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Abstract

Assortative mating (AM) occurs when the correlation for a trait between mates is larger than
would be expected by chance. AM can increase the genetic and environmental variation of traits,
can increase the prevalence of disorders in a population, and can bias estimates in genetically
informed designs. In this study, we conducted the largest set of meta-analyses on human AM
published to date. Across 22 traits, meta-analyzed correlations ranged from r = .08 to r = .58,
with social attitude, substance use, and cognitive traits showing the highest correlations and
personality, disorder, and biometrical traits generally yielding smaller but still positive and
nominally significant (p < .05) correlations. We observed high between-study heterogeneity for
most traits, which could have been the result of phenotypic measurement differences between

samples and/or differences in the degree of AM across time or cultures.
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A comprehensive meta-analysis of human assortative mating in 22 complex traits

Assortative mating (AM) is the phenomenon whereby individuals with similar trait
values mate with one another at levels higher than expected by chancel. Contrary to the maxim
“opposites attract,” nonzero phenotypic correlations between human?-?* and nonhuman! mates
are overwhelmingly in the positive direction, with only a handful of examples of disassortative
mating, or negative mate correlations, reported in the literature!#220.22-29 Several potential
mechanisms of AM in humans have been described, although they are not mutually exclusive
because multiple mechanisms can simultaneously be responsible for observed correlations.
Phenotypic homogamy (also known as primary phenotypic assortment) occurs when mates
match directly on the trait of interest®®. While phenotypic homogamy is often conceptualized as
mates actively preferring similarity, this type of homogamy can also be a function of indirect
selection, such as when mates are chosen from among strata that are partially determined by
individuals’ phenotypic values (e.g., AM for educational attainment arising as an indirect
consequence of mate choice occurring within job occupations). Social homogamy, on the other
hand, occurs when individuals match within strata that are determined by non-heritable
background social factors!®3, such as within social class in cultures where class is not
genetically influenced. At the other end of the spectrum, genetic homogamy is the mechanism
whereby mates correlate more genetically than phenotypically for a trait; this can occur when
there is phenotypic homogamy on a trait that is more correlated genetically than environmentally
with the trait of interest®®32, Finally, convergence occurs when mates become more similar over
time38, either due to direct (reciprocal or one-way) phenotypic influences on one another or to

the mutual influence of shared environmental factors.
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Social scientists and quantitative geneticists care about the mechanisms and the strength
of AM because both influence parameters of interest and impact how various estimates in the
literature should be interpreted. Phenotypic and genetic homogamy on heritable traits increase
correlations between and within causal loci, which in turn increases the genetic covariance
between relatives and the trait’s phenotypic and genetic variation. Such an increase in variation
could manifest as increased prevalence rates of dichotomous traits such as psychiatric
disorders!®33, although this effect should only be pronounced in rare, highly heritable disorders
under strong AM*8, Social homogamy can also increase trait variation when parental phenotypic
values for sociocultural traits are inherited by offspring via vertical transmission®*. Failing to
account for AM can lead to biases in estimates from genetically informed designs, including the
association statistics from genome-wide association studies®, heritability estimates from
twin/family designs and from single nucleotide polymorphisms®®, and the strength of estimated
causal associations in Mendelian randomization studies®'.

Given that the genetic consequences of AM and the impacts of not accounting for it in
certain genetically informed designs are non-negligible, it is important to understand the strength
of AM for traits commonly investigated in human genetics. The strength and breadth of AM is
also of interest to investigators of human mating in psychology, sociology, and economics.
While many studies have reported estimates of AM in humans, we are aware of no study that has
meta-analyzed AM on a large number of phenotypically diverse traits. In the current report, we
use stringent methodology to meta-analyze and compare partner correlations for 22 commonly
investigated complex traits. These results are the most comprehensive set of meta-analyses on

human AM to date, and should shed light on contemporary human mating trends, help with the
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5
interpretation of heritability estimates, motivate studies into the various causes of AM across

traits, and aid in the choice of design in genetic studies.

