

1 **Main Manuscript**

2 Human neutrophils direct epithelial cell extrusion to enhance intestinal epithelial host
3 defense during *Salmonella* infection

4

5 **Authors/affiliations**

6 Anna-Lisa E. Lawrence^a, Ryan P. Berger^a, David R. Hill^b, Sha Huang^c, Veda K.
7 Yadagiri^b, Brooke Bons^b, Courtney Fields^b, Gautam J. Sule^b, Jason S. Knight^b,
8 Christiane E. Wobus^a, Jason R. Spence^c, Vincent B. Young^b, Mary X. O'Riordan^{a1,3}, and
9 Basel H. Abuaita^{a1,2}

10 ^a Department of Microbiology and Immunology, University of Michigan Medical School,
11 Ann Arbor, MI, USA

12 ^b Department of Internal Medicine, University of Michigan Medical School, Ann Arbor,
13 MI, USA

14 ^c Department of Cell and Developmental Biology, University of Michigan Medical
15 School, Ann Arbor, MI, USA

16

17 **Author list footnotes**

18 ¹ M.X.O and B.H.A contributed equally to the work

19 ² B.H.A Present address: Department of Pathobiological Sciences, Louisiana State
20 University School of Veterinary Medicine, Baton Rouge, LA, USA

21 ³ Corresponding authors Email: babuaita@lsu.edu, oriordan@umich.edu

22

23

24 **Author contributions**

25 A-L.E.L and B.H.A performed the experiments and analyzed the data. A-L.E.L, M.X.O
26 and B.H.A designed the experiments and wrote the manuscript. R.P.B and D.R.H
27 assisted in RNA-seq analysis. S.H, V.K.Y, B.B and C.F assisted in H1O differentiation
28 and culturing. G.J.S, J.R.S, V.B.Y, C.E.W and J.S.K assisted in experimental
29 preparation and data interpretation.

30

31 **Declaration of interests**

32 The authors declare no competing interests.

33

34 **Classification**

35 Biological Sciences: Immunology and Inflammation

36

37 **Keywords**

38 Intestinal host defense, Cell extrusion, inflammasome

39 **Abstract**

40 Infection of the human gut by *Salmonella enterica* Typhimurium (STM) results in a
41 localized inflammatory disease that is not mimicked in murine infections. To determine
42 mechanisms by which neutrophils, as early responders to bacterial challenge, direct
43 inflammatory programming of human intestinal epithelium, we established a multi-
44 component human intestinal organoid (HIO) model of STM infection. HIOs were micro-
45 injected with STM and then seeded with primary human polymorphonuclear leukocytes
46 (PMN-HIOs), specifically neutrophils and analyzed for bacterial growth and host cell
47 survival. Surprisingly, PMNs did not affect luminal colonization of *Salmonella*, but their
48 presence reduced intraepithelial bacterial burden. Adding PMNs to infected HIOs
49 resulted in substantial accumulation of shed intestinal epithelial cells that could be
50 blocked by Caspase-1 or Caspase-3 inhibition. Cleaved Caspase-3 was present in
51 epithelial cells, but expression of the inflammasome adaptor, ASC, was only detected in
52 PMNs. Caspase inhibition also increased bacterial burden in the epithelium of the PMN-
53 HIO, suggesting PMNs enhance activation of cell death pathways in human intestinal
54 epithelial cells as a protective response to infection. These data support a critical
55 function for neutrophils beyond their antimicrobial role whereby they amplify cell death
56 and extrusion of epithelial cells from the *Salmonella*-infected intestinal monolayer.

57

58 **Significance statement**

59 Neutrophils are early responders to *Salmonella* intestinal infection, but how they
60 influence infection progression and outcome is unknown. Here we use a co-culture
61 model of human intestinal organoids and human primary neutrophils to study the

62 contribution of human neutrophils to *Salmonella* infection of the intestinal epithelium.
63 We found that neutrophils markedly enhanced epithelial defenses, including enhancing
64 cell extrusion to reduce intraepithelial burden of *Salmonella* and association with the
65 epithelium, rather than directly killing *Salmonella* in the HIO lumen. These findings
66 reveal a novel role for neutrophils in the gut beyond killing invading pathogens and
67 illuminate how neutrophils can reprogram cells in the gut environment to enhance
68 antimicrobial defenses.

69

70

71 **Main text**

72 **Introduction**

73 *Salmonella enterica* is one of the most common causes of foodborne disease,
74 responsible for an estimated 1.35 million infections in the United States each year (1).
75 *S. enterica* serovar Typhimurium (STM), one of the most prevalent *S. enterica* serovars,
76 infects via the fecal-oral route and stimulates robust inflammation in the host intestinal
77 milieu, leading to gastroenteritis and diarrheal disease (2). *Salmonella* pathogenesis is
78 commonly studied *in vivo* using mouse infection models and now more recently *in vitro*
79 using human derived organoid and enteroid models (3–7). Through these studies a
80 critical role for epithelial cell death and extrusion of *S. enterica* infected cells has been
81 shown to regulate infection outcome by reducing epithelial bacterial burden and
82 restricting the infection to the intestine (5, 8–11).

83

84 Epithelium intrinsic induction of cell death and extrusion pathways are essential in
85 maintenance of normal intestinal homeostasis during health and infection, however it is
86 also known that innate immune cells play a dominant role in determining infection
87 outcome by bacterial infections, including *Salmonella* (12, 13). One of the earliest
88 responders and the most abundant cell types found in *Salmonella*-infected individuals
89 are polymorphonuclear leukocytes (PMNs), specifically neutrophils (14, 15). PMNs
90 defend against bacterial infections through multiple mechanisms: antimicrobial effectors
91 like degradative proteases and ion chelators, production of reactive oxygen species and
92 formation of sticky antimicrobial neutrophil extracellular traps (NETs) (16). And while
93 PMNs are very effective at killing extracellular bacteria (17), the role of PMNs in a more

94 complex infection where a large proportion of bacteria reside within host cells, like the
95 intestinal epithelium, is unknown.

96

97 More recently, it is becoming appreciated that PMNs serve other functions beyond
98 killing extracellular pathogens, e.g., changing the microenvironment via molecular
99 oxygen depletion, regulating nutrient availability, and through production of inflammatory
100 mediators (18, 19). Notably, Gopinath et al. found that neutrophilia induced a super-
101 shedder phenotype in a mouse infection model of *Salmonella* (20), but how the
102 interaction between epithelial cells and PMNs affects the outcome of bacterial infections
103 is still poorly understood. To address this gap in knowledge, we generated a co-culture
104 model of primary human PMNs, specifically neutrophils, with human intestinal organoids
105 (HIOs) termed PMN-HIOs to study the contribution of PMNs during infection with
106 *Salmonella enterica* serovar Typhimurium (STM).

107

108 Using this PMN-HIO model, we evaluated how PMNs modulate intestinal epithelial host
109 defenses during infection, compared to infected HIOs alone. We show here that the
110 presence of PMNs elevates the overall inflammatory tone of the epithelium and
111 markedly promotes cell death and extrusion of epithelial cells, thereby reducing
112 *Salmonella* intraepithelial burden.

113

114 **Results**

115 **Human PMNs transmigrate into the HIO lumen during infection and reduce**
116 ***Salmonella* intraepithelial burden.**

117 PMNs are known to transmigrate across intestinal epithelial layers during early stages
118 of inflammation (21, 22), therefore we asked whether PMNs would transmigrate into the
119 HIO lumen during infection. 10^5 *Salmonella enterica* Typhimurium (STM) were
120 microinjected into the HIO lumen and cultured with PMNs isolated from healthy human
121 volunteers for 8h (PMN-HIOs). To quantify PMN recruitment to infected HIOs, PMNs
122 were pre-labeled with Carboxyfluorescein succinimidyl ester (CFSE) prior to co-culture
123 with HIOs. PMN-HIOs were collected at 8h post-infection (hpi), washed to remove
124 unassociated neutrophils, dissociated into a single cell suspension and the percentage
125 of CFSE-positive cells was enumerated by flow cytometry. There was a significant
126 increase in the number of PMNs associated with infected HIOs compared to PBS
127 controls, with approximately 5% of total cells present in PMN-HIOs staining positive for
128 CFSE (Fig. 1A). Immunofluorescent staining for neutrophil-specific Myeloperoxidase
129 (MPO) was performed on paraffin sections to further monitor localization of PMNs within
130 PMN-HIOs. In contrast to PBS-injected controls, MPO-positive cells were observed in
131 the lumen of STM-infected HIOs, confirming that PMNs transmigrate into the HIO lumen
132 during infection (Fig. 1B). Since PMNs are potent killers of bacterial pathogens, we
133 tested whether PMNs controlled *Salmonella* colonization within the HIO. Although
134 PMNs killed STM in pure PMN cultures, with ~30% of STM killed by 4hpi (SI Appendix,
135 Fig. S1), PMNs did not alter the total levels of STM in the HIOs (Fig. 1C). This was not
136 due to lack of PMN activation in the HIOs as we detected formation of NETs in the
137 lumen of STM-infected PMN-HIOs (SI Appendix, Fig. S2). In addition, culture
138 supernatants were analyzed for production of antimicrobial effectors via ELISA (SI
139 Appendix, Fig. S3). Some antimicrobial effectors such as Elafin (PI3), a small cationic

140 peptide secreted at mucosal surfaces (23), and Calprotectin (S100A8 and S100A9)
141 were produced at higher levels in PMN-HIOs, compared to HIOs alone, confirming that
142 there was no defect in the antimicrobial response to STM and in contrast suggests that
143 PMNs augment epithelial host defenses. However, since *Salmonella* has evolved
144 mechanisms to overcome Calprotectin-mediated immunity and thrive under these
145 conditions; upregulation of these specific antimicrobial effectors is likely insufficient to
146 reduce *Salmonella* colonization in the PMN-HIOs (24, 25).

147

148 During intestinal infection, *Salmonella* reside in both the lumen of the intestine and
149 within epithelial cells, and it has been suggested that the intracellular pool of bacteria
150 are important for reseeding the gut lumen to prolong infection and promote fecal
151 shedding (8, 26). To assess what impact PMNs have on the intracellular bacterial
152 burden, paraffin sections of *Salmonella*-infected HIOs and PMN-HIOs were stained to
153 detect both epithelial cells and *Salmonella* and the epithelial bacterial burden was
154 quantified by fluorescence microscopy (Fig. 1D, 1E). This analysis revealed that there
155 were significantly fewer intracellular bacteria in the epithelial lining of PMN-HIOs
156 compared to HIOs alone indicating that PMNs aid in reducing epithelial cell bacterial
157 burden. Interestingly, we also observed a reduction in epithelial-surface associated
158 bacteria suggesting that PMNs also reduce STM attachment to further protect the
159 epithelial lining. Together, these results show that although PMNs transmigrate into the
160 HIO lumen during *Salmonella* infection, they do not directly kill *Salmonella*, but instead
161 enhance epithelial defenses to reduce the bacterial burden within the epithelial layer.

