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Abstract:

The mammalian genome is spatially organized in the nucleus to enable cell type-specific gene
expression. Investigating how chromatin organization determines this specificity remains a
challenge. Methods for measuring the 3D chromatin organization, such as Hi-C, are costly and
bear strong technical limitations, restricting their broad application particularly in high-throughput
genetic perturbations. In this study, we present C.Origami, a deep neural network model that

performs de novo prediction of cell type-specific chromatin organization. The C.Origami model
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enables in silico experiments to examine the impact of genetic perturbations on chromatin
interactions in cancer genomes and beyond. In addition, we propose an in silico genetic screening
framework that enables high-throughput identification of impactful genomic regions on 3D
chromatin organization. We demonstrate that cell type-specific in silico genetic perturbation and
screening, enabled by C.Origami, can be used to systematically discover novel chromatin

regulatory mechanisms in both normal and disease-related biological systems.

Introduction:

In mammalian cells, interphase chromosomes are hierarchically organized into large
compartments which consist of multiple topologically associating domains (TADs) at the sub-
megabase scale'. Chromatin looping within TADs functions to restrict enhancer-promoter
interactions at the kilobase scale for regulating gene expression'=. The perturbation of TADs, such
as disrupting TAD boundary, can lead to aberrant chromatin interactions and changes in gene
expression*’. As a result, mutations that disrupt 3D genome organization can substantially affect

developmental programs and play important roles in genetic diseases and cancer*>4?,

The higher-order organization of the genome is largely determined by intrinsic DNA sequence
features known as cis-regulatory elements that are bound by #rans-acting factors in a sequence
specific manner'?. For example, the location and orientation of CCCTC-binding factor (CTCF)
binding sites act as a landmark for defining boundaries of TADs. Other factors, such as the cohesin
complex proteins, act together to regulate chromatin interaction via loop extrusion'®!'!. While most
TADs are conserved across cell types, a substantial amount (>10%) of TADs are dynamic and
vary in different cells'?. In addition, widespread cell type-specific chromatin-looping contributes
to the precise regulation of gene expression®'®. These fine-scale chromatin interactions are
controlled by chromatin remodeling proteins and transcription factors such as GATAI1, YY1, and
mediator proteins>!'4-1¢, While the general organization of chromatin organization is largely well
described, the current challenge is to reveal the principles underlying cell type-specific chromatin
folding. Chromatin conformation capture technologies, such as Hi-C, are used for examining
chromatin structure underlying gene regulation at fine-scales and across cell types'”'8. However,

these approaches are typically time- and resource-consuming, and require large cell numbers'®. In
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addition, experimental tools are limited by the process of aligning sequencing reads to a specific
reference genome, making it challenging for experiments involving de novo genome
rearrangement. These limitations prohibit their wide-scale applications in investigating how
chromatin organization determines cell type-specific gene expression, especially in gene
regulation studies involving genetic perturbation and in rearranged chromosomes such as cancer

genomes.

Owing to its ability to model complex interactions, deep learning has emerged as a powerful
approach for studying genomic features. Leveraging in silico perturbations based on deep learning
models could effectively reduce the resources required for de novo analyses of chromatin
organization through experiments'®?°. Since intrinsic features in DNA sequence of the genome
partially determine its general folding principles, an approximate prediction of chromatin
organization can be made using sequence alone?'23. However, due to the lack of specific genomic
features which govern chromatin interactions!?, approaches that rely solely on DNA sequence are

2123 Conversely, methods that rely only

unable to predict cell type-specific chromatin interactions
on chromatin profiles lack the consideration of DNA sequence features, thus generally requiring
multiple epigenomic data to improve predictive power>*?°. The limitations of current methods
make them infeasible for in silico experiments studying how DNA sequence features and trans-
acting factors work together to shape chromatin organization for accurate gene expression

regulation.

We propose that an accurate de novo prediction of chromatin folding requires a model which
effectively recognizes both DNA sequence and cell type-specific genomic features. Meanwhile,
for the model to be practical, it should minimize the requirement for input information without
performance loss. Based on these principles, we developed C.Origami, a deep neural network that
synergistically integrates DNA sequence features and two essential cell type-specific genomic
features: CTCF binding and chromatin accessibility signal. C.Origami achieved accurate de novo

prediction of cell type-specific chromatin organization in both normal and rearranged genomes.

The high accuracy of C.Origami enables in silico genetic perturbation experiments that interrogate

the impact on chromatin interactions, and moreover, allows systematic identification of cell type-
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94  specific regulation mechanisms of genomic folding through in silico genetic screening. Applying
95  in silico genetic screening to T-cell acute lymphoblastic leukemia (T-ALL) cells and normal T
96 cells, we identified a loss of insulation event at the upstream of CHD4 in T-ALL, resulting in
97  increased chromatin interaction between CHD4 promoter and distal cis-elements. The high-
98  throughput in silico genetic screening framework also makes it possible to identify a compendium
99  of cell type-specific trans-regulators across multiple cell types. Additionally, we found that CDK7

100  plays a broader role in regulating 3D chromatin organization than that of NOTCHI1, consistent

101  with extensive experimental results by examining Hi-C contact matrices upon pharmacological

102 inhibition of CDK7 and NOTCH13°. Together, our results demonstrate that the high performance
103 of C.Origami enables systematic in silico genetic perturbation and screening experiments for
104  identifying critical cell type-specific cis-elements and trans-acting regulators, thus empowering
105  future studies of 3D chromatin regulation studies.

106

107 RESULTS:

108

109  C.Origami: a multimodal architecture for predicting cell type-specific 3D chromatin
110  organization

111
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112

113 Figure 1: De novo, cell type-specific prediction of 3D chromatin organization with C.Origami. a, A schematic of
114  C.Origami, a multimodal architecture for de novo prediction of chromatin organization. C.Origami adopts an encoder-
115 decoder design, separately encoding DNA sequence features and cell type-specific genomic features. The two streams
116  of encoded information are concatenated and processed by a transformer module. The decoder converts the processed
117 1D information to the final Hi-C interaction matrix. b, C.Origami predicts 3D chromatin organization by integrating
118 DNA sequence, CTCF ChIP-seq signal and ATAC-seq signal as input features to predict Hi-C interaction matrix in 2
119  Mb windows.

120

121  To achieve accurate and cell type-specific prediction of genomic features, we first developed
122 Origami, a generic multimodal architecture, to integrate both nucleotide-level DNA sequence and
123 cell type-specific genomic signal (Fig. 1a, excluding decoder). Specifically, the former enables
124  recognition of informative sequence motifs, while the later provides cell type-specific features.
125  Origami consists of two encoders, a transformer module, and a decoder (Fig. 1a, see Methods).
126  The two encoders are 1D convolutional neural networks that condense DNA sequence and
127  genomic features separately. The two streams of encoded features are then concatenated and
128  further processed by a transformer module, which allows the encoded information to exchange
129  between different genomic regions®'. The decoder in Origami synthesizes the processed

130  information to make predictions, and depending on the task, can be customized to specific

5
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131  downstream prediction targets. In this study, we deployed a 2D dilated convolutional network with
132 broad receptive field as a decoder for predicting chromatin organization represented by Hi-C
133 contact matrices (see Methods). We therefore named this chromatin organization predicting
134 variant C.Origami.

135

136  C.Origami predicts chromatin organization within a 2 mega-base (2Mb) sized window to cover
137  typical TADs in the genome while maximizing computation efficiency'. DNA sequence and
138  genomic features within the window were separately encoded as nucleotide-level features (Fig. 1b,
139  see Methods). The model reduces 2Mb wide genomic features down to 256 bins, and outputs a Hi-
140  C contact matrix with a bin size of 8,192 bp. The target Hi-C matrix from the corresponding 2Mb
141  genomic window was processed to have the same bin size. To train the model, we used data from
142 IMR-90*, a fibroblast cell line isolated from normal lung tissue, and randomly split the
143 chromosomes into training, validation (chromosome 10), and test set (chromosome 15) (Fig. 1b,
144  top right).

145

146  When selecting genomic features as input for cell type-specific chromatin organization prediction,
147  we considered three criteria: 1) representative for cell type specific chromatin organization; 2)
148  widely available and experimentally robust; 3) minimized number of inputs to enable broad
149  applicability of the model. CTCF binding is one of the most critical determinants of 3D genome
150  organization, shaping the genome to organize into TADs!?. Meanwhile, previous studies revealed
151  widespread cell type-specific enhancer-promoter and promoter-promoter interactions which
152 constitute a great portion of 3D chromatin organization at the accessible genomic regions*~—3°. In
153  light of this knowledge, we envisioned C.Origami trained with CTCF ChIP-seq and ATAC-seq
154  profiles, and together with nucleotide-level DNA sequence, would achieve high performance in
155  predicting cell type-specific 3D chromatin organization (Fig. 1b).

156

157 To examine how different input features influence model performance, we first carried out an
158  ablation study by training a set of prototype models with all seven combinations of the three input
159  features, and then used validation loss to evaluate the model quality (Fig. 2a). We found that the
160  model trained with DNA sequence alone has the highest validation loss — indicating lowest

161  performance — due to its lack of cell type-specific genomic information. On the other hand, the
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162  model trained with a full set of input features — DNA sequence, CTCF ChIP-seq, and ATAC-seq
163  profiles — consistently achieved the lowest validation loss. Moreover, replacing ATAC-seq profile
164  with a key chromatin modification profile, H3K27ac, under-performs the original C.Origami
165 model (Fig. 2a). Using only CTCF ChIP-seq or ATAC-seq profile as input give a mediocre
166  performance. Notably, coupling genomic features with DNA sequence as training inputs always
167  improves model performance (DNA + ATAC-seq > ATAC-seq; DNA + CTCF-binding > CTCF-
168  binding; C.Origami > CTCF-binding + ATAC-seq), indicating that DNA sequence information
169  contributes substantially for prediction quality.

170

171  To further inspect the performance difference between C.Origami and models trained with
172 incomplete inputs, we compared C.Origami with the model trained with DNA sequence and CTCF
173  ChIP-seq signal. While the later model performed well in capturing the TAD structures and some
174  chromatin loops, the model did not predict many fine-scale chromatin interaction features,
175  especially in de novo prediction on a new cell type (Supplementary Fig. 2). These results indicate
176  that integrating DNA sequence with CTCF binding signal alone is not sufficient for optimal
177  prediction of cell type-specific 3D chromatin organization.

178

179  C.Origami trained with complete inputs achieved high-quality predictions for chromatin
180  organization (Fig. 2, Supplementary Fig. 3). C.Origami predicted highly accurate contact matrices
181  that emphasized both large topological domains and fine-scale chromatin looping events in
182  samples from training, validation and test chromosomes (Fig. 2b-e and Supplementary Fig.3).
183  Similar to the ablation study, compromising each of the input signals by random shuffling led to
184  inferior performance, underscoring the necessity of including all input features for high-quality
185  predictions (Supplementary Fig. 4). Last, we found that while it is possible to train the model using
186  sparse input genomic features (ChIP-seq/ATAC-seq peaks) without significant performance
187  penalty, the current C.Origami model trained with dense features (including peak profiles and
188  sequencing background signals of ChIP-seq/ATAC-seq) achieved better performance, indicating
189  that the model leveraged the nuanced genomic features to improve its prediction (Supplementary
190  Fig. 5).

191
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192

193 Figure 2: C.Origami accurately predicts 3D chromatin organization. a, Validation loss of prototype models
194  trained from different combination of input features. b-¢, Experimental Hi-C matrices (b) and C.Origami predicted
195 Hi-C matrices (¢) of IMR-90 cell line at chromosome 2 (left), chromosome 10 (middle), and chromosome 15 (right),
196  representing training, validation and test chromosomes, respectively. d, Input CTCF binding and chromatin
197 accessibility profiles. e, Insulation scores calculated from experimental Hi-C matrices (solid line) and C.Origami
198  predicted Hi-C matrices (dotted line). Pearson correlation coefficients between prediction and target insulation scores
199 is presented. f, Insulation score correlation between predicted and experimental Hi-C matrices across all windows in
200  both validation and test chromosomes. Each group included both Pearson correlation () and Spearman correlation (p)
201 coefficients. g, Chromosome-wide distance-stratified interaction correlation (Pearson) between prediction and
202 experiment. h, Comparison of model performance across Akita, DeepC, Orca, and C.Origami using genome-wide
203 insulation score correlation between prediction and experimental data from IMR-90 cells. Error bars in the violin plots

204  indicate minimum, mean and maximum values within each group.

205

206  Genome-wide evaluation of model performance
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207  To systematically assess C.Origami, we calculated the insulation scores on validation and test
208  chromosomes (see Methods). C.Origami achieved on average 0.95 and 0.94 insulation score
209  correlation respectively (Fig. 2f). By plotting the insulation score correlation between prediction
210  and experiment against Hi-C data intensity across the genome by chromosomes, we found that the
211  prediction maintained uniform high performance, demonstrating the robustness of the model
212 (Supplementary Fig. 6).

