

1

2 Multisite Phosphorylation and Binding Alter Conformational

3 Dynamics of the 4E-BP2 Protein

4

5 Spencer Smyth^{1,2,*}, Zhenfu Zhang^{1,2,*}, Alaji Bah^{3,+}, Thomas E. Tsangaris², Jennifer Dawson^{3,\$},
6 Julie D. Forman-Kay^{3,4}, and Claudiu C. Gradinaru^{1,2,#}

7

8

9

⁹ ¹Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada;

10 ²Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga,
11 Ontario, L5L 1C6, Canada; ³Program in Molecular Medicine, The Hospital for Sick Children,
12 Toronto, ON M5G 0A4, Canada; ⁴Department of Biochemistry, University of Toronto, Toronto,
13 ON M5S 1A8, Canada

14

15 * These authors contributed equally to this work

¹⁶ Present address: Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States

18 \$ Present address: Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, United
19 States

20 # Author to whom correspondence may be addressed: claudiu.gradinaru@utoronto.ca

21

22 **KEYWORDS:** IDP, single-molecule fluorescence, anisotropy decay, PET-FCS, smFRET

23 **ABSTRACT**

24 Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions,
25 but detailed structural/dynamics characterization of their ensembles remain challenging, both in
26 isolation and they form dynamic ‘fuzzy’ complexes. Such is the case for mRNA cap-dependent
27 translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic
28 initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a
29 phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed
30 that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along
31 the sequence; while a central region containing both motifs that bind to eIF4E expands and
32 becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a
33 nonuniform segmental flexibility around six different labelling sites along the chain. Dynamic
34 quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence
35 correlation spectroscopy report on transient intra- and inter-molecular contacts on ns- μ s
36 timescales. Upon hyperphosphorylation, which induces folding of ~40 residues in 4E-BP2, the
37 quenching rates decreased at most labelling sites. The chain dynamics around sites in the C-
38 terminal region far away from the two binding motifs significantly increased upon binding to
39 eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex.
40 Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2
41 differing in phosphorylation or binding status and distinguish regions that form contacts with
42 eIF4E. This study adds complementary structural and dynamics information to recent studies of
43 4E-BP2, and it constitutes an important step towards a mechanistic understanding of this important
44 IDP via integrative modelling.

45 INTRODUCTION

46 Intrinsically disordered proteins (IDPs) are a class of proteins that lack well-defined three-
47 dimensional structures while still carrying out biological functions (1-3). IDPs play a crucial role
48 in mediating interactions with multiple partners and often function as protein interaction hubs (4,
49 5). IDPs within these protein complexes can undergo disorder-to-order transitions or remain
50 dynamic (6). The lack of stable folded structures observed in IDPs leads to the simplistic
51 assumption that IDPs resemble random coils. In fact, IDPs have transient secondary and tertiary
52 structures and preferential backbone torsion angle propensities due to electrostatic and other
53 interactions based on their amino acid sequence and exhibit a wide range of compactness (6-9).

54 Cap-dependent initiation of translation is regulated by the interaction of eukaryotic
55 initiation factor 4E (eIF4E) with disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-
56 dependent manner (10-12). The eIF4E protein, which binds the 7-methyl guanosine cap structure
57 of mRNA at the 5' end, has been shown to be an oncogene and be involved in the induction of
58 cellular transformation (13, 14). The eIF4G, a scaffolding protein, plays a crucial role in docking
59 and assembling several components of the translation initiation machinery at the 5' cap of mRNA
60 to recruit the ribosome (15). The 4E-BP2 protein is involved in controlling cell growth and
61 proliferation via regulating mRNA translation (16) and in immunity to viral infections (17). Neural
62 4E-BP2 also functions in regulating synaptic plasticity, playing an essential role in learning and
63 memory, and has been implicated in autism spectrum disorder (18, 19).

64 The interaction between eIF4E and eIF4G is the fundamental step that initiates the
65 translation process. This interaction involves the canonical binding helix-forming $^{54}YXXXXL\phi^{60}$
66 (where Y is tyrosine, X is any amino acid, L is Leucine, and ϕ is a hydrophobic amino acid) motif
67 of eIF4G, which is also found in all 4E-BPs, binding to the same convex interface of eIF4E. Thus,

68 the 4E-BPs regulate translation by competing with eIF4G to prevent the assembly of the eIF4F
69 complex and the subsequent mRNA recruitment to the ribosome. Binding of IDPs often leads to
70 ordering, the transient helical structure around the canonical $^{54}\text{YXXXXL}\phi^{60}$ motif is stabilized
71 upon eIF4E binding. However, the 4E-BP2:eIF4E complex has been shown by NMR to be highly
72 dynamic with an exchanging bipartite interface (20), in which the secondary binding site
73 $^{78}\text{IPGTV}^{82}$ interacts with the lateral surface of eIF4E, as revealed by an X-ray crystal structure
74 capturing a snapshot of the complex (21).

75 The 4E-BP2 protein is hierarchically phosphorylated. Modification of the first two sites
76 T37 and T46 results in the hypo-phosphorylated state(22); this 2-site phosphorylation (2P) state
77 induces formation of a 4-stranded β -sheet structure from residues 18-62, partially sequestering the
78 canonical binding motif and weakening eIF4E binding but still enabling competition with
79 eIF4G(12). Additional phosphorylation at S65, T70, and S83 leads to a 5-site phosphorylation (5P)
80 state that stabilizes the fold (23), further decreasing the eIF4E affinity and allowing translation
81 initiation to proceed (10). The disordered region C-terminal to the folded domain (C-IDR) remains
82 disordered after phosphorylation and stabilizes the folded domain via long-range interactions (12,
83 23). However, important details of the structure and dynamics of 4E-BP2 and the eIF4E:4E-BP2
84 complex remain unknown, which prevent a clear mechanistic picture of the function of 4E-BP2
85 and its phosphoregulation of translation initiation.

86 Typically, IDPs have a wide range of interchanging conformations, therefore obtaining
87 dynamic information is critically important for understanding their biological functions. Single-
88 molecule fluorescence (SMF) techniques have been applied previously to measure the
89 conformational heterogeneity, the global dimensions, and the dynamics of IDPs (24, 25). Here we
90 applied a combination of ensemble and single-molecule techniques, i.e., fluorescence anisotropy

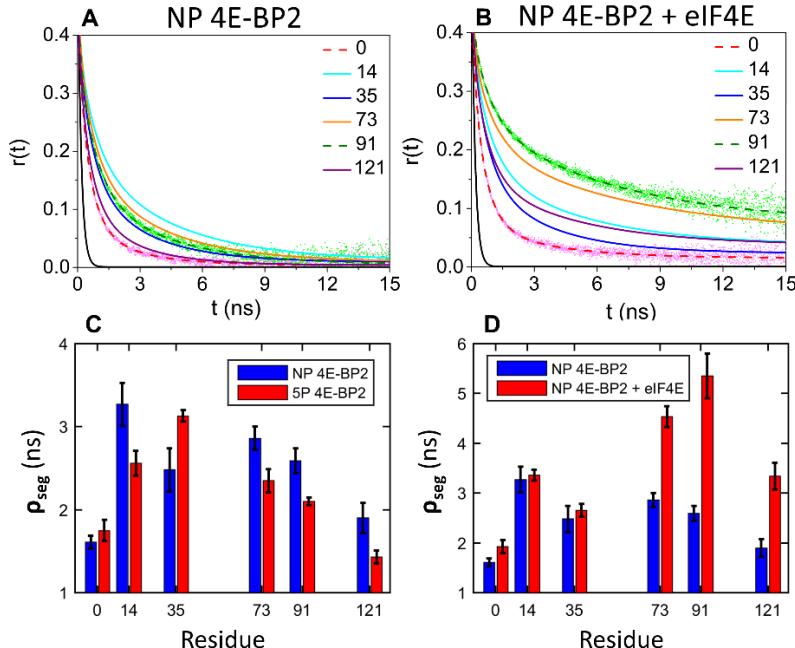
91 decay (FAD) and fluorescence correlation spectroscopy (FCS), to characterize global and local
92 peptide chain motions in 4E-BP2 upon multisite phosphorylation and upon binding to eIF4E. FCS
93 and FAD are sensitive to chain motions on the nanosecond-to-microsecond time scale, which is
94 highly relevant for protein folding and for IDP dynamics (26). FAD measurements informed on
95 the local, segmental flexibility of the peptide chain at various sites of the protein, leading to a
96 coarse rigidity map of 4E-BP2 in the non-phosphorylated (NP), 5-site-phosphorylated (5P), and
97 eIF4E-bound states. Using FCS, we resolved up to two different timescales of intra-molecular
98 conformational dynamics in 4E-BP2 under NP, 5P, and denaturing conditions. In addition, we
99 obtained kinetic information (amplitude and lifetime) of key inter-molecular contacts of the
100 dynamic binding interface between NP 4E-BP2 and eIF4E.

101 Single-molecule Förster resonance energy transfer (smFRET) measurements of two
102 different regions of the protein delineated changes in intramolecular distances and chain rigidity
103 upon multisite phosphorylation, and upon binding to eIF4E. Surprisingly, smFRET showed an
104 increase in the distance between residues 32 and 91 upon phosphorylation, despite folding-induced
105 compaction of residues 18 to 62 (12). While in complex with eIF4E, a region of 4E-BP2 containing
106 both canonical and secondary binding sites expands and stiffens considerably, while the C-terminal
107 region expands only slightly but remains highly flexible. Our multifaceted spectroscopic
108 characterization of the 4E-BP2 conformational dynamics is an important step towards
109 understanding the interplay between folding and release of binding to eIF4E, and it provides
110 valuable information for calculating conformational ensembles of this multistate IDP via
111 integrative modelling.