162

163 **PMNs enhance shedding of epithelial cells during *Salmonella* infection.**

164 In addition to measuring a significant reduction in intraepithelial bacterial burden and
165 association of STM with epithelial cells, we observed robust accumulation of DAPI-
166 positive cells in the lumen of STM-infected PMN-HIOs that were negative for the PMN
167 marker MPO (Fig. 1B, F). Shedding of *Salmonella*-infected cells from the gut via
168 programmed cell death pathways is an important defense mechanism used to protect
169 the host from invasive *Salmonellosis* and helps reduce intestinal bacterial burden to
170 resolve the infection and so we hypothesized that in a human infection model PMNs
171 may enhance this process (5, 8–11). To determine whether these luminal cells were
172 dead epithelial cells shed from the HIO epithelial lining, we performed Terminal
173 deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) on HIOs and PMN-HIOs
174 microinjected with either STM or PBS control. The presence of PMNs induced robust
175 accumulation of TUNEL-positive cells in the lumen of infected HIOs (Fig. 2A, 2B). While
176 we also detected a substantial number of TUNEL-positive cells in the mesenchyme this
177 phenotype was present in all conditions so likely was not caused by either *Salmonella*
178 or PMNs. Accumulation of luminal TUNEL-positive cells was selectively induced by
179 PMNs during infection, as neither infected HIOs or uninfected PMN-HIOs showed this
180 phenotype. To confirm that these cells were epithelial cells, we stained for the epithelial
181 marker E-cadherin, and found that the vast majority of TUNEL-positive cells in PMN-
182 HIOs were epithelial cells (Fig. 2C, 2D). Previously we reported that STM infection in
183 HIOs induces significant induction of TUNEL-positive cells that are retained in the
184 epithelial lining (4), consistent with these findings, our results suggest that PMNs are

185 enhancing shedding of these TUNEL-positive cells from the monolayer as we observe
186 very few TUNEL-positive cells in the epithelial lining of infected PMN-HIOs (Fig. 2D).

187
188 TUNEL staining is classically associated with apoptotic pathways, and since activated
189 PMNs have been shown to induce apoptotic processes in lung epithelium (27), we
190 hypothesized that PMNs induce epithelial cell apoptosis to reduce bacteria associated
191 with the epithelial lining. To test our hypothesis, we stained STM-infected PMN-HIO
192 sections for cleaved Caspase-3 as a marker of apoptosis. We found that many, but not
193 all luminal epithelial cells were positive for cleaved Caspase-3 (Fig. 2E) suggesting that
194 multiple forms of cell death were occurring in the PMN-HIO likely including Caspase-4/5
195 mediated shedding of *Salmonella*-infected epithelial cells as has previously been
196 established in a human enteroid infection model (5, 6) and more recently shown in a
197 Caco-2 model of *Salmonella* infection (28). Interestingly, PMN-induced cell shedding
198 was not restricted to infected cells, as we observed both infected and uninfected cells in
199 the PMN-HIO lumen (SI Appendix, Fig. S4). Together these results suggest that PMNs
200 promote programmed cell death pathways and epithelial cell shedding during
201 *Salmonella* infection.

202
203 **Inflammasome activation and IL-1 production is mediated by PMNs during
204 infection.**

205 PMNs are known to affect epithelial cell function through multiple mechanisms including
206 through NET formation. Inflammasome activation is known to occur in PMNs during
207 bacterial infections (29) and it is known that inflammasomes also play a key role in

208 regulating intestinal inflammation (30). While activation of noncanonical inflammasomes
209 requiring Caspase-4/5 in human epithelial cells is a hallmark of *Salmonella* infection,
210 activation of Caspase-1 dependent inflammasomes in innate immune cells is also
211 critical for effective responses against invading pathogens (31). To assess how PMNs
212 shape inflammasome activation in the PMN-HIO model, we first examined gene level
213 expression data from RNA-seq data of HIOs and PMN-HIOs microinjected with PBS or
214 STM (SI Appendix, Table S1). We found that PMNs significantly contributed to
215 upregulation of several genes in inflammasome/cell death signaling during STM
216 infection (Fig. 3A). While there was weak upregulation of IL-1 β and IL-1 α in STM-
217 infected HIOs alone, we did not observe significant changes in expression of other
218 mediators or machinery required for NLRP3 inflammasome assembly such as CASP1,
219 NLRP3, or PYCARD (encoding ASC which was not differentially expressed under any
220 condition) (Fig. 3A). However, consistent with previous reports studying cell death
221 responses to STM-infection in human epithelial models, we did measure a significant
222 increase in expression of Caspase-4 and Caspase-5. In contrast, when PMNs were
223 added to infected HIOs, we observed stronger upregulation of *IL-1* genes and effectors
224 involved in inflammasome activation including the upregulation of *NLRP3* and Caspase-
225 1 (CASP1). To further characterize this phenotype, we collected culture supernatants
226 from HIOs and PMN-HIO and quantified levels of IL-1 family cytokines during infection
227 (Fig. 3B). IL-1 β or IL-1 α was undetectable in infected HIOs; release of these cytokines
228 required the presence of PMNs as IL-1 β or IL-1 α levels significantly increased in STM-
229 infected PMN-HIOs. These results suggest that PMNs significantly contribute to
230 production of IL-1 cytokines in this infection model. This is consistent with previous

231 reports that the human epithelium is not a dominant source of IL-1 cytokines (32) and
232 that Caspase-4/5 activation is not classically associated with significant IL-1 β
233 processing (33). Interestingly, we also observed production of IL-1RA, the antagonist of
234 the IL-1 receptor which is usually co-expressed with IL-1 α / β (34), in infected PMN-HIOs
235 revealing an additional role for PMNs in inducing signaling processes that tune the
236 magnitude of immune activation. In contrast, IL-33, another important IL-1 family
237 alarmin in mucosal immunity (35), was produced in all conditions independent of the
238 presence of PMNs. IL-33 specifically and in contrast to other IL-1 family cytokines, is
239 released constitutively by epithelial cells where it is then processed extracellularly by
240 serine proteases including elastase, which is released by PMNs (36). This processed
241 form is thought to enhance inflammatory signaling. Notably, we observed significantly
242 lower levels of IL-33 in STM-infected PMN-HIOs, which may be caused by PMN
243 processing. To further define which cells within the PMN-HIOs contribute to
244 inflammasome activation and IL-1 processing, paraffin sections of STM-infected PMN-
245 HIOs were stained for ASC, an adaptor protein required for inflammasome assembly
246 (Fig. 3C, 3D) (37). ASC-positive signal was not observed in HIO epithelial cells,
247 consistent with a recent report that *Salmonella*-induced epithelial cell death occurs
248 independently of ASC (28), but instead was associated with cells positive for vimentin, a
249 protein expressed by PMNs and mesenchymal cells within the PMN-HIOs. ASC and
250 Vimentin double-positive cells were primarily located within the lumen of PMN-HIOs,
251 suggesting that these cells are PMNs. Closer examination of nuclear morphology of the
252 ASC-positive cells by DAPI staining revealed multi-lobed nuclei, further supporting that
253 inflammasome activation and IL-1 processing occur in PMNs. Together, these findings

254 are consistent with a model where PMNs are the primary site of Caspase-1 dependent
255 inflammasome activation and the production of IL-1 family cytokines during infection in
256 the PMN-HIO model.

257

258 **Caspase-1 and Caspase-3 inhibition reduces shedding of epithelial cells and**
259 **increases the association of *Salmonella* with the epithelium.**

260 Epithelial cell death and shedding serve to reduce bacterial burden in the intestinal
261 epithelium (5, 6, 8–11). To define the functional consequences of PMN-induced
262 epithelial cell death on host defense and determine which caspases were involved, we
263 treated PMN-HIOs with various caspase inhibitors. Accumulation of TUNEL-positive
264 epithelial cells was monitored in infected PMN-HIOs in the presence or absence of
265 Caspase-1 (z-YVAD-FMK) or Caspase-3 (z-DEVD-FMK) inhibitors. We performed
266 TUNEL staining on paraffin sections from infected PMN-HIOs at 8hpi (Fig. 4A, 4B). Both
267 Caspase-1 and Caspase-3 inhibition significantly reduced accumulation of TUNEL-
268 positive cells in the lumen of infected PMN-HIOs, indicating that PMN-dependent
269 Caspase-1 and -3 activation is required for efficient shedding of epithelial cells. To test
270 how caspase inhibition and therefore reduced shedding affected STM infection, PMN-
271 HIOs were stained with an anti-*Salmonella* antibody to characterize the localization of
272 bacteria in the HIO by quantifying the percentage of infected cells, number of bacteria
273 per cell, and epithelium associated bacteria (Fig. 4C-E, SI Appendix, Fig. S5).
274 Consistent with our hypothesis that PMNs enhance shedding of epithelial cells through
275 caspase activation, there were greater numbers of bacteria per cell in Caspase-1
276 inhibitor-treated PMN-HIOs, but surprisingly not in Caspase-3 inhibitor-treated PMN-

277 HIOs (Fig. 4D). Caspase-4/5 activation in human epithelial cells is known to be
278 important in shedding of *Salmonella*-infected cells and suggests that PMNs may
279 enhance epithelial Caspase-4/5 signaling via Caspase-1 activity to enhance cell
280 shedding instead of utilizing Caspase-3 for this process. We also observed a trending
281 increase in the percentage of infected cells with Caspase-1 inhibition (SI Appendix, Fig.
282 S5). In contrast, when PMN-HIOs were treated with the Caspase-3 inhibitor, there was
283 a significant increase in epithelium associated bacteria (Fig. 4D). There is some
284 evidence that activated PMNs induce apoptosis of intestinal epithelial cells (27) and so
285 NET formation during *Salmonella* infection in PMN-HIOs may result in enhanced
286 epithelial cell shedding independent of PMN Caspase-1 to increase the rate of cell
287 turnover and therefore reduce the association of bacteria with the apical surface of the
288 epithelium which would protect the epithelium from future bacterial invasion. These data
289 suggest that both Caspase-1 and Caspase-3 inhibition reduce accumulation of dead
290 cells in the PMN-HIO lumen, but Caspase-1 activity is important for directly regulating
291 epithelial bacterial burden while Caspase-3 reduces association of bacteria with the
292 epithelium to protect the epithelium from the next round of infection. Taken together, our
293 data support a model where Caspase-1 dependent inflammasome activation in PMNs
294 enhances epithelial cell shedding via two independent pathways to control *Salmonella*
295 infection.