Results

Meta-analysis

We meta-analyzed partner concordance rates for 22 traits. While AM has been analyzed
for hundreds of traits, we focused on those most studied in the AM literature as well as some less
commonly studied dichotomous traits that have important health implications. The total number
of partner pairs for each trait ranged from 2,270 (for drinking quantity) to 1,533,956 (for
substance use disorder); effective sample sizes for dichotomous traits (see Methods) ranged from
721 (for alcohol use disorder) to 241,817 (for substance use disorder). Supplementary Tables S1
and S2 show all studies that we included in our meta-analysis for continuous and dichotomous
traits, respectively, as well as the effect sizes for each sample. For comparability across traits, we
focus here on Pearson and tetrachoric correlations for continuous and dichotomous traits,
respectively. Supplementary Table S2 also includes an alternative metric of partner concordance
for dichotomous traits, the odds ratio (OR), which is the odds of a participant possessing a trait
given that their partner has it divided by the odds of a participant possessing the trait given that
their partner does not have it. Supplementary Table S3 lists studies excluded from our meta-
analysis along with the reasons for their exclusion.

Fig. 1 displays the meta-analyzed random effects correlations for all traits along with
their 95% confidence intervals. The meta-analyzed correlations were greater than zero at the

nominal significance level (p <.05) for all traits. The point estimates for fourteen traits were also
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97  significant at the Bonferroni-corrected (p <.05/22 = 0.00227) significance level. Cognitive and

98  social attitude traits showed the highest correlations (.39 < rmeta < .58); personality,

99  anthropometric traits, substance use disorders, and other disorders showed the lowest (.08 < rmeta
100  <.29); and correlations for non-pathological substance use traits typically lay between these two
101  sets (.24 < rmeta <.54) (see Table 1). Fig. S1 displays forest plots for all the traits we analyzed
102  with publications ordered by year and color-coded by region. The meta-analyzed fixed effects
103  results for each trait (Fig. S2) were qualitatively similar to the random effect results. Fig. S5
104  shows the number of studies included and excluded for each trait.

105 Table 2 summarizes each trait’s heterogeneity estimates and the prediction intervals of
106  future studies’ effect sizes. We quantified heterogeneity using the Higgins & Thompson’s 12

107  metric, which represents the percentage of variance resulting from between-study heterogeneity
108 in effect sizes rather than within-study sampling error®. Higgins and Thompson (2002)3°

109  classified I? values of 25%, 50%, and 75% as low, medium, and high heterogeneity, respectively.
110  Across traits in our 22 meta-analyses, the median Higgins & Thompson I? statistic was 87.5%,
111 reflecting very high heterogeneity in AM estimates for most traits. However, a high 12 reflects not
112 only high between-study heterogeneity in estimated effect sizes but also low within-study

113 heterogeneity due to highly precise estimates of individual studies. Thus, these high 1% values
114  may in part be due to the high precision of estimates afforded by the large sample sizes of many
115  of the studies included in our analyses. An alternative metric of heterogeneity that is unaffected
116 by the precision of estimates of individual studies, 7, represents the estimated variance of the
117  true effect size under a random effects model. The estimated standard deviations of true effects

118  (x) were large relative to the meta-analyzed correlation values for many traits. The median

T

119  coefficient of variation ( ) was .41, and the coefficient of variation was above .50 for

Tmeta
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intelligence quotient (1Q), drinking quantity, agreeableness, conscientiousness, extraversion,
body mass index (BMI), and generalized anxiety disorder (GAD). However, for some traits, such
as EA (rmeta = .53 +/- = .10), political values (rmeta = .58 +/- .08), and depression (rmeta = .14 +/-
.02), the estimated standard deviation of true effects was not very large compared to the meta-
analyzed estimate. Overall, our results suggest that AM is characterized by substantial
differences in the strength of true effect across populations differentiated by place or time.