213

214 To evaluate the consistency of predicted Hi-C matrices, we calculated distance-stratified average
215  intensity of Hi-C matrices from C.Origami prediction and experiment and found the same
216  exponential decay pattern (Supplementary Fig. 7a). In addition, predicted chromatin structure from
217  C.Origami were stable across neighboring regions. Therefore, consecutive predictions can be used
218  to construct chromosome-wide prediction of Hi-C contact matrix by joining predictions across
219  sliding windows (Supplementary Fig. 7b-d). Such genome-wide construction of Hi-C contact
220  matrices allowed us to plot a distance-stratified correlation (Pearson) between the merged
221  chromosome-wide prediction and experimental Hi-C (see Methods). C.Origami achieved
222 correlation above 0.8 within 1Mb region and 0.6 within 1.5Mb (Fig. 2g, Supplementary Fig. 8).
223

224 Loop calling is a common analysis for identifying point-to-point interactions from Hi-C. As a third
225  metric to evaluate C.Origami’s performance, we performed loop calling using global background
226  as reference to capture significant chromatin interactions on both prediction and experimental Hi-
227  Cin IMR-90 cells (see Methods). We found that C.Origami achieved good performance in loop
228  detection, with an AUROC of 0.92 for the top 5000 predicted loops (Supplementary Fig. 9). We
229  further categorized loops by the chromatin background of loop anchors, resulting in three major
230  categories: CTCF-CTCF loop, promoter-enhancer loop, and promoter-promoter loop
231  (Supplementary Figure 9a-b). We found that C.Origami-predicted Hi-C maps can further predict
232 chromatin loops comparable to the experimental results under each loop category (Supplementary
233 Figure 10).

234

235  Last, we compared C.Origami against three recent sequence-based approaches, Akita??, DeepC?,
236  and Orca®®. Since the four models were trained with different scaling, resolution and prediction

237  target customization, we included in the benchmark a set of preprocessing and normalization steps
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to standardize the results (See Methods, and Supplementary Fig. 11-13). To evaluate the
performance of the four models, we compared their predicted results to experimental data by
calculating: 1) insulation score correlation, 2) observed/expected Hi-C map correlation, 3) mean
squared error (MSE), and 4) distance-stratified correlation using results from IMR-90 cells (see

Methods). We found that C.Origami outperforms previous methods in all four comparison

matrices (Fig. 2h, Supplementary Fig. 14).
De novo prediction of cell type-specific chromatin organization
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Figure 3: Cell type-specific de novo prediction of chromatin structure. A, Experimental Hi-C matrices from IMR-
90 (left) and GM 12878 (middle) cell lines at chromosome 2 ,and their differences (right). B, C.Origami-predicted Hi-
C matrices of IMR-90 (left) and GM 12878 (middle), precisely recapitulated the experimental Hi-C matrices (a). The
arrow heads highlighted differential chromatin interactions between the two cell types. C, CTCF binding profiles and
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252 chromatin accessibility profiles of IMR-90 (left), GM 12878 (middle) and their difference (right). D, Insulation scores
253 calculated from experimental Hi-C matrices (solid line) and C.Origami predicted Hi-C matrices (dotted line) of IMR-
254 90 (left), GM 12878 (middle) and their difference (right). E, Pearson correlation between insulation scores calculated
255 from predicted and experimental Hi-C matrices across cell types. F-h, Genome-wide evaluation of sequence-based
256  models and C.Origami using de novo prediction results from GM12878 cells. Presented metrics include insulation
257 score correlation (f), observed vs expected matrix correlation (g), and distance-stratified correlation (h). Error bars in

258  violin plots of f and g indicate minimum, mean and maximum values within each group.

259

260  De novo prediction of cell type-specific 3D chromatin organization provides a valuable approach
261  for studying genome regulation in new cell types. To assess C.Origami’s performance in de novo
262  prediction of chromatin organization beyond the training cell type IMR-90, we applied the model
263  to GM12878 cells using its corresponding CTCF ChIP-seq and ATAC-seq profiles. GM12878 is
264  alymphoblastoid cell line that differs substantially from IMR-90 in its chromatin organization??,
265  asexemplified by locus Chr2:400,000-2,497,152 (Fig. 3a). Specifically, we highlighted a cell type-
266  specific interaction related to chromatin accessibility changes (black arrowhead) and a distal
267  interaction that associates with both CTCF and ATAC-seq signal changes (gray arrowhead, Fig.
268  3c). These cell type-specific features were demonstrated by differences in their signal intensity in
269  Hi-C and genomic tracks (Fig. 3a and 3c, right).

270

271  To demonstrate the capability of C.Origami in cell type-specific de novo prediction, we predicted
272 Hi-C matrices in both IMR-90 and GM 12878 cells at the same locus. Notably, C.Origami was
273  trained on IMR-90 and was never exposed to GM12878-specific inputs and Hi-C data. Therefore,
274  C.Origami needs to transfer its knowledge to the new cell type. We found that C.Origami
275  accurately captured the cell type-specific chromatin interaction features in GM12878 de novo
276  prediction (Fig. 3a-c, left and middle). The difference between IMR-90 and GM12878
277  experimental Hi-C matrices was also reflected between IMR-90 and GM 12878 predictions (Fig.
278  3a-c, right). The calculated insulation scores from the predicted Hi-C matrix were also highly
279  correlated with the scores of the experimental data from both cell types (Fig. 3d, left and middle).
280  In addition, the difference between insulation scores of the two cell types were highly correlated,
281  showing that C.Origami captured the chromatin architectural difference between two cell types
282  (Fig. 3d, right). We further expanded the de novo chromatin organization prediction to two more

283  cell lines, embryonic H1-hESC and erythroleukemia K562. Again, our model achieved accurate

11
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284  predictions of cell type-specific chromatin organization with high specificity, demonstrating the
285  robustness of C.Origami in de novo prediction and its practical potential for a broader application
286  (Supplementary Fig. 15).

287

288  To systematically evaluate the performance of C.Origami in de novo prediction, we next carried
289  out an analysis of genome-wide predictions. Although we presented multiple loci that have cell
290  type-specific chromatin structures, many TAD boundaries are conserved across cell types'?. To
291  test the model on structurally different regions, we first identified a subset of genomic loci with
292  differential chromatin structures between IMR-90 and GM12878 experimental Hi-C matrices.
293  Regions with normal intensity (> 10% intensity quantile) and low similarity (< 20% insulation
294  difference) between the experimental Hi-C matrices of the two cell types were selected. In total,
295  ~15% of the entire genome (~450Mb) were included for evaluating the performance of cell type-
296  specific Hi-C prediction (Supplementary Fig. 16a).

297

298  We calculated the correlation coefficient between the insulation scores of the predicted and
299  experimental Hi-C matrices across all four cell types in structurally different genomic regions (Fig.
300 3e, Supplementary Fig. 16). In line with observations from the single-locus results (Fig. 3a-d), we
301  found that predictions using input features from one cell type have the highest correlation
302  coefficients with the experimental Hi-C data of the same cell type (Fig. 3e, scores at the diagonal
303  line). The correlation coefficients between mismatched prediction and experimental data were
304 lower, consistent with the expectation that the model predicts cell type-specific chromatin
305 interactions (Fig. 3e, off-diagonal scores). Similarly, these results were recapitulated by correlation
306 analysis using pixel-level observed/expected contact matrices (Supplementary Fig. 16¢c-d). As a
307 control, we performed a similar analysis using structurally conserved genomic regions,
308  characterized by normal intensity (> 10% intensity quantile) and high similarity (> 20% insulation
309  difference) between IMR-90 and GM 12878 (Supplementary Fig. 16d). As expected, we found the
310 prediction in these regions was highly correlated with the experimental data across all cell types
311  (Supplementary Fig. 16e-f). We further compared the insulation score of IMR-90 to that of the
312 three other cell lines and found such insulation score difference calculated from prediction and
313 experimental data were highly correlated (Supplementary Fig. 16g).

314
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315  As an orthogonal validation, we performed loop calling on IMR-90 and GM 12878 prediction and
316  experimental Hi-C to evaluate C.Origami’s ability to detect cell type-specific chromatin loops. We
317  found that C.Origami can predict significant (log2fc > 1) IMR-90-specific and GM12878-specific
318  loops with 0.88 and 0.87 AUROC, respectively (Supplementary Fig. 17). Cell type-specific loops
319  under different categories also achieved similar performance (Supplementary Fig. 18).

320

321  Since DNA sequence-based models are unable to generalize to unseen cell types, we expect
322  C.Origami to have an advantage in cell type-specific de novo prediction. This performance gap
323  can be observed by comparing de novo predictions generated by sequence-based models and
324  C.Origami in GM12878 cells (Supplementary Figure 19). Comparing genome-wide cell type-
325  specific predictions in regions with cell type-specific chromatin organizations (see Methods), we
326  again found that C.Origami outperformed sequence-based models by a large margin under all
327  metrics, with higher insulation score correlation, higher observed/expected Hi-C matrix correlation,
328 lower mean squared error (MSE), and higher distance-stratified correlation (Fig. 3f-h,
329  Supplementary Figure 20).

330

331  The mouse genome differs from human in its genomic components but the two share similar
332  mechanisms in 3D chromatin organization'3*37. We sought to test whether C.Origami could
333  perform de novo prediction across species. We found that C.Origami trained with human IMR-90
334  genomic features predicted mouse chromatin organization with good quality (Supplementary
335  Figure 21). The overall performance in mouse was lower compared to that in human, possibly due
336 to species-specific genomic features that were learned by the model during training.
337  Notwithstanding its good performance, the accuracy of C.Origami could be further improved by
338 training a model on mouse data to adapt to mouse sequence and genomic features. Together, these
339  results indicate that C.Origami can extract and transfer the conserved genome organization
340  principles learned across species.

341

342  Last, we tested whether C.Origami could predict the chromatin-organization changes upon
343  removal of key trans-acting regulators, such as CTCF. Previous study found that acute degradation
344  of CTCF protein led to the disappearance of TADs in mouse embryonic stem cells, and subsequent

345  restoration of CTCF reestablished TAD structures®®. We simulated such experiments by predicting
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chromatin organizations in pre-CTCF-depletion, CTCF-depleted, and CTCF-restored conditions
(see Methods). We found that C.Origami accurately predicted the TAD-loss and restoration
changes upon CTCF depletion and restoration, respectively (Supplementary Fig. 22).
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351 Figure 4: C.Origami enables prediction of 3D chromatin organization upon in silico genetic perturbations. a,

352 Chromosomal translocation between chromosome 7 and chromosome 9 in CUTLL1 T cell leukemia cells®’. b,

353 Experimental Hi-C data mapped to a custom reference chromosome with t(7;9) translocation’”. c-d, C.Origami

354 prediction of chromatin organization of chromosome 7 (¢) and chromosome 9 (d) in CUTLL1 cells. The windows
355 represented intact chromosomal loci centered at the translocation sites in CUTLL1 cells. e, A simulated Hi-C contact
356  matrix using prediction for mimicking of experimental mapping results. The simulated result was averaged from the
357  prediction of both normal and translocated alleles, indicating heterozygous translocation. The yellow bar highlights
358  the neo-TAD at the translocation locus. Black and gray arrowhead indicates the translocation site and a stripe in the
359  neo-TAD, respectively. The predicted Hi-C matrix was aligned to the experimental Hi-C matrix in d. f, Log fold
360  change between experiment and predicted Hi-C matrix at the t(7;9) translocation site in CUTLLI cells. g-i, A 500bp

361 deletion in chromosome 8 led to chromatin looping changes in T cells. The presented 2Mb window starts at the
362  promoter region of MYC, and the experimental deletion perturbed a CTCF binding site at the arrowhead location®’.

363 The presented results include C.Origami prediction of the Hi-C contact matrices with (g) or without (h) the deletion,
364  and their difference (i). Virtual 4C signals, calculated from the predicted Hi-C matrices, are shown at the bottom.

365

366  Accurate prediction of C.Origami enables cell type-specific in silico genetic experiments

367 Chromosomal translocations and other structural variants generate novel recombinant DNA
368  sequences, subsequently inducing new chromatin interactions which may be critical in
369  tumorigenesis and progression®*°, However, the allelic effect and high heterogeneity of
370 translocation and structural variations frequently seen in cancer genomes make it challenging to
371  study their custom genome organizations. As an example, CUTLLI, a T-cell acute lymphoblastic
372  leukemia (T-ALL) cell line, incorporated a heterozygous t(7;9) translocation, a recombination of
373  chromosome 7 and chromosome 9 (Fig. 4a)*°. The translocation introduces new CTCF binding
374  signals from chromosome 9 to chromosome 7, leading to the formation of a neo-TAD structure
375  which can be observed in experimental Hi-C (Fig. 4b, see Methods)*.

