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Abstract 
Plasticity enables cells to change their gene expression state in the absence of a genetic change. At the single-
cell level, these gene expression states can persist for different lengths of time which is a quantitative 
measurement referred to as gene expression memory. Because plasticity is not encoded by genetic changes, 
these cell states can be reversible, and therefore, are amenable to modulation by disrupting gene expression 
memory. However, we currently do not have robust methods to find the regulators of memory or to track state 
switching in plastic cell populations. Here, we developed a lineage tracing-based technique to quantify gene 
expression memory and to identify single cells as they undergo cell state transitions. Applied to human melanoma 
cells, we quantified long-lived fluctuations in gene expression that underlie resistance to targeted therapy. 
Further, we identified the PI3K and TGF-ȕ paWhZa\s as modXlaWors of Whese sWaWe d\namics. Appl\ing Whe gene 
expression signatures derived from this technique, we find that these expression states are generalizable to in 
vivo models and present in scRNA-seq from patient tumors. Leveraging the PI3K and TGF-ȕ paWhZa\s as dials 
on memor\ beWZeen plasWic sWaWes, Ze propose a ³preWreaWmenW´ model in Zhich Ze firsW Xse a PI3K inhibiWor Wo 
modulate the expression states of the cell population and then apply targeted therapy. This plasticity informed 
dosing scheme ultimately yields fewer resistant colonies than targeted therapy alone. Taken together, we 
describe a technique to find modulators of gene expression memory and then apply this knowledge to alter 
plastic cell states and their connected cell fates. 
 
Introduction 
Gene expression memory describes the length of time that a particular expression state exists in an individual 
cell or lineage of cells. Gene expression memory can exist over a range of different timescales and is ultimately 
a quantitative measurement (Angel et al. 2011; Shaffer et al. 2020). For cancer, an intermediate timescale of 
memory has been associated with a number of important phenotypes including, stemness and differentiation 
(Chaligne et al. 2021; Gupta et al. 2011), metastasis (Kaur et al. 2022), and therapy resistance (Shaffer et al. 
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2020; Torre et al. 2021; Sharma et al. 2010; Oren et al. 2021). In these examples, the cellular state underlying 
the phenotype is stable enough to persist through multiple cell divisions, but is ultimately not permanent, and 
thus amenable to switching states. For cancer therapy resistance, drug-naive cells seemingly randomly fluctuate 
between two states, one which is susceptible to targeted therapy and another which would become resistant if 
Whe drXg is applied, Wermed ³primed´ for drXg resisWance (Emert et al. 2021; Shaffer et al. 2017). However, the 
molecular drivers underlying these heritable, but reversible, memory states remain unknown.  
 
Because drug resistance can emerge from cells that are in a primed gene expression state, one intriguing 
possibility to prevent resistance is to transform primed cells into drug-susceptible cells. However, we currently 
do not know the molecular cues that trigger cells to switch between these states. Knowing these cues would 
make it possible to therapeutically target state switching pathways to drive cells out of the primed gene 
expression state and sensitize them to therapy. Such an approach requires deep characterization of the 
processes underlying state switching, which remains exceedingly difficult with current methods.  
 
Currently, there are limited techniques that will reveal memory and state switching in single cells. Our previous 
work inferred cellular memory from bulk RNA-seq measurements (Shaffer et al. 2020), but failed to capture 
drivers of switching between memory states. Meanwhile, scRNA-seq can capture the heterogeneity of a 
population, but it fails to capture the timescales for which different states have been present in individual cells, 
and lacks the resolution to capture transitioning gene expression states. A number of computational and 
experimental techniques have been developed to resolve time in single-cells on short timescales, on the order 
of hours (La Manno et al. 2018; Qiu et al. 2020), but few exist for the longer timescales of days to weeks as 
needed to track cellular memory. Recent advances in high-throughput cellular barcoding technologies have 
made it possible to track cellular lineages across any length of time (Bhang et al. 2015). Pairing cellular barcoding 
with scRNA-seq enables us to now match cellular lineages with their transcriptome (Biddy et al. 2018; Oren et 
al. 2021; Weinreb et al. 2020; Emert et al. 2021), and thus is an ideal tool for tracking transcriptional states 
across lineages to measure cellular memory.  
 
Here, we developed an ultra-sensitive technique for measuring memory that is built from cell barcoding and 
scRNA-seq called scMemorySeq. Our experimental design uses a precisely controlled number of cell divisions 
to capture lineages that have undergone switching between drug-susceptible and primed states in cancer. We 
applied scMemorySeq to drug naive melanoma cells and  found that the drug-susceptible and primed states are 
two very distinct, high-memory states that appear unrelated based only on scRNA-seq alone. However, through 
lineage tracing with cell barcoding, we identified lineages containing cells from both states, directly showing that 
single cells can switch between states. By analyzing lineages that lose memory of their state, we identified TGF-
ȕ and PI3K as paWhZa\s conWrolling sWaWe sZiWching. UlWimaWel\, we found that by initially disrupting the primed 
state through PI3K inhibition and then applying BRAF inhibitor in combination with a MEK inhibitor (BRAFi/MEKi), 
we could reduce the frequency of drug resistance. Taken together, we demonstrate the feasibility of molecularly 
targeting memory and state switching to eliminate gene expression states in cancer that prime cells for 
undesirable phenotypes.  
 
Results 
We first sought to identify the molecular pathways underlying cellular memory in the drug-susceptible and primed 
cells in melanoma (Fig. 1A). We developed a technique called scMemorySeq that specifically captures heritable 
gene expression states and switching between plastic states using cellular barcoding and scRNA-seq. In our 
experimental design, the cellular barcodes enable high-throughput tracking of cells over any desired period of 
time and the scRNA-seq reveals the transcriptional states of every cell. Ultimately, we infer cellular memory by 
examining gene expression across lineages of related cells. For genes or sets of genes that have memory over 
the experimental timescale, all cells from the same lineage should be in the same end state and match the initial 
state (Fig. 1B). However, if cellular states change over the experimental timescale, then the end-state will contain 
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cells with multiple gene expression states, some of which are different from the initial state. We applied this 
technique to BRAF-mutant melanoma cells in which a rare subpopulation of cells are resistant to BRAF inhibitors. 
We transduced WM989 melanoma cells with a high-complexity viral barcode library consisting of a transcribed 
100 base pair semi-random barcode seqXence in Whe 3¶ UTR of GFP (Emert et al. 2021) (Fig. 1C). In this 
experimental model, our phenotype of interest (cells that are primed for resistance) is rare. To improve our ability 
to capture primed cells, and to establish the initial state of lineages, we sorted cells based on known primed cell 
markers (EGFR+ and NGFR+) and also isolated a matched control population (Fig. 1C). To measure cellular 
memory, we allowed the cells to expand through roughly 4 doublings (12-14 days). Over this time, we expect 
that most cells will maintain memory of their initial gene expression state, but that a subset of cells will lose 
memory of their initial state, thereby capturing the reversion of these expression states. At the endpoint, we 
harvested these cells for scRNA-seq and performed a PCR side reaction to specifically amplify the lineage 
barcodes from each cell. 
 
We profiled a total of 12,531 (7,581 cells with barcodes) melanoma cells and found two major transcriptionally 
distinct populations (Fig. 1D, Supp. Fig. 1A). We found that one cluster showed much higher expression of many 
of the genes associated with the primed resistant state including EGFR and AXL (Shaffer et al. 2020; Emert et 
al. 2021; Shaffer et al. 2017), and that most of the sorted NGFR and EGFR-high cells were included in this 
cluster (Fig. 1D, Supp. Fig. 1B). Of note, the two clusters were sufficiently distinct that they clustered separately 
even when the NGFR and EGFR enriched sample was not included in the analysis (Supp. Fig. 1C). Consistent 
with this observation, the other cluster showed higher expression of genes associated with the drug-susceptible 
state including SOX10 and MITF (Fig. 1D, Supp. Fig. 1D).  
 