For each trait, we also created Graphic Display of Heterogeneity (GOSH) plots (Fig.
S4)# which are scatterplots of the meta-analyzed correlations for all possible 2¥! combinations
of k studies of size 2 through k (up to 1 million combinations) on the x-axis and the 1° values of
these combinations on the y-axis. Two or more distinct clusters anywhere in the plot may
indicate subpopulations that differ in their average effect size, although a smear of points along
the bottom of GOSH plots is caused by two or more study results that happen to be similar
(thereby producing 17 values near 0) and is typically not of interest. For most traits plotted in Fig.
S4, there are no obvious clusters. However, for 1Q and conscientiousness, there do appear to be
two clusters, one made up of study combinations that have higher heterogeneity and higher
average correlations, and another with lower heterogeneity and lower average correlations. The
two clusters in the GOSH plot for IQ may have resulted from an outlier reported in a 1938 study
that found a partner correlation of .81%!, which is substantially greater than the meta-analyzed
estimate we report for this trait.

Because AM studies ostensibly focus more on effect size than hypothesis testing, we
expected that publication bias was unlikely to be a major factor for the study results we meta-
analyzed. Nevertheless, we created funnel plots (Fig. S3), which plot study effect size (Fisher Z

transformed correlations here) on the x-axis against standard error on the y-axis, to visually
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143  inspect whether there was evidence for asymmetry, a potential indicator of publication bias.
144  OQverall, there was no obvious asymmetry across the funnel plots. Only for IQ and drinking
145  quantity did it appear that there may be a systematic bias of larger studies having smaller effect
146  sizes, but both were based on 10 or fewer studies, which can lead to apparent asymmetry by
147  chance®42, The more obvious pattern observed in most funnel plots was the large number of
148  points that were outside the expected triangular region, again reflecting the high heterogeneity in
149  correlations observed across studies.
150
151  Discussion
152 In this study, we collated and synthesized the results from a large number of studies on
153  human AM to provide a better understanding of which traits mates assort on and how strong the
154 assortment is. To our knowledge, this is the largest and most comprehensive set of meta-analyses
155  on human AM to date. We found the highest levels of AM for political and religious values,
156  educational attainment, 1Q, and some substance use traits; partner correlations for other traits
157  were smaller. Nevertheless, we found nominally significant (p < .05) evidence for AM for every
158 trait investigated. More than half of the meta-analyzed correlations were also significant at the
159  Bonferroni-corrected level. Whether these correlations are due to convergence or to initial
160  nonrandom mating based on phenotypic, social, or genetic homogamy remains to be determined,
161  though some research has attempted to investigate which of these mechanisms is responsible for
162  observed AM for particular traits.
163 The two social attitude traits that we examined—political attitudes and religiosity—
164  showed the highest levels of AM of all the traits we assessed. For these traits, we examined

165  continuous measures of attitudes toward political issues and self-report of multiple religious
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166 ideas/practices. Interestingly, despite clear geographical stratification of religious and voting
167  trends apparent in countries such as the United States, most studies to date investigating the
168  cause of mate similarity on political and religious attitudes have suggested that the data is most
169  consistent with phenotypic rather than social homogamy, and there is no compelling evidence of
170  substantial convergence for either trait*43-46, This may be relevant to current events because, to
171  the degree that social attitudes are genetically or socially heritable, AM on them may contribute
172  to heightened political and cultural polarization.
173 We also found a high partner correlations for educational attainment (EA) (Fmeta = .53),
174  and only one sample*’ out of 27 reported a correlation under .30. Thus, there is consistent
175  evidence for strong AM on EA across recent decades and across cultures in which the trait has
176  been studied. Robinson et al. (2017)%? found that the implied phenotypic correlation for EA
177  Dbetween partners in the UK Biobank, extrapolated from the observed correlation between
178  partners' trait-associated loci, was .65. This value was substantially larger than the phenotypic
179  correlation they observed for EA in the same sample and exceeds the upper limit of our
180  confidence interval for the meta-analyzed EA partner correlation. This suggests that AM for EA
181 is consistent with genetic homogamy, and that mates may be assorting on some trait that is more
182  genetically than environmentally correlated with EA. Contrary to Robinson et al.’s (2017)%?
183  finding, Torvik et al. (2022)* did not find evidence for genetic homogamy in educational
184  attainment in a sample of partners, siblings, and in-laws in Norway. Instead, they found evidence
185  that AM on EA was due to a mix of both social homogamy and phenotypic homogamy. Whether
186 this discrepancy is due to differences in EA AM between Norway and the UK or to differences

