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Abstract: 25 

The mammalian genome is spatially organized in the nucleus to enable cell type-specific gene 26 

expression. Investigating how chromatin organization determines this specificity remains a 27 

challenge. Methods for measuring the 3D chromatin organization, such as Hi-C, are costly and 28 

bear strong technical limitations, restricting their broad application particularly in high-throughput 29 

genetic perturbations. In this study, we present C.Origami, a deep neural network model that 30 

performs de novo prediction of cell type-specific chromatin organization. The C.Origami model 31 
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enables in silico experiments to examine the impact of genetic perturbations on chromatin 32 

interactions in cancer genomes and beyond. In addition, we propose an in silico genetic screening 33 

framework that enables high-throughput identification of impactful genomic regions on 3D 34 

chromatin organization. We demonstrate that cell type-specific in silico genetic perturbation and 35 

screening, enabled by C.Origami, can be used to systematically discover novel chromatin 36 

regulatory mechanisms in both normal and disease-related biological systems.  37 

 38 

 39 

Introduction: 40 

In mammalian cells, interphase chromosomes are hierarchically organized into large 41 

compartments which consist of multiple topologically associating domains (TADs) at the sub-42 

megabase scale1. Chromatin looping within TADs functions to restrict enhancer-promoter 43 

interactions at the kilobase scale for regulating gene expression1–3. The perturbation of TADs, such 44 

as disrupting TAD boundary, can lead to aberrant chromatin interactions and changes in gene 45 

expression4–7. As a result, mutations that disrupt 3D genome organization can substantially affect 46 

developmental programs and play important roles in genetic diseases and cancer4,5,8,9.  47 

 48 

The higher-order organization of the genome is largely determined by intrinsic DNA sequence 49 

features known as cis-regulatory elements that are bound by trans-acting factors in a sequence 50 

specific manner10. For example, the location and orientation of CCCTC-binding factor (CTCF) 51 

binding sites act as a landmark for defining boundaries of TADs. Other factors, such as the cohesin 52 

complex proteins, act together to regulate chromatin interaction via loop extrusion10,11. While most 53 

TADs are conserved across cell types, a substantial amount (>10%) of TADs are dynamic and 54 

vary in different cells12. In addition, widespread cell type-specific chromatin-looping contributes 55 

to the precise regulation of gene expression3,13. These fine-scale chromatin interactions are 56 

controlled by chromatin remodeling proteins and transcription factors such as GATA1, YY1, and 57 

mediator proteins2,14–16. While the general organization of chromatin organization is largely well 58 

described, the current challenge is to reveal the principles underlying cell type-specific chromatin 59 

folding. Chromatin conformation capture technologies, such as Hi-C, are used for examining 60 

chromatin structure underlying gene regulation at fine-scales and across cell types17,18. However, 61 

these approaches are typically time- and resource-consuming, and require large cell numbers18. In 62 
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addition, experimental tools are limited by the process of aligning sequencing reads to a specific 63 

reference genome, making it challenging for experiments involving de novo genome 64 

rearrangement. These limitations prohibit their wide-scale applications in investigating how 65 

chromatin organization determines cell type-specific gene expression, especially in gene 66 

regulation studies involving genetic perturbation and in rearranged chromosomes such as cancer 67 

genomes.  68 

 69 

Owing to its ability to model complex interactions, deep learning has emerged as a powerful 70 

approach for studying genomic features. Leveraging  in silico perturbations based on deep learning 71 

models could effectively reduce the resources required for de novo analyses of chromatin 72 

organization through experiments19,20. Since intrinsic features in DNA sequence of the genome 73 

partially determine its general folding principles, an approximate prediction of chromatin 74 

organization can be made using sequence alone21–23. However, due to the lack of specific genomic 75 

features which govern chromatin interactions10, approaches that rely solely on DNA sequence are 76 

unable to predict cell type-specific chromatin interactions21–23. Conversely, methods that rely only 77 

on chromatin profiles lack the consideration of DNA sequence features, thus generally requiring 78 

multiple epigenomic data to improve predictive power24–29. The limitations of current methods 79 

make them infeasible for in silico experiments studying how DNA sequence features and trans-80 

acting factors work together to shape chromatin organization for accurate gene expression 81 

regulation. 82 

 83 

We propose that an accurate de novo prediction of chromatin folding requires a model which 84 

effectively recognizes both DNA sequence and cell type-specific genomic features. Meanwhile, 85 

for the model to be practical, it should minimize the requirement for input information without 86 

performance loss. Based on these principles, we developed C.Origami, a deep neural network that 87 

synergistically integrates DNA sequence features and two essential cell type-specific genomic 88 

features: CTCF binding and chromatin accessibility signal. C.Origami achieved accurate de novo 89 

prediction of cell type-specific chromatin organization in both normal and rearranged genomes.  90 

 91 

The high accuracy of C.Origami enables in silico genetic perturbation experiments that interrogate 92 

the impact on chromatin interactions, and moreover, allows systematic identification of cell type-93 
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specific regulation mechanisms of genomic folding through in silico genetic screening. Applying 94 

in silico genetic screening to T-cell acute lymphoblastic leukemia (T-ALL) cells and normal T 95 

cells, we identified a loss of insulation event at the upstream of CHD4 in T-ALL, resulting in 96 

increased chromatin interaction between CHD4 promoter and distal cis-elements. The high-97 

throughput in silico genetic screening framework also makes it possible to identify a compendium 98 

of cell type-specific trans-regulators across multiple cell types. Additionally, we found that CDK7 99 

plays a broader role in regulating 3D chromatin organization than that of NOTCH1, consistent 100 

with extensive experimental results by examining Hi-C contact matrices upon pharmacological 101 

inhibition of CDK7 and NOTCH130. Together, our results demonstrate that the high performance 102 

of C.Origami enables systematic in silico genetic perturbation and screening experiments for 103 

identifying critical cell type-specific cis-elements and trans-acting regulators, thus empowering 104 

future studies of 3D chromatin regulation studies. 105 

 106 

RESULTS: 107 

 108 

C.Origami: a multimodal architecture for predicting cell type-specific 3D chromatin 109 

organization  110 

 111 
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 112 
Figure 1: De novo, cell type-specific prediction of 3D chromatin organization with C.Origami. a, A schematic of 113 
C.Origami, a multimodal architecture for de novo prediction of  chromatin organization. C.Origami adopts an encoder-114 
decoder design, separately encoding DNA sequence features and cell type-specific genomic features. The two streams 115 
of encoded information are concatenated and processed by a transformer module. The decoder converts the processed 116 
1D information to the final Hi-C interaction matrix. b, C.Origami predicts 3D chromatin organization by integrating 117 
DNA sequence, CTCF ChIP-seq signal and ATAC-seq signal as input features to predict Hi-C interaction matrix in 2 118 
Mb windows.  119 
 120 

To achieve accurate and cell type-specific prediction of genomic features, we first developed 121 

Origami, a generic multimodal architecture, to integrate both nucleotide-level DNA sequence and 122 

cell type-specific genomic signal (Fig. 1a, excluding decoder). Specifically, the former enables 123 

recognition of informative sequence motifs, while the later provides cell type-specific features. 124 

Origami consists of two encoders, a transformer module, and a decoder (Fig. 1a, see Methods). 125 

The two encoders are 1D convolutional neural networks that condense DNA sequence and 126 

genomic features separately. The two streams of encoded features are then concatenated and 127 

further processed by a transformer module, which allows the encoded information to exchange 128 

between different genomic regions31. The decoder in Origami synthesizes the processed 129 

information to make predictions, and depending on the task, can be customized to specific 130 
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downstream prediction targets. In this study, we deployed a 2D dilated convolutional network with 131 

broad receptive field as a decoder for predicting chromatin organization represented by Hi-C 132 

contact matrices (see Methods). We therefore named this chromatin organization predicting 133 

variant C.Origami. 134 

 135 

C.Origami predicts chromatin organization within a 2 mega-base (2Mb) sized window to cover 136 

typical TADs in the genome while maximizing computation efficiency1. DNA sequence and 137 

genomic features within the window were separately encoded as nucleotide-level features (Fig. 1b, 138 

see Methods). The model reduces 2Mb wide genomic features down to 256 bins, and outputs a Hi-139 

C contact matrix with a bin size of 8,192 bp. The target Hi-C matrix from the corresponding 2Mb 140 

genomic window was processed to have the same bin size. To train the model, we used data from 141 

IMR-9032, a fibroblast cell line isolated from normal lung tissue, and randomly split the 142 

chromosomes into training, validation (chromosome 10), and test set (chromosome 15) (Fig. 1b, 143 

top right). 144 

 145 

When selecting genomic features as input for cell type-specific chromatin organization prediction, 146 

we considered three criteria: 1) representative for cell type specific chromatin organization; 2) 147 

widely available and experimentally robust; 3) minimized number of inputs to enable broad 148 

applicability of the model. CTCF binding is one of the most critical determinants of 3D genome 149 

organization, shaping the genome to organize into TADs10. Meanwhile, previous studies revealed 150 

widespread cell type-specific enhancer-promoter and promoter-promoter interactions which 151 

constitute a great portion of 3D chromatin organization at the accessible genomic regions33–35. In 152 

light of this knowledge, we envisioned C.Origami trained with CTCF ChIP-seq and ATAC-seq 153 

profiles, and together with nucleotide-level DNA sequence, would achieve high performance in 154 

predicting cell type-specific 3D chromatin organization (Fig. 1b). 155 

 156 

To examine how different input features influence model performance, we first carried out an 157 

ablation study by training a set of prototype models with all seven combinations of the three input 158 

features, and then used validation loss to evaluate the model quality (Fig. 2a). We found that the 159 

model trained with DNA sequence alone has the highest validation loss – indicating lowest 160 

performance – due to its lack of cell type-specific genomic information. On the other hand, the 161 
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model trained with a full set of input features – DNA sequence, CTCF ChIP-seq, and ATAC-seq 162 

profiles – consistently achieved the lowest validation loss. Moreover, replacing ATAC-seq profile 163 

with a key chromatin modification profile, H3K27ac, under-performs the original C.Origami 164 

model (Fig. 2a). Using only CTCF ChIP-seq or ATAC-seq profile as input give a mediocre 165 

performance. Notably, coupling genomic features with DNA sequence as training inputs always 166 

improves model performance (DNA + ATAC-seq > ATAC-seq; DNA + CTCF-binding > CTCF-167 

binding; C.Origami > CTCF-binding + ATAC-seq), indicating that DNA sequence information 168 

contributes substantially for prediction quality.  169 

 170 

To further inspect the performance difference between C.Origami and models trained with 171 

incomplete inputs, we compared C.Origami with the model trained with DNA sequence and CTCF 172 

ChIP-seq signal. While the later model performed well in capturing the TAD structures and some 173 

chromatin loops, the model did not predict many fine-scale chromatin interaction features, 174 

especially in de novo prediction on a new cell type (Supplementary Fig. 2). These results indicate 175 

that integrating DNA sequence with CTCF binding signal alone is not sufficient for optimal 176 

prediction of cell type-specific 3D chromatin organization.  177 

 178 

C.Origami trained with complete inputs achieved high-quality predictions for chromatin 179 

organization (Fig. 2, Supplementary Fig. 3). C.Origami predicted highly accurate contact matrices 180 

that emphasized both large topological domains and fine-scale chromatin looping events in 181 

samples from training, validation and test chromosomes (Fig. 2b-e and Supplementary Fig.3). 182 

Similar to the ablation study, compromising each of the input signals by random shuffling led to 183 

inferior performance, underscoring the necessity of including all input features for high-quality 184 

predictions (Supplementary Fig. 4). Last, we found that while it is possible to train the model using 185 

sparse input genomic features (ChIP-seq/ATAC-seq peaks) without significant performance 186 

penalty, the current C.Origami model trained with dense features (including peak profiles and 187 

sequencing background signals of ChIP-seq/ATAC-seq) achieved better performance, indicating 188 

that the model leveraged the nuanced genomic features to improve its prediction (Supplementary 189 

Fig. 5).  190 

  191 
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 192 
Figure 2: C.Origami accurately predicts 3D chromatin organization.  a, Validation loss of prototype models 193 
trained from different combination of input features. b-c, Experimental Hi-C matrices (b) and C.Origami predicted 194 
Hi-C matrices (c) of IMR-90 cell line at chromosome 2 (left), chromosome 10 (middle), and chromosome 15 (right), 195 
representing training, validation and test chromosomes, respectively. d, Input CTCF binding and chromatin 196 
accessibility profiles. e, Insulation scores calculated from experimental Hi-C matrices (solid line) and C.Origami 197 
predicted Hi-C matrices (dotted line). Pearson correlation coefficients between prediction and target insulation scores  198 
is presented. f, Insulation score correlation between predicted and experimental Hi-C matrices across all windows in 199 
both validation and test chromosomes. Each group included both Pearson correlation (r) and Spearman correlation (ρ) 200 
coefficients. g, Chromosome-wide distance-stratified interaction correlation (Pearson) between prediction and 201 
experiment. h, Comparison of model performance across Akita, DeepC, Orca, and C.Origami using genome-wide 202 
insulation score correlation between prediction and experimental data from IMR-90 cells. Error bars in the violin plots 203 
indicate minimum, mean and maximum values within each group.   204 
 205 

