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Summary 1 

Plant regeneration is an element of natural and horticultural plant propagation, and a key 2 

step in the production of transgenic plants. However, regeneration capacity varies widely among 3 

genotypes and species, the molecular basis of which is largely unknown. To shed light on the 4 

causes of variation in natural regeneration capacity, we undertook a GWAS of shoot regeneration 5 

from dormant cut stems in Populus trichocarpa. Using estimates of callus and shoot regeneration 6 

provided by a novel computer vision system, and using a variety of GWAS pipelines and 7 

statistical approaches, our analyses revealed over 200 candidate genes. The candidates each 8 

explained small fractions of the total genetic variance and many appeared to be members of 9 

genetic regulatory networks, showing regeneration to be a highly polygenic trait. The top 10 

candidates included regulators of cell adhesion, stress signaling, and hormone signaling 11 

pathways, as well as other diverse functions. These candidates provide new insights into the 12 

biological complexity of plant regeneration, and may serve as new reagents for improving 13 

regeneration and transformation of recalcitrant genotypes and species.   14 

 15 

Introduction 16 

Plant genetic engineering and gene editing have produced new varieties of crops with a 17 

variety of valuable traits (NAS, 2016; Jaganathan et al., 2018). However, the ability to impart 18 

new traits by these methods is limited to crop species with genotypes that can reliably undergo 19 

regeneration and transformation (RT). RT requires developmental responses to a series of 20 

hormone treatments and amenability to gene insertion, and the capacity for both varies greatly 21 

between and within species (Altpeter et al., 2016). The causes of this great variation in 22 

recalcitrance are poorly known; however, GWAS – with its potential to identify genes whose 23 

variation plays a key role in capacity for RT – should greatly enhance understanding of the RT 24 

process. In addition, the identified genes may serve as “reagents” for overcoming recalcitrance, 25 

similar to how overexpression of morphogenic regulator (MR) genes can enhance in vitro 26 

regeneration of transgenic shoot in a variety of species (Gordon-Kamm et al., 2019). In planta 27 

transformation methods can also be enhanced by MR genes, including in Populus tomentosa 28 

(Deng et al., 2009), Nicotiana benthamiana, tomato, potato and grape (Maher et al., 2020). 29 

However, given the complexity and genotypic variation in RT capacity, it is likely that only a 30 

fraction of the potentially useful MR genes have been identified.   31 
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 To help identify the genes responsible for variation in RT, we conducted GWAS in a 32 

population of 1,219 wild cottonwoods that had been resequenced by the US Department of 33 

Energy, up to 917 of which were previously studied for a variety of traits (Zhang et al., 2018a; 34 

Tuskan et al., 2018; Muchero et al., 2018; Bdeir et al., 2019; Chhetri et al., 2020). We focused 35 

on regeneration from cut stems, while considering it may be a direct substrate for accelerated in 36 

planta transformation systems, and because of the expectation that regeneration processes are 37 

likely to share many elements whether induced in vivo or in vitro. GWAS has previously been 38 

applied to study variation in the rate of in vitro regeneration in Arabidopsis, cotton, wheat, 39 

sorghum and poplar (reviewed by Lardon et al. 2020). 40 

 Regeneration phenotypes are notoriously difficult to quantify, whether in vivo or in vitro. 41 

Calli and emerging shoots are often highly variable and complex in shape, color, and size, and 42 

sequential measurements are hard to take without damaging or contaminating regenerating 43 

tissues. This appears to have limited sample sizes in prior GWAS studies of regeneration. For 44 

example, Tuskan et al. (2018) selected only 280 genotypes to phenotype callus growth from a 45 

resequenced GWAS population of 1,084 P. trichocarpa genotypes. A similar GWAS of callus 46 

dedifferentiation into shoots in P. euphratica was limited to 297 genotypes (Zhang et al., 2020). 47 

Nguyen et al. (2020) noted the “extremely laborious” nature of phenotyping in vitro traits as a 48 

constraint in their GWAS of callus formation across 96 rose genotypes (Nguyen et al., 2020).  49 

 Because of the importance of a large and precise sample for statistical power in GWAS 50 

(López-Cortegano & Caballero, 2019), we developed a computer vision (CV) method to measure 51 

regeneration from sequential images of cut, regenerating stems. Over 40 published studies have 52 

made use of diverse CV methods in GWAS of plants, including Arabidopsis, maize, wheat, rice, 53 

sorghum, soybean and barley (reviewed by Xiao et al., 2021). They have used high-throughput 54 

scanners and thresholding to phenotype leaf traits such as size, shape, and color (Yang et al., 55 

2015), and employed a wide range of sensors (e.g., RGB, hyperspectral, CT, infrared) and 56 

algorithms (e.g., thresholding-based methods, support vector machines, and neural networks). In 57 

recent years neural networks similar to those employed in the present study have outperformed 58 

earlier methods and become the dominant approach used for diverse CV tasks. In the context of 59 

plant phenotyping, this was demonstrated by the unparalleled performance of neural networks 60 

for the Leaf Segmentation Challenge benchmark dataset (Aich & Stavness, 2017; Dobrescu et 61 

al., 2017). 62 
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 Here, we report identities of numerous potential regulators of in planta regeneration in 63 

Populus trichocarpa through application of several GWAS pipelines. We employed a population 64 

with over 1,200 wild genotypes whose SNPs display extremely low linkage disequilibrium (LD), 65 

used a very high number and density of SNP markers (up 34 million depending on GWAS 66 

method), and phenotyped regeneration precisely using a high-throughput CV pipeline. We report 67 

a large number of statistically-supported gene candidates with diverse physiological roles that 68 

include hormone signaling, plant stress response, control of cell division, and cell wall structure 69 

– as well as many genes whose function is yet to be determined. 70 

 71 

Materials and Methods 72 

An overview of the experimental population and analysis pipeline is shown in Fig. 1.  73 

Fig. 1. Overview of experimental workflow. Plots in the “statistics” panel are shown for 
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transformation of the trait of Callus Area at week two and analysis of this trait via MTMC-

SKAT. 

 

Plant materials  74 

We utilized an expanded version of the previously reported re-sequenced P. trichocarpa 75 

GWAS population (Tuskan et al., 2018; Bdeir et al., 2019; Weighill et al., 2019; Chhetri et al., 76 

2020; Chen et al., 2021). The population was expanded to include an additional 441 genotypes, 77 

particularly from Northern California, Oregon and Idaho, filling a geographical gap that existed 78 

in the previous population (Fig. 2). While this clone bank is kept at multiple locations, 79 

phenotyping in this study only made use of the replicate in Corvallis, OR, featuring a total of 80 

1,307 clones in the population (out of 1,323) and for 1,219 of which regeneration phenotyping 81 

was performed. Clones were grown at two field locations in Corvallis, OR: one location planted 82 

in 2009 featuring the original GWAS population, and another planted in 2015 featuring the 83 

newly added clones. Dormant cuttings were taken in the winter of 2018, 2019, and 2020, frozen, 84 

and then rooted up to one year later. Plants were then regularly pruned and fertilized to ensure 85 

there were healthy green leaves suitable for sterilization and introduction into tissue culture. A 86 

second greenhouse population was established and allowed to go dormant in winter; plants from 87 

this source were occasionally used to replace plants in the main greenhouse population that 88 

provided plant materials throughout the year.  89 
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Figure 2. Origins of P. trichocarpa clones used to generate SNP set. A total of 1,323 wild clones 

were collected over a geographical range across the pacific northwest region of the USA and the 

southwest of Canada. Tree location is shown for 1,301 genotypes for which precise location data 

is available. 
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Sequencing and SNP set preparation 90 