187  in sample characteristics (e.g., ascertainment) is an open question.
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188 The meta-analyzed partner correlation coefficients for substance use/abuse traits ranged
189  from rmeta = .24 t0 rmeta = .54. Interestingly, some (but not all®>°) studies that have examined
190  mechanisms of assortment in drinking and smoking have reported evidence of convergence for
191  these behaviors®®1251 making these traits amongst the only ones to show support for
192  convergence in the literature.
193 We observed substantial between-study heterogeneity in partner correlations for most
194  traits. A large degree of between-study heterogeneity would certainly be problematic in fixed
195 effects meta-analyses that assume a single underlying effect. However, even for random effects
196  meta-analyses, which are viewed as more appropriate when heterogeneity is present, high levels
197  of heterogeneity suggest caution should be used in interpretation of results. Random effects
198  meta-analyses assume an underlying (normal) distribution of true effects across the studies’
199  sampled populations, and the meta-analytic result is the estimated mean of those true effects.
200  Thus, the estimates we present here cannot be interpreted as estimates of a single true level of
201  AM for a given trait, but rather estimates of the typical level of AM across many possible levels
202  that might be observed at different times or locations.
203 There are several possible causes of the high levels of heterogeneity in AM we observed
204 across studies within the same trait. Most obviously, it is possible that the true degree of AM
205 varied across populations due to cultural differences in mating systems or preferences. This
206  seems plausible; AM involves mate preferences, social stratification, and/or couple dynamics,
207  and so it is unlikely to be consistent across different cultural contexts. Differences in population
208  size, mobility, and/or education across populations may impact the pool of a person’s potential
209  mates and thereby the degree to which preferences can be acted on. However, there was

210 insufficient cultural diversity within traits to test whether there were significant differences in
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211  partner concordance across cultures. Similarly, we determined that publication year was too
212  coarse a metric of the year in which mates were married, and too many studies failed to report
213  sufficient information for us to formally assess changes in AM over time.
214 It is also possible that some of the heterogeneity in AM effect sizes was due to
215  differences in how constructs were measured across studies—for example, differences in the
216  measurement batteries used, differences in participants’ interpretations of battery items, or
217  differences in the clinical thresholds employed. Potentially consistent with this possibility, we
218  observed that the prevalence rates of dichotomous traits varied greatly in supposedly non-
219  ascertained samples, which may have contributed to the heterogeneity we observed in our
220  correlation coefficients. Nevertheless, we observed high levels of heterogeneity even for traits—
221  such as height and BMI—measured in standardized ways, suggesting that differences in how the
222  constructs were measured is unlikely to be a complete explanation. Finally, it is possible that
223  publication bias led to heterogeneity, particularly if studies that found AM results that were
224 substantially different from those already published in the literature were more likely to be
225  submitted and published—a kind of "novelty bias." However, it is also possible that a
226  "conformity bias" exists in the opposite direction and has led to downwardly biased estimates of
227  heterogeneity. While we could not test and therefore cannot rule out either possibility, we find
228  them unlikely given that the incentives for both seem dubious.
229 Although we initially gathered data on AM for rare psychiatric disorders, we did not
230  formally meta-analyze the tetrachoric correlations for these traits because too few studies met
231  our inclusion criteria as a result of unspecified sample sizes, the use of longitudinal rather than
232  cross-sectional measurements of concordance, and small expected cell frequencies (see