Because primed cell states are reversible, we sought to leverage this reversibility to overcome the resistant cell 
fate. We used a pretreatment dosing strategy, in which we treated with a priming inhibitor prior to the main 
therapy (Fig. 1E). Here, the priming inhibitor forces cells out of the primed cell state and thus fewer primed cells 
are present in the population to become resistant to therapy. Importantly, this dosing scheme is possible because 
primed cells become resistant to therapy and priming is reversible (Torre et al. 2021; Shaffer et al. 2017). To 
identify a priming inhibitor, we used our scRNA-seq data and found that primed cells have increased expression 
of many growth factors (including FGF1, VGF, BDNF, VEGFA, VEGFC, and PDGFA) with convergence on the 
PI3K pathway (Stommel et al. 2007). We wondered whether blocking this common downstream PI3K signaling 
might inhibit the primed cell phenotype. We tested pretreatment with a PI3K inhibitor (PI3Ki), GDC-0941, for 5 
days followed by BRAFi/MEKi for 4 weeks. Importantly, we selected this dose of PI3Ki as it did not kill the cells 
and had minimal effects on the growth rate (see description in Methods). Compared to BRAFi/MEKi alone, we 
found that PI3Ki pretreatment decreased the number of resistance colonies and the number of resistant cells 
(Fig. 1E representative images, Fig. 1F, G quantification across 6 wells and 3 replicates, Supp. Video 1, Supp. 
Video 2). Thus, using this dosing strategy informed by the priming model, we observe a significant decrease in 
drug resistance, suggesting that PI3Ki could be reducing the number of primed cells. 
 
We next explored the primed cell gene expression state to better understand its regulation. Within the cluster of 
cells expressing primed cell genes, we noticed significant heterogeneity in previously described marker genes 
including EGFR, AXL and NGFR with each gene expressed by some of the cells in the cluster, but not all of the 
cells (Fig. 1D, Supp. Fig. 1D). Furthermore, in a separate experiment, we profiled the chromatin accessibility 
of EGFR and NGFR-high cells and found epigenetic differences between these populations further 
confirming that there is additional heterogeneity within the primed state (Supp. Fig. 1E). We suspected that 
our markers from previous work (Shaffer et al. 2017) did not capture all of the cells within this cluster. In order to 
capture all of the primed cells, we identified a novel marker, NT5E, that encapsulated the entire cluster containing 
the primed population (Fig. 1D). To validate NT5E as an effective marker of primed cells, we labeled WM989 
cells with NT5E antibody and sorted the top 2% of cells. We then applied the targeted BRAF inhibitor, 
vemurafenib, and found that the NT5E samples had 5.5 fold more resistant cells compared to a mixed control 
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(Supp. Fig. 1F, G). Thus, we demonstrated that the marker gene NT5E captures the entire cluster of 
transcriptionally similar cells and that these cells are indeed more resistant to targeted therapy. Surprisingly, 
despite the fact that our previous work showed that cells can switch between the drug-susceptible and primed 
state (Shaffer et al. 2020), there were no cells visibly transitioning between these populations in UMAP space. 
The lack of transitioning cells was also observed in a replicate WM989 scRNA-seq experiment (Supp. Fig. 2A).  
 
With the scRNA-seq data alone, it is not possible to know whether cells are rapidly fluctuating between these 
states or whether the states persist at the single-cell level through multiple cell divisions. To extract the time that 
cells remain in these gene expression states, we used the lineage barcodes. First, we used the scRNA-seq data 
to assign all cells to one of two states, either drug-susceptible or primed for drug resistance. We then classified 
each lineage into one of four categories (Fig. 2A, B): 1. Drug-susceptible lineage (containing only drug-
susceptible cells), 2. Primed lineage (containing only primed cells), 3. Switching from drug-susceptible to the 
primed state (initial state is drug-susceptible and lineage contains drug-susceptible and primed cells), or 4. 
Switching from primed to drug-susceptible state (initial state is primed and lineage contains drug-susceptible and 
primed cells). Across the classes of lineages, we found that lineage sizes were largest for drug-susceptible 
lineages and smallest for primed lineages, which is consistent with scRNA-seq predictions that primed cells 
divide slower than drug-susceptible cells (Fig. 2A, Supp. Fig. 2B). Given the high memory observed in both the 
drug-susceptible and primed states, we compared the differentially expressed genes between these states 
captured by scMemorySeq to bulk measurements of gene expression memory performed in the same cell line 
from (Shaffer et al. 2020). We observed a strong correlation between the two methods on a per gene basis 
(Supp. Fig. 2C). To derive the rates of proliferation and state switching from this data, we used a stochastic two-
state model. Using the model we estimate that primed cells proliferate at approximately half the rate of drug-
susceptible cells on average. We also estimate that drug-susceptible cells switch to the primed state once every 
135-233 cell divisions, while primed cells are estimated to switch to the drug-susceptible state once every 5-8 
cell divisions. The large difference in switching rates is due to the rarity of the primed cell state which must have 
a faster switching rate to maintain a constant proportion of primed cells at steady state. Thus, on the single-cell 
level, the drug-susceptible state is significantly more stable than the primed state (Supp. Methods 1). 
 
After classifying the lineages based on whether they switch between states, we next wondered if there are 
transcriptional differences between lineages that undergo state-switching and lineages that do not switch. We 
hypothesized that these differences might exist if there was an intermediate transcriptional state as cells 
transition between the drug-susceptible and the drug-primed states. To uncover such a state, we compared 
lineages that contain only drug-susceptible cells to lineages that switch from drug-susceptible to the primed state 
(Fig. 2C). Importantly, this comparison requires the assumption that intermediate states would also demonstrate 
memory through cell division (schematic in Supp. Fig. 2D). Consistent with the presence of such an intermediate 
state, we found 575 genes differentially expressed between these types of lineages (based upon a differential 
gene expression analysis with a cutoff of 0.05 Bonferroni adjusted p-value and 0.25 log fold change cutoff) (Fig. 
2D, SXpp. Table 1). We When Xsed Whis gene lisW Wo deYelop a ³crossing-lineage score´, applied Whis score Wo all 
cells in the data set, and then projected them into UMAP space (Fig. 2E). We identified two primary regions 
within the drug-susceptible cluster in UMAP space that show enrichment for cells in this intermediate expression 
state. We then set a threshold on this score and classified cells as ³inWermediaWe cells´ in addiWion Wo Whe WZo 
previously defined states, drug-susceptible and drug-primed (Fig. 2F). These intermediate cells are very rare, 
found at a frequency of around 2% in the population and would have not been identified using standard scRNA-
seq techniques and analyses.  
 
We next wanted to know what pathways are activated in the intermediate cell state. We first used gene set 
enrichment analysis on the differentially expressed gene list from Fig. 2D. The top pathways included UV 
response down, epithelial-to-mesenchymal transition (EMT), and response to hypoxia (Fig. 2G). We examined 
the activity of these different pathways in UMAP space and noted that the EMT pathway score localized in the 
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same regions of the UMAP as the intermediate cell population (Fig. 2H). We focused on this gene set as multiple 
lines of eYidence in melanoma sXggesW WhaW an ³EMT-like´ gene e[pression sWaWe is associaWed ZiWh resisWance 
to BRAFi/MEKi (Ramsdale et al. 2015; Rambow et al. 2018; Verfaillie et al. 2015; Tang et al. 2020; Pedri et al. 
2022). Another enriched pathway in our analysis was TGF-ȕ signaling, Zhich also shoZed enrichmenW in Whe 
same region of the UMAP as the intermediate cells (Fig. 2I). Furthermore, both the EMT and TGF-ȕ paWhZa\s 
were further enriched in the primed cells beyond the levels in intermediate cells, suggesting that these are early 
changes as cells transition from drug-susceptible to intermediate to drug-primed (Fig. 2H, I). We also observed 
that these intermediate cells maintain expression of many genes associated with the drug-susceptible state, 
including melanocyte identity genes SOX10, and MITF, but have already begun to upregulate some of the 
important primed cell marker genes including FN1 and SERPINE2 (Fig. 2J). A few genes were uniquely 
expressed only in the intermediate state cells including NFATC2, and MGP. Intriguingly, NFATC2 was previously 
found to be a regulator of MITF and melanoma dedifferentiation (Perotti et al. 2016; Aibar et al. 2017).  
 
Having established these primed cell signatures in the WM989 cell lines, we next assessed their generalizability 
to tumor models and patient samples. We used RNA FISH HCRv3.0 on tumor samples derived from WM989 
cells grown in NOD/SCID mice (Torre et al. 2021; Choi et al. 2018). We used probes for NT5E and SOX10 on 
tumor sections and quantified expression across 5,600 cells. We found rare cells expressing high levels of NT5E 
mRNA scattered throughout the tissue (Fig. 3A, additional images in Supp. Fig. 2E). SOX10 showed diffuse 
expression across the tissue, but many of the NT5E-high cells did not have SOX10 expression, as predicted by 
the scRNA-seq. Altogether these NT5E-high SOX10-low cells demonstrate that the primed state exists both in 
vitro and in vivo (and is not an artifact of cell culture conditions). We also performed scRNA-seq on a different 
melanoma cell line, WM983B, and found a subpopulation population of cells with a large number of primed cell 
markers, including NT5E (Fig. 3B, C). To establish whether these cell states exist in patients tumors, we analyzed 
scRNA-seq data (Tirosh et al. 2016; Jerby-Arnon et al. 2018) which included 7 samples directly from human 
tumors and found that 5 of them had a subpopulation of cells with high expression of genes associated with the 
primed state (including the EMT and TGF-ȕ gene signaWXres, Fig. 3D, E). TogeWher, Whese daWa demonsWraWe Whe 
generalizability of the primed cell signatures as we observe them in mouse models and in patient samples.  
 
