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Summary

Plant regeneration is an element of natural and horticultural plant propagation, and a key
step in the production of transgenic plants. However, regeneration capacity varies widely among
genotypes and species, the molecular basis of which is largely unknown. To shed light on the
causes of variation in natural regeneration capacity, we undertook a GWAS of shoot regeneration
from dormant cut stems in Populus trichocarpa. Using estimates of callus and shoot regeneration
provided by a novel computer vision system, and using a variety of GWAS pipelines and
statistical approaches, our analyses revealed over 200 candidate genes. The candidates each
explained small fractions of the total genetic variance and many appeared to be members of
genetic regulatory networks, showing regeneration to be a highly polygenic trait. The top
candidates included regulators of cell adhesion, stress signaling, and hormone signaling
pathways, as well as other diverse functions. These candidates provide new insights into the
biological complexity of plant regeneration, and may serve as new reagents for improving

regeneration and transformation of recalcitrant genotypes and species.

Introduction

Plant genetic engineering and gene editing have produced new varieties of crops with a
variety of valuable traits (NAS, 2016; Jaganathan et al., 2018). However, the ability to impart
new traits by these methods is limited to crop species with genotypes that can reliably undergo
regeneration and transformation (RT). RT requires developmental responses to a series of
hormone treatments and amenability to gene insertion, and the capacity for both varies greatly
between and within species (Altpeter ef al., 2016). The causes of this great variation in
recalcitrance are poorly known; however, GWAS — with its potential to identify genes whose
variation plays a key role in capacity for RT — should greatly enhance understanding of the RT
process. In addition, the identified genes may serve as “reagents” for overcoming recalcitrance,
similar to how overexpression of morphogenic regulator (MR) genes can enhance in vitro
regeneration of transgenic shoot in a variety of species (Gordon-Kamm et al., 2019). In planta
transformation methods can also be enhanced by MR genes, including in Populus tomentosa
(Deng et al., 2009), Nicotiana benthamiana, tomato, potato and grape (Mabher et al., 2020).
However, given the complexity and genotypic variation in RT capacity, it is likely that only a

fraction of the potentially useful MR genes have been identified.
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To help identify the genes responsible for variation in RT, we conducted GWAS in a
population of 1,219 wild cottonwoods that had been resequenced by the US Department of
Energy, up to 917 of which were previously studied for a variety of traits (Zhang et al., 2018a;
Tuskan et al., 2018; Muchero et al., 2018; Bdeir et al., 2019; Chhetri et al., 2020). We focused
on regeneration from cut stems, while considering it may be a direct substrate for accelerated in
planta transformation systems, and because of the expectation that regeneration processes are
likely to share many elements whether induced in vivo or in vitro. GWAS has previously been
applied to study variation in the rate of in vitro regeneration in Arabidopsis, cotton, wheat,
sorghum and poplar (reviewed by Lardon et al. 2020).

Regeneration phenotypes are notoriously difficult to quantify, whether in vivo or in vitro.
Calli and emerging shoots are often highly variable and complex in shape, color, and size, and
sequential measurements are hard to take without damaging or contaminating regenerating
tissues. This appears to have limited sample sizes in prior GWAS studies of regeneration. For
example, Tuskan et al. (2018) selected only 280 genotypes to phenotype callus growth from a
resequenced GWAS population of 1,084 P. trichocarpa genotypes. A similar GWAS of callus
dedifferentiation into shoots in P. euphratica was limited to 297 genotypes (Zhang et al., 2020).
Nguyen et al. (2020) noted the “extremely laborious” nature of phenotyping in vitro traits as a
constraint in their GWAS of callus formation across 96 rose genotypes (Nguyen et al., 2020).

Because of the importance of a large and precise sample for statistical power in GWAS
(Lopez-Cortegano & Caballero, 2019), we developed a computer vision (CV) method to measure
regeneration from sequential images of cut, regenerating stems. Over 40 published studies have
made use of diverse CV methods in GWAS of plants, including Arabidopsis, maize, wheat, rice,
sorghum, soybean and barley (reviewed by Xiao et al., 2021). They have used high-throughput
scanners and thresholding to phenotype leaf traits such as size, shape, and color (Yang et al.,
2015), and employed a wide range of sensors (e.g., RGB, hyperspectral, CT, infrared) and
algorithms (e.g., thresholding-based methods, support vector machines, and neural networks). In
recent years neural networks similar to those employed in the present study have outperformed
earlier methods and become the dominant approach used for diverse CV tasks. In the context of
plant phenotyping, this was demonstrated by the unparalleled performance of neural networks
for the Leaf Segmentation Challenge benchmark dataset (Aich & Stavness, 2017; Dobrescu et
al., 2017).
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Here, we report identities of numerous potential regulators of in planta regeneration in
Populus trichocarpa through application of several GWAS pipelines. We employed a population
with over 1,200 wild genotypes whose SNPs display extremely low linkage disequilibrium (LD),
used a very high number and density of SNP markers (up 34 million depending on GWAS
method), and phenotyped regeneration precisely using a high-throughput CV pipeline. We report
a large number of statistically-supported gene candidates with diverse physiological roles that
include hormone signaling, plant stress response, control of cell division, and cell wall structure

— as well as many genes whose function is yet to be determined.

Materials and Methods

An overview of the experimental population and analysis pipeline is shown in Fig. 1.
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Fig. 1. Overview of experimental workflow. Plots in the “statistics” panel are shown for
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transformation of the trait of Callus Area at week two and analysis of this trait via MTMC-

SKAT.

Plant materials

We utilized an expanded version of the previously reported re-sequenced P. trichocarpa
GWAS population (Tuskan et al., 2018; Bdeir et al., 2019; Weighill et al., 2019; Chhetri et al.,
2020; Chen et al., 2021). The population was expanded to include an additional 441 genotypes,
particularly from Northern California, Oregon and Idaho, filling a geographical gap that existed
in the previous population (Fig. 2). While this clone bank is kept at multiple locations,
phenotyping in this study only made use of the replicate in Corvallis, OR, featuring a total of
1,307 clones in the population (out of 1,323) and for 1,219 of which regeneration phenotyping
was performed. Clones were grown at two field locations in Corvallis, OR: one location planted
in 2009 featuring the original GWAS population, and another planted in 2015 featuring the
newly added clones. Dormant cuttings were taken in the winter of 2018, 2019, and 2020, frozen,
and then rooted up to one year later. Plants were then regularly pruned and fertilized to ensure
there were healthy green leaves suitable for sterilization and introduction into tissue culture. A
second greenhouse population was established and allowed to go dormant in winter; plants from
this source were occasionally used to replace plants in the main greenhouse population that

provided plant materials throughout the year.
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Figure 2. Origins of P. trichocarpa clones used to generate SNP set. A total of 1,323 wild clones
were collected over a geographical range across the pacific northwest region of the USA and the

southwest of Canada. Tree location is shown for 1,301 genotypes for which precise location data

1s available.
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90 Sequencing and SNP set preparation

91 We analyzed the distribution of SNPs after resequencing of 406 additional genotypes by
92  the DOE Joint Genome Institute. SNP calling was done at Oak Ridge National Laboratory (Yates
93  etal,2021). There was a total of 40.4M SNPs prior to filtering for minor allele frequency

94  (MAF) and additional quality criteria. The density and consistency of SNP data on each

95  chromosome were assessed using the R package CMplot (Fig. S1) and by producing histograms
96  of gap sizes for each chromosome.

97

98  Assay of regeneration

99 Frozen stem cuttings were incubated at 4° C for 2-4 weeks, then placed in 50mL falcon
100  tubes with water for five weeks. Based on preliminary experiments (data not shown), we found
101  that treatment of the cut top of each stem with 10uL of 0.5mg/mL thidiazuron (TDZ) in water
102  improved callus regeneration considerably (37% of genotypes produced shoots, compared to
103 24% without TDZ). After application of TDZ to a given stem tip, a 1.5mL microcentrifuge tube
104  was inverted over the stem tip to prevent desiccation during regeneration (as shown in Fig. 1).
105  On a weekly basis beginning the second week, stem tips were imaged from overhead using a
106  Canon Rebel XSi DSLR camera attached to a rack mount.

107 Due to practical limitations on the numbers of clones that could be assayed for

108  regeneration simultaneously, subsets of the study genotypes (termed “phases”) were assayed at
109  one time, with no more than 400 cuttings per phase. Images were taken on a weekly basis from
110  the second week through the fifth week, with the exceptions of weeks four and five in the first
111  phase and week four in the third phase. There were two replicate plants measured for all but the

112 first three phases, where only a single replicate was used.

113

114  CV pipeline

115 To perform annotation of images for CV, 249 images were randomly sampled from the
116  first seven phases and manually annotated using the Intelligent Deep Annotator for Segmentation
117  (IDEAS) graphical user interface (Yuan et al., 2022). As described in our prior work, these

118  samples were used to train a convolutional neural network (PSPNet) to segment images of

119  regenerating stem tips with each pixel labeled as one of four classes: callus, shoot, unregenerated
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120  stem and background. At each timepoint, two traits were computed: the proportion of total plant
121  area which consists of callus (henceforth, “callus area”), and of shoot (“shoot area”).