233  Supplementary Table S2 and S3). Nevertheless, studies that have provided robust estimates of
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234  partner concordance for psychiatric disorders have suggested low to moderate AM, both within
235  and across disorders'®215253 For example, based on data from Swedish population registers that
236  included more than 700,000 unique cases—originally analyzed by Nordsletten et al. (2016)>--
237  Peyrot et al. (2016)* estimated ascertainment-corrected tetrachoric correlation coefficients of .26
238  for schizophrenia, .10 for bipolar disorder, .28 for autism spectrum disorder, and .31 for
239  attention-deficit/hyperactivity disorder.
240 There are several implications for the consistent evidence of AM across traits we
241  documented in this meta-analysis. First, as noted above, AM can increase the genetic variance and
242  the prevalence of a disorder. Although the increase in prevalence for common disorders may not
243  belarge (e.g., ~10%), the levels of AM observed for rare traits of high heritability, such as autism,
244 could lead to a ~1.5-fold prevalence increase after one generation, and an even higher increase
245  (~2.4-fold) over many generations'®. Second, AM can create biases in estimates of interest in
246  genetically informative designs, such as estimates based on twin studies'®®, genome-wide
247  association studies (GWAS)®®, Mendelian randomization®’, and SNP-heritability®. Finally, to the
248  degree that the heterogeneity in AM we observed was due to true differences in the strength of
249  AM rather than differences in measurement, our estimates of the strength of AM may not
250  generalize to other populations. While estimates for some traits, such as height, were based on a
251  geographically and ethnically diverse set of samples, most of the samples included in our meta-
252 analyses were drawn from Europe, North America, and Australia, and Asia. For example, all
253  estimates of AM for religiosity came from samples in the United States.
254 In summary, we conducted the largest and most comprehensive set of meta-analyses of
255  human AM to date. Our estimates were based on nearly a century of research and millions of

256  partner pairs. We found high partner correlations for traits related to substance use, 1Q, EA, and
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257  social attitudes, and smaller but nominally significant (p < .05) correlations for personality,
258  anthropometric, and disorder traits. However, we also observed high levels of heterogeneity in
259  AM estimates across studies for most traits investigated, suggesting that AM may differ across
260 time or place and that a single estimate of AM cannot typically be assumed for a given trait
261  across populations.
262
263  Methods

264  Inclusion and exclusion criteria

265 We conducted a systematic review of English-language studies that examined AM based
266  on partners’ continuous and dichotomous self-reports on the same complex traits. All included
267  studies were published in peer-reviewed journals on or before December 22, 2021. To conduct
268 this review, we searched for words pertaining to the traits of interest in conjunction with the

269  terms assortative mating, assortative marriage, partner concordance, partner correlation,

270  nonrandom mating, homogamy, marital resemblance, and marital homophily in Google Scholar,
271  and we checked relevant papers cited in these studies for adherence to our criteria. We restricted
272  our analysis to studies of opposite-sex co-parents, engaged pairs, married pairs, and/or

273  cohabitating pairs (referred to as “partners” hereafter), with a few studies containing a small

274 number of divorced couples; we excluded same-sex partners because same-sex and opposite-sex
275  pairs show different patterns of assortment for some traits®>°¢, because there is less data on the
276  former, and because same-sex assortment does not have the same implications for genetic

277  studies. With the exception of studies that intentionally ascertained partners for the trait of

278  interest, we excluded studies in which pairs had a characteristic that deviated from the norm in

279  the general population in a way that might have affected the magnitude of concordance (e.g., a
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280  sample of only adoptive parents was excluded), and we only included studies where the sample
281  size was reported or could be inferred. For example, if only percentages were reported for each
282  cell of a contingency table, the sample size of each cell could be inferred as the percentage

283  multiplied by N.

284 We restricted our analysis to studies with sample sizes greater than 100. For dichotomous
285 traits, we restricted our analysis to studies with expected contingency table cell frequencies of
286  five or greater and observed cell frequencies greater than zero. When the samples in multiple
287  studies that were appropriate for our meta-analysis overlapped or were likely to have overlapped
288  based on information provided in the publication, we only used the study with the largest sample
289  size. We calculated effect sizes from the data reported in primary studies rather than relying on
290  effect size estimates from other published meta-analyses. If a study reported partner concordance
291 rates for multiple independent samples, each was included as a separate entry. When studies

292  reported partner correlation at different waves, we reported the results from the first wave.

293 When studies reported both the raw correlation and the partial correlation(s) controlling
294  for covariates (such as age), we included the raw correlation for consistency across studies. For
295  studies that only reported partial correlations, we used the estimate with the fewest number of
296  covariates. For ordinal and continuous traits, studies typically reported Spearman’s rho or

297  Pearson’s r but at times reported polychoric correlations. We excluded polychoric correlations
298  reported for such traits in order to avoid pooling two classes of correlation for the same meta-
299 analyzed effect size. Because polychoric correlations occurred rarely, we do not anticipate a
300 large loss of power as a result. Because AM for height has already been meta-analyzed

301 extensively by Stulp et al. (2017)°, we re-analyzed studies from the paper’s supplement in the
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302  same way we analyzed other continuous traits, after eliminating studies from this meta-analysis
303 inaccordance with our exclusion criteria. Finally, we restricted our meta-analysis to traits for

304  which there were at least three samples that met our criteria.