 We analyzed the distribution of SNPs after resequencing of 406 additional genotypes by 91 

the DOE Joint Genome Institute. SNP calling was done at Oak Ridge National Laboratory (Yates 92 

et al., 2021). There was a total of 40.4M SNPs prior to filtering for minor allele frequency 93 

(MAF) and additional quality criteria. The density and consistency of SNP data on each 94 

chromosome were assessed using the R package CMplot (Fig. S1) and by producing histograms 95 

of gap sizes for each chromosome.  96 

 97 

Assay of regeneration 98 

  Frozen stem cuttings were incubated at 4o C for 2-4 weeks, then placed in 50mL falcon 99 

tubes with water for five weeks. Based on preliminary experiments (data not shown), we found 100 

that treatment of the cut top of each stem with 10μL of 0.5mg/mL thidiazuron (TDZ) in water 101 

improved callus regeneration considerably (37% of genotypes produced shoots, compared to 102 

24% without TDZ). After application of TDZ to a given stem tip, a 1.5mL microcentrifuge tube 103 

was inverted over the stem tip to prevent desiccation during regeneration (as shown in Fig. 1). 104 

On a weekly basis beginning the second week, stem tips were imaged from overhead using a 105 

Canon Rebel XSi DSLR camera attached to a rack mount. 106 

Due to practical limitations on the numbers of clones that could be assayed for 107 

regeneration simultaneously, subsets of the study genotypes (termed “phases”) were assayed at 108 

one time, with no more than 400 cuttings per phase. Images were taken on a weekly basis from 109 

the second week through the fifth week, with the exceptions of weeks four and five in the first 110 

phase and week four in the third phase. There were two replicate plants measured for all but the 111 

first three phases, where only a single replicate was used.   112 

 113 

CV pipeline 114 

To perform annotation of images for CV, 249 images were randomly sampled from the 115 

first seven phases and manually annotated using the Intelligent Deep Annotator for Segmentation 116 

(IDEAS) graphical user interface (Yuan et al., 2022). As described in our prior work, these 117 

samples were used to train a convolutional neural network (PSPNet) to segment images of 118 

regenerating stem tips with each pixel labeled as one of four classes: callus, shoot, unregenerated 119 
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stem and background. At each timepoint, two traits were computed: the proportion of total plant 120 

area which consists of callus (henceforth, “callus area”), and of shoot (“shoot area”).  121 

 122 

Data preparation  123 

For replicated samples, the mean value of each trait across the two replicates was 124 

computed and used in downstream analysis. For genotypes lacking replication, the single 125 

unreplicated trait value was used. 126 

Additional traits were computed by performing principal component analysis (PCA) 127 

using `stats::princomp` in R over three groups of traits: 1) callus area traits at all timepoints; 2) 128 

shoot area traits at all timepoints; and 3) both callus area and shoot area at all timepoints. 129 

Genotypes missing data for a given trait at any timepoint were excluded from a given PCA. 130 

Scree plots were evaluated to estimate the number of PCs representing significant proportions of 131 

trait variation. 132 

The normality of traits was assessed using Q-Q plots, histograms, Shapiro-Wilks tests 133 

and Pearson correlation coefficients computed against theoretical normal distributions with the 134 

same mean and standard deviation as the given trait. To avoid severe violations of normality that 135 

may lead to inflated error rates, all traits were transformed prior to statistical analysis. The most 136 

basic transformation applied was a removal of zero values followed by Box-Cox transformation. 137 

For certain PC traits, a spike was observed at particular values, which corresponded to genotypes 138 

with zero values for all traits used in the given PCA; these genotypes were consequently 139 

removed. In cases where we determined that thresholding or extreme outlier removal was 140 

necessary, these treatments were performed prior to Box-Cox. In addition, as an alternative to 141 

Box-Cox transformations, rank-based inverse normal (RB-INV) transformations were performed 142 

for difficult distributions (Fig. S2, Table S1-2). 143 

 144 

Association mapping 145 

Because of the distinct assumptions and data types for which various GWAS methods are 146 

suited, we employed an analysis pipeline that made use of four GWAS methods. First, Genome-147 

wide Efficient Mixed Model Association (GEMMA) (Zhou & Stephens, 2012) was used to 148 

perform single-marker tests with continuous traits (following transformations toward normality) 149 

using a kinship matrix generated from genome-wide SNPs as a covariate to adjust for population 150 
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structure. Prior to GEMMA, SNPs were filtered based on minor allele frequency (MAF) > 0.05 151 

and a missing rate of given SNPs across genotypes > 0.10 using PLINK, resulting in ~13.2 152 

million SNPs. GEMMA was used to compute Wald p-values for SNP effects, using the `-lmm 1` 153 

option. To speed computation, GEMMA was parallelized using the GNU Parallel (Tange, 2020) 154 

framework to simultaneously run each given trait on a CPU core. In addition to performing 155 

association mapping, GEMMA was used to provide an estimate of narrow-sense SNP heritability 156 

(h2SNP) for each trait. Downstream GWAS and gene candidate evaluation was performed for 157 

traits with estimated h2SNP above 0.10. 158 

Second, the Generalized Mixed Model Association Test (GMMAT) (Chen et al., 2016) 159 

was used for single-marker tests with the same kinship covariate; however, rather than using 160 

continuous trait variables, GMMAT applies logistic regression and works with binarized traits. 161 

Due to the computational expense of computing Wald p-values via logistic regression, we first 162 

performed the GMMAT variance component score test (`glmm.score`) for a genome-wide screen 163 

and then extracted a subset of 100 or 1,000 SNPs with the lowest score test p-values from each 164 

run and computed Wald p-values for these (using `glmm.wald`). This GMMAT workflow was 165 

performed with two SNP subsets prepared by PLINK: one had a missing rate threshold of 0.10 166 

and an MAF threshold of 0.05 (7.7 million SNPs), and the second had the same missing rate 167 

threshold but an MAF threshold of 0.01 (13.2 million SNPs). 168 

Third, we applied Fixed and Random Model Circulating Probability Unification 169 

(FarmCPU) (Liu et al., 2016), which provided single-marker tests for continuous, transformed 170 

traits similarly to GEMMA, but with an adjusted kinship covariate for improved statistical 171 

power. The package FarmCPUpp (Kusmec & Schnable, 2018) was used, together with an R 172 

function to apply resampling for optimization of significance threshold (`p.threshold`) for 173 

inclusion of SNPs in the kinship matrix calculation. To avoid singular or near-singular matrix 174 

errors that can result when multiple SNPs passing this threshold are in strong LD, we performed 175 

this workflow using a SNP set that was filtered by PLINK on the basis of LD (using parameters 176 

`--indep-pairwise 100kb 10 0.7`) after filtering by MAF (0.05) and missing rate (0.10), resulting 177 

in ~2.3M SNPs. 178 

Finally, for multiple-marker tests we applied the SNP-set (sequence) Kernel Association 179 