122

123 Data preparation

124 For replicated samples, the mean value of each trait across the two replicates was

125  computed and used in downstream analysis. For genotypes lacking replication, the single

126  unreplicated trait value was used.

127 Additional traits were computed by performing principal component analysis (PCA)

128  using “stats::princomp” in R over three groups of traits: 1) callus area traits at all timepoints; 2)
129  shoot area traits at all timepoints; and 3) both callus area and shoot area at all timepoints.

130  Genotypes missing data for a given trait at any timepoint were excluded from a given PCA.

131  Scree plots were evaluated to estimate the number of PCs representing significant proportions of
132 trait variation.

133 The normality of traits was assessed using Q-Q plots, histograms, Shapiro-Wilks tests
134 and Pearson correlation coefficients computed against theoretical normal distributions with the
135  same mean and standard deviation as the given trait. To avoid severe violations of normality that
136  may lead to inflated error rates, all traits were transformed prior to statistical analysis. The most
137  basic transformation applied was a removal of zero values followed by Box-Cox transformation.
138  For certain PC traits, a spike was observed at particular values, which corresponded to genotypes
139 with zero values for all traits used in the given PCA; these genotypes were consequently

140  removed. In cases where we determined that thresholding or extreme outlier removal was

141  necessary, these treatments were performed prior to Box-Cox. In addition, as an alternative to
142 Box-Cox transformations, rank-based inverse normal (RB-INV) transformations were performed
143 for difficult distributions (Fig. S2, Table S1-2).

144

145  Association mapping

146 Because of the distinct assumptions and data types for which various GWAS methods are
147  suited, we employed an analysis pipeline that made use of four GWAS methods. First, Genome-
148  wide Efficient Mixed Model Association (GEMMA) (Zhou & Stephens, 2012) was used to

149  perform single-marker tests with continuous traits (following transformations toward normality)

150  using a kinship matrix generated from genome-wide SNPs as a covariate to adjust for population
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151  structure. Prior to GEMMA, SNPs were filtered based on minor allele frequency (MAF) > 0.05
152 and a missing rate of given SNPs across genotypes > 0.10 using PLINK, resulting in ~13.2

153  million SNPs. GEMMA was used to compute Wald p-values for SNP effects, using the *-lmm 1"
154  option. To speed computation, GEMMA was parallelized using the GNU Parallel (Tange, 2020)
155  framework to simultaneously run each given trait on a CPU core. In addition to performing

156  association mapping, GEMMA was used to provide an estimate of narrow-sense SNP heritability
157  (h?snp) for each trait. Downstream GWAS and gene candidate evaluation was performed for

158 traits with estimated h?sxp above 0.10.

159 Second, the Generalized Mixed Model Association Test (GMMAT) (Chen et al., 2016)
160  was used for single-marker tests with the same kinship covariate; however, rather than using
161  continuous trait variables, GMMAT applies logistic regression and works with binarized traits.
162 Due to the computational expense of computing Wald p-values via logistic regression, we first
163  performed the GMMAT variance component score test (‘glmm.score”) for a genome-wide screen
164  and then extracted a subset of 100 or 1,000 SNPs with the lowest score test p-values from each
165  run and computed Wald p-values for these (using "glmm.wald"). This GMMAT workflow was
166  performed with two SNP subsets prepared by PLINK: one had a missing rate threshold of 0.10
167  and an MAF threshold of 0.05 (7.7 million SNPs), and the second had the same missing rate

168  threshold but an MAF threshold of 0.01 (13.2 million SNPs).

169 Third, we applied Fixed and Random Model Circulating Probability Unification

170  (FarmCPU) (Liu et al., 2016), which provided single-marker tests for continuous, transformed
171  traits similarly to GEMMA, but with an adjusted kinship covariate for improved statistical

172 power. The package FarmCPUpp (Kusmec & Schnable, 2018) was used, together with an R

173 function to apply resampling for optimization of significance threshold (*p.threshold") for

174 inclusion of SNPs in the kinship matrix calculation. To avoid singular or near-singular matrix
175  errors that can result when multiple SNPs passing this threshold are in strong LD, we performed
176  this workflow using a SNP set that was filtered by PLINK on the basis of LD (using parameters
177  "--indep-pairwise 100kb 10 0.7") after filtering by MAF (0.05) and missing rate (0.10), resulting
178  in~2.3M SNPs.

179 Finally, for multiple-marker tests we applied the SNP-set (sequence) Kernel Association
180  Test (SKAT) (Ionita-Laza et al., 2013) with untransformed traits. SKAT was performed on

181  overlapping 3kb windows staggered by 1kb, using a set of 34.0 M SNPs filtered for a missing
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182  rate of 15%. The R extension Multi-Threaded Monte Carlo SKAT (MTMCSKAT) was used to
183  run SKAT on a high-performance cluster, COMET (made available through NSF XSEDE

184  (Towns et al., 2014). We calculated empirical p-values for top associations to avoid Type I and
185  Type II error resulting from the non-normal distributions of untransformed traits. Two means of
186  controlling for population structure were tested and compared with this workflow. We compared
187  a“P” model in which structure is represented by principal components derived from SNPs

188  (computed with PLINK) to a “Q” model in which structure is alternatively represented by

189  subpopulation estimates produced by fastSTRUCTURE (Raj et al., 2014).

190 To produce PCs for the P model, we employed a filtered set of ~10.3M SNPs with MAF
191 > 0.05 and consulted scree plots and used K-means clustering to inform about the number of PCs
192 appropriate for representing population structure; as a result we used 6 PCs for the P model.

193 To produce a Q matrix for use with SKAT Q models, we used fastSTRUCTURE using a
194  subset of ~72k SNPs filtered based on LD, MAF, and missing rate using PLINK with parameters
195 --indep-pairwise 100kb 10 0.05 --maf 0.05 --geno 0.1°. Ten replicates were performed with
196  fastSTRUCTURE for each possible number of subpopulations (K) ranging from 3 to 12. To

197  understand subpopulations in an evolutionary context, we used SNPhylo (Lee et al., 2014) to
198  produce a dendrogram from our SNP data. SNPhylo was run with a subset of ~129k SNPs

199  prepared by PLINK with parameters * --indep-pairwise 10kb 10 0.05 --maf 0.05 --geno 0.1".
200 Geographical locations (longitude and latitude) were recorded for 1,301 of 1,323

201  genotypes in the SNP set and plotted against traits, SNP-derived PCs (for SKAT “P” model),
202  primary subpopulation information (for SKAT “Q” model), and dendrogram information (from
203  SNPhylo) using the ‘phylo.to.map” function in Phytools (R) and Google Maps “My Maps”.

204  Phytools was also used to cross-reference dendrograms with traits, SNP-derived PCs and

205  primary subpopulation information (using function ‘phylo.heatmap) (Revell, 2012).

206 To inform about the appropriate window size for SKAT, as well as to inform about the
207  likelihood of genes proximal to associated SNPs or SNP windows being directly involved in
208  affecting traits (vs. being associated as a result of genetic linkage), we evaluated LD decay. To
209  facilitate efficient computation of LD decay, a reduced SNP set (~78k SNPs) was prepared by
210  PLINK with parameters "--maf 0.05 —geno 0.1 —thin 0.01". Further reduced SNP files were

211  prepared with PLINK to only include genotypes in the “Oregon” and “California”

212 subpopulations (named based on general location of most genotypes in each). PLINK was further
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213 used to compute pairwise LD between all SNPs on each given chromosome with each SNP set.
214  Using R, the average LD for each possible distance (e.g. 1bp, 2bp, 3bp... up to 50kb) was

215  computed and plotted for the whole population as well as each of the two selected

216  subpopulations.

217 Statistically significant associations from the various pipelines were first determined by
218  computing FDR (a = 0.10) and Bonferroni thresholds (o = 0.05). The Bonferroni thresholds were
219  computed given the number of tests equal to the number of SNPs (for single-marker tests

220  GEMMA, GMMAT and FarmCPU) and the number of SNP windows (in the case of SKAT). We
221  then extracted lists of SNPs with p-values below these thresholds for interrogation.