376

377  We highlight that C.Origami provides a high-performance alternative for discovering new
378  chromatin interactions at rearranged genomic loci. To examine the performance of C.Origami in
379  predicting chromatin organization from rearranged cancer genomes, we predicted Hi-C contact
380 matrices from both the normal and translocated alleles, and then averaged the two matrices to
381  mimic the allele-agnostic Hi-C mapping in the experimental data (Fig. 4c-e, see Methods). We
382  found that the Hi-C map generated by C.Origami accurately predicted the neo-TAD structure

383  covering the t(7;9) translocation site (Fig. 4e-f). Specifically, we found a stripe extending from
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384  translocated chromosome 9 to chromosome 7, indicating a novel regulation within the neo-TAD
385  (Fig. 4b and 4e, dotted box and gray arrowhead). We additionally performed the same in silico
386  experiments at three verified translocation loci in K562 cells and obtained similar results*!
387  (Supplementary Fig. 23). The accuracy in detecting novel chromatin interaction at chromosomal
388 translocation sites demonstrated C.Origami’s high performance and potential in future cancer
389  genomics studies.

390

391  Moreover, we expect the high performance of C.Origami to enable cell type-specific in silico
392  genetic perturbation experiments as a fast and cost-efficient approach for studying chromatin
393  interaction mechanisms. As an example, while CTCF binding site has been found critical for
394  organizing TADs via experimental perturbations*®, not all perturbations at the CTCF binding sites
395  led to the similar TAD changes due to motif redundancy and the complicated roles of CTCF in
396 chromatin regulation®*. Notably, experimental perturbation requires sophisticated genetic
397  deletion followed by assessment through chromatin conformation capture techniques. Instead of
398  experimentally performing such genetic studies, we modeled deletions of CTCF-binding at the
399  TAD boundary sequences in silico, and subsequently predicted local chromatin interaction maps
400  with C.Origami. We found that in silico deletion at TAD boundaries with CTCF-binding led to
401  TAD merging events between the originally insulated TADs with a sharp drop in insulation score
402  at the perturbed boundaries (Supplementary Fig. 24).

403

404  To further investigate the validity of in silico genetic perturbation, we applied C.Origami to predict
405  chromatin interactions at loci with known experimental validations. Our previous study showed
406  that disrupting a CTCF-binding site near MYC locus reduced the chromatin looping efficiency in
407  human naive CD4+ T cells, resulting in a reduced chromatin insulation®’. Applying C.Origami at
408  the locus without perturbation, we found a stripe in the predicted Hi-C matrix (Fig. 4g, arrowhead).
409 A 500bp in silico removal of the CTCF-binding region attenuated the stripe (Fig. 4h-1). Based on
410  the two predicted Hi-C matrices, we calculated virtual 4C difference before and after perturbing
411  the CTCF binding site and found them to be consistent with previous experimental data
412  (Supplementary Fig. 7E in Kloetgen, et al)*’. Another example is the DXZ4 locus which is critical
413  for determining the chromosomal organization in X chromosome inactivation (XCI)*’. We tested

414  in silico deletion of DXZ4 locus in two female cell lines (IMR-90, GM12878) and two male cell
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lines (CUTLLI1, Jurkat) to evaluate how DXZ4 locus regulate X chromosome organization
(Supplementary Fig. 25). Consistent with experimental knock-out results*, we found that deleting
the DXZ4 locus leads to substantial loss of insulation at the two flanking regions only in female
cell lines (Supplementary Fig. 25), supporting the specific function of DXZ4 locus in regulating
XCIL
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421

422 Figure 5, High-throughput in silico genetic screening identifies cis-regulatory elements determining chromatin
423 organization. a-b, Schematic of in silico genetic screen for identifying impactful cis-regulatory elements. For each
424  perturbed DNA element, an impact score is calculated to indicate how perturbation of the locus affected local

425 chromatin organization. ¢, Visualization of different attribution method. GRAM, attention score, and impact score
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426  tracks are aligned to the predicted Hi-C and input genomic signals. d, Distribution of chromosome-wide-normalized
427 impact scores in in silico deletion screening. e, Heatmap of in silico deletion screening-identified impactful cis-
428 elements which contribute to the 3D chromatin organization. Each row shows an 5Kb locus centered by an impactful
429 1Kb cis-element. The loci in each group were ranked by their impact scores. f, The relative enrichment (z-score
430  normalized) of ATAC-seq signal and multiple ChIP-seq signals at the four groups of impactful elements. According
431 to the impact score values, cis-elements of each group were further grouped into high, medium, and low-impact
432 quantile groups when plotting the ChIP-seq/ATAC-seq signals. g, Characterization of in silico screening-identified

433 cis-elements by their genomic annotations.

434

435

436  Cell type-specific in silico genetic screening of cis-regulatory elements

437  Identifying cis-regulatory elements required for chromatin organization is one of the most
438  important goals for 3D genome studies*®. To determine whether C.Origami could be used to
439  systematically identify such critical cis-elements, we propose using C.Origami to quantitatively
440  assess how individual DNA elements contribute to the 3D chromatin organization (Fig. 5). Based
441  on C.Origami’s model architecture, we developed two approaches for identifying critical cis-
442  elements: a gradient-based saliency method named Gradient-weighted Regional Activation
443  Mapping (GRAM), and attention scores derived from the transformer module (see Methods). As
444  exemplified by the chr2:0-2.1Mb locus, both GRAM scores and attention scores captured
445  important genomic regions that determine 3D genome structure, such as TAD boundaries and
446  regions enriched with CTCF binding and ATAC-seq signals (Fig. 5¢). In particular, GRAM can
447  be positioned flexibly at different layers to obtain attribution maps at different resolutions up to
448  nucleotide resolution (Supplementary Fig. 26a). The attention weights were averaged across all
449  attention heads channels to obtain the layer-specific attention scores (Supplementary Fig. 26b).
450  Visualization of all attention weights revealed that different attention heads attend to specific
451  regions (Supplementary Fig. 27). Given that attention scores are robust to input shifts
452  (Supplementary Fig. 26d), it is possible that the attention heads respond to specific categories of
453  regulatory elements consistently. Additionally, we found although GRAM is more flexible, it is
454  less robust compared to attention scores, susceptible to input window shifts and random seeds
455  (Supplementary Fig. 26¢c-¢). While both approaches are able to estimate the contribution of cis-
456  elements, neither of them could quantitatively assess how much a specific DNA element influence

457  the local 3D chromatin organization.
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458

459  Systematic DNA sequence perturbation was widely used in reverse genetic screening experiments
460 for identifying functional genes or cis-regulatory elements. Inspired by the mechanism of genetic
461  screening, we developed an in silico genetic screening (ISGS) approach based on C.Origami.
462  Differ from qualitative GRAM and attention score, ISGS quantifies the difference in C.Origami
463  predictions upon systematic perturbation (deletion) of DNA elements (see Methods). As an
464  example, we first carried out ISGS in a 2Mb window (chr2:0-2.1Mb) by sequentially perturbing
465 256 loci of ~8kb lengths, followed by Hi-C contact map prediction. We quantify the impact of a
466  perturbation via a metric termed impact score, calculated by taking the mean absolute difference
467  between predictions before and after perturbation (Fig. 5a, see Methods). We found that
468  perturbations at TAD boundaries with enriched CTCF ChIP-seq and ATAC-seq signals had higher
469  impact on chromatin folding, consistent with the GRAM and attention scores (Fig. 5c¢).

470

471  To systematically locate the impactful cis-elements that are required for 3D chromatin
472  organization across the genome, we conducted high-resolution in silico genetic screening by
473  sequentially deleting 1Kb DNA elements, followed by C.Origami prediction and impact score
474  computation (see Methods). As expected, deletion of most of the DNA elements across the genome
475  have low impact scores and does not significantly alter the 3D chromatin organization (Fig. 5d).
476  We performed a peak calling by comparing each impact score to its surrounding signals, and
477  1isolated a set of impactful cis-elements representing ~1% of the screened genome (see Methods).

478

479  Further characterization of the impactful cis-elements led to the identification of differential
480  genomic features regulating chromatin organizations. According to the presence or absence of
481  CTCEF binding and ATAC-seq signals, the impactful cis-elements were characterized into four
482  groups (Fig. 5e). More than half of the impactful cis-elements are open chromatin and
483  simultaneously bound by CTCF (Group 1, Fig. 5e). Plotting CTCF binding signals and ATAC-seq
484  signals across cis-elements in three quantiles separated by impact score group intensity, we found
485  that CTCF-bound cis-elements intensity stays overall the same across Group 1 and Group 2
486  quantiles, while the ATAC-seq signals are negatively correlated with the impact scores (Fig. 5f,
487  top). This result indicates that CTCF has a high impact on chromatin organization, regardless of

488  the intensity of chromatin accessibility. Meanwhile, Group 1 and Group 2 cis-elements are
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489  enriched with RAD21 and SMC3 binding signals, supporting their function in defining boundaries
490  during chromatin loop extrusion (Fig. 5f). Consistently, Group 1 and Group 2 elements enriched
491  higher at TAD boundaries and enhancer-promoter regions (Fig. 5g). Notably, we identified a
492  substantial fraction of cis-elements enriched in open chromatin, but are not bound by CTCF (Group
493  3). As expected, the ATAC-seq signal intensity is positively correlated with impact scores in
494  Group 3 elements (Fig. 5f). Group 3 cis-elements are highly enriched in promoter and enhancer
495  regions, indicating possible enhancer-promoter or promoter-promoter interactions®. We also
496  found a small set of elements that are not related to CTCF and ATAC-seq signals (Group 4, Fig.
497  Se-g). Despite relatively lower impact scores, these elements may indicate alternative mechanisms
498  which shape local 3D chromatin organization.

499

500 In addition, we sought to test whether additional factors could be enriched in the impactful
501  elements for chromatin organization. Recently, Myc-associated zinc finger protein (MAZ) has
502  been shown to co-localize with CTCF, thus may act as an additional architectural protein to
503  organize chromatin structure*’*¥. To test this observation, we performed a similar enrichment
504  analysis of MAZ ChIP-seq profile across the four groups of impactful elements (Fig. 5f). We found
505  that MAZ is enriched in CTCF and ATAC-seq co-overlapped elements (Group 1), but not in the
506  Group 2 elements where there is no open chromatin signal. Surprisingly, we found that MAZ is
507  much more enriched in the open chromatin region where there is no CTCF binding (Group 3, Fig.
508  Se-f). This observation indicates that MAZ may function as a chromatin architectural protein
509  independent of CTCF, acting at the active promoter-enhancer interaction regions.

510

511

512

513  Insilico genetic screening identified new T-ALL-specific chromatin organizations

514

515  Owing to C.Origami’s accurate cell type-specific prediction, we envisioned that the subsequent
516  ISGS framework could empower systematic discovery of disease-specific chromatin organization.
517  To systematically identify T-ALL-specific cis-elements, we performed ISGS and calculated

518  impact scores across the genomes in CUTLL1 and Jurkat cells, in parallel with T cells (Fig. 6a,
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519  see Methods). Analyzing the impactful cis-elements between cell types, we identified both T-ALL-
520  specific and T cell-specific elements (Fig. 6a).

521

522 Dysregulation of chromatin remodeling factors is frequently found in cancer cells***°. We
523  hypothesized that the dysregulation of local cis-regulatory elements around chromatin remodeling
524  factors can lead to their abnormal expression in cancer. To connect the impactful cis-elements with
525  critical chromatin remodeling genes in T-ALL, we first performed a pooled CRISPR knock-out
526  screening in CUTLL1 and Jurkat cells, targeting chromatin remodeling factors that are required
527  for T-ALL proliferation. This screening identified a set of genes, including CHD4, PHF54, BRD4
528 and KATY as top hits important for T-ALL cell proliferation (Fig. 6b-c). By associating the ISGS-
529  identified impactful elements with these four genes (Supplementary Fig. 28), we found an insulator
530  element in the upstream region of CHD4 gene, thereafter termed CHD4-insu, with a high impact
531 score in T cells but a low score in T-ALL cells (Fig. 6d, black arrowhead. Also see Methods).
532 Specifically, we found that the loss of CTCF binding at the CHD4-insu element might be
533  responsible for the reduction of impact scores in T-ALL cells (Fig. 6d). Consistent with this
534  observation, in silico deletion of the CHD4-insu element followed by C.Origami prediction in T
535  cells led to loss of insulation and stronger interaction gain between the flanking regions compared
536  to the effect in T-ALL cells (Fig. 6¢).