Given the role of TGF-ȕ as a poWenW indXcer of EMT and Whe enrichmenW for Whe TGF-ȕ paWhZa\ in Whe inWermediaWe 
cells, we hypothesized that applying TGFB1 to drug-susceptible cells might drive them into the primed state (Fig. 
4A) (Xu, Lamouille, and Derynck 2009). Importantly, we also observed that TGFB1 and its receptor are highly 
upregulated in primed cells suggesting that these cells naturally activate TGF-ȕ signaling through autocrine or 
paracrine mechanisms (Supp. Fig. 2F). To test if TGFB1 induces the primed state, we treated melanoma cell 
lines including WM989 and WM983B with recombinant TGFB1 for 5 days and then performed flow cytometry for 
primed cell marker gene NT5E (Fig. 4B). We found that treatment with TGFB1 increased the percentage of cells 
of primed cells in WM989 from 1.98% to 19.15% and in WM983B from 10.04% to 81.56% (Fig. 4C, D). Our 
observed effects of TGFB1 on melanoma agree with literature showing that TGF-ȕ signaling can indXce a 
dedifferentiation state (Lee et al. 2020; Sun et al. 2014). The dedifferentiated state is similar to our primed cell 
population as these cells are also characterized by their decreased expression of melanocyte transcription 
factors SOX10 and MITF (Tirosh et al. 2016; Sun et al. 2014; Lee et al. 2020; Hoek et al. 2008). Furthermore, 
our work shows that these dedifferentiation events occur in a rare subpopulation of melanoma cells before 
targeted therapy whereas other studies focus on these gene expression states after treatment with targeted 
therapy. 
 
Since TGFB1 was sufficient to induce the primed state, we wondered whether inhibiting TGF-ȕ signaling ZoXld 
force cells in the opposite direction into the drug-susceptible state. We treated WM989 cells with LY2109761, a 
targeted TGFBR1/2 inhibitor (TGFBRi), for 5 days. Unexpectedly, we found that the TGFBRi did not change the 
percentage of primed cells significantly (Fig. 4C). To confirm the specificity of the inhibitor, we treated WM989 
cells with both recombinant TGFB1 and TGFBRi and found that indeed the inhibitor was able to block the effects 
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of TGFB1 (Fig. 4C). Overall this suggests that TGF-ȕ signaling is sXfficienW Wo increase Whe percenWage of primed 
cells, but is not necessary for maintaining them in the population. 
 
To further test the functional effects of treating with TGFB1 and TGFBRi, we used the pretreatment experimental 
design (Fig. 1E) and applied BRAFi/MEKi following each treatment. Unexpectedly, we found that, although fewer 
total cells died, pretreatment with TGFB1 led to accelerated killing of the remaining drug-susceptible cells 
following BRAFi/MEKi compared to cells treated with BRAFi/MEKi alone (based on time-lapse microscopy, Supp. 
Fig. 3A-D). Furthermore, after 4 weeks of BRAFi/MEKi, we found that the pretreated TGFB1 sample had fewer 
resistant cells than the BRAFi/MEKi only sample. Interestingly, although there were fewer cells on the plate, they 
were much more evenly distributed suggesting that more of the initial cells survived BRAFi/MEKi, but that these 
cells were slow to proliferate. Consistent with its minimal effects on priming, we also found that TGFBRi did not 
change cell fate of resistance (Supp. Fig. 3A-C). 
 
We also tested the effects of blocking PI3K on the primed state to determine whether the effects of PI3Ki on cell 
fate are mediated through changes in priming. We treated WM989 and WM983B cells with PI3Ki for 5 days and 
then performed flow cytometry for NT5E to quantify the percentage of primed cells. We found that the PI3Ki 
decreased the percentage of primed cells from 1.98% to 0.31% and 10.04% to 3.66% in WM989 and WM983B, 
respectively (Fig. 4C, D). Furthermore, we tested whether the PI3Ki is able to block the effects of TGF-ȕ signaling 
by simultaneously treating WM989 cells with both TGFB1 and the PI3Ki. Indeed, we found that the PI3Ki was 
able to block the increase in primed cells seen when we treat with TGFB1 alone (Fig. 4C), suggesting that the 
TGFB1-mediated effects on priming melanoma cells acts through downstream PI3K activity.  
 
Given that numerous growth factors were differentially expressed between the drug-susceptible and primed for 
resistance states, we wondered whether other ligands, in addition to TGFB1, might also be able to induce state 
switching. We treated WM989 cells with EGF, BDNF, and IL6 for 5 days (Supp. Fig. 3E) and found that none of 
these factors were able to induce the primed cell state as seen with TGFB1 despite their potential to increase 
PI3K signaling (Simiczyjew et al. 2019; Meng et al. 2019; Wegiel et al. 2007). Thus, we concluded that TGFB1 
is a unique inducer of state switching and other growth factors do not have the same functionality.  
 
Since TGFB1 and the PI3Ki were both able to change the percentage of cells in the primed state, we wondered 
how this is achieved at the single cell level. Specifically, does TGFB1 force more cells to switch into the primed 
state? Conversely, does the PI3Ki force cells to exit the primed state? Based on flow cytometry alone, we can 
conclude that the percentage of the population is shifted by these treatments; however, changes in multiple 
different parameters could lead to this same effect. For instance, the result that TGFB1 increases the percentage 
of primed cells could be explained by (1) an increase in growth rate of primed cells, (2) a selective killing of drug-
susceptible cells, or (3) state-switching from the drug-susceptible into the primed state. The opposite 
consideration is necessary with the finding that the PI3Ki decreases the percentage of primed cells. This result 
could be the effects of (1) an increase in growth rate in the drug-susceptible cells, (2) a selective killing of primed 
cells, or (3) state-switching from the primed into the drug-susceptible state. To directly test how TGFB1 and PI3K 
shift the percentage of primed cells, we redesigned the scMemorySeq approach leveraging the knowledge of 
memory to test the effects of these perturbations. For this experimental design, we transduced WM989 cells with 
the high-complexity transcribed barcode library and then allowed the cells to go through 7-8 doublings (based 
upon experiments demonstrating that memory of these states persists on these timescales, Supp. Fig. 4A-C). 
We then split the cells into 4 separate plates and subjected each to a different condition (untreated, TGFB1 
recombinant protein, TGFBRi, and PI3Ki) (Fig. 5A). Since cells within the same lineages have very similar gene 
e[pression sWaWes dXe Wo memor\, Whis alloZs Xs Wo appro[imaWe sWXd\ing hoZ Whe ³same cell´ Zill reacW Wo Whe 
different conditions. After 5 days, we harvested each sample and performed scRNA-seq and barcode-
sequencing to capture the transcriptional state and barcode under each condition (Fig. 5A). With this 
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experimental design, each barcode is represented across all the conditions, and thus, we can see the effects of 
that treatment by comparing the cells in each treatment to the cells in the untreated plate with the same barcode. 
 
We analyzed a total of 40,021 cells across the four different samples and found similar transcriptional states 
distributed across UMAP space as in previous experiments with SOX10-low cells clustered separately from cells 
with high expression of EGFR, AXL, and NT5E (Fig. 5B, Supp. Fig. 5A). Across the different treatment conditions, 
we found that the TGFB1 treatment shifted cells towards the primed state, while the PI3Ki shifted cells towards 
the drug-susceptible state (Fig. 5C). Consistent with previous experiments, the TGFBRi had minimal effects on 
the primed cell population. To classify cells as primed or drug-susceptible, we selected clusters 4 and 10 from 
the high-dimensional clustering in Seurat, as these clusters contained the majority of cells expressing the known 
primed cell marker genes (Fig. 5D, Supp. Fig. 5B, C). Based on this classification, we quantified the percentage 
of primed cells based upon the full transcriptional state captured by scRNA-seq and further confirmed the effects 
of TGFB1 and the PI3Ki (Fig. 5E). Importantly, the primed cell state induced by treatment with TGFB1 was 
transcriptionally very similar to untreated cells in the primed state (Fig. 5F). To explicitly test for differences, we 
performed differential gene expression to compare the TGFB1-induced and untreated primed cells. We found 
that some genes, including NGFR, FGFR1, FOSL1, and JUN, were induced by the TGFB1 treatment, but were 
not as highly expressed as in the untreated primed cells. This might be significant as NGFR expression has been 
linked to invasive properties of melanoma cells (Radke, Roßner, and Redmer 2017; Filipp, Li, and Boiko 2019). 
We also noted that TGFB1 seemed to induce even higher expression for many of the primed cell genes including 
FN1, SERPINE1, COL1A1 and VGF (Supp. Fig. 5D). This effect might be explained by the high dose of TGFB1 
used in these experiments relative to what these cells would generate on their own, which could lead to more 
dramatic changes in gene expression. 
 