222 We then evaluated the extent to which multiple SNPs supported the association of a

223 nearby gene, whether individual SNPs met the FDR or Bonferroni statistical thresholds or not.
224  We implemented the augmented rank truncation (ART) method (Vsevolozhskaya et al. 2019) to
225  scan Wald p-values from GEMMA and GMMAT and identify cases where a SNP produces a p-
226  value below 1*107 and is within 500bp of at least 5 additional SNPs with p-values below 1*10*
227  when considering the upper half of top-ranking SNPs. For each of these windows, a combined p-
228  value was computed for the extracted SNPs. A Bonferroni threshold for ART p-values was

229  computed (a = 0.05) from the approximate number of independent tests (contiguous assembled
230  genome size / ART window size). The Bonferroni threshold of ~1.27*107 was computed using
231  the number of independent tests of (~3.94*10° 1kb windows spanning the ~394 Mb of

232 contiguous assembled chromosomes) and is notably less conservative than the Bonferroni

233 threshold used for raw p-values from GEMMA/GMMAT (henceforth, “conservative

234  Bonferroni”), as computed from the total number of tests (as low as ~3.79*10, given up to 13.2
235  million SNPs. However, it is well known that Bonferroni thresholds for individual SNPs

236  erroneously consider each SNP as an independent test, though very large numbers of SNPs are of
237  course in LD.

238 To determine on a high-throughput scale which genes are likely to be responsible for

239  statistically significant quantitative trait loci (QTLs; either SNPs or SNP windows), we used R
240  scripts to reference genome and genome annotation data available through Phytozome

241  (phytozome.doe.gov) (Tuskan et al., 2006). In this workflow, the position of loci were evaluated
242  for candidate genes only when these loci represent the “peak” of a signal, determined by

243 checking for any other loci within 3kb with a more significant p-value. The candidate gene
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responsible for the significance of a given locus was assumed by the workflow to be the gene
that encompasses or is closest to the locus, where one exists within Skb. The R package
InterMineR (Kyritsis et al., 2019) was used to collect Phytozome data on gene function,
Arabidopsis homologs, and gene ontology terms and organized these by locus. The GreeNC
database was used to identify possible noncoding regulatory RNAs among gene candidates

(Di Marsico et al., 2022). For the top gene candidates, particularly those passing the conservative
Bonferroni or FDR (a = 0.10) thresholds, or those passing the less conservative Bonferroni
thresholds used for ART and among the five most-significant GEMMA-ART or GMMAT-ART
associations for a given trait, Integrative Genomics Viewer (IGV) (Robinson ef al., 2011;
Thorvaldsdéttir et al., 2013) was used to manually investigate gene position relative to
significant SNPs, including consideration of other nearby genes, distance to the putative

transcription start site, and direction of transcription.

Evaluation of possible adaptive role of regeneration traits

Following the identification of subpopulation structure when fastSTRUCTURE was used
to produce covariates for the SKAT “Q” model, we aimed to further investigate the relationships
between traits, geography and theoretical ancestral subpopulations to gain insights into the
possible adaptive evolution of these regeneration traits. To this end, we used 'Im" (R) to
construct linear models regressing each trait over latitude and the Q matrix featuring estimates of
each theoretical ancestral subpopulation’s contribution to each individual’s genome (from

fastSTRUCTURE). We then visualized relationships, latitude and subpopulation using “ggplot2
R).

Results

SNP set for P. trichocarpa provides comprehensive view of natural variation

The SNP set produced for this population displays polymorphism across all regions of
contiguous chromosomes represented in the reference genome (Fig. S1). Poplar clones collected
for the GWAS clone bank represent a wide range of geographic diversity, nearly spanning the
natural range of P. trichocarpa across British Columbia and the Pacific Northwest of the United

States, including Idaho and northern California (Fig. 2). There is clearly very strong natural
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273 intrachromosomal recombination, as LD decay occurs rapidly reaching R? = 0.2 within 2kb

274  whether computed for the whole population or either of two prominent subpopulations (Fig. 3).
275 We attempted to gain insights into the possible role of adaptive evolution in regeneration
276  traits via relationships between the traits, latitude and theoretical ancestral subpopulation

277  (Methods). At o = 0.005, there appears to be a significant effect of latitude of clone origin on the
278  trait of callus area at week four, while controlling for subpopulation. Several other relationships
279  are significant at 0.05, between various callus traits and latitude and/or subpopulation (Table S3).
280  Visualization of the relationships between traits and latitude along with regression trendlines
281  showed a positive relationship between many regeneration traits and increasing latitude, but the
282  significance of these trends was lost when considering clones of each given primary

283  subpopulation independently (Fig. S3). Considering the lack of independence between variables
284  of theoretical ancestral subpopulation and latitude, we advise caution in overinterpreting these
285  results as evidence of an adaptive role of regeneration, but also note several significant or

286  borderline-significant trends indicating such a role may exist.

287 Relationships between evolutionary clades, geography, and population structure suggest
288  that that P. trichocarpa, despite its dioecy and long-distance gene flow, exists with a number of
289  subpopulations that are statistically distinct albeit highly admixed. A total of 110

290  fastSTRUCTURE runs were performed, including 10 replicates for each value of K

291  (subpopulation number) ranging from 2-13. The log marginal likelihood appears to be

292  maximized with K equal to 6 or 7 (Fig. S4). For each individual in the population, the most

293  closely related subpopulation was extracted and considered the primary subpopulation.

294  Geographic and evolutionary patterns were revealed by cross-referencing of a dendrogram

295  (SNPhylo) with primary subpopulation and geographic location. These plots were evaluated with
296  primary subpopulations from fastSTRUCTURE models both with K=6 and K=7 (Fig. S5); the
297  K=7 model showed the strongest alignment between phylogeny and geography. Approximately
298  from Seattle northward, individuals display a heavy degree of admixture and fail to cluster into
299  clear subpopulations. Otherwise, the existence of several subpopulations is supported by

300 agreement between phylogenetic clades, geographic location, and primary subpopulation label
301  from fastSTRUCTURE. These include distinct subpopulations in the western region of Idaho
302  and nearby eastern Oregon and Washington (and extending all the way to the eastern

303  Washington Cascades near Yakima), the Willamette Valley of central western Oregon and
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304  nearby Western Washington, southwest Oregon and nearby northern California, northwestern
305  Washington extending into southwestern Canada, and central western to northwestern Canada
306  (Fig. 2).

307 We further attempted to summarize population structure by performing PCA over SNP
308  data using PLINK. Similar to fastSTRUCTURE subpopulation estimates, PCs explaining a
309  substantial portion of variance show clear relationships with geography and most of the same
310  phylogenetic clades (Fig. S6-7). The use of 6 PCs to represent population structure in SKAT
311  models, as discussed below, was supported by the scree plot (Fig. S8) and the relatively minor
312 contributions of subsequent PCs to k-means clusters computed from PCs (Fig. S9).

313
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Figure 3. Linkage disequilibrium decay curves for Oregon (“OR”) subpopulation and California
(“CA”) subpopulation. Primary subpopulations were determined using fastSTRUCTURE, with a
K =7 model (Methods).
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Figure 4. Information on theoretical ancestral subpopulations (fastSTRUCTURE, with K=7
model), cross-referenced with geographical locations of clones. Data is shown for the 1,301
clones for which location data is available (out of 1,323). Points are labeled by the theoretical
subpopulation accounting for the largest portion of ancestry for each clone. This plot was

produced with Google Maps MyMaps.
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314  Trait transformations

315 Prior to transformations, most traits displayed marked non-normal characteristics as

316  indicated by Q-Q plots, histograms, Shapiro-wilk tests, and Pearson correlation coefficients of
317  each distribution with a normal distribution featuring the same mean and standard deviation. In
318  most cases the improvement in normality after transformation was marked (Table S1; Fig. S2;
319  data not shown). Non-normal characteristics were reduced substantially in most cases by

320  excluding genotypes with zero values and applying a Box-Cox transformation (e.g., Fig. S2). For
321  the traits of callus or shoot area at each timepoint, based on visual inspection and consult with a
322  statistical consultant, the improvement in metrics of normality was deemed adequate for linear
323  models. All PCA-derived traits necessitated additional treatments to avoid severe violations of
324  the normality assumption of linear models, including removal of outliers and in some cases

325  removal of values below an elbow in the frequency distribution (estimated as the position where
326  the second derivative of the probability frequency distribution is maximum) (Table S2).

327

328  Principal components as proxies for complex patterns of regeneration

329 Scree plots and heat maps of loadings revealed common trends in regeneration across
330 timepoints and regenerating tissue types (callus and shoot). These results were obtained for three
331  different PCA analyses: first, for both callus and shoot area at all timepoints (Fig. 5), and then
332 with callus and shoot data analyzed independently over all timepoints (Fig. S10). In all three
333 cases, the PC explaining the most variation (PC1) represented a tendency of the tissue(s)

334  included in PCA to regenerate well across all timepoints. Latter PCs provided proxies for more
335  complex patterns of regeneration. PC2 from the PCA over callus traits appears to represent high
336 levels of callus regeneration at early, but not later timepoints. PC2 from the PCA over all callus
337  and shoot traits appears to represent a tendency for callus to regenerate robustly, but to fail to
338  develop into shoots. Subsequent PCs, for each batch of traits, represented a relatively small

339  proportion of variance explained and were thus not analyzed for gene candidates.

340
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Figure 5. Results from PCA over all callus and shoot traits. A) Scree plot; B) Heat map of

loadings from PCA.