Test (SKAT) (Ionita-Laza et al., 2013) with untransformed traits. SKAT was performed on 180 

overlapping 3kb windows staggered by 1kb, using a set of 34.0 M SNPs filtered for a missing 181 
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rate of 15%. The R extension Multi-Threaded Monte Carlo SKAT (MTMCSKAT) was used to 182 

run SKAT on a high-performance cluster, COMET (made available through NSF XSEDE 183 

(Towns et al., 2014). We calculated empirical p-values for top associations to avoid Type I and 184 

Type II error resulting from the non-normal distributions of untransformed traits. Two means of 185 

controlling for population structure were tested and compared with this workflow. We compared 186 

a “P” model in which structure is represented by principal components derived from SNPs 187 

(computed with PLINK) to a “Q” model in which structure is alternatively represented by 188 

subpopulation estimates produced by fastSTRUCTURE (Raj et al., 2014). 189 

To produce PCs for the P model, we employed a filtered set of ~10.3M SNPs with MAF 190 

> 0.05 and consulted scree plots and used K-means clustering to inform about the number of PCs 191 

appropriate for representing population structure; as a result we used 6 PCs for the P model. 192 

To produce a Q matrix for use with SKAT Q models, we used fastSTRUCTURE using a 193 

subset of ~72k SNPs filtered based on LD, MAF, and missing rate using PLINK with parameters 194 

` --indep-pairwise 100kb 10 0.05 --maf 0.05 --geno 0.1`. Ten replicates were performed with 195 

fastSTRUCTURE for each possible number of subpopulations (K) ranging from 3 to 12. To 196 

understand subpopulations in an evolutionary context, we used SNPhylo (Lee et al., 2014) to 197 

produce a dendrogram from our SNP data. SNPhylo was run with a subset of ~129k SNPs 198 

prepared by PLINK with parameters ` --indep-pairwise 10kb 10 0.05 --maf 0.05 --geno 0.1`. 199 

 Geographical locations (longitude and latitude) were recorded for 1,301 of 1,323 200 

genotypes in the SNP set and plotted against traits, SNP-derived PCs (for SKAT “P” model), 201 

primary subpopulation information (for SKAT “Q” model), and dendrogram information (from 202 

SNPhylo) using the `phylo.to.map` function in Phytools (R) and Google Maps “My Maps”. 203 

Phytools was also used to cross-reference dendrograms with traits, SNP-derived PCs and 204 

primary subpopulation information (using function `phylo.heatmap`) (Revell, 2012). 205 

To inform about the appropriate window size for SKAT, as well as to inform about the 206 

likelihood of genes proximal to associated SNPs or SNP windows being directly involved in 207 

affecting traits (vs. being associated as a result of genetic linkage), we evaluated LD decay. To 208 

facilitate efficient computation of LD decay, a reduced SNP set (~78k SNPs) was prepared by 209 

PLINK with parameters `--maf 0.05 –geno 0.1 –thin 0.01`. Further reduced SNP files were 210 

prepared with PLINK to only include genotypes in the “Oregon” and “California” 211 

subpopulations (named based on general location of most genotypes in each). PLINK was further 212 
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used to compute pairwise LD between all SNPs on each given chromosome with each SNP set. 213 

Using R, the average LD for each possible distance (e.g. 1bp, 2bp, 3bp… up to 50kb) was 214 

computed and plotted for the whole population as well as each of the two selected 215 

subpopulations. 216 

Statistically significant associations from the various pipelines were first determined by 217 

computing FDR (α = 0.10) and Bonferroni thresholds (α = 0.05). The Bonferroni thresholds were 218 

computed given the number of tests equal to the number of SNPs (for single-marker tests 219 

GEMMA, GMMAT and FarmCPU) and the number of SNP windows (in the case of SKAT). We 220 

then extracted lists of SNPs with p-values below these thresholds for interrogation.  221 

We then evaluated the extent to which multiple SNPs supported the association of a 222 

nearby gene, whether individual SNPs met the FDR or Bonferroni statistical thresholds or not. 223 

We implemented the augmented rank truncation (ART) method (Vsevolozhskaya et al. 2019) to 224 

scan Wald p-values from GEMMA and GMMAT and identify cases where a SNP produces a p-225 

value below 1*10-5 and is within 500bp of at least 5 additional SNPs with p-values below 1*10-4 226 

when considering the upper half of top-ranking SNPs. For each of these windows, a combined p-227 

value was computed for the extracted SNPs. A Bonferroni threshold for ART p-values was 228 

computed (α = 0.05) from the approximate number of independent tests (contiguous assembled 229 

genome size / ART window size). The Bonferroni threshold of ~1.27*10-7 was computed using 230 

the number of independent tests of (~3.94*105 1kb windows spanning the ~394 Mb of 231 

contiguous assembled chromosomes) and is notably less conservative than the Bonferroni 232 

threshold used for raw p-values from GEMMA/GMMAT (henceforth, “conservative 233 

Bonferroni”), as computed from the total number of tests (as low as ~3.79*10-9, given up to 13.2 234 

million SNPs. However, it is well known that Bonferroni thresholds for individual SNPs 235 

erroneously consider each SNP as an independent test, though very large numbers of SNPs are of 236 

course in LD. 237 

To determine on a high-throughput scale which genes are likely to be responsible for 238 

statistically significant quantitative trait loci (QTLs; either SNPs or SNP windows), we used R 239 

scripts to reference genome and genome annotation data available through Phytozome 240 

(phytozome.doe.gov) (Tuskan et al., 2006). In this workflow, the position of loci were evaluated 241 

for candidate genes only when these loci represent the “peak” of a signal, determined by 242 

checking for any other loci within 3kb with a more significant p-value. The candidate gene 243 
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responsible for the significance of a given locus was assumed by the workflow to be the gene 244 

that encompasses or is closest to the locus, where one exists within 5kb. The R package 245 

InterMineR (Kyritsis et al., 2019) was used to collect Phytozome data on gene function, 246 

Arabidopsis homologs, and gene ontology terms and organized these by locus. The GreeNC 247 

database was used to identify possible noncoding regulatory RNAs among gene candidates 248 

(Di Marsico et al., 2022). For the top gene candidates, particularly those passing the conservative 249 

Bonferroni or FDR (α = 0.10) thresholds, or those passing the less conservative Bonferroni 250 

thresholds used for ART and among the five most-significant GEMMA-ART or GMMAT-ART 251 

associations for a given trait, Integrative Genomics Viewer (IGV) (Robinson et al., 2011; 252 

Thorvaldsdóttir et al., 2013) was used to manually investigate gene position relative to 253 

significant SNPs, including consideration of other nearby genes, distance to the putative 254 

transcription start site, and direction of transcription. 255 

 256 

Evaluation of possible adaptive role of regeneration traits 257 

Following the identification of subpopulation structure when fastSTRUCTURE was used 258 

to produce covariates for the SKAT “Q” model, we aimed to further investigate the relationships 259 

between traits, geography and theoretical ancestral subpopulations to gain insights into the 260 

possible adaptive evolution of these regeneration traits. To this end, we used `lm` (R) to 261 

construct linear models regressing each trait over latitude and the Q matrix featuring estimates of 262 

each theoretical ancestral subpopulation’s contribution to each individual’s genome (from 263 

fastSTRUCTURE). We then visualized relationships, latitude and subpopulation using `ggplot2` 264 