Next, we analyzed the barcoding data to test for state switching at the single cell level. Our data set included 
19,740 lineages (containing a minimum of 3 cells per lineage) with 49% of lineages represented across all four 
conditions. To test whether TGFB1 induces more primed cells, we first evaluated lineages where the untreated 
sample had cells exclusively in the drug-susceptible state. Across each of these lineages, we quantified the 
percentage of primed cells in the other conditions and found that the matched set of lineages in the TGFB1-
treated condition had a higher fraction of cells in the primed state (Fig. 5G). Reassuringly, the TGFBRi and the 
PI3Ki only had minor increases in the percentage of primed cells across these lineages. We next tested for the 
opposite direction, switching from the primed state into the drug-susceptible state. We analyzed lineages in 
which the entire lineage was in the primed state in the untreated sample. In the PI3Ki-treated sample, these 
lineages switched states leading to a lower percentage of primed cells (Fig. 5H). We noted that while 6 of the 8 
lineages switched out of the primed state in the PI3Ki, 2 lineages did not respond to the PI3Ki. It is possible that 
non-responsive lineages would require a longer treatment with the PI3Ki to fully shift into the drug-sensitive gene 
expression state. 
 
To extend our analysis to include all of the lineage data, we developed a stochastic model of state switching 
between the drug-susceptible and drug-primed state. Our model included different state switching parameters 
(kon, koff), different growth rates, and different death rates in each cell state (Supp. Fig. 5E). We used the model 
to simulate experimental data for different scenarios in which different parameters are changing. For instance, 
for TGFB1, the increase in primed cells could be explained by 3 possible parameter changes, 1) increase in Kon 
for the primed state, 2) increase in primed cell proliferation rate, or 3) increase in death rate among drug-
susceptible cells. To constrain the proliferation rate parameter in our model, we performed live-cell imaging to 
measure the direct effects of 5 days of TGFB1 and the PI3Ki on the proliferation rates of primed and drug-
susceptible cells. Across conditions, we found that the primed cells proliferate more slowly than the drug-
susceptible cells (Supp. Fig. 5F). Additionally, we found that treatment with either TGFB1 or the PI3Ki decreased 
growth rate by similar amounts in each population (Supp. Fig. 5F).  
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Given these constraints on proliferation rates, we then ran 1 million simulations of the model varying each 
parameter and found that increasing the rate at which the cells switch into the primed state is the best fit for our 
data. Interestingly, the model also suggested that drug-susceptible cells in lineages with a high proportion of 
cells already in the primed state are more easily switched into the primed state (See Supp. Methods 1). We 
similarly considered possible parameter changes that could account for the decrease in primed cells upon PI3Ki 
treatment. Given experimentally measured constraints on proliferation rates, we found that an increased rate of 
cells switching from the primed state to the drug-susceptible state was the best fit for our data (See Supp. 
Methods 1). Taken together, this data shows that TGFB1 and the PI3Ki can induce state switching and that the 
observed changes in the number of primed cells are not due to other population dynamics. 
 
 
Discussion 
Here we show that scMemorySeq is a powerful method for tracking gene expression memory in single cells. Our 
approach leverages the combination of scRNA-seq and cellular lineage barcoding to quantify memory of gene 
expression states in single cell data. We applied this method to melanoma cells to track lineages as they switch 
states between a drug-susceptible and a state primed for drug resistance. By analyzing the gene expression 
differences in lineages that switch states, we identified and tested TGF-ȕ and PI3K as mediaWors of sWaWe 
switching at the single-cell level. Ultimately, we show that by manipulating state switching, we can reduce 
resistance to targeted therapy. 
 
Broadly, it is intriguing that modulating signaling alone is sufficient to globally modify gene expression states in 
single cells and to affect their susceptibility to drugs. Here, PI3Ki is driving cells into a MAPK dependent 
transcriptional state, sensitizing cells to MAPK inhibitors. Importantly, a number of papers have reported the use 
of PI3Ki to reduce resistance in melanoma (Villanueva et al. 2010; Irvine et al. 2018; Mendoza, Er, and Blenis 
2011; Nymark Aasen et al. 2019). Distinguishing our use of a PI3Ki, here, we find that the PI3Ki can reduce drug 
resistance even when only applied briefly before the addition of targeted therapy. This approach may lay out a 
generalizable strategy for reducing drug resistance in which perturbing signaling can globally tune gene 
expression to achieve susceptibility to drugs. In such a strategy, modulating signaling pathways would be used 
prior to the addition of the main targeted therapy to drive heterogeneous populations of cells into a drug 
susceptible state. This is in contrast to dosing with a combination of inhibitors at the same time, which is not 
always tolerated due to toxicity and side effects (Park et al. 2013; Rafsanjani Nejad et al. 2021; Jardim et al. 
2020).  
 
Conceptually, the idea of leveraging the plasticity of cells to revert them into a drug-susceptible state to delay 
drug resistance has previously been described in the context of drug holidays (Kavran et al. 2022). In contrast 
to our approach, in which we actively drive cells into a drug-susceptible state, a drug holiday is a break from the 
drug to alleviate the selective pressure thus giving the drug-resistant cells the opportunity to switch back to a 
drug-susceptible state at their intrinsic rate. Given the previous success of drug holidays (Das Thakur et al. 2013; 
Kavran et al. 2022), one strategy that we believe should be further explored is to use state switching drugs during 
what would be the holiday period. With this approach, the switch to a drug-susceptible state would be accelerated 
during the drug holiday, leading to potentially even less resistance. Future work is still needed to model these 
different scenarios and to experimentally test the efficacy of such dosing strategies. 
 
Extending scMemorySeq beyond state switching in melanoma, there are a number of biological contexts in which 
specific drugs or ligands could be shifting gene expression states and population dynamics simultaneously. This 
is particularly relevant in cancer where there is a growing body of literature describing considerable heterogeneity 
at the single-cell level that shows variable degrees of memory (Tirosh et al. 2016; Barkley et al. 2021; Neftel et 
al. 2019). Here, we show that the scMemorySeq approach can provide a detailed systematic overview of these 
populations, and can also be used to test how closely related cells from the same lineage will react to different 
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conditions. We believe that this approach is generalizable and could be used in other contexts to profile cell state 
transitions under different drugs, ligands, or environmental conditions. This is a growing area of interest as 
multiple recent studies showed that microenvironment and growth conditions of cancer cells can globally change 
both gene expression and sensitivity to drugs (Raghavan et al. 2021; Neal et al. 2018; Neftel et al. 2019).  
 
In sum, we show how scMemorySeq uses cellular barcoding to reveal single-cell dynamics of drug resistance in 
melanoma. By tracking the memory of gene expression states we can identify stable cell populations as well as 
the factors that cause cells to change states. This approach can be widely applied to discover unknown dynamics 
in heterogeneous cell populations and to identify the key factors responsible for gene expression state changes 
in biological systems. 
 
 
Methods 
Antibodies 
NGFR primary antibody (Biolegend, 345108), EGFR primary antibody (fisher scientific, MABF120MI), NT5E 
primary antibody (Biolegend, 344005), Alexa Fluor 488 Donkey Anti-Mouse secondary antibody (Jackson Labs, 
715-545-151) 
 
Small molecule inhibitors and recombinant proteins 
Vemurafenib (Selleckchem, S1267) was reconstituted at 4mM in DMSO for the stock solution. Dabrafenib 
(Cayman, 16989-10) was reconstituted at 1.25mM in DMSO for the stock solution. Trametinib (Cayman, 16292-
50) was reconstituted at 12.5uM in DMSO for the stock solution. TGFB1 (R&D systems, 240-B-002) was 
reconstituted at 100ug/mL in a 4mM hydrochloric acid, 1mg/mL bovine serum albumin solution for the stock. 
PI3K inhibitor (GDC-0941, Cayman, 11600-10) was reconstituted at 10mM in DMSO for the stock solution. 
TGFBRi (LY2109761, SML2051-5MG) was reconstituted at 40mM in DMSO for the stock solution. IL6 (R&D 
systems, 206-IL-010) was reconstituted at 100ug/mL in a 0.1% BSA PBS solution for the stock. EGF (R&D 
systems, 236-EG-200) was reconstituted at 200ug/mL in PBS for the stock solution. BDNF (R&D systems, 206-
IL-010) was reconstituted at 100ug/mL in a 0.1% BSA PBS solution for the stock. EGF (R&D systems, 248-BDB-
005) was reconstituted at 100ug/mL in water for the stock solution. 
 