296

297 **Discussion**

298 Neutrophils (PMNs) dominate the early response to *Salmonella* infection in the gut (15,
299 38–40), but their functions in regulating intestinal epithelial cell host defense and

300 infection outcome are not well understood. Here we used a co-culture model of human
301 intestinal organoids (HIOs) with primary human PMNs, termed PMN-HIOs, to elucidate
302 these roles. We found that while there was no difference in luminal colonization of
303 *Salmonella* in the HIOs, PMNs did reduce intraepithelial bacterial burden in the
304 epithelium and reduced the association of *Salmonella* with the apical surface of the
305 epithelial monolayer. PMNs were associated with elevated epithelial cell death and
306 promoted extrusion of these cells into the lumen of infected PMN-HIOs. We found that
307 Caspase-1 activation was required for epithelial shedding, noting that the ASC
308 inflammasome adaptor was only present in PMNs, and that inhibition of Caspase-1
309 activity increased bacterial burden in HIO epithelial cells. Independently, we uncovered
310 an important role for Caspase-3 activation in epithelial cells in reducing association of
311 *Salmonella* with the apical surface, which was enhanced by the presence of neutrophils.
312 Thus, we propose a model where PMNs enhance shedding of epithelial cells from the
313 intestinal barrier via two distinct mechanisms to reduce intracellular bacterial loads and
314 adherence of *Salmonella* to the epithelium, potentially tilting infection outcome favorably
315 toward the host.

316

317 Our observation that PMNs did not affect total bacterial colonization in the HIO lumen
318 was rather unexpected, both because antimicrobial effectors were produced in the
319 PMN-HIO cultures and our findings, and that of others, indicate that PMNs kill
320 *Salmonella* in the absence of HIOs (17). We also observed transmigration and NET
321 formation by PMNs in the HIO lumen, so the lack of *Salmonella* killing in the HIO lumen
322 could not be explained by lack of PMNs at the site of infection. These observations

323 suggest the possibility that *Salmonella* may employ specific mechanisms to overcome
324 PMN effector functions in the HIO luminal environment. Alternatively, while PMNs can
325 be potent killers of invading bacteria, mechanisms used by PMNs to kill pathogens are
326 not selective and therefore PMN activation near the epithelial barrier may be tightly
327 regulated to avoid tissue damage (41). Consistent with this idea, we observed robust
328 production of Elafin (Fig. S3), which is annotated as an antimicrobial peptide in
329 Reactome (42). Neutrophil elastase strongly contributes to the antimicrobial function of
330 PMNs for both intracellular killing via phagocytosis and decorating NETs (17, 43, 44).
331 Elafin can also inhibit neutrophil elastase to reduce tissue damage caused by neutrophil
332 overactivation (45, 46). Thus, expression of host Elafin in the presence of PMNs may
333 trade off the ability to kill luminal *Salmonella* with protection of epithelial barrier integrity.

334
335 Addition of PMNs to the infected HIOs resulted in decreased intracellular bacterial
336 burden, which was unexpected since intracellular bacteria are often considered
337 protected from neutrophil killing. We therefore hypothesized that this result was due to
338 extrusion of infected cells from the epithelial monolayer, a process mediated by caspase
339 activation. Previous reports have highlighted the importance of epithelial cell extrusion
340 in preventing dissemination of *Salmonella* beyond the intestine and that there are
341 epithelial cell-intrinsic mechanisms to rid the epithelial lining of *Salmonella* (5, 6, 9–11,
342 47). Of note, the role of the inflammatory caspases in these processes likely differs
343 between human and mouse, with caspase-1 playing a prominent role in mouse
344 epithelium, while Caspase-4 plays a more prominent role in human epithelium in the
345 absence of neutrophils. Although we could detect low levels of shed epithelial cells in

346 STM-infected HIOs alone consistent with prior studies, this phenotype was markedly
347 enhanced in the presence of PMNs, and inhibition with a selective Caspase-1 peptide
348 inhibitor decreased TUNEL+ cells, as well as number of bacteria per epithelial cell.
349 These data suggest a previously unappreciated role for PMNs in enhancing cell death in
350 *Salmonella*-infected epithelial cells and implicate Caspase-1 in that process.

351

352 In STM-infected HIOs, we observed close association of clusters of bacteria with the
353 epithelial surface, which would presumably advantage bacterial pathogens by spatial
354 proximity to the monolayer. Strikingly, the introduction of PMNs into the infected HIO
355 led to dispersal of the bacterial clusters into the HIO lumen, concomitant with a
356 substantial increase in TUNEL+ cells. There are numerous mechanisms by which
357 PMNs can drive epithelial cell death including oxidant production, which can activate
358 apoptotic pathways in the epithelium (48, 49). NET formation, which we observed in our
359 infected PMN-HIOs, also can induce epithelial cell death (27). This process was
360 reported to be largely dependent on extracellular histones released during NET
361 formation. We therefore consider that *Salmonella*-induced NET formation in PMN-HIOs
362 may contribute to overall shedding of epithelial cells and the dispersal of epithelial-
363 associated bacteria. These possibilities are consistent with our findings that both
364 infected and uninfected epithelial cells are shed from the intestinal monolayer in the
365 infected PMN-HIOs, but not the infected HIOs alone. By increasing epithelial cell
366 shedding, this neutrophil-dependent process contributes to reducing bacterial burden
367 within and associated with the epithelium.

368

369 Our findings pointed to Caspase-1 activity as a driver of accumulation of shed epithelial
370 cells in the HIO lumen, but markers of inflammasome activation were only observed
371 when PMNs were present. Although the importance of Caspase-1 in PMN activation
372 and antimicrobial functions are not fully understood, some evidence implicates
373 Caspase-1 in NET formation (29, 50). Our prior studies demonstrated that
374 inflammasome activation in PMNs occurs during bacterial infection (29) and another
375 study showed that inflammasome-mediated processing of Gasdermin D was required
376 for NET formation in mice (50). While there may be additional signaling roles of
377 Caspase-1 in PMN activation, we propose a model whereby PMNs transmigrate into the
378 inflamed intestine, undergo Caspase-1 mediated NET formation to trigger epithelial cell
379 death and shedding of infected cells to protect the epithelium from ongoing infection.
380 We reason that in the environment of the infected gut, in contrast to infected tissue, the
381 ratio of commensal and pathogenic bacteria to neutrophils may preclude substantive
382 bacterial killing through direct anti-microbial mechanisms. Therefore, signaling
383 mechanisms whereby neutrophils are able to direct protective epithelial responses may
384 more be more advantageous to the host.

385

386 **Materials and Methods**

387 **Contact for Reagent and Resource Sharing**

388 Reagents and resources can be obtained by directing requests to the corresponding
389 authors, Basel Abuaita (babuaita@lsu.edu) and Mary O'Riordan (oriordan@umich.edu).

390

391 **Human Intestinal Organoids (HIOs)**

392 HIOs were generated by the *In Vivo* Animal and Human Studies Core at the University
393 of Michigan Center for Gastrointestinal Research as previously described (51). Prior to
394 experiments, HIOs were removed from the Matrigel, washed with DMEM:F12 media,
395 and re-plated with 5 HIOs/well in 50 μ l of Matrigel (Corning) in ENR media ((DMEM:F12,
396 1X B27 supplement, 2mM L-glutamine, 100ng/ml EGF, 100ng/ml Noggin, 500ng/ml
397 Rspondin1, and 15mM HEPES). Media was exchanged every 2-3 days for 7 days.

398

399 **Human Polymorphonuclear Leukocytes (PMNs)**

400 PMNs were isolated from blood of healthy human volunteers as previously described
401 (29). The purity of PMNs was assessed by flow cytometry using APC anti-CD16 and
402 FITC anti-CD15 antibodies (Miltenyi Biotec); markers characteristic of human
403 neutrophils. PMNs were labeled with cell trace CFSE dye (Thermo Fisher). PMNs were
404 incubated at room temperature for 20 minutes in PBS containing 5 μ M CFSE. Cells
405 were washed twice with PBS to remove excess dye and collected by centrifugation.
406 CFSE-labeled PMNs were then co-cultured with STM-infected HIOs or PBS control to
407 monitor the association of PMNs with intestinal epithelial cells. PMN-HIOs were washed
408 twice with PBS to remove unassociated PMNs, mechanically dissociated into single-cell
409 suspension using a 70 μ m cell strainer and analyzed on FACSCanto flow cytometer.
410 Percent of CFSE-positive cells were determined using FlowJo software.

411

412 **Bacterial Growth and HIO Microinjection**

413 *Salmonella enterica* serovar Typhimurium SL1344 (STM) was used throughout the
414 manuscript. Bacteria were stored at -80°C in Luria-Bertani (LB, Fisher) medium

415 containing 20% glycerol and cultured on LB agar plates. Individual colonies were grown
416 overnight at 37°C under static conditions in LB liquid broth. Bacteria were pelleted,
417 washed and re-suspended in PBS. Bacterial inoculum was estimated based on OD₆₀₀
418 and verified by plating serial dilutions on agar plates to determine colony forming units
419 (CFU). The lumen of individual HIOs were microinjected with glass caliber needles with
420 1µl of PBS or STM (10⁵ CFU/HIO) as previously described (3, 4, 52). HIOs were then
421 washed with PBS and incubated for 2h at 37°C in ENR media. HIOs were treated with
422 100µg/ml gentamicin for 15 min to kill any bacteria outside the HIOs, then incubated in
423 fresh medium +/- PMNs (5 X 10⁵ PMNs/5HIOs/well in a 24-well plate). Where indicated,
424 PMNs-HIOs were treated with the following inhibitors after microinjection: 4 µM of
425 Caspase-1 inhibitor, Z-YVAD-FMK or 4 µM Caspase-3 inhibitor, Z-DEVD-FMK.

426

427 **Bacterial Burden and Cytokine Analyses**

428 Bacterial burden was assessed per HIO. Individual HIOs were removed from Matrigel,
429 washed with PBS and homogenized in PBS. Total CFU/HIO were enumerated by serial
430 dilution and plating on LB agar. For cytokine analysis, media from each well containing
431 5 HIOs/well were collected at 8hpi. Cytokines, chemokines and antimicrobial proteins
432 were quantified by ELISA at the University of Michigan Cancer Center Immunology
433 Core.