Genome-wide evaluation of model performance 206 
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To systematically assess C.Origami, we calculated the insulation scores on validation and test 207 

chromosomes (see Methods). C.Origami achieved on average 0.95 and 0.94 insulation score 208 

correlation respectively (Fig. 2f). By plotting the insulation score correlation between prediction 209 

and experiment against Hi-C data intensity across the genome by chromosomes, we found that the 210 

prediction maintained uniform high performance, demonstrating the robustness of the model 211 

(Supplementary Fig. 6).  212 

 213 

To evaluate the consistency of predicted Hi-C matrices, we calculated distance-stratified average 214 

intensity of Hi-C matrices from C.Origami prediction and experiment and found the same 215 

exponential decay pattern (Supplementary Fig. 7a). In addition, predicted chromatin structure from 216 

C.Origami were stable across neighboring regions. Therefore, consecutive predictions can be used 217 

to construct chromosome-wide prediction of Hi-C contact matrix by joining predictions across 218 

sliding windows (Supplementary Fig. 7b-d). Such genome-wide construction of Hi-C contact 219 

matrices allowed us to plot a distance-stratified correlation (Pearson) between the merged 220 

chromosome-wide prediction and experimental Hi-C (see Methods). C.Origami achieved 221 

correlation above 0.8 within 1Mb region and 0.6 within 1.5Mb (Fig. 2g, Supplementary Fig. 8).  222 

 223 

Loop calling is a common analysis for identifying point-to-point interactions from Hi-C. As a third 224 

metric to evaluate C.Origami’s performance, we performed loop calling using global background 225 

as reference to capture significant chromatin interactions on both prediction and experimental Hi-226 

C in IMR-90 cells (see Methods). We found that C.Origami achieved good performance in loop 227 

detection, with an AUROC of 0.92 for the top 5000 predicted loops (Supplementary Fig. 9). We 228 

further categorized loops by the chromatin background of loop anchors, resulting in three major 229 

categories: CTCF-CTCF loop, promoter-enhancer loop, and promoter-promoter loop 230 

(Supplementary Figure 9a-b). We found that C.Origami-predicted Hi-C maps can further predict 231 

chromatin loops comparable to the experimental results under each loop category (Supplementary 232 

Figure 10).  233 

 234 

Last, we compared C.Origami against three recent sequence-based approaches, Akita22, DeepC23, 235 

and Orca36. Since the four models were trained with different scaling, resolution and prediction 236 

target customization, we included in the benchmark a set of preprocessing and normalization steps 237 
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to standardize the results (See Methods, and Supplementary Fig. 11-13). To evaluate the 238 

performance of the four models, we compared their predicted results to experimental data by 239 

calculating: 1) insulation score correlation, 2) observed/expected Hi-C map correlation, 3) mean 240 

squared error (MSE), and 4) distance-stratified correlation using results from IMR-90 cells (see 241 

Methods). We found that C.Origami outperforms previous methods in all four comparison 242 

matrices (Fig. 2h, Supplementary Fig. 14). 243 

 244 

De novo prediction of cell type-specific chromatin organization 245 

 246 
 247 
Figure 3: Cell type-specific de novo prediction of chromatin structure. A, Experimental Hi-C matrices from IMR-248 
90 (left) and GM12878 (middle) cell lines at chromosome 2 ,and their differences (right). B, C.Origami-predicted Hi-249 
C matrices of IMR-90 (left) and GM12878 (middle), precisely recapitulated the experimental Hi-C matrices (a). The 250 
arrow heads highlighted differential chromatin interactions between the two cell types. C, CTCF binding profiles and 251 
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chromatin accessibility profiles of IMR-90 (left), GM12878 (middle) and their difference (right). D, Insulation scores 252 
calculated from experimental Hi-C matrices (solid line) and C.Origami predicted Hi-C matrices (dotted line) of IMR-253 
90 (left), GM12878 (middle) and their difference (right). E, Pearson correlation between insulation scores calculated 254 
from predicted and experimental Hi-C matrices across cell types. F-h, Genome-wide evaluation of sequence-based 255 
models and C.Origami using de novo prediction results from GM12878 cells. Presented metrics include insulation 256 
score correlation (f), observed vs expected matrix correlation (g), and distance-stratified correlation (h). Error bars in 257 
violin plots of f and g indicate minimum, mean and maximum values within each group.   258 
 259 
De novo prediction of cell type-specific 3D chromatin organization provides a valuable approach 260 

for studying genome regulation in new cell types. To assess C.Origami’s performance in de novo 261 

prediction of chromatin organization beyond the training cell type IMR-90, we applied the model 262 

to GM12878 cells using its corresponding CTCF ChIP-seq and ATAC-seq profiles. GM12878 is 263 

a lymphoblastoid cell line that differs substantially from IMR-90 in its chromatin organization32, 264 

as exemplified by locus Chr2:400,000-2,497,152 (Fig. 3a). Specifically, we highlighted a cell type-265 

specific interaction related to chromatin accessibility changes (black arrowhead) and a distal 266 

interaction that associates with both CTCF and ATAC-seq signal changes (gray arrowhead, Fig. 267 

3c). These cell type-specific features were demonstrated by differences in their signal intensity in 268 

Hi-C and genomic tracks (Fig. 3a and 3c, right).  269 

 270 

To demonstrate the capability of C.Origami in cell type-specific de novo prediction, we predicted 271 

Hi-C matrices in both IMR-90 and GM12878 cells at the same locus. Notably, C.Origami was 272 

trained on IMR-90 and was never exposed to GM12878-specific inputs and Hi-C data.  Therefore, 273 

C.Origami needs to transfer its knowledge to the new cell type. We found that C.Origami 274 

accurately captured the cell type-specific chromatin interaction features in GM12878 de novo 275 

prediction (Fig. 3a-c, left and middle). The difference between IMR-90 and GM12878 276 

experimental Hi-C matrices was also reflected between IMR-90 and GM12878 predictions (Fig. 277 

3a-c, right). The calculated insulation scores from the predicted Hi-C matrix were also highly 278 

correlated with the scores of the experimental data from both cell types (Fig. 3d, left and middle). 279 

In addition, the difference between insulation scores of the two cell types were highly correlated, 280 

showing that C.Origami captured the chromatin architectural difference between two cell types 281 

(Fig. 3d, right). We further expanded the de novo chromatin organization prediction to two more 282 

cell lines, embryonic H1-hESC and erythroleukemia K562. Again, our model achieved accurate 283 
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predictions of cell type-specific chromatin organization with high specificity, demonstrating the 284 

robustness of C.Origami in de novo prediction and its practical potential for a broader application 285 

(Supplementary Fig. 15). 286 

 287 

To systematically evaluate the performance of C.Origami in de novo prediction, we next carried 288 

out an analysis of genome-wide predictions. Although we presented multiple loci that have cell 289 

type-specific chromatin structures, many TAD boundaries are conserved across cell types12. To 290 

test the model on structurally different regions, we first identified a subset of genomic loci with 291 

differential chromatin structures between IMR-90 and GM12878 experimental Hi-C matrices. 292 

Regions with normal intensity (> 10% intensity quantile) and low similarity (< 20% insulation 293 

difference) between the experimental Hi-C matrices of the two cell types were selected. In total, 294 

~15% of the entire genome (~450Mb) were included for evaluating the performance of cell type-295 

specific Hi-C prediction (Supplementary Fig. 16a).  296 

 297 

We calculated the correlation coefficient between the insulation scores of the predicted and 298 

experimental Hi-C matrices across all four cell types in structurally different genomic regions (Fig. 299 

3e, Supplementary Fig. 16). In line with observations from the single-locus results (Fig. 3a-d), we 300 

found that predictions using input features from one cell type have the highest correlation 301 

coefficients with the experimental Hi-C data of the same cell type (Fig. 3e, scores at the diagonal 302 

line). The correlation coefficients between mismatched prediction and experimental data were 303 

lower, consistent with the expectation that the model predicts cell type-specific chromatin 304 

interactions (Fig. 3e, off-diagonal scores). Similarly, these results were recapitulated by correlation 305 

analysis using pixel-level observed/expected contact matrices (Supplementary Fig. 16c-d). As a 306 

control, we performed a similar analysis using structurally conserved genomic regions, 307 

characterized by normal intensity (> 10% intensity quantile) and high similarity (> 20% insulation 308 

difference) between IMR-90 and GM12878 (Supplementary Fig. 16d). As expected, we found the 309 

prediction in these regions was highly correlated with the experimental data across all cell types 310 

(Supplementary Fig. 16e-f).  We further compared the insulation score of IMR-90 to that of the 311 

three other cell lines and found such insulation score difference calculated from prediction and 312 

experimental data were highly correlated (Supplementary Fig. 16g).  313 

 314 
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As an orthogonal validation, we performed loop calling on IMR-90 and GM12878 prediction and 315 

experimental Hi-C to evaluate C.Origami’s ability to detect cell type-specific chromatin loops. We 316 

found that C.Origami can predict significant (log2fc > 1) IMR-90-specific and GM12878-specific 317 

loops with 0.88 and 0.87 AUROC, respectively (Supplementary Fig. 17). Cell type-specific loops 318 

under different categories also achieved similar performance (Supplementary Fig. 18).  319 

 320 

Since DNA sequence-based models are unable to generalize to unseen cell types, we expect 321 

C.Origami to have an advantage in cell type-specific de novo prediction. This performance gap 322 

can be observed by comparing de novo predictions generated by sequence-based models and 323 

C.Origami in GM12878 cells (Supplementary Figure 19). Comparing genome-wide cell type-324 

specific predictions in regions with cell type-specific chromatin organizations (see Methods), we 325 

again found that C.Origami outperformed sequence-based models by a large margin under all 326 

metrics, with higher insulation score correlation, higher observed/expected Hi-C matrix correlation, 327 

lower mean squared error (MSE), and higher distance-stratified correlation (Fig. 3f-h, 328 

Supplementary Figure 20).  329 

 330 

The mouse genome differs from human in its genomic components but the two share similar 331 

mechanisms in 3D chromatin organization1,34,37. We sought to test whether C.Origami could 332 

perform de novo prediction across species. We found that C.Origami trained with human IMR-90 333 

genomic features predicted mouse chromatin organization with good quality (Supplementary 334 

Figure 21). The overall performance in mouse was lower compared to that in human, possibly due 335 

to species-specific genomic features that were learned by the model during training. 336 

Notwithstanding its good performance, the accuracy of C.Origami could be further improved by 337 

training a model on mouse data to adapt to mouse sequence and genomic features. Together, these 338 

results indicate that C.Origami can extract and transfer the conserved genome organization 339 

principles learned across species.  340 

 341 

Last, we tested whether C.Origami could predict the chromatin-organization changes upon 342 

removal of key trans-acting regulators, such as CTCF. Previous study found that acute degradation 343 

of CTCF protein led to the disappearance of TADs in mouse embryonic stem cells, and subsequent 344 

restoration of CTCF reestablished TAD structures38. We simulated such experiments by predicting 345 
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chromatin organizations in pre-CTCF-depletion, CTCF-depleted, and CTCF-restored conditions 346 

(see Methods). We found that C.Origami accurately predicted the TAD-loss and restoration 347 

changes upon CTCF depletion and restoration, respectively (Supplementary Fig. 22). 348 

 349 
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 350 
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Figure 4: C.Origami enables prediction of 3D chromatin organization upon in silico genetic perturbations. a, 351 
Chromosomal translocation between chromosome 7 and chromosome 9 in CUTLL1 T cell leukemia cells39. b, 352 

Experimental Hi-C data mapped to a custom reference chromosome with t(7;9) translocation30. c-d, C.Origami 353 
prediction of chromatin organization of chromosome 7 (c) and chromosome 9 (d) in CUTLL1 cells. The windows 354 
represented intact chromosomal loci centered at the translocation sites in CUTLL1 cells. e, A simulated Hi-C contact 355 
matrix using prediction for mimicking of experimental mapping results. The simulated result was averaged from the 356 
prediction of both normal and translocated alleles, indicating heterozygous translocation. The yellow bar highlights 357 
the neo-TAD at the translocation locus. Black and gray arrowhead indicates the translocation site and a stripe in the 358 
neo-TAD, respectively. The predicted Hi-C matrix was aligned to the experimental Hi-C matrix in d. f, Log fold 359 
change between experiment and predicted Hi-C matrix at the t(7;9) translocation site in CUTLL1 cells. g-i, A 500bp 360 
deletion in chromosome 8 led to chromatin looping changes in T cells. The presented 2Mb window starts at the 361 
promoter region of MYC, and the experimental deletion perturbed a CTCF binding site at the arrowhead location30. 362 
The presented results include C.Origami prediction of the Hi-C contact matrices with (g) or without (h) the deletion, 363 
and their difference (i). Virtual 4C signals, calculated from the predicted Hi-C matrices, are shown at the bottom. 364 
 365 

Accurate prediction of C.Origami enables cell type-specific in silico genetic experiments 366 