Cell lines and tissue culture 
We used the following cell lines: WM989 A6-G3, which are a twice single-cell bottlenecked clone of the 
melanoma line WM989 (provided by the Meenhard lab at the Wistar Institute), WM983B E9-D5, which are a 
twice single-cell bottlenecked clone of the melanoma line WM983B (provided by the Meenhard lab at the Wistar 
Institute), and HEK293FT cells which we used for lentiviral packaging. We authenticated the identity of all cell 
lines by STR profiling and confirmed that they are all negative for mycoplasma. STR profiling and mycoplasma 
testing was performed by the Penn Genomic Analysis Core. We cultured WM989 A6-G3 and WM983B E9-D5 
in TU2% (78.4% MCDB 153, 19.6% LeiboYiW]¶s L-15, 2% FBS, 1.68mM CaCl, 50 Units/mL penicillin, and 
50µg/mL streptomycin). We cultured HEK293FT in DMEM 5% (95% DMEM high glucose with GlutaMAX, 5% 
FBS, 50 Units/mL penicillin, and 50µg/mL streptomycin). We grew all cells at 37°C and 5% CO2, and passaged 
them using 0.05% trypsin-EDTA. 
 
Barcode library 
We used a high-complexity transcribed barcode library described in Emert et al. for our lineage barcodes (Emert 
et al. 2021). The plasmid uses LRG2.1T as a backbone, but we replaced the U6 promoter and sgRNA insert 
with GFP followed by a 100 nucleotide semi-random barcode, expressed by an EFS promoter. The barcode is 
semi-random as it is made up of WSN repeats (W = A or T, S = G or C, N = any) to maximize barcode complexity. 
A detailed protocol on the barcode production process can be found in Emert et al. which also links to this 
protocol: 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.06.16.496161doi: bioRxiv preprint 

https://paperpile.com/c/MByJD8/8FM2F+tStD2+MAGS4
https://paperpile.com/c/MByJD8/ZxLNn
https://paperpile.com/c/MByJD8/ZxLNn
https://doi.org/10.1101/2022.06.16.496161
http://creativecommons.org/licenses/by-nc/4.0/


https://www.protocols.io/view/barcode-plasmid-library-cloning-4hggt3w.  
The sequence of the plasmid can be found here: 
https://benchling.com/s/seq-DAMUWPyU198hRSbpiecf?m=slm-GJ609ijArVWmkT8mk8zr 
 
Lentiviral packaging 
We grew HEK293FT to aboXW 90% conflXence in a 10cm dish conWaining 10mL of media (see Whe ³cell lines and 
cXlWXre´ secWion for deWails). To WransfecW cells ZiWh Whe lenWiYiral plasmid, Ze combined 500�l of OPTI-MEM with 
80µl of 1mg/mL PEI in one tube. In a second tube, we combined 500µL of OPTI-MEM, 9 µg of the psPAX2 
plasmid, 5.5µg of the VSVG plasmid, and 8µg of the barcode plasmid. We combined the contents of these two 
tubes and allowed the mixture to incubate at room temperature for 15 minutes. We then pipetted the solution 
dropwise into the plate of HEK293FT and incubated the cells at 37°C for 7 hours. Next, we removed the media, 
washed the plate once with DPBS, added 10mL of fresh media, and then incubated the cells at 37°C for ~12 
hours. We used fluorescence microscopy to confirm GFP expression in the cells and then applied a fresh 6mL 
of media for virus collection. We incubated the cells at 37°C for ~12 hours and collected the media (this media 
contains the virus). We repeated the process of adding 6mL of media and collecting virus every 12 hours for a 
total of ~72 hours. After the last collection, we filtered all the media containing the virus through a 0.2µm filter to 
ensure no HEK293FT cells were left with the virus media. Finally, we made 1mL aliquots of the media containing 
the virus and stored them at -80°C. 
 
Lentiviral transduction 
When barcoding cells, we wanted to avoid multiple lineage barcodes per cell, and thus, we aimed to transduce 
~20% of cells. To transduce the cells, we made a mixture of polybrene (4µg/mL final concentration), virus 
(concentration determined through titration experiments to achieve 20% infection), and cells at 150,000 cells/mL. 
Next, we put 2mL of this mixture into each well of a 6-well plate and spun the plate at 600 RCF for 25 minutes. 
We then incubated the cells with the virus at 37°C for 8 hours. After the incubation, we removed the media 
containing the virus, washed each well with DBPS, and added 2mL of fresh media to each well. The next day, 
we transferred each well to its own 10cm dish. We then gave the cells 2-3 days to start expressing the barcodes. 
We confirmed the presence of barcodes by GFP expression in the cells (cells express GFP along with the 
barcode). 
 
Fluorescence-Activated Cell Sorting (FACS) 
We dissociated cells into a single cell suspension using trypsin-EDTA and washed them once with 0.1% BSA. 
To stain for EGFR and NGFR, we first stained with the EGFR antibody (see antibodies section) diluted 1:200 in 
0.1% BSA for 1 hour on ice. We then washed the cells twice with 0.1% BSA and stained with the anti-mouse 
A488 secondary antibody at a 1:500 dilution in 0.1% BSA for 30 minutes on ice. Next, to stain for NGFR, we 
washed the cells once with 0.1% BSA, and then resuspended in a 1:11 dilution of the NGFR antibody directly 
conjugated to APC in 0.5% BSA 2mM EDTA solution. We then incubated the cells on ice for 10 minutes. Finally, 
we washed the cells once with 0.5% BSA 2mM EDTA, resuspended in 1% BSA with DAPI, and kept the cells on 
ice until sorting. 
 
To stain for NT5E, we resuspend the cells in a solution of NT5E antibody diluted 1:200 in 0.1% BSA and let the 
cells incubate for 30 minutes. We then washed the cells twice with 0.1% BSA,  resuspended the cells in 1% BSA 
with DAPI, and kept on ice until sorting. 
 
For flow sorting, we followed the staining protocols above and then sorted the cells on a Beckman Coulter Moflo 
Astrios with a 100µm nozzle. We used forward and side scatter to separate cells from debri and select singlets. 
We selected DAPI negative cells to remove dead cells. To sort primed cells with EGFR and NGFR, we selected 
the top 0.2% of EGFR and NGFR expressing cells. To sort primed cells with NT5E, we selected the top 2% of 
NT5E expressing cells. 
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Single-cell RNA sequencing 
We Xsed Whe 10[ Genomics 3¶ seqXencing kiWs for all our scRNA-seq experiments. For the first scRNA-seq 
experiment, introduced in Fig. 1C, we sorted 1,000 barcoded WM989 cells per well in a 96-well plate (one well 
of mixed cells and one of EGFR/NGFR-high cells) and allowed them to expand through 4-5 doublings. We then 
Wr\psini]ed one mi[ed Zell and one primed Zell, and prepared as described in Whe ChromiXm Single Cell 3¶ 
Reagent Kit V3 user guide. When loading cells on the microfluidic chip, we split both the primed and the mixed 
cells across 2 wells. AfWer GEM generaWion, Ze conWinXed Wo folloZ Whe ChromiXm Single Cell 3¶ ReagenW KiW V3 
user guide to generate libraries. 
 
For the second scRNA-seq experiment (data shown in Supp. Fig. 2A, B), we sorted 1,000 WM989 primed cells 
(based on NT5E expression) and 1,000 mixed WM989 cells into one well of a 96-well plate, and 2,000 WM989B 
cells into another well. We then allowed the cells to undergo 4 divisions, trypsinized them, and prepared the 
samples all the way through library generation as described in the ChromiXm Single Cell 3¶ ReagenW KiW V3.1 
(Dual Index) user guide. 
 
For the third scRNA-seq experiment, shown in Fig. 5A, we sorted 2,000 barcoded WM989 cells into a single well 
of a 96-well plate. We waited for these cells to expand through 7 to 8 divisions, and then randomly split these 
cells across 4 separate plates. We waited one day for the cells to adhere to the plate, and then started treatments 
(one plate untreated, one plate 5ng/mL TGFB1, one plate 4µM LY2109761 (TGFBRi), and one plate 2µM GDC-
0941 (PI3K inhibitor)). We incubated the cells in their respective treatments for 5 days. We carried the above 
steps with two samples in parallel as replicates. After 5 days, we trypsinized the cells and processed them all 
the way through library generation as described in Whe chromiXm Single cell 3¶ ReagenW kiW V3.1 (DXal Inde[) 
user guide. 
 