434

435 **Immunofluorescence Staining and Microscopy**

436 HIOs were fixed with 10% neutral formalin for 2 days and embedded in paraffin.
437 Histology sections (5µm) were collected by the University of Michigan Cancer Center

438 Histology Core. Sections were deparaffinized and antigen retrieval was performed in
439 sodium citrate buffer (10mM sodium citrate, 0.05% Tween 20, pH 6.0). Sections were
440 permeabilized with PBS+ 0.2% Triton X-100 for 30 min, then incubated in blocking
441 buffer (PBS, 5% BSA, and 10% normal goat serum) for 1h. Primary antibodies; anti-E-
442 Cadherin (BD Biosciences, clone 36), anti-MPO (Agilent, clone A0398), anti-Vimentin
443 (DSHB, Cat# AMF-17b), anti-ASC (Cell Signaling, Cat#13833) and anti-cleaved
444 Caspase-3 (Cell Signaling, Cat# 9661) were added to the histology sections in blocking
445 buffer overnight at 4°C. Goat anti-mouse and anti-rabbit secondary antibodies
446 conjugated to Alexa-488, Alexa-594 or Alexa-647 were used according to
447 manufacturer's instructions (Thermo Fisher) for 1h RT in blocking buffer. DAPI (Thermo
448 Fisher) was used to stain DNA. Bacteria were stained using anti-*Salmonella*
449 Typhimurium FITC-conjugated antibody (Santa Cruz, Cat# sc-52223). Sections were
450 mounted using coverslips (#1.5) and Prolong Diamond or Prolong Glass Antifade
451 Mountant (Thermo Fisher). Images were taken on Olympus BX60 upright compound
452 microscope, Nikon A1 confocal microscope or Nikon X1 Yokogawa spinning disc
453 confocal microscope and processed using ImageJ and quantitation was performed in
454 ImageJ or CellProfiler.

455

456 **TUNEL Assay**

457 Apoptosis was analyzed by fluorescence microscopy using *In Situ Cell Death Detection*
458 *Kit* (Roche) or CF594 TUNEL Assay Apoptosis Detection Kit (Biotium) according to the
459 manufacturers' protocols. Histology sections were permeabilized using Proteinase K
460 (20µg/ml) or 0.2% Triton X-100 in PBS and blocked using PBS+ 5% BSA. Sections

461 were stained with primary antibodies overnight at 4°C in blocking buffer and then were
462 incubated in the terminal deoxynucleotidyl transferase end labeling (TUNEL) buffer for
463 1h at 37°C. Slides were washed with PBS and incubated with fluorescent conjugated
464 secondary antibodies. Sections were then counterstained with DAPI to label DNA. To
465 quantify the TUNEL signal in the HIOs, the percent of the HIO lumen filled with TUNEL+
466 cells was quantified using ImageJ software.

467

468 **RNA Sequencing and Analysis**

469 Total RNA was isolated from 5 HIOs per group with a total of 4 replicates per condition
470 using the mirVana miRNA Isolation Kit (Thermo Fisher). The quality of RNA was
471 confirmed, ensuring the RNA integrity number (RIN)> 8.5, using the Agilent TapeStation
472 system. cDNA libraries were prepared by the University of Michigan DNA Sequencing
473 Core using the TruSeq Stranded mRNA Kit (Illumina) according to the manufacturer's
474 protocol. Libraries were sequenced on Illumina HiSeq 2500 platforms (single-end, 50 bp
475 read length). All samples were sequenced at a depth of 10.5 million reads per sample or
476 greater. Sequencing generated FASTQ files of transcript reads that were pseudoaligned
477 to the human genome (GRCh38.p12) using kallisto software (53). Transcripts were
478 converted to estimated gene counts using the tximport package (54) with gene
479 annotation from Ensembl (55).

480

481 **Gene Expression and Pathway Enrichment Analysis**

482 Differential expression analysis was performed using the DESeq2 package (56) with P
483 values calculated by the Wald test and adjusted P values calculated using the
484 Benjamini & Hochberg method (57).

485

486 **Quantification and Statistical Methods**

487 RNA-seq data analysis was done using RStudio version 1.1.453. Plots were generated
488 using ggplot2 (58) with data manipulation done using dplyr (59). Other data were
489 analyzed using Graphpad Prism 9. Statistical differences were determined using
490 statistical tests indicated in the fig. legends. The mean of at least 2 independent
491 experiments were presented with error bars showing standard deviation (SD). P values
492 of less than 0.05 were considered significant and designated by: * $P < 0.05$, ** $P < 0.01$,
493 *** $P < 0.001$ and **** $P < 0.0001$.

494

495 **Ethics Statement**

496 Blood samples were obtained from healthy adult donors according to the protocol
497 approved by the University of Michigan Institutional Review Board (HUM00044257).
498 Written consent was obtained from all donors.

499

500 **Acknowledgements**

501 This work was supported by NIH awards U19AI116482-01 (V.B.Y, J.R.S, C.E.W, and
502 M.X.O), R21AI13540 (M.X.O) and funds from the University of Michigan Medical School
503 (J.S.K). A-L.E.L was supported by NIH T32 AI007528. We thank the Host Microbiome
504 Initiative, Microscopy and Image Analysis Laboratory (MIL), the Comprehensive Cancer

505 Center Immunology (supported by the NCI and NIH award P30CA046592) and
506 Histology Cores and the DNA Sequencing Core at University of Michigan Medical
507 School. We gratefully acknowledge the O'Riordan lab members for helpful discussions,
508 and Dr. Roberto Cieza for assistance with data management.

509

510 **Figure legends**

511 **Fig. 1. PMNs migrate into the lumen during infection and reduce both the number**
512 **of infected epithelial cells and the association of bacteria with the epithelial**
513 **surface**

514 (A) Transmigration of PMNs into the lumen of HIOs was quantified using flow cytometry.
515 HIOs were microinjected with STM or PBS and co-cultured with CFSE-labeled PMNs for
516 8h. PMNs-HIOs were washed to remove any unassociated PMNs, dissociated into a
517 single cell suspension and subjected to flow cytometry. Percentage of PMNs relative to
518 total cells acquired per PMN-HIO was determined by FlowJo software. (B)
519 Immunofluorescent staining of HIOs microinjected with PBS or STM and co-cultured
520 with PMNs. E-cadherin (green) marks the epithelial lining, MPO (red) is specific to
521 PMNs and DNA is stained with DAPI. (C) Total bacterial burden per HIO or PMN-HIO
522 was enumerated at 8hpi. (D) Quantitation of percent infected cells/HIO or PMN-HIO
523 based on 3 fields per view per HIO. (E) Quantitation of epithelium associated bacteria.
524 Number of bacteria within 50 μ m of the apical epithelial surface based on E-cadherin
525 staining were counted and normalized per 100 μ m distance. (F) Representative
526 immunofluorescent staining of HIOs and PMN-HIOs infected with STM. *Salmonella* is
527 stained in green, E-cadherin to mark epithelial cells is shown in red, and DNA stained
528 with DAPI in blue. Graphs show the mean and SD of $n \geq 10$ HIOs represented by dots
529 from at least two independent experiments. Outliers were removed using the ROUT
530 method with Q=0.1%. Unless otherwise stated, significance was determined by Mann-
531 Whitney test with *p<0.05, **p<0.01.

532

533 **Fig. 2. PMNs induce epithelial cell death and shedding during *Salmonella***
534 **infection**

535 (A) Immunofluorescent images of TUNEL staining of histology sections of HIOs and
536 PMN-HIOs injected with PBS or STM at 8hpi. (B) Quantitation of TUNEL positive cells in
537 the lumen of HIOs and PMN-HIOs from (A). Graphs show the mean and SD of HIOs
538 from 2 independent experiments with n>12 HIOs per group. (C) Quantitation of percent
539 of TUNEL-positive epithelial cells in HIO lumen. The percentage of TUNEL-positive cells
540 that stained positive for E-cadherin in the HIO lumen were assessed. (D)
541 Representative confocal microscopy images of histology sections from STM-injected
542 HIOs or PMN-HIOs at 8h. Sections were co-stained with TUNEL (green), epithelial cell
543 marker E-cadherin (red), and DNA marker DAPI (blue). (E) Confocal microscopy
544 images of histology sections of HIOs and PMN-HIOs that were stained for E-cadherin
545 (red), cleaved Caspase-3 (green), and DNA (blue). Arrows point to cleaved Caspase-3
546 positive epithelial cells whereas arrowheads point to cleaved Caspase-3 negative
547 luminal epithelial cells.

548 Outliers were removed using the ROUT method with Q=0.1%. Significance was
549 determined via one-way ANOVA with post-Tukey's test for multiple comparisons where
550 ****p<0.0001.

551
552 **Fig. 3. Inflammasome activation and IL-1 production is mediated by PMNs during**
553 **infection**

554 (A) Gene expression data presented as \log_2 (fold change) relative to PBS-injected HIOs
555 for genes involved in inflammasome/cell death signaling. All genes are significantly
556 changed from PBS-injected HIOs in at least one condition with p-adjusted value <0.05 .
557 (B) Cytokine levels in culture media of HIOs and PMN-HIOs were quantified using
558 ELISA. Graphs indicate the mean of $n=4$ biological replicates \pm SD from media
559 sampled at 8hpi with 5 HIOs or PMN-HIOs per well. (C) Immunofluorescent staining of
560 histology sections of PMN-HIOs. Sections were stained for ASC expression (green),
561 Vimentin (red) to mark PMNs and mesenchymal cells, and DNA (blue) was labeled with
562 DAPI. (D) Zoom of (C) showing luminal ASC-positive cells (green) with multilobed PMN
563 nuclei.

564 Statistical significance was determined by 2-way ANOVA where * $p<0.05$, *** $p<0.001$,
565 **** $p<0.0001$.

566

567 **Fig. 4. Caspase-1 and Caspase-3 inhibition reduces shedding of infected
568 epithelial cells in the lumen of PMN-HIOs and differentially affect bacterial burden
569 and bacterial association with the epithelium**

570 (A) Representative fluorescence microscopy images of TUNEL staining of HIO and
571 PMN-HIO histology sections. HIOs were microinjected with STM and either cultured
572 alone or co-cultured with PMNs in the presence of inhibitors for Caspase-1 (z-YVAD),
573 Caspase-3 (z-DEVD), or DMSO control. (B) Quantitation of the percent of lumen filled
574 with TUNEL-positive cells of STM-infected HIOs or PMN-HIOs with indicated
575 treatments. (C) Quantitation of the number of bacteria per cell based on 3 fields per
576 view per HIO. (D) Quantitation of epithelium associated bacteria. Number of bacteria

577 within 50 μ m of the apical epithelial surface were counted and normalized per 100 μ m
578 distance. (E) Fluorescent microscopy images of STM-infected PMN-HIO histology
579 sections. Samples were stained for *Salmonella* (green), E-cadherin (red), and DAPI
580 (blue).