305 Dichotomous traits

306 For dichotomous traits, we primarily considered studies that examined pairs in non-

307  ascertained community samples or national registers as well as those from samples that

308 ascertained probands. Most ascertained studies were ultimately excluded because probands were
309 typically in clinical settings (e.g., hospitalized), whereas partners of probands with the disorder
310 typically were not. Although such ascertainment can be dealt with if all the applicable

311  populations’ (i.e. inpatient, outpatient, and those who have never received treatment) prevalence
312  rates are known, it was typically impossible to know all of these rates. We eliminated any

313  ascertained studies in which there was a >~two-fold difference in male and female prevalence if
314  there was not enough information to divide discordant couples based on sex. Simulation results
315  suggested that mixing individuals of different sexes when prevalence rates were more discrepant
316  than this would lead to unacceptable levels of bias. Because of possible differences in the

317  strength of AM implied from concordance of male probands versus that implied from female
318  probands, we excluded studies that only included single-sex probands. When both male and

319 female proband data was available (only a single study®?), estimates based on each proband

320 (female and male) were included as separate results.

321 We only used cross-sectional measures of partner concordance and therefore excluded
322  studies that used longitudinal metrics such as morbidity risks®’, hazard ratios, and incidence

323  ratios. We required that either odds ratios (ORs), risk ratios (RR), phi coefficients (®),

324  contingency tables, or—if the study was not ascertained (see below)—tetrachoric correlations,
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325  were reported for dichotomous traits. Concordance rates captured by any of the first four of these
326  measures were then converted to tetrachoric correlations for consistency. When the contingency
327  table was unknown but the OR was reported, we first inferred the contingency table using an R
328  function described in the supplementary methods of Peyrot et al. (2016)*8 (provided to us by the
329 authors) and then estimated the tetrachoric correlation. When the contingency table was
330  provided, we calculated the OR and tetrachoric correlation (using the polychoric() function from
331 the “polycor” package®) in R ourselves, and thus the effect size we used in our analysis was
332  sometimes different than that reported in the original study. When the contingency table was
333  unknown but ® was reported, ® was converted to a tetrachoric correlation using the phi2tetra()
334  function from the “psych” package® in R. The prevalence rates for each sex used for these
335  conversions (from @ and the OR) are reported in Supplementary Table S2. No studies that we
336 included in our final analysis reported an RR.
337 For studies where probands were ascertained, we used the OR, which is not influenced by
338  ascertainment, along with estimates of sex-specific prevalence rates from the country or region
339  the sample came from, to calculate tetrachoric correlations. To do this, we used the
340 aforementioned R function provided to us by Peyrot and colleagues, which produces the
341  population (non-ascertained) contingency table that is implied given the observed OR in the
342  ascertained sample and the assumed population prevalence in each sex. We then used this
343  implied contingency table to estimate the underlying (non-ascertained) tetrachoric correlation in
344  the population. This correction is necessary because the liability in the ascertained sample, where
345  the case to control ratio is usually higher than that in the population, is different than the liability
346  distribution in the population, which would lead to upwardly biased estimates if the tetrachoric