Chromosomal translocations and other structural variants generate novel recombinant DNA 367 

sequences, subsequently inducing new chromatin interactions which may be critical in 368 

tumorigenesis and progression8,40. However, the allelic effect and high heterogeneity of 369 

translocation and structural variations frequently seen in cancer genomes make it challenging to 370 

study their custom genome organizations. As an example, CUTLL1, a T-cell acute lymphoblastic 371 

leukemia (T-ALL) cell line, incorporated a heterozygous t(7;9) translocation, a recombination of 372 

chromosome 7 and chromosome 9 (Fig. 4a)39. The translocation introduces new CTCF binding 373 

signals from chromosome 9 to chromosome 7, leading to the formation of a neo-TAD structure 374 

which can be observed in experimental Hi-C  (Fig. 4b, see Methods)30.  375 

 376 

We highlight that C.Origami provides a high-performance alternative for discovering new 377 

chromatin interactions at rearranged genomic loci. To examine the performance of C.Origami in 378 

predicting chromatin organization from rearranged cancer genomes, we predicted Hi-C contact 379 

matrices from both the normal and translocated alleles, and then averaged the two matrices to 380 

mimic the allele-agnostic Hi-C mapping in the experimental data (Fig. 4c-e, see Methods). We 381 

found that the Hi-C map generated by C.Origami accurately predicted the neo-TAD structure 382 

covering the t(7;9) translocation site (Fig. 4e-f). Specifically, we found a stripe extending from 383 
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translocated chromosome 9 to chromosome 7, indicating a novel regulation within the neo-TAD 384 

(Fig. 4b and 4e, dotted box and gray arrowhead). We additionally performed the same in silico 385 

experiments at three verified translocation loci in K562 cells and obtained similar results41 386 

(Supplementary Fig. 23). The accuracy in detecting novel chromatin interaction at chromosomal 387 

translocation sites demonstrated C.Origami’s high performance and potential in future cancer 388 

genomics studies.  389 

 390 

Moreover, we expect the high performance of C.Origami to enable cell type-specific in silico 391 

genetic perturbation experiments as a fast and cost-efficient approach for studying chromatin 392 

interaction mechanisms. As an example, while CTCF binding site has been found critical for 393 

organizing TADs via experimental perturbations4–6, not all perturbations at the CTCF binding sites 394 

led to the similar TAD changes due to motif redundancy and the complicated roles of CTCF in 395 

chromatin regulation42–44. Notably, experimental perturbation requires sophisticated genetic 396 

deletion followed by assessment through chromatin conformation capture techniques. Instead of 397 

experimentally performing such genetic studies, we modeled deletions of CTCF-binding at the 398 

TAD boundary sequences in silico, and subsequently predicted local chromatin interaction maps 399 

with C.Origami. We found that in silico deletion at TAD boundaries with CTCF-binding led to 400 

TAD merging events between the originally insulated TADs with a sharp drop in insulation score 401 

at the perturbed boundaries (Supplementary Fig. 24).  402 

 403 

To further investigate the validity of in silico genetic perturbation, we applied C.Origami to predict 404 

chromatin interactions at loci with known experimental validations. Our previous study showed 405 

that disrupting a CTCF-binding site near MYC locus reduced the chromatin looping efficiency in 406 

human naive CD4+ T cells, resulting in a reduced chromatin insulation30. Applying C.Origami at 407 

the locus without perturbation, we found a stripe in the predicted Hi-C matrix (Fig. 4g, arrowhead). 408 

A 500bp in silico removal of the CTCF-binding region attenuated the stripe (Fig. 4h-i). Based on 409 

the two predicted Hi-C matrices, we calculated virtual 4C difference before and after perturbing 410 

the CTCF binding site and found them to be consistent with previous experimental data 411 

(Supplementary Fig. 7E in Kloetgen, et al)30. Another example is the DXZ4 locus which is critical 412 

for determining the chromosomal organization in X chromosome inactivation (XCI)45. We tested 413 

in silico deletion of DXZ4 locus in two female cell lines (IMR-90, GM12878) and two male cell 414 
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lines (CUTLL1, Jurkat) to evaluate how DXZ4 locus regulate X chromosome organization 415 

(Supplementary Fig. 25). Consistent with experimental knock-out results45, we found that deleting 416 

the DXZ4 locus leads to substantial loss of insulation at the two flanking regions only in female 417 

cell lines (Supplementary Fig. 25), supporting the specific function of DXZ4 locus in regulating 418 

XCI. 419 

 420 
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 421 
Figure 5, High-throughput in silico genetic screening identifies cis-regulatory elements determining chromatin 422 
organization. a-b, Schematic of in silico genetic screen for identifying impactful cis-regulatory elements. For each 423 
perturbed DNA element, an impact score is calculated to indicate how perturbation of the locus affected local 424 
chromatin organization. c, Visualization of different attribution method. GRAM, attention score, and impact score 425 
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tracks are aligned to the predicted Hi-C and input genomic signals. d, Distribution of chromosome-wide-normalized 426 
impact scores in in silico deletion screening. e, Heatmap of in silico deletion screening-identified impactful cis-427 
elements which contribute to the 3D chromatin organization. Each row shows an 5Kb locus centered by an impactful 428 
1Kb cis-element. The loci in each group were ranked by their impact scores. f, The relative enrichment (z-score 429 
normalized) of ATAC-seq signal and multiple ChIP-seq signals at the four groups of impactful elements. According 430 
to the impact score values, cis-elements of each group were further grouped into high, medium, and low-impact 431 
quantile groups when plotting the ChIP-seq/ATAC-seq signals. g, Characterization of in silico screening-identified 432 
cis-elements by their genomic annotations.   433 
 434 

 435 

Cell type-specific in silico genetic screening of cis-regulatory elements 436 

Identifying cis-regulatory elements required for chromatin organization is one of the most 437 

important goals for 3D genome studies46. To determine whether C.Origami could be used to 438 

systematically identify such critical cis-elements, we propose using C.Origami to quantitatively 439 

assess how individual DNA elements contribute to the 3D chromatin organization (Fig. 5). Based 440 

on C.Origami’s model architecture, we developed two approaches for identifying critical cis-441 

elements: a gradient-based saliency method named Gradient-weighted Regional Activation 442 

Mapping (GRAM), and attention scores derived from the transformer module (see Methods). As 443 

exemplified by the chr2:0-2.1Mb locus, both GRAM scores and attention scores captured 444 

important genomic regions that determine 3D genome structure, such as TAD boundaries and 445 

regions enriched with CTCF binding and ATAC-seq signals (Fig. 5c). In particular, GRAM can 446 

be positioned flexibly at different layers to obtain attribution maps at different resolutions up to 447 

nucleotide resolution (Supplementary Fig. 26a). The attention weights were averaged across all 448 

attention heads channels to obtain the layer-specific attention scores (Supplementary Fig. 26b). 449 

Visualization of all attention weights revealed that different attention heads attend to specific 450 

regions (Supplementary Fig. 27). Given that attention scores are robust to input shifts 451 

(Supplementary Fig. 26d), it is possible that the attention heads respond to specific categories of 452 

regulatory elements consistently. Additionally, we found although GRAM is more flexible, it is 453 

less robust compared to attention scores, susceptible to input window shifts and random seeds 454 

(Supplementary Fig. 26c-e). While both approaches are able to estimate the contribution of cis-455 

elements, neither of them could quantitatively assess how much a specific DNA element influence 456 

the local 3D chromatin organization. 457 
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 458 

Systematic DNA sequence perturbation was widely used in reverse genetic screening experiments 459 

for identifying functional genes or cis-regulatory elements. Inspired by the mechanism of genetic 460 

screening, we developed an in silico genetic screening (ISGS) approach based on C.Origami. 461 

Differ from qualitative GRAM and attention score, ISGS quantifies the difference in C.Origami 462 

predictions upon systematic perturbation (deletion) of DNA elements (see Methods). As an 463 

example, we first carried out ISGS in a 2Mb window (chr2:0-2.1Mb) by sequentially perturbing 464 

256 loci of ~8kb lengths, followed by Hi-C contact map prediction. We quantify the impact of a 465 

perturbation via a metric termed impact score, calculated by taking the mean absolute difference 466 

between predictions before and after perturbation (Fig. 5a, see Methods). We found that 467 

perturbations at TAD boundaries with enriched CTCF ChIP-seq and ATAC-seq signals had higher 468 

impact on chromatin folding, consistent with the GRAM and attention scores (Fig. 5c).  469 

 470 

To systematically locate the impactful cis-elements that are required for 3D chromatin 471 

organization across the genome, we conducted high-resolution in silico genetic screening by 472 

sequentially deleting 1Kb DNA elements, followed by C.Origami prediction and impact score 473 

computation (see Methods). As expected, deletion of most of the DNA elements across the genome 474 

have low impact scores and does not significantly alter the 3D chromatin organization (Fig. 5d). 475 

We performed a peak calling by comparing each impact score to its surrounding signals, and 476 

isolated a set of impactful cis-elements representing ~1% of the screened genome (see Methods). 477 

 478 

Further characterization of the impactful cis-elements led to the identification of differential 479 

genomic features regulating chromatin organizations. According to the presence or absence of 480 

CTCF binding and ATAC-seq signals, the impactful cis-elements were characterized into four 481 

groups (Fig. 5e). More than half of the impactful cis-elements are open chromatin and 482 

simultaneously bound by CTCF (Group 1, Fig. 5e). Plotting CTCF binding signals and ATAC-seq 483 

signals across cis-elements in three quantiles separated by impact score group intensity, we found 484 

that CTCF-bound cis-elements intensity stays overall the same across Group 1 and Group 2 485 

quantiles, while the ATAC-seq signals are negatively correlated with the impact scores (Fig. 5f, 486 

top). This result indicates that CTCF has a high impact on chromatin organization, regardless of 487 

the intensity of chromatin accessibility. Meanwhile, Group 1 and Group 2 cis-elements are 488 
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enriched with RAD21 and SMC3 binding signals, supporting their function in defining boundaries 489 

during chromatin loop extrusion (Fig. 5f). Consistently, Group 1 and Group 2 elements enriched 490 

higher at TAD boundaries and enhancer-promoter regions (Fig. 5g). Notably, we identified a 491 

substantial fraction of cis-elements enriched in open chromatin, but are not bound by CTCF (Group 492 

3). As expected, the ATAC-seq signal intensity is positively correlated with impact scores in 493 

Group 3 elements (Fig. 5f). Group 3 cis-elements are highly enriched in promoter and enhancer 494 

regions, indicating possible enhancer-promoter or promoter-promoter interactions35. We also 495 

found a small set of elements that are not related to CTCF and ATAC-seq signals (Group 4, Fig. 496 

5e-g). Despite relatively lower impact scores, these elements may indicate alternative mechanisms 497 

which shape local 3D chromatin organization.  498 

 499 

In addition, we sought to test whether additional factors could be enriched in the impactful 500 

elements for chromatin organization. Recently, Myc-associated zinc finger protein (MAZ) has 501 

been shown to co-localize with CTCF, thus may act as an additional architectural protein to 502 

organize chromatin structure47,48. To test this observation, we performed a similar enrichment 503 

analysis of MAZ ChIP-seq profile across the four groups of impactful elements (Fig. 5f). We found 504 

that MAZ is enriched in CTCF and ATAC-seq co-overlapped elements (Group 1), but not in the 505 

Group 2 elements where there is no open chromatin signal. Surprisingly, we found that MAZ is 506 

much more enriched in the open chromatin region where there is no CTCF binding (Group 3, Fig. 507 

5e-f). This observation indicates that MAZ may function as a chromatin architectural protein 508 

independent of CTCF, acting at the active promoter-enhancer interaction regions.  509 

 510 

 511 

 512 

In silico genetic screening identified new T-ALL-specific chromatin organizations 513 

 514 

Owing to C.Origami’s accurate cell type-specific prediction, we envisioned that the subsequent 515 

ISGS framework could empower systematic discovery of disease-specific chromatin organization. 516 

To systematically identify T-ALL-specific cis-elements, we performed ISGS and calculated 517 

impact scores across the genomes in CUTLL1 and Jurkat cells, in parallel with T cells (Fig. 6a, 518 
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see Methods). Analyzing the impactful cis-elements between cell types, we identified both T-ALL-519 

specific and T cell-specific elements (Fig. 6a).  520 

 521 

Dysregulation of chromatin remodeling factors is frequently found in cancer cells49,50. We 522 

hypothesized that the dysregulation of local cis-regulatory elements around chromatin remodeling 523 

factors can lead to their abnormal expression in cancer. To connect the impactful cis-elements with 524 

critical chromatin remodeling genes in T-ALL, we first performed a pooled CRISPR knock-out 525 

screening in CUTLL1 and Jurkat cells, targeting chromatin remodeling factors that are required 526 

for T-ALL proliferation. This screening identified a set of genes, including CHD4, PHF5A, BRD4 527 

and KAT5 as top hits important for T-ALL cell proliferation (Fig. 6b-c). By associating the ISGS-528 

identified impactful elements with these four genes (Supplementary Fig. 28), we found an insulator 529 

element in the upstream region of CHD4 gene, thereafter termed CHD4-insu, with a high impact 530 

score in T cells but a low score in T-ALL cells (Fig. 6d, black arrowhead. Also see Methods). 531 

Specifically, we found that the loss of CTCF binding at the CHD4-insu element might be 532 

responsible for the reduction of impact scores in T-ALL cells (Fig. 6d). Consistent with this 533 

observation, in silico deletion of the CHD4-insu element followed by C.Origami prediction in T 534 

cells led to loss of insulation and stronger interaction gain between the flanking regions compared 535 

to the effect in T-ALL cells (Fig. 6e). 536 

 537 

CHD4 is the helicase component of NuRD complex, which functions to deacetylate H3K27ac51. 538 

Perturbation of CHD4 causes an arrest of cell cycle at G0 phase in childhood acute myeloid 539 

leukemia cells, indicating potential therapeutic target52. According to the in silico deletion 540 

experiment, we hypothesized that the loss of CTCF binding signal at the CHD4-insu locus leads 541 

to insulation loss. To test this hypothesis, we compared the experimental Virtual4C and Hi-C 542 

contact matrices of CUTLL1 and T cells (see Methods). As expected, we found that, compared to 543 