(R). 265 

Results 266 

SNP set for P. trichocarpa provides comprehensive view of natural variation 267 

 The SNP set produced for this population displays polymorphism across all regions of 268 

contiguous chromosomes represented in the reference genome (Fig. S1). Poplar clones collected 269 

for the GWAS clone bank represent a wide range of geographic diversity, nearly spanning the 270 

natural range of P. trichocarpa across British Columbia and the Pacific Northwest of the United 271 

States, including Idaho and northern California (Fig. 2). There is clearly very strong natural 272 
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intrachromosomal recombination, as LD decay occurs rapidly reaching R2 = 0.2 within 2kb 273 

whether computed for the whole population or either of two prominent subpopulations (Fig. 3). 274 

We attempted to gain insights into the possible role of adaptive evolution in regeneration 275 

traits via relationships between the traits, latitude and theoretical ancestral subpopulation 276 

(Methods). At α = 0.005, there appears to be a significant effect of latitude of clone origin on the 277 

trait of callus area at week four, while controlling for subpopulation. Several other relationships 278 

are significant at 0.05, between various callus traits and latitude and/or subpopulation (Table S3). 279 

Visualization of the relationships between traits and latitude along with regression trendlines 280 

showed a positive relationship between many regeneration traits and increasing latitude, but the 281 

significance of these trends was lost when considering clones of each given primary 282 

subpopulation independently (Fig. S3). Considering the lack of independence between variables 283 

of theoretical ancestral subpopulation and latitude, we advise caution in overinterpreting these 284 

results as evidence of an adaptive role of regeneration, but also note several significant or 285 

borderline-significant trends indicating such a role may exist. 286 

 Relationships between evolutionary clades, geography, and population structure suggest 287 

that that P. trichocarpa, despite its dioecy and long-distance gene flow, exists with a number of 288 

subpopulations that are statistically distinct albeit highly admixed. A total of 110 289 

fastSTRUCTURE runs were performed, including 10 replicates for each value of K 290 

(subpopulation number) ranging from 2-13. The log marginal likelihood appears to be 291 

maximized with K equal to 6 or 7 (Fig. S4). For each individual in the population, the most 292 

closely related subpopulation was extracted and considered the primary subpopulation. 293 

Geographic and evolutionary patterns were revealed by cross-referencing of a dendrogram 294 

(SNPhylo) with primary subpopulation and geographic location. These plots were evaluated with 295 

primary subpopulations from fastSTRUCTURE models both with K=6 and K=7 (Fig. S5); the 296 

K=7 model showed the strongest alignment between phylogeny and geography. Approximately 297 

from Seattle northward, individuals display a heavy degree of admixture and fail to cluster into 298 

clear subpopulations. Otherwise, the existence of several subpopulations is supported by 299 

agreement between phylogenetic clades, geographic location, and primary subpopulation label 300 

from fastSTRUCTURE. These include distinct subpopulations in the western region of Idaho 301 

and nearby eastern Oregon and Washington (and extending all the way to the eastern 302 

Washington Cascades near Yakima), the Willamette Valley of central western Oregon and 303 
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nearby Western Washington, southwest Oregon and nearby northern California, northwestern 304 

Washington extending into southwestern Canada, and central western to northwestern Canada 305 

(Fig. 2). 306 

 We further attempted to summarize population structure by performing PCA over SNP 307 

data using PLINK. Similar to fastSTRUCTURE subpopulation estimates, PCs explaining a 308 

substantial portion of variance show clear relationships with geography and most of the same 309 

phylogenetic clades (Fig. S6-7). The use of 6 PCs to represent population structure in SKAT 310 

models, as discussed below, was supported by the scree plot (Fig. S8) and the relatively minor 311 

contributions of subsequent PCs to k-means clusters computed from PCs (Fig. S9). 312 

 313 

 
Figure 3. Linkage disequilibrium decay curves for Oregon (“OR”) subpopulation and California 

(“CA”) subpopulation. Primary subpopulations were determined using fastSTRUCTURE, with a 

K = 7 model (Methods). 
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Figure 4. Information on theoretical ancestral subpopulations (fastSTRUCTURE, with K=7 

model), cross-referenced with geographical locations of clones. Data is shown for the 1,301 

clones for which location data is available (out of 1,323). Points are labeled by the theoretical 

subpopulation accounting for the largest portion of ancestry for each clone. This plot was 

produced with Google Maps MyMaps.  
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Trait transformations   314 

Prior to transformations, most traits displayed marked non-normal characteristics as 315 

indicated by Q-Q plots, histograms, Shapiro-wilk tests, and Pearson correlation coefficients of 316 

each distribution with a normal distribution featuring the same mean and standard deviation. In 317 

most cases the improvement in normality after transformation was marked (Table S1; Fig. S2; 318 

data not shown). Non-normal characteristics were reduced substantially in most cases by 319 

excluding genotypes with zero values and applying a Box-Cox transformation (e.g., Fig. S2). For 320 

the traits of callus or shoot area at each timepoint, based on visual inspection and consult with a 321 

statistical consultant, the improvement in metrics of normality was deemed adequate for linear 322 

models. All PCA-derived traits necessitated additional treatments to avoid severe violations of 323 

the normality assumption of linear models, including removal of outliers and in some cases 324 

removal of values below an elbow in the frequency distribution (estimated as the position where 325 

the second derivative of the probability frequency distribution is maximum) (Table S2). 326 

 327 

Principal components as proxies for complex patterns of regeneration 328 

Scree plots and heat maps of loadings revealed common trends in regeneration across 329 

timepoints and regenerating tissue types (callus and shoot). These results were obtained for three 330 

different PCA analyses: first, for both callus and shoot area at all timepoints (Fig. 5), and then 331 

with callus and shoot data analyzed independently over all timepoints (Fig. S10). In all three 332 

cases, the PC explaining the most variation (PC1) represented a tendency of the tissue(s) 333 

included in PCA to regenerate well across all timepoints. Latter PCs provided proxies for more 334 

complex patterns of regeneration. PC2 from the PCA over callus traits appears to represent high 335 

levels of callus regeneration at early, but not later timepoints. PC2 from the PCA over all callus 336 

and shoot traits appears to represent a tendency for callus to regenerate robustly, but to fail to 337 

develop into shoots. Subsequent PCs, for each batch of traits, represented a relatively small 338 

proportion of variance explained and were thus not analyzed for gene candidates. 339 

 340 
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Figure 5. Results from PCA over all callus and shoot traits. A) Scree plot; B) Heat map of 

loadings from PCA. 