341 Genes implicated by significant quantitative trait loci (QTLs)

342 We interrogated traits with h?snp above 0.10 for candidate genes (Table S4). Across all
343 four GWAS models applied (GEMMA, GMMAT, FarmCPU and SKAT), we report a total of 8
344  unique QTL peaks with p-values passing the Bonferroni significance threshold, as well as 46

345  passing the FDR (alpha = 0.10) threshold. All Bonferroni-significant associations are inside or
346  within 5kb of a gene found in the genome annotation, as well as 34 associations (73.91%)

347  meeting the latter threshold (Fig. 6-8, Table S5-6). We found 139 unique QTL peaks from

348  applying our implementation of ART to GEMMA results (Table S7), as well as 48 from applying
349  ART to GMMAT results (Table S8).

350 We compared results from complementary SKAT models with population structure

351  represented either by the fastSTRUCTURE Q matrix with 7 subpopulations (““Q model”) or by
352  the first 6 PCs (“P model”) for a subset of four traits (callus area at wk. 4 and wk. 5; shoot area at
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wk. 4 and wk. 5). These models displayed a remarkable level of agreement, especially for p-
values that met thresholds of significance and were thus selected for validation by computing

empirical p-values with MTMCSKAT (Fig. S11). Several of the most promising candidates,

based on the biology of their homologs in Arabidopsis, are shown in Table 1.
(a) (b)
140 140

120 120

m Not within 5kb

100 100
80 80
60 60 -
40 40

20 — -zo
A _ m |

FarmCPUpp GEMMA GMMAT  MTMCSKAT GEMMA GMMAT

Figure 6. Barplots summarizing the numbers of associations from each GWAS method, with
two types of significance thresholds, as well as within a 5kb distance threshold of the nearest
gene. QTL peaks were taken as the point with the lowest p-value at any given peak, where
multiple points within the same peak may otherwise pass a given significance threshold. A) QTL
peaks passing the Benjamini-Hochberg threshold (FDR; a = 0.10); B) QTL peaks passing ART-
Bonferroni threshold (o = 0.05, N of # 1kb windows in genome).


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10- Method
e GEMMA
GEMMA-ART
8.

8 9 10 11 12 13 14 15 16 17 18 19

Figure 7. Manhattan plot for GEMMA results for the trait of callus area at week four: Black and
orange lines show Bonferroni significance thresholds for GEMMA results with independent
SNPs, and for ART applied to GEMMA over 1kb windows of SNPs, respectively. Black circles
represent tests of individual SNPs by GEMMA, while orange triangles represent 1kb windows
tested by ART applied to GEMMA results.
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Figure 8. Plots produced by Integrated Genome Viewer (IGV) show zoomed-in portions of
Manhattan plots aligned to the genome annotation for P. trichocarpa (v3.1). Introns, untranslated
regions and exons are respectively visualized with increasing thickness of bars. Labels in gray
boxes were manually added to show gene IDs and the strand on which genes are found. A)
Results on chromosome 6 for GEMMA of Box-Cox transformed trait Shoot PC2; B) Results on
chromosome 2 for GEMMA of Box-Cox transformed trait Shoot PC1, showing an association

found significant via ART. Examples of plots for additional loci can be found in Supp. Materials
1.
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PROTEIN 1
(EBF1)
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protein 3 (VQ3)
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Score
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363
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Similarity

60.40%

86.90%
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84.70%

94.40%
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SANT/MYB 3
(RSM3)
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(0=0.1) 5w 010G105600 | 4G16110 REGULATOR 2
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ART-Bonf. Shoot GEMMA Box-Cox 5222 5’ 103
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PC1
Callus,
Potri. AT FANTASTIC
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PCl1
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ART-Bonf. GEMMA Box-Cox 5749 5 227
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PEROXIREDO
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ART-Bonf. GEMMA RB-INV 2346 5 XIN-II-E 105
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(PRXIIE)

Table 1. Fifteen gene candidates with Arabidopsis homologs that have putative roles in
biological processes related to in vitro regeneration. Relevant literature is discussed for each of
these candidates (Discussion). Distance (Dist.) of QTLs from the transcription start site is shown
for intergenic associations. Score and similarity percentage is shown for Smith-Waterman
alignment of poplar gene candidates with Arabidopsis homologs. Remaining gene candidates are

summarized in Table S6-8.

358  Discussion

359

360 Distinct subpopulations correlate with phylogeography
361

75.70%

69.30%

54.60%

54.60%

62.60%

78.90%
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362 The existence of distinct geographical subpopulations of P. trichocarpa is supported by
363  cross-referencing of results from population structure analysis (fastSTRUCTURE),

364  phylogenetics (SNPhylo), and geographical information for genotypes. These distinct

365  subpopulations appear clearly in the southern portion of the population, whereas the northern
366  portion displays a remarkable degree of admixture with mixed origins across the southern

367  subpopulations. We speculate that, following the establishment of distinct southern

368  subpopulations during the Last Glacial Period (Armstrong et al., 1965), the recession of glaciers
369  allowed for these subpopulations to spread to the northern region—where there has not yet been
370  sufficient time or subdivision for distinctive populations to form. In contrast, the disjunct nature
371  of many of the southern population groups is likely to have provided historical opportunities for
372  differentiation. While previous work using approximately 12 isozyme loci did not reveal distinct
373  subpopulations of P. trichocarpa over a more narrow, but similar geographical range (Weber &
374  Stettler, 1981), our work demonstrates the much-increased power of genome-scale SNP data—
375  where millions of loci are surveyed—to detect subpopulations.

376

377  High-throughput phenomics support scale and precision of GWAS

378 The high-throughput phenomics workflow used for this work was described, in part, by
379  Yuan et al. (2022). The IDEAS graphical interface for image annotation enabled the production
380  of alarge set of training examples (249 images in total) with pixelwise labels for callus, shoot
381  and unregenerated tissues. This training set enabled a deep segmentation model that was used to
382  automatically segment the 4,647 remaining images. Although generation of the training samples
383  was time-consuming, performing manual segmentation for all images would have been time-
384  prohibitive, and summarizing traits with an ordinal scale instead of pixelwise statistics would
385  have risked the introduction of subjective biases and violation of linear model assumptions—
386  while sacrificing much precision and detail. This system or others that are functionally

387  comparable (Russell ef al., 2008; Dutta & Zisserman, 2019) can be made more accessible and
388  practical with innovations to reduce the number of clicks needed for image annotation by further
389  semi-automation of annotation. Overall accuracy in segmentation of the “validation” set of

390  images was 79.21% as measured by Intersection over Union (IoU), while relatively homogenous

391  stem tissues had loU of 88.14%, and highly heterogenous callus tissues had 67.40%. Advances
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392  in the architectures of deep segmentation neural networks can contribute to improved accuracy in
393  segmenting complex and heterogenous tissues of interest to biologists.

394

395 Complementary GWAS approaches provide variety of insights

396 Transformation of traits to approximate normality is commonly employed for biological
397  data during GWAS to avoid linear models’ assumption of normality of residuals. In our study,
398  because traits were computed as the proportion of plant tissue labeled by CV as callus or shoot,
399  and many genotypes failed to develop either tissue, the resulting distributions feature a mix of a
400  zero and nonzero values. Among traits in our study, the proportion of genotypes with zero values
401  ranged from 89 (for callus area at week five) to 1,106 (for shoot area at week two). To help avoid
402  violations of the normality assumption, genotypes featuring zero values were excluded from

403  GEMMA and FarmCPU tests for each trait, but presence/absence tests were performed using
404 GMMAT that employed the observations of a complete absence of callus and/or shoot. GMMAT
405 and SKAT offer two complementary approaches to avoid this assumption altogether, thus

406  obviating the need to exclude totally recalcitrant genotypes and thus suffer reduced statistical
407  power.

408 Single-SNP methods including GEMMA and GMMAT share the advantage of providing
409  insights into the specific SNPs most likely to be causative with respect to the effect of a gene on
410  atrait. In most cases in our results, these appear to be regulatory SNPs in promoters, suggesting
411  that variation in gene expression, rather than sequence, is the primary cause of trait variation.
412  However, single-SNP methods suffer from relatively low statistical power since by their nature
413 they treat each SNP-trait relationship as an independent test and do not consider combined

414  effects of nearby SNPs. In contrast, SKAT provides improved statistical power by allowing tests
415  for the combined effects of adjacent SNPs grouped into SNP windows, but only provides a single
416  p-value for a whole SNP window. Thus, our SKAT results do not make clear which SNPs in a
417  given window are responsible for trait variation, and as windows often overlap coding and

418  regulatory regions, we lack insight into whether SKAT-implicated candidates are responsible for
419 trait differences due to variation in their regulation or protein structure. Moreover, even when a
420  given window is entirely intergenic, we lack an ability for straightforward investigation of

421  specific promoter motifs that may be implicated by SKAT due to the lack of single-SNP
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422  resolution. Finally, SKAT involves the upweighting of rare SNPs and results are therefore less
423 likely to feature top gene candidates regulated by common variation (Wu ef al., 2011).

