15 0
CTSA GBM
1.0 TR
PSMB9 Ti -0.5
| HLA-E 05
HLA-B 4
B2M 4+
i o | e 3E
LAP3 o AR
‘ CDKN1A <§( o+ &
S100A10 5 3
NEAT1 .
S100A16 4 .
cLict
1]
e 1o 35
f TCGA Transcriptomics N
Im-dependent Survival Zhao 2019
1.00 100
o7s 075 Melanoma Overlay
B z
| 3
8 8
Q. 0.50¢ S 0.50
K g
g £ 4
? zs ® o GBM sample
MBT06_MRD_CON
~ MBT06_MRD_TR
0.00 0.00 o
0 400 800 1200 1600 0 400 800 1200 1600 <§( 04 Reference
Time (d) Time (d) =]
Adjuvant Cohort CSF Proteomics
Cloughesy 2019 Im-Dependent Survival
1.00¢ 1.00.
—4]
E‘ 0.75' E 075
2 8 p=0.082
Soso g -10 5 0 5
A o UMAP 1
3 1 1
025/ p=02 1 025 1 1
1 1 1
000 1 0.00 1 1
0 500 1000 1500 2000 2500

Time (d)

0 100 200

Strata mim high mim low

400
Time (d)


https://doi.org/10.1101/2022.01.28.478232
http://creativecommons.org/licenses/by-nc-nd/4.0/