T cells, CUTLL1 cells have a higher interaction signal between the flanking regions of the CHD4-544 

insu sequence, signifying higher interactions between CHD4 promoter region and cis-regulatory 545 

elements in T-ALL cells (Fig. 6d virtual 4C tracks, and Fig. 6f). We further hypothesized that such 546 

increase of interaction affects CHD4 expression which is important for T-ALL proliferation. 547 

Supporting this hypothesis, RNA-seq experiment showed that CHD4 expression is significantly 548 

upregulated in CUTLL1 cells and T-ALL patient samples compared to that in normal T cells (Fig 549 
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6g). These results indicate that the loss-of-insulation at the CHD4-insu element in T-ALL cells 550 

may have increased the expression of CHD4 gene through establishing new chromatin interactions, 551 

consequently promoting leukemia cell proliferation. Together, our results demonstrated that the 552 

C.Origami-enabled ISGS framework is capable of identifying novel chromatin regulation 553 

mechanisms. 554 

 555 

 556 
Figure 6: CRISPR and in silico genetic screen reveals T-ALL-specific chromatin interaction. a, A scatter plot 557 
showing impact scores of a sample of screened regions (n = 10000). The impact score difference between target cell 558 
type and T cell are shown on the x axis, and the higher impact scores between the corresponding cell type and the T 559 
cells are shown on y axis. The CHD4-insu locus is marked in red. b, Volcano plot of pooled CRISPR screening results 560 
on chromatin remodeling genes in CUTLL1 (left) and Jurkat (right) cell lines. The log2 fold changes indicate the 561 
normalized gRNA abundance in Day 4 versus Day 20 post-transfection, which reflect cell proliferation rate upon 562 
CRISPR targeting. Significant factors with log2 fold changes > 1 are marked in red. c, Overlap between CRISPR 563 
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screening-identified significant chromatin-remodeling genes from CUTLL1 and Jurkat cells (b). d, Genomic tracks 564 
of 170Kb length around the CHD4 locus. Presented genomic tracks include impact scores, CTCF ChIP-seq and 565 
ATAC-seq profiles, and virtual 4C signal using CHD4 promoter as viewing point (highlighted by a gray band with 566 
gray arrowhead). The T cell-specific impactful cis-element, CHD4-insu, is highlighted with a gray band with black 567 
arrowhead. e, C.Origami prediction of CHD4 locus (top row) and the difference (bottom row) upon deleting the 568 
CHD4-insu locus across cell types. The presented window represents chromosome 12: 6,620,219-6,621,219, with 569 
black arrowhead pointing to the CHD4-insu locus. f, Experimental Hi-C matrices of CUTLL1 (lower triangular region) 570 
and T cells (upper triangular region) at the CHD4 locus. The presented region is aligned from the genomic track shown 571 
in c, highlighting T-ALL-specific interactions between CHD4 promoter region and distal cis-elements. g, RNA-seq 572 
expression levels of CHD4 in CUTLL1 cells, T-ALL primary patient samples, normal T cells and CD34+ 573 
hematopoietic stem cells. Error bars indicate one standard deviation.  574 
 575 
Genome-wide in silico screening uncovers trans-acting regulators of chromatin folding 576 

We next asked whether C.Origami-enabled in silico genetic screening could be leveraged for 577 

identifying cell type-specific trans-acting regulators determining the 3D chromatin organization. 578 

We first conducted chromosome-wide in silico deletion screening to identify cell type-specific 579 

impactful loci that were critical for predicting chromatin organization (see Methods). High-impact 580 

1Kb regions were then annotated and tested for enrichment in transcription factor binding profiles 581 

from the ReMap database53. Odds ratio for binding potential was calculated for each factor, 582 

followed by normalization within each cell type. The normalized odds ratio scores enable 583 

characterization of differential trans-acting regulators across cell types (see Methods).  584 

 585 

Applying this framework to the two T-ALL cell lines and T cells, we found differential compendia 586 

of transcription factors contributing to the cell type-specific 3D genome organization (Fig. 7a, 587 

Supplementary Fig. 29). Scoring these trans-acting regulators across cell types, we identified 588 

different categories. Notably, our analysis consistently identified known 3D chromatin regulators, 589 

such as CTCF, RAD21 and SMC1/SMC3, as top candidates across cell types (Category 1, Fig. 7a). 590 

In addition, we found differential sets of trans-acting regulators enriched in T cells and T-ALL 591 

cell lines, respectively. Several known factors critical for T cell function (Category 2), such as 592 

RCOR1, SMAD3 and ZEB2, are enriched in the T cell-specific group of trans-acting factors (Fig. 593 

7a). Consistently, CUTLL1 and Jurkat cells enriched similar groups of trans-acting factors 594 

(Category 3), represented by MAZ, BRD2, and NOTCH1 (Fig. 7a).  595 

 596 
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Previously, we found that both CDK7 and NOTCH1 regulate enhancer-promoter interactions in 597 

T-ALL cells30. Pharmacological inhibiting NOTCH1 leads to H3K27ac alterations in a subset of 598 

NOTCH1-associated chromatin interactions, while inhibiting CDK7 leads to broader changes in 599 

H3K27ac, indicating that CDK7 may have a broader impact on 3D chromatin organization30. To 600 

further test the hypothesis that pharmacological inhibiting CDK7 leads to broader chromatin 601 

organization changes for controlling T-ALL cell proliferation, we systematically assessed the 602 

relative contribution of trans-acting factors through in silico genetic screening in CUTLL1 and 603 

Jurkat T-ALL cells. Consistent with our prior results, we found that CDK7 ranked among top 604 

factors in regulating 3D chromatin organization, whereas NOTCH1’s predicted contribution was 605 

ranked much lower (Fig. 7b-c). Supporting the results inferred from ISGS analysis for trans-acting 606 

regulators, we found that pharmacological inhibition of CDK7 (+THZ1) leads to more TADs with 607 

chromatin organization changes than the effect from inhibiting NOTCH1 (+γSI) in CUTLL1 cells 608 

(Fig. 6d-e). Moreover, we found that impactful elements are more enriched in TADs with 609 

significant intensity changes upon CDK7 inhibition (Supplementary Fig. 30). 610 

 611 

 612 
Figure 7: In silico genetic screening uncovers trans-acting regulators of chromatin folding. a, A heatmap of 613 
normalized odds ratio scores of the enrichment of trans-acting regulators across cell types. Representative factors are 614 
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listed next to the three major categories. b-c, Elbow plots of in silico genetic screening-identified trans-acting 615 
regulators in CUTLL1 cells (b) and Jurkat cells (c). CDK7 and NOTCH1 are highlighted in both plots. d-e, Volcano 616 
plots showing chromatin organization changes of individual TADs upon pharmacological inhibition of CDK7 (d) or 617 
NOTCH1 (e) in CUTLL1 cells. Each dot represents a TAD varied from ~200Kb to 3Mb.  618 
 619 

Discussion 620 

Cell type-specific gene expression requires specific chromatin folding patterns. In this study, we 621 

developed a multimodal deep neural network architecture, C.Origami, that incorporates both DNA 622 

sequence and genomic features for de novo prediction of cell type-specific 3D genome 623 

organization (Fig. 1). We found that DNA sequence information together with CTCF binding 624 

signal alone was not sufficient for accurate de novo prediction of cell type-specific chromatin 625 

organization, whereas incorporating chromatin accessibility data into C.Origami provided the 626 

model with sufficient information to achieve prediction results comparable to high-quality Hi-C 627 

experiments (Fig. 2-3). These results are consistent with the observation of widespread 628 

transcription-associated chromatin interactions at the accessible chromatin regions33,34. Systematic 629 

ablation study further showed that the specific input combination of DNA sequence, CTCF binding, 630 

and open chromatin features enables the best prediction result (Fig. 2a). 631 

 632 

The rules governing 3D chromatin organization is consistent across different cell types, even 633 

between human and mouse. Although C.Origami was trained only using IMR-90 cell data, its 634 

ability to learn from one cell type and extrapolate prediction to other unseen cell types implies that 635 

the 3D chromatin organization rules learned by C.Origami is applicable to the general mammalian 636 

genome. We found that C.Origami achieved a general high performance in predicting cell type-637 

specific TAD structures. In addition, the predicted results can further be applied for detecting 638 

various types of chromatin loops across cell types. Due to its sensitivity to input data noise and 639 

quality difference in the public datasets, we expect future development of the C.Origami model 640 

would further improve chromatin loop detection performance from prediction by incorporating a 641 

customized normalization of input information.  642 

 643 

The high performance and minimal requirement on cell type-specific input data make C.Origami 644 

feasible for studies requiring frequent de novo analysis of 3D chromatin organizations without 645 

performing Hi-C experiments (Fig. 4). Similar to high-resolution Hi-C data, the predicted 646 
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chromatin contact matrices can be directly analyzed by other downstream computational tools for 647 

inferring TADs, chromatin loops, and enhancer-promoter interactions54–56. C.Origami can be 648 

useful in fields such as cancer genomics involving widespread genome rearrangement and 649 

synthetic regulatory genomics with de novo regulatory circuit construction8,40,57,58. 650 

 651 

With highly accurate prediction of chromatin organization, our model enables in silico genetic 652 

perturbation as a tool to study how cis-elements determine 3D chromatin organization in a cell 653 

type-specific manner. Given data from genomic features and Hi-C map, it is challenging to 654 

establish the causal relationship between differential genomic features and chromatin organization 655 

changes. C.Origami can accurately simulate the changes in chromatin organization upon in silico 656 

genetic perturbation, providing an effective way to map the causal relationship between genomic 657 

regions and chromatin organizations. In silico perturbation can be performed within seconds and 658 

is much more efficient compared to traditional experiments. Expanding the throughput of in silico 659 

genetic perturbations, we demonstrated the efficacy of in silico genetic screening framework for 660 

identifying critical DNA elements determining 3D chromatin organization (Fig. 5). While multiple 661 

previous methods, such as Expecto59, BPNet60 and Enformer61, have been developed to identify 662 

functional cis-regulatory elements, none of these methods could identify the cell type-specific 663 

chromatin interactions between those functional DNA elements. The in silico genetic screening 664 

allowed us to categorize different groups of cis-regulatory elements that are importance for 3D 665 

chromatin organization, including those only bound by CTCF or CTCF-free open chromatins. 666 

These differential genomic features may indicate distinct types of chromatin interactions, ranging 667 

from CTCF-dependent structural organization though loop extrusion to transcription-associated 668 

chromatin looping bound by MAZ10,47,48.  669 

 670 

We demonstrated the power of in silico genetic studies of 3D chromatin organization in leukemia. 671 

Screening for differential impactful cis-elements between T-ALL cells and normal T cells, we 672 

found a loss of insulation event at the upstream of CHD4 gene in T-ALL cell lines (Fig. 6). Such 673 

loss of insulation induced new chromatin interactions between CHD4 promoter and distal cis-674 

elements, correlating with gene expression level changes in T-ALL cells (Fig. 6). Notably, CHD4 675 

has been found critical for cell growth in childhood acute myeloid leukemia52. The discovery of a 676 

T-ALL-specific CHD4 gene expression regulation hints a potential anti-leukemia target by 677 
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perturbing CHD4 gene expression. Moving beyond, disruption of chromatin organization 678 

insulations has been identified through extensive experimental studies30,62,63. We envision that in 679 

silico genetic screening framework could be generally applicable for identifying critical cis-680 

regulatory elements across biological systems.  681 

 682 

Last, through systematic in silico screening followed by integrative analysis with TF-binding 683 

databases, we could compile a compendium of potential trans-acting regulators determining the 684 

chromatin organization in a cell type-specific manner. Analyzing trans-acting regulators in T-ALL 685 

samples, we provide direct evidence that CDK7 plays a broader role in modulating 3D chromatin 686 

organization than NOTCH1, consistent with our previous results30. As the number of CTCF ChIP-687 

seq and ATAC-seq grows for new cell types, we expect the model to be capable of identifying cell 688 

type-specific features through their predicted chromatin structure and trans-acting regulators. 689 

Application of in silico screening across normal and disease conditions could lead to the 690 

identification of novel targets for therapeutics.  691 

 692 

By integrating cell type-specific genomic features and DNA sequence information, we 693 

demonstrated that C.Origami can predict complex genomic features and enables in silico genetic 694 

perturbation and screening with high accuracy. We expect the underlying architecture of our model, 695 

Origami, is generalizable for applications across a broader range of genomic features, such as 696 

epigenetic modifications and gene expression. We expect future genomics study to shift towards 697 

using tools that leverage high-capacity machine learning models like Origami to perform in silico 698 

experiments for discovering cell type-specific genomic regulations. 699 

 700 
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Methods 728 
 729 
Hi-C data and processing 730 
We used seven human and mouse Hi-C profiles in this study: IMR-90, GM12878, H1-hESC, K562, 731 
CUTLL1, T cell, Mouse Patski (Supplementary Table 1). All the data are available on GEO 732 
(www.ncbi.nlm.nih.gov/geo) and/or 4D Nucleome Data Portal (https://data.4dnucleome.org). To 733 
minimize bias in Hi-C data preprocessing, we obtained counts data in raw fastq format. The reads 734 
from human cell lines were aligned to GRCh38 human reference genome and mouse cell lines are 735 
aligned to mm10 mouse genome. The alignments were filtered at 10kb resolution and iteratively 736 
corrected with HiC-bench64. To ensure the compatibility of prediction result with downstream 737 
analytical tools, we only used a reversible natural log transform to process the Hi-C prediction 738 
targets. Prediction from C.Origami with exponential transformation can be directly used as Hi-C 739 
chromatin contact matrix data for any downstream analysis. 740 
 741 