We sequenced all our single-cell libraries using a NextSeq 500 with the High Output Kit v2.5 (75 cycles, Illumina, 
20024906). For samples seqXenced ZiWh Whe Single Cell 3¶ Reagent Kit V3 (single index), we used 8 reads for 
Whe inde[, 28 reads for read 1, and 49 reads for read 2. For samples seqXenced ZiWh Whe Single Cell 3¶ ReagenW 
Kit V3.1 (dual index), we used 10 cycles for each index, 28 cycles for read 1, and 43 cycles for read 2. 
 
Lineage barcode recovery from scRNA-seq 
To recover the lineage barcodes, we used an aliquot of the excess full length cDNA generated in the 10x library 
protocol. Specifically, we selectively amplified reads containing the lineage barcode using primers that flank the 
10x cell barcode and the end of the lineage barcode in our library (Supp. Table 2) (Goyal et al. 2021). To perform 
the PCR, we combined 100ng of full length cDNA per reaction, 0.5µM of each primer, and PCR master mix 
(NEB, M0543S). We used 12 cycles to amplify the cDNA using the following protocol: an initial 30 second 
denature step at 98°C, then 98°C for 10 second followed by 65°C for 2 minutes repeated 12 times, and  a 5 
minute final extension step at 65°C. We then extract the amplified barcodes, which are ~1.3kb, using SPRI beads 
(Becman Coulter, B23317) size selection (we use a 0.6X bead concentration). To sequence the barcode library, 
we used a NextSeq 500 with a Mid Output Kit v2.5 (150 cycles, Illumina, 20024904). We performed paired-end 
sequencing and used 28 cycles on read 1 to read the 10x barcode and UMI, 8 cycles on each index, and 123 
cycles on read 2 to sequence the lineage barcode.  
 
gDNA barcode recovery 
To sequence barcodes from gDNA, we trypsinized cells, pelleted them, and then extracted their gDNA using the 
QIAamp DNA Mini kit according to the manufacturer's protocol (Qiagen, 56304). To amplify the barcodes, we 
performed PCR using primers with homology to each side of the barcode. The primers also contain the illumina 
adapter sequence, and index sequences (see Supp. Table 2 for primer sequences). To perform the PCR 
amplification, we used 500ng isolated gDNA, 0.5µM of each primer, and PCR Master Mix (NEB, M0543S) for 
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each reaction. We used 24 cycles to amplify the barcodes using the following protocol: an initial 30 second 
denature step at 98°C, then 98°C for 10 second followed by 65°C for 40 second repeated 24 times, and a 5 
minute final extension step at 65°C. After amplification, we used SPRI beads (Becman Coulter, B23317) to select 
for the amplified barcode product (expected length of ~350bp). To isolate this fragment size, we performed a two 
sided selection where we first selected with a 0.6 X bead concentration and kept the supernatant (large gDNA 
fragments were on beads). We then select again using a 1.2X bead concentration keeping the material bound 
to the beads(small fragments such as the primers were in the supernatant). To sequence the barcode library, 
we used a NextSeq 500 with a Mid Output kit (150 cycles, Illumina, 20024904). We performed single-end 
sequencing and used 151 cycles on read 1 to read the lineage barcode and 8 cycles on each index. 
 
scRNA-seq analysis 
We used the 10x Genomics Cell Ranger pipeline to generate FASTQ files (using the hg38 reference genome), 
to assemble the count matrix, and to aggregate replicate runs (without depth normalization). We also used the 
Cell Ranger feature barcode pipeline to integrate our lineage barcodes with the scRNA-seq data (more 
informaWion in Whe ³Combining single RNA seqXencing and barcode daWa secWion´). 
 
Once we generated the aggregated count matrices with incorporated barcode information, we analyzed the data 
using Seurat V3 (Stuart et al. 2019). Using Seurat, we performed basic filtering of the data based on the number 
of unique genes detected per cell, both removing poorly sequenced cells (low number of genes), and data points 
likely to be doublets (high number of genes). We also filtered based on the percent of mitochondrial reads to 
eliminate low quality or dying cells. If we saw batch effects between replicates, we used the Seurat scRNA-seq 
integration pipeline to remove them. When there were no batch effects, we used SCtransform to normalize the 
data before running PCA, clustering, and dimensionality reduction with UMAP. When plotting gene expression 
information, we did not use the SCtransform data, but rather separately log normalized the data. To generate 
single-cell signature scores for a gene set, we used the UCell package (Andreatta and Carmona 2021). We 
selected the primed cell gene set by including all genes with a positive log2 fold change in our list of differentially 
expressed genes between primed and drug-susceptible cells (Supp. Table 1) 
 
Combining scRNA-seq and barcode data 
To identify the lineage barcodes from the sequencing data, we used a custom python script (available through 
github here: https://github.com/SydShafferLab/BarcodeAnalysis) and the 10x Genomics Cell Ranger Feature 
Barcode pipeline. In this pipeline, we first identified lineage barcodes in the FASTQ files by searching for a known 
sequence at the beginning of all lineage barcodes. Once we identified all potential barcode sequences, we used 
the STARCODE (Zorita, Cuscó, and Filion 2015) to identify barcodes that were very similar to each other and 
replace them all with the most frequently detected sequence within the set of similar barcodes. We then put 
these modified barcode sequences back into the FASTQ file and generated a reference file containing all the 
edited barcode sequences. Next, we fed these edited FASTQ files and the reference file into the Cell Ranger 
pipeline, and used the Feature Barcode analysis function to link lineage barcodes with the cell barcodes. This 
provided us with the lineage and gene expression information for cells where a barcode was identified. 
 
Our initial steps identified barcodes by combining similar barcodes, but when we looked at this output we found 
that we could more stringently call real lineages using additional filtering steps. The code used to accomplish 
Whis can be foXnd in Whe ³Assign a lineage Wo each cell´ secWion of Whe 10X1_r1_r2_Anal\sis_Xnorm_scWrans.Rmd 
script available on the Google Drive link in the Software and data availability section. In brief, we first eliminated 
lineages that appear across multiple samples, as such lineages are not possible. We then also removed lineages 
that are bigger than expected given the amount of time cells were given to proliferate. Finally, for cells that 
appeared to have more than one lineage barcode, we tested whether there are multiple cells with this same 
combination of barcodes and considered those cells to be in the same lineage. 
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Validating primed cell markers 
To test whether different proteins are markers of the primed cell state (NT5E, NGFR, EGFR), we stained live 
WM989 cells with an antibody for the marker of interest, and then sorted the stained cells. Specifically, we sorted 
a mixed population of cells in one well, and a population of cells high in our marker of interest in another well (for 
sorWing deWail refer Wo Whe ³FlXorescence-AcWiYaWed Cell SorWing´ secWion). We When alloZed Whe cells Wo adhere Wo 
the plate for 24 hours and then started treatment with 1µM vemurafenib for 3 weeks. After 3 weeks in 
vemurafenib, we counted the number of cells and drug resistant colonies in each well to determine if the marker 
increased the number of cells that survive targeted therapy. The percentage of cells sorted in the primed 
condition was determined by sorting different percentages of high cells and treating them with targeted therapy 
to identify which percentages were resistant. 
 
ATAC-seq 
We sorted 10,000 cell populations of EGFR/NGFR-High, EGFR-High, NGFR-High, and negative (for both 
markers) cells in triplicate as described in the FACS section of methods. Immediately after sorting, we performed 
OMNI-ATAC on each population of cells (Corces et al. 2017). We used the Illumina Tagment DNA Enzyme for 
tagmentation (Illumina 20034197) for tagmentation and performed two-sided bead purification before 
sequencing. We performed paired-end, single-index sequencing on pooled libraries using a 75-cycle NextSeq 
500/550 High Output Kit v2.5 (20024906) allotting 38 cycles to both read 1 and read 2 and 8 cycles to the sample 
indices. 
 
ATAC-seq alignment and analysis 
We adapted the paired-end analysis pipeline from (Sanford et al. 2020) for alignment, processing, and peak 
calling. Briefly, we aligned reads to hg38 using bowtie2 v2.3.4.1, filtered out low quality read alignments using 
samtools v1.1, removed duplicated reads with picard 1.96, and generated alignment files with inferred Tn5 
insertions. To call peaks, we used MACS2 2.1.1.20160309. We then identified consensus peaks using the 
³findConsensXsPeakRegions´ fXncWion in Whe consensXsSeekeR package in R as peaks seen in aW leasW 3 
replicates out of 12 total (consensusSeekeR: Bioconductor Package - Detection of Consensus Regions inside a 
Group of Experiments Using Genomic Positions and Genomic Ranges n.d.). We then counted reads within these 
consensus regions for each sample and created a DESeq2 object which we used to perform PCA on consensus 
peaks (Love, Huber, and Anders 2014). We When ploWWed a roZ scaled heaWmap ZiWh ³Zard.D2´ clXsWering of Whe 
top 20,000 most variable peaks. 
 