424 We therefore sought to employ a “best of both worlds” approach to improve the statistical
425  power of GEMMA and GMMAT by considering combined effects of adjacent common SNPs
426  without losing clarity into the specific SNPs most likely to be causative. To this end, we

427  employed ART as a post-hoc analysis of GEMMA and GMMAT results. As ART involves the
428  computation of combined p-values over SNP windows and does not assume independence of
429  SNPs, we obtained an increase in statistical power both via both reduced p-values for SNP

430  windows compared to individual SNPs (Vsevolozhskaya ef al., 2019), and by the ability to use a
431  less-stringent Bonferroni threshold due to the number of tests being equal to the number of 1kb
432 SNP windows rather than the number of individual SNPs. Our usage of ART enabled the

433 detection of candidate genes including FAF2, CRF4 and PRXIIE (Table 1) that otherwise would
434 have been missed in our study. Although we are unaware of applied GWAS studies utilizing
435  ART, our results demonstrate the potential for this method to increase effective statistical power
436  in GWAS.

437 Whereas prior work describes improved statistical power of FarmCPU relative to less
438  complex Mixed Linear Models (MLM) methods such as GEMMA (Liu ef al., 2016; Kaler et al.,
439  2020), we report only a single significant association from our FarmCPU tests. This is likely due
440  to loss in statistical power resulting from LD-based pruning to avoid singular matrix errors,

441  which can affect highly structured populations such as ours in which multiple pseudo-QTNs

442  added to FarmCPU models match between genotypes. Nonetheless, the single gene candidate
443  revealed by FarmCPU, RADIALIS-LIKE SANT/MYB 3 (RSM3), may be among the most

444  promising for use as a biotechnological tool to enhance regeneration (discussed below).
445

446  Candidate genes have diverse roles in signaling and development

447 Our results indicate that natural variation in capabilities for in planta regeneration in

448  poplar is controlled by numerous genes with functionally diverse roles, including in cell wall and
449  membrane structure, hormone signaling, anthocyanin production and reactive oxygen species
450  (ROS) regulation. Several of the most promising gene candidates, organized by biological

451  function of orthologs in Arabidopsis, are briefly discussed below.

452
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453 Regulation of cell wall adhesion

454 Potri.006G276200 encodes a member of the FASICLIN-LIKE ARABINOGALACTAN
455  (FLA) PROTEIN family and is implicated by a QTL three bases upstream of the transcription
456  start site. We report this association from GMMAT of callus area at week two, the trait with
457  greatest trait with greatest h’sxp as estimated by GEMMA. The significance of this QTL passes
458  the most stringent multiple testing correction method applied — the Bonferroni threshold (o =
459  0.05) with each individual SNP considered an independent test. No other QTLs associated with
460  this trait meet the same threshold, nor do any other QTLs from GMMAT with any trait in our
461  study.

462 The FLA gene family (~18 genes in Arabidopsis) is differentially expressed during in
463  planta embryogenesis (Costa et al., 2019), but regulation in the context of in vitro regeneration
464  has received little study. AtFLA1 was found to be upregulated during CIM incubation media,
465  while AtFLA2 upregulation occurred upon transfer of explants to SIM. Knockout of AtFLA1
466  was reported to confer an ability for efficient in vitro shoot regeneration to the otherwise

467  recalcitrant Col-0 ecotype, while contrarily leading to loss of efficient regeneration in the

468  regenerable ecotype W52. Thus, effects of differential expression, as is likely to be a

469  consequence of the polymorphism from the SNP location, may be genotype-dependent in poplar
470  as well.

471 We found an association of shoot development (week four area and PC1) with a window
472  of SNPs including a portion of the promoter and first exon of Potri.019G101900 that is related to
473 Arabidopsis EXPANSIN B3 (86.9% similarity by Smith-Waterman alignment). Expansins

474  facilitate the process of cell wall loosening by regulating pH in cell walls, with various expansins
475  expressed during different stages of development. Mutations of this gene superfamily have been
476  studied in several plant species, including Arabidopsis, tomatoes, rice, soybean, and tobacco.
477  Overexpression typically produces phenotypes of enhanced growth, such as increased size of
478  plant cells and tissues, as well as reduced fruit firmness. Knockouts, in contrast, lead to reduced
479  growth and increased firmness (Marowa et al., 2016). Expansins are believed to be key

480  regulators of cell wall expansion downstream of auxin, a key hormone for control of

481  regeneration (Majda & Robert, 2018).

482


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

483

484  Regulators of wound-responsive hormone signaling

485 Potri.006G254100 encodes a putative homolog of EIN3-binding F box protein 1 (EBF1).
486  Molecular evidence from Arabidopsis suggests that EBF1 facilitates ubiquitin-mediated

487  degradation of ETHYLENE-INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1) and that this
488  degradation is prevented when EIN3 and EIL1 are stabilized by ETHYLENE-INSENSITIVE 2
489  (EIN2) (An et al., 2010). Arabidopsis knockouts of EIN2 (ein2) were used to supply cotyledon
490  explant material for an in vitro regeneration assay, which revealed an approximate fourfold

491  reduction in shoot regeneration in the mutants. The same assay revealed a roughly threefold

492  increase in shoot regeneration with knockout of HOOKLESS1 (HLS1; Chatfield & Raizada,
493  2008), a gene encoding a putative n-acetyltransferase with a mechanistically uncharacterized role
494  downstream of EIN3 in regulating a range of ethylene-regulated traits including apical hook

495  development and in vitro regeneration. Also downstream of EIN3 is positive and negative

496  regulation of numerous genes across nine hormone pathways, suggesting that EIN3 represents a
497  key modulator of hormone crosstalk (Chang et al., 2013). In support of this, we present at least
498  eight gene candidates implicated as interacting directly or indirectly with EIN3 and upstream
499  regulators of EIN3 (Fig. 9). Our results, considered together with mutant studies in Arabidopsis,
500  suggest that these candidates mediate crosstalk between ethylene, jasmonic acid (JA), and

501  salicylic acid (SA) signaling pathways.
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Figure 9. Interactions involving Arabidopsis homologs of eight gene candidates and associated
regulators were identified by literature review, providing an understanding of the broader context
of hormone crosstalk between ethylene, JA, and SA pathways as they relate to regeneration.
Node placement was assisted by the Force Atlas 2 algorithm as implemented in Gephi. This Fig.
was produced using BioRender (biorender.com). Standard acronyms and abbreviations can be
found on The Arabidopsis Information Resource (TAIR; 2022) and are listed in Table S9.
Evidence for interactions is summarized in Table S10.
502
503 Our GWAS results suggest a central role for salicylic acid (SA) and related genes. NPR1
504 is aregulator of salicylic acid signaling via a mechanism that depends on at least three genes
505  with homologs implicated by QTLs in our GWAS (Fig. 9). Gene candidate Potri.003G194600
506  encodes a homolog of TGACGT motif transcription factor TGA6. TGA6 and other redundant
507  members of the TGA family have been reported to regulate transcription of NPRI (Hussain et
508 al., 2018), in addition to interacting with NPR1 (Boyle ef al., 2009) to form a histone
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509 acetyltransferase complex responsible for SA-associated epigenetic reprogramming (Jin ef al.,
510  2018). Simultaneous knockout of functionally redundant TGAs (Zhang et al., 2003b) or of NPR1
511  (Cao et al., 1997) confers a loss of SA signaling, including SA-mediated pathogen resistance.
512 Contrarily, constitutive SA signaling, dwarf morphology, and enhanced pathogen resistance

513  results from knockout of the upstream regulator SUPPRESSOR OF NPR1, CONSTITUTIVE 1
514  (SNCI) (Zhang et al., 2003a; Yang & Hua, 2004). This phenotype is reversed by concurrent

515  knockout of MODIFIER OF SNCI1,4 (MOS4), a homolog of our gene candidate

516  Potri.015G041800 (Palma et al., 2007). Whereas mos4 reverses the dwarf phenotype of sncl,
517  this double-mutant phenotype is itself reversed with concurrent partial loss-of-function of the n-
518  acetyltransferase EMBRYO DEFECTIVE 2573 (EMB2573; a homolog of gene candidate

519  Potri.001G177801), restoring the dwarf morphology. Knockout of EMB2573 also confers a wide
520  range of defects including in embryo differentiation, notably in the shoot apical meristem

521  (SAM), as indicated by abolished expression of the SAM marker SHOOT MERISTEMLESS
522 (Chen et al., 2018). MOS4 and EMB2573 are believed to regulate degradation of SNC1 in

523  addition to other genes involved in related SA-signaling roles (Xu et al., 2015).