581 Unless otherwise stated, graphs show the mean +/-SD of $n \geq 10$ HIOs represented by
582 dots from at least two independent experiments. Outliers were removed using the
583 ROUT method with $Q=0.1\%$. Significance was determined by one-way ANOVA with
584 post-Tukey's test for multiple comparisons where * $p<0.05$, ** $p<0.01$.

585

586

587

588 **REFERENCES**

- 589 1. , *Salmonella* Homepage (2021) (September 10, 2021).
- 590 2. A. C. Baird-Parker, Foodborne salmonellosis. *Lancet* **336**, 1231–1235 (1990).
- 591 3. A.-L. E. Lawrence, *et al.*, *Salmonella enterica* Serovar Typhimurium SPI-1 and SPI-
592 2 Shape the Global Transcriptional Landscape in a Human Intestinal Organoid
593 Model System. *MBio* **12** (2021).
- 594 4. B. H. Abuaita, *et al.*, Comparative transcriptional profiling of the early host response
595 to infection by typhoidal and non-typhoidal *Salmonella* serovars in human intestinal
596 organoids. *PLoS Pathog.* **17**, e1009987 (2021).
- 597 5. M. K. Holly, *et al.*, *Salmonella enterica* Infection of Murine and Human Enteroid-
598 Derived Monolayers Elicits Differential Activation of Epithelium-Intrinsic
599 Inflammasomes. *Infect. Immun.* **88** (2020).
- 600 6. L. A. Knodler, *et al.*, Noncanonical inflammasome activation of caspase-4/caspase-
601 11 mediates epithelial defenses against enteric bacterial pathogens. *Cell Host Microbe* **16**, 249–256 (2014).
- 603 7. J. L. Forbester, *et al.*, Interaction of *salmonella enterica* serovar Typhimurium with
604 intestinal organoids derived from human induced pluripotent stem cells. *Infect.*
605 *Immun.* **83**, 2926–2934 (2015).
- 606 8. L. A. Knodler, *et al.*, Dissemination of invasive *Salmonella* via bacterial-induced
607 extrusion of mucosal epithelia. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 17733–17738
608 (2010).
- 609 9. M. E. Sellin, *et al.*, Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected
610 enterocyte expulsion to restrict *Salmonella* replication in the intestinal mucosa. *Cell*
611 *Host Microbe* **16**, 237–248 (2014).
- 612 10. I. Rauch, *et al.*, NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell
613 Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8.
614 *Immunity* **46**, 649–659 (2017).
- 615 11. S. M. Crowley, *et al.*, Intestinal restriction of *Salmonella* Typhimurium requires
616 caspase-1 and caspase-11 epithelial intrinsic inflammasomes. *PLoS Pathog.* **16**,
617 e1008498 (2020).
- 618 12. M. A. Kinnebrew, E. G. Pamer, Innate immune signaling in defense against
619 intestinal microbes. *Immunol. Rev.* **245**, 113–131 (2012).
- 620 13. O. H. Pham, S. J. McSorley, Protective host immune responses to *Salmonella*
621 infection. *Future Microbiol.* **10**, 101–110 (2015).

622 14. A. Rydström, M. J. Wick, Monocyte recruitment, activation, and function in the gut-
623 associated lymphoid tissue during oral *Salmonella* infection. *J. Immunol.* **178**,
624 5789–5801 (2007).

625 15. C. Tükel, *et al.*, Neutrophil influx during non-typhoidal salmonellosis: who is in the
626 driver's seat? *FEMS Immunol. Med. Microbiol.* **46**, 320–329 (2006).

627 16. B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, A. Zychlinsky, Neutrophil
628 function: from mechanisms to disease. *Annu. Rev. Immunol.* **30**, 459–489 (2012).

629 17. V. Brinkmann, *et al.*, Neutrophil extracellular traps kill bacteria. *Science* **303**, 1532–
630 1535 (2004).

631 18. E. L. Campbell, *et al.*, Transmigrating neutrophils shape the mucosal
632 microenvironment through localized oxygen depletion to influence resolution of
633 inflammation. *Immunity* **40**, 66–77 (2014).

634 19. B. M. Fournier, C. A. Parkos, The role of neutrophils during intestinal inflammation.
635 *Mucosal Immunol.* **5**, 354–366 (2012).

636 20. S. Gopinath, A. Hotson, J. Johns, G. Nolan, D. Monack, The systemic immune state
637 of super-shedder mice is characterized by a unique neutrophil-dependent blunting
638 of TH1 responses. *PLoS Pathog.* **9**, e1003408 (2013).

639 21. A. C. Chin, C. A. Parkos, Pathobiology of neutrophil transepithelial migration:
640 implications in mediating epithelial injury. *Annu. Rev. Pathol.* **2**, 111–143 (2007).

641 22. K. L. Mumy, B. A. McCormick, The role of neutrophils in the event of intestinal
642 inflammation. *Curr. Opin. Pharmacol.* **9**, 697–701 (2009).

643 23. A. J. Simpson, A. I. Maxwell, J. R. Govan, C. Haslett, J. M. Sallenave, Elafin
644 (elastase-specific inhibitor) has anti-microbial activity against gram-positive and
645 gram-negative respiratory pathogens. *FEBS Lett.* **452**, 309–313 (1999).

646 24. V. E. Diaz-Ochoa, *et al.*, *Salmonella* Mitigates Oxidative Stress and Thrives in the
647 Inflamed Gut by Evading Calprotectin-Mediated Manganese Sequestration. *Cell*
648 *Host Microbe* **19**, 814–825 (2016).

649 25. J. Z. Liu, *et al.*, Zinc Sequestration by the Neutrophil Protein Calprotectin Enhances
650 *Salmonella* Growth in the Inflamed Gut. *Cell Host Microbe* **11**, 227–239 (2012).

651 26. A. Chong, *et al.*, Cytosolic replication in epithelial cells fuels intestinal expansion
652 and chronic fecal shedding of *Salmonella* Typhimurium. *Cell Host Microbe* **29**,
653 1177-1185.e6 (2021).

654 27. M. Saffarzadeh, *et al.*, Neutrophil extracellular traps directly induce epithelial and
655 endothelial cell death: a predominant role of histones. *PLoS One* **7**, e32366 (2012).

656 28. N. Naseer, *et al.*, *Salmonella Typhimurium induces NAIP/NLRC4- and NLRP3/ASC-*
657 *independent, caspase-1/4-dependent inflammasome activation in human intestinal*
658 *epithelial cells.* *bioRxiv*, 2021.12.09.472040 (2021).

659 29. B. H. Abuaita, *et al.*, *The IRE1 α Stress Signaling Axis Is a Key Regulator of*
660 *Neutrophil Antimicrobial Effector Function.* *J. Immunol.* (2021)
661 <https://doi.org/10.4049/jimmunol.2001321>.

662 30. S. A. Hirota, *et al.*, *NLRP3 inflammasome plays a key role in the regulation of*
663 *intestinal homeostasis.* *Inflamm. Bowel Dis.* **17**, 1359–1372 (2011).

664 31. L. Vande Walle, M. Lamkanfi, *Inflammasomes: caspase-1-activating platforms with*
665 *critical roles in host defense.* *Front. Microbiol.* **2**, 3 (2011).

666 32. S. M. Man, *Inflammasomes in the gastrointestinal tract: infection, cancer and gut*
667 *microbiota homeostasis.* *Nat. Rev. Gastroenterol. Hepatol.* **15**, 721–737 (2018).

668 33. P. J. Baker, *et al.*, *NLRP3 inflammasome activation downstream of cytoplasmic*
669 *LPS recognition by both caspase-4 and caspase-5.* *Eur. J. Immunol.* **45**, 2918–2926
670 (2015).

671 34. C. P. McEntee, C. M. Finlay, E. C. Lavelle, *Divergent Roles for the IL-1 Family in*
672 *Gastrointestinal Homeostasis and Inflammation.* *Front. Immunol.* **10**, 1266 (2019).

673 35. Z. Hodzic, E. M. Schill, A. M. Bolock, M. Good, *IL-33 and the intestine: The good,*
674 *the bad, and the inflammatory.* *Cytokine* **100**, 1–10 (2017).

675 36. E. Lefrançais, *et al.*, *IL-33 is processed into mature bioactive forms by neutrophil*
676 *elastase and cathepsin G.* *Proc. Natl. Acad. Sci. U. S. A.* **109**, 1673–1678 (2012).

677 37. F. Martinon, K. Burns, J. Tschoopp, *The inflammasome: a molecular platform*
678 *triggering activation of inflammatory caspases and processing of proIL-beta.* *Mol.*
679 *Cell* **10**, 417–426 (2002).

680 38. J. R. Kurtz, J. A. Goggins, J. B. McLachlan, *Salmonella infection: Interplay between*
681 *the bacteria and host immune system.* *Immunol. Lett.* **190**, 42–50 (2017).

682 39. C. A. Lee, *et al.*, *A secreted Salmonella protein induces a proinflammatory*
683 *response in epithelial cells, which promotes neutrophil migration.* *Proc. Natl. Acad.*
684 *Sci. U. S. A.* **97**, 12283–12288 (2000).

685 40. C. Cheminay, D. Chakravortty, M. Hensel, *Role of neutrophils in murine*
686 *salmonellosis.* *Infect. Immun.* **72**, 468–477 (2004).

687 41. C. A. Parkos, *Neutrophil-Epithelial Interactions: A Double-Edged Sword.* *Am. J.*
688 *Pathol.* **186**, 1404–1416 (2016).

689 42. Q. L. Ying, S. R. Simon, Kinetics of the inhibition of human leukocyte elastase by
690 elafin, a 6-kilodalton elastase-specific inhibitor from human skin. *Biochemistry* **32**,
691 1866–1874 (1993).

692 43. C. T. N. Pham, Neutrophil serine proteases: specific regulators of inflammation.
693 *Nat. Rev. Immunol.* **6**, 541–550 (2006).

694 44. E. P. Reeves, *et al.*, Killing activity of neutrophils is mediated through activation of
695 proteases by K⁺ flux. *Nature* **416**, 291–297 (2002).

696 45. J.-P. Motta, *et al.*, Food-grade bacteria expressing elafin protect against
697 inflammation and restore colon homeostasis. *Sci. Transl. Med.* **4**, 158ra144 (2012).

698 46. J.-P. Motta, *et al.*, Modifying the protease, antiprotease pattern by elafin
699 overexpression protects mice from colitis. *Gastroenterology* **140**, 1272–1282
700 (2011).

701 47. A. Hausmann, *et al.*, Intestinal epithelial NAIP/NLRc4 restricts systemic
702 dissemination of the adapted pathogen *Salmonella Typhimurium* due to site-specific
703 bacterial PAMP expression. *Mucosal Immunol.* **13**, 530–544 (2020).