Genes implicated by significant quantitative trait loci (QTLs) 341 

 We interrogated traits with h2SNP above 0.10 for candidate genes (Table S4). Across all 342 

four GWAS models applied (GEMMA, GMMAT, FarmCPU and SKAT), we report a total of 8 343 

unique QTL peaks with p-values passing the Bonferroni significance threshold, as well as 46 344 

passing the FDR (alpha = 0.10) threshold. All Bonferroni-significant associations are inside or 345 

within 5kb of a gene found in the genome annotation, as well as 34 associations (73.91%) 346 

meeting the latter threshold (Fig. 6-8, Table S5-6). We found 139 unique QTL peaks from 347 

applying our implementation of ART to GEMMA results (Table S7), as well as 48 from applying 348 

ART to GMMAT results (Table S8). 349 

We compared results from complementary SKAT models with population structure 350 

represented either by the fastSTRUCTURE Q matrix with 7 subpopulations (“Q model”) or by 351 

the first 6 PCs (“P model”) for a subset of four traits (callus area at wk. 4 and wk. 5; shoot area at 352 
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wk. 4 and wk. 5). These models displayed a remarkable level of agreement, especially for p-353 

values that met thresholds of significance and were thus selected for validation by computing 354 

empirical p-values with MTMCSKAT (Fig. S11). Several of the most promising candidates, 355 

based on the biology of their homologs in Arabidopsis, are shown in Table 1.  356 

  357 

 
Figure 6. Barplots summarizing the numbers of associations from each GWAS method, with 

two types of significance thresholds, as well as within a 5kb distance threshold of the nearest 

gene. QTL peaks were taken as the point with the lowest p-value at any given peak, where 

multiple points within the same peak may otherwise pass a given significance threshold. A) QTL 

peaks passing the Benjamini-Hochberg threshold (FDR; α = 0.10); B) QTL peaks passing ART-

Bonferroni threshold (α = 0.05, N of # 1kb windows in genome).  
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Figure 7. Manhattan plot for GEMMA results for the trait of callus area at week four: Black and 

orange lines show Bonferroni significance thresholds for GEMMA results with independent 

SNPs, and for ART applied to GEMMA over 1kb windows of SNPs, respectively. Black circles 

represent tests of individual SNPs by GEMMA, while orange triangles represent 1kb windows 

tested by ART applied to GEMMA results. 
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Figure 8. Plots produced by Integrated Genome Viewer (IGV) show zoomed-in portions of 

Manhattan plots aligned to the genome annotation for P. trichocarpa (v3.1). Introns, untranslated 

regions and exons are respectively visualized with increasing thickness of bars. Labels in gray 

boxes were manually added to show gene IDs and the strand on which genes are found. A) 

Results on chromosome 6 for GEMMA of Box-Cox transformed trait Shoot PC2; B) Results on 

chromosome 2 for GEMMA of Box-Cox transformed trait Shoot PC1, showing an association 

found significant via ART. Examples of plots for additional loci can be found in Supp. Materials 

1. 
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Gene candidates Arabidopsis homologs 

Threshold Trait Method Transf. 
Dist. 

(bp) 
QTL Pos. 

Accession  

ID 

Accession 

ID 
Description Score Similarity 

Bonf. 
Callus 

2w 
GMMAT Binarized trait 3 5’ 

Potri. 

006G276200 

AT 

3G12660 

FASCICLIN-

like 

arabinogalactan 

protein 14 

precursor 

(FLA14) 

156 60.40% 

FDR 

(α=0.1) 

Shoot 

PC1 

MTMC-

SKAT 
Untransformed 0 Exonic 

Potri. 

019G101900 

AT 

4G28250 
expansin B3 409 86.90% 

Bonf. 
Shoot 

PC2 
GEMMA 

Outliers 

removed, Box-

Cox 

0 Exonic 
Potri. 

006G254100 

AT 

2G25490 

EIN3-BINDING 

F BOX 

PROTEIN 1 

(EBF1) 

812 80.70% 

FDR 

(α=0.1) 

Shoot 

PC1 

MTMC-

SKAT 
Untransformed 0 

Intragenic, 

non-exonic 

Potri. 

003G194600 

AT 

3G12250 

TGACG 

MOTIF-

BINDING 

FACTOR 6 

(TGA6) 

520 91% 

FDR 

(α=0.1) 

Shoot 

PC1 

MTMC-

SKAT 
Untransformed 4877 3’ 

Potri. 

015G041800 

AT 

3G18165 

modifier of 

snc1,4 (MOS4) 
363 84.70% 

FDR 

(α=0.1) 

Callus 

3w 
FarmCPU Box-Cox 2839 5’ 

Potri. 

001G177801 

AT 

1G80410 

EMBRYO 

DEFECTIVE 

2753 

(EMB2753) 

246 94.40% 

FDR 

(α=0.1) 

Shoot 

PC1 

MTMC-

SKAT 
Untransformed 0 Exonic 

Potri. 

002G070600 

AT 

1G21326 

VQ motif-

containing 

protein 3 (VQ3) 

105 65% 

FDR 

(α=0.1) 

Shoot 

PC2 
GEMMA 

Outliers 

removed, 

thresholding, 

Box-Cox 

0 Exonic 
Potri. 

002G173300 

AT 

2G46560 

transducin 

family protein / 

WD-40 repeat 

family protein 

2357 66.80% 

Bonf. 
Callus 

5w 
GEMMA Box-Cox 3947 3’ 

Potri. 

018G049600 

AT 

5G35550 

TRANSPAREN

T TESTA 2 

(TT2) 

196 69.90% 

FDR 

(α=0.1) 

Shoot 

PC1 

MTMC-

SKAT 
Untransformed 0 Exonic 

Potri. 

004G155400 

AT 

1G75250 

RADIALIS-

LIKE 
129 82.40% 
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Table 1. Fifteen gene candidates with Arabidopsis homologs that have putative roles in 

biological processes related to in vitro regeneration. Relevant literature is discussed for each of 

these candidates (Discussion). Distance (Dist.) of QTLs from the transcription start site is shown 

for intergenic associations. Score and similarity percentage is shown for Smith-Waterman 

alignment of poplar gene candidates with Arabidopsis homologs. Remaining gene candidates are 

summarized in Table S6-8. 

Discussion 358 

 359 

Distinct subpopulations correlate with phylogeography 360 

 361 

SANT/MYB 3 

(RSM3) 

FDR 

(α=0.1) 

Callus 

5w 
GEMMA Box-Cox 1192 5’ 

Potri. 

010G105600 

AT 

4G16110 

ARABIDOPSIS 

RESPONSE 

REGULATOR 2 

(ARR2) 

382 75.70% 

FDR 

(α=0.1) 

Shoot 

PC2 
GEMMA 

Outliers 

removed, 

thresholding, 

Box-Cox 

137 5’ 
Potri. 

011G031100 

AT 

1G11530 

C-TERMINAL 

CYSTEINE 

RESIDUE IS 

CHANGED TO 

A SERINE 1; 

thioredoxin 

96 69.30% 

ART-Bonf. 

Callus, 

Shoot 

PC1 

GEMMA Box-Cox 5222 5’ 
Potri. 

002G053400 

AT 

1G03170 

FANTASTIC 

FOUR 2 (FAF2) 
103 54.60% 

ART-Bonf. 

Callus, 

Shoot 

PC1 

GEMMA RB-INV 5222 5’ 
Potri. 

002G053400 

AT 

1G03170 

FANTASTIC 

FOUR 2 (FAF2) 
103 54.60% 

ART-Bonf. 
Callus 

4w 
GEMMA Box-Cox 5749 5’ 

Potri. 

012G032900 

AT 

4G27950 

CYTOKININ 

RESPONSE 

FACTOR 4 

(CRF4) 

227 62.60% 

ART-Bonf. 
Shoot 

PC1 
GEMMA RB-INV 2346 5’ 

Potri. 