112

113

114 **RESULTS AND DISCUSSION**


115 **Local chain dynamics measured by FAD**

116 The structural flexibility of IDPs is essential for regulating their interactions with other
117 proteins and their role in signaling processes (3). FAD measures the rotational dynamics of the
118 emission dipole of a fluorophore and is therefore a suitable reporter of the local (segmental) chain
119 flexibility around the labelling site. Inferred parameters from FAD analysis relate to the spatial
120 confinement and the friction experienced by the dye, the movement of a protein segment around
121 the labelling site, and the hydrodynamic radius of the protein segment (27). Probing local
122 conformational dynamics is particularly relevant for IDPs, for which motions of different segments
123 may be uncorrelated and obscured by the averaged global dynamics.

124 Six single-cysteine 4E-BP2 constructs were used for site-specific fluorescence labelling:
125 C0 (i.e., C0ins/C35S/C73S mutations), C14 (S14C/C35S/C73S), C35 (C73S), C73 (C35S), C91
126 (C35S/C73S/S91C), and C121 (C35S/C73S/C121ins) (**Fig. S1**, **Table S1**). While the fastest, sub-
127 ns FAD lifetime (ρ_{dye}) typically describes the rotation of the dye-linker around the labelling site,
128 in IDPs with transient structure the slowest FAD lifetime describes the rotational diffusion of a
129 protein segment (ρ_{seg}), where individual segments can rotate independently (28, 29). Alternatively,
130 for folded proteins the slowest FAD lifetime describes the rotational diffusion of the entire
131 protein.(30)

132 **Fig. 1A** shows a family of FAD curves of NP 4E-BP2 with the fluorophore attached to
133 each of the six different mutated cysteine sites. As dye-protein interactions are expected to be
134 negligible for Atto488 (31) (**Fig. S2**), the variations in the anisotropy decays indicate that the chain
135 flexibility is site/region dependent. FAD fitting parameters using **Eq. 1** (see Methods) are listed in
136 **Table 1**, for each labelling site and each sample condition. **Fig. 1C** shows a comparison between

137 segmental lifetimes (ρ_{seg}) around each 4E-BP2 labelling site in different phosphorylation states,
138 i.e., NP, 2P, and 5P. These values range from 1.4 ns to 3.4 ns and vary considerably with the
139 labelling site and with the phosphorylation state.

140
141 **Figure 1.** Fluorescence anisotropy decay data for 4E-BP2 fit to **Eq. 1**. The 4E-BP2 protein was labelled
142 with Atto 488 at positions 0, 14, 35, 73, 91 and 121 along the sequence, as described in the text. NP 4E-
143 BP2 fitted curves for all six labelling sites are shown in the absence (**A**) and in the presence of 1 μ M of
144 eIF4E (**B**); the FAD of the free dye is shown in black in both panels, exemplar FAD data is shown for
145 positions 0 and 91. (**C**) The slowest rotational lifetime (ρ_{seg}) obtained by fitting FAD curves at each labelling
146 site for NP (**blue**) and 5P (**red**) 4E-BP2. (**D**) The slowest rotational lifetime (ρ_{seg}) obtained by fitting FAD
147 curves at each labelling site for NP 4E-BP2 in the absence (**blue**) and in the presence of (**red**) of eIF4E.
148 The concentration of 4E-BP2 used in these experiments was \sim 50 nM.

149
150 Many IDPs are more compact than an ideal statistical coil of the same length due to
151 transient intra-molecular contacts (7, 8, 32). Slower segmental dynamics in PBS buffer (pH 7.4,
152 140 mM NaCl) were observed than in chemical denaturant (6M GdmCl) at all labelling sites
153 (**Table S2**). The chemically denatured NP and 5P states of 4E-BP2 have similar segmental
154 flexibility signatures, with $\rho_{seg} = 0.8 - 1.0$ ns at the ends and $\rho_{seg} = 1.3 - 1.6$ ns at internal
155 sites. The values and the trend here match previous measurements for denatured proteins and the

156 expectations for a random coil state(27, 29). Additionally, the pattern of FAD lifetimes is
157 consistent overall with that of ^{15}N relaxation rates(20) and of ^1H - ^{15}N nuclear Overhauser effect
158 (NOE) values (12). This suggests that FAD-measured segmental dynamics can probe transient
159 secondary structures and non-random chain contacts, and reports on the local degree of disorder
160 in IDPs.

161 **Table 1.** Anisotropy decay parameters for phosphorylated/bound 4E-BP2 states labelled at different sites ^a.

	5P 4E-BP2		NP 4E-BP2		NP 4E-BP2 + eIF4E	
	ρ_{dye} (ns)	ρ_{seg} (ns) (<i>a</i>)	ρ_{dye} (ns)	ρ_{seg} (ns) (<i>a</i>)	ρ_{dye} (ns)	ρ_{seg} (ns) (<i>a</i>)
C0	0.53 (0.72)	1.75 (0.72)	0.51 (0.66)	1.61 (0.66)	0.52 (0.70)	1.93 (0.70)
S14C	0.56 (0.51)	2.56 (0.51)	0.64 (0.42)	3.27 (0.42)	0.62 (0.49)	3.36 (0.49)
C35	0.55 (0.41)	3.13 (0.41)	0.64 (0.52)	2.48 (0.52)	0.62 (0.51)	2.65 (0.51)
C73	0.55 (0.54)	2.35 (0.54)	0.62 (0.47)	2.86 (0.47)	0.61 (0.46)	4.54 (0.46)
S91C	0.57 (0.51)	2.01 (0.51)	0.61 (0.50)	2.59 (0.50)	0.65 (0.43)	5.35 (0.43)
C121	0.52 (0.61)	1.43 (0.61)	0.53 (0.60)	1.90 (0.60)	0.59 (0.59)	3.34 (0.59)

162 ^aAll data were fit to **Eq. 1** to estimate two rotational correlation lifetimes (dye & segment) and their fractions (*a* is the
163 fraction of the slowest component). Fitting error margins are on the order of ± 0.1 ns for the lifetimes and ± 0.05 for
164 amplitudes (**Table S2**).

165

166 Another contribution to the heterogeneous segmental flexibility is the amino acid
167 composition around each labelling site, with glycine and serine being the most flexible, and
168 proline, isoleucine, and valine the most rigid (33). With 4 serine and 2 glycine among the first 10
169 residues, the N-terminus is the most flexible region of NP 4E-BP2. Considering a 10-residue
170 window, the positions 14, 73 and 91 are flanked by several rigid residues (proline, isoleucine,
171 valine) and the protein appears to be much less flexible in these regions. The slowest rotational
172 lifetime was observed at position 14 ($\rho_{\text{seg}} = 3.27$ ns), which, in addition to two proline residues,

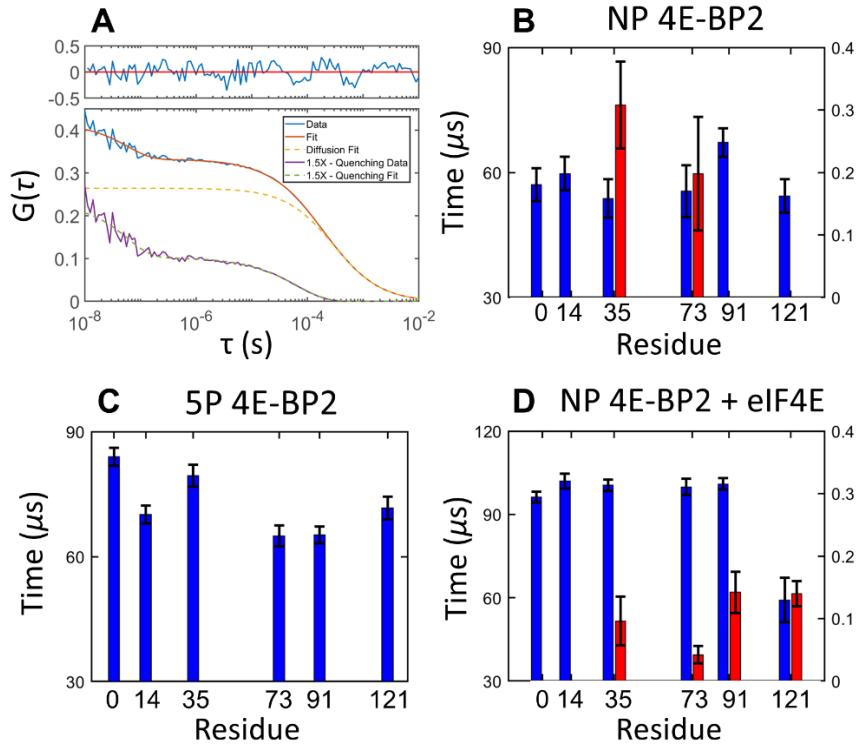
173 has two positively charged arginine residues in its proximity, which may rigidify the segment
174 further via electrostatic interactions.

175 In previous NMR studies, we have shown that a region of 4E-BP2 (residues 18 to 62) folds
176 upon phosphorylation, while the rest of the chain remains disordered (12). We used FAD to probe
177 the changes in segmental flexibility of 4E-BP2 that are induced by complete (5P) phosphorylation
178 (**Fig. 1C, Table 1**). The rotational lifetime (ρ_{seg}) increases at position 35 while it decreases at all
179 the other dye positions, which are outside the folded domain, indicating that the chain becomes
180 more flexible. This is consistent with the formation of the four-stranded beta-sheet fold between
181 residues 18-62 and with the C-terminal region remaining disordered after phosphorylation. From
182 an entropic perspective, increased conformational flexibility near the secondary binding site
183 (residues 78 to 82) may also contribute to decreasing the affinity for eIF4E.

184 FAD has been used previously to quantify and differentiate local binding constants of IDPs
185 in the context of multisite interactions (28) . **Fig. 1B** shows anisotropy decay data and fitted curves
186 for the NP 4E-BP2:eIF4E complex at each of the six labeling sites on 4E-BP2. In contrast with the
187 apo sample, these curves decay to significantly higher asymptotic values (r_{inf} , **Table S2**), indicating
188 that the local motions around each labeling site in 4E-BP2 are hindered after binding to eIF4E.
189 The largest changes in chain flexibility occur at three C-terminal sites while the changes observed
190 in the N-terminal sites are minor (**Fig. 1D**). At positions 73, 91 and 121, the segmental rotational
191 lifetime ρ_{seg} nearly doubles, from 2-3 ns in the apo state to 4-5 ns in the bound state. Similarly,
192 r_{inf} values significantly increase, with the largest changes at the C-terminal labelling sites (**Fig.**
193 **S3**).