Mouse model tumor generation 
The tissue was collected by the Weeraratna lab (Torre et al. 2021). Briefly, these melanoma tumors were 
generated by subcutaneously injecting 1*10^6 WM989-A6-G3-Cas9-5a3 cells into 8-week old NOD/SCID mice. 
The mice were fed AIN-76A chow, and the facilities were maintained between 21-23°C, a humidity of 30-35%, 
and lights had a 12h on/off cycle with lights on from 6:00 to 18:00. The tumor was collected when it measured 
~1,500 mm3. Tumor blocks were embedded in OCT, flash frozen, and stored at -80°C. 
 
Tissue RNA FISH 
To analyze NT5E and SOX10 expression in mouse tumors, we used HCRv3.0 with probes targeting NT5E and 
SOX10 (Acheampong et al. 2022; Choi et al. 2018). The probes and fluorescently labeled hairpins were 
purchased from Molecular Instruments (NT5E lot #: PRK825, SOX10 lot #: PRK826). To perform HCR in tissue, 
we made slight modifications to published protocols (Choi et al. 2018; Acheampong et al. 2022). First, we used 
cryostat sectioning to generate 6µm sections of fresh frozen tumor. We placed these sections on charged slides 
and fixed them with 4% formaldehyde for 10 minutes. We then washed the slides twice with 1X PBS and stored 
them in ethanol.  
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To start HCR, we placed the slide in a slide staining tray and washed the slides twice with 5X SSC (sodium 
chloride sodium citrate). After removing the 5X SSC, we added 200µl of hybridization buffer (30% formamide, 
5X SSC, 9mM citric acid (pH 6.0), 0.1% Tween 20, 50ug/mL heparin, 1X DenhardW¶s solXWion, 10% de[Wran 
sulfate) which was pre-heated to 37°C onto the tissue. We then incubated the slide for 10 minutes at 37°C. All 
incubation steps in this protocol were done with the slide staining tray closed and with water at the bottom of the 
tray to prevent the sample from drying out. During this incubation period, we added 0.8 pmol of each probe pool 
(in this case NT5E and SOX10) to 200µl of probe hybridization buffer pre-heated at 37°C, and kept the solution 
at 37°C. After 10 minutes, we removed the hybridization buffer from the tissue and added 300µl of hybridization 
buffer containing the probe pools. We placed a cover slip over the sample and incubated it for 12-16 hours at 
37°C. After the incubation, we prepared the hairpins by putting 0.6pmol each hairpin into its own tube (to keep 
hairpin 1 and hairpin 2 separate), and then performed snap cooling by heating them to 95°C for 90 seconds and 
then slowly cooled down to 25°C over 30 minutes in a thermocycler. While the hairpins snap cooled, we added 
300µl of wash buffer (30% formamide, 5X SSC, 9mM citric acid (pH 6.0), 0.1% Tween 20, 50ug/mL heparin) to 
the slide to remove the cover slip. We then performed multiple wash steps with decreasing amounts of wash 
buffer in the solution. We first added 300µl of 75% wash buffer, 25% 5X SSCT (5X SSC with 0.1% Tween 20), 
removed that and added 300µl of 50% wash buffer, 50% 5X SSCT, removed that and added 25% wash buffer, 
75% 5X SSCT, and finally removed that and added 300µl of 100% 5X SSCT. For each step of the wash, we left 
the slides in solution for 15 minutes at 37°C. After the last wash, we removed the 5X SSCT and added 200µl of 
room temperature amplification buffer (5X SSC, 0.1% Tween 20, 10% dextran sulfate) to the slide and incubated 
it at room temperature for 30 minutes. We then removed the amplification buffer and added the prepared hairpins 
mixed in 100µl of amplification buffer to the slide, and added a cover slip. We incubated the slide in the staining 
tray at room temperature for 12-16 hours. After incubating with the hairpins, we removed the cover slip and 
washed the slide off using successive 5X SSC washes. We put 300µl of 5X SSC on the sample for 5 minutes, 
removed it, then added 5X SCC for 15 minutes, removed it, added 5X SSC for 15 minutes again, removed it, 
and finally added 5X SSC with DAPI for 5 minutes. After the washes, we mounted the slide using TrueVIEW 
(Vector labs, SP-8500-15), added a coverslip, and sealed with nail polish. 
 
Flow cytometry 
We dissociated cells from the plate using trypsin-EDTA into a single-cell suspension and washed once with 0.1% 
BSA. We then resuspended the cells in a 1:200 dilution of anti-NT5E antibody conjugated with APC and 
incubated them for 30min on ice. Next, we washed the cells once with 0.1% BSA, once with 1% BSA, and then 
resuspended them in 1% BSA for analysis by flow cytometry. We used an Accuri C6 for our flow cytometry, and 
quantified 10,000 events per sample. To analyze the data we used the R package flowCore (Hahne et al. 2009). 
In our analysis we used forward and side scatter to identify cells, and used the FL4 channel (640nm excitation 
laser and 675/25 filter) to quantify cell surface levels of NT5E. To determine what percent of cells were primed, 
we set an intensity threshold where 2% of untreated cells would land above the threshold. We considered any 
cells above this threshold as primed. 
 
Drug resistant colony experiments 
We plated cells in 6-well plates with 10,000 cells per well. After plating, we gave cells 24 hours without treatment 
to adhere to the plate. We then initiated pretreatments and changed the media on the no pretreatment controls. 
During the pretreatment period, we treated the cells with doses of the drug that had extremely low toxicity and 
minimal effecW on Whe proliferaWion raWe of Whe cells (assa\ for deWermining Whe doses described in Whe ³preWreaWmenW 
groZWh effecWs´ secWion). We incXbaWed cells in Wheir respecWiYe preWreaWmenW for 5 da\s. We When asp irated the 
media and replaced it with media containing 250nM dabrafenib and 2.5nM trametinib. We maintained treatment 
with 250nM dabrafenib and 2.5nM trametinib for 4 weeks, changing the media every 3-4 days. After 4 weeks, 
we fixed the cells by aspirating off the media, washing the wells with DPBS, and treating them with 4% 
formaldehyde for 10 minutes. We then aspirated off the formaldehyde, and washed twice with DBPS. Finally, we 
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added 2mL of DPBS to each well, and stained the cells with DAPI. We then imaged the wells using a 10X 
objective on a fluorescence microscope (Nikon, Eclipse Ti2). 
 
Cell and colony counting 
To determine how many cells were in wells after drug treatment, we used a custom pipeline called DeepTile 
(https://github.com/arjunrajlaboratory/DeepTile/tree/071e3e9fb27f50ce024fd5ece25e3a4b0071f771) to feed 
tiled images into DeepCell to generate nuclear masks (Bannon et al. 2021; Greenwald et al. 2022). To simplify 
the interface with DeepTile and DeepCell, as well as remove nuclei incorrectly called outside the well, we used 
a custom tool DeepCellHelper 
(https://github.com/SydShafferLab/DeepCellHelper). We then determined the number of cells per well by 
counting the number of masks per image. To identify colonies, we used a custom graphic user interface 
ColonySelector 
(https://github.com/SydShafferLab/ColonySelector) to circle individual colonies in each well and save a file 
containing which nucleus belongs to which colony. Using the output of the colony selecting software, we counted 
the number of colonies there were in each well. 
 
IncuCyte imaging and analysis 
For time-lapse experiments on the IncuCyte S3 (Sartorius), we used a clonal population of WM989 cells tagged 
with H2B-GFP for nuclear tracking. We took 4X images with a 300ms exposure for GFP every 12 hours to track 
cell growth over time. We used the IncuCyte software to generate nuclear masks and exported csv tables 
containing the number of nuclei in each well at each time point. We analyzed this data in R. 
 
Pretreatment growth effects 
To determine if our treatments were leading to state specific changes in proliferation rates, we used a clonal 
WM989 H2B-GFP tagged cell line. To isolate drug-susceptible and primed cells, we sorted on NT5E and 
separated drug-susceptible and primed cells into separate wells. After 24 hours to adhere to the plate, we 
added TGFB1, PI3Ki, or nothing to the media. We then imaged the cells according to the description in the 
³IncXc\We imaging and anal\sis´ secWion. 