347  correlation was estimated based on just the sample contingency table.
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348 We used the metacor() function from the “meta” package in R®° to conduct both random
349  and fixed effects meta-analyses using inverse-variance weighting of the Fisher z transformed
350 correlations. For continuous traits, we used the Knapp-Hartung adjustment®162 to calculate the
351 variance of point estimates and restricted maximume-likelihood (REML) to estimate 72, the
352  variance of the true overall effect size under random effects®354, For binary traits, we used the
353  Paule-Mandel estimator®® to estimate > and applied the Knapp-Hartung adjustment®.-62 to our
354  calculation of the variance of the point estimate. We conducted a Monte Carlo analysis to
355  determine how best to pool information for different studies in a meta-analysis. While the “true”
356  base spousal correlation varied across simulated meta-analyses, the population-level spousal
357  correlation across “studies” within the same meta-analysis was consistent (in order to establish a
358 true rate of spousal concordance against which to compare our point estimates). However,
359  prevalence rates were allowed to vary across populations in the same simulated meta-analysis
360  (see Supplementary Table S4 for the results of each method used in conjunction with various
361  parameter estimates). We found that calculating tetrachoric correlations for each sample and then
362 meta-analyzing them provided more accurate point estimates than pooling contingency tables
363 and then calculating tetrachoric correlations. Thus, we followed this procedure for binary traits
364  throughout. The metacor() function internally calculates the expected variance of correlations
365  based on sample sizes and assumes they are Pearson correlations, which would be incorrect for
366 tetrachoric correlations. Thus, we needed to input effective (rather than actual) sample sizes for
367 tetrachoric correlations. For non-ascertained studies, we estimated the effective sample sizes by

368  using the standard error calculated in the polychor() package and solving for n in the equation

(1-r?)

369 SEM) = [

For ascertained studies examining dichotomous traits, we created bootstrapped

370  contingency tables, each of size n (the number of partners) and sampled from the study’s (raw,
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371  ascertained) contingency table with replacement. We followed the procedure described above to
372  convert the ascertained contingency table to a tetrachoric correlation corrected for ascertainment.
373  We repeated this process 1,000 times, calculated the standard error by estimating the standard
374 deviation of the 1,000 bootstrapped tetrachoric correlations, and used this standard error to

375 calculate the effective sample size as described above.

376 Four of the traits in our supplementary tables—bipolar disorder, schizophrenia, panic

377  disorder, and phobia—posed a problem because they were rare (bipolar disorder and

378  schizophrenia) or have not been studied in sufficiently large samples (panic disorder and phobia).
379  This resulted in contingency tables with zero frequency cells or with expected cell frequencies
380 that were less than five. As a result, there was not a sufficient number of studies meeting our

381 inclusion criteria to justify formally meta-analyzing these four traits, though we included the

382  results from studies that otherwise met our criteria for these traits in Supplementary Table S2.

383

384  Data availability
385  Studies included in the meta-analysis are listed in Supplementary Tables S1 and S2, and studies

386  excluded from the meta-analysis are listed in Supplementary Table S3.

387

388  Code availability

389  The code for the analyses and simulations is available from the authors upon request.
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Trait r [CI] K N Effective N p-value
EA .53 [.49; .56] 27 230,915 NA <.0001
1Q .39 [.21; .54] 10 2,561 NA .0012
Political values .58 [.53; .63] 9 10,694 NA <.0001
Religiosity 57 [.37;.72] 5 5,750 NA .0024
AUD .24 1.09; .38] 3 5,162 721 .0221
Drinking quantity | .41[.11; .64] 6 2,270 NA .0178
Smoking cessation | .54 [.31;.72] 4 3,613 1,426 .0066
Smoking initiation | .37 [.30; .43] 12 87,253 13,469 <.0001
Smoking quantity | .24 [.14; .34] 6 4,701 NA .0020

Smoking status 46 [.35; .56] 15 168,404 20, 584 <.0001

SUD 29 [.29, .30] 3 1,533,956 | 241,817 <.0001
Agreeableness 111 .05; .18] 11 10,347 NA .0035
Conscientiousness | .16 [.10; .23] 11 10,347 NA .0003
Extraversion .08 [.05; .11] 29 22,483 NA <.0001
Neuroticism 10 [.07; .13] 30 23,154 NA <.0001
Openness 21 [.14; .28] 11 10,483 NA <.0001
Body mass index | .16 [.12; .19] 31 131,079 NA <.0001
Height 23 [.21; .26] 74 | 299,763 NA <.0001
Waist-to-hip ratio | .16 [.08; .24] 5 83,630 NA .0050
Depression 14 1.11; .17] 7 1,483,486 | 211,154 <.0001

Diabetes 15 [.07; .23] 7 178,522 17,530 .0038
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GAD