194 Positions 73 and 91 are located near the secondary binding site while position 121 is far
195 from either binding site but the changes in lifetime are consistent with binding-induced changes to

196 NMR intensity ratios(20), which demonstrate complete broadening for residues 45-88, significant
197 broadening for residues 34-90, and broadening at residue 120. The data for positions 73 and 91
198 likely reflect favorable interactions at the secondary binding site, as well as potentially the
199 competitive interaction of the secondary binding region with the disordered N-terminus of eIF4E
200 that has been suggested to act as a negative regulator (34). The NMR broadening results for
201 position 120 together with these FAD data on position 121 support a picture of the 4E-BP2:eIF4E
202 dynamic complex involving a more extensive part of the C-terminus.


203 The results demonstrate that segmental motion parameters measured by FAD can be used
204 to disentangle the binding contributions of different regions in an intrinsically disordered protein
205 as it interacts with its binding partners. More specifically, the changes in r_{inf} are correlated with
206 the changes in ρ_{seg} , indicating that the rotational freedom of the segment and the segmental
207 dynamics of 4E-BP2 are hindered in the bound state.

208 **Non-local chain dynamics in 4E-BP2 measured by PET-FCS**

209 The same Atto488-labelled 4E-BP2 constructs used for FAD (**Fig. S1, Table S1**) were also
210 used for FCS experiments. FCS is sensitive to intensity fluctuations caused by the diffusion of the
211 labelled protein and by the photophysics of the fluorophore (**Eq. 2**). Notably, the fluorophore can
212 be dynamically quenched by aromatic amino acids via photoinduced electron transfer (PET)(35,
213 36). Tryptophan and tyrosine are the strongest PET quenchers, with a quenching range of 5-10 Å
214 for typical fluorophores (37, 38). The two tyrosines in the 4E-BP2 sequence (Y34 and Y54) are
215 most likely acting as quenchers in our FCS measurements. Given that the PET quenching effect in
216 our measurements is not produced by a single residue, we do not employ a specific kinetic model
217 and instead limit our interpretation to the PET induced exponential lifetimes and amplitudes
218 accounting for in our fitting model (**Eq. 2**).

219 **Fig. 2A** shows experimental FCS data, fitting curves, and residuals for a representative
220 sample, 4E-BP2 labelled with Atto488 at position 73, in the NP 4E-BP2:eIF4E state. Models with
221 one diffusion component and two or three (faster) kinetic components (**Eq. 2**) satisfactorily fit the
222 experimental autocorrelation decays measured for all 4E-BP2 samples. The (sub-diffusion) kinetic
223 components in FCS data are attributed to intrinsic triplet-state kinetics of the probe and to dynamic
224 PET quenching induced by the protein environment.

225 The FCS lifetimes obtained by fitting the data to **Eq. 2** can be grouped into three timescales:
226 $\tau_1 \approx 50\text{-}100 \mu\text{s}$, $\tau_t \approx 7\text{-}8 \mu\text{s}$, and $\tau_2 \approx 50\text{-}300 \text{ ns}$, respectively (**Fig. 2**, **Table 2**, **Fig. S4**). Conversely,
227 the free dye exhibits a single kinetic component with a lifetime of $\sim 3\text{-}10 \mu\text{s}$ (**Fig. S5**), which is
228 similar to a previously reported triplet lifetime of Atto488.(39) Thus, for 4E-BP2, the τ_1 and τ_2
229 lifetimes are attributed to PET quenching of the dye due to conformational dynamics of the protein,
230 while the τ_t lifetime was assigned to the intrinsic triplet lifetime of Atto488. Therefore the (τ_t) and
231 (**a_t**) component were fit as shared parameters in each measurement condition, the diffusion
232 coefficient is also a shared (see methods). Chain motions on the sub- μs (τ_2) timescale are typically
233 associated with interconversion of states within the disordered conformational ensemble and with
234 proximal loop formation.(40, 41). The slowest (τ_1) kinetics are on the same timescale as concerted
235 motions of the protein chain, such as domain movements or transient tertiary structural contacts
236 (43, 44).

237

238 **Figure 2.** FCS lifetimes of 4E-BP2 labelled with Atto488 at residue 0, 14, 35, 73, 91 or 121. Experimental
 239 curves were fit to Eq. 2. Fitting of NP 4E-BP2 labeled at residue 73 in the presence of 0.5 μ M eIF4E, the
 240 kinetic decays and diffusion for the best fit plotted separately (A). FCS experiments were performed on 4E-
 241 BP2 at a concentration of ~5 nM in different states: non-phosphorylated (B), hyper-phosphorylated (C), in
 242 the presence of 0.5 μ M of eIF4E (D). Different decay timescales are shown in different colors: $\tau_1 \approx 100 \mu$ s
 243 (blue) and $\tau_2 = 0.05-0.3 \mu$ s (red). The fitting error bars for each lifetime are shown in the figure. The full list
 244 of fitting parameters is given in Table S3.

245 For NP 4E-BP2, one or two kinetic components were resolved in addition to the triplet
 246 component at each labelling position, which follow the τ_1 and τ_2 timescales. The lifetimes for the
 247 τ_1 components are site-dependent (Fig. 2B). The fastest component τ_2 was only resolved at
 248 positions C73 and S91C, this component was not resolved for the other positions within
 249 experimental error limits. Similar PET-FCS analysis, with multiple lifetimes of intrachain
 250 dynamics between ~100 ns and ~100 μ s, was previously reported for other IDPs, e.g., the N-
 251 terminal domain of p53-TAD (42) and the mouse prion protein moPrP (43).

252

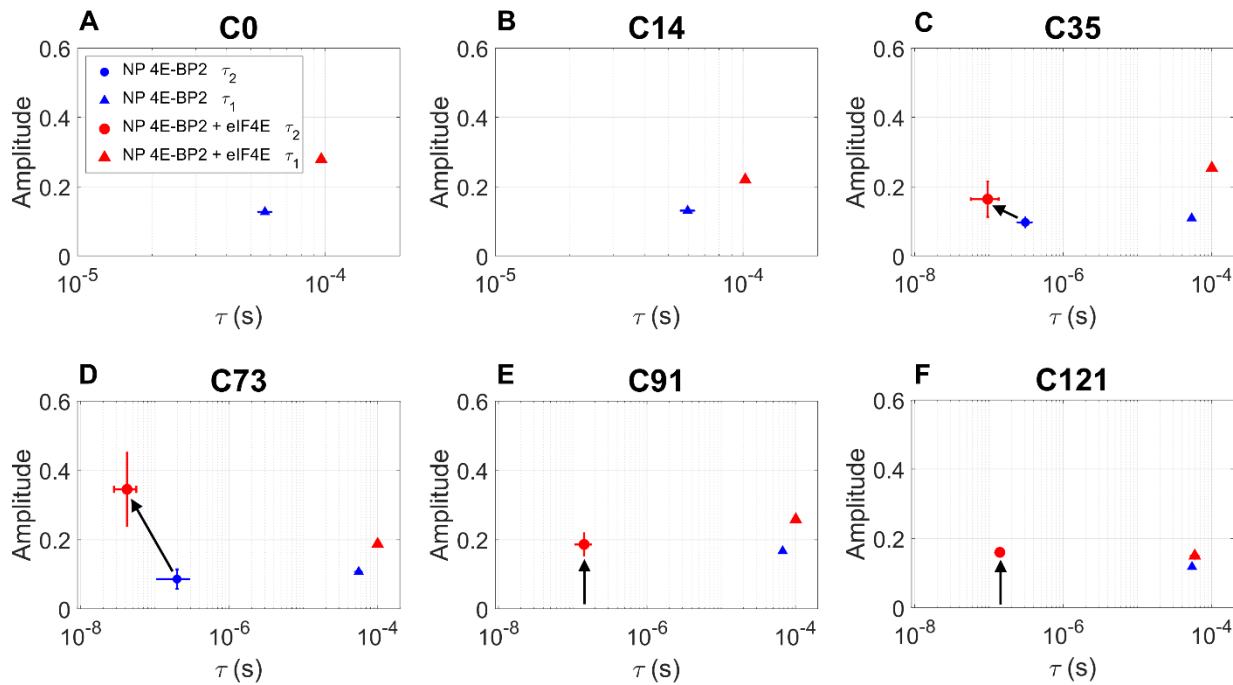
253

254

255 **Table 2.** FCS decay parameters for five-phospho, non-phospho and eIF4E-bound 4E-BP2 ^a.

5P-BP2		NP 4E-BP2		NP 4E-BP2 + eIF4E	
	$\tau_1(\mu\text{s})$	$\tau_1(\mu\text{s})$	$\tau_2(\mu\text{s})$	$\tau_1(\mu\text{s})$	$\tau_2(\mu\text{s})$
C0	83.9 (0.23)	57.1 (0.13)	-	96.3 (0.28)	-
S14C	70.1 (0.17)	59.7 (0.13)	-	101.8 (0.22)	-
C35	79.4 (0.18)	53.7 (0.11)	0.31 (0.11)	100.5 (0.25)	0.10 (0.16)
C73	64.9 (0.14)	55.5 (0.11)	0.20 (0.11)	99.9 (0.19)	0.04 (0.35)
S91C	65.2 (0.16)	67.2 (0.17)	-	101.0 (0.26)	0.14 (0.19)
C121	71.7 (0.16)	54.3 (0.12)	-	59.2 (0.15)	0.16 (0.14)

256 ^a All data were fit to **Eq. 2** Lifetimes are given in microseconds, with corresponding amplitudes in brackets. Fitting
257 errors are given in SI (Table S3).