012G070400 

AT 

3G52960 

PEROXIREDO

XIN-II-E 

(PRXIIE) 

105 78.90% 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.08.495082doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/


The existence of distinct geographical subpopulations of P. trichocarpa is supported by 362 

cross-referencing of results from population structure analysis (fastSTRUCTURE), 363 

phylogenetics (SNPhylo), and geographical information for genotypes. These distinct 364 

subpopulations appear clearly in the southern portion of the population, whereas the northern 365 

portion displays a remarkable degree of admixture with mixed origins across the southern 366 

subpopulations. We speculate that, following the establishment of distinct southern 367 

subpopulations during the Last Glacial Period (Armstrong et al., 1965), the recession of glaciers 368 

allowed for these subpopulations to spread to the northern region—where there has not yet been 369 

sufficient time or subdivision for distinctive populations to form. In contrast, the disjunct nature 370 

of many of the southern population groups is likely to have provided historical opportunities for 371 

differentiation. While previous work using approximately 12 isozyme loci did not reveal distinct 372 

subpopulations of P. trichocarpa over a more narrow, but similar geographical range (Weber & 373 

Stettler, 1981), our work demonstrates the much-increased power of genome-scale SNP data—374 

where millions of loci are surveyed—to detect subpopulations. 375 

 376 

High-throughput phenomics support scale and precision of GWAS 377 

 The high-throughput phenomics workflow used for this work was described, in part, by 378 

Yuan et al. (2022). The IDEAS graphical interface for image annotation enabled the production 379 

of a large set of training examples (249 images in total) with pixelwise labels for callus, shoot 380 

and unregenerated tissues. This training set enabled a deep segmentation model that was used to 381 

automatically segment the 4,647 remaining images. Although generation of the training samples 382 

was time-consuming, performing manual segmentation for all images would have been time-383 

prohibitive, and summarizing traits with an ordinal scale instead of pixelwise statistics would 384 

have risked the introduction of subjective biases and violation of linear model assumptions—385 

while sacrificing much precision and detail. This system or others that are functionally 386 

comparable (Russell et al., 2008; Dutta & Zisserman, 2019) can be made more accessible and 387 

practical with innovations to reduce the number of clicks needed for image annotation by further 388 

semi-automation of annotation. Overall accuracy in segmentation of the “validation” set of 389 

images was 79.21% as measured by Intersection over Union (IoU), while relatively homogenous 390 

stem tissues had IoU of 88.14%, and highly heterogenous callus tissues had 67.40%. Advances 391 
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in the architectures of deep segmentation neural networks can contribute to improved accuracy in 392 

segmenting complex and heterogenous tissues of interest to biologists. 393 

 394 

Complementary GWAS approaches provide variety of insights 395 

Transformation of traits to approximate normality is commonly employed for biological 396 

data during GWAS to avoid linear models’ assumption of normality of residuals. In our study, 397 

because traits were computed as the proportion of plant tissue labeled by CV as callus or shoot, 398 

and many genotypes failed to develop either tissue, the resulting distributions feature a mix of a 399 

zero and nonzero values. Among traits in our study, the proportion of genotypes with zero values 400 

ranged from 89 (for callus area at week five) to 1,106 (for shoot area at week two). To help avoid 401 

violations of the normality assumption, genotypes featuring zero values were excluded from 402 

GEMMA and FarmCPU tests for each trait, but presence/absence tests were performed using 403 

GMMAT that employed the observations of a complete absence of callus and/or shoot. GMMAT 404 

and SKAT offer two complementary approaches to avoid this assumption altogether, thus 405 

obviating the need to exclude totally recalcitrant genotypes and thus suffer reduced statistical 406 

power. 407 

Single-SNP methods including GEMMA and GMMAT share the advantage of providing 408 

insights into the specific SNPs most likely to be causative with respect to the effect of a gene on 409 

a trait. In most cases in our results, these appear to be regulatory SNPs in promoters, suggesting 410 

that variation in gene expression, rather than sequence, is the primary cause of trait variation. 411 

However, single-SNP methods suffer from relatively low statistical power since by their nature 412 

they treat each SNP-trait relationship as an independent test and do not consider combined 413 

effects of nearby SNPs. In contrast, SKAT provides improved statistical power by allowing tests 414 

for the combined effects of adjacent SNPs grouped into SNP windows, but only provides a single 415 

p-value for a whole SNP window. Thus, our SKAT results do not make clear which SNPs in a 416 

given window are responsible for trait variation, and as windows often overlap coding and 417 

regulatory regions, we lack insight into whether SKAT-implicated candidates are responsible for 418 

trait differences due to variation in their regulation or protein structure. Moreover, even when a 419 

given window is entirely intergenic, we lack an ability for straightforward investigation of 420 

specific promoter motifs that may be implicated by SKAT due to the lack of single-SNP 421 
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resolution. Finally, SKAT involves the upweighting of rare SNPs and results are therefore less 422 

likely to feature top gene candidates regulated by common variation (Wu et al., 2011).  423 

We therefore sought to employ a “best of both worlds” approach to improve the statistical 424 

power of GEMMA and GMMAT by considering combined effects of adjacent common SNPs 425 

without losing clarity into the specific SNPs most likely to be causative. To this end, we 426 

employed ART as a post-hoc analysis of GEMMA and GMMAT results. As ART involves the 427 

computation of combined p-values over SNP windows and does not assume independence of 428 

SNPs, we obtained an increase in statistical power both via both reduced p-values for SNP 429 

windows compared to individual SNPs (Vsevolozhskaya et al., 2019), and by the ability to use a 430 

less-stringent Bonferroni threshold due to the number of tests being equal to the number of 1kb 431 

SNP windows rather than the number of individual SNPs. Our usage of ART enabled the 432 

detection of candidate genes including FAF2, CRF4 and PRXIIE (Table 1) that otherwise would 433 

have been missed in our study. Although we are unaware of applied GWAS studies utilizing 434 

ART, our results demonstrate the potential for this method to increase effective statistical power 435 

in GWAS. 436 

Whereas prior work describes improved statistical power of FarmCPU relative to less 437 

complex Mixed Linear Models (MLM) methods such as GEMMA (Liu et al., 2016; Kaler et al., 438 

2020), we report only a single significant association from our FarmCPU tests. This is likely due 439 

to loss in statistical power resulting from LD-based pruning to avoid singular matrix errors, 440 

which can affect highly structured populations such as ours in which multiple pseudo-QTNs 441 

added to FarmCPU models match between genotypes. Nonetheless, the single gene candidate 442 

revealed by FarmCPU, RADIALIS-LIKE SANT/MYB 3 (RSM3), may be among the most 443 

promising for use as a biotechnological tool to enhance regeneration (discussed below). 444 

 445 

Candidate genes have diverse roles in signaling and development 446 

Our results indicate that natural variation in capabilities for in planta regeneration in 447 

poplar is controlled by numerous genes with functionally diverse roles, including in cell wall and 448 

membrane structure, hormone signaling, anthocyanin production and reactive oxygen species 449 

(ROS) regulation. Several of the most promising gene candidates, organized by biological 450 

function of orthologs in Arabidopsis, are briefly discussed below. 451 

 452 
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Regulation of cell wall adhesion 453 

Potri.006G276200 encodes a member of the FASICLIN-LIKE ARABINOGALACTAN 454 

(FLA) PROTEIN family and is implicated by a QTL three bases upstream of the transcription 455 

start site. We report this association from GMMAT of callus area at week two, the trait with 456 

greatest trait with greatest h2SNP as estimated by GEMMA. The significance of this QTL passes 457 

the most stringent multiple testing correction method applied – the Bonferroni threshold (α = 458 