14 1.04; .24]

116,911 5,284

.018838

formula for the standard error estimate).

disorder, GAD = generalized anxiety disorder; Effective N =

1

S

539

Table 1. r = meta-analyzed random effects spousal correlation (Pearson’s r for continuous
traits; tetrachoric r for dichotomous traits), Cl = confidence interval, K = number of samples
meta-analyzed, N = number of total spouse pairs meta-analyzed; EA = educational

attainment, 1Q = intelligence quotient, AUD = alcohol use disorder, SUD = substance use

_ 2
——+ 2 (rearranged from the

Trait I2[CI] T 7 [CI] Prediction
Interval

EA 939% [91%:; 94%] | .100 | 0.0100 [0.0058; 0.0238] [0.3568; 0.6607]
1Q 91% [86%:; 95%)] | .260 | 0.0675 [0.0288; 0.2524] [-0.2220; 0.7772]
Political values 80% [62%; 89%] | .082 | 0.0067 [0.0018; 0.0343] [0.4256; 0.7014]
Religiosity 959% [91%:; 97%)] | .204 | 0.0417 [0.0128; 0.3736] [-0.0662; 0.8782]
AUD 0% [0%; 90%] | .000 | 0 [0.0000; 0.3788] [-0.2221; 0.6153]
Drinking quantity | 92% [86%; 96%] | .294 | 0.0862 [0.0301; 0.5821] [-0.4228; 0.8671]
Smoking cessation | 90% [77%:; 96%] | .169 | 0.0285 [0.0069; 0.4410] [-0.2102; 0.8928]
Smoking initiation | 95% [93%; 97%] | .104 | 0.0108 [0.0046; 0.0355] [0.1408; 0.5587]
Smoking quantity | 68% [24%; 87%)] | .084 | 0.0070 [0.0006; 0.0642] [-0.0103; 0.4700]
Smoking status 989% [98%:; 99%] | .227 | 0.0517 [0.0247; 0.1400] [-0.0095; 0.7651]
SUD 0% [0%; 90%] | .000 | 0 [0.0000; 0.0404] [0.2722; 0.3119]
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Agreeableness

88% [80%; 93%)]

.086

0.0074 [0.0022; 0.0278]

[-0.0908; 0.3108]

Conscientiousness

90% [84%; 94%]

.093

0.0087 [0.0028; 0.0266]

[-0.0564; 0.3698]

Extraversion

68% [54%; 79%]

.068

0.0046 [0.0017; 0.0117]

[-0.0625; 0.2198]

Neuroticism

58% [37%; 72%]

.040

0.0016 [0.0004; 0.0073]

[0.0142; 0.1845]

Openness

87% [78%; 92%)]

.090

0.0081 [0.0027; 0.0345]

[-0.0070; 0.4027]

Body mass index

96% [95%; 97%]

.086

0.0074 [0.0038; 0.0129]

[-0.0205; 0.3267]

Height

91% [89%; 92%)]

.098

0.0096 [0.0069; 0.0167]

[0.0408; 0.4091]

Waist-to-hip ratio

68% [18%; 88%)]

.052

0.0027 [0.0001; 0.0380]

[-0.0265; 0.3380]

Depression 55% [0%; 81%] | .022 | 0.0005 [0.0000; 0.0085] [0.0728; 0.2052]
Diabetes 78% [55%; 90%] | .072 | 0.0052 [0.0005; 0.0445] [-0.0531; 0.3391]
GAD 51% [0%; 80%] | .076 | 0.0058 [0.0000; 0.0734] [-0.0987; 0.3607]

Table 2. Heterogeneity statistics for each trait’s meta-analysis. Cl = confidence interval, 12 =

Higgins & Thompson’s |2 statistic, a measure of between-study heterogeneity, r= the estimated

standard deviation of the true effect size, 72 = the estimated variance of the true effect size; EA =

educational attainment, 1Q = intelligence quotient, AUD = alcohol use disorder, SUD = substance

use disorder, GAD = generalized anxiety disorder.
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564 The meta-analyzed random effects spousal correlations and 95% confidence

intervals for each trait.
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