Cell Type Enzyme Accession Number Reference 

IMR-90 MboI GSE63525 Rao et al.32 

GM12878 MboI GSE63525 Rao et al.32 

H1-hESC Arima 4DNESFSCP5L8 Calandrelli et al.65 

K562 MboI GSE63525 Rao et al.32 

CUTLL1 Arima GSE115896 Kloetgen et al.30 

T cell Arima GSE115896 Kloetgen et al.30 

Mouse Patski Arima GSE71831 Darrow et al.45 

Mouse ESC HindIII GSE98671 Nora et al.38 
Supplementary Table 1. Hi-C data used for training and validation. 742 
 743 
CTCF ChIP-seq and ATAC-seq data 744 
CTCF ChIP-seq and ATAC-seq data for all cell-types are publicly available online from GEO 745 
(www.ncbi.nlm.nih.gov/geo) and ENCODE data portal (www.encodeproject.org/). CUTLL1 746 
ATAC-seq was sequenced according to standard method66. Details on accession number are listed 747 
in Supplementary Table 2. To maintain signal consistency across different cell lines, we 748 
aggregated fastq data from different replicates and subsampled them down to 40 million reads. 749 
The reads were processed by Seq-N-Slide to generate bigWig files 750 
(https://doi.org/10.5281/zenodo.6308846). The bigWig was used as regular, dense inputs to our 751 
model. To prepare an alternative sparse input format, we used MACS2 to perform peak calling on 752 
the intermediate bam files to obtain sparse peaks for CTCF and ATAC-seq67. The sparse 753 
narrowPeak file was converted back to bigWig with ucscutils. We took the natural log 754 
transformation of both dense and sparse bigWig files and used them as inputs to the model. 755 
 756 
 757 
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Cell Type CTCF ChIP-seq ATAC-seq 

IMR-90 ENCSR000EFI ENCSR200OML 

GM12878 ENCSR000AKB ENCSR095QNB 

H1-hESC ENCSR000AMF GSE85330 

K562 ENCSR000AKO ENCSR483RKN 

CUTLL1 GSE115893 see Methods CUTLL1 

Jurkat GSE115893 GSE90718 

T cell GSE115893 GSE168880 

Mouse Patski ENCSR419OOD ENCSR351QUO 

Mouse ESC GSE98671 N.A. 
Supplementary Table 2. CTCF ChIP-seq and ATAC-seq used for training and validation. 758 
 759 
DNA sequence 760 
We used the reference genome sequence (hg38 and mm10) from UCSC genome browser database. 761 
The original fasta file includes four types of nucleotides and “n” for unknown type. We retained 762 
the ‘n’ category and encoded it as the unknown fifth ‘nucleotide’. After encoding, each nucleotide 763 
is a 5 channel one-hot vector representing ATCGN. The same reference genome sequence was 764 
used for all cell types. 765 
 766 
Training data 767 
The training data consists of DNA sequence, CTCF binding signal, ATAC-seq signal and Hi-C 768 
matrix from IMR-90 cell line. The input data to the model includes DNA sequence, CTCF ChIP-769 
seq signal, and ATAC-seq signal at a 2,097,152 bp region. The output target is the Hi-C matrix at 770 
the corresponding region. The Hi-C matrix was originally called at 10Kb resolution and 771 
downscaled 8,192 bp to match the model output resolution. To generate batches of training data, 772 
we defined 2Mb sliding windows across the genome with 40Kb steps. Windows that have overlap 773 
with telomere or centromere regions were removed. We split the genome into training, validation 774 
and test chromosomes. Chromosome 10 and 15 were used as the validation set and the test set 775 
respectively. The rest of the chromosomes were used as the training set. 776 
 777 
Model architecture 778 
C.Origami is implemented with the PyTorch framework. The model consists of two 1D 779 
convolutional encoders, a transformer module and a 2D convolutional decoder to adapt to input 780 
channels of sequence and genomic features. The sequence encoder has five input channels, and 781 
the genomic feature encoder has two input channels. The two encoders have similar structures 782 
otherwise. To reduce memory cost, each encoder starts with a 1D convolution header with stride 783 
2 to half the size of the 2Mb bp input before it goes to convolution blocks. To reduce the input 784 
length down to 256, we deployed twelve convolution modules, each of which consists of a residual 785 
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block and a scaling block. The residual block has two sets of convolution layers with kernel width 786 
5 and same padding. Batch normalization and ReLU nonlinearity follows each convolutional layer, 787 
and the start and end position of the residual block is connected by a residual connection. The 788 
residual blocks do not alter dimension of inputs. The skip-connections within the residual block 789 
help promote information propagation. The scaling block consists of a 1D convolutional layer with 790 
kernel size 5 and stride 2 followed by batch normalization and ReLU activation. The scaling block 791 
reduces input length by a factor of 2 and increases the number of hidden layers. We increase the 792 
hidden size according to this schedule: 32, 32, 32, 32, 64, 64, 128, 128, 128, 128, 256, 256. The 793 
output from the last scaling module has a length of 256 with 256 channels.  794 
 795 
The transformer module is crucial for the model to encode dependencies across input elements at 796 
different positions. The module is built with eight customized attention layers similar to a BERT 797 
model68. Specifically, we set the number of hidden layers to 256, ReLU as the activation function 798 
and used eight attention heads. We used relative key query as positional embedding and set the 799 
maximum length to be 256. 800 
 801 
After the transformer module, the model concatenates each position in the 256 bins to every other 802 
position to form a 256 by 256 interaction map. The concatenation function takes the 256-bin 803 
sequence from the feature extraction module and outputs a 256-by-256 grid where location (I, j) 804 
is a concatenation of the features at i and j position. Then a 1-dimensional distance matrix is 805 
calculated and appended to the grid. The distance matrix value at location (i, j) is the Manhattan 806 
Distance between point (i, i) and (j, j) on the grid divided by 2. Since each bin has 256 channels, 807 
after concatenation and addition of the distance matrix, we arrived at an output of 256-by-256 grid 808 
with 513 channels.  809 
 810 
The decoder consists of five dilated residual networks. We designed the dilation at the 811 
corresponding layer to be 2, 4, 8, 16, 32 so that the receptive field of each pixel at the last layer 812 
covers the input space, reinforcing interactions between different elements. At the end of the 813 
decoder, we use a Conv2D layer with 1x1 kernel to combine 256 channels down to one channel 814 
and the output is a 256×256 matrix with one channel. 815 
 816 
The 256×256 output from the model was compared with experimental Hi-C map (ground truth) 817 
via a mean squared error (MSE) loss. The loss was back propagated through the whole network 818 
for gradient updates. 819 
 820 
Data augmentation 821 
To avoid overfitting, we implemented three types of data augmentations.  First, during training, 822 
we dynamically selected the 2Mb window with random shifts between plus and minus 0.36 Mb 823 
range. Second, we reverse-complemented the sequence and flipped the target Hi-C matrix with 0.5 824 
probability. Third, we added Gaussian noise to sequence, CTCF ChIP-seq and ATAC-seq signals 825 
with zero mean and 0.1 standard deviation. 826 
 827 
Model training and prediction 828 
To train the model, we used a training batch size of 8 and Adam optimizer with learning rate 0.002. 829 
The cosine learning rate scheduler with 200 epoch period was used for stabilizing training. The 830 
model achieved minimal validation loss when trained for 54 epochs. The model training time was 831 
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18 hours on a GPU cluster with 4 NVIDIA Tesla V100 GPUs with 320GB RAM to store training 832 
data. To prevent bottlenecking from data loading process, we used 8 CPU workers to load data 833 
and assigned 10 CPU cores in total for the training procedure. Model inference with a mobile 834 
NVIDIA RTX 2060 GPU can be achieved in under 1 second, and inference on an Intel i7-8750H 835 
CPU is around 3 seconds. To run prediction in IMR-90, the reference DNA sequence, CTCF ChIP-836 
seq and ATAC-seq from IMR-90 in a 2Mb region are taken as input. For de novo prediction in a 837 
target cell type, we replaced IMR-90 CTCF ChIP-seq and ATAC-seq with corresponding CTCF 838 
and ATAC-seq from the specific target. The reference sequence is kept the same. 839 
 840 
Insulation score 841 
Insulation score is implemented as the ratio of maximum left and right region average intensity 842 
and the middle region intensity64. We also added a pseudo-count calculated from chromosome-843 
wide average intensity to prevent division by zero in unmappable regions. Given that all the regions 844 
contain n interactions, the insulation score can be formulated as follows:  845 

 846 
where pseudo-count is set to the average intensity of one chromosome within 2mb. 847 
 848 
Loop calling 849 
We used the Hi-C valid pairs with the FitHiC software69,70 to identify significant interactions. We 850 
used a resolution of 10kb, minimum and maximum distance of 30kb and 1Mb. For loop calling on 851 
predicted matrices, we converted the predicted matrix back to valid pairs by merging predictions 852 
to chromosomes and counting the discretized intensity value. FitHiC generated a list of significant 853 
interactions with corresponding FDR corrected q-values. For loop analysis on IMR-90, we 854 
computed AUROC and overlap between loops called from experimental Hi-C and loops called 855 
from predicted Hi-C. To calculate AUROC, we used predicted loops as target. Q-value cutoffs 856 
ranging from 1e-5 to 1e-13 are selected to filter significant loops called from the predicted Hi-C. 857 
Then, the q-values from loop called from experimental Hi-C were compared to significant loops 858 
called from prediction to calculate an AUROC. For overlap analysis, we chose a fixed 1e-5 cutoff 859 
for loops called from predicted and experimental Hi-C and compared the overlap of significant 860 
loops. For loop analysis on specific type of interaction, we overlapped the two anchors of each 861 
loop and obtain the categories for each loop called. The loops were then filtered by different 862 
categories and the same AUROC and overlap analysis was performed on each category of loops. 863 
 864 
For cell type-specific loop analysis between IMR-90 and GM12878, we first used a more stringent 865 
cutoff of 1e-7 as a threshold for significant loops. Then we further categorize specific loops into 866 
IMR-90 specific or GM12878 specific according to the log2 fold change (log2fc) of loop 867 
interactions counts. To calculate AUROC, we used log2 fold change in place of the q-value cutoff 868 
from previous analysis. We compared two log2fc. The first log2fc is between predicted loops in 869 
cell type 1 and predicted loops in cell type 2 (e.g. IMR-90 predicted loop / GM12878 predicted 870 
loop). The second log2fc is between experimental loops in cell type 1 and predicted loops in cell 871 
type 2 (e.g. IMR-90 experimental loop / GM12878 predicted loop). Then the same AUROC and 872 
overlap analysis was performed for each of the two cell type-specific groups. For loop analysis on 873 
specific type of interaction in a cell type-specific way, the same anchor overlap was performed 874 
with corresponding AUROC and overlap analysis. 875 
 876 