537

538  CHD#4 is the helicase component of NuRD complex, which functions to deacetylate H3K27ac>'.
539  Perturbation of CHD4 causes an arrest of cell cycle at GO phase in childhood acute myeloid
540  leukemia cells, indicating potential therapeutic target’?>. According to the in silico deletion
541  experiment, we hypothesized that the loss of CTCF binding signal at the CHD4-insu locus leads
542  to insulation loss. To test this hypothesis, we compared the experimental Virtual4C and Hi-C
543  contact matrices of CUTLLI and T cells (see Methods). As expected, we found that, compared to
544 T cells, CUTLLI cells have a higher interaction signal between the flanking regions of the CHD4-
545  insu sequence, signifying higher interactions between CHD4 promoter region and cis-regulatory
546  elements in T-ALL cells (Fig. 6d virtual 4C tracks, and Fig. 6f). We further hypothesized that such
547 increase of interaction affects CHD4 expression which is important for T-ALL proliferation.
548  Supporting this hypothesis, RNA-seq experiment showed that CHD4 expression is significantly
549  upregulated in CUTLLI cells and T-ALL patient samples compared to that in normal T cells (Fig
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550  6g). These results indicate that the loss-of-insulation at the CHD4-insu element in T-ALL cells
551  may have increased the expression of CHD4 gene through establishing new chromatin interactions,
552 consequently promoting leukemia cell proliferation. Together, our results demonstrated that the
553  C.Origami-enabled ISGS framework is capable of identifying novel chromatin regulation

554  mechanisms.
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557 Figure 6: CRISPR and in silico genetic screen reveals T-ALL-specific chromatin interaction. a, A scatter plot
558 showing impact scores of a sample of screened regions (n = 10000). The impact score difference between target cell
559  type and T cell are shown on the x axis, and the higher impact scores between the corresponding cell type and the T
560  cells are shown on y axis. The CHD4-insu locus is marked in red. b, Volcano plot of pooled CRISPR screening results
561 on chromatin remodeling genes in CUTLL1 (left) and Jurkat (right) cell lines. The log2 fold changes indicate the
562  normalized gRNA abundance in Day 4 versus Day 20 post-transfection, which reflect cell proliferation rate upon

563 CRISPR targeting. Significant factors with log2 fold changes > 1 are marked in red. ¢, Overlap between CRISPR
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564 screening-identified significant chromatin-remodeling genes from CUTLL1 and Jurkat cells (b). d, Genomic tracks
565 of 170Kb length around the CHD4 locus. Presented genomic tracks include impact scores, CTCF ChIP-seq and
566  ATAC-seq profiles, and virtual 4C signal using CHD4 promoter as viewing point (highlighted by a gray band with
567  gray arrowhead). The T cell-specific impactful cis-element, CHD4-insu, is highlighted with a gray band with black
568 arrowhead. e, C.Origami prediction of CHD4 locus (top row) and the difference (bottom row) upon deleting the
569 CHD4-insu locus across cell types. The presented window represents chromosome 12: 6,620,219-6,621,219, with
570  black arrowhead pointing to the CHD4-insu locus. f, Experimental Hi-C matrices of CUTLLI1 (lower triangular region)
571 and T cells (upper triangular region) at the CHD4 locus. The presented region is aligned from the genomic track shown
572 in ¢, highlighting T-ALL-specific interactions between CHD4 promoter region and distal cis-elements. g, RNA-seq
573 expression levels of CHD4 in CUTLLI1 cells, T-ALL primary patient samples, normal T cells and CD34+

574  hematopoietic stem cells. Error bars indicate one standard deviation.

575

576  Genome-wide in silico screening uncovers trans-acting regulators of chromatin folding

577  We next asked whether C.Origami-enabled in silico genetic screening could be leveraged for
578  identifying cell type-specific trans-acting regulators determining the 3D chromatin organization.
579  We first conducted chromosome-wide in silico deletion screening to identify cell type-specific
580  impactful loci that were critical for predicting chromatin organization (see Methods). High-impact
581  1Kb regions were then annotated and tested for enrichment in transcription factor binding profiles
582  from the ReMap database®. Odds ratio for binding potential was calculated for each factor,
583  followed by normalization within each cell type. The normalized odds ratio scores enable
584  characterization of differential trans-acting regulators across cell types (see Methods).

585

586  Applying this framework to the two T-ALL cell lines and T cells, we found differential compendia
587  of transcription factors contributing to the cell type-specific 3D genome organization (Fig. 7a,
588  Supplementary Fig. 29). Scoring these frans-acting regulators across cell types, we identified
589  different categories. Notably, our analysis consistently identified known 3D chromatin regulators,
590 suchas CTCF,RAD21 and SMC1/SMC3, as top candidates across cell types (Category 1, Fig. 7a).
591 In addition, we found differential sets of trans-acting regulators enriched in T cells and T-ALL
592  cell lines, respectively. Several known factors critical for T cell function (Category 2), such as
593 RCORI1, SMAD3 and ZEB2, are enriched in the T cell-specific group of trans-acting factors (Fig.
594  7a). Consistently, CUTLLI1 and Jurkat cells enriched similar groups of trams-acting factors
595  (Category 3), represented by MAZ, BRD2, and NOTCHI1 (Fig. 7a).

596
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597  Previously, we found that both CDK7 and NOTCHI1 regulate enhancer-promoter interactions in
598  T-ALL cells*®. Pharmacological inhibiting NOTCHI1 leads to H3K27ac alterations in a subset of
599  NOTCHI1-associated chromatin interactions, while inhibiting CDK?7 leads to broader changes in
600 H3K27ac, indicating that CDK7 may have a broader impact on 3D chromatin organization’. To
601  further test the hypothesis that pharmacological inhibiting CDK7 leads to broader chromatin
602  organization changes for controlling T-ALL cell proliferation, we systematically assessed the
603  relative contribution of trans-acting factors through in silico genetic screening in CUTLL1 and
604  Jurkat T-ALL cells. Consistent with our prior results, we found that CDK7 ranked among top
605  factors in regulating 3D chromatin organization, whereas NOTCH1’s predicted contribution was
606  ranked much lower (Fig. 7b-c). Supporting the results inferred from ISGS analysis for trans-acting
607  regulators, we found that pharmacological inhibition of CDK7 (+THZ1) leads to more TADs with
608  chromatin organization changes than the effect from inhibiting NOTCH]1 (+ySI) in CUTLLI cells
609 (Fig. 6d-e). Moreover, we found that impactful elements are more enriched in TADs with
610  significant intensity changes upon CDK?7 inhibition (Supplementary Fig. 30).

611
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612
613 Figure 7: In silico genetic screening uncovers trans-acting regulators of chromatin folding. a, A heatmap of

614  normalized odds ratio scores of the enrichment of trans-acting regulators across cell types. Representative factors are
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615 listed next to the three major categories. b-¢, Elbow plots of in silico genetic screening-identified trans-acting
616  regulators in CUTLLI cells (b) and Jurkat cells (¢). CDK7 and NOTCHI are highlighted in both plots. d-e, Volcano
617  plots showing chromatin organization changes of individual TADs upon pharmacological inhibition of CDK?7 (d) or
618 NOTCHI (e) in CUTLLI cells. Each dot represents a TAD varied from ~200Kb to 3Mb.

619

620  Discussion

621  Cell type-specific gene expression requires specific chromatin folding patterns. In this study, we
622  developed a multimodal deep neural network architecture, C.Origami, that incorporates both DNA
623  sequence and genomic features for de novo prediction of cell type-specific 3D genome
624  organization (Fig. 1). We found that DNA sequence information together with CTCF binding
625  signal alone was not sufficient for accurate de novo prediction of cell type-specific chromatin
626  organization, whereas incorporating chromatin accessibility data into C.Origami provided the
627  model with sufficient information to achieve prediction results comparable to high-quality Hi-C
628  experiments (Fig. 2-3). These results are consistent with the observation of widespread
629  transcription-associated chromatin interactions at the accessible chromatin regions*-34. Systematic
630  ablation study further showed that the specific input combination of DNA sequence, CTCF binding,
631  and open chromatin features enables the best prediction result (Fig. 2a).

632

633  The rules governing 3D chromatin organization is consistent across different cell types, even
634  between human and mouse. Although C.Origami was trained only using IMR-90 cell data, its
635  ability to learn from one cell type and extrapolate prediction to other unseen cell types implies that
636  the 3D chromatin organization rules learned by C.Origami is applicable to the general mammalian
637  genome. We found that C.Origami achieved a general high performance in predicting cell type-
638  specific TAD structures. In addition, the predicted results can further be applied for detecting
639  various types of chromatin loops across cell types. Due to its sensitivity to input data noise and
640  quality difference in the public datasets, we expect future development of the C.Origami model
641  would further improve chromatin loop detection performance from prediction by incorporating a
642  customized normalization of input information.

643

644  The high performance and minimal requirement on cell type-specific input data make C.Origami
645  feasible for studies requiring frequent de novo analysis of 3D chromatin organizations without

646  performing Hi-C experiments (Fig. 4). Similar to high-resolution Hi-C data, the predicted
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647  chromatin contact matrices can be directly analyzed by other downstream computational tools for
648 inferring TADs, chromatin loops, and enhancer-promoter interactions®*>¢. C.Origami can be
649  useful in fields such as cancer genomics involving widespread genome rearrangement and
650  synthetic regulatory genomics with de novo regulatory circuit construction®40-7-38,

651

652  With highly accurate prediction of chromatin organization, our model enables in silico genetic
653  perturbation as a tool to study how cis-elements determine 3D chromatin organization in a cell
654  type-specific manner. Given data from genomic features and Hi-C map, it is challenging to
655  establish the causal relationship between differential genomic features and chromatin organization
656  changes. C.Origami can accurately simulate the changes in chromatin organization upon in silico
657  genetic perturbation, providing an effective way to map the causal relationship between genomic
658  regions and chromatin organizations. /n silico perturbation can be performed within seconds and
659  is much more efficient compared to traditional experiments. Expanding the throughput of in silico
660  genetic perturbations, we demonstrated the efficacy of in silico genetic screening framework for
661  identifying critical DNA elements determining 3D chromatin organization (Fig. 5). While multiple
662  previous methods, such as Expecto®®, BPNet® and Enformer®', have been developed to identify
663  functional cis-regulatory elements, none of these methods could identify the cell type-specific
664  chromatin interactions between those functional DNA elements. The in silico genetic screening
665 allowed us to categorize different groups of cis-regulatory elements that are importance for 3D
666  chromatin organization, including those only bound by CTCF or CTCF-free open chromatins.
667  These differential genomic features may indicate distinct types of chromatin interactions, ranging
668  from CTCF-dependent structural organization though loop extrusion to transcription-associated
669  chromatin looping bound by MAZ!0:47:48,

670

671  We demonstrated the power of in silico genetic studies of 3D chromatin organization in leukemia.
672  Screening for differential impactful cis-elements between T-ALL cells and normal T cells, we
673  found a loss of insulation event at the upstream of CHD4 gene in T-ALL cell lines (Fig. 6). Such
674  loss of insulation induced new chromatin interactions between CHD4 promoter and distal cis-
675 elements, correlating with gene expression level changes in T-ALL cells (Fig. 6). Notably, CHD4
676  has been found critical for cell growth in childhood acute myeloid leukemia®?. The discovery of a

677  T-ALL-specific CHD4 gene expression regulation hints a potential anti-leukemia target by
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678  perturbing CHD4 gene expression. Moving beyond, disruption of chromatin organization
679 insulations has been identified through extensive experimental studies’®%2%3, We envision that in
680  silico genetic screening framework could be generally applicable for identifying critical cis-
681  regulatory elements across biological systems.

682

683  Last, through systematic in silico screening followed by integrative analysis with TF-binding
684  databases, we could compile a compendium of potential trans-acting regulators determining the
685  chromatin organization in a cell type-specific manner. Analyzing trans-acting regulators in T-ALL
686  samples, we provide direct evidence that CDK7 plays a broader role in modulating 3D chromatin
687  organization than NOTCH1, consistent with our previous results®’. As the number of CTCF ChIP-
688  seq and ATAC-seq grows for new cell types, we expect the model to be capable of identifying cell
689  type-specific features through their predicted chromatin structure and trans-acting regulators.
690  Application of in silico screening across normal and disease conditions could lead to the
691 identification of novel targets for therapeutics.

692

693 By integrating cell type-specific genomic features and DNA sequence information, we
694  demonstrated that C.Origami can predict complex genomic features and enables in silico genetic
695  perturbation and screening with high accuracy. We expect the underlying architecture of our model,
696  Origami, is generalizable for applications across a broader range of genomic features, such as
697  epigenetic modifications and gene expression. We expect future genomics study to shift towards
698  using tools that leverage high-capacity machine learning models like Origami to perform in silico
699  experiments for discovering cell type-specific genomic regulations.