258

259 In contrast to the NP state, the 5P state exhibits only one FCS kinetic component (τ_1) in
260 addition to the triplet component at each labelling position (**Fig. 2C**). In the 5P state, the addition
261 of phosphate groups and the induced folding in the 18-62 region probably slows down the protein
262 reconfiguration time sufficiently to be “absorbed” into the low μs triplet dynamics, as previously
263 reported for p53-TAD (42). Upon phosphorylation, the τ_1 component slows down at all positions
264 except 73 and 91 where no change is observed within the experiment error limits; the associated
265 kinetic amplitude a_1 decreases at all sites except for position 91 (**Table 2, Fig. S6**), from which it
266 can be inferred that the dominant effect of phosphorylation is to slow down intrachain contacts
267 causing PET quenching. Similarly, slower conformational dynamics upon multisite
268 phosphorylation has been observed for the disordered p53-TAD protein, even though
269 phosphorylation does not lead to folding in this system (42). In 4E-BP2, phosphorylation stabilizes

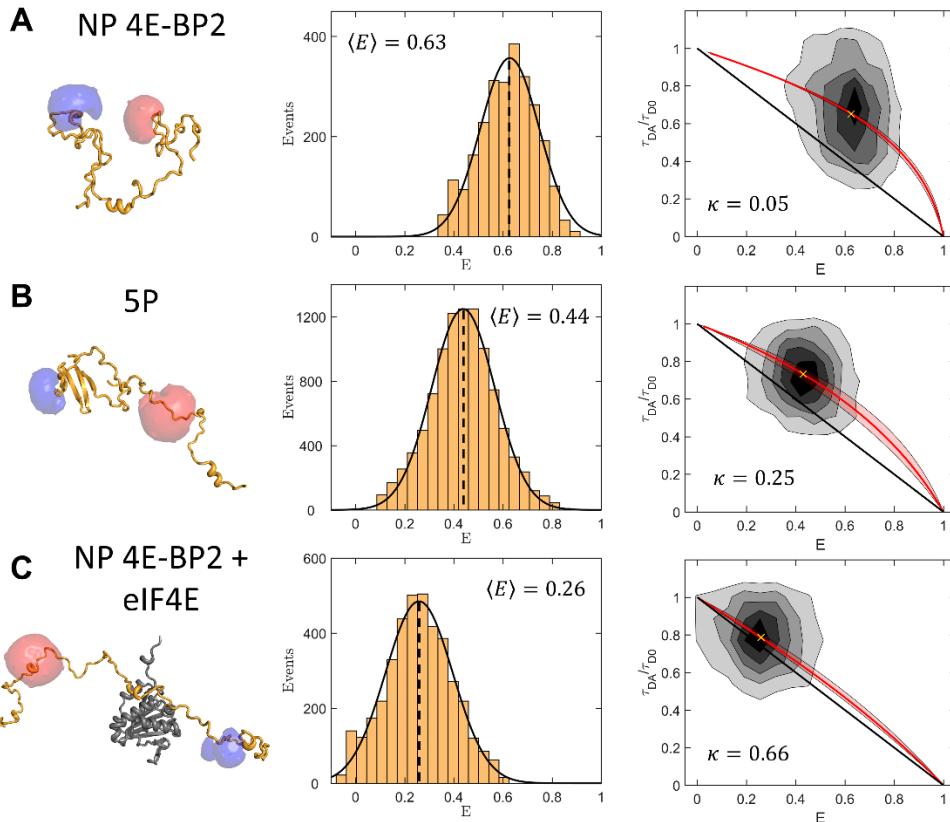
270 the β -strand structure between residues 18 and 62, which is expected to limit the access of the
271 fluorophore to tyrosine quenchers (12).

272 Given the tight binding affinity of 4E-BP2 for eIF4E ($k_d = 3.2 \pm 0.6$ nM)(12), saturating
273 amounts of eIF4E (0.5 μ M) were used to ensure that nearly all (>99%) 4E-BP2 molecules were in
274 the bound state. FCS measurements on Atto488-labelled 4E-BP2 with or without unlabeled eIF4E
275 (**Fig. S2**) showed a shift to longer diffusion times (larger R_H) in the presence of eIF4E, which is
276 consistent with the formation of the 4E-BP2:eIF4E complex. The R_H values estimated by fitting
277 the data to **Eq. 2** are 29.0 ± 0.5 \AA for the NP 4E-BP2 (independent of labelling site) and $36.6 \pm$
278 0.8 \AA for the 4E-BP2:eIF4E complex. As reference, FCS measurements of Atto488 (5 nM) in the
279 presence of excess eIF4E (1 μ M) showed that the dye does not interact/bind with eIF4E (**Fig S2**).

280 When bound to eIF4E, NP 4E-BP2 exhibits one to two FCS kinetic components in addition
281 to the triplet component which fall into the same τ_1 and τ_2 range as in the free (Apo) state, (**Fig.**
282 **2D**). eIF4E (PDB: 3AM7) contains 8 tryptophan and 6 tyrosine residues, of which four tryptophan
283 (W46, W56, W73 and W102) and three tyrosine (Y34, Y76, and Y 145) residues are largely surface
284 exposed (**Table S4**). Therefore, the observed changes in PET quenching dynamics are the
285 combined result of the new inter-molecular interactions between 4E-BP2 and the surface of eIF4E
286 and the changes in intra-molecular contacts within 4E-BP2.

287

288 **Figure 3.** The changes in lifetime and amplitude of the fastest and slowest FCS kinetic components (τ_2 –
289 circle, and τ_1 – triangle) induced by binding of NP 4E-BP2 to eIF4E. FCS measurements on NP 4E-BP2
290 labelled with Atto488 at six different sites were performed in the Apo state (blue) and in the presence of
291 0.5 μ M eIF4E (red), and the data were fit to Eq. 2. The fitting error bars for each parameter are indicated
292 in the figure; some error bars are too small to be seen, all fitting parameters are given in Table S3.


293 4E-BP2 interacts with eIF4E through dynamic interactions involving at least an α -helical
294 structure at the canonical $^{54}\text{YXXXXL}\phi^{60}$ motif and the secondary $^{78}\text{IPGVT}^{82}$ site (20, 21).
295 Positions 35 and 73 show a decrease in lifetime accompanied by an increase in amplitude of the
296 fast component, positions 91 and 121 gain this component upon binding to eIF4E (Fig. 3 C-F). As
297 such, τ_2 decreases from ~200-300 ns to ~50-100 ns upon binding at positions 35 and 73, while τ_2
298 at positions 91 and 121 is ~150 ns when bound (Table 2). The appearance of the fast τ_2 component
299 at positions 91 and 121, as well as the decrease in τ_2 lifetime and increase in a_2 amplitude at position
300 73 are likely caused by dynamic exchange of the secondary binding site leading to quenching by
301 aromatic residues on the surface of eIF4E. The involvement of residues 73, 91 and 121 in eIF4E
302 binding is consistent with binding-induced NMR intensity changes reported previously(20). The
303 changes at residue 121 upon binding mirror those observed by FAD (Fig. 1 D), providing further

304 support for a dynamic complex involving more of the C-terminal portion of 4E-BP2. Taken
305 together, the results highlight the dynamic nature and range of timescales present in the bound
306 state and ability of PET-FCS to probe intermolecular dynamics within the bound state.

307 **Chain dimensions and stiffness of 4E-BP2 assessed by smFRET**

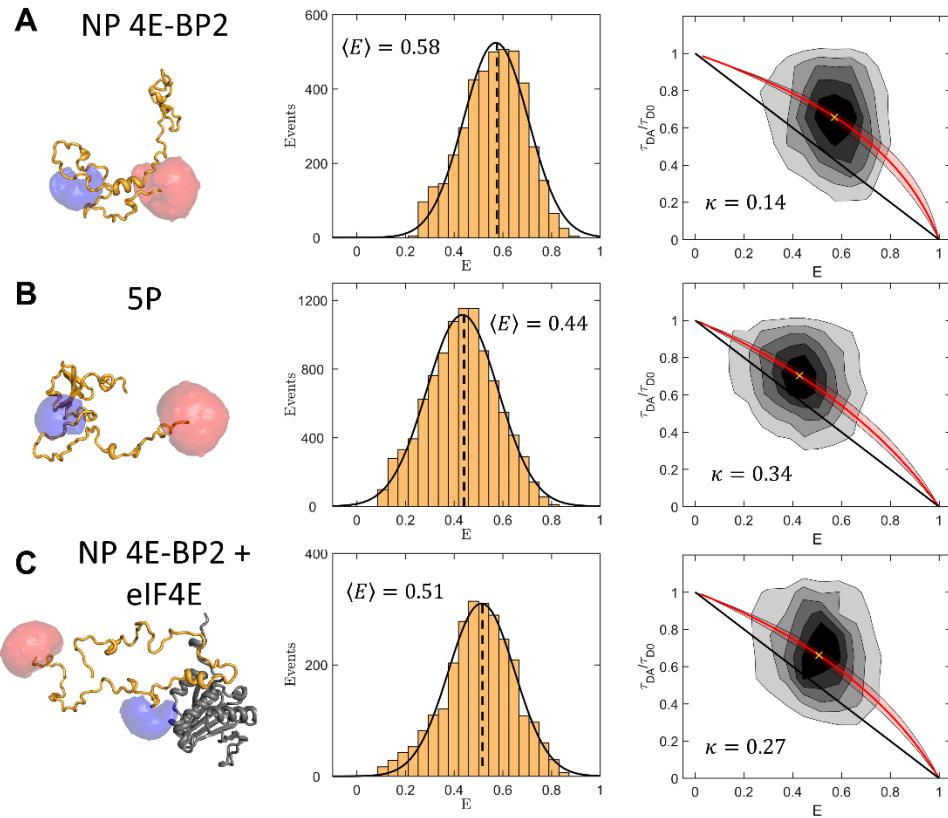
308 smFRET is exquisitely suited to delineate heterogeneous and dynamic states that are
309 inherent to IDPs. smFRET can resolve heterogeneous population distributions and kinetics, is
310 compatible with a wide range of solution conditions, and overcomes the ensemble averaging of
311 established structural techniques such as NMR and small-angle X-ray scattering (SAXS)(25). By
312 recording the arrival time, the color and the polarization of each detected photon, multiparameter
313 fluorescence (MPF) detection permits access to additional intrinsic properties of fluorescence that
314 can be related to properties of the conjugated molecule (46). The chain dimensions and stiffness
315 of 4E-BP2 were assessed using smFRET with MPF on two double-cysteine FRET constructs,
316 which were labelled stochastically with Alexa Fluor 488 (donor) and Alexa Fluor 647 (acceptor).