524 Additional regulation of EIN3 is believed to exist via phosphorylation of EIN3 protein,
525  which is mediated by two known mechanisms, one of which is via the SA-regulated MAP

526  KINASE 3 (MPK3) and MAP KINASE 6 (MPK6). MPK3 and MPK6 are also responsible for
527  phosphorylation of VQ MOTIF PROTEIN 3 and 4 (VQ3 and VQ4), which are the two most

528  similar homologs of our gene candidate Potri.002G070600. Although VQ3 and VQ4 have not
529  been studied in the context of in vitro regeneration, they are believed to function downstream of
530  pathogen-associated molecular patterns (PAMPs) and upstream of pathogen defense genes (Yoo
531  etal.,2008; Pecher et al., 2014). Finally, we note one additional gene among our candidates with
532 alikely role in SA signaling. Potri.004G047700 is a homolog of NECROTIC SPOTTEN

533  LESIONS 1 (NLS1), knockouts of which display a phenotype of increased SA accumulation and
534 necrosis of leaves, particularly upon infection (Noutoshi et al., 2006; Fukunaga et al., 2017).

535 Our GWAS results also suggest a central role for anthocyanin and related genes. The

536  salicylic acid and jasmonic acid pathways are linked with anthocyanin signaling by the activity
537  of JAZ proteins in negatively regulating MYB/bHLH/WD40 (MBW) protein complexes

538  responsible for transcriptional regulation of anthocyanin biosynthesis genes (Qi ez al., 2011). We

539  report two gene candidates homologous to MBW components, Potri.002G173300 (encoding a
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540  WD-40 repeat family protein) and Potri.018G049600 (encoding a homolog of TRANSPARENT
541  TESTA 2). Although these genes have not been studied in the context of in vitro regeneration,
542  MBWs regulate steps of anthocyanin biosynthesis immediately downstream of naringenin

543  chalcone, which is produced by CHALCONE SYNTHASE (CHS); CHS knockout in

544  Arabidopsis confers deficient in vitro shoot regeneration, with a light-dependent effect. The

545  effects of anthocyanins on shoot regeneration may be mediated by their effects of ROS

546  scavenging (Nameth et al., 2013) and/or auxin accumulation (Brown et al., 2001).

547 A functional relationship between HLS1 (previously described; downstream of EIN3)
548 and RSMI (homolog of gene candidate Potri.004G155400) has been proposed due to phenotypic
549  similarities between hls/ and RSM1-overexpressing Arabidopsis. Etiolated seedlings of both
550  mutant lines presented various degrees of reduced hypocotyl length, reduced IAA content,

551  defective hook formation and defective gravitropism (Hamaguchi et al., 2008). However,

552 whereas HLS1 knockout is known to confer enhanced shoot regeneration in

553  Arabidopsis(Chatfield & Raizada, 2008), the effects of RSM1 or RSM family overexpression or
554  knockout on shoot regeneration have not yet been reported.

555 Several gene candidates from GWAS appear to affect cytokinin signaling.

556  Potri.010G105600 is a homolog of ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2) that
557  functions shortly downstream of cytokinin signaling. B-type ARRs such as ARR2 share some
558  degree of functional redundancy and may each positively regulate in vitro regeneration via

559  transcriptional upregulation of key developmental genes such as WUSCHEL (WUS) (Xie et al.,
560  2018; reviewed by Nagle ef al., 2018). An additional level of regulation over WUS expression
561  exists via the FANTASTIC FOUR (FAF) gene family. Overexpression of any of the four FAF
562  genes (including FAF1, homolog of gene candidate Potri.002G053400) leads to arrest of

563  vegetative shoot meristem development, possibly by inhibiting WUS expression via an

564 interaction with the feedback loop of regulation between WUS and the WUS inhibitor

565 CLUVATA3 (Wahl et al., 2010). Shoot meristem development is also regulated by the

566  CYTOKININ RESPONSE FACTOR (CRF) gene family (featuring CRF4, a homolog of

567  candidate Potri.012G032900), as shown by increased or reduced rosette growth when other

568  members of the CRF family are knocked out or overexpressed, respectively. However, these
569  experiments did not feature mutant analysis of the closely related CRF4 (Raines ef al., 2016).
570
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571  Reactive oxygen species (ROS) signaling

572 At least two genes among our candidates appear to have roles in ROS regulation, which
573  may affect regeneration and other developmental processes by mediating post-translational

574  modifications of proteins involved in hormone signaling and/or by affecting levels of oxidative
575  damage to developing tissues. Potri.011G031100 and Potr.012G070400 encode a putative

576  thioredoxin-like protein and a peroxiredoxin, respectively. Although we did not find reports of
577  mutant phenotypes for closely related genes in Arabidopsis in the context of regeneration or
578  related processes, the thioredoxin DCC1 has been reported to affect in vitro shoot regeneration
579  capacity in mutant lines as well as across natural ecotypes of Arabidopsis (Zhang et al., 2018Db).

580

581 Overlap with genes implicated from published GWAS analyses of regeneration

582 The candidates we identified showed very little similarity to results from related work. In
583  prior work, GWAS was performed in 280 genotypes of P. trichocarpa to study traits related to in
584  vitro callus regeneration. This study yielded eight candidate genes, none of which appear among
585  our results (Tuskan et al., 2018). A GWAS of traits related to roots and vegetative shoots in

586  Populus deltoides x simonii with 434 genotypes produced 224 QTLs and multiple gene

587  candidates were considered within proximity of each QTL, yielding a total of 595 unique gene
588  candidates, only three of which were also found among traits analyzed in our study.

589  Potri.015G018200, encoding a putative protein kinase, is a gene candidate from our analysis of
590  callus area at week two as well as a prior analysis of a measurement of the number of leaves per
591  vegetative shoot in P. euphratica. This leaf number trait also yields an association for

592 Potri.004G156900, a putative RETICULATA-related protein also appearing as a candidate in
593  our analysis of shoot area at week four. Another association is with Potri.019G035200, which
594  encodes an oxygenase involved in heme degradation within chloroplasts; it was found among our
595  gene candidates for callus at week two as well as in the same work for average stem diameter
596  (Sunetal.,2019).

597 In a review of GWAS of regeneration in diverse species, Lardon and Geelen (2020) noted
598 that gene candidates identified across studies are non-overlapping to a great extent. Some of the
599  potential causes for the low degree of overlap include genetic differences between study

600  populations, variation in tissue or explant physiology, variation in the treatments used to promote

601  regeneration, random variation in detection given underpowered statistics and numerous genes
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602  under polygenic traits control, and differing statistical approaches (Lardon & Geelen, 2020). All
603  of these factors would apply to our study vs. the other published work in Populus. Another likely
604  contributor to lack of overlap is that our GWAS is the only one studying in planta regeneration,
605  as opposed to in vitro regeneration or vegetative shoot development, and the genetic control of

606  these developmental processes is likely to vary significantly.

607  Conclusions

608 We report a GWAS of in planta regeneration in P. trichocarpa using a novel system for
609  phenotyping regeneration with computer vision, along with four complementary statistical

610  methods for association mapping. These analyses revealed over 200 candidate genes, strongly
611  implicating regulators of cell adhesion and stress signaling. While canonical regulators of in vitro
612  regeneration tend to be involved in auxin and cytokinin signaling pathways, our results suggest
613  that stress pathways downstream of ethylene, salicylic acid, and jasmonic acid are of greatest
614  importance to the mode of in planta regeneration that we studied in P. trichocarpa. These

615  pathways have received little attention in studies where developmental regulator genes are used
616  to promote regeneration, and would appear to be promising avenues to pursue, at least in woody
617  species. Furthermore, at least eight top candidates are members of a genetic regulatory network,
618  separated from one another by no more than four degrees of direct interactions. This, considered
619  along with the complex nature of in vitro regeneration traits, suggests that emerging multi-locus
620  methods and epistasis tests may provide significantly greater insights into the polygenic control
621  of these traits.

622

623  Acknowledgements

624 We thank the National Science Foundation Plant Genome Research Program for support
625  (IOS #1546900, Analysis of genes affecting plant regeneration and transformation in poplar),
626  and members of GREAT TREES Research Cooperative at OSU for its support of the Strauss
627  laboratory.

628 Support for the Poplar GWAS dataset is provided by the U.S. Department of Energy,
629  Office of Science Biological and Environmental Research (BER) via the Center for Bioenergy
630  Innovation (CBI) under Contract No. DE-PS02-06ER64304. The Poplar GWAS Project used
631  resources of the Oak Ridge Leadership Computing Facility and the Compute and Data


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

658
659
660

661
662

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Environment for Science at Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

This work used the COMET high-performance cluster at the San Diego Supercomputing
Center (University of California, San Diego) made available through the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1548562.

We thank biostars.org contributor “rmf” for providing a tutorial for generating LD decay

curves using PLINK and R (https://www.biostars.org/p/300381/). This method was used to

compute LD data for the three LD decay curves presented in this work.

Author Contributions

Strauss, Li, Jiang, and Muchero designed and directed the overall study, and obtained
funding for its execution; Ma, Peremyslova, Magnuson, and Goddard designed and/or executed
the phenotypic analyses; Nagle, Yuan, and Damanpreet created, adapted, and executed the
machine vision, computation, and data analysis pipelines; Nifo de Rivera assisted with
inspecting results in IGV. Nagle wrote the manuscript with editing from Strauss, and all others

contributed further edits and revisions.