704 48. S. H. Jia, *et al.*, Activated neutrophils induce epithelial cell apoptosis through
705 oxidant-dependent tyrosine dephosphorylation of caspase-8. *Am. J. Pathol.* **184**,
706 1030–1040 (2014).

707 49. S. A. Gudipaty, J. Rosenblatt, Epithelial cell extrusion: Pathways and pathologies.
708 *Semin. Cell Dev. Biol.* **67**, 132–140 (2017).

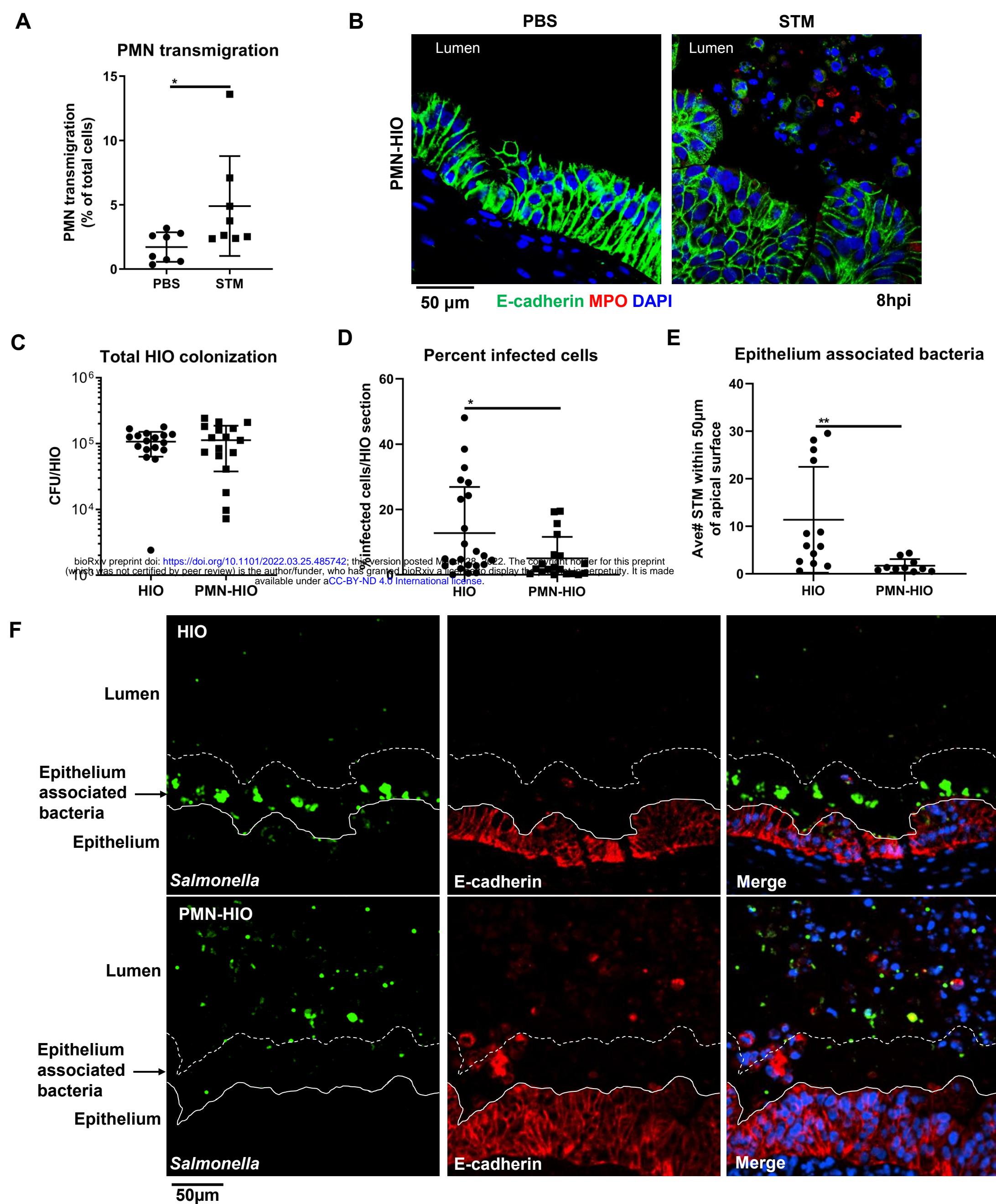
709 50. K. W. Chen, *et al.*, Noncanonical inflammasome signaling elicits gasdermin D-
710 dependent neutrophil extracellular traps. *Sci. Immunol.* **3**, eaar6676 (2018).

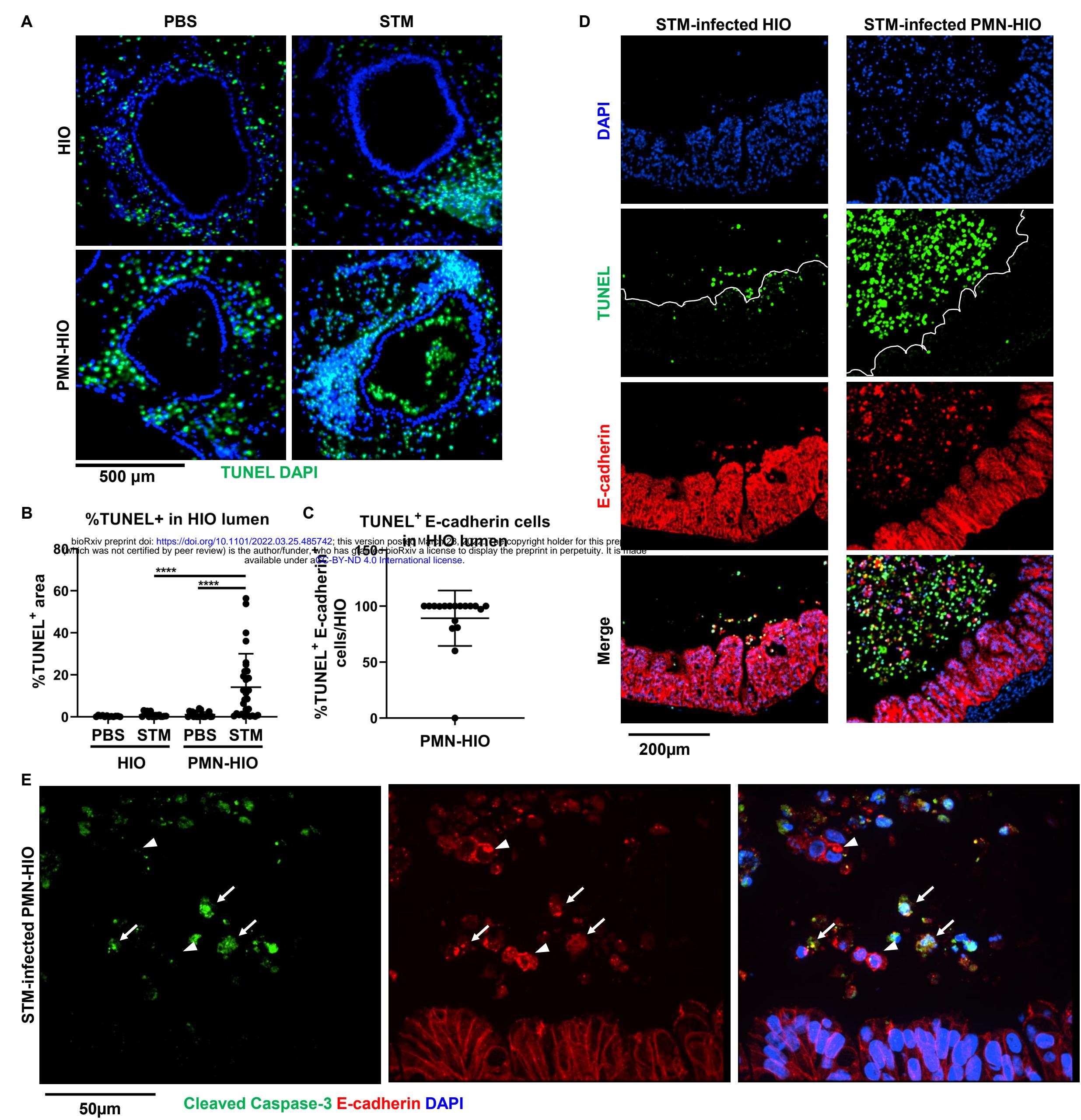
711 51. J. R. Spence, *et al.*, Directed differentiation of human pluripotent stem cells into
712 intestinal tissue in vitro. *Nature* **470**, 105–109 (2011).

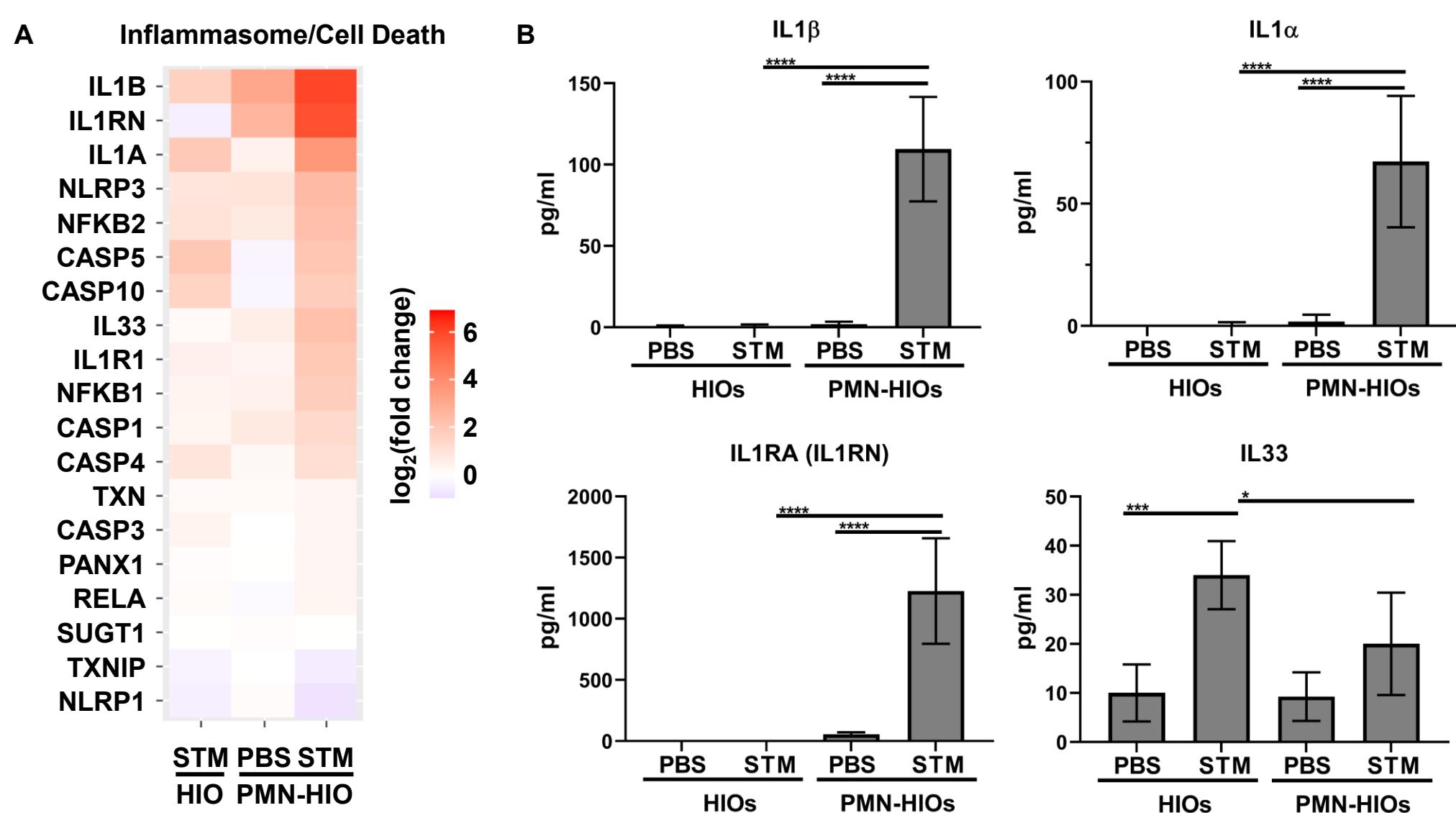
713 52. D. R. Hill, S. Huang, Y.-H. Tsai, J. R. Spence, V. B. Young, Real-time Measurement
714 of Epithelial Barrier Permeability in Human Intestinal Organoids. *J. Vis. Exp.* (2017)
715 <https://doi.org/10.3791/56960>.