317 smFRET histograms for H32C/S91C in the NP, 5P, and NP+eIF4E states are shown in **Fig.**
318 **4**. Although each histogram was satisfactorily fit to a single Gaussian, a single FRET peak does
319 not necessarily reflect a homogenous distribution of states. Indeed, the underlying population is
320 likely in fast exchange compared to the burst duration (~1 ms), given the typical chain
321 reconfiguration times of IDPs (~100 ns) (51). The data suggests that the NP state is more compact
322 than a statistical coil ensemble, i.e., $\langle E_{32-91}^{NP} \rangle_{exp} = 0.63 \pm 0.02$ vs. $\langle E_{32-91}^{NP} \rangle_{coil} = 0.43 \pm 0.03$
323 (see SI section 2.3). This is consistent with the presence of transient secondary structure observed
324 by NMR(20), and with the multiple transient intrachain contacts observed by PET-FCS.

325

326 **Figure 4.** smFRET MPF results for the H32C/S91C 4E-BP2 construct labelled with Alexa Fluor 488 and
 327 Alexa Fluor 647 in the (A) non-phospho (NP), (B) five-phospho and (5P) (C) non-phospho eIF4E-bound
 328 (NP 4E-BP2 + eIF4E) states. (1st column) Cartoon depictions of conformations of 4E-BP2 in different states
 329 with representations of fluorophore accessible volume simulations (47). (2nd column) FRET efficiency
 330 histograms fit to a Gaussian function, with the dashed lines indicating the mean values. (3rd column) 2D
 331 histogram plots of the FRET efficiency (E) and the donor-only normalized fluorescence lifetime; τ_{DA} and
 332 τ_{D0} are donor lifetimes in the presence and absence of acceptor, respectively. The black line shows the
 333 relation expected for a static rigid molecule. The red line is a relation for a worm-like chain with a stiffness
 334 parameter (κ) that passes through the centroid of a 2D gaussian fit indicated by a yellow cross. The red
 335 shaded region shows the uncertainty range of κ .

336


337 Upon multi-site phosphorylation 4E-BP2 undergoes folding to a beta-sheet domain
 338 between residues 18 and 62 (12). Typically, when proteins fold, FRET efficiency increases,
 339 following the overall compaction of the structure and contraction of most (but not all!) inter-
 340 residue distances(48, 49). In this case however, the FRET efficiency of the 5P state is lower for
 341 the dye pairs at residues 32 and 91, $\langle E_{32-91}^{5P} \rangle_{exp} = 0.44 \pm 0.02$, not higher than the NP state,
 342 $\langle E_{32-91}^{NP} \rangle_{exp} = 0.63 \pm 0.02$ (**Table 3**). The dye at C32 is positioned in the long loop between

343 strands β 1 and β 2 which is proximal to the C-terminal end of the domain (PBD ID 2MX4), from
344 where the C-IDR, containing the dye at C91, extends. An alternate construct designed to
345 specifically probe the folded region (with both dyes within the folded domain boundaries from 18-
346 62) would likely lead to an increase in FRET efficiency upon phosphorylation. The H32C/S91C
347 construct, however, also partially probes the C-IDR, which expands when 4E-BP2 is
348 phosphorylated (**Fig. 5B**).

349 The FRET efficiency of the NP H32C/S91C construct exhibits an even larger decrease
350 upon binding to eIF4E, i.e., $E_{32-91}^{NP+4E} = 0.26 \pm 0.02$. This construct flanks both primary and
351 secondary binding sites and should be sensitive to 4E-BP2:eIF4E interactions and the 3D
352 arrangement of the complex. The large FRET decrease could result from a combination of more
353 extended conformations being compatible with the eIF4E bound state, in which 4E-BP2 wraps
354 around eIF4E (with the exception of the canonical helical element), and an excluded-volume effect
355 exerted by eIF4E on 4E-BP2. The conformations of 4E-BP2 bound to eIF4E are thought to be
356 defined by dynamic interactions of the canonical and secondary binding elements, and by
357 significant structural disorder elsewhere (20).

358 smFRET histograms of the C73/C121 construct for the same three 4E-BP2 states are shown
359 in **Fig. 5**. The average FRET efficiency for NP 4E-BP2, $\langle E_{73-121}^{NP} \rangle_{exp} = 0.58 \pm 0.02$, is also
360 higher than that expected from a statistical coil, $\langle E_{73-121}^{NP} \rangle_{coil} = 0.49 \pm 0.03$, suggesting that the
361 C-terminal disordered region contains transient intrachain contacts. The average C73/C121 FRET
362 efficiency decreases to $\langle E_{73-121}^{5P} \rangle = 0.44 \pm 0.02$ upon phosphorylation, but only to $\langle E_{73-121}^{NP+4E} \rangle =$
363 0.51 ± 0.02 upon binding to eIF4E. The electrostatic repulsion between the five phosphates may
364 contribute to the C-IDR expansion of 5P 4E-BP2. This expansion of the C-IDR has also been

365 observed from previously published NMR paramagnetic relaxation enhancement (PRE) data and
 366 chemical shift-derived measures of secondary structure.(23)

367
 368 **Figure 5.** smFRET MPF results for the C73/C121 4E-BP2 construct labelled with Alexa Fluor 488 and
 369 Alexa Fluor 647 in the (A) non-phospho (NP), (B) five-phospho (5P) and (C) non-phospho eIF4E bound
 370 states (NP 4E-BP2 + eIF4E). (1st column) Cartoon depictions of conformations of 4E-BP2 in different states
 371 with representations of fluorophore accessible volume simulations (47). (2nd column) FRET efficiency
 372 histograms fit to a Gaussian function, with the dashed lines indicating the mean values. (3rd column) 2D
 373 histograms plots of the FRET efficiency (E) and the donor-only normalized fluorescence lifetime; τ_{DA} and
 374 τ_{D0} are donor lifetimes in the presence and absence of acceptor, respectively. The black line shows the
 375 relation expected for a static rigid molecule. The red line is a relation for a worm-like chain with a stiffness
 376 parameter (κ) that passes through the centroid of a 2D gaussian fit indicated by a yellow cross. The red
 377 shaded region shows the uncertainty range of κ .
 378

379 For the bound state, the reduction in FRET is much less for C73/C121 than for H32C/S91C, i.e.,
 380 $\Delta E_{73-121}^{NP \rightarrow +4E} = -(0.07 \pm 0.03)$ vs. $\Delta E_{32-91}^{NP \rightarrow +4E} = -(0.37 \pm 0.03)$. This suggests that C-terminal
 381 disordered conformations are less restricted in the NP 4E-BP2:eIF4E complex than those of the
 382 32-91 region, as expected from the complete loss or very significant broadening of NMR
 383 resonances upon binding from residues 34-90 (20).

384 The relation between the donor lifetime and the FRET efficiency can be used to infer
385 information about the dynamic exchange of the underlying states (50). A linear relation is expected
386 for a static structure, with conformations that are rigid or fluctuate on a timescale slower than ~ 100
387 μ s; in contrast, a nonlinear relation is expected for IDPs, as the burst duration (~ 1 ms) is much
388 longer than typical chain reconfiguration times (~ 100 ns) (51). A family of dynamic τ vs. E lines
389 based on a worm-like chain (WLC) model with variable stiffness κ (or persistence length) was
390 generated using a method described by Barth et al. (52) The center of the experimental 2D FRET
391 histogram was best matched to a WLC curve to infer the average stiffness for different regions of
392 4E-BP2 in different phospho/binding states (**Table 3**).

393 **Table 3.** Mean smFRET efficiency and WLC stiffness values of the non-phospho (NP), five-phospho
394 (5P) and eIF4E-bound 4E-BP2 (NP 4E-BP2 + eIF4E).

NP 4E-BP2		5P-BP2		NP 4E-BP2 + eIF4E	
	$\langle E \rangle$	κ	$\langle E \rangle$	κ	$\langle E \rangle$
H32C/ S91C	0.63 ± 0.02	0.05 ± 0.03	0.44 ± 0.02	0.25 ± 0.10	0.26 ± 0.02
C73/ C121	0.58 ± 0.02	0.14 ± 0.08	0.44 ± 0.02	0.34 ± 0.10	0.51 ± 0.02

395 The stiffness parameter of the 32-91 region, $\kappa_{32-91}^{NP} = 0.05 \pm 0.03$, corresponds to a
396 persistence length of $l_p^{NP}_{32-91} = 1.0 \pm 0.6$ nm, which is similar to $l_p = 0.4 \pm 0.07$ nm reported for
397 a set of disordered and unfolded proteins.(53) The stiffness increases to $\kappa_{32-91}^{5P} = 0.25 \pm 0.10$
398 upon phosphorylation, and even more significantly, to $\kappa_{32-91}^{NP+4E} = 0.66 \pm 0.17$ upon binding to
399 eIF4E (**Fig. 4** and **Table 3**). The larger stiffness in the 5P state is consistent with the appearance
400 of a stable beta-fold between residues 18 and 62. In the bound state, the 2D FRET population lies
401 close to the static line; this is consistent with the decreased dynamics expected as residues 49-67
402 form a predominantly stable helix when 4E-BP2 is bound to eIF4E.(20, 54) At the same time, the

403 separation between the static and dynamic regimes is much reduced in the low E range, which
404 increases the uncertainty in estimating the chain stiffness.