<latexit sha1_base64="eQHGNbVto5FNwfmu8l3TfbSJp4U="></latexit>
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Chromosome-scale Hi-C contact matrix prediction 877 
To bridge adjacent 2Mb-window predictions into chromosome-wide Hi-C contact matrices, we 878 
ran the prediction in a sliding window of step side 262,144 bp, which is 1/8 of the 2Mb prediction 879 
window. All predictions were in-painted to their corresponding location on the contact map. Most 880 
regions were covered by prediction for 8 times except for regions at the beginning or end of the 881 
chromosome.  To correct for different levels of overlap, we counted the total times of overlap for 882 
every pixel and applied corresponding scaling factors. The resulting chromosome-wide prediction 883 
can be directly used for downstream analysis such as TAD calling and insulation score calculation.  884 
 885 
Distance-stratified intensity and correlation 886 
Distance-stratified intensity and correlation calculation were based on fused chromosome 887 
prediction. Stratified intensity at distance i was calculated by aggregating the line that is parallel 888 
to the diagonal with offset of i. Stratified correlation was calculated as Pearson’s r between the 889 
shifted diagonal line of prediction and ground truth.  890 
 891 
Performance comparison with previous methods 892 
We compared performance of C.Origami against three previously published methods: Akita22, 893 
DeepC23, and Orca36. We compared the performance using four metrics: insulation score 894 
correlation, observed vs expected Hi-C metrices correlation, mean squared error (MSE), and 895 
distance-stratified correlation. We calculated the four metrics separately for the four models by 896 
their prediction to the experimental data as ground truth. The comparison were carried out in two 897 
different cell types: 1) in the training cell type, IMR-90 cell, which most models were trained on, 898 
and 2) in a new cell type, GM12878 cells, aiming to quantify the performance of de novo prediction 899 
of chromatin organization of the four models.  900 
 901 
We generated a set of sliding windows that covers the whole genome and can be predicted by each 902 
model. Since Akita and DeepC are only able to predict interaction within a 1Mb window, we 903 
restricted the test regions to 1Mb blocks. To generate a genome-wide testing dataset, we selected 904 
all 1Mb regions in a sliding window with 0.5Mb overlap between neighboring regions. To ensure 905 
compatibility with all models’ prediction windows, the first 1.5Mb and last 1.5Mb of 906 
chromosomes were used as buffer regions for models requiring 2Mb windows as inputs. In total 907 
5935 regions were generated. The Hi-C experimental data was extracted from these regions as 908 
targets. We used all 4 models to predict the interaction for the corresponding regions.  909 
 910 
The most relevant versions of the previous models were selected for comparison. For Akita, the 911 
IMR-90 output channel was selected. For DeepC, we used their model trained with IMR-90 data. 912 
Orca was only trained on HFF and H1-hESC. We used the HFF model because HFF is also a 913 
fibroblast cell line similar to IMR-90. The comparison turned out to be valid because even though 914 
Orca was trained on HFF, it outperformed both Akita and DeepC on IMR-90 in many benchmarks. 915 
For C.Origami, we used the IMR-90-trained model. 916 
 917 
It is necessary to perform scaling and normalization to each models’ outputs due to their varied  918 
prediction target customizations. Akita predicts a 1048576bp region with 512 bins. We removed 919 
the extra 48576bp on the sides to make the prediction 1Mb, followed by rescaling bins into 128. 920 
Orca can predict interactions at multiple scales. Since C.Origami used a 2Mb window as prediction 921 
target, we selected the 2Mb window in Orca for consistency. The prediction was then cropped to 922 
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1Mb and rescaled to 128 by 128. For C.Origami, the prediction is a 2097152 bp window. We 923 
cropped the prediction to leave the center 1Mb regions and rescaled the bins to 128. 924 
 925 
DeepC’s prediction target is different from other models with predictions of 45-degree rotated 926 
version of the Hi-C matrices. DeepC also produces predicted Hi-C maps in different scales 927 
compared with other methods. Thus, we performed a series of transformations (Supplementary 928 
Figure 11) including mirroring, rotating and cropping to make a comparable contact matrix to 929 
outputs produced by other models. We used a 1Mb prediction window for DeepC and rescaled the 930 
output to 128 by 128. 931 
 932 
The first step to make the models comparable is selecting a common ground truth Hi-C as the 933 
evaluation target. Since each model used a different ground truth with different transformations 934 
(e.g. obs/exp, log, gaussian smoothing), they cannot be compared directly. We defined the 935 
evaluation target as logged Hi-C intensity (log(ICE normalized counts + 1)). Logged intensity has 936 
a few advantages over observed vs expected map. First, it allows for computing insulation scores. 937 
Second, it can be converted to observed vs expected while the reverse is not straightforward. It can 938 
also be converted to raw counts by taking the exponent. Third and most importantly, it is used as 939 
the default Hi-C format for most downstream analysis pipelines like loop calling, and visualization. 940 
 941 
The second step to make the models comparable is to normalize model outputs to the evaluation 942 
Hi-C target. Since each model used a different original prediction target, we want to measure the 943 
difference between the original target and the evaluation target. We plotted the mean/std of 944 
intensity over distance between prediction and evaluation target and found a large discrepancy 945 
between models. Specifically, DeepC results stood out with a unique pattern that might be a result 946 
of their custom stratified binning method (Supplementary Figure 12). We also observed that the 947 
raw predicted matrix intensities were too different to compare (Supplementary Figure 12). 948 
 949 
We performed distance-stratified normalization (DSN) to align all predictions to the target 950 
prediction (Supplementary Figure 13). We computed the mean and std for each diagonal and then 951 
normalized the prediction to target experimental Hi-C. Formally, let 𝑇"  be the normalized matrix, 952 
𝑇  be the target ground truth matrix, and 𝑀  be the unnormalized matrix. Let 𝑚!,#  be the 953 
corresponding element in 𝑀 and	µ, σ	 denote the mean and std at diagonal 𝑑 in matrix 𝑇 and 𝑀. 954 
Then, every 𝑖$% entry on 𝑑$% diagonal 𝑡!,# can be normalized as follows.  955 
 956 

 957 
  958 
The normalized prediction were compared to the target Hi-C using four metrics: insulation score 959 
correlation, obs/exp Hi-C matrix correlation, MSE (mean squared error), and distance-stratified 960 
correlation. Each metric was calculated per chromosome for every tested model using their 961 
corresponding prediction and the experimental data as ground truth. 962 
 963 
We also performed GM12878 de novo prediction comparison. For C.Origami, we used the same 964 
IMR-90 trained model but GM12878 CTCF ChIP-seq and ATAC-seq profiles as inputs to predict 965 
Hi-C. For sequence only models, we used the same DNA sequence setup because they could not 966 
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provide cell type-specific de novo prediction. Though ideally input DNA sequence should be cell 967 
type-specific, such procedure is not realistic for general applications.  968 
 969 
C.Origami prediction at the CUTLL1 t(7;9) translocation site 970 
To generate experimental Hi-C data, we defined a custom chromosome in Hi-C bench64. The 971 
custom genome in Hi-C bench is defined at the matrix-filtered step where the pipeline assign reads 972 
to chromosomes. For CUTLL1 experiment, we defined a custom chromosome chr7chr9 with chr7: 973 
0-142800000 as the starting chromosome and chr9: 136500000-138394717 as the ending 974 
chromosome. 975 
 976 
CUTLL1 t(7;9) translocation is heterozygous, leading to allele-specific complexity to its 977 
corresponding Hi-C matrix. Since only one allele is translocation, the experimental Hi-C data 978 
mapped to either normal reference genome or the t(7;9) translocated reference genome would be 979 
a mixture of chromatin interactions from both translocated and normal chromosomes. To align 980 
with this hybrid effect of Hi-C contact map, we first separately predicted three sets of Hi-C maps: 981 
t(7;9) translocated chromosome, normal  chromosome 7, and normal chromosome 9. The predicted 982 
Hi-C matrix at the t(7;9) locus is an average of the predicted Hi-C maps of t(7;9) translocation 983 
chromosome and a fused prediction map ranging from normal chr7 to the breakpoint 984 
chr7:142,797,952 and extending from chr9:136,502,817 to the rest of normal chr9.  We did not 985 
count the inter-chromosomal interactions at these loci due to their much weaker intensity compared 986 
to the intra-chromosomal interaction at the translocation site.  987 
 988 
Mouse prediction 989 
For the mouse Patski cell type prediction45, the CTCF ChIP-seq and ATAC-seq inputs were 990 
processed using the same pipeline with mm10 as the assembly number. The original C.Origami 991 
model trained with IMR-90 dense input features was used for prediction. For genome-wide 992 
evaluation of predicting mouse chromatin organization, we adopted the same procedure from the 993 
“Performance comparison with previous methods” section. 994 
 995 
CTCF depletion prediction in mESC 996 
We preprocessed CTCF ChIP-seq and Hi-C on mouse ESC cells from Nora et al38 following the 997 
same pipeline for ChIP-seq and Hi-C. In total, three sets of data with conditions: untreated, auxin-998 
induced CTCF depletion, and wash-off are processed.  Since this study did not measure ATAC-999 
seq signal, C.Origami model was re-trained using only DNA sequence and CTCF ChIP-seq on the 1000 
untreated condition. The re-trained model was then used for predicting chromatin organization in 1001 
the CTCF depletion (auxin treatment) and restoration (auxin wash-off) conditions. Genome-wide 1002 
performance benchmark followed the same procedure as in the “Performance comparison with 1003 
previous methods” section. 1004 
 1005 
Reducing impact score from 3D voxels 1006 
Screening by deletion produces a 3D voxel with coordinates (i, j, k) where the first two dimensions 1007 
(i, j) correspond to the Hi-C matrix difference and the third dimension k denotes deletion locus. 1008 
Under this framework, the impact score can be defined as reducing the first two dimensions (i, j) 1009 
with mean or sum, denoting the overall intensity shift with respect to deletion. The sensitivity score 1010 
can be defined as the result of reducing either of the first two dimensions (i or j) and the third 1011 
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deletion dimension k. From another perspective, sensitivity score of a locus denotes average 1012 
intensity shift over all deletions with respect to its location. 1013 
 1014 
GRAM (Gradient-weighted Regional Activation Mapping) 1015 
The GRAM scoring system is a generalized version of Grad-CAM on 2D outputs71. Instead of 1016 
taking a single output, GRAM operates on a region r in the output space y and runs 1017 
backpropagation on all pixels within r. GRAM on region r in network layer m is defined as follows: 1018 

 1019 
where 𝛼&' is the activation weight for channel k and region r. Formally, 𝛼&' is defined as: 1020 

 1021 
where Z is the number of activations in the layer and the quotient is the gradient at position i, j in 1022 
the activation layer m with respect to output r.  𝛼&' can be interpreted as the average gradient across 1023 
the i, j (width and height) dimension at the layer m.  𝐴&( is the activation in channel k at layer m. 1024 
In this study, we choose r to be the full output space. During forward propagations, activation (𝐴() 1025 
at the target layer m is recorded. This activation map is a 3D tensor, or an image with k channels. 1026 
Then, the r region of the output is selected for backpropagation and gradients are calculated for 1027 
every layer. The gradients (used for calculating weights 𝛼&') at the target layer m are collected. The 1028 
set of collected gradients is also an image-like 3D tensor with k channels. To obtain 𝛼&' , we 1029 
averaged the gradients across width and height dimension, resulting in a k-dimensional array. The 1030 
goal of GRAM is to visualize a gradient-weighted activation map that maximizes the output signal. 1031 
To obtain this weighted activation, 𝛼&'  is used as weights to average the k channels activation 1032 
image (𝐴(). The final averaged activation is defined as the GRAM output. 1033 
 1034 
Attention score 1035 
In the transformer module, we implemented the vanilla multi-head attention: 1036 

 1037 
where Q, K, V are query, key, and values. 𝑊) is the out projection of dimension (number of heads 1038 
h times value dimension 𝑑* by model dimension  𝑑(). In our implementation 𝑑* and 𝑑* are set to 1039 
128. ℎ𝑒𝑎𝑑# is a single attention head and is calculated by: 1040 

 1041 
where 𝑊+ , 𝑊, , 𝑊-  are projection weights for query, key and value. 𝑑&  is the embedding 1042 
dimension of key, also implemented as 128. During forward propagation, we extract attention 1043 
weights for head i which is defined as the alignment between query and key: 1044 

 1045 
The attention score can be calculated by averaging attention weights across different heads: 1046 

 1047 
where N = 8 because each layer has eight attention heads. Since the transformer module consists 1048 
of eight attention layers, for each prediction, we obtained a set of eight attention scores. The 1049 
attention score is visualized with the BertViz package72. 1050 
 1051 
Impact score 1052 
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The impact score in the screening experiment is defined as the pixel-wise mean absolute difference 1053 
between two predictions. Formally, given that we have a prediction S, a 2D contact matrix from 1054 
the original input and S’ from the input perturbed at location x, and let s{i, j} be the individual 1055 
pixel in S at position i and j, the impact score of location x is defined as: 1056 