0.05) with each individual SNP considered an independent test. No other QTLs associated with 459 

this trait meet the same threshold, nor do any other QTLs from GMMAT with any trait in our 460 

study. 461 

The FLA gene family (~18 genes in Arabidopsis) is differentially expressed during in 462 

planta embryogenesis (Costa et al., 2019), but regulation in the context of in vitro regeneration 463 

has received little study. AtFLA1 was found to be upregulated during CIM incubation media, 464 

while AtFLA2 upregulation occurred upon transfer of explants to SIM. Knockout of AtFLA1 465 

was reported to confer an ability for efficient in vitro shoot regeneration to the otherwise 466 

recalcitrant Col-0 ecotype, while contrarily leading to loss of efficient regeneration in the 467 

regenerable ecotype W52. Thus, effects of differential expression, as is likely to be a 468 

consequence of the polymorphism from the SNP location, may be genotype-dependent in poplar 469 

as well. 470 

  We found an association of shoot development (week four area and PC1) with a window 471 

of SNPs including a portion of the promoter and first exon of Potri.019G101900 that is related to 472 

Arabidopsis EXPANSIN B3 (86.9% similarity by Smith-Waterman alignment). Expansins 473 

facilitate the process of cell wall loosening by regulating pH in cell walls, with various expansins 474 

expressed during different stages of development. Mutations of this gene superfamily have been 475 

studied in several plant species, including Arabidopsis, tomatoes, rice, soybean, and tobacco. 476 

Overexpression typically produces phenotypes of enhanced growth, such as increased size of 477 

plant cells and tissues, as well as reduced fruit firmness. Knockouts, in contrast, lead to reduced 478 

growth and increased firmness (Marowa et al., 2016). Expansins are believed to be key 479 

regulators of cell wall expansion downstream of auxin, a key hormone for control of 480 

regeneration (Majda & Robert, 2018). 481 

 482 
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 483 

Regulators of wound-responsive hormone signaling 484 

Potri.006G254100 encodes a putative homolog of EIN3-binding F box protein 1 (EBF1). 485 

Molecular evidence from Arabidopsis suggests that EBF1 facilitates ubiquitin-mediated 486 

degradation of ETHYLENE-INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1) and that this 487 

degradation is prevented when EIN3 and EIL1 are stabilized by ETHYLENE-INSENSITIVE 2 488 

(EIN2) (An et al., 2010). Arabidopsis knockouts of EIN2 (ein2) were used to supply cotyledon 489 

explant material for an in vitro regeneration assay, which revealed an approximate fourfold 490 

reduction in shoot regeneration in the mutants. The same assay revealed a roughly threefold 491 

increase in shoot regeneration with knockout of HOOKLESS1 (HLS1; Chatfield & Raizada, 492 

2008), a gene encoding a putative n-acetyltransferase with a mechanistically uncharacterized role 493 

downstream of EIN3 in regulating a range of ethylene-regulated traits including apical hook 494 

development and in vitro regeneration. Also downstream of EIN3 is positive and negative 495 

regulation of numerous genes across nine hormone pathways, suggesting that EIN3 represents a 496 

key modulator of hormone crosstalk (Chang et al., 2013). In support of this, we present at least 497 

eight gene candidates implicated as interacting directly or indirectly with EIN3 and upstream 498 

regulators of EIN3 (Fig. 9). Our results, considered together with mutant studies in Arabidopsis, 499 

suggest that these candidates mediate crosstalk between ethylene, jasmonic acid (JA), and 500 

salicylic acid (SA) signaling pathways.  501 
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Figure 9. Interactions involving Arabidopsis homologs of eight gene candidates and associated 

regulators were identified by literature review, providing an understanding of the broader context 

of hormone crosstalk between ethylene, JA, and SA pathways as they relate to regeneration. 

Node placement was assisted by the Force Atlas 2 algorithm as implemented in Gephi. This Fig. 

was produced using BioRender (biorender.com). Standard acronyms and abbreviations can be 

found on The Arabidopsis Information Resource (TAIR; 2022) and are listed in Table S9. 

Evidence for interactions is summarized in Table S10. 

 502 

Our GWAS results suggest a central role for salicylic acid (SA) and related genes. NPR1 503 

is a regulator of salicylic acid signaling via a mechanism that depends on at least three genes 504 

with homologs implicated by QTLs in our GWAS (Fig. 9). Gene candidate Potri.003G194600 505 

encodes a homolog of TGACGT motif transcription factor TGA6. TGA6 and other redundant 506 

members of the TGA family have been reported to regulate transcription of NPR1 (Hussain et 507 

al., 2018), in addition to interacting with NPR1 (Boyle et al., 2009) to form a histone 508 
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acetyltransferase complex responsible for SA-associated epigenetic reprogramming (Jin et al., 509 

2018). Simultaneous knockout of functionally redundant TGAs (Zhang et al., 2003b) or of NPR1 510 

(Cao et al., 1997) confers a loss of SA signaling, including SA-mediated pathogen resistance. 511 

Contrarily, constitutive SA signaling, dwarf morphology, and enhanced pathogen resistance 512 

results from knockout of the upstream regulator SUPPRESSOR OF NPR1, CONSTITUTIVE 1 513 

(SNC1) (Zhang et al., 2003a; Yang & Hua, 2004). This phenotype is reversed by concurrent 514 

knockout of MODIFIER OF SNC1,4 (MOS4), a homolog of our gene candidate 515 

Potri.015G041800 (Palma et al., 2007). Whereas mos4 reverses the dwarf phenotype of snc1, 516 

this double-mutant phenotype is itself reversed with concurrent partial loss-of-function of the n-517 

acetyltransferase EMBRYO DEFECTIVE 2573 (EMB2573; a homolog of gene candidate 518 

Potri.001G177801), restoring the dwarf morphology. Knockout of EMB2573 also confers a wide 519 

range of defects including in embryo differentiation, notably in the shoot apical meristem 520 

(SAM), as indicated by abolished expression of the SAM marker SHOOT MERISTEMLESS 521 

(Chen et al., 2018). MOS4 and EMB2573 are believed to regulate degradation of SNC1 in 522 

addition to other genes involved in related SA-signaling roles (Xu et al., 2015).  523 

Additional regulation of EIN3 is believed to exist via phosphorylation of EIN3 protein, 524 

which is mediated by two known mechanisms, one of which is via the SA-regulated MAP 525 

KINASE 3 (MPK3) and MAP KINASE 6 (MPK6). MPK3 and MPK6 are also responsible for 526 

phosphorylation of VQ MOTIF PROTEIN 3 and 4 (VQ3 and VQ4), which are the two most 527 

similar homologs of our gene candidate Potri.002G070600. Although VQ3 and VQ4 have not 528 

been studied in the context of in vitro regeneration, they are believed to function downstream of 529 

pathogen-associated molecular patterns (PAMPs) and upstream of pathogen defense genes (Yoo 530 

et al., 2008; Pecher et al., 2014). Finally, we note one additional gene among our candidates with 531 

a likely role in SA signaling. Potri.004G047700 is a homolog of NECROTIC SPOTTEN 532 