405 The 73-121 region has a stiffness of $\kappa_{73-121}^{NP} = 0.14 \pm 0.08$ and $\kappa_{73-121}^{5P} = 0.34 \pm 0.10$
406 in the NP and 5P states, respectively. While slightly larger, these values mirror the changes
407 observed for the 32-91 region. The stiffening of the C-IDR upon phosphorylation can be attributed
408 to stabilizing interactions with the folded domain established previously (23). However, in contrast
409 to the 32-91 region, the stiffness of the C-terminal region shows only a moderate increase in the
410 eIF4E-bound state, to $\kappa_{73-121}^{NP+4E} = 0.27 \pm 0.08$, as the 2D FRET histogram remains well separated
411 from the static line (**Fig. 5**). Together with the FAD and PET-FCS results, this suggests that the
412 73-121 region remains disordered and interacts with eIF4E as part of a more extensive dynamic
413 complex than the current bipartite model (20).

414

415 **CONCLUSIONS**

416 Dynamics is likely the key factor in understanding how 4E-BP2 regulates cap-dependent
417 translation via interactions with the initiation factor eIF4E. Complementary to our previous NMR
418 studies of the 4E-BP2 protein (12, 20, 23), a suite of multiparameter fluorescence techniques was
419 used here to define local and global conformational dynamics of this intriguing IDP in its various
420 states. Polarization anisotropy (FAD) measurements showed evidence of heterogeneous chain
421 flexibility within the 4E-BP2 sequence, which correlates with variations in transient secondary
422 structure and local amino acid composition. Multisite phosphorylation decreased segmental
423 flexibility only in the region that undergoes folding (residues 18-62), while it made the rest of the
424 chain more flexible. As anticipated, in the presence of eIF4E, segmental dynamics near the two
425 binding sites was slowed down by binding interactions. Surprisingly however, the C-terminal

426 region adjacent to the secondary binding site experienced the largest changes, while the N-terminal
427 region exhibited much less change. These results implicate a much larger region of 4E-BP2
428 interacting with eIF4E than previously thought and showcase FAD as a sensitive method to probe
429 local binding affinity, at the level of individual protein segments, in the context of multivalent
430 interactions.

431 As seen previously for other IDPs (42), the quenching rates decreased at most labelling
432 sites. This likely arises from a combination of local steric and electrostatic effects of the phosphate
433 groups and the overall steric effect of the folded domain. In the presence of eIF4E, the quenching
434 rates near the two binding motifs in 4E-BP2 increased significantly, as expected from increased
435 contacts with several exposed tryptophan and tyrosine residues along the extensive binding
436 interface of eIF4E. Although contributions from intra- and inter-molecular contact could not be
437 distinguished, the significant changes observed at the C-terminus support the involvement of the
438 C-terminal region of 4E-BP2 in dynamic interactions with eIF4E.

439 smFRET measurements informed on changes in 4E-BP2 chain dimensions and stiffness of
440 central and C-terminal regions of the protein following phosphorylation or binding. In the NP state,
441 as a consequence of transient intrachain secondary and tertiary contacts, the donor-acceptor
442 distance turned out smaller (higher FRET efficiency) than the random coil prediction for both
443 FRET constructs. In the 5P state, the separation between residues 32 and 91, which partially
444 contains the folding domain, increased, instead of the decrease typically expected for a folding
445 transition. When bound to eIF4E, the chain expands and stiffens considerably around the canonical
446 and secondary binding sites, while the C-terminal region remains highly flexible. The canonical
447 binding motif and secondary binding site provide specificity, while the dynamic nature of the
448 complex which retains significant chain flexibility minimizes the entropic penalty. All

449 phosphorylation sites except S65, which is phosphorylated last, are in regions that remain highly
450 dynamic in the 4E-BP2:eIF4E complex. This facilitates the access of large kinases and allows a
451 rapid response to cellular conditions. Our fluorescence-based characterization of the 4E-BP2
452 conformational dynamics is an important step towards understanding the interplay between folding
453 and release of binding to eIF4E and its regulatory function, and it provides a foundation for future
454 studies of IDP conformational and binding equilibria.

455 **MATERIALS AND METHODS**

456 **Materials.** The fluorescent probes used for labelling the 4E-BP2 protein were: Alexa Fluor
457 488 (A488) maleimide, Alexa Fluor 647 (A647) maleimide (ThermoFisher Scientific, Canada)
458 and, Atto488 (At488) maleimide (ATTO-TEC GmbH, Germany). Guanidinium chloride (GdmCl)
459 (G9284, Sigma Aldrich) was used for protein denaturation. All samples were diluted in phosphate-
460 buffered saline (PBS) containing 137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, and 1.8 mM
461 KH₂PO₄ at pH 7.4. GdmCl solutions were adjusted to pH 7.4 for all the denaturation experiments.

462 **Protein expression and purification.** Small ubiquitin-like modifier (SUMO) fusion
463 constructs of both the 4E-BP2 protein (residues 1 through 120) and eIF4E protein (residues 1
464 through 217) were expressed and purified as described previously(23). Briefly, the proteins were
465 expressed in BL21-codonplus (DE3)-RIPL competent *E. coli* cells (Agilent Technologies) in
466 Lysogeny broth at 37 °C until OD₆₀₀~0.6-0.8, induced with isopropyl β-D-1-thiogalactopyranoside
467 (IPTG), and expressed at 16 °C for ~16 h. Protein was purified from cell lysate with a nickel-
468 nitrilotriacetic acid (Ni-NTA) column followed by cleavage of the SUMO solubility tag with
469 ULP1 at 4 °C for ~16 h. The Sumo tag was separated using an Ni-NTA column followed by HiLoad
470 Superdex 75 PG gel filtration column (28-9893-34, GE Healthcare) if the protein was not pure as
471 assessed by SDS-PAGE. The molecular mass and the purity of protein samples were verified by
472 electrospray ionization mass spectrometry (ESI-MS).

473 Phosphorylation of 4E-BP2 with activated Erk2 using a dialysis technique was performed
474 as described previously(12, 23). Briefly, 50 mL of 5 μM Erk2 and 20 μM of 4E-BP2 were dialyzed
475 in a 3 kDa MWCO dialysis bag in 1 L of buffer. The dialysis buffer contained 50 mM Tris-HCl,
476 pH 7.5, 1 mM EGTA, 5 mM BME, 20 mM MgCl₂, 10 mM EDTA, and 10 mM ATP, dialysis was

477 performed at 20 °C for 1-3 days. Phosphorylated 4E-BP2 was purified from Erk2 using a Ni-NTA
478 column. Purity and degree of phosphorylation of 4E-BP2 was confirmed by ESI-MS.

479 All single cysteine proteins (C0/C35S/C73S (cysteine insertion at 0 position),
480 S14C/C35S/C73S, C35/C73S, C73/C35S, C35S/C73S/S91C, C35S/C73S/C121 (cysteine
481 insertion at 121 position)) were labeled by adding the Atto488 maleimide fluorophore to a 50 µL
482 solution of 100 µM protein at a dye:protein molar ratio of 3:1. The double-cysteine mutants
483 (H32C/C35S/C73S/S91C) and (C35S/insC121) was labeled with Alexa Fluor 488 maleimide and
484 Alexa Fluor 647 maleimide by adding Alexa Fluor 488 and Alexa Fluor 647 to a 50 µL solution
485 of 100 µM protein at a A488:A647:protein molar ratio of 1.3:3:1. TCEP was added at a 10× molar
486 excess to the protein in order to reduce the disulfide bonds. All the maleimide-cysteine coupling
487 reactions were performed in a PBS buffer at pH 7.4. Oxygen was removed by flushing the sample
488 with argon gas in a desiccator for 5 min. The vial was capped tightly and shaken gently for 3 hours
489 at room temperature. The excess dye was removed by size-exclusion chromatography using
490 Sephadex G-50 gel (G5080, Sigma Aldrich) in a BioLogic LP system (731-8300, Bio-Rad).

491 All samples were diluted to concentrations of 1–10 nM and 20–50 pM, which are most
492 suitable for FCS/FAD and smFRET burst experiments, respectively. For a typical experiment, a
493 sample solution of 30 µL was dropped on the surface of plasma-cleaned coverslip. Non-specific
494 protein adsorption to the coverslip was prevented by adding 0.005% (v/v) Tween-20 (P2287,
495 Sigma-Aldrich) to the solution, and bovine serum albumin (BSA) (15260-037, ThermoFisher
496 Scientific) was used to coat the clean coverslips. All experiments were performed at 20 °C.

497 **Instrumentation.** smFRET measurements were performed on a custom-built
498 multiparameter fluorescence microscope (32). The donor was excited at 480 nm by frequency

499 doubling the infrared output of a femtosecond laser (Tsunami HP, Spectra Physics), while the
500 acceptor was excited at 635-nm using a diode laser (WSTech, TECRL-25GC-635). Alternating-
501 laser excitation (ALEX) of the sample was performed by synchronous modulation of the two laser
502 sources to achieve alternating 50- μ s periods of donor and acceptor fluorophore excitation,
503 respectively. Laser intensities of 10 kW/cm² and 3.6 kW/cm² at the sample were used for exciting
504 the donor and the acceptor fluorophores, respectively. FAD measurements were performed on the
505 same microscope, by exciting Atto488 at an average intensity of ~0.14 kW/cm² at the sample. FCS
506 measurements were performed on a separate custom-built fluorescence microscope described
507 elsewhere (55), where Atto488 was excited using a 488-nm diode laser (TECBL-488nm,
508 WorldStarTech) at an average intensity of ~5 kW/cm² at the sample.

509 **FAD analysis.** FAD monitors the rotation dynamics of the emission dipole of the dye. The
510 “wobble-in-a-cone” model (30) was used to fit the experimental FAD data:

$$511 \quad r(t) = r_0[(1 - a)e^{-t/\rho_{dye}} + a]e^{-t/\rho_{seg}} + r_{inf} \quad (1)$$

512 where ρ_{dye} , ρ_{seg} are rotational correlation lifetimes of the dye and the protein segment,
513 respectively, a is the fraction of the slower (segmental) component, r_0 is initial (limiting)
514 anisotropy, and r_{inf} is the non-decaying (residual) anisotropy. The uncertainties of the fitted
515 parameters were estimated by taking the standard deviation of the fitting results of 3-7 data sets
516 collected consecutively; if any of the fitting derived errors were larger, then this value was
517 reported. The baseline offset r_{inf} accounts for the slow, global motion of the whole protein; this
518 is typically very small for IDPs due to their high backbone flexibility (29), but it can increase upon
519 binding to their targets.