Data Availability
Raw data and code used for this project is available upon request to the authors. MTMC-

SKAT is available on GitHub (https://github.com/naglemi/mtmcskat).

References

Aich S, Stavness I. 2017. Leaf Counting With Deep Convolutional and Deconvolutional
Networks. In: 2080-2089.

Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB,
Jackson DP, Kausch AP, et al. 2016. Advancing Crop Transformation in the Era of Genome
Editing. The Plant Cell 28: 1510-1520.

AnF,Zhao Q,JiY, LiW,Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, et al. 2010. Ethylene-
induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

663  degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. The Plant Cell 22:
664  2384-2401.

665  Armstrong JE, Crandell DR, Easterbrook DJ, Noble JB. 1965. Late Pleistocene Stratigraphy and
666  Chronology in Southwestern British Columbia and Northwestern Washington. GSA Bulletin 76:
667  321-330.

668 Bdeir R, Muchero W, Yordanov Y, Tuskan GA, Busov V, Gailing O. 2019. Genome-wide
669  association studies of bark texture in Populus trichocarpa. Tree Genetics & Genomes 15: 14.

670 Boyle P, Le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C. 2009. The
671  BTB/POZ Domain of the Arabidopsis Disease Resistance Protein NPR1 Interacts with the
672  Repression Domain of TGA2 to Negate Its Function. The Plant Cell 21: 3700-3713.

673  Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK.
674  2001. Flavonoids Act as Negative Regulators of Auxin Transport in Vivo in Arabidopsis. Plant
675  Physiology 126: 524-535.

676  Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. 1997. The Arabidopsis NPR1 gene that
677  controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell
678  88:57-63.

679  Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SC, Schmitz RJ, Urich MA,
680  Kuo D, et al. 2013. Temporal transcriptional response to ethylene gas drives growth hormone
681  cross-regulation in Arabidopsis (D Weigel, Ed.). eLife 2: e00675.

682  Chatfield SP, Raizada MN. 2008. Ethylene and shoot regeneration: hooklessl modulates de
683  novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Reports 27: 655—666.

684 ChenH,LiS,LiL, WuW, Ke X, Zou W, Zhao J. 2018. Na-Acetyltransferases 10 and 15 are
685  Required for the Correct Initiation of Endosperm Cellularization in Arabidopsis. Plant and Cell
686  Physiology 59: 2113-2128.

687  Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, Szpiro AA, Chen W, Brehm JM, Celeddn
688 JC, etal. 2016. Control for Population Structure and Relatedness for Binary Traits in Genetic
689  Association Studies via Logistic Mixed Models. The American Journal of Human Genetics 98:
690  653-666.

691 Chen Y, Wu H, Yang W, Zhao W, Tong C. 2021. Multivariate linear mixed model enhanced the
692  power of identifying genome-wide association to poplar tree heights in a randomized complete
693  block design. G3 Genes|Genomes|Genetics 11.

694  Chhetri HB, Furches A, Macaya-Sanz D, Walker AR, Kainer D, Jones P, Harman-Ware AE,
695  Tschaplinski TJ, Jacobson D, Tuskan GA, et al. 2020. Genome-Wide Association Study of Wood
696  Anatomical and Morphological Traits in Populus trichocarpa. Frontiers in Plant Science 11: 1391.


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

697
698
699

700
701

702
703
704

705
706

707
708
709

710
711
712
713

714
715

716
717
718
719

720
721
722

723
724
725

726
727

728
729
730

available under aCC-BY-NC-ND 4.0 International license.

Costa M, Pereira AM, Pinto SC, Silva J, Pereira LG, Coimbra S. 2019. In silico and expression
analyses of fasciclin-like arabinogalactan proteins reveal functional conservation during embryo
and seed development. Plant Reproduction 32: 353-370.

Deng W, Luo K, Li Z, Yang Y. 2009. A novel method for induction of plant regeneration via
somatic embryogenesis. Plant Science 177: 43—48.

Di Marsico M, Paytuvi Gallart A, Sanseverino W, Aiese Cigliano R. 2022. GreeNC 2.0: a
comprehensive database of plant long non-coding RNAs. Nucleic Acids Research 50: D1442—
D1447.

Dobrescu A, Valerio Giuffrida M, Tsaftaris SA. 2017. Leveraging Multiple Datasets for Deep
Leaf Counting. In: 2072-2079.

Dutta A, Zisserman A. 2019. The VIA Annotation Software for Images, Audio and Video. In: MM
’19. Proceedings of the 27th ACM International Conference on Multimedia. New York, NY, USA:
Association for Computing Machinery, 2276-2279.

Fukunaga S, Sogame M, Hata M, Singkaravanit-Ogawa S, Pislewska-Bednarek M, Onozawa-
Komori M, Nishiuchi T, Hiruma K, Saitoh H, Terauchi R, et al. 2017. Dysfunction of Arabidopsis
MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-
triggered immunity. The Plant Journal: For Cell and Molecular Biology 89: 381-393.

Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones T. 2019. Using
Morphogenic Genes to Improve Recovery and Regeneration of Transgenic Plants. Plants 8: 38.

Hamaguchi A, Yamashino T, Koizumi N, Kiba T, Kojima M, Sakakibara H, Mizuno T. 2008. A
small subfamily of Arabidopsis RADIALIS-LIKE SANT/MYB genes: a link to HOOKLESS1-mediated
signal transduction during early morphogenesis. Bioscience, Biotechnology, and Biochemistry
72: 2687-2696.

Hussain RMF, Sheikh AH, Haider I, Quareshy M, Linthorst HIM. 2018. Arabidopsis WRKY50 and
TGA Transcription Factors Synergistically Activate Expression of PR1. Frontiers in Plant Science
9: 930.

lonita-Laza |, Lee S, Makarov V, Buxbaum JD, Lin X. 2013. Sequence Kernel Association Tests
for the Combined Effect of Rare and Common Variants. American Journal of Human Genetics
92: 841-853.

Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. 2018. CRISPR for
Crop Improvement: An Update Review. Frontiers in Plant Science 9.

Jin H, Choi S-M, Kang M-J, Yun S-H, Kwon D-J, Noh Y-S, Noh B. 2018. Salicylic acid-induced
transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in
Arabidopsis. Nucleic Acids Research 46: 11712-11725.


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

731  Kaler AS, Gillman JD, Beissinger T, Purcell LC. 2020. Comparing Different Statistical Models and
732 Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers in Plant
733 Science 10: 1794.

734  Kusmec A, Schnable PS. 2018. FarmCPUpp: Efficient large-scale genomewide association
735  studies. Plant Direct 2: e00053.

736  Kyritsis KA, Wang B, Sullivan J, Lyne R, Micklem G. 2019. InterMineR: an R package for
737  InterMine databases. Bioinformatics (Oxford, England) 35: 3206—3207.

738  Lardon R, Geelen D. 2020. Natural Variation in Plant Pluripotency and Regeneration. Plants 9:
739  1261.

740  Lee T-H, Guo H, Wang X, Kim C, Paterson AH. 2014. SNPhylo: a pipeline to construct a
741  phylogenetic tree from huge SNP data. BMC Genomics 15: 162.

742  Liu X, Huang M, Fan B, Buckler ES, Zhang Z. 2016. Iterative Usage of Fixed and Random Effect
743 Models for Powerful and Efficient Genome-Wide Association Studies. PLOS Genetics 12:
744  e1005767.

745  Lopez-Cortegano E, Caballero A. 2019. Inferring the Nature of Missing Heritability in Human
746  Traits Using Data from the GWAS Catalog. Genetics 212: 891-904.

747  Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF. 2020. Plant gene editing
748  through de novo induction of meristems. Nature Biotechnology 38: 84—89.

749  Majda M, Robert S. 2018. The Role of Auxin in Cell Wall Expansion. International Journal of
750  Molecular Sciences 19: 951.

751  Marowa P, Ding A, Kong Y. 2016. Expansins: roles in plant growth and potential applications in
752 crop improvement. Plant Cell Reports 35: 949-965.

753  Muchero W, Sondreli KL, Chen J-G, Urbanowicz BR, Zhang J, Singan V, Yang Y, Brueggeman RS,
754 Franco-Coronado J, Abraham N, et al. 2018. Association mapping, transcriptomics, and

755  transient expression identify candidate genes mediating plant—pathogen interactions in a tree.
756  Proceedings of the National Academy of Sciences 115: 11573-11578.

757  Nagle M, Déjardin A, Pilate G, Strauss SH. 2018. Opportunities for Innovation in Genetic
758  Transformation of Forest Trees. Frontiers in Plant Science 9.

759  Nameth B, Dinka SJ, Chatfield SP, Morris A, English J, Lewis D, Oro R, Raizada MN. 2013. The
760  shoot regeneration capacity of excised Arabidopsis cotyledons is established during the initial
761  hours after injury and is modulated by a complex genetic network of light signalling. Plant, Cell
762 & Environment 36: 68—86.