Software and data availability 
All data and code used for this paper can be found here:  
https://drive.google.com/drive/folders/1-C78090Z43w5kGb1ZW8pXgysjha35jlU?usp=sharing 
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Figure Captions 
 
Figure 1: Cells primed for drug resistance have memory and can be targeted to modulate the resistance 
phenotype. A. Model for how the heritable primed state leads to resistance to targeted therapy. Cells primed for 
drug resistance (in green) proliferate and pass on their gene expression state through cell division, which 
demonstrates the concept of gene expression memory. These primed cells survive treatment with BRAFi and 
MEKi (resistant cells in red) while the drug-susceptible cells (in gray) die. B. Schematic of lineages that maintain 
memory compared to those that lose memory. In lineages that maintain memory, the end state of all the cells is 
the same as the initial state. In lineages where memory is lost, the endstate comprises a mixture of cell states. 
C. Schematic of the experimental design that we used to capture the transcriptome and lineage of cells. We 
transduced melanoma cells (WM989) with a high-complexity library of lentiviral lineage barcodes. We then sorted 
a sample of primed cells (based on EGFR and NGFR) and a mixed population. This sorting step provides us 
with the initial state of the cells. We then allowed the cells to undergo ~4 doublings to build out the lineages 
before doing scRNA-seq and barcode sequencing on the cells. D. UMAP plots of the per cell log10 normalized 
gene expression for the drug-susceptible cell marker SOX10, and the primed cell markers EGFR, AXL, and 
NT5E. E. Schematic of pretreatment model. Without a primed state inhibitor, primed cell states are heritable 
through cell division and primed cells become resistant upon application of drug. With a primed state inhibitor, 
Whe primed sWaWe is eliminaWed from Whe cell popXlaWion dXring Whe ³preWreaWmenW´ phase. When Whe drXg is applied, 
fewer cells become resistant because the primed population is eliminated. Adjacent to the schematic are 
example images of fixed cells stained with DAPI after 5 days of pretreatment and 4 weeks of selection with 
BRAFi and MEKi. Drug-resistant colonies are circled in black where readily identifiable. Scale bar in the top 
image represents 5mm and applies to both images. F. Box plot quantifying the number of drug-resistant cells 
from image scans like those shown in E across 3 biological replicates, each with 6 technical replicates. P values 
were calculated using a wilcoxon test (****: p <= 0.0001). G. Box plot quantifying the number of drug colonies 
(for each condition where distinct colonies were present) from image scans like those shown in E across 3 
biological replicates, each with 6 technical replicates. P values were calculated using a wilcoxon test (****: p <= 
0.0001). 
 
Figure 2: An EMT-like state is activated early in the transition to the primed cell state A. Bar plots showing 
the size of each lineage found in the data organized based upon classification as drug-susceptible, primed, 
switching from susceptible to primed, or switching from primed to susceptible. Each bar represents an individual 
lineage, and the color of the bar indicates the state of the cell (green is primed and gray is drug-susceptible). In 
lineages that change state, the number of cells in each state is reflected by the colors in the bar. B. UMAP plots 
showing an example lineage from each type of lineage in the data. The cells from the example lineage are 
highlighted in blue. C. Schematic showing which cells from the drug-susceptible lineages (indicated in the blue 
rectangle) and which cells from lineages crossing from the drug-susceptible state to the primed state (indicated 
in the red rectangle) were used to identify differentially expressed genes in transitioning cells. D. Volcano plot 
representing the differential expression analysis outlined in C. Red points represent genes up regulated in 
crossing lineages and blue points represent genes downregulated in crossing lineages. E. UMAP plot showing 
an integrated score of the activity for the gene signature defined by crossing lineage differential expression in D 
(high score means the cell highly expresses the gene set) F. UMAP plot labeling the top 2% drug-susceptible 
cells e[pressing Whe crossing lineage gene seW. We classif\ Whese cells as ³InWermediaWe cells´, and Whese cells 
are labeled in purple. G. Bar plot of the normalized enrichment score of the top 5 gene sets enriched in the 
crossing lineage gene set. H. UMAP plot showing which cells have high expression of the EMT pathway gene 
set. Arrows point to drug-susceptible cells with high EMT scores. I. UMAP plot showing which cells have high 
expression of the TGF-ȕ signaling paWhZa\ gene seW. ArroZs poinW Wo drXg-susceptible cells with high TGF-ȕ 
signaling scores. J. Heatmap of the log10 normalized and scaled gene expression of cells in the drug-
susceptible, intermediate, and primed state. Genes shown are the top differentially expressed genes between 
the primed and drug-susceptible states as well as select genes upregulated in the intermediate state. 
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Figure 3: Mouse models and patient samples demonstrate expression of primed cell signatures.  A. 
HCR RNA FISH of NT5E and SOX10 in a mouse PDX drug naive tumor. Nuclei were stained with DAPI (blue) 
and RNA for each respective probe is in white. The green arrow points to an example SOX10-low NT5E-high 
cell. The leftmost image is a large scan of the tissue section and the scale bar corresponds to 1mm. The 2 
images to the right are zoomed in on an example cell where the scale bar corresponds to 10µm. B. scRNA-seq 
on WM983B melanoma cell line. UMAP plots showing expression of MITF, NT5E, and AXL in each cell. C. 
UMAP showing WM983B scRNA-seq with each cell colored by the enrichment score for the primed cell 
signature derived from WM989 cells. D. Analysis of scRNA-seq of melanoma patient biopsies from (Tirosh et 
al. 2016; Jerby-Arnon et al. 2018). The first UMAP shows the different biopsies in different colors, and the 
other UMAP plots showing the signature score for gene sets associated with EMT and TGF-ȕ signaling. WiWhin 
each biopsy, there are cells that have variable expression of genes associated with EMT and TGF-ȕ signaling. 
E. UMAP of patient scRNA-seq from D with the color of each point depicting the enrichment score for the 
primed cell signature. 
 
Figure 4: TGFB1 and PI3K inhibitor can modulate the number of primed cells in the population A. 
Schematic showing the expected number of primed cells over time if cells are untreated, treated with a drug or 
protein that induces the primed state, or treated with a drug or protein that disrupts the primed state. B. 
Example flow cytometry density plots from NT5E stained WM989 cells after 5 days of their respective 
treatments. C. Box plot of the log10 percent of WM989 cells in the primed state after 5 days in each respective 
treatment. All conditions have 3 biological replicates each with 6 technical replicates. P values were calculated 
using a wilcoxon test (not significant: p > 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). The dotted line 
represents the mean log10 percent of primed cells in the untreated condition. D. Box plot of the log10 percent of 
WM983B cells in the primed state after 5 days of each respective treatment. All conditions have 2 biological 
replicates each with 3 technical replicates. P values were calculated using a wilcoxon test (**: p <= 0.01). The 
dotted line marks the mean log10 percent of primed cells in the untreated condition. 
 
Figure 5: Treatment with TGFB1 induces the primed state and treatment with PI3K inhibitor induces the 
drug-susceptible state. A. Schematic of the experimental design used to determine if treatments cause state 
switching. We transduced melanoma cells (WM989) with lineage barcodes, allowed them to divide ~7 times, 
and then split them across 4 plates, expecting each plate to get cells with the same barcode. Cells with the 
same barcodes serYe as effecWiYel\ as ³copies´ of Whe same cells, Wherefore, b\ WreaWing each barcode ZiWh all 
the different treatments we can determine which treatment causes state switching. We used scRNA-seq with 
barcode sequencing to capture both the lineage and transcriptome of the cells at the end point. B. UMAP plots 
of the log10 normalized gene expression of the drug-susceptible state associated marker SOX10 and primed 
state associated markers EGFR, AXL and NT5E. C. UMAP plots highlighting cells in each condition relative to 
all the other sequenced cells (in gray). Cells highlighted in blue were untreated, cells highlighted in orange 
were treated with TGFB1, cells highlighted in teal were treated with TGFBRi, and cells highlighted in pink were 
treated with the PI3Ki. D. UMAP plot with the primed cells labeled in green and the drug-susceptible cells in 
gray. E. Bar plot quantifying the log10 percent of primed cells in each condition based on the defined drug-
susceptible and primed cell populations in D and the location of each treatment condition shown in C. P values 
were calculated using chi squared tests (not significant: p > 0.05, ****: p <= 0.0001) F. Heatmaps of the log10 
normalized and scaled gene expression of drug-susceptible and primed cells in each treatment condition. G. 
Schematic of lineage based analysis to test for state switching into the primed state. Box plots show the 
fraction of cells in each lineage that are in the primed state across all the conditions. The lineages shown on 
this plot are exclusively those that were completely drug-susceptible in the untreated sample. H. Schematic of 
lineage based analysis to test for state switching into the drug-susceptible state. Box plots show the fraction of 
cells in each lineage that are in the primed state across all the conditions. The lineages shown on this plot are 
exclusively those that were completely primed in the untreated sample. 
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Manipulating cell plasticity to change memory expression states
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