520 **FCS analysis.** In FCS, the fluorescence autocorrelation function for free Brownian
521 diffusion of a single molecular species with multiple relaxation components is given by (57) :

522

$$G(\tau) = \frac{1}{N_{eff}} \left(1 + \frac{\tau}{\tau_d}\right)^{-1} \left(1 + \frac{\tau}{s^2 \tau_d}\right)^{-0.5} \left(1 + a_t e^{\frac{-\tau}{\tau_t}} + \sum_i a_i e^{\frac{-\tau}{\tau_i}}\right) \quad (2)$$

523 In equation (3), N_{eff} is the average number of molecules in the detection volume, s is the
524 ratio between the axial and the lateral radii of the detection volume ($s = z_0/w_0$), and τ_d is the
525 average diffusion time, which is related to the diffusion coefficient ($w_0^2 = 4D\tau_d$) and to the
526 hydrodynamic radius R_H of the molecule via the Stokes-Einstein equation(58); a_t and τ_t are the
527 amplitude and lifetime of the triplet component and a_i and τ_i are the amplitude and the lifetime of
528 the i^{th} PET relaxation components, respectively. Global fitting was performed simultaneously on
529 each labelling position (C0, C14, C35, C73, C91, C121), a separate global fit was performed for
530 each for each measurement condition (NP 4E-BP2, 5P 4E-BP2 and NP 4E-BP2 + eIF4E), a total
531 of three independent global fits performed on six FCS curves simultaneously. In the global analysis
532 the diffusion time (τ_d), the triplet amplitude (a_t) and the triplet lifetime (τ_t) were shared
533 parameters, while the average number of molecules in the detection volume (N_{eff}), the PET
534 relaxation amplitudes (a_i) and lifetimes (τ_i) were fit as individual parameters. PET relaxation
535 components with amplitudes of 0.05 or less were considered insignificant and not reported. The
536 triplet lifetime (τ_t) were confined to a range of 5-10 μs based on characterization of the triplet state
537 of free Atto488 as a function of excitation intensity, see **Fig. S5**. FCS measurements performed
538 at $\sim 5 \text{ kW/cm}^2$, returned a characteristic diffusion time (τ_d) for free Atto488 of $48 \pm 1 \mu\text{s}$. To
539 exclude the possibility that the slow relaxation component (τ_1) resulted from the diffusion of
540 unreacted free Atto488 remaining after size-exclusion chromatography purification, we performed
541 an additional reverse-phase high-performance liquid chromatography (RP-HPLC) purification of

542 the S91C NP 4E-BP2 construct. We did not detect unreacted Atto488 in the RP-HPLC
543 chromatogram (**Fig. S7**), we also observed the slow relaxation component (τ_1) in FCS
544 measurements of the S91C NP 4E-BP2 after RP-HPLC purification (**Fig. S8**). Fitting was
545 optimized by varying the number of relaxation components, the goodness of fit (χ^2) and Akaike
546 information criterion (AIC) were calculated for each fit. The addition of relaxation components
547 was accepted if: the χ^2 parameter decreased, the AIC decreased, and the fitting residuals were
548 featureless. The uncertainties of the fitted parameters were estimated using the Jacobian from
549 Levenberg-Marquardt least-squares fitting. Prior to each set of measurements, a calibration dye
550 (rhodamine 110) was used to estimate the s and w_0 parameters, typically ~ 8 and ~ 250 nm,
551 respectively.

552 **smFRET analysis.** A custom MATLAB script based on the ‘MLT’ algorithm was used to
553 identify fluorescence bursts and sort them into donor-only, acceptor-only and dual-labelled
554 (FRET) populations (32). The FRET efficiency for each burst was calculated based on the number
555 of detected photons in the donor (I_D) and acceptor (I_A) channels:

556
$$E = \frac{I_A}{I_A + \gamma I_D} \quad (3)$$

557 where γ is a correction factor for the difference in the detection efficiencies of donor and acceptor
558 channels, and the quantum yields of the dyes were determined as described in SI section 2.1. In
559 addition, corrections were applied on both I_D and I_A to subtract background, spectral cross talk, and
560 direct excitation of the acceptor. The background was obtained from a measurement of the sample
561 buffer while the corrections for cross talk and direct excitation were derived from donor-only and
562 acceptor-only bursts. A smFRET histogram was constructed from all bursts detected for a given
563 sample, each histogram was fit to a single Gaussian distribution.

564 To estimate the FRET efficiency if 4E-BP2 was a featureless statistical coil, 5000
565 conformers were generated using Trajectory Directed Ensemble Sampling (TraDES)(59) with
566 100% coil sampling in accordance with the sequences in **Table S1**. The FRET efficiency for each
567 conformer was calculated using the python library *LabelLib*(60) (see SI section **2.3**).

568 For each FRET construct, a family of τ_{DA}/τ vs E curves were generated based on a WLC
569 model with stiffness parameters κ between 0.01 and 1 using the *FRETlines* Python library(52).
570 The chain stiffness for given dataset was selected as the κ value of the τ_{DA}/τ vs E curve passing
571 through the centroid of a 2D Gaussian fit of the experimental τ_{DA}/τ vs E histogram. The confidence
572 interval was established from the range of WLC models that agree with the centroid from fitting
573 within the experimental accuracy of determining the FRET efficiency, i.e., 0.02 (32).

574

575

576

577

578

579

580

581

582

583

584 **AUTHOR INFORMATION**

585 **Corresponding Authors**

586 Email: claudiu.gradinaru@utoronto.ca

587

588 **Author Contributions**

589 C.C.G. was responsible for overall project management and supervision. S.S. and Z.Z. expressed,
590 purified and labelled proteins, performed measurements and analyzed data. A.B. and J.D. designed
591 single- and double-cysteine 4E-BP2 mutants. T.T. performed smFRET simulations. S.S., Z.Z., and
592 C.C.G. wrote the manuscript. J.D.F.-K. contributed to interpretation of results and critical revision
593 of manuscript.

594

595 **Competing Financial Interest**

596 The authors report no competing financial interest.

597

598 **ACKNOWLEDGEMENTS**

599 This work has been supported by the Natural Sciences and Engineering Research Council of
600 Canada (NSERC RGPIN 2017 – 06030 to C.C.G.), the Canadian Institutes of Health Research
601 (CIHR FND-148375 to J.D.F.-K.) and National Institutes of Health (NIH 5R01GM127627-03 to
602 J.D.F.-K.).

603 **REFERENCES**

- 604 1. P. E. Wright, H. J. Dyson, Intrinsically unstructured proteins: Re-assessing the protein structure-
605 function paradigm. *Journal of Molecular Biology* **293**, 321-331 (1999).
- 606 2. V. N. Uversky, Intrinsically disordered proteins from A to Z. *The International Journal of*
607 *Biochemistry & Cell Biology* **43**, 1090-1103 (2011).
- 608 3. P. E. Wright, H. J. Dyson, Intrinsically disordered proteins in cellular signalling and regulation.
609 *Nature Reviews Molecular Cell Biology* **16**, 18-29 (2015).
- 610 4. C. Haynes *et al.*, Intrinsic disorder is a common feature of hub proteins from four eukaryotic
611 interactomes. *PLoS Comput Biol* **2**, e100 (2006).
- 612 5. A. K. Dunker, I. Silman, V. N. Uversky, J. L. Sussman, Function and structure of inherently
613 disordered proteins. *Current Opinion in Structural Biology* **18**, 756-764 (2008).
- 614 6. Julie D. Forman-Kay, T. Mittag, From Sequence and Forces to Structure, Function, and Evolution
615 of Intrinsically Disordered Proteins. *Structure* **21**, 1492-1499 (2013).
- 616 7. V. N. Uversky, Natively unfolded proteins: A point where biology waits for physics. *Protein*
617 *Science* **11**, 739-756 (2002).
- 618 8. J. A. Marsh, J. D. Forman-Kay, Sequence determinants of compaction in intrinsically disordered
619 proteins. *Biophysical journal* **98**, 2383-2390 (2010).
- 620 9. A. H. Mao, S. L. Crick, A. Vitalis, C. L. Chicoine, R. V. Pappu, Net charge per residue modulates
621 conformational ensembles of intrinsically disordered proteins. *Proceedings of the National*
622 *Academy of Sciences* **107**, 8183-8188 (2010).
- 623 10. N. Sonenberg, A. G. Hinnebusch, Regulation of translation initiation in eukaryotes: mechanisms
624 and biological targets. *Cell* **136**, 731-745 (2009).
- 625 11. S. Tait *et al.*, Local control of a disorder-order transition in 4E-BP1 underpins regulation of
626 translation via eIF4E. *Proceedings of the National Academy of Sciences* **107**, 17627-17632 (2010).
- 627 12. A. Bah *et al.*, Folding of an intrinsically disordered protein by phosphorylation as a regulatory
628 switch. *Nature* **519**, 106-109 (2015).
- 629 13. A. Lazaris-Karatzas, N. Sonenberg, The mRNA 5'cap-binding protein, eIF-4E, cooperates with v-
630 myc or E1A in the transformation of primary rodent fibroblasts. *Molecular and cellular biology*
631 **12**, 1234-1238 (1992).
- 632 14. A. Lazaris-Karatzas *et al.*, Ras mediates translation initiation factor 4E-induced malignant
633 transformation. *Genes & development* **6**, 1631-1642 (1992).
- 634 15. A.-C. Gingras *et al.*, Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. *Genes*
635 & *development* **13**, 1422-1437 (1999).
- 636 16. R. J. Dowling *et al.*, mTORC1-mediated cell proliferation, but not cell growth, controlled by the
637 4E-BPs. *Science* **328**, 1172-1176 (2010).
- 638 17. R. Colina *et al.*, Translational control of the innate immune response through IRF-7. *Nature* **452**,
639 323-328 (2008).
- 640 18. C. G. Gkogkas *et al.*, Autism-related deficits via dysregulated eIF4E-dependent translational
641 control. *Nature* **493**, 371-377 (2013).
- 642 19. E. Klann, J. D. Sweatt, Altered protein synthesis is a trigger for long-term memory formation.
643 *Neurobiology of learning and memory* **89**, 247-259 (2008).
- 644 20. S. Lukhele, A. Bah, H. Lin, N. Sonenberg, J. D. Forman-Kay, Interaction of the eukaryotic
645 initiation factor 4E with 4E-BP2 at a dynamic bipartite interface. *Structure* **21**, 2186-2196 (2013).
- 646 21. D. Peter *et al.*, Molecular Architecture of 4E-BP Translational Inhibitors Bound to eIF4E.
647 *Molecular Cell* **57**, 1074-1087 (2015).
- 648 22. G. J. Brunn *et al.*, Phosphorylation of the translational repressor PHAS-I by the mammalian target
649 of rapamycin. *Science* **277**, 99-101 (1997).
- 650 23. J. E. Dawson *et al.*, Non-cooperative 4E-BP2 folding with exchange between eIF4E-binding and
651 binding-incompatible states tunes cap-dependent translation inhibition. *Nat Commun* **11**, 3146
652 (2020).