700
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728  Methods

729

730  Hi-C data and processing

731  We used seven human and mouse Hi-C profiles in this study: IMR-90, GM12878, HI-hESC, K562,
732  CUTLLI, T cell, Mouse Patski (Supplementary Table 1). All the data are available on GEO
733  (www.ncbi.nlm.nih.gov/geo) and/or 4D Nucleome Data Portal (https://data.4dnucleome.org). To
734  minimize bias in Hi-C data preprocessing, we obtained counts data in raw fastq format. The reads
735  from human cell lines were aligned to GRCh38 human reference genome and mouse cell lines are
736  aligned to mm10 mouse genome. The alignments were filtered at 10kb resolution and iteratively
737  corrected with HiC-bench®. To ensure the compatibility of prediction result with downstream
738 analytical tools, we only used a reversible natural log transform to process the Hi-C prediction
739  targets. Prediction from C.Origami with exponential transformation can be directly used as Hi-C
740  chromatin contact matrix data for any downstream analysis.

741
Cell Type Enzyme Accession Number Reference
IMR-90 Mbol GSE63525 Rao et al.3?
GM12878 Mbol GSE63525 Rao et al.3?
HI-hESC Arima 4DNESFSCP5LS Calandrelli et al.%
K562 Mbol GSE63525 Rao et al.3?
CUTLLI Arima GSE115896 Kloetgen et al.>°
T cell Arima GSE115896 Kloetgen et al.>°
Mouse Patski Arima GSE71831 Darrow et al.*
Mouse ESC HindIII GSE98671 Nora et al.*8

742 Supplementary Table 1. Hi-C data used for training and validation.

743

744  CTCF ChIP-seq and ATAC-seq data

745  CTCF ChIP-seq and ATAC-seq data for all cell-types are publicly available online from GEO
746  (www.ncbi.nlm.nih.gov/geo) and ENCODE data portal (www.encodeproject.org/). CUTLLI1
747  ATAC-seq was sequenced according to standard method®®. Details on accession number are listed
748 in Supplementary Table 2. To maintain signal consistency across different cell lines, we
749  aggregated fastq data from different replicates and subsampled them down to 40 million reads.
750 The reads were processed by  Seq-N-Slide to  generate  bigWig  files
751  (https://doi.org/10.5281/zen0do.6308846). The bigWig was used as regular, dense inputs to our
752 model. To prepare an alternative sparse input format, we used MACS?2 to perform peak calling on
753  the intermediate bam files to obtain sparse peaks for CTCF and ATAC-seq®’. The sparse
754  narrowPeak file was converted back to bigWig with ucscutils. We took the natural log
755  transformation of both dense and sparse bigWig files and used them as inputs to the model.

756

757
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Cell Type CTCF ChIP-seq ATAC-seq

IMR-90 ENCSROOOEFI ENCSR2000ML
GM12878 ENCSR000AKB ENCSR095QNB
H1-hESC ENCSRO00AMF GSE85330

K562 ENCSR0O00AKO ENCSR483RKN
CUTLLI GSE115893 see Methods CUTLL1
Jurkat GSE115893 GSE90718

T cell GSE115893 GSE168880

Mouse Patski ENCSR41900D ENCSR351QUO
Mouse ESC GSE98671 N.A.

758  Supplementary Table 2. CTCF ChIP-seq and ATAC-seq used for training and validation.

759

760  DNA sequence

761  We used the reference genome sequence (hg38 and mm10) from UCSC genome browser database.
762  The original fasta file includes four types of nucleotides and “n” for unknown type. We retained
763  the ‘n’ category and encoded it as the unknown fifth ‘nucleotide’. After encoding, each nucleotide
764  is a 5 channel one-hot vector representing ATCGN. The same reference genome sequence was
765  used for all cell types.

766

767  Training data

768  The training data consists of DNA sequence, CTCF binding signal, ATAC-seq signal and Hi-C
769  matrix from IMR-90 cell line. The input data to the model includes DNA sequence, CTCF ChIP-
770  seq signal, and ATAC-seq signal at a 2,097,152 bp region. The output target is the Hi-C matrix at
771  the corresponding region. The Hi-C matrix was originally called at 10Kb resolution and
772  downscaled 8,192 bp to match the model output resolution. To generate batches of training data,
773  we defined 2Mb sliding windows across the genome with 40Kb steps. Windows that have overlap
774  with telomere or centromere regions were removed. We split the genome into training, validation
775  and test chromosomes. Chromosome 10 and 15 were used as the validation set and the test set
776  respectively. The rest of the chromosomes were used as the training set.

777

778  Model architecture

779  C.Origami is implemented with the PyTorch framework. The model consists of two 1D
780  convolutional encoders, a transformer module and a 2D convolutional decoder to adapt to input
781  channels of sequence and genomic features. The sequence encoder has five input channels, and
782  the genomic feature encoder has two input channels. The two encoders have similar structures
783  otherwise. To reduce memory cost, each encoder starts with a 1D convolution header with stride
784 2 to half the size of the 2Mb bp input before it goes to convolution blocks. To reduce the input
785  length down to 256, we deployed twelve convolution modules, each of which consists of a residual
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786  block and a scaling block. The residual block has two sets of convolution layers with kernel width
787 5 and same padding. Batch normalization and ReLU nonlinearity follows each convolutional layer,
788 and the start and end position of the residual block is connected by a residual connection. The
789  residual blocks do not alter dimension of inputs. The skip-connections within the residual block
790  help promote information propagation. The scaling block consists of a 1D convolutional layer with
791  kernel size 5 and stride 2 followed by batch normalization and ReLLU activation. The scaling block
792  reduces input length by a factor of 2 and increases the number of hidden layers. We increase the
793  hidden size according to this schedule: 32, 32, 32, 32, 64, 64, 128, 128, 128, 128, 256, 256. The
794  output from the last scaling module has a length of 256 with 256 channels.

795

796  The transformer module is crucial for the model to encode dependencies across input elements at
797  different positions. The module is built with eight customized attention layers similar to a BERT
798  model®. Specifically, we set the number of hidden layers to 256, ReLU as the activation function
799  and used eight attention heads. We used relative key query as positional embedding and set the
800  maximum length to be 256.

801

802  After the transformer module, the model concatenates each position in the 256 bins to every other
803  position to form a 256 by 256 interaction map. The concatenation function takes the 256-bin
804  sequence from the feature extraction module and outputs a 256-by-256 grid where location (1, j)
805 1is a concatenation of the features at i and j position. Then a 1-dimensional distance matrix is
806  calculated and appended to the grid. The distance matrix value at location (i, j) is the Manhattan
807  Distance between point (i, 1) and (j, j) on the grid divided by 2. Since each bin has 256 channels,
808 after concatenation and addition of the distance matrix, we arrived at an output of 256-by-256 grid
809  with 513 channels.

810

811  The decoder consists of five dilated residual networks. We designed the dilation at the
812  corresponding layer to be 2, 4, 8, 16, 32 so that the receptive field of each pixel at the last layer
813  covers the input space, reinforcing interactions between different elements. At the end of the
814  decoder, we use a Conv2D layer with 1x1 kernel to combine 256 channels down to one channel
815  and the output is a 256x256 matrix with one channel.

816

817  The 256x256 output from the model was compared with experimental Hi-C map (ground truth)
818  via a mean squared error (MSE) loss. The loss was back propagated through the whole network
819  for gradient updates.

820

821  Data augmentation

822  To avoid overfitting, we implemented three types of data augmentations. First, during training,
823  we dynamically selected the 2Mb window with random shifts between plus and minus 0.36 Mb
824  range. Second, we reverse-complemented the sequence and flipped the target Hi-C matrix with 0.5
825  probability. Third, we added Gaussian noise to sequence, CTCF ChIP-seq and ATAC-seq signals
826  with zero mean and 0.1 standard deviation.

827

828  Model training and prediction

829  To train the model, we used a training batch size of 8§ and Adam optimizer with learning rate 0.002.
830  The cosine learning rate scheduler with 200 epoch period was used for stabilizing training. The
831  model achieved minimal validation loss when trained for 54 epochs. The model training time was
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832 18 hours on a GPU cluster with 4 NVIDIA Tesla V100 GPUs with 320GB RAM to store training
833  data. To prevent bottlenecking from data loading process, we used 8 CPU workers to load data
834  and assigned 10 CPU cores in total for the training procedure. Model inference with a mobile
835 NVIDIA RTX 2060 GPU can be achieved in under 1 second, and inference on an Intel i7-8750H
836  CPU is around 3 seconds. To run prediction in IMR-90, the reference DNA sequence, CTCF ChIP-
837  seq and ATAC-seq from IMR-90 in a 2Mb region are taken as input. For de novo prediction in a
838 target cell type, we replaced IMR-90 CTCF ChIP-seq and ATAC-seq with corresponding CTCF
839 and ATAC-seq from the specific target. The reference sequence is kept the same.
840
841  Insulation score
842  Insulation score is implemented as the ratio of maximum left and right region average intensity
843  and the middle region intensity®*. We also added a pseudo-count calculated from chromosome-
844  wide average intensity to prevent division by zero in unmappable regions. Given that all the regions
845  contain n interactions, the insulation score can be formulated as follows:

Insulation max(+ > (LeftIntensity), - 3" (RightIntensity)) + pseudocount

246 L5 (CenterIntensity) + pseudocount

847  where pseudo-count is set to the average intensity of one chromosome within 2mb.

848

849  Loop calling

850  We used the Hi-C valid pairs with the FitHiC software®®’° to identify significant interactions. We
851  used aresolution of 10kb, minimum and maximum distance of 30kb and 1Mb. For loop calling on
852  predicted matrices, we converted the predicted matrix back to valid pairs by merging predictions
853  to chromosomes and counting the discretized intensity value. FitHiC generated a list of significant
854  interactions with corresponding FDR corrected g-values. For loop analysis on IMR-90, we
855 computed AUROC and overlap between loops called from experimental Hi-C and loops called
856  from predicted Hi-C. To calculate AUROC, we used predicted loops as target. Q-value cutoffs
857  ranging from le-5 to le-13 are selected to filter significant loops called from the predicted Hi-C.
858  Then, the g-values from loop called from experimental Hi-C were compared to significant loops
859  called from prediction to calculate an AUROC. For overlap analysis, we chose a fixed 1e-5 cutoff
860  for loops called from predicted and experimental Hi-C and compared the overlap of significant
861  loops. For loop analysis on specific type of interaction, we overlapped the two anchors of each
862  loop and obtain the categories for each loop called. The loops were then filtered by different
863  categories and the same AUROC and overlap analysis was performed on each category of loops.
864

865  For cell type-specific loop analysis between IMR-90 and GM 12878, we first used a more stringent
866  cutoff of le-7 as a threshold for significant loops. Then we further categorize specific loops into
867 IMR-90 specific or GM12878 specific according to the log2 fold change (log2fc) of loop
868 interactions counts. To calculate AUROC, we used log2 fold change in place of the g-value cutoff
869  from previous analysis. We compared two log2fc. The first log2fc is between predicted loops in
870  cell type 1 and predicted loops in cell type 2 (e.g. IMR-90 predicted loop / GM 12878 predicted
871  loop). The second log2fc is between experimental loops in cell type 1 and predicted loops in cell
872  type 2 (e.g. IMR-90 experimental loop / GM 12878 predicted loop). Then the same AUROC and
873  overlap analysis was performed for each of the two cell type-specific groups. For loop analysis on
874  specific type of interaction in a cell type-specific way, the same anchor overlap was performed
875  with corresponding AUROC and overlap analysis.

876
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877  Chromosome-scale Hi-C contact matrix prediction

878  To bridge adjacent 2Mb-window predictions into chromosome-wide Hi-C contact matrices, we
879  ran the prediction in a sliding window of step side 262,144 bp, which is 1/8 of the 2Mb prediction
880  window. All predictions were in-painted to their corresponding location on the contact map. Most
881  regions were covered by prediction for 8 times except for regions at the beginning or end of the
882  chromosome. To correct for different levels of overlap, we counted the total times of overlap for
883  every pixel and applied corresponding scaling factors. The resulting chromosome-wide prediction
884  can be directly used for downstream analysis such as TAD calling and insulation score calculation.
885

886  Distance-stratified intensity and correlation

887  Distance-stratified intensity and correlation calculation were based on fused chromosome
888  prediction. Stratified intensity at distance i1 was calculated by aggregating the line that is parallel
889  to the diagonal with offset of i. Stratified correlation was calculated as Pearson’s » between the
890  shifted diagonal line of prediction and ground truth.

891

892  Performance comparison with previous methods

893  We compared performance of C.Origami against three previously published methods: Akita®?,
894  DeepC?, and Orca’®. We compared the performance using four metrics: insulation score
895  correlation, observed vs expected Hi-C metrices correlation, mean squared error (MSE), and
896  distance-stratified correlation. We calculated the four metrics separately for the four models by
897  their prediction to the experimental data as ground truth. The comparison were carried out in two
898  different cell types: 1) in the training cell type, IMR-90 cell, which most models were trained on,
899  and?2)inanew cell type, GM12878 cells, aiming to quantify the performance of de novo prediction
900  of chromatin organization of the four models.