LESIONS 1 (NLS1), knockouts of which display a phenotype of increased SA accumulation and 533 

necrosis of leaves, particularly upon infection (Noutoshi et al., 2006; Fukunaga et al., 2017). 534 

Our GWAS results also suggest a central role for anthocyanin and related genes. The 535 

salicylic acid and jasmonic acid pathways are linked with anthocyanin signaling by the activity 536 

of JAZ proteins in negatively regulating MYB/bHLH/WD40 (MBW) protein complexes 537 

responsible for transcriptional regulation of anthocyanin biosynthesis genes (Qi et al., 2011). We 538 

report two gene candidates homologous to MBW components, Potri.002G173300 (encoding a 539 
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WD-40 repeat family protein) and Potri.018G049600 (encoding a homolog of TRANSPARENT 540 

TESTA 2). Although these genes have not been studied in the context of in vitro regeneration, 541 

MBWs regulate steps of anthocyanin biosynthesis immediately downstream of naringenin 542 

chalcone, which is produced by CHALCONE SYNTHASE (CHS); CHS knockout in 543 

Arabidopsis confers deficient in vitro shoot regeneration, with a light-dependent effect. The 544 

effects of anthocyanins on shoot regeneration may be mediated by their effects of ROS 545 

scavenging (Nameth et al., 2013) and/or auxin accumulation (Brown et al., 2001). 546 

A functional relationship between HLS1 (previously described; downstream of EIN3) 547 

and RSM1 (homolog of gene candidate Potri.004G155400) has been proposed due to phenotypic 548 

similarities between hls1 and RSM1-overexpressing Arabidopsis. Etiolated seedlings of both 549 

mutant lines presented various degrees of reduced hypocotyl length, reduced IAA content, 550 

defective hook formation and defective gravitropism (Hamaguchi et al., 2008). However, 551 

whereas HLS1 knockout is known to confer enhanced shoot regeneration in 552 

Arabidopsis(Chatfield & Raizada, 2008), the effects of RSM1 or RSM family overexpression or 553 

knockout on shoot regeneration have not yet been reported. 554 

Several gene candidates from GWAS appear to affect cytokinin signaling. 555 

Potri.010G105600 is a homolog of ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2) that 556 

functions shortly downstream of cytokinin signaling. B-type ARRs such as ARR2 share some 557 

degree of functional redundancy and may each positively regulate in vitro regeneration via 558 

transcriptional upregulation of key developmental genes such as WUSCHEL (WUS) (Xie et al., 559 

2018; reviewed by Nagle et al., 2018). An additional level of regulation over WUS expression 560 

exists via the FANTASTIC FOUR (FAF) gene family. Overexpression of any of the four FAF 561 

genes (including FAF1, homolog of gene candidate Potri.002G053400) leads to arrest of 562 

vegetative shoot meristem development, possibly by inhibiting WUS expression via an 563 

interaction with the feedback loop of regulation between WUS and the WUS inhibitor 564 

CLUVATA3 (Wahl et al., 2010). Shoot meristem development is also regulated by the 565 

CYTOKININ RESPONSE FACTOR (CRF) gene family (featuring CRF4, a homolog of 566 

candidate Potri.012G032900), as shown by increased or reduced rosette growth when other 567 

members of the CRF family are knocked out or overexpressed, respectively. However, these 568 

experiments did not feature mutant analysis of the closely related CRF4 (Raines et al., 2016). 569 

 570 
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Reactive oxygen species (ROS) signaling 571 

 At least two genes among our candidates appear to have roles in ROS regulation, which 572 

may affect regeneration and other developmental processes by mediating post-translational 573 

modifications of proteins involved in hormone signaling and/or by affecting levels of oxidative 574 

damage to developing tissues. Potri.011G031100 and Potr.012G070400 encode a putative 575 

thioredoxin-like protein and a peroxiredoxin, respectively. Although we did not find reports of 576 

mutant phenotypes for closely related genes in Arabidopsis in the context of regeneration or 577 

related processes, the thioredoxin DCC1 has been reported to affect in vitro shoot regeneration 578 

capacity in mutant lines as well as across natural ecotypes of Arabidopsis (Zhang et al., 2018b). 579 

 580 

Overlap with genes implicated from published GWAS analyses of regeneration 581 

The candidates we identified showed very little similarity to results from related work. In 582 

prior work, GWAS was performed in 280 genotypes of P. trichocarpa to study traits related to in 583 

vitro callus regeneration. This study yielded eight candidate genes, none of which appear among 584 

our results (Tuskan et al., 2018). A GWAS of traits related to roots and vegetative shoots in 585 

Populus deltoides x simonii with 434 genotypes produced 224 QTLs and multiple gene 586 

candidates were considered within proximity of each QTL, yielding a total of 595 unique gene 587 

candidates, only three of which were also found among traits analyzed in our study. 588 

Potri.015G018200, encoding a putative protein kinase, is a gene candidate from our analysis of 589 

callus area at week two as well as a prior analysis of a measurement of the number of leaves per 590 

vegetative shoot in P. euphratica. This leaf number trait also yields an association for 591 

Potri.004G156900, a putative RETICULATA-related protein also appearing as a candidate in 592 

our analysis of shoot area at week four. Another association is with Potri.019G035200, which 593 

encodes an oxygenase involved in heme degradation within chloroplasts; it was found among our 594 

gene candidates for callus at week two as well as in the same work for average stem diameter 595 

(Sun et al., 2019).  596 

In a review of GWAS of regeneration in diverse species, Lardon and Geelen (2020) noted 597 

that gene candidates identified across studies are non-overlapping to a great extent. Some of the 598 

potential causes for the low degree of overlap include genetic differences between study 599 

populations, variation in tissue or explant physiology, variation in the treatments used to promote 600 

regeneration, random variation in detection given underpowered statistics and numerous genes 601 
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under polygenic traits control, and differing statistical approaches (Lardon & Geelen, 2020). All 602 

of these factors would apply to our study vs. the other published work in Populus. Another likely 603 

contributor to lack of overlap is that our GWAS is the only one studying in planta regeneration, 604 

as opposed to in vitro regeneration or vegetative shoot development, and the genetic control of 605 

these developmental processes is likely to vary significantly. 606 

Conclusions 607 

 We report a GWAS of in planta regeneration in P. trichocarpa using a novel system for 608 

phenotyping regeneration with computer vision, along with four complementary statistical 609 

methods for association mapping. These analyses revealed over 200 candidate genes, strongly 610 

implicating regulators of cell adhesion and stress signaling. While canonical regulators of in vitro 611 

regeneration tend to be involved in auxin and cytokinin signaling pathways, our results suggest 612 

that stress pathways downstream of ethylene, salicylic acid, and jasmonic acid are of greatest 613 

importance to the mode of in planta regeneration that we studied in P. trichocarpa. These 614 

pathways have received little attention in studies where developmental regulator genes are used 615 

to promote regeneration, and would appear to be promising avenues to pursue, at least in woody 616 

species. Furthermore, at least eight top candidates are members of a genetic regulatory network, 617 

separated from one another by no more than four degrees of direct interactions. This, considered 618 

along with the complex nature of in vitro regeneration traits, suggests that emerging multi-locus 619 

methods and epistasis tests may provide significantly greater insights into the polygenic control 620 

of these traits. 621 
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