653 24. G.-N. Gomes, C. C. Gradinaru, Insights into the conformations and dynamics of intrinsically
654 disordered proteins using single-molecule fluorescence. *Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics* **1865**, 1696-1706 (2017).

655 25. L. A. Metskas, E. Rhoades, Single-molecule FRET of intrinsically disordered proteins. *Annual review of physical chemistry* **71**, 391-414 (2020).

656 26. V. N. Uversky, "Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an "Elephant and Blind Men" Situation" in Intrinsically Disordered Proteins Studied by NMR Spectroscopy. (Springer, 2015), pp. 215-260.

657 27. G. F. Schröder, U. Alexiev, H. Grubmüller, Simulation of fluorescence anisotropy experiments: probing protein dynamics. *Biophysical journal* **89**, 3757-3770 (2005).

658 28. S. Milles, E. A. Lemke, Mapping Multivalency and Differential Affinities within Large
659 Intrinsically Disordered Protein Complexes with Segmental Motion Analysis. *Angewandte Chemie International Edition* **53**, 7364-7367 (2014).

660 29. N. Jain, M. Bhattacharya, S. Mukhopadhyay, Chain collapse of an amyloidogenic intrinsically
661 disordered protein. *Biophysical journal* **101**, 1720-1729 (2011).

662 30. J. R. Lakowicz, *Principles of fluorescence spectroscopy* (Springer, New York, N.Y., ed. 3rd, 2006).

663 31. Z. Zhang, D. Yomo, C. Gradinaru, Choosing the right fluorophore for single-molecule fluorescence
664 studies in a lipid environment. *Biochimica et Biophysica Acta (BBA) - Biomembranes* **1859**, 1242-1253 (2017).

665 32. G.-N. W. Gomes *et al.*, Conformational Ensembles of an Intrinsically Disordered Protein
666 Consistent with NMR, SAXS, and Single-Molecule FRET. *Journal of the American Chemical Society* **142**, 15697-15710 (2020).

667 33. F. Huang, W. M. Nau, A conformational flexibility scale for amino acids in peptides. *Angewandte Chemie* **115**, 2371-2374 (2003).

668 34. Keum *et al.*, A conserved motif within the flexible C-terminus of the translational regulator 4E-BP
669 is required for tight binding to the mRNA cap-binding protein eIF4E. *Biochemical Journal* **441**, 237-245 (2012).

670 35. A. P. De Silva, T. S. Moody, G. D. Wright, Fluorescent PET (Photoinduced Electron Transfer)
671 sensors as potent analytical tools. *Analyst* **134**, 2385-2393 (2009).

672 36. S. Doose, H. Neuweiler, M. Sauer, Fluorescence quenching by photoinduced electron transfer: a
673 reporter for conformational dynamics of macromolecules. *ChemPhysChem* **10**, 1389-1398 (2009).

674 37. H. Chen, E. Rhoades, J. S. Butler, S. N. Loh, W. W. Webb, Dynamics of equilibrium structural
675 fluctuations of apomyoglobin measured by fluorescence correlation spectroscopy. *Proceedings of the National Academy of Sciences* **104**, 10459-10464 (2007).

676 38. S. Mukhopadhyay, R. Krishnan, E. A. Lemke, S. Lindquist, A. A. Deniz, A natively unfolded yeast
677 prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. *Proceedings of the National Academy of Sciences* **104**, 2649-2654 (2007).

678 39. H. Blom, A. Chmyrov, K. Hassler, L. M. Davis, J. Widengren, Triplet-State Investigations of
679 Fluorescent Dyes at Dielectric Interfaces Using Total Internal Reflection Fluorescence Correlation
680 Spectroscopy. *The Journal of Physical Chemistry A* **113**, 5554-5566 (2009).

681 40. L. J. Lapidus, W. A. Eaton, J. Hofrichter, Measuring the rate of intramolecular contact formation
682 in polypeptides. *Proceedings of the National Academy of Sciences* **97**, 7220-7225 (2000).

683 41. F. Krieger, B. Fierz, O. Bieri, M. Drewello, T. Kiefhaber, Dynamics of unfolded polypeptide chains
684 as model for the earliest steps in protein folding. *Journal of molecular biology* **332**, 265-274 (2003).

685 42. J. K. Lum, H. Neuweiler, A. R. Fersht, Long-range modulation of chain motions within the
686 intrinsically disordered transactivation domain of tumor suppressor p53. *Journal of the American
687 Chemical Society* **134**, 1617-1622 (2012).

688 43. R. R. Goluguri, S. Sen, J. Udgaonkar, Microsecond sub-domain motions and the folding and
689 misfolding of the mouse prion protein. *eLife* **8**, e44766 (2019).

690 44. S. Sen, H. Kumar, J. B. Udgaonkar, Microsecond Dynamics During the Binding-induced Folding
691 of an Intrinsically Disordered Protein. *Journal of Molecular Biology* **433**, 167254 (2021).

692

693

694

695

696

697

698

699

700

701

702

703

704 45. S. A. Waldauer, O. Bakajin, L. J. Lapidus, Extremely slow intramolecular diffusion in unfolded
705 protein L. *Proceedings of the National Academy of Sciences* **107**, 13713-13717 (2010).

706 46. E. Sisamakis, A. Valeri, S. Kalinin, P. J. Rothwell, C. A. Seidel, Accurate single-molecule FRET
707 studies using multiparameter fluorescence detection. *Methods in enzymology* **475**, 455-514 (2010).

708 47. S. Kalinin *et al.*, A toolkit and benchmark study for FRET-restrained high-precision structural
709 modeling. *Nature Methods* **9**, 1218-1225 (2012).

710 48. B. Schuler, W. A. Eaton, Protein folding studied by single-molecule FRET. *Current opinion in
711 structural biology* **18**, 16-26 (2008).

712 49. A. Borgia, P. M. Williams, J. Clarke, Single-molecule studies of protein folding. *Annu. Rev.
713 Biochem.* **77**, 101-125 (2008).

714 50. I. V. Gopich, A. Szabo, Theory of the energy transfer efficiency and fluorescence lifetime
715 distribution in single-molecule FRET. *Proceedings of the National Academy of Sciences* **109**, 7747-
716 7752 (2012).

717 51. B. Schuler, Perspective: Chain dynamics of unfolded and intrinsically disordered proteins from
718 nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET. *The
719 Journal of Chemical Physics* **149**, 010901 (2018).

720 52. A. Barth *et al.*, Unraveling multi-state molecular dynamics in single-molecule FRET experiments-
721 Part I: Theory of FRET-Lines. arxiv:2107.14770 (2021).

722 53. H. Hofmann *et al.*, Polymer scaling laws of unfolded and intrinsically disordered proteins
723 quantified with single-molecule spectroscopy. *Proceedings of the National Academy of Sciences*
724 **109**, 16155-16160 (2012).

725 54. C. Igreja, D. Peter, C. Weiler, E. Izaurrealde, 4E-BPs require non-canonical 4E-binding motifs and
726 a lateral surface of eIF4E to repress translation. *Nature communications* **5**, 1-14 (2014).

727 55. Y. Li, R. V. Shivnaraine, F. Huang, J. W. Wells, C. C. Grdinaru, Ligand-Induced Coupling
728 between Oligomers of the M₂ Receptor and the G_{i1} Protein in Live Cells. *Biophysical Journal* **115**,
729 881-895 (2018).

730 56. D. Badali, C. C. Grdinaru, The effect of Brownian motion of fluorescent probes on measuring
731 nanoscale distances by Förster resonance energy transfer. *The Journal of Chemical Physics* **134**,
732 225102 (2011).

733 57. E. Haustein, P. Schwille, Fluorescence Correlation Spectroscopy: Novel Variations of an
734 Established Technique. *Annual Review of Biophysics and Biomolecular Structure* **36**, 151-169
735 (2007).

736 58. A. Mazouchi, B. Liu, A. Bahram, C. C. Grdinaru, On the performance of bioanalytical
737 fluorescence correlation spectroscopy measurements in a multiparameter photon-counting
738 microscope. *Anal Chim Acta* **688**, 61-69 (2011).

739 59. H. J. Feldman, C. W. Hogue, Probabilistic sampling of protein conformations: new hope for brute
740 force? *Proteins: Structure, Function, and Bioinformatics* **46**, 8-23 (2002).

741 60. M. Dimura *et al.*, Quantitative FRET studies and integrative modeling unravel the structure and
742 dynamics of biomolecular systems. *Current opinion in structural biology* **40**, 163-185 (2016).

743

744