 1057 
 1058 
In silico genetic screening 1059 
Typical ChIP-seq profiles have peak widths ranging from a few hundred base pairs to 1Kb. To 1060 
capture fine-regulation elements, we performed genome-wide in silico genetic screening at 1Kb 1061 
resolution. The screening starts from individual chromosomes with a window size of 2Mb, denoted 1062 
as (i, i + 2097152).  Inside this window, a 1Kb perturbation region centered at the 2Mb window, 1063 
or location (i + 2097152 / 2 - 500, i + 2097152 / 2 + 500), was deleted followed by C.Origami 1064 
prediction. After deleting the 1Kb segment, we appended a 1Kb empty input at the end to keep a 1065 
complete 2Mb window size for C.Origami prediction. For each window, the original input and 1066 
perturbed input were predicted by C.Origami, resulting to two outputs, S_i and S_i’, which were 1067 
collected for downstream impact score calculation. Once the output acquisition was completed for 1068 
the window at (i, i + 2097152), the screening moves to a downstream overlapping window that 1069 
has 1Kb offset from the current window with range (i + 1000, i + 2097152 + 1000). The mean 1070 
absolute average of difference between the original and perturbed output S_i and S_i’ were 1071 
computed and attributed to the perturbation region (i + 2097152 / 2 - 500, i + 2097152 / 2 + 500). 1072 
Since the in silico screening offset is equal to the length of perturbation size, this procedure 1073 
produces a continuous impact score that covers all genomic regions with a resolution of 1Kb.   1074 
 1075 
It is worth noting that screening at 1Kb resolution could be computationally intensive. For instance, 1076 
screening on chromosome 8, a medium-size chromosome which has a length of 146Mb, requires 1077 
the model to make 146Mb / 1Kb * 2 predictions = 292,000 separate predictions. In our optimized 1078 
framework that predicts 600 windows per minute, and screening chromosome 8 takes 8 hours. To 1079 
reduce computational load, we randomly sampled 10 chromosomes (chr 5, 7, 8, 11, 12, 14, 15, 19, 1080 
20, 22) to represent the whole genome and performed 1Kb-resolution screening on the selected 1081 
chromosomes.  1082 
 1083 
In order to obtain the most impactful elements from the screening result, we designed a custom 1084 
peak calling algorithm. We defined the peak score p of a locus as the difference between maximum 1085 
and minimum signal within the range of 3 bins including the locus. We then selected the top 1% 1086 
of the total screened regions as a cutoff for impactful elements based on the peak score. 1087 
 1088 
To annotate the in silico genetic screen-identified impactful cis-elements, we compiled a set of 1089 
genomic annotations including TAD boundary regions, enhancers, promoters, intragenic regions 1090 
and intergenic regions. The boundary region was generated by calling TAD boundaries at 10Kb 1091 
resolution with HiC-bench64, using its TopDom module and connecting adjacent TADs. To 1092 
increase robustness of TAD boundary calling, we expanded the boundary width to 5 bins, or 50Kb. 1093 
The promoter region was defined as 5.5Kb fragments, spanning 5Kb upstream and 500bp 1094 
downstream of gene transcription start site. Enhancers were defined as by the H3K4me1 1095 
modification, which marks both active and inactive enhancers73. The H3K4me1 ChIP-seq peaks 1096 
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for IMR-90 was downloaded from ENOCDE with accession number: ENCFF611UWF. To 1097 
increase robustness, we expanded peaks to have at least 1Kb width.  1098 
 1099 
In silico genetic screen at 2Mb windows 1100 
We conducted in silico genetic screen at a fixed 2Mb window without centering the deletion 1101 
element. We systematically removing segments of 8,192 bp, or 1 bin, from model inputs. To scan 1102 
through the entire 2Mb region, we performed 256 deletion experiments at each bin and calculated 1103 
the prediction difference map before and after deletion. Deletion reduces the input length from 1104 
2,097,152 bp to 2,088,960 bp. To maintain input shape, we appended 8,192 bp of empty input 1105 
features to facilitate subsequent prediction. 1106 
 1107 
CRISPR screening for chromatin remodeling genes in T-ALL cell lines 1108 
Pooled CRISPR screening across 313 chromatin remodeling genes in CUTLL1 and Jurkat cells 1109 
were carried out in parallel with our previous studies for pooled screening of RNA binding protein 1110 
in T-ALL cells74. Briefly, for each chromatin remodeling gene, we designed on average 6-8 1111 
sgRNA, for a total of ∼2,500 sgRNAs. The gRNA sequences were synthesized from Twist 1112 
Bioscience, and cloned into a lentivirus-based sgRNA vector tagged with GFP (Addgene plasmid 1113 
no. 65656). Cas9-expressing T-ALL cell lines were transduced with sgRNA library virus at a low 1114 
MOI (∼0.3), followed by infection efficiency assessment through GFP percentage on Day 4 post-1115 
transduction. Remaining cells were placed back into culture until 20 days post-transduction. 1116 
 1117 
Cell proliferation was measured by comparing the sgRNA frequencies between Day 4 and Day 20 1118 
cells. Genomic DNA was harvested on Day 4 and Day 20 cells using Qiagen DNA Purification kit 1119 
based on the manufacturer's protocol. The gRNA frequencies in the genomic DNA were amplified 1120 
and quantified following our previous procedure75. For pooled CRISPR screening analysis, 1121 
samples of each time-point were normalized as sgRNA read count / total read count x 100,000. 1122 
Subsequently, normalized reads were then used to calculate log2 fold change as (normalized read 1123 
count Day 4 / normalized read count Day 20) for each gRNA. The fold changes between Day 4 1124 
and Day 20 for each gene were averaged from all CRISPR gRNA targets.  P values were calculated 1125 
via a two-sided t-test comparing the fold changes of all gRNA targets of the same gene to fold 1126 
change of 1. 1127 
 1128 
Virtual 4C 1129 
HiC-Bench “virtual4C” pipeline64 was used to compute the interactions of each selected viewpoint 1130 
in a roll-window fashion. We summed the valid read pairs in a 5 kb area centered at 100 bp bins 1131 
that covered the area of +-2.5 Mb from the viewpoint (50k bins per viewpoint). The interactions 1132 
were normalized by the total number of valid pairs of the sample.  1133 
 1134 
Trans-acting regulator identification in T-ALL cell lines 1135 
Different cell types have a unique set of impactful cis-elements, which constitutes the cell type-1136 
specific chromatin interaction map. To connect the differential patterns of cis-elements with trans-1137 
acting regulators, we compared selected the cell type-specific impactful regions by a custom peak 1138 
calling method, followed by a transcription factor enrichment test for identifying potential trans-1139 
acting regulators. We used the transcription factor database from ReMap202253. To reduce low 1140 
quality signals from the ReMap database, we filtered out transcription factors profiles that have 1141 
less than 7000 hits, or profiles that only have one experiment. Together, we collected 612 1142 
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transcription factor binding profiles for downstream analysis. We used Fisher’s exact test to 1143 
evaluate the overlap between impactful cis-elements from in silico genetic screening with each 1144 
transcription factor from the database. The test was conducted using the LOLA package (Locus 1145 
Overlap Analysis)75. For common transcription factors with hit counts larger than 20K, we down 1146 
sampled profiles to 20K. We calculated the q value with FDR correction based on the 612 TF 1147 
profiles tested and used odds ratio as the main metric to determine enrichment of each factor in 1148 
impactful cis-elements. 1149 
 1150 
To compare the contributing trans-acting regulator profiles between different cell types, we first 1151 
normalized the odds ratio within each cell type. We performed k-means clustering of transcription 1152 
factors based on their normalized odds ratio in CUTLL1, Jurkat and T cells. K-means clustering 1153 
was performed with standard Euclidean distance with 6 centroids. The clusters were further grouped 1154 
and visualized using a heatmap. 1155 
 1156 
Intra-TAD activity analysis 1157 
Iteratively corrected matrices were re-normalized by dividing each bin value by the sum of all the 1158 
values in the same distance bin in the same chromosome (distance-normalization). All the TADs 1159 
identified in the control sample were used as the reference TADs to compute the intra-TAD activity 1160 
changes. The set of reference TADs between the two samples S1 (control) and S2 (treatment) were 1161 
denoted as set T. A paired two-sided t-test was performed on each single interaction bin within 1162 
each reference TAD between the two samples. We also calculated the difference between the 1163 
average scores of all interaction intensities within such TADs and the TAD interaction log fold-1164 
change. Finally, a multiple testing correction by calculating the false-discovery rate on the total 1165 
number of TAD pairs tested. The TAD interaction change for each t in T is define as follow: 1166 

 1167 
We classified the reference TADs in terms of Loss, Gain or Stable intra-TAD changes by using 1168 
the following thresholds: FDR < 0.01, absolute TAD interaction log fold change > 0.25, and 1169 
absolute TAD interaction change > 0.1. 1170 
 1171 
Data availability 1172 
Most of the Hi-C, CTCF ChIP-seq, and ATAC-seq datasets used in the study were public data 1173 
from ENCODE portal and/or NCBI GEO database, with the accession codes listed in the 1174 
corresponding Methods section. The generated data (CUTLL1 ATAC-seq) is uploaded to GEO 1175 
with accession number GSE216430. 1176 
 1177 
Code availability 1178 
The code for C.Origami is available at https://github.com/tanjimin/C.Origami.  1179 
 1180 

  1181 
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Supplementary Figures: 1182 

 1183 
Supplementary Figure 1: C.Origami model structure and module components. A schematic of C.Origami model 1184 
architecture. The DNA encoder and Genomic Feature encoder have similar architectures and only different in input 1185 
channels where DNA encoder has 5 channels and feature encoder has 2 channels. We built the encoder with 12 1186 
convolution blocks. Each block consists of a scaling module and a residual module. The scaling module downscales 1187 
input features by a factor of two with a stride-2 1D convolution layer. The residual module promotes information 1188 
propagation in very deep networks76. The number of modules was carefully chosen so that the 2,097,152 input are 1189 
scaled down to 256 bins at the end of the encoder. To enhance interactions within the 2Mb window, we used an 1190 
attention module consisting of eight attention blocks. Each position of the output is concatenated with every other 1191 
position to form a 2D matrix, resembling a vector outer product process. To refine the final prediction, we used a 5-1192 
layer dilated 2D convolutional network as decoder. We deliberately chose the dilation parameters to ensure that every 1193 
position at the last layer has a receptive field covering the input range. 1194 
 1195 

 1196 

 1197 

 1198 
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 1199 
Supplementary Figure 2: Performance of C.Origami trained with DNA sequence and CTCF ChIP-seq. a, 1200 
Prediction from a model trained with DNA sequence and CTCF ChIP-seq. The plots were organized the same way as 1201 
Fig. 2. b, De novo predicting chromatin organization of the chromosome 15 locus in GM12878 using the model trained 1202 
with DNA sequence and CTCF binding profiles. The difference between IMR-90 and GM12878 is presented on the 1203 
right. While C.Origami trained with DNA sequence and CTCF profile achieved good performance in validation and 1204 
test set in IMR-90 (a), it missed predicting some fine-scale chromatin structures in GM12878.  1205 
 1206 
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 1207 
Supplementary Figure 3: C.Origami trained with DNA sequence, CTCF binding, and chromatin accessibility 1208 
profiles performed optimally. a, Experimental Hi-C matrices, and genomic profiles of IMR-90 and GM12878 cells 1209 
at chr2:400,000-2,497,152. The difference between the two cell lines were presented on the right. b-c, Cell type-1210 
specific prediction of the chromatin organization at the same locus using C.Origami (b) or model trained with DNA 1211 
sequence and CTCF binding (c) . d-e, Same as a-c at a difference locus, chr10:122,700,000-122,797,152. 1212 
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 1213 
Supplementary Figure 4: Ablation study on different input features. Using C.Origami trained with DNA sequence, 1214 
CTCF binding, and chromatin accessibility profiles, the experiments were performed by  random shuffling DNA 1215 
sequences at base pair level (a), random shuffling CTCF signal (b), and random shuffling ATAC-seq signal (c). From 1216 
left to right, reference prediction with all inputs (left), prediction with sequence shuffled (middle), difference between 1217 
perturbed prediction and reference prediction (right).  1218 
 1219 
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 1220 
Supplementary Figure 5: Performance comparison of C.Origami models trained with sparse information and 1221 
dense information. a, Experimental Hi-C matrices of IMR-90 and GM12878 cells at chr3: 158,600,000-160,697,152. 1222 
The difference between the two cell lines were presented on the right. b-c, Cell type-specific prediction of the 1223 
chromatin organization at the same locus using C.Origami models trains with sparse genomic information (b) or dense 1224 
genomic information (c). For each set of plots in b and c, the input CTCF ChIP-seq and ATAC-seq profiles were 1225 
aligned with the predicted Hi-C matrices and the insulation score results. d-f, Same as a-c at a difference locus, chr10: 1226 
85,100,000-87,197,152. 1227 
 1228 
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 1229 
Supplementary Figure 6: Chromosome karyotype visualization along with chromosome-wide Hi-C intensity 1230 
and correlation of insulation scores. The results were visualized using karyoploteR77. Chromosome 1 to 1231 
chromosome X were plotted to visualize the Pearson correlation coefficients of insulation scores calculated from 1232 
prediction and that from experimental Hi-C. Average intensity of 2Mb windows were plotted in red. Centromere 1233 
regions were denoted with red segments on the genome. The few data points with low intensity are regions 1234 
corresponding to unmappable or repeat sequences such as centromeres and telomeres. 1235 
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 1237 
Supplementary Figure 7: C.Origami-predicted 2Mb Hi-C maps can be fused into larger interaction maps. a, 1238 
Interaction intensity distribution of prediction and experimental Hi-C on validation (chromosome 10) and test 1239 
chromosomes (chromosome 15). b-d, The predicted 2Mb Hi-C maps were fused to 5Mb (b), 10Mb (c), and 50Mb (d) 1240 
on chromosome 15, all with the same starting site at 40 Mb.  1241 
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 1242 
Supplementary Figure 8: Chromosome-level distance-stratified intensity correlation. a, Interaction intensity 1243 
distribution of prediction and experimental Hi-C on validation (chromosome 10)  and test chromosome (chromosome 1244 
15). Chromosome-level distance-stratified correlation between prediction and experimental Hi-C were calculated on 1245 
each chromosome of IMR-90 cells. 1246 
 1247 
 1248 
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 1249 
Supplementary Figure 9: Evaluating C.Origami’s performance on detecting significant chromatin loops in 1250 
IMR-90 cells. a, ROC curves of significant chromatin loops called in experimental Hi-C and prediction. Significant 1251 
chromatin loop referring to global background were called at different q-value ranging from 1e-5 to 1e-13 from 1252 
predicted Hi-C matrices. Q-value of experimental Hi-C was ranked against predicted loops to calculate AUROC. Each 1253 
curve represents an ROC curve comparing experimental Hi-C q-value to predicted loops with specific cutoffs. b, ROC 1254 
curves of top 50 to top 5000 loops with corresponding q-value cutoffs. AUROC under each criterion is indicated in 1255 
legends of a and b. c-d, Venn diagram of chromatin loop overlapping between experiment and prediction with q-value 1256 
cutoff of at 1e-5 (c) or between the top 100,000 loops (d). All loop calling was carried out with global background as 1257 
reference to increase sensitivity to all significant chromatin interactions.  1258 
 1259 
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 1260 
Supplementary Figure 10: Performance of detecting loop interactions under different chromatin backgrounds. 1261 
a-b, Percentages of loop counts in three different categories, including CTCF-CTCF loop, promoter-promoter loop, 1262 
and promoter-enhancer loop. Significant chromatin loop referring to global background were called at different q-1263 
value in IMR-90 cells and then categorized according to their anchor content. Within each panel, AUROC between 1264 
loops from experiment and prediction was calculated with q-value cutoffs ranging from 1e-5 to 1e-13, similar to the 1265 
previous loop analysis. Category counts were divided by the total number of loops called. c-e, ROC curves and the 1266 
Venn diagrams of the significant chromatin loops called in experimental Hi-C and prediction categorized by anchor 1267 
content: CTCF-CTCF loop (c),  promoter-promoter loop (d), and promoter-enhancer loop (e). AUROC from top 50 1268 
to top 5000 loops were also plotted.  1269 
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 1270 
Supplementary Figure 11: Workflow of comparing performance of models predicting 3D chromatin 1271 
organization. a, Workflow of the comparison procedures to standardize and evaluate the predictions from Akita, 1272 
DeepC, Orca, and C.Origami. b, Post-processing of DeepC prediction results. DeepC method by default produces a 1273 
45 degree Hi-C map, thus requiring mirroring, rotation and cropping steps to make the results comparable to Hi-C 1274 
targets. 1275 
 1276 
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 1277 
Supplementary Figure 12: Distance-stratified statistics of raw predictions results from the four models in 1278 
comparison. a-b, Distance-stratified mean intensity (a) and standard deviation (b) of predicted Hi-C results from the 1279 
four models. The horizontal axis denotes the rescaled 128 bins representing a 1Mb region. DeepC has a different 1280 
distribution of intensities compared to the rest of the models. The abnormality could be a result of its custom percentile 1281 
normalization on the training target. c. Raw prediction results from four models together with experimental Hi-C. 1282 
Intensity values was set to be from 0 to 1 according to experimental Hi-C data.  1283 
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 1284 
 1285 
Supplementary Figure 13: Distance-stratified statistics of prediction results after standardization. a-b, 1286 
Distance-stratified mean intensity (a) and standard deviation (b) of predicted Hi-C results from the four models after 1287 
distance-stratified normalization. After normalization, the differences between all model predictions are comparable 1288 
to experimental Hi-C. c. Normalized prediction results from four models together with experimental Hi-C. Intensity 1289 
values was set to be from 0 to 1 according to experimental Hi-C data. Presented loci are from the same regions as in 1290 
Supplementary Figure 12. In comparison, normalized predictions are more comparable in between and closer to the 1291 
experimental Hi-C. 1292 
 1293 