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

763
764
765
766

767
768
769

770
771
772

773
774
775

776
777
778
779

780
781
782
783

784
785
786

787
788

789
790

791
792

793
794

795
796
797

available under aCC-BY-NC-ND 4.0 International license.

National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life
Studies, Board on Agriculture and Natural Resources, Committee on Genetically Engineered
Crops: Past Experience and Future Prospects. 2016. Genetically Engineered Crops: Experiences
and Prospects. p.406-443: National Academies Press.

Nguyen THN, Winkelmann T, Debener T. 2020. Genetic analysis of callus formation in a
diversity panel of 96 rose genotypes. Plant Cell, Tissue and Organ Culture (PCTOC) 142: 505—
517.

Noutoshi Y, Kuromori T, Wada T, Hirayama T, Kamiya A, Imura Y, Yasuda M, Nakashita H,
Shirasu K, Shinozaki K. 2006. Loss of Necrotic Spotted Lesions 1 associates with cell death and
defense responses in Arabidopsis thaliana. Plant Molecular Biology 62: 29-42.

Palma K, Zhao Q, Cheng YT, Bi D, Monaghan J, Cheng W, Zhang Y, Li X. 2007. Regulation of
plant innate immunity by three proteins in a complex conserved across the plant and animal
kingdoms. Genes & Development 21: 1484—-1493.

Pecher P, Eschen-Lippold L, Herklotz S, Kuhle K, Naumann K, Bethke G, Uhrig J, Weyhe M,
Scheel D, Lee J. 2014. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and
MPK®6 target a subclass of 'VQ-motif’-containing proteins to regulate immune responses. The
New Phytologist 203: 592—-606.

Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. 2011. The
Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to
regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis
thaliana. The Plant Cell 23: 1795-1814.

Raines T, Shanks C, Cheng C-Y, McPherson D, Argueso CT, Kim HJ, Franco-Zorrilla JM, Lépez-
Vidriero |, Solano R, Vankova R, et al. 2016. The cytokinin response factors modulate root and
shoot growth and promote leaf senescence in Arabidopsis. The Plant Journal 85: 134-147.

Raj A, Stephens M, Pritchard JK. 2014. fastSTRUCTURE: variational inference of population
structure in large SNP data sets. Genetics 197: 573-589.

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things).
Methods in Ecology and Evolution 3: 217-223.

Robinson JT, Thorvaldsdéttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011.
Integrative genomics viewer. Nature Biotechnology 29: 24-26.

Russell BC, Torralba A, Murphy KP, Freeman WT. 2008. LabelMe: A Database and Web-Based
Tool for Image Annotation. International Journal of Computer Vision 77: 157-173.

Sun P, JiaH, Zhang Y, LiJ, Lu M, Hu J. 2019. Deciphering Genetic Architecture of Adventitious
Root and Related Shoot Traits in Populus Using QTL Mapping and RNA-Seq Data. International
Journal of Molecular Sciences 20: 6114.


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

798
799

800

801
802
803

804
805
806

807
808
809

810
811
812

813
814

815
816

817
818

819
820

821
822
823

824
825

826
827
828

available under aCC-BY-NC-ND 4.0 International license.

Tange 0. 2020. GNU Parallel 20201122 ('Biden’); GNU Parallel is a general parallelizer to run
multiple serial command line programs in paralle Iwithout changing them. Zenodo.

The Arabidopsis Information Resource (TAIR). 2022.

Thorvaldsdoéttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and exploration. Briefings in Bioinformatics 14: 178—
192.

Towns J, Cockerill T, Dahan M, Foster |, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka
D, Peterson GD, et al. 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science &
Engineering 16: 62-74.

Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev |, Hellsten U, Putnam N, Ralph S,
Rombauts S, Salamov A, et al. 2006. The Genome of Black Cottonwood, Populus trichocarpa
(Torr. &amp; Gray). Science 313: 1596—-1604.

Tuskan GA, Mewalal R, Gunter LE, Palla KJ, Carter K, Jacobson DA, Jones PC, Garcia BJ,
Weighill DA, Hyatt PD, et al. 2018. Defining the genetic components of callus formation: A
GWAS approach. PLoS ONE 13: e0202519.

Vsevolozhskaya OA, Hu F, Zaykin DV. 2019. Detecting Weak Signals by Combining Small P-
Values in Genetic Association Studies. Frontiers in Genetics 0.

Wahl V, Brand LH, Guo Y-L, Schmid M. 2010. The FANTASTIC FOUR proteins influence shoot
meristem size in Arabidopsis thaliana. BMC Plant Biology 10: 285.

Weber JC, Stettler RF. 1981. Isoenzyme variation among ten populations of Populus trichocarpa
Torr. et Gray in the Pacific Northwest. Silvae Genetica 30: 82—87.

Weighill D, Tschaplinski TJ, Tuskan GA, Jacobson D. 2019. Data Integration in Poplar: ‘Omics
Layers and Integration Strategies. Frontiers in Genetics 10: 874.

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-Variant Association Testing for
Sequencing Data with the Sequence Kernel Association Test. American Journal of Human
Genetics 89: 82-93.

Xiao Q, Bai X, Zhang C, He Y. 2021. Advanced high-throughput plant phenotyping techniques
for genome-wide association studies: A review. Journal of Advanced Research.

Xie M, Chen H, Huang L, O’Neil RC, Shokhirev MN, Ecker JR. 2018. A B-ARR-mediated cytokinin
transcriptional network directs hormone cross-regulation and shoot development. Nature
Communications 9: 1604.


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495082; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

829  XuF, Huang, Li L, Gannon P, Linster E, Huber M, Kapos P, Bienvenut W, Polevoda B, Meinnel
830 T, etal 2015. Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-
831 like receptor in Arabidopsis. The Plant Cell 27: 1547-1562.

832  Yang W, Guo Z, Huang C, Wang K, Jiang N, Feng H, Chen G, Liu Q, Xiong L. 2015. Genome-wide
833  association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer. Journal
834  of Experimental Botany 66: 5605—-5615.

835  Yangs$, HuaJ. 2004. A Haplotype-Specific Resistance Gene Regulated by BONZAI1 Mediates
836  Temperature-Dependent Growth Control in Arabidopsis. The Plant Cell 16: 1060-1071.

837  Yates TB, Feng K, Zhang J, Singan V, Jawdy SS, Ranjan P, Abraham PE, Barry K, Lipzen A, Pan C,
838  etal 2021. The Ancient Salicoid Genome Duplication Event: A Platform for Reconstruction of
839  De Novo Gene Evolution in Populus trichocarpa. Genome Biology and Evolution 13: evab198.

840 Yoo S-D, Cho Y-H, Tena G, Xiong Y, Sheen J. 2008. Dual control of nuclear EIN3 by bifurcate
841  MAPK cascades in C2H4 signalling. Nature 451: 789-795.

842  Yuan ), Kaur D, Zhou Z, Nagle M, Kiddle NG, Doshi NA, Behnoudfar A, Peremyslova E, Ma C,
843  Strauss SH, et al. 2022. Robust High-Throughput Phenotyping with Deep Segmentation Enabled
844 by a Web-Based Annotator. Plant Phenomics 2022.

845  Zhang, Goritschnig S, Dong X, Li X. 2003a. A gain-of-function mutation in a plant disease
846  resistance gene leads to constitutive activation of downstream signal transduction pathways in
847  suppressor of nprl-1, constitutive 1. The Plant Cell 15: 2636—2646.

848 Zhang Q, SuZ, Guo Y, Zhang S, Jiang L, Wu R. 2020. Genome-wide association studies of callus
849  differentiation for the desert tree, Populus euphratica. Tree Physiology 40: 1762-1777.

850  Zhang, Tessaro MJ, Lassner M, Li X. 2003b. Knockout Analysis of Arabidopsis Transcription
851 Factors TGA2, TGAS, and TGA6 Reveals Their Redundant and Essential Roles in Systemic
852  Acquired Resistance. The Plant Cell 15: 2647—-2653.

853  ZhangJ, Yang Y, Zheng K, Xie M, Feng K, Jawdy SS, Gunter LE, Ranjan P, Singan VR, Engle N, et
854  al. 2018a. Genome-wide association studies and expression-based quantitative trait loci

855  analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-
856  responsive transcription factors in Populus. New Phytologist 220: 502-516.

857  Zhang H, Zhang TT, Liu H, Shi DY, Wang M, Bie XM, Li XG, Zhang XS. 2018b. Thioredoxin-
858  Mediated ROS Homeostasis Explains Natural Variation in Plant Regeneration1[OPEN]. Plant
859  Physiology 176: 2231-2250.

860  Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association
861 studies. Nature Genetics 44: 821-824.

862


https://doi.org/10.1101/2022.06.08.495082
http://creativecommons.org/licenses/by-nc-nd/4.0/