901

902  We generated a set of sliding windows that covers the whole genome and can be predicted by each
903  model. Since Akita and DeepC are only able to predict interaction within a 1Mb window, we
904 restricted the test regions to 1Mb blocks. To generate a genome-wide testing dataset, we selected
905  all IMD regions in a sliding window with 0.5Mb overlap between neighboring regions. To ensure
906  compatibility with all models’ prediction windows, the first 1.5Mb and last 1.5Mb of
907  chromosomes were used as buffer regions for models requiring 2Mb windows as inputs. In total
908 5935 regions were generated. The Hi-C experimental data was extracted from these regions as
909  targets. We used all 4 models to predict the interaction for the corresponding regions.

910

911  The most relevant versions of the previous models were selected for comparison. For Akita, the
912  IMR-90 output channel was selected. For DeepC, we used their model trained with IMR-90 data.
913  Orca was only trained on HFF and H1-hESC. We used the HFF model because HFF is also a
914  fibroblast cell line similar to IMR-90. The comparison turned out to be valid because even though
915  Orca was trained on HFF, it outperformed both Akita and DeepC on IMR-90 in many benchmarks.
916  For C.Origami, we used the IMR-90-trained model.

917

918 It is necessary to perform scaling and normalization to each models’ outputs due to their varied
919  prediction target customizations. Akita predicts a 1048576bp region with 512 bins. We removed
920  the extra 48576bp on the sides to make the prediction 1Mb, followed by rescaling bins into 128.
921  Orca can predict interactions at multiple scales. Since C.Origami used a 2Mb window as prediction
922 target, we selected the 2Mb window in Orca for consistency. The prediction was then cropped to
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923  IMb and rescaled to 128 by 128. For C.Origami, the prediction is a 2097152 bp window. We
924  cropped the prediction to leave the center 1Mb regions and rescaled the bins to 128.

925

926  DeepC’s prediction target is different from other models with predictions of 45-degree rotated
927  version of the Hi-C matrices. DeepC also produces predicted Hi-C maps in different scales
928  compared with other methods. Thus, we performed a series of transformations (Supplementary
929  Figure 11) including mirroring, rotating and cropping to make a comparable contact matrix to
930  outputs produced by other models. We used a 1Mb prediction window for DeepC and rescaled the
931  output to 128 by 128.

932

933  The first step to make the models comparable is selecting a common ground truth Hi-C as the
934  evaluation target. Since each model used a different ground truth with different transformations
935  (e.g. obs/exp, log, gaussian smoothing), they cannot be compared directly. We defined the
936  evaluation target as logged Hi-C intensity (log(ICE normalized counts + 1)). Logged intensity has
937  afew advantages over observed vs expected map. First, it allows for computing insulation scores.
938  Second, it can be converted to observed vs expected while the reverse is not straightforward. It can
939  also be converted to raw counts by taking the exponent. Third and most importantly, it is used as
940  the default Hi-C format for most downstream analysis pipelines like loop calling, and visualization.
941

942 The second step to make the models comparable is to normalize model outputs to the evaluation
943  Hi-C target. Since each model used a different original prediction target, we want to measure the
944  difference between the original target and the evaluation target. We plotted the mean/std of
945  intensity over distance between prediction and evaluation target and found a large discrepancy
946  between models. Specifically, DeepC results stood out with a unique pattern that might be a result
947  of their custom stratified binning method (Supplementary Figure 12). We also observed that the
948  raw predicted matrix intensities were too different to compare (Supplementary Figure 12).

949

950  We performed distance-stratified normalization (DSN) to align all predictions to the target
951  prediction (Supplementary Figure 13). We computed the mean and std for each diagonal and then
952  normalized the prediction to target experimental Hi-C. Formally, let T be the normalized matrix,
953 T be the target ground truth matrix, and M be the unnormalized matrix. Let mg,; be the
954  corresponding element in M and g, o denote the mean and std at diagonal d in matrix T and M.
955  Then, every i*" entry on d*"* diagonal t;; can be normalized as follows.

956
A~ O'T
Vtg; € Tota; = —(ma; — py') + pd
957 04
958

959  The normalized prediction were compared to the target Hi-C using four metrics: insulation score
960  correlation, obs/exp Hi-C matrix correlation, MSE (mean squared error), and distance-stratified
961  correlation. Each metric was calculated per chromosome for every tested model using their
962  corresponding prediction and the experimental data as ground truth.

963

964  We also performed GM12878 de novo prediction comparison. For C.Origami, we used the same
965  IMR-90 trained model but GM 12878 CTCF ChIP-seq and ATAC-seq profiles as inputs to predict
966  Hi-C. For sequence only models, we used the same DNA sequence setup because they could not
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967  provide cell type-specific de novo prediction. Though ideally input DNA sequence should be cell
968  type-specific, such procedure is not realistic for general applications.
969
970  C.Origami prediction at the CUTLL1 t(7;9) translocation site
971  To generate experimental Hi-C data, we defined a custom chromosome in Hi-C bench®. The
972 custom genome in Hi-C bench is defined at the matrix-filtered step where the pipeline assign reads
973  to chromosomes. For CUTLL1 experiment, we defined a custom chromosome chr7chr9 with chr7:
974  0-142800000 as the starting chromosome and chr9: 136500000-138394717 as the ending
975  chromosome.
976
977 CUTLLI1 t(7;9) translocation is heterozygous, leading to allele-specific complexity to its
978  corresponding Hi-C matrix. Since only one allele is translocation, the experimental Hi-C data
979  mapped to either normal reference genome or the t(7;9) translocated reference genome would be
980  a mixture of chromatin interactions from both translocated and normal chromosomes. To align
981  with this hybrid effect of Hi-C contact map, we first separately predicted three sets of Hi-C maps:
982  1(7;9) translocated chromosome, normal chromosome 7, and normal chromosome 9. The predicted
983  Hi-C matrix at the t(7;9) locus is an average of the predicted Hi-C maps of t(7;9) translocation
984  chromosome and a fused prediction map ranging from normal chr7 to the breakpoint
985  chr7:142,797,952 and extending from chr9:136,502,817 to the rest of normal chr9. We did not
986  count the inter-chromosomal interactions at these loci due to their much weaker intensity compared
987  to the intra-chromosomal interaction at the translocation site.
988
989  Mouse prediction
990  For the mouse Patski cell type prediction®, the CTCF ChIP-seq and ATAC-seq inputs were
991  processed using the same pipeline with mm10 as the assembly number. The original C.Origami
992  model trained with IMR-90 dense input features was used for prediction. For genome-wide
993  evaluation of predicting mouse chromatin organization, we adopted the same procedure from the
994  “Performance comparison with previous methods” section.
995
996  CTCEF depletion prediction in mESC
997  We preprocessed CTCF ChIP-seq and Hi-C on mouse ESC cells from Nora et al*® following the
998  same pipeline for ChIP-seq and Hi-C. In total, three sets of data with conditions: untreated, auxin-
999  induced CTCF depletion, and wash-off are processed. Since this study did not measure ATAC-
1000  seq signal, C.Origami model was re-trained using only DNA sequence and CTCF ChIP-seq on the
1001  untreated condition. The re-trained model was then used for predicting chromatin organization in
1002  the CTCF depletion (auxin treatment) and restoration (auxin wash-off) conditions. Genome-wide
1003  performance benchmark followed the same procedure as in the “Performance comparison with
1004  previous methods” section.
1005
1006  Reducing impact score from 3D voxels
1007  Screening by deletion produces a 3D voxel with coordinates (i, j, k) where the first two dimensions
1008 (i, j) correspond to the Hi-C matrix difference and the third dimension k denotes deletion locus.
1009  Under this framework, the impact score can be defined as reducing the first two dimensions (i, j)
1010  with mean or sum, denoting the overall intensity shift with respect to deletion. The sensitivity score
1011  can be defined as the result of reducing either of the first two dimensions (i or j) and the third
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1012 deletion dimension k. From another perspective, sensitivity score of a locus denotes average

1013 intensity shift over all deletions with respect to its location.

1014

1015 GRAM (Gradient-weighted Regional Activation Mapping)

1016  The GRAM scoring system is a generalized version of Grad-CAM on 2D outputs’!. Instead of

1017  taking a single output, GRAM operates on a region r in the output space y and runs

1018  backpropagation on all pixels within r GRAM on region » in network layer m is defined as follows:
GRAM,, ZReLU o) - ReLU(AT)

1019
1020  where a, is the activation weight for channel k and region r. Formally, a}, is defined as:

. 1 or

al = =
1021 t ZEJ: 045
1022  where Z is the number of activations in the layer and the quotient is the gradient at position i, j in
1023  the activation layer m with respect to output . a;, can be interpreted as the average gradient across
1024 the i, j (width and height) dimension at the layer m. A} is the activation in channel k at layer m.
1025  In this study, we choose r to be the full output space. During forward propagations, activation (A™)
1026  at the target layer m is recorded. This activation map is a 3D tensor, or an image with k channels.
1027  Then, the » region of the output is selected for backpropagation and gradients are calculated for
1028  every layer. The gradients (used for calculating weights aj,) at the target layer m are collected. The
1029  set of collected gradients is also an image-like 3D tensor with k channels. To obtain aj,, we
1030  averaged the gradients across width and height dimension, resulting in a k-dimensional array. The
1031  goal of GRAM is to visualize a gradient-weighted activation map that maximizes the output signal.
1032 To obtain this weighted activation, a, is used as weights to average the k channels activation
1033 image (A™). The final averaged activation is defined as the GRAM output.
1034
1035  Attention score
1036  In the transformer module, we implemented the vanilla multi-head attention:
1037 MultiHead(Q, K, V') = Concat(heady, ..., head;, )W
1038  where Q, K, V are query, key, and values. W9 is the out projection of dimension (number of heads
1039  h times value dimension d,, by model dimension d,,). In our implementation d,, and d,, are set to
1040  128. head; is a single attention head and is calculated by:

QW) (KW[)T
head;(Q, K, V) = softmax L :
1041 ( ) ( Vi

1042 where W9, WX WV are projection weights for query, key and value. dj, is the embedding
1043  dimension of key, also implemented as 128. During forward propagation, we extract attention
1044  weights for head i which is defined as the alignment between query and key:

Wwwy

. QW) (KWS)T
weights, (Q, K) = softmax L C
1045 (@ K) ( N
1046  The attention score can be calculated by averaging attention weights across different heads:
Attention Score(Q, K) Zwelghts
1047

1048  where N = 8 because each layer has eight attention heads. Smce the transformer module consists
1049  of eight attention layers, for each prediction, we obtained a set of eight attention scores. The
1050  attention score is visualized with the BertViz package’?.

1051

1052  Impact score
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1053  The impact score in the screening experiment is defined as the pixel-wise mean absolute difference
1054  between two predictions. Formally, given that we have a prediction S, a 2D contact matrix from
1055  the original input and S’ from the input perturbed at location x, and let s{i, j} be the individual
1056  pixel in S at position i1 and j, the impact score of location x is defined as:

Impact Score(x) = Z Z m
1057 i n
1058

1059  In silico genetic screening

1060  Typical ChIP-seq profiles have peak widths ranging from a few hundred base pairs to 1Kb. To
1061  capture fine-regulation elements, we performed genome-wide in silico genetic screening at 1Kb
1062  resolution. The screening starts from individual chromosomes with a window size of 2Mb, denoted
1063  as (i,1+ 2097152). Inside this window, a 1Kb perturbation region centered at the 2Mb window,
1064  or location (i + 2097152 / 2 - 500, i + 2097152 / 2 + 500), was deleted followed by C.Origami
1065  prediction. After deleting the 1Kb segment, we appended a 1Kb empty input at the end to keep a
1066  complete 2Mb window size for C.Origami prediction. For each window, the original input and
1067  perturbed input were predicted by C.Origami, resulting to two outputs, S i and S_i’, which were
1068  collected for downstream impact score calculation. Once the output acquisition was completed for
1069  the window at (i, 1 + 2097152), the screening moves to a downstream overlapping window that
1070  has 1Kb offset from the current window with range (i + 1000, 1 + 2097152 + 1000). The mean
1071  absolute average of difference between the original and perturbed output S i and S 1° were
1072 computed and attributed to the perturbation region (i + 2097152 /2 - 500, 1 + 2097152 / 2 + 500).
1073 Since the in silico screening offset is equal to the length of perturbation size, this procedure
1074  produces a continuous impact score that covers all genomic regions with a resolution of 1Kb.
1075

1076 It is worth noting that screening at 1Kb resolution could be computationally intensive. For instance,
1077  screening on chromosome 8, a medium-size chromosome which has a length of 146Mb, requires
1078  the model to make 146Mb / 1Kb * 2 predictions = 292,000 separate predictions. In our optimized
1079  framework that predicts 600 windows per minute, and screening chromosome 8 takes 8 hours. To
1080  reduce computational load, we randomly sampled 10 chromosomes (chr 5,7, 8, 11, 12, 14, 15, 19,
1081 20, 22) to represent the whole genome and performed 1Kb-resolution screening on the selected
1082  chromosomes.