716 53. N. L. Bray, H. Pimentel, P. Melsted, L. Pachter, Near-optimal probabilistic RNA-seq
717 quantification. *Nat. Biotechnol.* **34**, 525–527 (2016).

718 54. C. Soneson, M. I. Love, M. D. Robinson, Differential analyses for RNA-seq:
719 transcript-level estimates improve gene-level inferences. *F1000Res.* **4**, 1521
720 (2015).


721 55. J. Rainer, EnsDb.Hsapiens.v75: Ensembl based annotation package. R package
722 version 2.99.0 (2017).


723 56. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and
724 dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).


725 57. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and
726 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B (Methodological)* **57**, 289–300 (1995).

728 58. H. Wickham, *ggplot2: Elegant Graphics for Data Analysis* (Springer, 2016).

729 59. H. Wickham, R. Francois, L. Henry, K. Müller, Others, dplyr: A grammar of data
730 manipulation. *R package version 0.43* (2015).

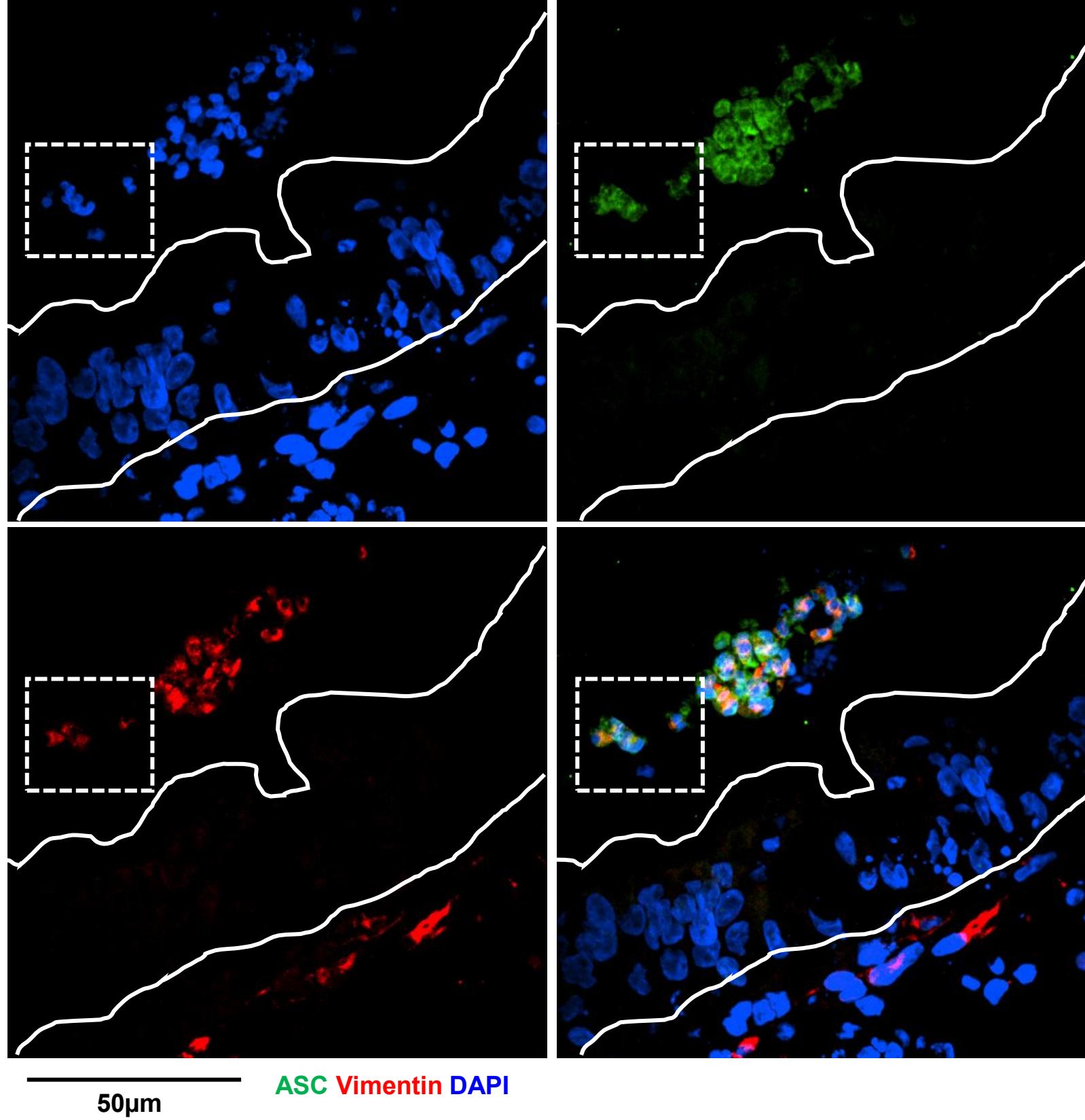
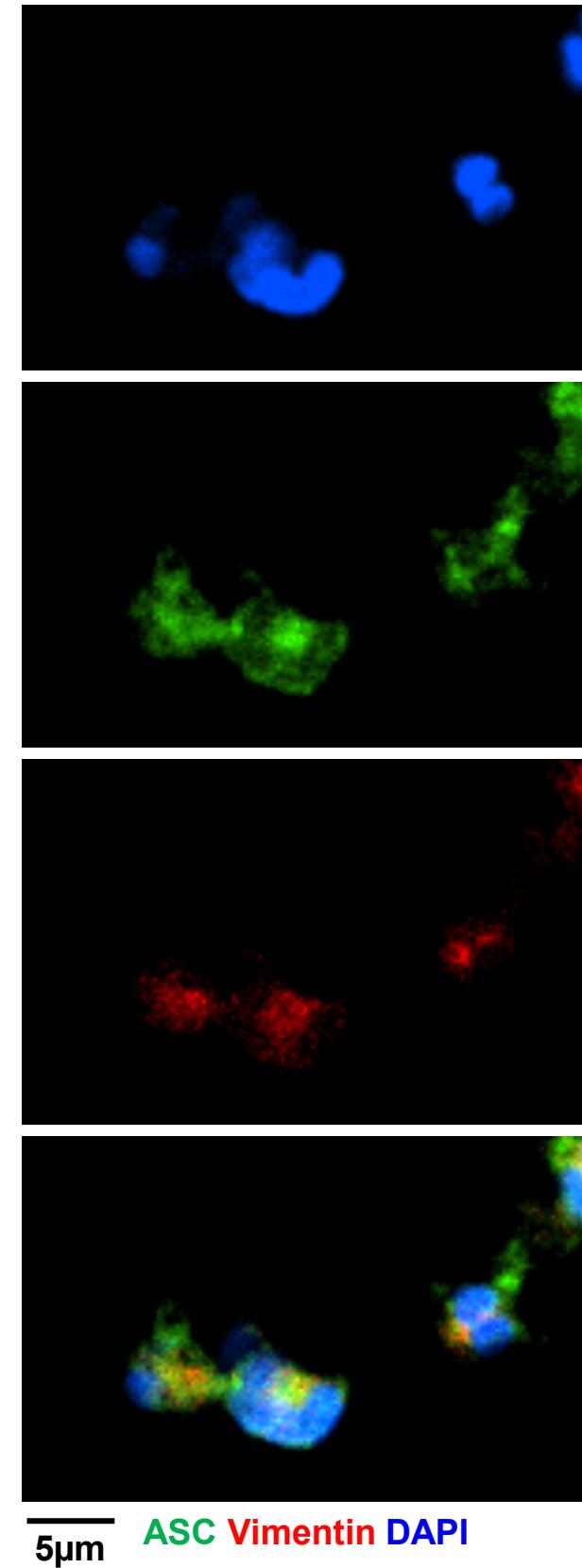
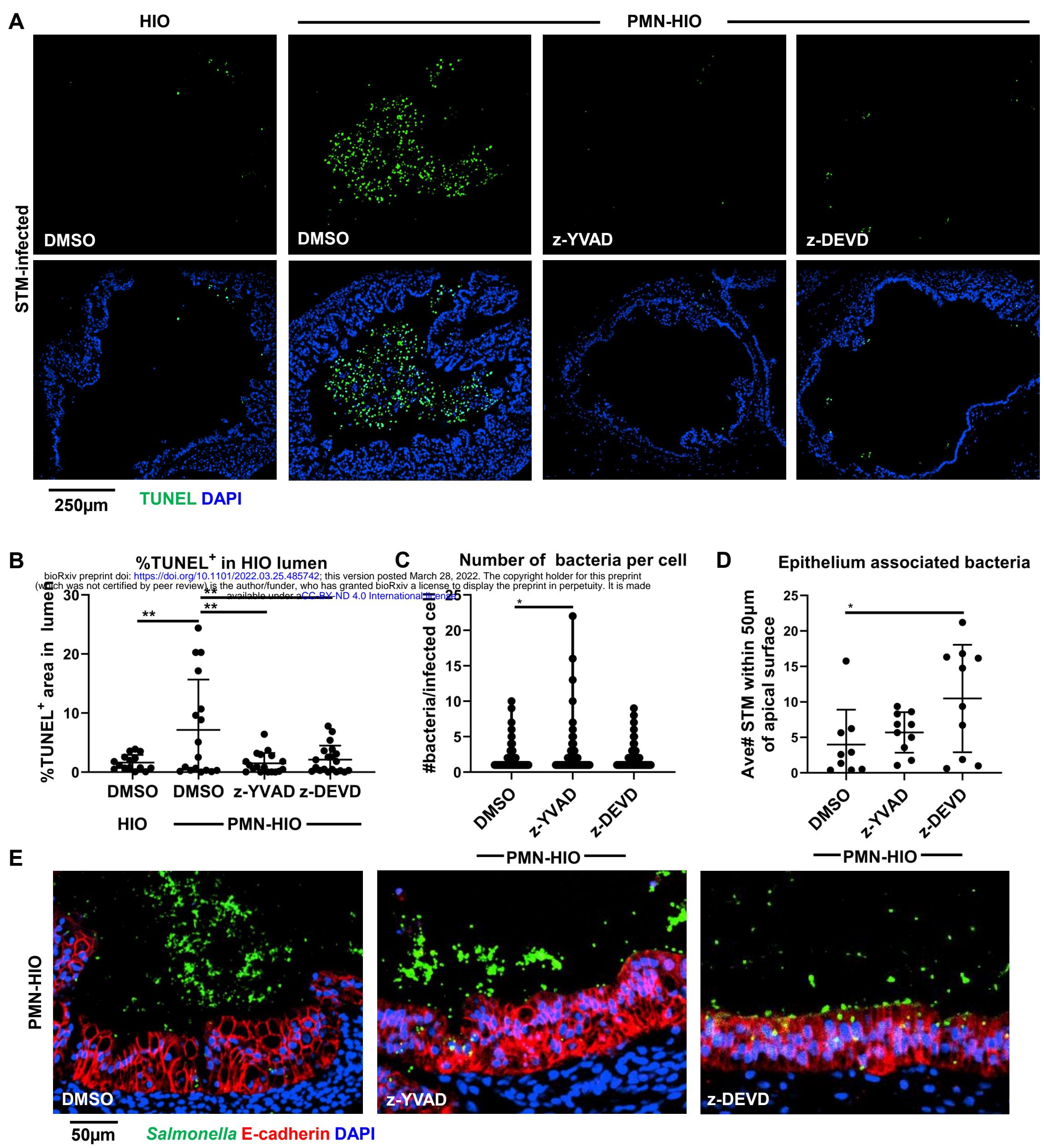
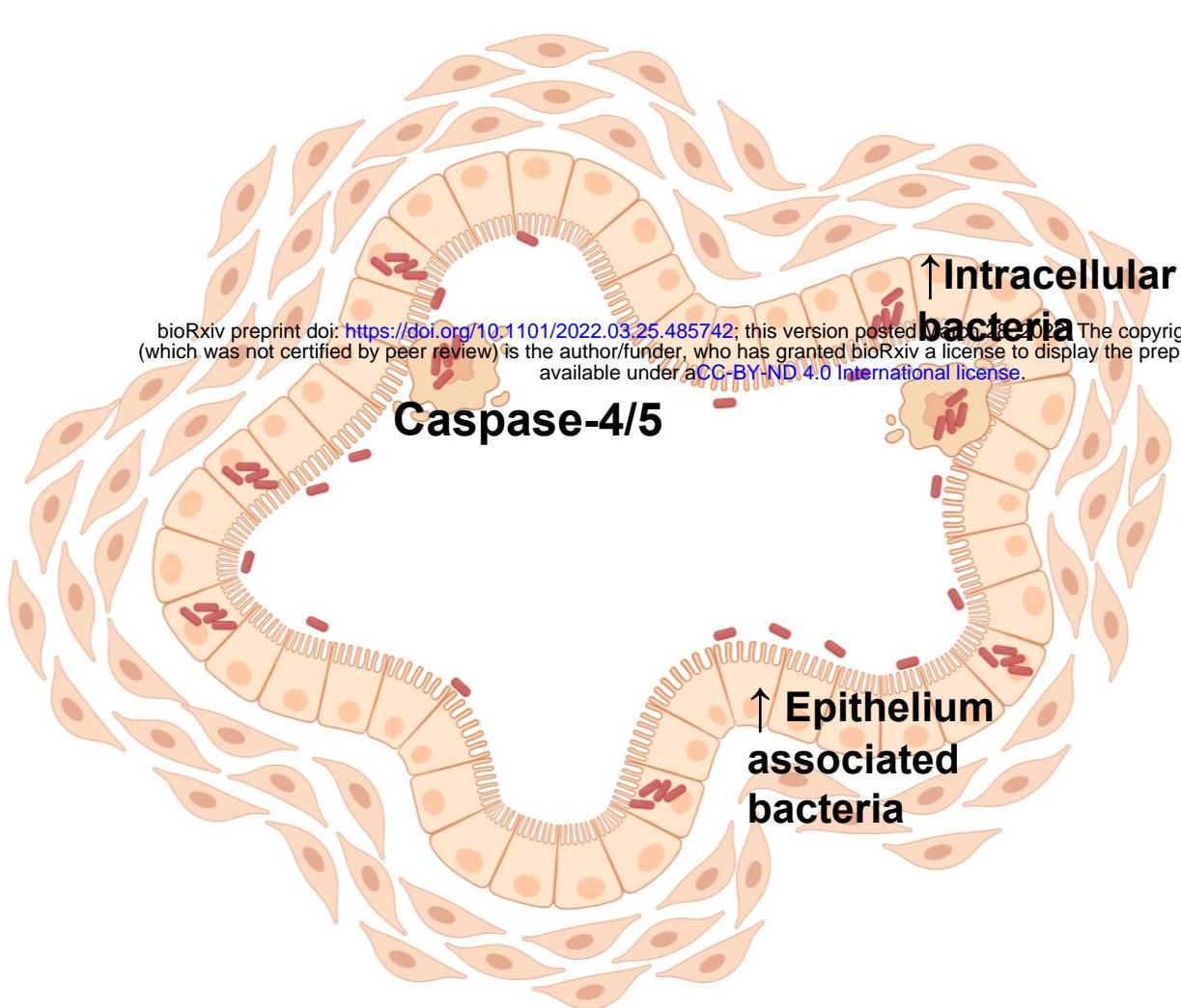