 1294 
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 1295 
 1296 
Supplementary Figure 14: Genome-wide comparison of model performance in IMR-90 cells. For predictions 1297 
from each model (Akita, DeepC, Orca and C.Origami), we measured insulation score correlation (a), observed vs 1298 
expected Hi-C matrices correlation (b), mean squared error (MSE, c), and distance-stratified correlation (d). 1299 
 1300 
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 1301 
Supplementary Figure 15: C.Origami predicts chromatin organizations across multiple cell types. Two 1302 
representative loci were separately presented across IMR-90, GM12878, H1-hESCs, and K562 in a and b. From top 1303 
to bottom, each panel included experimental Hi-C matrix, predicted Hi-C matrix, CTCF and ATAC-seq signals, and 1304 
insulation scores calculated from experimental and predicted Hi-C data.  1305 
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 1306 
Supplementary Figure 16: Genome-wide statistics on cell type-specific prediction. a-b, The distribution of 1307 
interaction intensity by insulation correlation (Pearson) between the experimental Hi-C matrices of IMR-90 and 1308 
GM12878. Dotted lines denote the filtering criteria in selecting representative loci with cell-type specificity (a) or  1309 
structurally conserved regions between two cell types (b). Colormap indicates the corresponding Spearman correlation 1310 
coefficient (ρ). c-d, Pearson’s r (left) and Spearman’s ρ (right) between prediction (row) and experimental data 1311 
(column) for different cell types with insulation score (c) and observed/expected score (d) as metrics. Diagonal entries 1312 
denote the metrics of prediction and Hi-C in the same cell type without filtering for cell type specific regions. The 1313 
scores were calculated based on the differentially structured loci defined in Fig. 3. e-f, Same as c-d but for the 1314 
structurally conserved loci across different cell types. g, Pearson’s r of predicted insulation difference and 1315 
experimental insulation difference between IMR-90 and other cell types. The correlation was calculated as: 1316 
Pearson(Insu(IMR-90_pred) - Insu(Target_pred), Insu(IMR-90_data) - Insu(Target_data)). High correlation indicates 1317 
that our model detected cell types-specific features applicable across different cell types. 1318 
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 1319 
 1320 
Supplementary Figure 17: Performance of detecting cell type-specific loop interactions between IMR-90 and 1321 
GM12878. a-b, Comparing cell type-specific loops between prediction and experiment in IMP-90 (a) and GM12878 1322 
cells (b). Loops detected from prediction were first filtered with a more stringent q-value cutoff of 1e-7 in both cell 1323 
types. We then calculated cell type-specific loops according to signal value fold change. Within each panel, AUROC 1324 
between loops from experiment and prediction was calculated with log2 fold change cutoffs ranging from 0.5 to 2. 1325 
Overlap between loops called from prediction and experimental data is presented in a Venn diagram with a q-value 1326 
cutoff of 1e-7. 1327 
 1328 
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Supplementary Figure 18: Performance of detecting cell type-specific loop interactions between IMR-90 and 1330 
GM12878 under different chromatin backgrounds. a-c, Evaluating cell type-specific loop detection performance 1331 
in three types of loops: CTCF-CTCF loop (a), promoter-promoter loop (b), and promoter-enhancer loop (c). Loops 1332 
were first filtered with a stringent q-value cutoff of 1e-7. We then calculated cell type-specific loops according to 1333 
signal value fold change. Within each panel, AUROC between loops from experiment and prediction was calculated 1334 
with log2 fold change cutoffs ranging from 0.5 to 2. Overlap between loops called from prediction and experimental 1335 
data is presented in a Venn diagram with a q-value cutoff of 1e-7.  1336 
 1337 
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 1338 
Supplementary Figure 19: Randomly selected examples of cell type-specific predictions from Akita, DeepC, 1339 
Orca, and C.Origami. a, Sequence-based model predictions, b, C.Origami prediction with IMR-90-specific genomic 1340 
features (CTCF ChIP-seq and ATAC-seq) and IMR-90 experimental Hi-C, c, C.Origami de novo prediction with 1341 
GM12878 specific genomic features and GM12878 experimental Hi-C. All presented results were aligned at randomly 1342 
selected regions from different chromosomes. The full set of prediction results across all cell type-specific chromatin 1343 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.03.05.483136doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.05.483136
http://creativecommons.org/licenses/by-nc/4.0/


62 
 

regions between IMR-90 and GM12878 cells were included in the Supplementary material under Cell type-specific 1344 
predictions. 1345 
 1346 

 1347 
Supplementary Figure 20: Genome-wide comparison of de novo prediction quality in GM12878. For de novo 1348 
prediction results from each model (Akita, DeepC, Orca and C.Origami), we measured insulation score correlation 1349 
(a), observed vs expected Hi-C matrices correlation (b), mean squared error (MSE, c), and distance-stratified 1350 
correlation (d). Prediction results at cell type-specific regions between IMR-90 and GM12878 cells were selected for 1351 
this analysis. 1352 
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 1353 
Supplementary Figure 21: Transferring model trained on human cell type to mouse. a, Experimental Hi-C and 1354 
C.Origami prediction results of two representative loci in hybrid mouse Patski cells. b, Genome-wide performance 1355 
metrics of predicting mouse chromatin organization using C.Origami trained with human data. Presented matrices 1356 
include insulation score correlation, observed vs expected matrix correlation, mean squared error, and distance-1357 
stratified correlation. Error bars in the violin plots indicate minimum, mean and maximum values. 1358 
 1359 
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 1360 
Supplementary Figure 22: Predicting chromatin organization dynamics upon auxin-induced CTCF depletion 1361 
and restoration in mESCs. a, Experimental results adopted from Nora et al38. at two loci indicated on top. All plots 1362 
were visualized in triplicates, indicating conditions of before CTCF depletion (Untreated), CTCF depleted (Auxin), 1363 
and CTCF restored (Wash-off). b, C.Origami prediction at the corresponding 2Mb-wide windows using DNA 1364 
sequence and CTCF ChIP-seq profiles from Nora et al. Corresponding experimental Hi-C matrices from Nora et al. 1365 
were processed by HiC-bench and visualized in parallel. c, Adjusted prediction and Hi-C matrices from b. Matrix size 1366 
and location were adjusted to match the exact position from the experimental results as shown in a. Colormap was 1367 
adjusted to match the original figure in Nora et al. d, Genome-wide performance metrics for evaluating C.Origami 1368 
prediction upon CTCF depletion and restoration. Presented correlations include insulation score (left panel) and 1369 
observed vs expected matrix values (right panel). Error bars in the violin plots indicate minimum, mean and maximum 1370 
values. 1371 
 1372 
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 1373 

Supplementary Figure 23: Predicting translocation-induced novel chromatin organizations in K562 cells. a-c,  1374 
Experimental and predicted Hi-C matrices at three translocation loci in K562 cells. In each case, chromatin 1375 
organization structures were first reconstructed using HiC-bench64 and NeoLoopFinder41, followed by C.Origami 1376 
prediction at the translocation loci using in silico fused genomic information. a, t(22;9) translocation, also known as 1377 
the Philadelphia chromosome, that leads to a fused gene BCR-ABL1. b, t(21;12) translocation with a stripe interaction. 1378 
c, t(3;10) translocation with a faint “L”-shape interactions as indicated by the dotted contour. Dotted boxes indicate 1379 
neo-TAD forming at the translocation site. Black arrowhead indicates the translocation site. 1380 

 1381 
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 1383 
Supplementary Figure 24: In silico genetic experiments performed on IMR-90 cells. Two in silico deletion 1384 
experiments were separately represented in a and b. Each experiment included the prediction before (left) and after 1385 
deletion (middle). The difference in chromatin folding after deletion were presented on the right.  1386 
 1387 
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 1388 
Supplementary Figure 25: Predicting X chromosome organization changes upon DXZ4 deletion prediction in 1389 
male and female cell types. a, Chromatin organization changes upon in silico deletion of a 266Kb repeats at the 1390 
DXZ4 locus in IMR-90, a female cell line. The perturbed region mimics the experimental knock-out in Darrow et al45. 1391 
The deleted region is indicated by a gray bar. b, Chromatin organization changes upon in silico deletion of the DXZ4 1392 
locus in two female cell lines (IMR-90, GM12878), and two the male cell lines (bottom: CUTLL1, Jurkat). Deleting 1393 
DXZ4 locus led to substantial loss of insulation at the two flanking regions of DXZ4 locus in the female cell lines, 1394 
while the effect was very minimal in the male cell lines, supporting the role of DXZ4 in regulation X chromosome 1395 
inactivation. Interaction regions are denoted by dotted boxes. 1396 
 1397 
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 1398 
Supplementary Figure 26: Comparing GRAM and attention scores. a, Comparison of GRAM scores at 2bp and 1399 
8kb resolution in IMR-90 (left) and GM12878 (right). b, Attention scores on IMR-90 and GM12878. Attention scores 1400 
on different layers were colored according to legends. c-d, Comparison between GRAM (c) and attention scores (d) 1401 
at three consecutive windows with 100Kb shifts. e, GRAM scores generated at different PyTorch random seeds.  1402 
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 1403 
 1404 
Supplementary Figure 27: Attention weights generated from the transformer module of C.Origami. A detailed 1405 
view of the attention weights in eight heads (columns) across eight layers (rows), generated by the BertViz package73. 1406 
The y axis of each row represents a 2Mb genomic distance. Brightness of the line segment between two different 1407 
locations denotes interaction intensity. 1408 
 1409 
 1410 
 1411 
 1412 
 1413 
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 1414 
Supplementary Figure 28: ISGS-identified impact scores at four chromatin remodeler genes in both T-ALL 1415 
cells and T cells. Impact scores of the DNA elements in T-ALL cells and normal T cells were first calculated 1416 
independently through ISGS, and then visualized at the four chromatin remodelers genes (PHF5A, BRD4, KAT5, 1417 
CHD4, with 50Kb upstream and 50Kb downstream) which are required for Jurkat and CUTLL1 cell proliferation 1418 
according to the CRISPR screening experiments. The specificity track (fourth track) was calculated as the difference 1419 
between T cell impact score and T-ALL impact score (from CUTLL1 or Jurkat, whichever is smaller). CHD4 has the 1420 
highest specificity score between T-ALL cells and normal T cells. 1421 
 1422 
 1423 
  1424 
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 1425 

 1426 
Supplementary Figure 29: Scatter plot of trans-acting factor binding enrichment in ISGS-identified impactful 1427 
elements in T-ALL and normal T cells. Odds ratio of enrichment between T-ALL and normal T cells were ploted 1428 
on the y axis and x axis, respectively. T-ALL odds ratio was aggregated from enrichment in CUTLL1 and Jurkat. 1429 
Only factors with odds ratio larger than 35 were labeled, except NOTCH1 which was highlighted for comparison with 1430 
CDK7 (referring to Figure 7). 1431 
  1432 
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 1433 

 1434 
Supplementary Figure 30: Overlap between impactful elements and CDK7-inhibition induced TAD changes. 1435 
a, An example of TAD with decreased activity. Grey bar indicates a prominent decrease in interaction in the CDK7-1436 
inhibition (+THZ1) group. The TAD intensity plots were aligned with impactful regions, impactful scores, CDK7 1437 
ChIP-seq, CTCF ChIP-seq, and ATAC-seq signals from top to bottom. b, Impact score of DNA elements in changed 1438 
TADs and stable TADs determined from pharmaceutical inhibition of CDK7. The overall impact scores in the changed 1439 
TADs are significantly higher (independent t-test, p-value = 1.72e-05).  1440 
 1441 
  1442 
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