1083

1084  In order to obtain the most impactful elements from the screening result, we designed a custom
1085  peak calling algorithm. We defined the peak score p of a locus as the difference between maximum
1086  and minimum signal within the range of 3 bins including the locus. We then selected the top 1%
1087  of the total screened regions as a cutoff for impactful elements based on the peak score.

1088

1089  To annotate the in silico genetic screen-identified impactful cis-elements, we compiled a set of
1090  genomic annotations including TAD boundary regions, enhancers, promoters, intragenic regions
1091  and intergenic regions. The boundary region was generated by calling TAD boundaries at 10Kb
1092  resolution with HiC-bench®, using its TopDom module and connecting adjacent TADs. To
1093  increase robustness of TAD boundary calling, we expanded the boundary width to 5 bins, or S0Kb.
1094  The promoter region was defined as 5.5Kb fragments, spanning 5Kb upstream and 500bp
1095  downstream of gene transcription start site. Enhancers were defined as by the H3K4mel
1096  modification, which marks both active and inactive enhancers’?. The H3K4mel ChIP-seq peaks
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1097  for IMR-90 was downloaded from ENOCDE with accession number: ENCFF611UWF. To
1098  increase robustness, we expanded peaks to have at least 1 Kb width.

1099

1100  In silico genetic screen at 2Mb windows

1101  We conducted in silico genetic screen at a fixed 2Mb window without centering the deletion
1102  element. We systematically removing segments of 8,192 bp, or 1 bin, from model inputs. To scan
1103  through the entire 2Mb region, we performed 256 deletion experiments at each bin and calculated
1104  the prediction difference map before and after deletion. Deletion reduces the input length from
1105 2,097,152 bp to 2,088,960 bp. To maintain input shape, we appended 8,192 bp of empty input
1106  features to facilitate subsequent prediction.

1107

1108  CRISPR screening for chromatin remodeling genes in T-ALL cell lines

1109  Pooled CRISPR screening across 313 chromatin remodeling genes in CUTLL1 and Jurkat cells
1110  were carried out in parallel with our previous studies for pooled screening of RNA binding protein
1111 in T-ALL cells’. Briefly, for each chromatin remodeling gene, we designed on average 6-8
1112 sgRNA, for a total of ~2,500 sgRNAs. The gRNA sequences were synthesized from Twist
1113 Bioscience, and cloned into a lentivirus-based sgRNA vector tagged with GFP (Addgene plasmid
1114 no. 65656). Cas9-expressing T-ALL cell lines were transduced with sgRNA library virus at a low
1115  MOI (~0.3), followed by infection efficiency assessment through GFP percentage on Day 4 post-
1116  transduction. Remaining cells were placed back into culture until 20 days post-transduction.

1117

1118  Cell proliferation was measured by comparing the sgRNA frequencies between Day 4 and Day 20
1119  cells. Genomic DNA was harvested on Day 4 and Day 20 cells using Qiagen DNA Purification kit
1120  based on the manufacturer's protocol. The gRNA frequencies in the genomic DNA were amplified
1121  and quantified following our previous procedure”. For pooled CRISPR screening analysis,
1122 samples of each time-point were normalized as sgRNA read count / total read count x 100,000.
1123 Subsequently, normalized reads were then used to calculate log2 fold change as (normalized read
1124 count Day 4 / normalized read count Day 20) for each gRNA. The fold changes between Day 4
1125  and Day 20 for each gene were averaged from all CRISPR gRNA targets. P values were calculated
1126  via a two-sided t-test comparing the fold changes of all gRNA targets of the same gene to fold
1127  change of 1.

1128

1129  Virtual 4C

1130  HiC-Bench “virtual4C” pipeline®* was used to compute the interactions of each selected viewpoint
1131  in a roll-window fashion. We summed the valid read pairs in a 5 kb area centered at 100 bp bins
1132 that covered the area of +-2.5 Mb from the viewpoint (50k bins per viewpoint). The interactions
1133  were normalized by the total number of valid pairs of the sample.

1134

1135  Trans-acting regulator identification in T-ALL cell lines

1136  Different cell types have a unique set of impactful cis-elements, which constitutes the cell type-
1137  specific chromatin interaction map. To connect the differential patterns of cis-elements with trans-
1138  acting regulators, we compared selected the cell type-specific impactful regions by a custom peak
1139  calling method, followed by a transcription factor enrichment test for identifying potential trans-
1140  acting regulators. We used the transcription factor database from ReMap202233. To reduce low
1141  quality signals from the ReMap database, we filtered out transcription factors profiles that have
1142 less than 7000 hits, or profiles that only have one experiment. Together, we collected 612
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1143  transcription factor binding profiles for downstream analysis. We used Fisher’s exact test to
1144  evaluate the overlap between impactful cis-elements from in silico genetic screening with each
1145  transcription factor from the database. The test was conducted using the LOLA package (Locus
1146  Overlap Analysis)’>. For common transcription factors with hit counts larger than 20K, we down
1147  sampled profiles to 20K. We calculated the q value with FDR correction based on the 612 TF
1148  profiles tested and used odds ratio as the main metric to determine enrichment of each factor in
1149  impactful cis-elements.

1150

1151  To compare the contributing trans-acting regulator profiles between different cell types, we first
1152  normalized the odds ratio within each cell type. We performed k-means clustering of transcription
1153  factors based on their normalized odds ratio in CUTLL1, Jurkat and T cells. K-means clustering
1154  was performed with standard Euclidean distance with 6 centroids. The clusters were further grouped
1155  and visualized using a heatmap.

1156

1157  Intra-TAD activity analysis

1158  Iteratively corrected matrices were re-normalized by dividing each bin value by the sum of all the
1159  values in the same distance bin in the same chromosome (distance-normalization). All the TADs
1160  identified in the control sample were used as the reference TADs to compute the intra-TAD activity
1161  changes. The set of reference TADs between the two samples S1 (control) and S2 (treatment) were
1162  denoted as set T. A paired two-sided t-test was performed on each single interaction bin within
1163  each reference TAD between the two samples. We also calculated the difference between the
1164  average scores of all interaction intensities within such TADs and the TAD interaction log fold-
1165 change. Finally, a multiple testing correction by calculating the false-discovery rate on the total
1166  number of TAD pairs tested. The TAD interaction change for each tin T is define as follow:

e . ‘If, )
TAD Change(t) = 2" Sai B > St

1167 | 12| | 14|
1168  We classified the reference TADs in terms of Loss, Gain or Stable intra-TAD changes by using

1169  the following thresholds: FDR <0.01, absolute TAD interaction log fold change > 0.25, and
1170  absolute TAD interaction change > 0.1.

1171

1172  Data availability

1173 Most of the Hi-C, CTCF ChIP-seq, and ATAC-seq datasets used in the study were public data
1174  from ENCODE portal and/or NCBI GEO database, with the accession codes listed in the
1175  corresponding Methods section. The generated data (CUTLL1 ATAC-seq) is uploaded to GEO
1176  with accession number GSE216430.

1177

1178  Code availability

1179  The code for C.Origami is available at https://github.com/tanjimin/C.Origami.

1180

1181
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Supplementary Figure 1: C.Origami model structure and module components. A schematic of C.Origami model
architecture. The DNA encoder and Genomic Feature encoder have similar architectures and only different in input
channels where DNA encoder has 5 channels and feature encoder has 2 channels. We built the encoder with 12
convolution blocks. Each block consists of a scaling module and a residual module. The scaling module downscales
input features by a factor of two with a stride-2 1D convolution layer. The residual module promotes information
propagation in very deep networks’®. The number of modules was carefully chosen so that the 2,097,152 input are
scaled down to 256 bins at the end of the encoder. To enhance interactions within the 2Mb window, we used an
attention module consisting of eight attention blocks. Each position of the output is concatenated with every other
position to form a 2D matrix, resembling a vector outer product process. To refine the final prediction, we used a 5-
layer dilated 2D convolutional network as decoder. We deliberately chose the dilation parameters to ensure that every

position at the last layer has a receptive field covering the input range.
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Supplementary Figure 2: Performance of C.Origami trained with DNA sequence and CTCF ChIP-seq. a,
Prediction from a model trained with DNA sequence and CTCF ChIP-seq. The plots were organized the same way as
Fig. 2. b, De novo predicting chromatin organization of the chromosome 15 locus in GM 12878 using the model trained
with DNA sequence and CTCF binding profiles. The difference between IMR-90 and GM 12878 is presented on the
right. While C.Origami trained with DNA sequence and CTCF profile achieved good performance in validation and

test set in IMR-90 (a), it missed predicting some fine-scale chromatin structures in GM12878.
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Supplementary Figure 3: C.Origami trained with DNA sequence, CTCF binding, and chromatin accessibility
profiles performed optimally. a, Experimental Hi-C matrices, and genomic profiles of IMR-90 and GM 12878 cells
at chr2:400,000-2,497,152. The difference between the two cell lines were presented on the right. b-¢, Cell type-
specific prediction of the chromatin organization at the same locus using C.Origami (b) or model trained with DNA

sequence and CTCF binding (c) . d-e, Same as a-c at a difference locus, chr10:122,700,000-122,797,152.
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1213
1214  Supplementary Figure 4: Ablation study on different input features. Using C.Origami trained with DNA sequence,

1215  CTCF binding, and chromatin accessibility profiles, the experiments were performed by random shuffling DNA
1216  sequences at base pair level (a), random shuffling CTCF signal (b), and random shuffling ATAC-seq signal (¢). From
1217  left to right, reference prediction with all inputs (left), prediction with sequence shuffled (middle), difference between
1218  perturbed prediction and reference prediction (right).

1219
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Supplementary Figure 5: Performance comparison of C.Origami models trained with sparse information and

dense information. a, Experimental Hi-C matrices of IMR-90 and GM 12878 cells at chr3: 158,600,000-160,697,152.

The difference between the two cell lines were presented on the right. b-c, Cell type-specific prediction of the

chromatin organization at the same locus using C.Origami models trains with sparse genomic information (b) or dense

genomic information (c). For each set of plots in b and ¢, the input CTCF ChIP-seq and ATAC-seq profiles were

aligned with the predicted Hi-C matrices and the insulation score results. d-f, Same as a-c at a difference locus, chr10:

85,100,000-87,197,152.
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Supplementary Figure 6: Chromosome karyotype visualization along with chromosome-wide Hi-C intensity
and correlation of insulation scores. The results were visualized using karyoploteR”’. Chromosome 1 to
chromosome X were plotted to visualize the Pearson correlation coefficients of insulation scores calculated from
prediction and that from experimental Hi-C. Average intensity of 2Mb windows were plotted in red. Centromere
regions were denoted with red segments on the genome. The few data points with low intensity are regions

corresponding to unmappable or repeat sequences such as centromeres and telomeres.
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1237

1238 Supplementary Figure 7: C.Origami-predicted 2Mb Hi-C maps can be fused into larger interaction maps. a,
1239  Interaction intensity distribution of prediction and experimental Hi-C on validation (chromosome 10) and test

1240  chromosomes (chromosome 15). b-d, The predicted 2Mb Hi-C maps were fused to 5SMb (b), 10Mb (c), and 50Mb (d)