Figure 1

Figure 2


Figure 3


C bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.25.485742>; this version posted March 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

STM-infected PMN-HIO



D **STM-infected PMN-HIO**

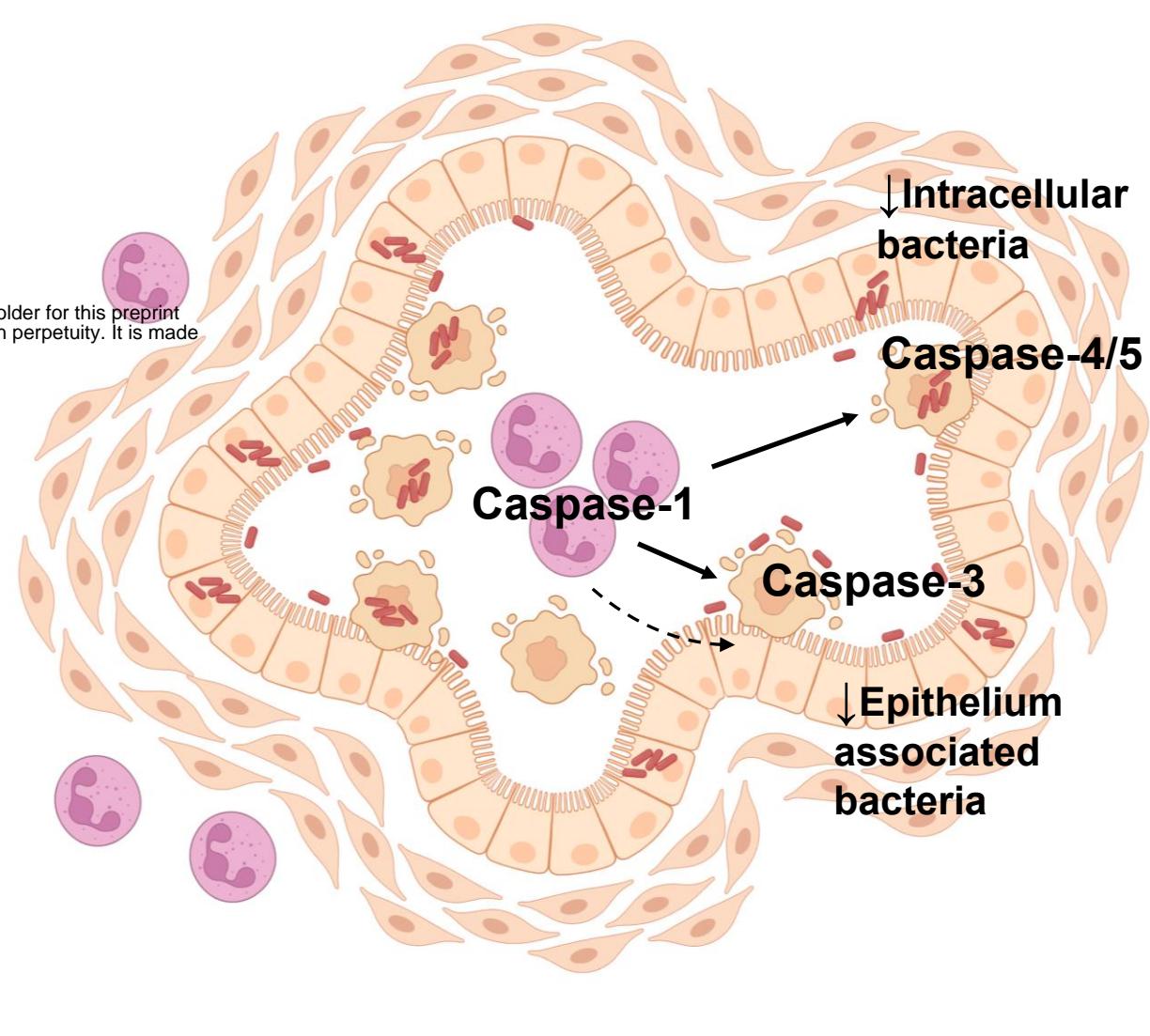


Figure 4

STM-infected HIO

STM-infected PMN-HIO