1241  on chromosome 15, all with the same starting site at 40 Mb.
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Supplementary Figure 8: Chromosome-level distance-stratified intensity correlation. a, Interaction intensity
distribution of prediction and experimental Hi-C on validation (chromosome 10) and test chromosome (chromosome
15). Chromosome-level distance-stratified correlation between prediction and experimental Hi-C were calculated on
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Supplementary Figure 9: Evaluating C.Origami’s performance on detecting significant chromatin loops in
IMR-90 cells. a, ROC curves of significant chromatin loops called in experimental Hi-C and prediction. Significant
chromatin loop referring to global background were called at different g-value ranging from le-5 to le-13 from
predicted Hi-C matrices. Q-value of experimental Hi-C was ranked against predicted loops to calculate AUROC. Each
curve represents an ROC curve comparing experimental Hi-C g-value to predicted loops with specific cutoffs. b, ROC
curves of top 50 to top 5000 loops with corresponding g-value cutoffs. AUROC under each criterion is indicated in
legends of a and b. ¢-d, Venn diagram of chromatin loop overlapping between experiment and prediction with g-value
cutoff of at 1e-5 (c) or between the top 100,000 loops (d). All loop calling was carried out with global background as

reference to increase sensitivity to all significant chromatin interactions.
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Supplementary Figure 10: Performance of detecting loop interactions under different chromatin backgrounds.
a-b, Percentages of loop counts in three different categories, including CTCF-CTCF loop, promoter-promoter loop,
and promoter-enhancer loop. Significant chromatin loop referring to global background were called at different g-
value in IMR-90 cells and then categorized according to their anchor content. Within each panel, AUROC between
loops from experiment and prediction was calculated with g-value cutoffs ranging from le-5 to 1e-13, similar to the
previous loop analysis. Category counts were divided by the total number of loops called. c-e, ROC curves and the
Venn diagrams of the significant chromatin loops called in experimental Hi-C and prediction categorized by anchor
content: CTCF-CTCF loop (¢), promoter-promoter loop (d), and promoter-enhancer loop (e). AUROC from top 50
to top 5000 loops were also plotted.
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1271 Supplementary Figure 11: Workflow of comparing performance of models predicting 3D chromatin
1272 organization. a, Workflow of the comparison procedures to standardize and evaluate the predictions from Akita,
1273 DeepC, Orca, and C.Origami. b, Post-processing of DeepC prediction results. DeepC method by default produces a
1274 45 degree Hi-C map, thus requiring mirroring, rotation and cropping steps to make the results comparable to Hi-C

1275  targets.
1276
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Supplementary Figure 12: Distance-stratified statistics of raw predictions results from the four models in
comparison. a-b, Distance-stratified mean intensity (a) and standard deviation (b) of predicted Hi-C results from the
four models. The horizontal axis denotes the rescaled 128 bins representing a 1Mb region. DeepC has a different
distribution of intensities compared to the rest of the models. The abnormality could be a result of its custom percentile
normalization on the training target. ¢. Raw prediction results from four models together with experimental Hi-C.
Intensity values was set to be from 0 to 1 according to experimental Hi-C data.
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1286 Supplementary Figure 13: Distance-stratified statistics of prediction results after standardization. a-b,
1287  Distance-stratified mean intensity (a) and standard deviation (b) of predicted Hi-C results from the four models after
1288 distance-stratified normalization. After normalization, the differences between all model predictions are comparable
1289  to experimental Hi-C. ¢. Normalized prediction results from four models together with experimental Hi-C. Intensity
1290  values was set to be from 0 to 1 according to experimental Hi-C data. Presented loci are from the same regions as in
1291 Supplementary Figure 12. In comparison, normalized predictions are more comparable in between and closer to the
1292  experimental Hi-C.
1293
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1296

1297 Supplementary Figure 14: Genome-wide comparison of model performance in IMR-90 cells. For predictions
1298 from each model (Akita, DeepC, Orca and C.Origami), we measured insulation score correlation (a), observed vs
1299  expected Hi-C matrices correlation (b), mean squared error (MSE, ¢), and distance-stratified correlation (d).
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1302 Supplementary Figure 15: C.Origami predicts chromatin organizations across multiple cell types. Two
1303  representative loci were separately presented across IMR-90, GM12878, H1-hESCs, and K562 in a and b. From top
1304  to bottom, each panel included experimental Hi-C matrix, predicted Hi-C matrix, CTCF and ATAC-seq signals, and

1305  insulation scores calculated from experimental and predicted Hi-C data.
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Supplementary Figure 16: Genome-wide statistics on cell type-specific prediction. a-b, The distribution of
interaction intensity by insulation correlation (Pearson) between the experimental Hi-C matrices of IMR-90 and
GM12878. Dotted lines denote the filtering criteria in selecting representative loci with cell-type specificity (a) or
structurally conserved regions between two cell types (b). Colormap indicates the corresponding Spearman correlation
coefficient (p). c-d, Pearson’s r (left) and Spearman’s p (right) between prediction (row) and experimental data
(column) for different cell types with insulation score (¢) and observed/expected score (d) as metrics. Diagonal entries
denote the metrics of prediction and Hi-C in the same cell type without filtering for cell type specific regions. The
scores were calculated based on the differentially structured loci defined in Fig. 3. e-f, Same as c-d but for the
structurally conserved loci across different cell types. g, Pearson’s r of predicted insulation difference and
experimental insulation difference between IMR-90 and other cell types. The correlation was calculated as:
Pearson(/nsu(IMR-90_pred) - Insu(Target pred), Insu(IMR-90_data) - Insu(Target data)). High correlation indicates

that our model detected cell types-specific features applicable across different cell types.
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Supplementary Figure 17: Performance of detecting cell type-specific loop interactions between IMR-90 and
GM12878. a-b, Comparing cell type-specific loops between prediction and experiment in IMP-90 (a) and GM 12878
cells (b). Loops detected from prediction were first filtered with a more stringent g-value cutoff of 1e-7 in both cell
types. We then calculated cell type-specific loops according to signal value fold change. Within each panel, AUROC
between loops from experiment and prediction was calculated with log2 fold change cutoffs ranging from 0.5 to 2.
Overlap between loops called from prediction and experimental data is presented in a Venn diagram with a g-value
cutoff of le-7.
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Supplementary Figure 18: Performance of detecting cell type-specific loop interactions between IMR-90 and
GM12878 under different chromatin backgrounds. a-c, Evaluating cell type-specific loop detection performance
in three types of loops: CTCF-CTCF loop (a), promoter-promoter loop (b), and promoter-enhancer loop (¢). Loops
were first filtered with a stringent g-value cutoff of le-7. We then calculated cell type-specific loops according to
signal value fold change. Within each panel, AUROC between loops from experiment and prediction was calculated
with log2 fold change cutoffs ranging from 0.5 to 2. Overlap between loops called from prediction and experimental
data is presented in a Venn diagram with a g-value cutoff of le-7.
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Supplementary Figure 19: Randomly selected examples of cell type-specific predictions from Akita, DeepC,
Oreca, and C.Origami. a, Sequence-based model predictions, b, C.Origami prediction with IMR-90-specific genomic
features (CTCF ChIP-seq and ATAC-seq) and IMR-90 experimental Hi-C, ¢, C.Origami de novo prediction with
GM12878 specific genomic features and GM 12878 experimental Hi-C. All presented results were aligned at randomly
selected regions from different chromosomes. The full set of prediction results across all cell type-specific chromatin
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1344  regions between IMR-90 and GM 12878 cells were included in the Supplementary material under Cell type-specific
1345  predictions.
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1348  Supplementary Figure 20: Genome-wide comparison of de novo prediction quality in GM12878. For de novo
1349  prediction results from each model (Akita, DeepC, Orca and C.Origami), we measured insulation score correlation
1350  (a), observed vs expected Hi-C matrices correlation (b), mean squared error (MSE, ¢), and distance-stratified
1351 correlation (d). Prediction results at cell type-specific regions between IMR-90 and GM 12878 cells were selected for
1352 this analysis.
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Genome-wide metrics

Supplementary Figure 21: Transferring model trained on human cell type to mouse. a, Experimental Hi-C and
C.Origami prediction results of two representative loci in hybrid mouse Patski cells. b, Genome-wide performance
metrics of predicting mouse chromatin organization using C.Origami trained with human data. Presented matrices
include insulation score correlation, observed vs expected matrix correlation, mean squared error, and distance-
stratified correlation. Error bars in the violin plots indicate minimum, mean and maximum values.
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Supplementary Figure 22: Predicting chromatin organization dynamics upon auxin-induced CTCF depletion
and restoration in mESCs. a, Experimental results adopted from Nora et al’®. at two loci indicated on top. All plots
were visualized in triplicates, indicating conditions of before CTCF depletion (Untreated), CTCF depleted (Auxin),
and CTCF restored (Wash-off). b, C.Origami prediction at the corresponding 2Mb-wide windows using DNA
sequence and CTCF ChIP-seq profiles from Nora et al. Corresponding experimental Hi-C matrices from Nora et al.
were processed by HiC-bench and visualized in parallel. ¢, Adjusted prediction and Hi-C matrices from b. Matrix size
and location were adjusted to match the exact position from the experimental results as shown in a. Colormap was
adjusted to match the original figure in Nora ef al. d, Genome-wide performance metrics for evaluating C.Origami
prediction upon CTCF depletion and restoration. Presented correlations include insulation score (left panel) and
observed vs expected matrix values (right panel). Error bars in the violin plots indicate minimum, mean and maximum
values.
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1374 Supplementary Figure 23: Predicting translocation-induced novel chromatin organizations in K562 cells. a-c,
1375 Experimental and predicted Hi-C matrices at three translocation loci in K562 cells. In each case, chromatin
1376  organization structures were first reconstructed using HiC-bench® and NeoLoopFinder‘“, followed by C.Origami
1377  prediction at the translocation loci using in silico fused genomic information. a, t(22;9) translocation, also known as
1378  the Philadelphia chromosome, that leads to a fused gene BCR-ABLI. b, t(21;12) translocation with a stripe interaction.
1379 ¢, t(3;10) translocation with a faint “L”-shape interactions as indicated by the dotted contour. Dotted boxes indicate
1380  neo-TAD forming at the translocation site. Black arrowhead indicates the translocation site.
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Supplementary Figure 24: In silico genetic experiments performed on IMR-90 cells. Two in silico deletion

experiments were separately represented in a and b. Each experiment included the prediction before (left) and after

deletion (middle). The difference in chromatin folding after deletion were presented on the right.
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Supplementary Figure 25: Predicting X chromosome organization changes upon DXZ4 deletion prediction in
male and female cell types. a, Chromatin organization changes upon in silico deletion of a 266Kb repeats at the
DXZ4 locus in IMR-90, a female cell line. The perturbed region mimics the experimental knock-out in Darrow et al®.
The deleted region is indicated by a gray bar. b, Chromatin organization changes upon in silico deletion of the DXZ4
locus in two female cell lines (IMR-90, GM12878), and two the male cell lines (bottom: CUTLL1, Jurkat). Deleting
DXZ4 locus led to substantial loss of insulation at the two flanking regions of DXZ4 locus in the female cell lines,
while the effect was very minimal in the male cell lines, supporting the role of DXZ4 in regulation X chromosome
inactivation. Interaction regions are denoted by dotted boxes.
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Supplementary Figure 26: Comparing GRAM and attention scores. a, Comparison of GRAM scores at 2bp and
8kb resolution in IMR-90 (left) and GM 12878 (right). b, Attention scores on IMR-90 and GM12878. Attention scores
on different layers were colored according to legends. ¢-d, Comparison between GRAM (c) and attention scores (d)
at three consecutive windows with 100Kb shifts. e, GRAM scores generated at different PyTorch random seeds.
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1405 Supplementary Figure 27: Attention weights generated from the transformer module of C.Origami. A detailed
1406  view of the attention weights in eight heads (columns) across eight layers (rows), generated by the BertViz package73.

1407 The y axis of each row represents a 2Mb genomic distance. Brightness of the line segment between two different
1408  locations denotes interaction intensity.
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1415 Supplementary Figure 28: ISGS-identified impact scores at four chromatin remodeler genes in both T-ALL
1416  cells and T cells. Impact scores of the DNA elements in T-ALL cells and normal T cells were first calculated
1417  independently through ISGS, and then visualized at the four chromatin remodelers genes (PHF5A, BRD4, KATS,
1418  CHD4, with 50Kb upstream and 50Kb downstream) which are required for Jurkat and CUTLLI cell proliferation
1419 according to the CRISPR screening experiments. The specificity track (fourth track) was calculated as the difference
1420  between T cell impact score and T-ALL impact score (from CUTLLI1 or Jurkat, whichever is smaller). CHD4 has the
1421  highest specificity score between T-ALL cells and normal T cells.
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1427 Supplementary Figure 29: Scatter plot of frans-acting factor binding enrichment in ISGS-identified impactful
1428  elements in T-ALL and normal T cells. Odds ratio of enrichment between T-ALL and normal T cells were ploted
1429  on the y axis and x axis, respectively. T-ALL odds ratio was aggregated from enrichment in CUTLL1 and Jurkat.
1430  Only factors with odds ratio larger than 35 were labeled, except NOTCH1 which was highlighted for comparison with
1431  CDK7 (referring to Figure 7).
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Supplementary Figure 30: Overlap between impactful elements and CDK7-inhibition induced TAD changes.
a, An example of TAD with decreased activity. Grey bar indicates a prominent decrease in interaction in the CDK7-
inhibition (+THZ1) group. The TAD intensity plots were aligned with impactful regions, impactful scores, CDK7
ChIP-seq, CTCF ChIP-seq, and ATAC-seq signals from top to bottom. b, Impact score of DNA elements in changed
TADs and stable TADs determined from pharmaceutical inhibition of CDK7. The overall impact scores in the changed
TAD:s are significantly higher (independent t-test, p-value = 1.72e-05).
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